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Abstract
Ii

Systems identification methods have

recently been applied to rotorcraft to If

estimate stability derivatives from

transient flight control response data. J
While these applications assumed a

linear constant coefficient representa- P(t) or P

experiments described in this paper used

transient responses in flap-bending and

torsion of a rotor blade at high advance P
ratio which is a rapidly time varying

periodic system. It was found that a

simple system identification method ap- Q= (II/4If)c/R

plying a linear sequential estimator

also called equation of motion estimator, R
is suitable for this periodic system and

can be used directly if only the accel-

eration data are noise p_7',_, in the _,

case of noise being present also in the

state variable data the direct appiica- a,b,c

tion of the estimator gave poor results,

however after prefilterin_ the _=_a_-+ with

a digital Graham filter havin_ a cut-off a

frequency above the natural blade torsion
freeuencv. +_ linear se_e _+_=_ estima- c

tor successfully recovered the parameters f

of the periodic coefficient analytical

model.
t

Notation + v

wCj_t)

B Blade tip loss factor
W

F = (Ii/16If)(c/R)2 First blade tor-
X

sional inertia

number z

F(x,t) State matrix S

G(t) Process noise modulating y

matrix

H(m) Fourier transform of

weighting function

H(x,t) Measurement matrix n

H(<,a) State matrix : measurement

matrix 8

X
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Blade flapping moment of

inertia.

Blade feathering moment

of inertia.

Quadratic cost function.

Covariance matrix of

conditicnal _tat_ vcctor

probability distribution

given measurements.

Blade flapping natural

frequency.

Second blade torsional

inertia number.

Measurement noise co-

variance matrix.

Blade radius

Unknown parameters to be

estimated in flapping-

torsion problem.

Parameter vector.

Blade chord.

Blade torsional natural

frequency.

Non-dimensional time.

Measurement noise vector

Smoothing weights.

Process noise vector

State vector

Measurement vector.

Flapping angle.

Blade Lock number.

Blade torsion deflection

Acceleration vector.

Rate of displacement

vector.

Blade pitch angle.

Rotor inflow ratio, con-

stant over disk.

Rotor advance ratio.

Displacement vector.

+In order to retain the conventional sym-

bols in helicopter aerodynamics (Ref-

erence 7) and in systems analysis (Ref-

erence 9) some symbols are used in two

different meanings.
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Subscripts

O

cgt

Superscripts

^

T

Notation

(cont')

Standard deviation.

Circular frequency.

Initial or mean value.

Beginning and end of fil-

ter cut-off frequencies.

Time differentiation.

Smoothed data after fil-

tering.

Estimate

Matrix transpose

The question often arises, how to

best select some parameters of a given

analytical model of a dynamic system on

the basis of transient responses to

certain inputs either obtained analyti-

cally with a more complete math model or

obtained experimentally. In rotorcraft

flight dynamics one may want to use a

linear constant coefficient math model

and select the state matrix in an opti-

mal way from the measured data ob-

tained in a number of transient flight

maneuvers. One also may have a more

sophisticated non-linear analytical

model of the rotorcraft. The problem

then is how can the simpler linear math

model be selected to best represent the

responses of the more complete analyti-

cal model; or one may have the dynamic

equations of a rotorcraft without the

effects of dynamic inflow and one de-

sires to modify some of the parameters

in such a way that dynamic inflow ef-

fects are best approximated. It is

known from theoretical studies, for

example Reference I, that a reduction in

blade Lock number can approximately

account for rotor inflow effects in

steady conditions. The question then is

whether changes in parameters can also

account for inflow effects during

transient conditions.

The idea of using transient re-

sponse data to determine parameters of

an analytical model is certainly not

new. Recently, however, considerable

interest in this area has been de-

veloped and a number of approaches have

been studied which are unified under the

title of "system identification". There

is a considerable and rapidly growing

literature in this field. System iden-

tification methods generally fall into

two classes: (i) deterministic methods -

usually some variation of the classical

least squares technique and (2) proba-

biiistic methods which determine the

parameters as maximum likelihood esti-

mates of random variables. Some methods

can also be interpreted either on a

deterministic or on a probabilistic

basis. References 2 and 3 are typical of

recent work using deterministic methods.

Both of these studies illustrate the

feasibility of determining coefficients

in time invariant linear systems from

transient response data. Reference 4 de-

scribes many of the probabilistic tech-

niques. Reference 5 gives a detailed

discussion of the various methods in

th_ annl{_af{_n t_ V/qTOT, B_reraft and

Riferen_e-6-pres_nts an-identification
method suitable for obtaining stability

derivatives for a helicopter from flight

test data in transient maneuvers. The

studies of References 5 and 6 assume a

linear constant coefficient representation

of the system. A rotorcraft blade is,

however, a dynamic system with rapidly

changing periodic coefficients. It ap-

peared, therefore, desirable to try out

methods of system identification for a

periodic dynamic system.

Selection of Identification Method

If one assumes that only the state

variables have been measured but not the

accelerations, one must use a non-linear

estimator since the estimate of a system

parameter and the estimate of a state

variable appear as a product of two un-

knowns. A non-linear sequential esti-

mator was tried on the simplest linear

periodic system described by the Mathieu

Equation. It was found that the non-

linear estimating process diverged in

most cases, unless the initial estimate

and its standard deviation were selected

within rather narrow limits. Reference 6

uses a sequential non-linear estimator

but initializes the process by first ap-

plying a least square estimator, which

needs in addition to the state variable

measurements also measurements of the ac-

celerations. In the case of the problem

of Reference 6 the least square estimator

yielded a rather good set of derivatives

and the improvement from the much more

involved non-linear estimation was not

very pronounced. From this experience

it would appear that one needs to apply

the least square or an equivalent linear

estimator any way and that in some cases

it is doubtful whether or not the sub-

sequent application of a non-linear es-

timator is worth the considerable effort.

After conducting the rather unsatis-

factory computer experiments to identify

a simple periodic system with the
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non-linear estimator, all subsequent work

was done with a linear sequential esti-

mator. This estimator is equivalent To

least square estimation but has the ad-

vantage of being usable for "on-line"

system identification. The inversion of

large matrices is avoided and replaced by

numerical integration of a number of

ordinary differential equations. The

computer experiments were conducted with

the system equations of Reference 7 for

the flapping - torsion dynamics of a

rotorblade operating at advance ratio 1.6.

Reference 7 assumes a straight blade

elastically hinged at the _otor center

and stipulates linear elastic blade twist.

The system used here for the computer ex-

periments represents unly a relatively

crude approximation, since at 1.6 advance

ratio blade bending flexibility is of im-

portance, see for example Reference 8.

The coefficients in The system equations

are non-analytic periodic functions which

include the effects of reversed flow.

The identification algorithm used in

this report is easily derived using The

extended Kalman filter discussed in The

next section. Although the algorithm

does not provide for noise in The state

variables, one can nevertheless use it

also for noisy data if one interprets the

estimate, which normally is a determinis-

tic variable, as a sample of a random

variable. The effects on system identi-

fication of computer generated noise in

both the acceleration data and in The

state variable data were studied. Howeve_

no errors in modeling were intmoduced

since Their effects can only be evaluated

on a case by case basis.

Extended Kalman Filter

The extended Kalman filter is an

algorithm for obtaining an estimate x of a

state vector x satisfying

= F(x,t) + G(T)w Process Equation(D

given noisy measurements z related to x

via

z = H(x,T) + v Measurement EquaTion(_

In the above equations w repres4nts zero

mean white Gaussian process noise with

covariance matrix Q, v represents zero

mean white Gaussian measurement noise

with covariance matrix R. An optimum es-

timate _ of x can be obtained by solving

the extended Kalman filter equations

(see Reference 9)

J H\TRl/ )
/ Filter Equati6n (3)

Covariance Equation (4)

_(o) = x o , P(o) = Po

Initial Conditions (5)

and P can be interpreted as vector mean

and covariance matrix of a conditional

probability distribution of the state

vector x, given the measurement vector z.

However, since the extended Kalman

filter is a biased estimator (see Refer-

enee 5) and since the correct value of

Po is not known, P cannot be used as a

measure of The quality of the estimate.

Rather, the rate of decrease of P is an

indication of The amount of information

being obtained from The data. When P

approaches a constant value Then no

further information is being obtained.

The extended Kalman filter may also

be interpreted as an algorithm for ob-

Taining a least square estimate recur-

sively. The estimate is such as to

minimize the following quadratic cost
function

J = 1/2 I (x° - x°)Tp°l- (x° - Xo) ÷

Cost Function (61

where now Po, R and Q are arbitrary

weighting matrices, which may be se-

lected for good convergence of the

algorithm. Since i.) numerical methods

for solving ordinary differential equa-

tions are well developed and 2.) R is

usually a diagonal matrix so That R -1 is

easy To obtain, this algorithm is compu-

ta%ionally very efficient.

Estimation of Unknown Parameters

If we wish to estimate the vector a

of unknown parameters we substitute a for

x in the Kalman filter Eq. 3. For con-

stant parameters we have

a = o Process Equation (7)
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SO that F(x,t) = w = o. The system equa-

tion is then used as the measurement

equation

Measurement Equation= H(_,a) + v

System Equation (8)



is the vector of measuredaccelerations,
is the measuredstate vector and v can

be interpreted as acceleration measure-
ment noise or as systemnoise (including
modelingerrors). The Kalmanfilter
equations are then

"p/_H_TR-I ^
: |_] [_ - H(_,a)]

\ /
Filter Equation (9)

Covariance Equation (10)

For P ÷ o the measurements lose influence

on the estimate and one obtains

a = o Asymptotic Filter Equation (ll)

which agrees with the process equation.

Again Pc and R may be selected for good

convergence. A convenient choice for the

initial estimate is _(o) = o. The ele-

ments of R should be large enough to pre-

vent the elements of P from becoming

negative due to oomputation errors in the

numerical integration.

Note that _, the state vector, is

also a measured quantity. If measurement

errors are present then this estimation

algorithm is biased by an amount approxi-

mately proportional to the noise to sig-

nal ratio in the state variable measure-

ments, see Reference 5. It is therefore

advantageous to reduce the noise ratio

before using the estimator. Methods for

doing this are discussed in a later sec-

tion on filtering of the response data.

In practice, one can almost always

choose the parameters to be identified in

such a way that H(_,a) is a linear func-

tion of a. The estimator (9), (i0) is

then linear and problems of nonuniqueness

and filter divergence are easily avoided.

For this case, we call the algorithm the

linear sequential estimator.

The extended Kalman filter assumes

that the noise processes w and v are

white and gaussian. This will never be

the case in practice especially if w must

account fop the effects of modeling em-

rots. Because the extended Kalman fil-

ter may also be interpreted as yielding a

least squares estimate for a given sample

of the state _ and acceleration _, we can

regard the resulting estimate as a sample

from a random variable. Determination of

this random variable would necessitate a

complete simulation, i.e., mean and

variance determined by averaging over

many runs. Since this approach is

expensive of computing time, efforts here

have been directed toward recovering para-

meters from a single run of computer gen-

erated response data.

The above approach to parameter es-

timation allows the use of high order of

accuracy numerical integration (i.e., pre-

dictor corrector) schemes to solve the

system of ordinary differential equations

provided that the response data are suf-

ficiently smooth. The parameter estima-

tion is rapid and requires little com-

puter time. R and Pc can be freely se-

lected to obtain good convergence. The

reason for this benign behavior of the

estimation method is the linearity of the

filter equations in the unknowns. If the

accelerations of the system are not

measured, one must estimate state vari-

ables and parameters simultaneously from

a nonlinear filter equation. This non-

linear estimation requires an order of

magnitude more computer effort and it is

very sensitive to the initializations and

to the correct assumptions of process

noise and measurement noise. As

mentioned before, we began by applying

the nonlinear estimator to the identi-

fication of parameters in Mathieu's

equation for a periodic system. The re-

sults were unsatisfactory since filter

divergence occured for many choices of

Pc and R. However, for the linear

sequential estimator divergence could be

avoided by following simple rules in

selecting x(o), Pc and R.

Identifiability of System Parameters

It is obvious from the filter

equation (9) that a will asymptotically

approach a constant value provided that

P ÷ o. The covariance equation (10) can

be solved explicitly (see Appendix A) to

yield

t ]-i+ _-_ dt (12)

If the integral is replaced by a sum, this

is the error equation for the standard

least square method. If Pc _ o, then

P(t) ÷ o whenever the integrand in the

above equation is positive definite for

all t. This is then a sufficient condi-

tion for identifiability. Note that

_H

_-_ is a function of the system response

and hence also of the excitation, so that

the identifiability depends not only upon

the system but also upon the type of ex-

citation. From the measurement equation

(8) we see that the matrix _H is a

_a

measure of the sensitivity of acceleration
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measttremenTs to changes in the parametems.

For estimating parameters, a well designed

excitation is obviously one which causes

the elements of the P matrix To decrease

rapidly. If any elements of P are de-

creasing slowly or not at all, then a dif-

ferent type of excitation is needed. A

look at which elements of P are causing

the Trouble will give a clue as to which

modes of the system are not being properly
excited.

Filterin_ the Response Data

In practice, we usually have some

knowledge of the character of the re-

sponse data. For example, because of the

damping Dresent in physical systems, the

true response will not contain much

energy at high frequencies. We also know

that the acceleration is the derivative

of the velocity which is in turn the de_

mivative of the displacement, etc. so that

These responses are not independent.

To remove high frequency noise with-

out effecTing The signal a zero phase

shift low band pass digital filter was

used. This filter completely removes all

of the signal and noise above a certain

termination frequency m t without phase or

amplitude distortion below a cutoff fre-

quency m c. The digital filter used, due

To Graham, Reference 10, generates the

smoothed data as a numerical convolution

of the raw data and a set of numerical

smoothing weights, i.e.,

N

f(t O + iat) = _ w(jAt)f(t o ÷

j=-N

(i + j)At)

(13)

where fCT o + (i + j)at_ are the sampled

values of-the signal, f(t O + iAt) are the

smoothed sampled values and where the

smoothing weights are given by

xc

w(jAt) : _-_

sin mtjat + sin _cjAT

w 2 _ (mt,WC)2_2At 2

j = -N,...,% N

i#o

w(o) -
o(mt + _c)

2w mc < wT

(14)

where the constant c is chosen to satisfy
The constraint

+N

wCjat) = 1 (is)

j=-N

The continuous weighting function

wCt), of which w(jAt) is a discretizaTion,

has the Fourier Transform, i.e., fre-

quency domain representation, shown in

Figure i. Convolution of this function

with an arbitrary signal will obviously

result in a smoothed signal which has all

frequencies above _t completely sup-

pressed and all signal components below

m c undistorted. If mc and mE are pro-

perly selected then responge data with

low frequency signal and high frequency

noise can be improved via digital fil-

tering, that is, signal To noise ratio

can be significantly increased.

In using the digital filter, it is

tempting to achieve a "sharp" filter by

taking mc : wt" Graham, Reference I0,

has determined empirically That The

number of points N needed to achieve a

given accuracy is approximately inversely

proportional to l_t-_cl at least over a

limited frequency range. Since N = _0

points were used to filter the data, we

selected I wt-,.,¢ I_• 1 which according to

Graham is sufflcient to yield 2% accuracy.

In this study, the n_erical convo-

lution was accomplished by using a moving

average, i.e., {(to'+ iAt) was computed

separately.for each i using Eq. (13). For

long data records it is possible to

achieve considerable savings in computer

time by using the Fast Fourier Transform

algorithm to do this convolution, see
Reference ii.

Improvements in the response data

can also be obtained by making use of

relationships among the various response

signals. For The coupled flapping-torsion

system considered in the next section the

displacements _, velocities n and accel-

erations { are related by

E = n

_ = ¢ + v

We can use these equations as process

equations in a Kalman filter along with

measurement equations

(16)

(17)
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where [ and _ denote smoothed measured

values. In the process equation (16)

replace _ by its smoothed measured value

and let R, the process noise covariance

matrix account for remaining errors.

Then the Kalman Filter is given by

Note that _ is available when solving the

above equations and can be used as an

improved estimate of _. Although this

technique has not been used in this

study, a similar procedure has been used

successfully in Reference 6 for heli-

copter derivative identification.

Computer Experiments

Coupled flapping-torsion vibrations

of a rotor blade at high advance ratio

are governed by the equations

+ P2S = _ [Me, (t)6 + Mx(t)X +

Meo(t)e o - C(t)B - K(t)8]

3

+ f26 = -2 8o - 3yF [C8o (t)8 o +

C6(t)_]

- 3yQ[lr_(t)8 + _rs(t)8 + _rl(t)l +

£reo(t)e o + K6(t)6]
(20)

where the periodic coefficients are

defined in Reference 7. Responses to the

gust excitations shown in Figure 2 were

generated by solving Eq. (20) numerically

using a fourth order Adams Moulton method

with a time step of .05 and the following

parameter values :

p2 = 1.69 y = 4.0 Q = 15.

f2 : 64. _ = 1.6 80: O. (21)

B : .97 F : .24

Simulated noisy measurements were obtained

by adding samples from zero mean computer

generated Gaussian random sequences to

the computer generated responses. First

the noise was added only to accelerations

using the standard deviations

_ : 1.0 a;_ : I0 (22)

The following three parameters with the

values

a:y/2:2.0

b : -3yF : -2.88 (23)

c : -3_'Q : -180

were assumed to be unknown.

They represent blade flapping and

torsional inertia numbers. Unsteady

aerodynamic inflow effects may possibly

be considered by modifications of these

inertia numbers from transient rotor

model wind tunnel tests. The linear

sequential estimator was started with

the initial values of the estimates and

errors of the estimates

100001(o) / = o P(o) = 55 0

(o)J L o o  oooJ
k

(24)

The linear sequential estimator is, as

mentioned before, quite insensitive to
the initial standard deviations which

could have been selected still much

larger. The values for R used are the

following

[:0]R : (25)

i0

The method allows wide variations in the

assumptions of the noise covariance

matrix R. The integration scheme for

solving filter and covariance Eqs. (9)

and (10) was again a 4th order Adams

Moulton method with a time step.of^.05.

Fig. 3, shows the estimates a, b, c

normalized with the true values and the

3 diagonal terms of the error covariance

matrix P normalized with the initial

values vs. non-dimensional time t. The

excitation for this case was a unit step

gust at time t = o, as indicated in Fig.

2 by the dash line. In about one

revolution (t = 2w) the diagonal compo-

nents of the covariance matrix Pa Pb Pc

are approximately zero and further

improvements of the parameter estimates

6 6 are not obtained. There is a

small bias error (deviation from the

value i) in two of the parameters, which

have been recovered within about 5% error.

The next case assumes that not only

the accelerations but also the state

variables are noisy. The following

standard deviations were used
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at} = .2 a 6 = .5

_ = .6 ._ = 3.0

_ = 1.0 o_ = 10

(22a)

The linear sequential estimator was first

applied To the raw data. In this case

the responses ape far from smooth so That

the use of a high order numerical inte-

gration scheme was unjustified. A first

order Euler's method was used for The

integration of the estimator equations.

The initial values were

k I J
DLO] = O .r_o) = oo u

(o) o lOOO

(2_.a)

The values for the R used in the

estimator were

p:0]R = (25a)
225

The excitation consisted of a upward unit

step gust at t = 2.0 followed by a down

step gust to _ = -i at T = 6.0, as

indicated in Fig. 2. The second gust

was added in order to provide to the

system another Transient useful for the

estimator process. Fig. _ shows That

though Two of the diagonal covariance

terms go to zero after the second gust,

the associated parameter estimates

remain quite erroneous. The linear

sequential estimator cannot be used if

noise is present in accelerations as well

as in the state variables.

Next the same data were passed

Through a digital filter with cut-off

frequencies mc = 12, mt = 13, see Fig. I.

These cut-off frequencies are about 50%

higher than the torsional frequency of

f = 8. Applying now the linear

sequential estimator to the filtered dat_

the initial values were the same as

before, Eq. (24a), however R was reduced:

R = (25b1
0

The results of the estimation are shown

in Fig. 5. All diagonal terms of The

covariance matrix go to zero soon after

the second gust, the estimates stabilize

in less than 2 rotor revolutions and have

only a small bias error of about 5%; same

as for the case with zero noise in the

state variables. Digitally filtering the

data to remove high frequency noise has

Thus appreciably extended the range of

applicability of the linear sequential

estimator. It might be argued that the

success of the digital filter is due to

the "white" character of the computer

generated noise whereas real data will

contain energy only at finite frequencie_

It should be noted that the digital

filter removes all of The signal above

The Truncation frequency and hence

would be equally successful for any

other distribution of the energy above

_t-

In selecting the parameters for the

digital filter it is important to keep

_c large enough so that the responses

are not significantly distorted.

Initially, The noisy data was pro-

cessed using different digital filters

for the torsion and flapping responses.

A digital filter with high cut-off

frequency i.e., _¢ = 12. and _t = 13.

was used for torslon responses while a

lower bandpass filter with _ = 2. and

_t = 3. was used to filter f_apping

responses. This resulted in poor identi-

fication of The parameter a in the

flapping equation. When The same

filter with high cut-off frequency was

used for all of the data, adequate

identification of all parameters was

obtained. Although mc = 2. is above The

natural frequency of flapping vibration,

the flapping response obviously contains

higher frequency components because of

the coupling with torsion. This can

easily be seen by inspection of The

flapping response in Figure 6. For a

good identification it is necessary That

these higher frequency components not

be removed from the signal. Fig. 6

compares the response without noise to

the response with noise but after

filtering. Also indicated are the

standard deviations for flapping and

torsion before filtering. It is seen

that the filter was very effective in

removing the noise corruption from the
data.

Conclusions

1. The linear sequential estimator, also

called equation of motion estimator,

has been successfully applied to

recover the system parameters of a

periodic system representing rotor

blade flapping-torsion dynamics at

high rotor advance ratio with noise

contaminated accelerations.

Filtering of the noisy acceleration

data was found to be not necessary.

2. If noise is present in the state

variables as well as in the acceler-

ations, the linear sequential
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estimator performed very poorly.

3. Filtering both state variables and

accelerations with a Graham digital

filter with a low cut-off frequency
for flapping and a high cut-off for
torsion before estimation lead to a

poor estimate for the flapping
parameter.

4. Filtering both flapping and torsion

response with a high cut-off fre-
quency digital filter before esti-

mation resulted in an adequate para-
meter recovery both in flapping and
in torsion.

5. As compared to non-linear estimation

methods which are applicable also if
acceleration information is not

available, the linear sequential

estimator has the great advantage of
being insensitive to the assumption
of initial values for the estimate
and for the error of the estimate.

No matter what the actual measurement
noise is, the assumed noise covar-

iance matrix should be over-rather
than underestimated.

6. As compared to the usual form of the
least square estimation the linear

se$uential estimator does not re-
qulre the inversion of large matrices
but merely the numerical solution of

a system of ordinary differential
equations, thus allowing on-line

application. The digital filter
smoothes the data sufficiently so

that high order of accuracy predictor
corrector methods can be used for
the integration.

7o The computem studies were performed
assuming rather large measuring errors
with standard deviations for the
deflections of about 10% of the maxi-

mum measured values. The foregoing
conclusions assume the absence of

modeling errors, which would require
special investigations.
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Appendix A

Solution of the Covariance Equation

The covariance equation of the linear

sequential estimator

: p/_H_TR-I _H
- _7 _ P (A-1

is a matrix Ricatti differential equation.

It is well known that the general matrix

Ricatti Equation with all matrices being
time functions

= -PA - DP - PBP + C (A-2)
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of which (A-I) is a special case, has the
solution

P = VU -I (A-3)

where U and V satisfy

= CU - DV

= AU + BV
(A-Z)

This and othem aspects of matrix Ricatti
equations ape discussed in Reference 12.

By comparing Eqs. (A-l) and (A-2) we

see that Eq. (A-l) is of the foI_ of Eq;
(A-2) with A=C=D=O and B = /_H'i\ R-I ___H

! | _a

Therefore, from Eq. (A-Z) V = Vo, a con-
stant matrix and

= BVo (A-S)

InteErating yields

If

U = Uo + _ B dtV o (A-S)
Jo

Now since from (A-3)

Po = VoUo -I (A-7)

we can satisfy the initial condition by
taking VO = I and UO = Po -I. Hence

P(o) the error covariance matrix R need

not be considered as a separate input.
If R is a diagonal constant matrix it is
evident that Eqs. (9) and (i0) can be
Wmitten in the form

: r_} [_- H(_,_)] CA-10)

p /_H_T_H

where Pr = P R-l- This was pointed out

to the authors by John A. Molusis.

!

-% -_

FiK. I.

M

Fourier Transform of

Wei_htinK Function

uordo
and

[p -1 + f/_H_ R-I _H t] .4= Lo Jo d CA- )

Minimizing The cost function Eq. (6) _ t

with w = o, x = a and z = _, one obtains

the least square estimate

= [P°- 1 + So(._)t_H TR-1 "_H dt]-l[Po-lao ÷

Joot/_H _TR-1 dt"

where the first factor is the covariance P

from Eq. (A-9). Eq. (A-10) is the equiv-
alent of solving Eqs. (9) and (i0) and
has been used in Ref. 6 with Po -I = o

after _eplacin E the integrals by sums.
In this case the result is independent of
R which cancels out.

Even in the general case of finite

P
L0

o _'
o -s

' ' t
10 1$

Fi_. 3. Estimates 6 Covariances vs.

Time, Acceleration Noise Only
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