DYNAMIC ARALYSIS OF MULIT~DEGREE-OF-FREEDOM SYSTEMS
USING PHASING MATRICES

Richard L. Bielawa¥®

United Aircraft Research laboretories
East Hartford, Connecticut

Abstract

A mathematical technique is presented for
improved analysis of a wide class of dynamic and
seroelastic systems characterized by several
degrees-of-freedom. The technique enables greater
utilization of the usual eigensolution obtained
from the system dynamic equations by systematizing
the identification of destabilizing and/or
stiffening forces. Included, as illustretive
examples of the use of the technique, are analyses
of a helicopter rotor blade for bending-torsion
divergence and flutter and for pitch-lag/flap
instability.

Notation

[A], [B], Inertia, damping and stiffness matrices, respec-

[c] tively, Ea. (1)

Avk Pitch-lag coupling for k'th edgewise mode
(=468/ Agy,)

A"n Pitch-flap coupling for m'th flatwise mode
(=28 Agy,)

a Section 1ift curve slope, /read

®4s byy, Elements of the [A], [B] end [C] matrices
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c,k Viscous equivalent structural damping of k'th
edgewise mode

c Blade chord, in.

EIy, EI;, Flatwise and edgewise bending stiffness, respec-
tively, Jb-in

{Ft)}  Dynamic excitation force vector, Eq. (1)

T Resultant driving force for n'th degree of freedam,
Eq. (5)

[6(A;)] Dynamic matrix for i'th eigenvalue, Eq. (3)

6J Torsional stiffness, Ib-in.’

K, Root feathering spring, in.-1b/red

kA Polar radius of gyration of spar about its center,
in.

kﬁo’ Section thicimess-wise and chordwise mess redii of

kllo gyration, respectively, sbout spar center, in

m Section mass distribution, b-sec?/in.

m, Reference mass distribution, (= 0.000776 lb-secz/in.z)
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"Stability" Force Phasing Matrices for i'th eigen-
value, Bgs. (6) through (8)

"Stiffnesa” Force Fhasing Matrices for i'th
eigenvalue, Eqs. (10) through (13)

k'th edgewise modai responss varizbls

1'th flatwise modal response variable

J'th torsional modal response variable, (J = 1,
for rigid feathering)

Rotor yadius, in

Blade spanwise location, in

Tension at r, Id

Time, sec

Vector of degrees of freedom

Chordwise positions forward of spar center of mass
center, quarter chord, and three-guarter chord,
in,

Spanwise varisble section angle of attack sbout
vhich perturbations occur, rad

Blade pre-coning angle, rad

Angle defined in Fig. 1 {= arg Ay)
k'th assumed edgewise mode shape
i'th assumed flatwise mode shape
J'th assumed torsion mode shape

Coefficients describing quartic variation of profile
drag coefficient with angle of attack

Kronecker delta
Fumber defined in Eq. (9)
Ceametric (collective) pitch angle at r, read
Elastic torsion deflection at r, red
(Uniform) rotor inflow
1'th eigenvalue, /zec
Adr density, Ib-sec/in.*
Blade solidity
Real part of i'th eigenvalue, /sec
1'th eigenvector of dynsmic matrix equation
Rotor rotational speed, rad/sec

Dmeginery part of 1'th eigenvalue, /sec



Differentiation with respect to (0t)
Differentiation with respect to ¥

Indicates quantity is nondimensionalized using
combinations of R, m, &nd{}, as appropriate

Diagonal matrix

I. Introduction

Dynamic and aeroelastic analyses of aerospace
structures typically involve deriving and solving
sets of linear differential equations of motion
generally written in matrix form:

1 ran

i} - e ()

{x iF(t )}
In general, the A, B and C matrices are square
and real-valued. A recognized hallmark of rotary
wing and turbomachinery dynemics is an abundance
of nonconservative forces (usually involving rotor
rotation speed). Consequently, the resulting
analyses produce matrix equations of motion of
the sbove type which are highly nonsymmetrical,
and often of large orders.

Although a large part of the dynamic analyst's

Job involves the calculation of dynamic loads and
stresses due to explicit excitations » the scope
of this paper will be limited to the equally
important eigenproblem (F(t) = 0):

{x} - Z{e v} (2)

i

[[Ahi + BN+ [C]]{qo( } = o0y ¢} - {o}
(3)

The eigenvalues A (= o :iw), which give stability
and natural frequency informstion are obtained
from the familiar characteristic determinant:

|Gl + B1x + [c]] 0 (%)

by a.m( 3f various well-established meth?dg (l)
(2), The "flutter" mode shapes, ¢

obtained from Eq. (3) once the eigenvalues are
known,
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This paper presents an easily implemented
technique for the improved analysis of dynamic
systems of the type described above. The technique
requires a reliable eigensolution and involves
manipulations of the given dynamic equations,
their eigenvalues and eigenvectors. Specifically,
the technique systematizes the identification of
destabilizing and/or stiffening forces by the
calculation of "force phasing matrices"™. Applica-
tions of the technique to analyses of bending-
torsion divergence and flutter and of pitch-lag/
flap instability of a helicopter rotor blade are
presented. Furthermore, this peper essentially
repre?ﬁx}ts an expansion of a portion of an earlier
paper

II. Mathematical Development

The principal function of the force-phasing
matrix technique is to identify those force terms
in the equations of motion which, for an unstable
mode, are so phased by the mode shape as to be
drivers of the motion. The technique is perhaps
nothing more than a formalization of the intuitive
use an experienced dynemicist would make of the
eigenvector information. The basis of the tech-
nique can be seen by writing any single equation
of the set represented by Eq. (3) as the sum of
the mass, damper and spring forces of the diagonal
degree-of-freedom and the remaining forces acting
as & combined exciting force.

g
iq’n

J;:(a. X +b A +e )(i)

W

n

(1)

(1
M bnn)‘iq’n nn(pn

(5)

For the usual case ap,, bpy and c,, are all
positive numbers; that is, each mess when un-
coupled from the others is & stable spring-mass-
damper system. Since the root, Aj, is generally
complex, Eq. (5) can then be interpretted es the
sum of four complex quentities or vectors in the
complex plane which must, furthermore, be in
equilibrium. Assuming that the root with
positive imaginary part is used throughout, the
argument of the root, 74, is the angle by which
the inerties force vector is rotated relative to
the damper force vector and the damper force
vector is rotated relative to the spring force
vector. For an unstable root this angle will
be less than 90 degrees. If & purely imeginary
value is assigned to the spring force vector,
unstable motion is assumed and it is recelled
that the four vectors ere in equilibrium, then



the real parts of the damper and inertia force
vectors will be negeative and the driving force
must always have & positive real part. Figure 1,
which demonstrates this argument, shows the four
force vectors in the complex plane for an
unstable oscillatory mode (Re(A;) = 03 >0) and
for unit imaginary displacement:
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Figure 1. Force-Vector Diagram for n'th Degree-
Of-Freedom, i'th Mode (Oscillatory
Instebility)

A secondary function of the technique is to
identify those terms in the equations which, for
any coupled mode, act es stiffness so as to
increase the coupled frequency of the mode.
Reference to Figure 1 shows that driving forces
with positive imaginary parts will tend to rein-
force the diagonal spring term and, hence, raise

the frequency of the coupled mode. An interesting
observation that can be made from Figure 1 is that,

for unstable motion, the diagonal damper force
also hes a positive imaginary part. Hence, it
tends to stiffen the (unsteble) coupled mode in
contrast to the frequency lowering effect of
damping for steble motion.

Figure 2 shows the same forces as vectors
for an unstable aperiodic mode (divergence) for
negetive unit real displacement:

DRIVING FORCE

—_ e &

N e’

SPRING, DAMPER AND
INERTIA FORCES

Figure 2. Force-Vector Diagram for n'th Degree-of-
Freedom, Divergence Instability. :

Again, the driving force is always a positive
real number. Furthermore, for divergences, stif-
fening forces are by definition stebilizing; hence,
those camponents of the driving force which are
negative are also those that stiffen the coupled
mode.

These interpretations of umnstable motion can
be quantitatively implemented first,by multiplying
each of the dynamic equations (i.e., each row of
the equation (1)) by a quantity which makes the
diagonal stiffness force (stiffness matrix element
x displacement) become pure imaginary and second,
by representing the modal vector as a diagonal
(square) matrix. This latter operation has the
effect of evaluating the magnitudes of the com-
ponent dynamic equation forces without numerically
adding them together. The resulting "stability"
force phesing matrices are then readily written as:

(r,,J = @eln/d VIS ¢ 1] (6)
(2,1 = Geln/¢ 2 I[BIE ¢ ] (7)
(e, 1 = Geln/¢ V3l ¢ 17 (8)
1
vhere

‘ 1 , for oscillatory instabilities

"= (9)
l

~1l, , for divergences

and where the eigenvalue in the upper half plane
is used.
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In all cases, the real parts of the above
indicated matrix expressions give instability
driving force information. Forces defined by
elements of the A, B and C dynamic equation
matrices which are phased by the mode shape so
as to be drivers of the motion then cause the
corresponding elements of the Pa;, Pp; and Pgy
"stability" force phasing matrices, respectively,
to be positive and proportional to their strength
as drivers.

Stiffening driving force information is
obtained differently for oscillatory motion and

for aperiodic motion. Those elements of the
dynamic equation matrices which are phased so as
to be stiffeners of the coupled mode will cause
the corresponding elements of the matrix expres-
sions to be either positive imaginary for oscil-
latory motion, or negative real for aperiodic
motion. The resulting "stiffness" force phasing
matrices are then expressed as:

[Bay] = dmb /e HnZaar o) (10)
(5,1 = dmf 1/ [B]F o(1)] (1)
[h,] = dmf ne3reat ol (12)

for oscillatory motion, and:

[B( )3l = [ ),] (13)
for aperiodic motipn.

It should be stressed that these force
phasing matrices are no more than a more system-
atic and efficient interpretation of the all too
often voluminous eigensolution information. The
following sections illustrate the usage of the
force phasing matrix technique in substantiating
what is generelly known of some rather fundamental,
classical helicopter rotor blade instabilities.

III. Description of Illustrative
Rotor Blade Example

For illustrative purposes, relatively simple
linear equations of motion were formulated for a
generalized untwisted helicopter rotor blade and
then applied to & realistic nonarticuleted rotor
configuration. The blade is assumed to be oper-
ating in an unstalled hover condition at some
collective angle and with a built-in coning angle.
Perturbative elastic flatwise, edgewise and torsion
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motions are assumed to occur about the preconed
position. The resulting lineafs%er?g%astic
equations are fairly standard 2 3 quasi-
static aerodynamics (uniform inflow) is assumed
and a normel mode description of the blade
elasticity is employed. Thus, for the chosen
configuration, two flatwise bending modes, one
edgewise bending mode, and the rigid feathering
degree-of-freedom are assumed. The resulting
response vector, {x} , consists of the quantities
Awls 9w2, Qvy, and qg; whose detailed dynamic
equations are given in the Appendix. The dynamic
equations then comprise a set of four differential
equations written as a 4 x It matrix equation of
the Eq. (1) type. The aeroelastic degrees-of-
freedom together with the general parameters are
shown in Figure k:

PRE—CONlNG'J\L

Figure 4. Schematic of Nonarticulated Rotor
Configuration and Aeroelastic Degrees-
of-Freedom..

The basic configuration incorporates a
counterweight over the outer 70 percent of the
blade, pitch-flap coupling (determined from the
geometry of the pushrod attachment and flatwise
modal deflection) and pitch-lag coupling of
arbitrary magnitude. The chordwise position of
the counterweight and the magnitude of pitch-lag
coupling are purposely varied in the following
analysis to establish known blade instebilities
in order to illustrate the phasing matrix
enalysis technique. Table I below summarizes
the pertinent geometric and aeroelastic data
for the rotor blade configuration:
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TABIE I - BIADE CHARACTERISTICS IV. Application of Analysis to

Illustrative Example

Badius 210 in.
Chord (0.1R to tip)} 13.5 in. Basic Configuretion
Tip Speed 650 fps For purposes of comperison, the data in
Plich-Fia; s m=1 0. Teble I was used together with a collective angle
o comiine, g {312 0.188 ] of 10 deg, inflow ratio of -0.0601, snd with zero
Roof feathering spring rate 3.55 x 10° in.-1b/red counterweight chordwise offset (from the quarter
lade cont 2 ass. chord), and zero pitch-lag coupling. This basic
case is steble in all modes as is shown by the
Afrfoil: (EACA 0012; Mach Ko. = 0): following list of resulting eigenvalues:
a 6.0/red
/ Ay, = -0.504 % 10.960
' 0.01 3,k = -0.411 % i2.610
L XS 6 = —0.027 T ilo398
3 3.30/red
" / M7.g = -L.47T2  13.506

(Uniform) mass distribution 0.000776 Ib-sec?/in.2
While all the aeroelastic modes represented by

the various eigenvalues camprise responses in all

(Uncoupled) blede natural frequencies:

first flatwise mode 1.09/rev the four degrees of freedom, they could be

second flatwise mode 2.681/rev characterized as follows: mode 1 (A3 p) is first
flatwise bending, mode 2 ( A3 14) is second

Tirst edgevise mode 1.390/rev flatwise bending, mode 3 ( ).5 5) is first edgewise

rigid feathert 3.820/rev bending, and mode 4 (A7 8) is rigid feathering.

(edgewise mode structurel demping)
(critical damping)

0.01

Configuretion With Rearward Chordwise
Counterweight

If the 70 percent outer span counterweight is
artificially shifted aft so as to place the chord-
wise section mass center at the 32 percent chord
point, reference to the dynamic equations (A-1,
A-2 and A-3) then yields the following A, B and
C matrices (given in E format):

Flight condition (hovering) sea level, standard

collective angle, @ 10 deg.

inflow ratio, A -.0601

The normal flatwise and edgewise mode shapes

used are shown in Figure 5. A (Inertia) Metrix:

12909'00 -.0000
=,0000 +2006-00
«,0000 =, 0000
-,1884=02 ,3482-03

=,0000

-, 0000
+2582-00

=, 0000

., 188402
t3~.2'°3

=, 0000
«1133=03

1.0,

B (Damping) Matrix:

Fgure 5.

-0.8

Spanwise Variation of Normal Mode
Shapes.
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+2887~00 ,7757=01
.7992’01 o1§65'°°
0309904 ,1943=01
153607 06325'0“

C (8tiffness) Matrix:

.3382500 '.5763'01
-, 823203 ,1422+01
463301 =,2974~02
-,2300=02 '.5323.02

=, 4500=-02
=,8166-02

»7901=02

*,1058-03

<4633=01

o T284=08R
+4988=00

=, 2919«03

= 1256-01
e 3309-03
=,2020=02

+3370-03

=, 3067200
«s 708001
- 4396201

J1648=02

The first two rows of the matrix equation
are the equations for the first and second

flatwise bending modes, respectively. The third



row is the equation for the first edgewise mode,
while the fourth is for rigid feathering.
Correspondingly, elements in the first two columns
of the matrices are terms multiplying the flatwise
bending responses and their derivatives. Simi-
larly, third and fourth column elements are terms
multiplying edgewise bending and rigid feathering,
respectively, and their derivatives.

The eigensolution for these matrices (see
Eq. (4)) reveals the configuration to be unstable
in both divergence and flutter:

Ay o= 0.408, -L.ué6
3

)\3,1+= 0.300 +il1.789

h5,6 = -0.0088 +i1.ho2

A'7,8 = ~0.578 +i3.099
Since the equations are in nondimensional form,
the units of thcse eigenvalues are per rotor
revolution frequency or "p". Using Egs. (6)

through (9) the following "stability" force
phasing matrices are written for the unstable
divergence mode:

A Phasing Matrix, Pa,

=.4840-01 -,0000 -,0000 «5061=03
=-,0000 -43338-01 -,0000 ~s1726=02
=-.0000 ~.0000 -.4229-01 -,0000
e1941«03 =,1944~05 ~,0000 -+1885~-04%
B Phasing Matrix, Pp;
“¢1178400 =,1715=02 ,4408-04 ,8272-02
~e5016=00 =,6791=01 ,1476=02 ,4022=02
=-e5265=00 =,1789-01 =-,3223-02 ,L5540=-01
-.3881-08 -.8660-06 05“18-06 -.1375-63
C Phasing Metrix, Pey
«43382-00 +3123=-02 =-,1113-02 ,L4953=00
e1519-01 ~=,1422+01 =,3316~02 2110401
-,1929401 «6710-02 '0“935-00 02955+61
e1424=02 L.1820=03 ,4341-05 =-,1646-02

The larger of the destabilizing driving
forces, which show up as positive terms, have been
underlined for clarity. A reasonable yard-stick
for measuring the size of the destabilizing forces
is to compare them to the size of the stabilizing
element in each matrix equation row. For
oscillatory instabilities that element would be
the diagonal damping force; for divergences, it
would be the diagonal stiffness force. As would
be expected of a divergence instability, the
major destabilizing forces are displacement de-
pendent (i.e., appear in the C matrix). By making
additional reference to Egs. (A-1) and (A-2), gng
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(A-3) and to their evaluation given above, the
following interpretation can be drawn from these
results:

1. The unsteble mechanism involves a
coupling mainly between first flatwise bendlng
and rigid feathering. The mode shape, ¢( ) =
(0.619, 0.0336, 0.0149, and 1.0), confirms this
result.

2. The position of the chordwise mass
center behind the elastic axis, as indicated by
negative dynemic equation elements a3 ) and ch,1
and reference to the explicit statements of the
equations in the Appendix, is & major link in
the unstable coupling chain of events. This
result confirms well-known results concerning the
divergence of rotor blades > ; specifically,
that the torsion modes drive the flatwise modes
aerodynamically (elements c1,y and c h) while the
flatwise modes drive the torfion moded with
centrifugal inertial forces through the rearward
mess center position (elements c) 1 end 04,2)'

3. The first edgewise bending mode is being
driven by the rigid feathering through aerodynemic
and inertia terms (element b3 )) but is not
actively participating in the unstable mechanism.

In & similar manner the following force
phasing matrices are written for the unstable

oscillatory (flutter) mode, A3:
A Phasing Matrix, RA3
-+3125=00 -,0000 -,0000 =-,1904-01
-,0000 -+2155=00 =-,0000 -.1101-01
-,0000 -,0000 -.2731-00 =-,0000
_e1421-02 =,1114=04 -,0000 -¢1217=03
B Phasing Matrix, PB3
-¢5163-00 +7587-02 ,L2749=02 -,1968-01
165947=00 -,2978=-00 -,1561-01 ,1282-01
=,1393-00 .,1659=02 =,1413=01 =-,4186~05
¢5201=08 «,5155~05 =,6870=05 ~,6027=-03
C Phasing Matrix, PC3
=¢1260=08 .6779=02 =-,4386=-02 LB548«00
-, 4397=02 =-,1325~08 ,1751-01 =-~,1R02~00
«3814-01 ,1173=-02 ~-,0000 +3956=00
-,6696=03 ,2794~-04 =,3155-04 -,0000

Again the major destabilizing terms have
been underlined for clarity. With few exceptions
the same interpretations can be made of the
flutter force phasing matrices as were made for
the divergence ones. While the feathering




degree-of-freedom again drives the first flatwise
mode aerodynamically (element cl,h)’ the flatwise
mode now drives the feathering degree-of-freedam
vith vibratory inertie forces (element ah,l)'
Again these results confirm well-known findings.

Configuration With Pitch-Iag Coupling

Using the reconfirmed knowledge that an aft
shordwise center of mess is destabilizing, the
configuretion is altered back to the original
quarter chord balanced configuretion. In
addition, unit pitch-lag coupling (A"l = 1.) is
introduced into the configuration. The resulting
dynamic equations are as foliiows:

A (Inertia) Matrix

.2909-00 =-,0000 -.0000 -,0000
=-,0000 +,2006=-00 ~,0000 =-,0000
-.0000 -.,0000 «2542-00 =,0000
-.0000 -.0000 -.0000 «1133=-032

B (Demping) Metrix

.2887-00 ,7757-01 -,1622-01 =-,12556=-01
0799201 ,1665-00 =,3596=02 =-,3309-03
+3015-01 ,1953=01 ,1003-01 =,2163=-D2
«1536=07 ,5326=-04 ,3801=-03 ,3370-03

C (Stiffness)Matrix

«3382-00 -,5763-01 ~-,2563-00 -,3043=-00
-,8232-03 ,1422+01 ~-,5358-01 ~-,7113~-01
W4633=01 =,2974=02 ,4431-00 =-,8337=-01
-.0000 -,0000 ~-.0000 o 1646=02

The eigenvalues for this configuration reveal the
configuration to be unstable in the edgewise
bending mode:

)\1’2 = =0.573 + i0.977

A3 ) = =0.408 ¢+ 12.609
b4

A5 g = 0.0119 ¢ i1.32h

A7.8 = -1.449 + 13.505

Again, the stability force-phasing matrices
are formed for the unstsble mode ( As) and the
larger positive terms are underlined:

A Phasing Metrix, PA5

=¢9137-02 =-.0000 -.0000 -,0000
~.0000 -.6302=-02 -,0000 -,0000
-.0000 -.,0000 -,7985=02 =-,0000
-,0000 -.0000 -,0000 -¢3558=05

B Phasing Matrix, PB5

=43822=00 +5003-02 -,2424=01 .8736-02
2114401 -,2204~00 L2079-00 =-,4936~-02
¢1545=01 =,3974=-03 -,1327-01 -,2946-03
= 3235-07 .5967-05 ,L4427-03 -,44p51-03

C Phasing Metrix, PC5

«7077-01
'1266§‘60
~e1373=01
-+0000

«1260=08 «,4543-03 ,3315-00

12728-02 '5299-08 -.1585051

02015=01 ,L,7210=04 -,0000
"0005 '-0000 ‘.3000

By referring to the explicit dynamic

equations given in the Appendix, the following
observations can be made:

1. The instebility appeax(-s very similar to
clagsic pitch-lag instability 7) and is mainly a
three-way coupling between first flatwise and
edgewise bending modes and the rigid feathering
de%ree-of-freedcm. The resulting coupled mode,
#{3) = (-0.383 - 10.435, 0.015 + 10.024, 1.,
-0.100 - 1.0317).

2. The edgewise bending mode is being driven
by inertias forces generated by flatwise bending
motion: coriolis forces proportional to precone
and flatwise bending rate and forces proportional
to pitch angle and flatwise bending deflection.

3. The flatwise bending mode is being
driven by aerodynamic forces generated chiefly
by pitch-lag coupled edgewise bending and to a
lesser extent rigid feathering deflectiom.

4. The rigid feathering degree-of-freedom is
being driven principally by a centrifugal force
moment involving chordwise mass radii of inertia,
pitch angle, and edgewise bending rate.

The stiffness force-phasing matrices for this
mode are formed and the significant terms for the
edgewise bending equation are underlined:

A Phasing Metrix, §A3

-+5097=-00 ,0000 .0000 .0000
.0000 -,3516-00 ,0000 .0000
.0000 .00080 -,4455=-00 ,0N00
0000 «0000 ,0000 =,1885=~n3
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A
B Phasing Matrix, PB3

«3425=02 ,7927-03 ,2799=N1 ,3780=n2
=+3696=00 (1975=02 «,3394=N0 =,1230=n2
01722=01 =,6235=03 ,1190=N3 «,9064-N3
IUE9=07 =.1870=05 ~,1450=02 «3998=n5

A
C Phasing Matrix, PC3

¢3382-00 ,280%3-02 ,2923=00 ~,15396=00
«1647-01 ,1422401 =,1179401 ,7935=10
~e1777-01 =,4505=-04 ,4431=N0 ,4327-12

It can be seen that the principal stiffening
terms are, not unexpectedly, the disgonal mass and
stiffness terms. The only other significant
stiffening temms are those involving flatwise
bending rete and deflection which are alsc the
drivers of the unstable edgewise motion.

That the flatwise bending deflection term is
negative and numerically grester than the rate
dependent term can be appreciated by noting that
the unstable coupled edgewise mode frequency,
1.324, is lower than the original corresponding
stable mode frequency, 1.398.

V. Concluding Remarks

The "force-phasing" matrices technique
provides yet another tool for understanding
dynemic/eerodynamic phencmens. While it does
not, by itself, indicate stability levels such
&s are provided by the eigensolution, it does
camplement the eigensolution by giving insight
into the details of the dynamic configuretion
which are not directly available from the
eigenvalues and eigenvectors alone. Moreover,
the technique requires, in particular, eigenvector
information as & starting point. Hence, it is
inherently incapeble of answering the more
fundemental question of why, for any one mode,
the eigenvector elements are indeed phased as
they are. It should elso be stressed that the
technique 1s & tool to be used with, and in
support of, engineer/analyst judgement; the
results heve to be interpreted properly, generally
in the context of the specific applicetion.
Finelly, the relative simplicity of the formula-
tion makes the incorporation of the technique in
any aercelastic eigensolution progrem & straight-
forward and easily implemented task.
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Appendix - Deteils of Dynamic Equations

The linear dynamic equations used to
represent the aercelastics of the rotor blade in
hover are formilated using an assumed model
approach; the derivation is standard and uses
the nomenclature of Reference 6. The lineariza-
tion and subsequent simplifications are based
upon the following assumptions:

1. quasi-static, incompressible, nonstalled
airloads.

2. coincident spar center, shear center
and tension center.

3. zero twist.

4. two flatwise bending modes, one edgewise
bending mode and the rigid feathering
degree-of-freedanm.

5. normal uncoupled bending mode shapes
(zero twist and pitch angle).

The flatwise bending equations are then written
as:

1
- * % - *

+{2Yyy (BYy + Fao, oindvy )] &y

— = Ly
(em Ky o°088 yedywi) qed (A-1)
) " T ! ! . m 2

HEL Yy, Vi + Ty, Yy - & 810%0 Yw1YWh] U

+(1_nyinVksine cosb) Uy * [Eywi(?locgcosze

=2
T 1000191 ap, + 22 v, -2 (vg ap,

- * - *
+ Aoy + Ay )+ F(Yagomy *+ F1034 (Vo538

*hhe + andy) - wor Bl & < o




The edgewise equations are written as:

1
f (i(ivvkvvn) e

-[2 Tvug (BYvy + F10cgsine Yiy )l %9
-[2 5(8F10, Yoy + Ezzlosine Yo, ) Yo j] g 5
+(n_tykawmsinB cos®) o (a-2)

26 - s

HEL Vg Yg, + Ty Yy, - B cos Vv ivns

+{ Wy, (TB cos® + ﬁocgsinze)ye ;]] do4

R 6,
PR Y L72(2 o 1 30R) (Yo 30,5+ Ay

+
o) + 7 2o b o 2 T v
+ ?],03c /,gvejae 5* Awma*‘mq' Avnavn))
+2 ?(%o ) %ha'é)w n?ivn]}af +C ekavk -
The torsion equations are written as:

1

{2 B coso v, v' ) &

Y10 Yoy wm) N

R — by *
+[2 B(BF100gYvn * k205108 vy,) Yoyl dwy

B T30, (P 510%8 vy )¥e] dugy

= P g e LR TR
+[(GJ + KAT) A u(y 5 Ky, ,)c0528 Vg jvek]qek

+(m ;locgsine cosg YSJ Yvn) v, (A-3)

R -
+ E?é;—o AL j[-?anocﬁ(yekqek+ A + A'anvn)

— #* * -
+T J10. /u(Ywmqwm' oYyt V103c/h(Y9k30k

* * _TC - — #*
* Ay iy AanVn)) - 38R T Y103,/ (Yoy oy

+ B e+ Ay )]a;+—1?xc°"’l - o0
Mmq”m anvn moR qﬁl =

Io{(ﬁ ?]_ocherwm) *;um"‘ [ﬁ(iyzlo"' .Ezelo)'Ye tek] 'q%k

where:

@, = 0+ V53 (A-4)
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