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Abstract

A _them_tical technique is presented for

_rc_ed analysis of a wide class of d_c and

aeroelastic s_ characterized by several

degrees-of-freedcm. The technique enables greater

utilization of the usual eigensoluticn obtained

from the system d_namic equations by s_tizi_g

the identification of destabilizing _ud/or

stiffening forces. Included, as illustrative

examples of the use of the technique, are ana_es

of a helicopter rotor blade for bendix-torsion

divergence and flutter and for pitch-lag/flap

instabiS/ty.
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"Stability" Force P_asing Matrices for i'th eigen-

v_ue, _qs. (6) through (8)
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Diagonal matrix

I. Introduction

Dynamic and aeroelastic analyses of aerospace

structures typically involve deriving and solving

sets of linear differential equations of motion

generally written in matrix form:

In general, the A, B and C matrices are square

and real-valued. A recognized hallmark of rotary

wing and turbQmachinery dynamics is an abundance

of nonconservative forces (usually involving rotor

rotation speed). Consequently, the resulting

analyses produce matrix equations of motion of

the above type which are highly nonsymmetrlcal,

and often of large orders.

Although a large part of the dynamic analyst's

job involves the calculation of dynamic loads and

stresses due to explicit excitations, the scope

of this paper will be limited to the equally

_rtant eigenproblem (F(t) = O) :

+ Iol
(3)

The eigenve&ues k (= (T_+ion),which give stability

and natural frequency information are obtained

from the familiar characteristic determinant:

l_]x2+_]x +[c]l . o (4)

by f

The "flutter" mode shapes, _(i) are
¢2)_s_. verlo__-e.tablished ,,.th_ (1)
obtained fr_n Eq. (S) once the eigenvalues are

k_own.

This paper presents an easily implemented

technique for the improved analysis of dynamic

systems of the type described above. The technique

requires a reliable eigensolution and involves

manipulations of the given dynamic equations,

their eigenvalues and eigenvectors. Specifically,

the technique systematizes the identification of

destabilizing and/or stiffening forces by the

calculation of "force phasing matrices". Applica-

tions of the technique to analyses of bending-

torsion divergence and flutter and of pitch-lag/

flap instability of a helicopter rotor blade are

presented. Furthermore, this paper essentially

represents an expansion of a portion of an earlier
paper- -.

II. Mathematical Development

The principal function of the force-phasing

matrix technique is to identify those force terms

in the equations of motion which, for an unstable

mode, are so phased by the mode shape as to be

drivers of the motion. The technique is perhaps

nothing more than a formalization of the intuitive

use an experienced dynamicist would make of the

eigenvector information. The basis of the tech-

nlque can be seen by writing any single equation

of the set represented by Eq. (3) as the s_n of

the mass, damper and spring forces of the diagonal

degree-of-freedom and the remaining forces acting

as a combined exciting force.

,2 (i)
ann_i_n + bnnXi_ i) + Cnn_(ni)

+ anJ_i +bnjxi + nJ J

-- .4

fn

= o (5)

For the usual case ann , bnn and Cnn are all

positive numbers; that is, each mass when un-
coupled from the others is a stable spring-mass-

damper system. Since the root, Ai, is generally

complex, Eq. (5) can then be interpretted as the

sum of four complex quantities or vectors in the

complex plane which must, furthermore, be in

equilibrium. Assuming that the root with

positive imaginary part is used throughout, the

argument of the root, 7i, is the angle by which
the inertia force vector is rotated relative to

the da_per force vector and the damper force

vector is rotated relative to the spring force

vector. For an unstable root this angle will

be less than 90 degrees. If a purely imaginary

value is assigned to the spring force vector,
unstable motion is assumed and it is recalled

that the four vectors are in equilibrium, then
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the real parts of the damper and inertia force

vectors will be negative and the driving force

must always have a positive real part. Figure i,

which demonstrates this argument, shows the four

force vectors in the complex plane for an

unstable oscillatory mode (Re (_i) = _i > O) and

for unit imaginary displacement:

(. PERFORE)

(INERTIA FORCE)

c.. ¢,(o (sPm.C FOES)

(DRIVING FORCE)

_/i =o_(_._) < 90dq.

Fig_u-e i. Force-Vector Diagrs_ for n'th Degree-

Of-Freed_, i'th Mode (Oscillatory

Instability)

A secondary function of the technique is to

identify those terms in the equations which, for

any coupled mode, act as stiffness so as to

increase the coupled frequency of the mode.

Reference to Figure i shows that driving forces

with positive imaginary parts will tend to rein-

force the diagonal spring term and, hence, raise

the frequency of the coupled mode. An interesting

observation that can be made from Figure i is that,

for unstable motion, the diagonal damper force

also has a positive _ part. Hence, it

tends to stiffen the (unstable) coupled mode it',

contrast to the frequency lowering effect of

dsm_ing for stable motion.

Figure 2 shows the s_me forces as vectors

for an unstable aperiodic mode (divergence) for

negative unit real displacement:

SPRING, DAMPER AND
INERTIA FORCES

DRIVING FORCE

Figure 2. Force-Vector Diagram for n'th Degree-of-

Freedom, Divergence Instability.

Again, the driving force is al_ys a positive

real nt_nber. Furthermore, for divergences, stif-

fening forces are by definition stabilizing; hence,

those cemponents of the driving force which are

negative are also those that stiffen the coupled

mode.

These interpretations of unstable motion can

be quantitatively impl_nented first, by multip2_ing

each of the dynamic equations (i.e., each row of

the equation (i)) by a quantity which makes the

diagonal stiffness force (stiffness m_trix element

x displacement) become pure imaginary and second,

by representing the modal vector as a diagonal

(square) matrix. _his latter operation has the

effect of evaluating the magnitudes of the com-

ponent d_c equation forces without numerically

adding the,- together. _ resulting "stability"

force phasing matrices are then readily written as:

[PAi] = _e_ ,_/_(i) :_][ _(i) a (6)

[PBi] - _el: ,7/4 i);i_i[BSr cp(i) ] (7)

[Pc] - set _/_(_)_[c][_(_

where

(8)

l i , for oscillatory instabilities

I-l. , for divergences

(9)

a_i where the eigenvalue in the upper half plane

is umed.
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In all cases, the real parts of the above

indicated matrix expressions give instability

driving force information. Forces defined by

elements of the A, B and C dynamic equation

matrices which are phased by the mode shape so

as to be drivers of the motion then cause the

corresponding elements of the PAl, PBi and PCi

"stability" force phasing matrices, respectively,

to be positive and proportional to their strength

as drivers.

Stiffening driving force information is

obtained differently for oscillatory motion and

for aperiodic motion. Those elements of the

dynamic equation matrices which are phased so as

to be stiffeners of the coupled mode will cause

the corresponding elements of the matrix expres-

sions to be either positive imaginary for oscil-

latory motion, or negative real for aperiodic

motion. The resulting "stiffness" force phasing

matrices are then expressed as:

[PAi] = ._m__/_o(i)_k_2[A]__(i)] (i0)

[PBi] = ._m_1]/$(i)]ki[B]__(i)_ (ll)

[_Ci] : _ _/_(i)_[C]_ _(i)_ (_)

for oscillatory motion, and:

[9( )i ] = [P( )i ] (z3)

for aperiodic motion.

It should be stressed that these force

phasing matrices are no more than a more system-

atic and efficient interpretation of the all too

often voluminous eigensolution information. The

following sections illustrate the usage of the

force phasing matrix technique in substantiating

what is generally known of same rather fundamental,

classical helicopter rotor blade instabilities.

III. Description of Illustrative

Rotor Blade Example

For illustrative purposes, relatively simple

linear equations of motion were formulated for a

generalized untwisted helicopter rotor blade and

then applied to a realistic nonarticulated rotor

configuration. The blade is assumed to be oper-

ating in an unstalled hover condition at some

collective angle and with a built-in coning angle.

Perturbative elastic flatwise, edgewise and torsion
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motions are assumed to occur about the preconed

position. The resulting linea_ _erge_astic

equations are fairly standard (5), (b); quasi-

static aerodynamics (uniform inflow) is assumed

and a normal mode description of the blade

elasticity is employed. Thus, for the chosen

configuration, two flatwise bending modes, one

edgewise bending mode, and the rigid feathering

degree-of-freedom are assumed. The resulting

response vector, I x_ , consists of the quantities

qwl, qw2, qvl, and qSl whose detailed dynamic

equations are given in the Appendix. The dynamic

equations then comprise a set of four differential

equations written as a 4 x 4 matrix equation of

the Eq. (i) type. The aeroelastic degrees-of-

freedom together with the general parameters are

shown in Figure 4:

ELASTIC AXIS ,._ ANGLE,

" +8°

PRE-CONING "_'-_'_

Figure 4. Schematic of Nonarticulated Rotor

Configuration and Aeroelastic Degrees-

of-Freedom.

The basic configuration incorporates a

counterweight over the outer 70 percent of the

blade, pitch-flap coupling (determined from the

geometry of the pushrod attachment and flatwise

modal deflection) and pitch-lag coupling of

arbitrary magnitude. The chordwise position of

the counterweight and the magnitude of pitch-lag

coupling are purposely varied in the following

analysis to establish known blade instabilities

in order to illustrate the phasing matrix

analysis technique. Table I below summarizes

the pertinent geometric and aeroelastic data

for the rotor blade configuration:



_I-BIAIEC_%RACTERIHTICS

Radlum 210 in.

_tch-_, ca_U_g, Awa{am : 21 o.0.188

ao_ reatherlng _ rate 3.55 x 1o6 in.-_Ir_d

-,onl_ 2 deg.

Airfoil: (_CA 0012; Mach No.. 0):

a 6.oI_

_o o.ol

8_ 3.30/red4

(Uniform)mass distributian 0.000776 11_.sec2/in. 2

(Uncoupled) blade na_ral f_quencles:

first flatwise mode l.O_/rev

second flatwise mode 2.(_l/rev

first edgewise mode 1.390/rev

rind reatheri_ 3.SZ0/rev

(ec_-wA,e =ode ,t,uct_raa _±_) o.oi
(critical _)

Fllght con_/tlan (ha_rlng) ,ea level, atandaz_

collecti_ angle, e 10 deg.

inflow ratio, _ -.0601

The normal flatwise and edgewise mode shapes

used are shown in Figure 5-

IV. A_lication of _is to

Illustrative Exa_le

Basic Co_fi_ur_tic_

For purposes of cumparison, the data in

Table I was used together with a collective angle

of I0 deg, inflow ratio of -0.0601, and with zero

counterweight chordwise offset (from the quarter

chord), and zero pi_ch-lag coupling. This basic

case is stable in all modes as is shown by the

following list of resulting eigenvalues:

_1,2 = -o.5o_ ± io.96o
_.a = -O.hll ± 12.610

k 7,8 -i._72 ± i3.506

While all the aeroelastic modes represented by

the various eigeuvalues cumprise responses in all

the four degrees of freedom, they could be

characterized as follows: mode i ( A!, 2) is first

flatwlse bending, mode 2 ( _3,_! is second

flat_ise bending, mode 3 (A5,6) is first edgewise

bending, and mode b_ ( A7,8 ) is rigid feathering.

Confi_mu_tica With Rearward Chordwise

Counterweight

If the 70 _ercent a_ter s_n countezq_i_mt, ia

artificially shifted aft so as to place the chord-

wise sectica mass center at the 32 percent chord

point, reference to the dynamic equatic_ (A-l,

A-2 and A-3) then yields the following A, B and

C matrices (given in E format):

A (_nertia) Matrix:

,2900"00 "00000 ",0000 -'028111toOIE
-,0000 ,2006"00 "00000 05_8to0S

'I_ -,0000 -00000 ,|5t_-O0 o00000
B (_) _t_:

.2887-00 07757"01 "0_500"08 "01_56"01'

.7992o01 ._665000 °08266"0| 0.3309"03

/ 0.0_00000.1536-07 063|6-0_ *.10S8-05 05_70-05

,3382-00 -05763o01 ,_653-01-0506?°00
-,8232;03 01_22÷01 ,?;g_-O8 -,?oe_ol

I k /_' .,633-01 -0297''0' .''gS"O0 ",'396"02-._300"0_ 005_8_'0a ".t919005 ,t6_O!

The first two rows of the matrix e_uattoa

Figure 5. Sl_awise Variatica of Normal Mode are the e%uaticas for the first and 8ecc_i

Shapes. flatwise bemiing modes, rss_ective_y. 5_e third
39



row is the equation for the first edgewise mode,

while the fourth is for rigid feathering.

Correspondingly, elements in the first two columns

of the matrices are terms multiplying the flatwise

bending responses and their derivatives. Simi-

larly, third and fourth column elements are terms

multiplying edgewise bending and rigid feathering,

respectively, and their derivatives.

The eigensolution for these matrices (see

Eq. (4)) reveals the configuration to be unstable

in both divergence and flutter:

1,2 = 0.408, -4.466

3,4 = 0.300 ±ii.789

5,6 = -0.0088 ± ii.402

7,8 = -0.578 ± i3.099

Since the equations are in nondimensional form,

the _uits of thcse eigen_lues are per rotor

revolution frequency or '9". Using Eqs. (6)

through (9) the following "stability" force

phasing matrices are written for the unstable

divergence mode:

A Phasing Matrix, PAl

-.46_0-01 -.0000 -,0000 ,5061-03

-,0000 -.3338-01 -,0000 -,1726-0E

-,0000 -,0000 -,_229-01 -,OOO0

.19W1-03 -,1g_-05 -,0000 -,I_5-0_

B Phasing Matrix, PBI

",1178+00 ",1715-02 ,_0_-0_ ,BE72-O_

-,6016-00 -,b791-01 ,IW76-02 ,W022-02

-,5265-00 -,17B9-01 -,3EE3-OE ,55_n-01

-,3881-08 -,8660-06 ,$WIB-O6 -,1375-03

C Phasing Matrix, PC1

-,3382-00 ,3123-02 -,I113-02 ,_953-00

,1519-01 -,I_2E+01 -,3316-02 ,2110+01

-,1929+01 ,b710-02 -,wgBs-O0 ,2956+01

.IWEW-OE ,1820-03 ,_3_1-05 -,16_6-02

The larger of the destabilizing driving

forces, which show up as positive terms, have been

underlined for clarity. A reasonable yard-stick

for measuring the size of the destabilizing forces

is to compare them to the size of the stabilizing

element in each matrix equation row. For

oscillatory instabilities that element would be

the diagonal damping force; for divergences, it

would be the diagonal stiffness force. As would

be expected of a divergence instability, the

major destabilizing forces are displacement de-

pendent (i.e., appear in the C matrix). By making

additional reference to Eqs. (A-l) and (A-P), and

(A-3) and to their evaluation given above, the

following interpretation can be drawn from these

results :

1. The unstable mechanism involves a

coupling mainly between first flatwise be n.ding

and rigid feathering. The mode shape, _(1) =

(0.619, 0.0336, 0.0149, and 1.0), confirms this

result.

2. The position of the chordwise mass

center behind the elastic axis, as indicated by

negative dynamic equation elements al, 4 and c4,1

and reference to the explicit statements of the

equations in the Appendix, is a major link in

the unstable coupling chain of events. This

result confirms well-known results concerning the

divergence of rotor blades (5); specifically,

that the torsion modes drive the flatwise modes

aerodynamically (elements c I 4 and c o 4) while the

flatwise modes drive the torsion modes wlth

centrifugal inertial forces through the rearward

mass center position (elements c4,1 and c4,2).

3. The first edgewise bending mode is being

driven by the rigid feathering through aerodynamic

and inertia terms (element b3,4) but is not

actively participating in the unstable mechanism.

In a similar manner the following force

phasing matrices are written for the unstable

oscillatory (flutter) mode, k3:

A Phasing Matrix, PA3

-, 3_25-00 -',0000 -,O00O -, 190_-01

-,OUOO -,2155-00 -,0000 -, llOl-O].

" , O O O 0 I * 0 _ 0 O 1,273%100 1 , 0000

,1421-02 -,1114-0W -,0000 -,1217-03

B Phasing Matrix, PB3

-,5163-00 .7587-02 ,27_q-02 -.196B-01

,69_7-00 -,2973-00 -.1561-01 ,12B2-_I

-,I_93-0D ,1659-02 -.1413-01 -,W186-05

,5_01-DB -,5155-05 -,6870-05 -,5027-03

C Phasing Matrix, PC3

-,1250-0B ,5779-02 -.43BS-OE ,B5_B-O0

-,_997-02 -.1325-0_ ,I751-01 -,1802-00

,3814-01 ,1173-02 -,0000 ,3956-00

-.5696-03 .279W-OW -.3155-0W -,0000

Again the major destabilizing terms have

been underlined for clarity. With few exceptions

the same interpretations can be made of the

flutter force phasing matrices as were made for

the divergence ones. While the feathering
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degree-of-freedom again drives the first flatwise

mode ae_cally (element Cl,4) , the flatwtse
mode now drives the feathering degree-of-freedom

With vibratory inertia forces (element a4,1).
Again these results confirm well-known findings.

Configuration With Pitch-La 6 Coupling

Using the reconfirmed knowledge that an aft
_hordwlse center of mass is destabilizing, the

configuration is altered back to the original

quarter chord balanced configuz_tion. In

addition, unit pitch-lag coupling (_i = i. ) is
introduced into the comfiguratien. The resulting

dynamic equations are as follows:

A (Inertia) Matrix

.2909-00 -.0000 -.0000 -,0000
-.0000 ._006-00 -.0000 -.0000
-.0000 -.0000 ._5_2-00 -.nO00
-.0000 -.0000 -.0000 ,1133-03

B (_ing) Matrix

.2fi_7-00

.7992-01

.3015-01

.1536-07

.7757-01 -.1622-01 -.1256-01

.1665-00 -.9596-02 -.3309-03

.1953-01 .1003-01 -.7169-02

._325-0_ .3B01-03 .3370-03

C (Stiffness) Matrix

.3382-00 -.5763-01 -.2553-00 -.30_9-00
-.5232-03 .1_22÷01 -.5558-01 -.7113-01

._633-01 -._97_-02 ._31-00 -._337-01
-.0000 -.0000 -.0000 .16_6-0P

The eigenvalues for this configuration reveal the

configuration to be unstable in the edgewise

bending mode:

AI, 2 = -0.573 -+ i0.977

A3,4 = -o.4o8+_i2.6o9
AS, 6 = 0.0119 + ii.324

A7, 8 = -1._49 -+i3.505

Again, the stability force-phasing matrices

are formed for the unstable mode (kS) and the

larger positive terms are underlined:

A Phasing Matrix, PA5

-.9137-02 -.0_00 -.0000 -,0000
-.OUO0 -.6302-02 -.0000 -.0000
-.0000 -.0000 -.7985-02 -.0000
-.0000 -.0000 -.0000 -.3558-05

B PhasingMatrix, PB5

-.3_22-00 .5003-02 -.2_2_-01 .8756-02
.211_+01 -.220_-0_ .2079-00 -._936-02
.15_6-01 -.5_7_-05 -.1327-01 -.29_6-03

-.3_35-07 .6_67-05 ._27-03 -._61-03

C Phasing Matrix, PC5

.1_50-05 -._6_3-03 ,3315-00 .7077-01

.2728-02 .5299-08 -.1886÷01 -.2069-00
,2015-01 .721n-0_ -.0000 -.1373-01

-.0000 -.0000 -.0000 -,0000

referring to the explicit dynamic

equations given in the Appendix, the following

observaticas can be made:

i. The instability appea_s.very similar to

classic pitch-lag instability "7_) and is mainly a

three-way coupling between first flatwise and

edgewise bending modes and the rigid feathering

degree-of-freedom. The resulting coupled mode,

_(3) = (-0.383 - i0.435, 0.015 + iO.Oe4, i.,

-0.100 - i.0317).

2. The edgewise bending mode is being driven

by inertia forces generated by flatwise bending

motion: coriolis forces proportional to precone

and flatwise bending rate end forces proportional

to pitch angle and flatwise bending deflection.

3. The flatwise bending mode is being

driven by aerodynamic forces generated chiefly

by pitch-lag coupled edgeWise bending and to a

lesser extent rigid feathering deflection.

_. The rigid feathering degree-of-freedom is

being driven principally by a centrifugal force

moment involving chordWise mass radii of inertia,

pitch angle, and edgeWise bending rate.

The stiffness force-phasing matrices for this

mode are formed and the significant terms for the

edgewise bending equatiom are underlined:

A

A Phasing Matrix, PA3

-.5097-00 .000_ .0000 .0000
.0000 -.3516-00 .0000 .0000
.0000 ._000 -,_55-00 .0_00
,0000 .0000 .0000 -.lgS_-n5
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^

B Phasing Matrix, PB3

,3_25-02 ,7q27-03 .2?9q-n1 .3780-n2
-,3695-00 .1_75-02 -.339_-00 -,1230-02
.172_-01 -.6_35-03 .1190-n3 ".906_-_3
.1%59-07 -.1870-05 -.I_5,-02 .3998-_5

^

C Phasing Matrix, PC3

.3382-00 .280_-02 .292_'00 ".1596"00

.1647-01 ,i_22÷01 -,117g+01 ,7995-qO

-.1777-01 -.WSOS-O_ ._3l-OO .%B27-q2
.00_0 ,0000 .DO00 .16_6-02

It can be seen that the principal stiffening

terms are, not unexpectedly, the diagonal mass and

stiffness terms. The only other significant

stiffening terms are those involving flatwise

bending rate and deflection wh_oh are also the

drivers of the unstable edgewise motion.

That the flat-wise bending deflection term is

negative and numerically greater than the rate

dependent term can be appreciated by noting that

the unstable coupled edgewise mode frequency,

1.324, is lower than the original corresponding

stable mode frequency, 1.398.

V. Concludin_ Remarks

The "force-phasing" matrices technique

provides yet another tool for understanding

dynamic/aerodynamlc phenomena. While it does

not, by itself, ind/cate stability levels such

as are provided, by the eigensolutlon, it does

complement the eigensolution by giving insight

into the detailm of the dynamic eonfisur_tion

which are not directly available frmn the

eigenvalues and eigenvectors alone. Moreover,

the technique requires, in particular, eigenvector

information as a starting point. Hence, it is

inherently incapable of answering the more

fundamental question of why, for amy one mode,

the eigenvector elements are indeed phased as

they are. It should also be stressed that the

technique is a tool to be used with, and in

support of, engineer/analyst Judgement; the

results have to be interpreted properly, generally

in the context of the specific application.

Finally, the relative simplicity of the formula-

tion makes the incorporation of the technique in

any aeroelastic eigensolution program a straight-

forward and easily implemented task.

Appendix - Details of Dynamic Equations

The linear dynamic equations used to

represent the aeroelastics of the rotor blade in

hover are formulated using an assumed modal

approach; the derivation is standard and uses

the nomenclature of Reference 6. The lineariza-

tion and subsequent simplifications are based

upon the following assumptions:

i. quasi-static, incompressible, nonstalled

airloads.

2. coincident spar center, shear center
and tension center.

3. zero twist.

two flatwise bending modes, one edgewise

bending mode and the rigid feathering

degree-of-freedom.

5. normal uncoupled bending mode shapes

(zero twist and pitch angle).

The flatwise bending equations are then written
as:

-(2 m _JloCOS8 VeJYwi ) qej (A-l)

+F_ " " -- ' '
"yYwiYwm+ _W_Wm" _ s_2e YwiYwm] %m

+(_YwiYvksime cose ) qvk + [_Ywi(YlOcgCOS2e

_ *

+ Awmqwm + AvkqVk) + r(YwmqWm + YlOSc/_(YSj_j
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The edgewise equations are written as: where:

I

I!_-myvkVvn .w)_n

-[2 _(By._ + _oogs_e ,_)l _,_

I.

+(_,v_VwmSmSeosS)_ (A-2)
2.

'Vk'Vn J _Vn

+[_vk(_ cose+ E,lOccSi,_e)Yes] %j 3.

6

Avnqvn ) _(2 =0- 4 _--_3 60 * "+ + _ o-2";e)Iy_
4.

. . )

+ 2 _(_o 8_ _ .

The torsion equations are written as: 5.

i

6,

S "

+[2 m(B%ocgYVn + _i0 sine YVn)' YBJ ] qVn"

+[_ _lOcg(_Y_m- sfm2@ YWm)YBj] qwm

7.

_K xu " -u YQJYek]q_k

+(m YlOcgSine cos0 Yej Yv n) qVn (A-3)

+ "°--" - _-_ r YlO3c/_(yek_k

Kc_ j,i+ Av. Vn) + --o
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