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Abstract

Equations for large amplitude coupled fla F-

lag motion of a hlngeless elastic helicopter blade

in forward flight are derived. Only a torsionally

rigid blade exicted by quasl-steady aerodynamic

loads is considered. The effects of reversed flow

together with some _,ew ter-_ due to fo..r_.rd flight

are included. Using Galerklnls method the spatial

dependance is eliminated and the equations are

linearized about a suitable equillbrlt_ position.

The resulting system of equations is solved

using multivariable Floquet-Liaponov theory, and

the transition matrix at the end of the period is

evaluated by two separate methods. Results

illustrating the effects of forward flight end

various important blade parameters on the stability

boundaries are presented.

Notation

a

X

Two dimensional llft curve slope

Tip loss coefficient

A Periodic matrix with elements Aij,
defined in Appendix B

AFI,A_ Generalized aerodynamic force for

i th flap end lag mode respectively

_i'*Li Same as above, in reverse end

mixed flow regions.

b

-i
B

Seml-chord nondimenslonalizedwith

respect to R

Tip loss coefficient

Generalized_msses defined in

Appendix A

Thrust coefficient

Constant matrix

Cdo Profile drag coefficient
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Theodorsen's lift deficiency

function

Defined in Fig. i

Terms associated with elastic

coupling defined in Appendix A

Stiffness for flapwlse bending

Stiffness for inplene of rotation

bending

Flap coefficients defined in

Appendix A

Generalized coordinate, k th

normal flapping mode

Static value of gkin hover

0

Perturbation in _ about gk

Viscous structural damping in

flap end lag respectively

th
Generalized coordinate, m

normal inplane mode

Static value of _ in hover

Perturbation in h k about

Unit vectors in x,y end z direc-

tions (Fig. I)

Mass moment of inertia in flap,

defined in Appendix A

Unit matrix

Length of blade capable of
elastic deflection

Aerodynamic load per unit length

in the y end z directions

respectively

Lag coefficients, defined in

Appendix A

Mass of blade per unit length
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M,N

Px,Py,Pz

P ikm

P(t)

R

R

T

U,VpW

Up

U T

Ve,Veo

w e ,Weo

x,y,z

x ° = x- e 1

_'YG

%

BDNumber of modes in lag and flap

respectively

Generalized mass for the ith

flap and lag mode respectively,

defined in Appendix A 8p

Defined in Appendix A

Resultant total loading per unit

length in the x,y and z direc-

tion respectively

Defined in Appendix A Ym

Periodic matrix eD

Blade radius

Constant matrix used in Floquet- _k
Liapunov theorem

Constant matrix qk

Common nondimensional period DSFI,qSLI

x,y and z displacement of a point

on the elastic axis of the blade 8

Component of air velocity w.r.t.

the blade at station x perpendic- @C
ular to x-y plane (hub plane),

positive down

Same as above, in the x-y plane,

tangent to a circle having a

radius x

Elastic part of the displacement

of a point on the elastic axis of

the blade parallel to hub plane,

(see Fig. i), subscript o de-

notes the static equilibrium A
value N

Velocity of forward flight of the
whole rotor

Elastic part of the displacement _C

of a point on the elastic axis of

the blade, in the k direction,

approximately, (Fig. i)

Rotating orthogonal coordinate

spanwise coordinate for

the blade free to

elastically

in Appendix B

reversed flow region

attack of the whole

sys tern

Runn in g

part of

deflect

Defined

Angle of

(Fig. 2)

Angle of

rotor

0A

_C

Droop, built in angle of the

undeformed position of the blade

measured from the feathering axis

(Fig. l)

Preconing, inclination of the

feathering axis w.r.t, the hub

plane measured in a vertical

plane

Lock number (y=2pAbRba/_) for

normal flow

m th inplane bending mode

Symbolic quantity having the same

order of magnitude like the dis-

placements v and w

Real part of the k th character-

istic exponent

k th flapwise bending mode

Viscous structural damping coef-

ficients defined in Appendix A

Collective pitch angle measured

from x-y plane

Critical value of collective

pitch at which the linearized

coupled flap-lag system becomes

unstable in hover

Inflow ratio, induced velocity

over disk, positive down, non-

dimensionalized w.r.t. I_Q

Diagonal matrix, containing

eigenvalues Xk of R

Diagonal matrix containing eigen-

values _ of _(T,0)

Advance ratio

Critical value of advance ratio

at which flap-lag system becomes

unstable

Density of air

Blade solidity ratio

State transition matrix at _,

for initial conditions given at

O

Azimuth angle of blade _=_t)

measured from straight aft

position

Flutter frequency

Imaginary part of k th

istic exponent

character-
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Natural frequency of i th flap or lag

mode, rotating

Speed of rotation

SRecial Symbols

( ) Nondimensionalized quantity, length

for elastic properties nondimensional-

ized w.r.t. _; all other w.r.t. R

frequencies w.r.t. _; mass properties

w.r.t.

Differentiation w.r.t, x
0

()'

(*)

( )R' ( )T

(,)-1

Differentiation w.r.t.

Subscripts, denoting real and imagin-

ary parts of the _ppropriate quantity

The symbol beneath a quantity

denotes a vector or a matrix

Denotes the inverse of a matrix

The dynamics of a helicopter blade in forward

flight are usually described by a system of linear

differential equations with periodic coefficients.

A growing acceptance of hingeless helicopter

blades for conventional helicopters flying at

relatively high forward flight speeds has intensi-

fied the need for fundamental research on the

aeroelastic stability of such systems.

Studies dealing with the effect of forward

flight (or periodic coefficients) have been

primarily devoted to the study of flapping insta-

bility at high advance ratios, l-s A limited

number of studies dealingwith the effect of

periodic coefficients on coupled flap-lag s'1_ or

coupled flap-lag-pltch 11 motion were also con-

ducted. The case of coupled flap-lag motion has

been_ somewhat inconclusively, investigated by
Hall 0 using multivariable Floquet theory, the

same problem was also considered by Frledmann and

Tong 9 but the treatment was limited to low advance

ratios (B<0.3). The coupled, linearlzed, flap-

lag-torsion motion has been investigated by

Crimi 11 using a modified Hill method. In both

cases 10'11 only a limited number of nu_merical

results were obta/ned and the physlcalmechanlsm

of the aeroelastic instabilities has not been

clearly identified, in particular the degree of

freedom which triggers the instability was not

identified and the results for forward flight were

not compared with those for hover.

Recent investigation of the aeroelastic sta-

bility of hingeless blades in hover 12 indicated

that the aeroelastic stability boundaries are

quite sensitive to the number of degrees of free-

dom employed in the analysis. Therefore it is

important to determine how the flapping behavior

of a blade at high advance ratios is modified by

the lag degree of freedom. This important problem,

which has not received adequate treatment before,

is one of the main topics of the present study.

The mathematical methods used in previous

studies dealing with the effects of forward flight

were: (a) The rectangular ripple method I, (b) Ana-

log computer simulation, s'_ (c) Various forms of

Hill's method, 2'11 (d) Multlvarlable Floquet-

Liapunov theory, s'?'I° (e) Perturbation mathod in

multiple time scales, s'_ Themathematicalmethod

employed in the present study is the Floquet-

Liapunov theorem, and the transition matrix is

evaluated by two separate methods. It is also

shown that careful use of this method enables one

to circumvent problems associated with identifying

the results encountered in previous studies. I°

In addition, a new and convenient approxima-

tion for the reversed flow region is developed,

this approximation is believed to be adequate for

most blade stability analyses. Finally, the effects

of various important parameters such as collective

pitch setting, structural damping, droop and pre-

coning on the instability associated with forward

flight is investigated.

i. The Equations of Motion

i.i Basic Assumptions

The present study is based upon a consis-

tently derived system of equations of motion for

the linearized coupled flap-lag motion of a

cantilevered rotor blade at arbitrary advance

ratios.

The derivation itself is algebraically

tedious, thus only a brief outline will be given

in this paper, the complete details of the deriva-

tion can be found elsewhere. 13

The geometry of the problem is shown in Fig.

I. The following basic assumptions were used in

deriving the equations of motion: (a) The blade is

cantilevered at the hub. It can have an angle of

droop 8 D at the root. In addition, the feather-

ing axis can be preconed by an angle 8p. The

angles 8D and _ are small. _) The blade can
bend in two directions normal to the elastic axis

and is torsionally rigid. (c) The deflections of

the blade are moderately small so that terms of

0(E_) can be neglected compared to one. (d)

Moderately large deflections have only a small

effect on the tension due to elastic effects on

the blade since one of its ends is free, thus a

linear treatment of the elastic restoring forces

is adequate. (e) Two dimensional quasi-steady

aerodynamic strip theory is used C_)=I and

apparent mass effects are neglected. (f) Reversed

flow is included using an approximate model for

reversed flow described in Appendix C. (g) Stall

and compressibility effects are neglected.

Using the assumptions given above a system

of nonlinear partial differential equations for

the coupled flap-lag motion of the blade is

derived, with respect to an x,y, and z coordinate

system rotating with the blade. The derivation

follows essentially along the lines of Reference

14, all the details can be found in Reference 13.
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1.2 Brief Derivation of the Equations of Motion

The differential equation for the dynamic

stability of a cantilevered rotor blade can be

written as

I

(i)

where the quantities ECI , EC2 are given in

Appendix A.

The distributed loading terms in the x,y and

z directions with terms up to O(e_) in displace-
ments can be written as

p T m_2 *
x = -x- = [(Xo+ el) + 2v]

o m_ 2 ** . ,P = L - Iv - (e + v_ + P,,] v
y y " o " -- - gSL _

_2"* *

P = L - m _ w - gs_ w (2)Z Z

The boundary conditions for this kind of blade are

well known. IW The displacement field of the blade

with single and cose ---1 can be written as IS'14

X O 2 ifXo / _We _,

V_Ve - XoBD@ (3)

+ 8D )w-w e x o ( 8p+

and

we - _z nk(Xo)g_(t)= _ nkgk
k-1

M ' (41

v =-_£ Ym(Xo)hm(t) " -£ ymh m
e m-i

where it is understood that repeated indices imply

summation unless otherwise stated.

The aerodynamic loads L z and _ are given
byiS,l _

ap R cd°Ly p(UT8 -_-- U (6)

where the velocities _ and UT are given by

U T - av + aR _ sin_ + _ cos_ Bv (8)

The last te_ in Equation (8) is due to the

radial flow along the blade. This te_has been

neglected in so_ previous analyses. For a_i-

tra_ advice ratios this is an important and non-

negligible te_.

Combination of Equations (i) through (8) and

application of Galerkln's method to eliminate the

spatial variable reduces the problem to a system

of ordinary differential equations.

** g - n +-2_Igl +2 FiMyl SFi i ik_ _Fi_igi = El-Shin

- * -i -3 *

+2 Pikmgkhm-(BD+Bp)Bi+2(Bp+BD)Bimhm + _i (9)

- ** * - -2

 ihl i i s lhi+ i ihl-

-7 * + ii - *
-2 Bik(SP+SD)g k B i 8DS+2[Simr-(My)imr]hmh r

, _lO e +-2(Mn)ik_gkg_-_ i 6De+2 m ALl (10)

where the various quantities MFi, Pikm, _i, Simr,

(_)ik£ are generalized mass integrals given in

Re_erences 13 and 14, and also in Reference 12
-I -3

_or i=k=i=m=r=l). While the _ntities Bi, Bim,
-cs -s -cs _ii _7 B_Oamd B_m etc.ik' Eim' Elm' Elk' i ' Ik'

are given in Appendix A. Tne quantities AFi, ALl

are generalized aerodynamic forces defined by

AF i = £2/_ Lz nld_o/a2_ (ii)

_i = _2_ALy yidXo/a2_ (12)

Equations (9) and (i0) are coupled nonlinear

ordinary differential equations. In the present

study these equations will be llnearlzed about a

suitable equilibrium position, which is taken to

be the steady state equilibrium position of the

blade in hover. Through this process of llneari-

zation many nonlinear terms are transformed into

coupling terms. At this stage one encounters a

considerable number of terms which are small and

therefore negligible. In order to neglect the

appropriate terms a rational ordering scheme is

used whlch enables one to neglect terms in a

systematic _anner. In this scheme all the impor-

tant parameters of the problem are assigned orders

of magnitudes in terms of a typical displacement

quantity eD thus:

XR = 0(ED); RW = 0(eD ); x=,0(1); _=0(1);

k'0(e D) ; 8-0(e D)

Bw_..E- By
Bx = 0(eD);

O O

" 0(eD ); BD-Bp=0(e D);

Cd° =0(e_) (13)
a

An order of magnitude analysis of the equa-

tions indicates that in general terms up to and

0(e_) must be included in the llnearlzedincluding

while for lag equations some 0(e_)flap equation§,

terms have to be retained.

The process of the linearization consists of

expressing the elastic part of the displacement

field as
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= w + A we (g1_+we eo = % AW.)

+ A _ = -_m(h° + _ _5 (145V e Veo

where the static equilibrium condition in hover

is given by

_s o._2_, o_ _=_ o -1 .Z2

where i - 1,2,...,N

_-cs o.- -2 .o
_ "ik  i%iai_ o= %ec,n_,10)

Cdo

£ 2 ( i XL 2) +
4+ %5 zx,%- Lili=1,2.....

The various quantities 4F-, L i are defined in

_=u_ _..... , for the sake of simplicity,

the equations are specialized to the case of one

elastic mode for each degree of freedom, i.e. one

flapping and one lead-lag mode.

Furthermore for mathematical convenience the

equations of motion have to be transformed into a

system of first order equations. This is achieved

by using the following notation

Agl = Yl ; Ahl = Y3
(16)

Agl = Y2 ; Ahl = Y4

For the stability analysis, only the homo-

geneous part of the equations of motion is

required, thus the equations of motion in their

final form can be written as

where A is a 4x4 matrix defined in Appendix B.

The equations of motion (17) will have a dif-

ferent form for the normal flow region and for the

reversed flow region. The representation of the

reversed flow together with its effect on the form

of Equations (17) is described in Appendix C.

2. Method of Solution

The stability investigation of the blade

motions is based upon the Floquet-Liapunov

theorem I s which states the knowledge of the state

transition matrix over one period is sufficient in

order to determine the stability of a periodic

system having a co_on period T. Based upon the

Floquet-Liapunov theorem, the transition matrix

for the periodic system can be written as 15

R(_-¢_)
_(_,¢o) = _-1(¢)e _X(¢o) (18)

where

P(_+T) = P(¢) (19)

where R is a constant matrix and _(t) is a periodic

matrix. Clearly the stability of the system is

determined by the matrix R, where R is given by

following relation

¢(T,O) = e_ = C (20)

A direct result of the Floquet-Liapunov theorem is

that the knowledge of the transition matrix over

one period determines the solution to the homo-

geneous system everywhere through the relation

2(_csT, 0) = _(¢, O) (e_RT)s (215

where 0 < ¢ < T, s any integer.

In general R is a fully populated (nxn) square

matrix. If it has n independent eigenvalues, it

is well known from elementary linear algebra 15

that a similarity transformation can be found such

that

•QIZR 2 = _ (22)

where the columns of Q are the n-linearly inde-

pendent eigenvectors of R and _ is a diagonal

matrix whose elements are the eigenvalues of _.

Combining Equations (20) and (22) and using the

definition of the matrix exponential zs one has

_z _ Q-ze- =.2e - =C
or

XT -I _-1¢e_ = A ffi Q C._= (T,G)Q (23)

where A is a diagonal matrix containing the eigen-

values of the transition matrix at the end of one

period. The eigenvalues of _(T,0) or the char-

acteristic multipliers are related to the eigen-

values of _, denoted characteristic exponents,

through the relation

hT
e = % kffil,2.... r (24)

Clearly Xk and Ak are both complex quanti-

ties in general, thus

ffi_k + iek

from which

and

(25)

i £n[_ + _i ] (26)

i -i _I

_k =¥tan (27)

the quantity _k can be determined according to the

Floquet-Liapunov theory only within an integer

multiple of the nondimeusional period.

The stability criteria for the system is

related to the eigenvalues of _ or the real part

of the characteristic exponents _k" The solu-

tions of the Equation (17) approach zero as _ +

if

I% + _i [ < i or _ < 0 k=l,2 ..... n
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Finally a brief description of the numerical

implementation of the scheme described above will

be given. The transition matrix at the end of

one period #_T,0) is evaluated using direct numer-

ical integration. Equations (17) are integrated

for the set of initial conditions corresponding

to #_0,0) = _. The numerical integration is per-

formed using a fourth order Runge Kutta method.

The elgenvalues of the transition matrix are

evaluated by a Jacobi type eigenvalue routine.

For some of the cases the value of _T,0) has

been evaluated using Hsu's method.13,17 This was

done in order to obtain results by two different

numerical schemes and also because Hsu's method

was found to be more efficient numerically. Both

methods yield identical results, therefore it is

not specified on the plots which scheme was used

to evaluate _(T,0).

3. Results and Discussion

3.1 Numerical Quantities Used in the Calculations

In computing the numerical results the fol-

lowing assumptions were made,

Mass and stiffness distribution was assumed

to be constant along the span of the blade. Two

different kinds of mode shapes were used:

(a) For most of the cases for which essen-

tially trend type studies were conducted an

assumed mode shape in flap and lap was used as

given by the appropriate expression in Reference

12. When an assumed mode shape is used the elastic

coupling effect 16 is neglected.

(b) For a few cases an exact rotating mode

shape in flap and lag was employed. These mode

shapes were generated by using Galerkin's method

based upon five nonrotating cantilever mode shapes

for each flap or lag degree of freedom. For these

cases the elastic coupling effect was included.

The coefficients F i, Li and _i defined in

Appendix A and in References 12 through 14 were

evaluated using seven point Gaussian integration.

For the region of reversed flow these coefficients

were treated in a special manner as explained in

Appendix C.

For the cases computed the inflow was evalu-

ated using an expression for constant inflow ratio

in hover, given by

ao 24e i (28)
_=i_ + a---_-

This inflow relation is equivalent to taking

the induced velocity of 3/4 blade radius as repre-

sentative of a constant induced velocity over the

whole disk. It is clear that for forward flight

one should use the expression

= _ tan_ R + CT/2V_2+_ 2 (29)

Use of this relation would have required the

use of a trim procedure in the calculations. It

60

can be seen from Reference 14 that the require-

ment of trlnwaed flight at a fixed CT results in

an increase of 8 at advance ratios of _ > .3 and

it also requires continuous changes in el_ and

8is. The experience gained when using this

approach in Reference 14 indicates that when the

trim requirement is included in the calculation,

the value of _c at which instability will occur

will be usually lower. Furthermore, when using

this approach it was found that it is difficult to

determine which part of the degradation in stabil-

ity is related to the increase in 8, els and elc

and which part is due to the periodic coefficients.

This added complication is not warranted in a

trend study such as the present one, and it is

not consistent with the stated purpose of this

paper, which is; a clear illustration of the

effects of the periodic coefficients when the lag

degree of freedom is included in the formulation

of the problem.

Finally, in all the computations the follow-

ing values were used:

Cdo = .01; a=2_; o= .05; el=0; A=0. ; B=I

Various other pertinent quantities are specified

on the plots.

3.2 Results

The results obtained in the present study

usually are given in form of plots representing

the variation of the real part of the character-

istic exponent _k with the advance ratio _. Most

of the cases presented in this study were evalu-

ated using an assumed mode shape, as described in

the previous section, and neglecting the elastic

coupling effect.

For some cases an exact rotating mode shape

in flap and lead-lag was used and the elastic

coupling was included, when this approach was used

a statement to this effect appears on the appro-

priate plots. When no such statement appears it

is to be understood that the assumed mode shape

is used and the elastic coupling is neglected.

A typical case is shown in Figure 3 for a

collective pitch setting of e= .15. Starting the

computation at _=0, enables one to easily identify

the instabilities encountered, by using results

previously obtained for hover. As shown the lag

degree becomes unstable and the frequency of the

oscillation is _k = 1.28119. This result clearly

indicates that by neglecting the lag degree of

freedom one could obtain completely incorrect

stability boundaries.

The importance of the reversed flow region is

illustrated by Figure 4. As shown with the

reversed flow region the instability occurs at

higher values of _ than without the reversed flow

region. Similar trends were observed in previous

studies when only the flapping motion was con-

sidered, s indicating that by neglecting the

reversed flow region one could expect conservative

results from a stability point of view. It also

*@ic,@is cyclic pitch changes.



indicates that in this particular case the

reversed flow region starts being important above

advance ratios of _ = 0.8.

It is important to note that the frequency at

which the lag degree of freedom becomes unstable

is not 1/2 or i as is usual for the case of para-

metric excitation. Thus it seemed important to

identify the source of this destabilizing effect.

The results of this study are presented in Figures

5 and 6. The effect of neglecting the radial flow

terms on the real part of the characteristic

exponent, associated with the flap degree of free-

dom, is shown in Figure 5. As shown, the radial

flow terms have a stabilizing effect on the flap-

ping motion with the radial flow forms suppressed

the flap degree of freedom becomes unstable at

]_=1.33. The effect of the radial flow terms on

the lead-lag degree of freedom is il]ustrated by

Figure 6, as shown without the radial flow terms

the instability in the lag degree of freedom is

completely eliminated and the system becomes

unstable in flap. When the radial flow terms are

included, the lag degree of freedom is the crit-

ical one and the system becomes unstable at _=.754.

This matter was pursued further by identifying the

actual destabilizing term in the equations of

motion, which was found to be an aerodynamic

coupling term. This term couples the flap motion

with the lag motion in the flap equation, its form

is

2 aw _u
c°s2_ ax ax

o o

This term is due to the UTU P term in Equation (5).

The term shown above is the complete nonlinear

one, clearly the one retained in the equations of

motion is the coupling term obtained from linear-

izlng this expression.

As mentioned in the previous section the

results presented in Figures 3 through 6 were

obtained by neglecting the elastic coupling effect.

In order to asses the effect of this assumption

the typical case has been also recomputed with the

exact mode shape and the elastic coupling effect,

the results are shown in Figure ii. From Figure

ii it is clear that use of the exact rotating mode

in flap and lag reduces the value of _c to

_c = 0.653, when the elastic coupling is also

included _c is further reduced to _c = .583. Thus,

for this case, _c seems to be more sensitive to

the type of mode shape used than to the inclusion

of the elastic coupling effect. It is also

interesting to note, that for this case the elastic

coupling effect is destabilizing, while for hover

its effect on @c is quite stabilizing.

Previous studies _2 dealing with the effect of

viscous type of structural damping on the stabil-

ity boundaries for hover indicated that this para-

meter has an important stabilizing. The effect

of this parameter for forward flight is shown by

Figures 7 and 8. The stabilizing effect of

structural damping in the lag degree of freedom

is evident from Figure 7, where the real part of

the characteristic exponent associated with the

lead-lag degree of freedom is plotted as a func-

tion of the advance ratio _, again only the struc-

tural damping in lag is important. A summary of

these results is presented in Figure 8 showing the

variation of _c as a function of the structural

damping. It is interesting to note that this plot

indicates that the greatest stabilizing effect

due to structural damping is obtained in the

range 0 < qSLI < .02 (2% of critical damping),

after which, the gain in stability tends to level

off. Similar trends were obtained from stability
studies in hover. 12

Again in order to illustrate the sensitivity

of the results to the mode shape and elastic

coupling, the results have been recomputed with

these effects included; these results are also

shown in Figure 8. As seen the use of the correct

mode shape and the elastic coupling effect reduce

the value of _c, at which instability occurs.

The sensitivity of the results, to different

collective pitch settings is illustrated by

Figure 9. Comparison of Figures 3 and 9 indicates

that by decreasln E the collective pitch setting

from O = .15 to 8 = .05 allmlnated the instability

associated with thelead-lag motion. The instabil-

ity in this case occurs at _c = 1.88 with a

frequency of 0 or I. This is a typical flapping

instability due to the periodic coefficients.

Comparison of Figures 3 and 9 seems to indicate

that the assumption of nonliftin 8 rotors used in

some forward flight studies 7 can he

nonconsezvative.

Finally, Figure 10 shows the dependence of

_c on the angle of droop _. As shown _c is

relatively insensitive to 8D. On the other hand

8D has a very important effect on the value of 8c

at which the linearized system in hover becomes
unstable.

It should be also noted that a considerable

number of additional numerical results, including

the effects of elastic coupling can be found in

Reference 13.

4. Conclusions

The major conclusions obtained from the pre-

sent study are summarized below. They should be

considered indicative of trends and their appli-

cation to the design of a helicopter blade should

be limited by the assumptions used.

(i) Flapping instability and response

studies at high advance ratios can be inaccurate

and misleading due to the neglection of the lag

degree of freedom. The effect of the periodic

coefficients on the coupled flap-lag system shows

that in general instability can occur at lower

values of advance ratios than when the flap

degree of freedom is considered by itself.

(2) In addition to the instabilities associ-

atedwlth the periodic coefficients (i.e. with

frequencies of O, i or 1/2) the coupled flap-lag
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system has the tendency to become unstable due to

an aerodynan_c coupling effect associated with the

radial flow terms. This instability which has a

frequency close to the rotating lag frequency of

the system, occurs usually at values of _c much

lower than those for which the flapping degree of

freedom becomes unstable.

(3) Viscous type of structural damping in the

lead-lag degree of freedom has a stabilizing

effect on the instability discussed in previous

conclusion.

7.

8.

9.

(4) The value of the collective pitch setting i0.

has a considerable effect on the value of the

advance ratio at which instabilities due to the

periodic coefficients or the radial flow

aerodynamic coupling terms occur. Increase in

collective pitch is destabilizing, therefore high

advance ratio studies which do not include this ii.

effect (nonlifting rotors) may yield nonconserv-

ative results.

(5) The numerical results obtained in the 12.

present study agree with the analytical results

obtained previously 9 indicating that hingeless

blades with a rotating lag stiffness of 1/2 or 1

can easily become unstable due to the effect of

periodic coefficients. 13.

(6) While droop has a very strong effect on

the stability boundaries of hingeless blades in

hover, it has a very minor effect on the stability

boundary in forward flight.
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Appendix A. Definitions of the Generalized

Masses_ Aerodynamic Integtals and other Quantities

The quantities, PIII,MFI,MLI,SIII,(Mq)III,

(My)ll I are generalized masses given, in Appendix

A of Reference 12, with the general i,m,k indices

these quantities can be found in References 13

and 14.
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Structural damping is represented by

NF" 2 fl ;Fl nsF i ; geL = 2 fl _, qSL i

The elastic coupling effect is represented by

ECI = [(El)z-(EI)ylsin28; EC2= [(EX)z-(EI)yl

1 sin%cos0

EC2Ym

1

O

1

- __s _a2_f
o

When using these expressions in a one mode analysis
for each degree of freedom the lower indices are
deleted for these expressions and the expressions

for the generalized aerodynamic integrals. The
generalized aerodynamic integrals Fi, Li can be

found in References 12,13 and 14. For this study

some additional expressions had to be defined, only
these are given below.

_i _oni_o _2im = ; im " niYm dXo

_Ft_ nt%_r;% ; nt%L'_o

L20"im £ 7iYmdXo " L2L" i_ 'i_7;d_

A A

2, f_LikF xi_n' d_o

A

Appendix B. Elements of the A - Matrix

The elements of the A - matrix, which defines
the equations of motion when written as first order

differential equations, are given below:

_I " 1; _2 = A23= A24 = 0

A43 - 1; A41= A42 = A44 - 0

9.3 40
"-_,l+ _ (P _(-,%in, + ,_ hlCOS,)

_,2 la27 tlF6eos,)

2 F23 o )]+ _" hl(l+cos 2_

Z _.3 ii 1
A13" _+ 2 (R) [-20_ sinl_-la(f_p+SD)F 1 eos_

+ ÷4 g_ cosq

_cs + _ (__) 7 [8(_2F21_tcos_j_p2sin2,F22)
AI4= %1

+ k_2c°s_ + 4 (1+c°s2_)[_3g_+_2(_+_D ) ]I

A,1- cb'to,-8 
- 2p (_p+_D) L8COS*]

2

-2kLllp cos_)-_ 2 el+cos 2*)LZlhl -

-t_2 (Bp+_D) Lll (l+cos 25)-L24_2gl (l+cos2_) 1

- _ uLl3ein_

0la(_p+t_D)L 13 cos* ]

CDo
+cos2_) [-L21g I- (_p+_D)L20]8+ "-_ (-l_2L20sln2%

-21_L23cos_)}
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where

•2_lllg__L (_)3[2e_0_Fll_]+ _3- _ -- 2(Sp+89)
_" %1 251 51

2(_)lllg_+___(_)3[L7e_2_LS]-_7- _ -- 2 (Sp+SD)

Appendix C. Approximate Reverse Flow Model and

the Associated Aerodynamic Loads

The circular region of reversed flow, which

exists over the retreating blade, is quite well

known. In past treatments of reversed flow it has

been customary 3 to define three separate regions:

(a) normal flow, (b) reversed flow, (c) mixed flow,

and evaluate the appropriate aerodynamic expres-

sions for each region. When this model is used

together with a modal representation of the blade

the evaluation of the generalized aerodynamic

expressions FI,L i becomes quite cumbersome, and a

more convenient procedure had to be devised.

The approximate reverse flow model developed

for the present study consists of replacing the

circular region, by an approximate region which is

a circular sector as shown in Figure i. The

approximation is based on the assumption that the

area contained in the circular sector must be equal

to the area contained in the approximate region.

Two separate cases must be considered: (i) _ < i,

(2) _>I.

Case (i). For _ < i, the radius of the circular

part is taken as U. Simple geometric consid-

erations show that the angle _ is always a

constant.

given by _ = z/2

Case (2). For _ > i simple geometric considerations

show that

Thus, for _ < 1 the generalized aerodynamic

loads are calculated from

la

o]i. = --- [, ", dlo+ fLyy i d_
i.,1 _2ib J_ _y' iA V

while for U > 1.0

x_i"-_iand_i "-%i

These expressions are based on the assumption that

the llft curve slope in the reversed flow region

is equal to the negative value of the llft curve

slope in normal flow.

FEATHERING AXIS A" / _

.%-_[ Xo

REAR VIEW

-,_,,0xo

TOP VIEW

Figure 1. Displacement Field of • Torsionally Rigid Cantilevered

Blade with Droop and Preconing.

(b)/_ > 1

Figure 2. Geometry of Approximate and Exact Reverse Flow

Regions.

64



1. ALL 0 @ TERMS IN LAG EO. NEGLECTED

2. ALL TERMS INCLUDED

3. ONLY 0 (_) TERMS A.SS(X_ATED WITH
-.004 I" DAMPING INCLUDED

l- -,002

 ':Zt " \\
Figma 3. Effect of Third Order Terms in the Lag Equation on

Character_c Exponent for lag.
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Figure 9. Effect of Collective Pitch on Typical Case.
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Figure 11. Effect of Exact Mode Shape and Elastic Coupling

on Characteristic Exponent for Lag.
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