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Abstract

In a recent paper, Jones and Moore have deve-

loped a simple numerlcal lifting surface technique

for calculating the aerodynamic coefficients on

oscillatlng wings in subsonic flight. The method

is based on the use of the full lifting surface

theory and is not restricted in anyway as to fre-

M < 1. In this study, this s_le but general met-

hod of predicting airlo_s is applied to helicopter

rotor blades on a full1 three-dimensio_l basis.

,The general theory is developed for a rotor blade

at the _ = w/2 posltlonwhere flutter Is most lik-

ely to occur. Calculations of aerodynamic coeffi-

cients for use in flutter analysis are made for

forward and hovering flight with low inflow for

Mach n,-,bers 0 and 0.8 and frequency ratios p/f_l •

and 4. The results are compared with values given

by two-dimensional strip theory for a rigid rotor

hinged at its root. The comparisons indicate the

inadequacies of strip theory for alrload predicti-

on. One important conclusion drawn from this stu-

dy is that the curved wake has a substantial effect

on the chordwlse load distribution. The pitching

moment aerodynamic coefficients differ appreclably

from the results given by strip theory.

Int_duction

In a survey paper, Ref. i, Jones' etal. give

a detailed account of slgnlflcant developments in

the field of unsteady aerody_smlcs of hellcopter

rotor blades. One of the problem areas surveyed

was that of blade flutter as it has been found that

under certain operating conditions, rotor blades

can flutter in both hovering and forward flight.

This phenomenon has been investigated by several

researchers in Refs. 2, 3, 4, and 5 and the results

of their studies have improved our understanding

of the problem. For the case of hovering flight,

J. P. Jones in Ref. 2 applied a method developed

by W. P. Jones in Ref. 6 to derive the approximate

aerodynamic coefficients for an oscillating single

rotor blade for use in his flutter analysis. He

approximated the actual flow conditions by neglect-

ing curvature effects and assuming a simple two-

dimensional mathematical model cosisting of a ref-

erence blade and an infinite number of wakes lying

beneath the reference blade extending from -_ to ®.

He considered flapplng and pitching motions and com-

pared his results with those obtalned experimenta-

lly by Daughaday and Kline in Ref. 3. On the basis

of thls work it was concluded that the wake is prl-

marily responsible for some of the vibratory pheno-

mena found on helicopters in practice. For low

inflow conditions, Loewy in Ref. 4 used a similar

mathematical model to that of J. P. Jones and inve-

stlgated the variation in the pitching moment damp-

ing coefficient of a particular blade section as

p/_ varied for specified positions of axis of oscl-

llatlon and a range of values of wake spacing. He

found that the damping coefficient became negative

whenever p/_ was slightly greater than an integer

for axls of oscillation forward of quarter-chord.

Similarly he found that the damping coefficient

for a flapping oscillation dropped sharply at inte-

gral values of p/G but did not actually become neg-

ative. Timman and Van de Vooren in Ref. 5, on the

other hand, assumed that there was no inflow thro-

ugh the rotor disk and developed a theory for eal-

ctdJiting the aerodynamic forces on a blade rotating

through its own wake. Their results agree with

those obtained in Refs. 2 and 4 in the limit when

zero spacing between the wakes is assumed. All

this theoretical work confirms the conclusion that

the proximity of the wake is a contributing factor

to rotor blade flutter.

All the theoretical work described above is

based on the assumption that the flow is incompre-

ssible. However, with the advent of helicopters

capable of flying with blade tip speeds ranging up

to and in excess of the speed of sound, compressi-

bility effects need to be taken into account when

determining coefficients for use in flutter analy-

sis. Jones and Rao in Ref. 7 were able to do this

on the basis of two-dimenslonal theory and have

derived coefficients for a range of Machnumbers,

reduced frequencies, and wake spacing. Their ana-

lysis is based on the use of Loewy's model, Ref. 4,

of the helical wake and the application of a theory

developed earlier by Jones in Ref.8 for an oscilla-

ting airfoil incompressible flow. The values of

the coefficients given in Ref. 7 agree with those

obtained in Refs. 2 and 4 for zero Mach number but

differ appreciably when the Mach number is varied.

Hammond in Ref. 9 also developed a theory for det-

ermining compressibilty effects by using a differe-

nt model of flow from that used in Eel. 7. In his

model, the wake of the qth blade of a Q bladed

rotor after n revolutions extends from -2_(n+q/Q)

to ®; in Jones and Rao's model it extends from-_

to =. His aerodynamic coefficients for several

Mach numbers and inflow ratios are in general agr-

eement with'the results of Jones and Rao in Ref. 7.
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While the aerodynamic derivatives predicted

by two-dimenslonal strip theory are widely used in

predicting the flutter speeds of helicopter rotor

blades, the method does not allow for curvature

and finite aspect ratio effects. For incompressi-

ble flow, Ashley, Moser, and Dugundjl in Ref. i0

developed a three-dlmenslonal model in which they



modifiedReissner'stheory,Ref. ii, for oscillat-
ingwingsin rectilinear flowby includingthe free
streamvelocity variationsalongthe span. Their
results indicatea negligibledifferencebetween
twoandthree-dimensionalsolutionsupto 95%of
the span. JonesandRaoin Ref. 12similarly stu-
diedtip vortexeffects in compressibleflowand
theyalsoconcludedthat sucheffectsarenegligi-
ble exceptin regionscloseto thetip. In some
of his earlier work,Miller in Refs.13,14,and
15, developeda helical wakemodelin whichthe
rotor wakewasdividedinto a "near"wakeanda
"far" wake.Thenearwakeincludedtheportion
attachedto thebladethat extendapproximately
one-quarterof a revolutionfromthebladetrailing
edge. Theeffectsof thenearwakeincludeanin-
ducedchordwisevariationin downwashandwerefor-

Thechordwisevariation in thevelocity overthe
airfoil inducedbythe far wakewasneglected.
Miller extendedhis modelto studytheforwardfli-
ght caseandfoundthat thenonuniformdownwash
inducedat therotor diskby thewakevortexsystem
couldaccountfor thehigherharmonicairloadsen-
counteredonrotor bladesin forwardflight. He
also showedthat undercertainconditionsof low
inflowandlowspeedtransition flight thereturn-
ing wakecouldbesuckedup into the leadingedge
of therotor whichwouldaccountfor someof the
vibrationandnoise. Pizial_ in Ref. 16hasdeve-
loped_nalternativenumericalmethodin whichthe
wakeof a rotor bladeis representedby discrete
straight line shedandtrailing vortexelements.
Hesatisfiedthe chordwiseboundaryconditions,but
therotor bladewaslimited to onedegreeof free-
domin flapping. Sadlerin Ref. 17,usinga model
similar to Piziali's, developeda methodfor predi-
ctlng the helicopterwakegeometryat a "start up"

configuration. He represented the wake by a fine

mesh of transverse and trailing vortices starting

with the first movement of the rotor blade genera-

ting a bound vortex, and, to preserve zero total

vortlclty, a corresponding shed vortex in the wake.

Integrating the mutual interference of the trailing

and shed vortices upon each other over small inter-

vals of time, Sadler was able to predict a wake

geometry. Although his model showed fair agreement

with the available experimental data for advance

ratios above one-tenth, Sadler's method is limited

due to the large computational time required tO

represent the wake by a finite mesh.

soning led them to represent the blade motion by a

series of oscillatory pulses, where each disturba-

nceoccurs over the range, _ - A_I < _ < _+ A_ 2.

Corresponding to each burst of oscillation, packets

of vorticity are assumed to be shed into the wake.

With increasing forward speed, the spacing between

the packets of vorticity also increases and it was

found that the flutter speed became constant when

_, the advance ratio, was above 0.2. The approach

used in the present study differs from that adopted

by Shipman and Wood in that continuous high freque-

ncy small oscillations are assumed to be superimpo-

sed on the normal periodic motion of the blade.

The airloads and aerodynamic derivatives associated

with the perturbed oscillation of the rotor blade

can then be calculated by the method described in

+h4 ...... o_ .... _ ...... blade will first att-

ain its critical speed for classical flutter at

= _/2, the aerodynamic derivatives corresponding

to this value of _ only have been calculated. The

method takes finite aspect ratio and subsonic com-

pressibility effects fully into account. Typical

results for a rotor blade hinged at its root desc-

ribing flapping and twisting oscillations are given

for a range of Mach numbers and frequency values.

Basic Equations

In the development of the analysis of the

Jones-Moore theory, Ref. 18, for oscillating wings

in rectilinear flight, the space variables x, y, z,

and t are replaced by X, Y, Z, and T, respectively,

so that

£Y £Z £T (1)x:_X, Y'F-' z-_-, t=F-
where £ is a convenient reference length, U is

the uniform velocity, M is the Mach number and

(i M2) I/28 = - . The velocity potential of the flow

around a surface oscillating at a frequency p

can then be expressed as

$(x,y,z,t) = U£#(X,Y,Z)e i(AX + _T) (2)

where _ = p£/U, _ = M2_/8 2. The function ¢ may be

regarded as a modified velocity potential. Fur-

thermore, it can be shown that it satisfies the

wave equation

_2¢ + _2¢ + _2@ + <2@ 0 (3)

_X 2 _y2 _Z 2

where K = M_/8 2.

Though many forms of flutter can occur on ro-

tor blades, attention in this report is concentra-

ted on the determination of appropriate aerodynamic

coefficients for use in the analysis of blade flu-

tter of the classical bending-torsion type. Ship-

man and Wood in Ref. 20 have considered this prob-

lem but they did not take compresslbilty and fini-

te span effects into account. The two-dimenslonal

mathematical model used is similar to that employ-

ed by other authors except that they assumed that

flutter would first occur when the relative velo-

city over the rotor blade reaches its critical va-

lue when _ = _/2. For greater or lower values of

#, the relative speed would be reduced below the

critical speed for flutter and any incipient grow-

ing flutter oscillation would be damped. This rea-

Since in this problem the motion of the sur-

face is assumed to be prescribed, the downwash

velocity at any point on it must be the same as

the downwash induced by the velocity (or doublet)

distribution over the surface and its wake. This

condition must be satisfied in order to ensure

tangential flow over the surface at all points.

It is also assumed that the rotor blade is a thin

surface oscillating about its equilibrium position

in the plane z = 0. If _ = _'e Ipt defines the

downwash displacement at any point (x,y) at time

t, this boundary condition requires that the down-

ward velocity and _/_z must be equal. In the

transformed coordinates, this implies that
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W _ we-i (RX + _T)= -- = (4)
_z u8

wherew=_+_is known.

A further condition that must be imposed on

any solution is that it leads to zero pressure dif-

ference across the wake created by the oscillating

surface. From the general equations of flow it can

be established that the local lift _(x,y,t) at any

point is given by

_(x,y,t) ffi p(_t + U_x ) (5)

where k = @u - _£' the discontinuity in the veloci-

ty potential. From Eq. (5), it immediately follows

that on the surface

_(x,y,t) = _Ci_z + _) eI(_ + _Z) (6)

where 9 = m/82 and K ffiQ - Q£. This yields
U

9K

ivK+ _ = 0 (7)

everywhere in the wake since the lift lmst then be

zero. From Eq. (7), it can be deduced that at any

point in the wake

K(X,Y) = K(Xt,Y) e-i_(X-Xt ) (8)

where X = Xt denotes the position of the trailing

edge of the section at Y.

As shown in Ref. 19, the solution of Eq. (3)

may then be derived from the integral equation

92 e-i<_

4_W(Xp,Yp,0) = If K(X,Y)_z2( _ )dXdY (9)Z_0

where W is the modified downwash at the point __Xv'Yp

given by Eq. (4), K has to take the form specified

by Eq. (8) at points in the wake and

C = [(X-Xp) 2 + (y_yp)2 + Z211/2.

The double integral in Eq. (9) must be taken

over the area of the oscillating surface and its

wake. It should be remembered, however, that K ffi0

along the leading edge and the sides of the area of
t

integration.

In the numerical technique developed in Ref.

18 for calculating the airloads on oscillating

wings in rectilinear flight, the wing is divided

into a number of conveniently shaped boxes and K

is assumed to be constant over each box. The wake,

on the other hand, is divided into a number of cho-

rdwise strips and K over each strip is defined by

Eq. (8). The contribution of the wake to the down-

wash W(Xp,Yp) is then derived by direct numerical

integration.

The application of the method outlined above

to determine the airloads on rotor blades presents

certain difficulties, the principal one being that

the flow velocity over the rotor blades is not con-

stant as assumed in the derivation of Eqs. (3) and

(8) for wings in straight flight. To overcome this

difficulty, it is assumed that the rotor blade can

be represented by a number of spanwise segments
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over every one of which the flow is taken to have

its average value and appropriate Mach number. On

this basis the above analysis can be modified for

application to rotor blades as outlined in the

next section.

Rotor Blade Theory

In the present analysis, the rotor blade is

taken to be fixed at the _ = =/2 position and its

helical wake is assumed to extend rearwards as

indicated in Fig. I. Normally, one would expect

the vorticity shed by the perturbed blade to be

carried downstream by the distorted wake of the

loaded rotor blade. However, in the present preli-

minary study, UU±LULm........_u_._--- is assu_cd _ any

distortion of the wake due to blade-tlp vortex

interference is ignored. The aerodynamic coeffic-

ients corresponding to any prescribed motion can

then be calculated for forward and hovering flight

by the method described below.

a) Forward Flight (Rotor Blade at @ = =/2)

Let R denote the tip radius of the blade and

assume x = Rx', y =Ry', and z ffi Rz'. For forward

flight with velocity V, the relative local velocity

at section y will he denoted by U(=V+_Ry') and U_

(ffiU+y'), where D is the angular rotation and _(-V/

_R) is the advance ratio. It then follows that at

' W(Xp,yp)the section yp, the downwash ' ' is given by

w(x',yl) ffi flR(i_' + "'_'_ e ipt (10)
p p _pgx'"

where _ ffiR_'e ipt is the displacement of the blade

at the point, (x_,y;). When the blade is describ-

ing flapping and twisting motions, _' may be expr-

essed as

_' = y'f(y') + x'a'F(y') (ii)

where y' and _' are the amplitudes at the reference

section and f(y') and F(y') are the modes of flap-

ping and twisting oscillations, respectively. If

the blade is assumed to be rigid and hinged at the

root, f(y') ffiy', and F(y') = i in the above equa-

tion. For convenience, the reference section is

taken to be at the tip but, in actual flutter cal-

culations, the section at 0.SR would be a better

choice.

To obtain the distribution of K corresponding

to the motion prescribed by Eq. (i0), Eq. (9) is

first expressed in terms of the original variables

and K is replaced by Rk'e ipt. It may then be

written as

-il'x'

4_w'e P p 92 e -iK'r'

= Ilk' (x' ,y')e-iX'x'--,_(-r-_)8

P dx__/_' _z (12)
8

where K' = Mp A' = MK', w = w'e ipt, B2 = i-_,

82_U, '

and r' = [(x'-x;) 2 + 82(y'-Y;) 2 + B2z'2] I/2-

The above equation can be used to obtain the

solution to the problem of determining the flow

over a roto_ blade with a rectilinear wake. Since



thewakecan withstand no lift, the condition,

_k + U_ = O, must be satisfied. For a rectilinear
3t _x

wake, this yields

p(x'-xt)
-i

flU'

k'(x',y') = kt(Y')e (13)

However, if the wake originating from a blade strip

is assumed to be curved

p(s'-st)
--i-

_q'
k' (s',y') = kt(Y')e , (14)

where q' = ( 2 + y,2 + 2_y'sin _)i/2, s = Rs' is

the distance along the vortex path and y' specifies

the spanwise location of the blade strip.

For computational purposes, Eq. (12) may be

conveniently expressed as

_tv' ,,'_ _ ::_t.-, --,_ G
...... ..p,_p ..... _ ,y j _ dx'dy', (iS)

, w(xl,y_) -iX'x'
where W(x;,yp) = e8 • P P,

P

K(x',y') " k'(x',y') e -i_'x', and

22 e-iK'r' 2 e -iK'r'

G - -

(i_382z'2) + _'282z'2

r,2 ]"

It should be noted that in the wake

v' (s'-s_)
"i

_ qV
KCx',y') - Kt(Y') e , (16)

where u' =-P--.

nB 2

b) Hovering Flight

For the simplest case of hovering flight,

- 0 and s' = y'8. Hence Eqs. (i0), (ii), (12),

(13), and (15) can be simply modified by replacing

•_ with zero. Eqs. (14) and (16) then become

-i§(e-e t)
k'(8,y') - k_(y') e (17)

-i_'(8-8t)and
£(e,y')- K--_(y') • , (18)

where y' defines the location of the blade strip

from which the wake originates.

Method Of Solution

The schematic diagram of the oscillating rotor

blade is shown in Fig. 1. Eqs. (15) and (16) are

combined and expressed as

-i_tr t
s

blade
s

surface _'(S'-S_) -IK'r'

_ -i q, w

dx'dy' - Y Y Kt(Y')e B(er-_)
wake

w

[ (l+iK'rw)(1- 382zL 2) + K'282z '2
r' 2 ] ds'dn', (19)

W

where r's = [ (x'-x;) 2 + 82(y,_y;)2 11/2

rw = [ (x,_X,p)2 + _2(y,_y;)2 + 62z,2 ]1/2

ds' = (dx'2+dy'2) I/2

and dn' is perpendicular to ds' and approximately

equal to dy' on blade. The rotor blade is divided

into a number of rectangular boxes _ x N) on which

the doublet strengths are assumed to be constant as

in Ref. 18. Based on this assumption, Eq. (19) can

be expressed as

-- - _" (20)
4_W = E E Sij Kij + E Aj _tJ

mn i=l J=l J=l

In Eq. (20) Sij and Tj may be interpreted as the

aerodynamic _-_.,_,,.,._u=L_e..... coefficients and the actual

expressions are given later in this section. Sij

T3 are the downwash velocities induced at the box

mn due to the unit strength doublets located_ at the

box iJ and the wake strip J respectively. Kij and

Ktj are the doublet strengths at the box iJ and the

trailing edge of the wake strip J, respectively.

With the use of the wake boundary condition, Ktj
can be expressed as

_v t _ w
(xtj XMj )

--i ! ! -- !

gtj"  J/te + 2i (x s'x MJ)] (21)
uj

Eqs. (20) and (21), then yield

4.Wmn- Z Z Ai_ K_ (22)
i=l J=l

where Aij = Sij for i # M

-- I 'I

and Aij m Si j Jr" T_/[e U_ Jr" 2i Uj

]

for i - M.

-- ' known) Eq. (22)
For a given mode shape (Wren s are

represents a system of M x N linear algebraic squa-

t_Ions, the solution of which yields the values for

K 's. M and N denote the total number of chord-
mn

wise and spanwise stations respectively.

Once the appropriate K distribution has been

found, it is then relatively easy to determine the

aerodynamic forces per unit span acting on the rotor

blade. If, in Eq. (5), k - Rk'e ipt - RKeipteiA'x',

it then follows that the local lift L(y) - L' (y)

e ipt and the nose-up pitching moment, M(y) - M' (y)

e ipt, referred to the mid-point of the chordwise

section at y are given by

2z;
L' (y) . (LI+iL2) (__) + (L3+iL4)_,

p CUR )2 (c12)
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- , +

2_
.. M'(y) . _1÷_2) (._7,_)÷ _3÷_4)_,,
pCUR)____2(c12) x_ x t

=(_-_.)(z---_K)2[U'( ' ' I k'x'dx']I k'dx' - kt_ t) - i_

u_. Y;" _;" (24)

where e is the local chord, U R is a reference velo-

' and _' are the loca_ amplitudes of thecity, zf

fiappln g and twisting muLious respectively, _ L I,

L3, _p M3, and L2, L4, M2, M4, are the in phase

and out of phase airload coefficients, respectively.

Expressions for Aerodynamic Influence Coefficients

Forward Flight (Rotor Blade at @= n/2)

The influence coefficients are calculated by

the method outlined in Ref. 18. For a box not con-

Laining the collocation point

!

y1+d2 x_+dI -IK'r'S
=- $ I (_----c--)S(l+iK'r')dx'dy' (25)

Sij '- r'_ s
YJ d2 x;-dl s

where K' = MPB2_U; , r,s = [(x,_xm)2 + 82(y,_y;)2]I/2,

3

d i = Ax'/2, d 2 = Ay'/2, and Ax' and Ay' are the

chordwise and spanwlse spacings of the rectangular

grid on the surface of the rotor blade. When the

collocation is inside the box considered, the value

of Sij must be calculated by the method of Ref. 18.

For the curved wake

v'(s'-st) -iK'r '
ni+d 2 m -i w

= q' _)Tj - I I e 8 [ (l+iK' r_)

n_-d 2 st w

382z'2) + K'262z '2
(i- _ ] ds'dn' (26)

E _
W

where rw = [(x'-Xm )2 -'!- 82(y'-yn )2 + 82z'2] 1/2,

x' = _8 + y_ sin 8, y' = y_ cos 8, z' = d'8/2w,

ds' = (dx'2+dy*2) 1/2 - (_2+y_2+2_y i cos 8)1/2d8,

and d(=Rd'), the downward displacement of the Wake

per revolution, is assumed to be small. Tj's are

evaluated numerically at the J 'th spanwise strip by

taking small increments of 8 and n.

Hovering Flight (Low Inflows)

For hovering flight, _ = O, s' = y_8, and

ds' = yldg. The expression for Sij, Eq. (25), can

be simply modified by replacing W with zero and the

wake integration for the J'th strip

-i_'r'
nj+d2 ® -iv' (8-8 t) e w

Tj = - ' S e $(7)[(l÷i,'r_)
nl-d2 8t w

382z'2) +
(1- _ K'262z'2] y_ dSdn' (27)

W

where x' = y_ sin 8, y' = y_ cos 9, and z' = d'e/2w.

The effect of the helical wake in hovering

flight is estimated by two different methods. In

the first method, a Helical Wake Model is used and

the actual helical path is taken in evaluating the

Tj coefficients. In the second method, a Circular

Wake Model is employed and the helical wake is re-

placed by its near wake, which is assumed to extend

over 8 t < 8 < _/2, and a number of regularly spaced

circular disks of vorticity below the reference

plane. The formula for k' for the n'th disk at

z' = nd' is taken to be simply

k' (8,y' ,nd') k_Cy')e -i_[ (8-_ t)+2n_]= . ,. (28>
the actual spacing between consecutive disks being

RdV,

Results and Discussion

A rectangular rotor blade of R/c = lOw as cho-

sen and theblade was assumed to extend from O.IR

to R. For the computation of the airluad coefficie-

nts, a grid of thirty six rectangular boxes consist-

ing of six chordwise and six spauwise stations were

used. The convergence of the results was tested by

taking grid sizes of 6x8 (chordwise x spanwlse) and

8x6. Rigid mode shapes for flapping and twisting

oscillations are assumed so that

= 7Y' + _x'

= f_R[ P--P * __i_P-(_+Yp)(_) (--_-) ]. (29)
, c

It should be noted that the above equation is valid

only for the blade position at ¢ = _/2. For hover-

ing flight, _ = 0 in Eq. (29).

The airload coefficients for Mach numbers 0

0.8 for several values of _and wake spacing of two

chords were obtained with reference to the blade's

quater-chord axis. In Figs. (2) thru (5), selected

airload coefficients for slow forward flight (_ =

0.1) are compared with the results obtained for

hovering flight using both a helical wake model and

_m-dimensional strip theory. For this particular

comparison, the reference velocity in Eqs. (23) and

(24) was taken as the relative lo*-1 velocity, U,

and the tip Mach number was 0.8. From these plots,

one can conclude that strip theory predicts substa-

nt_ally larger values for the airload coefficients.

One of the most important observations one can maks

is that the curved wake changes the chordwise load

distribution in such a way that the center of pre-

ssure shifts forward of the quarter-chord axis

position (see Fig. 4).
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Figs. (6) and (7) compare the results by seve-

ral mathematical models used for the hovering fll-

ght case. The alrload coefficients are referred

to the tip velocity (_R) and this choice was made

to indicate the trends of spanwise load distribut-

ion. The Circular Wake model representation resu-

lts in a substantial saving in computational time.

For example, to obtain the airload coefficients for

one set of geometric and flight conditions using

6x6 grid on the blade, the Circular Wake model took

only 1.5 minutes of computing time on I_ 360/65

while the Helical Wake model took 2.5 minutes.

Although the Circular Wake model seems to indicate

the general trends of the alrload coefficients, one

should use the full helical wake to compute the

alrload coefficients accurately.

Sum= typical results for hovering flight using

the Circular Wake representation, compared with the

results of two-dlmenslonal strip theory, Ref. 7,

are shown in Figs. (g) thru (!!). The results fur

the curved wake are in good agreement with the re-

sults for strip theory for the inner blade sections;

however, the agreement is poor towards the tip.

Figs. (12) and (13) show the variation with axis

position of M4, conveniently referred to as pitching
moment damping airload coefficient, at spanwise

stations of 0.475R and 0.925R, respectively. From

these results, one can conclude that the agreement

between the curved wake results and strip theory

is good near the quarter-chord position for M = 0

and M = 0.8 but it becomes very poor as the axis

is moved towards the trailing edge.
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