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Abstract

The problem of helicopter mechanical insta-
bility is considered for the case where one blade
damper is inoperative. It is shown that if the hub
ie considered to be nonisotropic the equastions of
motion have periodic coefficients which cannot be
eliminated. However, if the hub is isotropic the
equations can be transformed to a rotaiing frame
of reference and the periodic coefficients elimi~
nated. The Flogquet Transition Matrix method is
shown to be an effective way of dealing with the
nonisotropic hub and nonisctropic rotor situation.
Time history calculations are examined and shown
to be inferior to the Floguet technique for deter-
mining system stability. A smearing technique
used in the past for treating the one damper inop-
erative case is examined and shown to yield uncon-
servative results. It 1s shown that instabilities
vhich occur when one blade damper is inoperative
may consist of nearly pure blade motion or they
may be similar to the classical mechanical
instability.
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ey lag damping rate
Cy effective hub damping in x-direction

Cy effective hub damping in y-direction
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effective hub stiffness in x-direction
effective hub stiffness in y-direction
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force acting on hub in x-direction
force acting on hub in y-direction

first mass moment of blade about lag
binge

preriod of the periodic coefficients,

m - Aaln
- = u‘l.b

coordinates of bub in rotating reference
frame

coordinates of rotor center of mass in
fixed reference frame

coordinates of hub in fixed reference
frame

coordinates of elemental blade mass dm
in fixed reference frame

lag deflection of ith blade
defined by Equations (18)
defined by Equations (7)

Jth eigenvalue of the Floquet Transition
Matrix

defined by Equations (18)

defined by Equations (7)

distance from lag hinge to elemental
blade mass dm

azimuthal location of ith blade
rotor speed

defined by Equations (18)
defined by Equations (7)

characteristic matrix, periodic with
pericd T

state matrix, periodic with period T
Floquet Transition Matrix
state transition matrix

state vector



The problem of mechanical instability of
helicopters on the ground has been recognized and
understood for many years. The analysis by Coleman
and Feingoldl has became the standard reference on
this phenomenon although it was not published until
many years after the first incidents of mechanical
instability, or ground resonance as it 1s commonly
known, were encountered on the early autogyros.

The mechanical instability phenomenon is most com-
monly associated with helicopters having articu-
lated rotors; however, helicopters using the soft-
inplane hingeless rotors which have become popular
in recent years are also susceptible to this
problem. Machines employing these soft-inplane
hingeless rotors are also known to experience a
similar problem, commonly known as alr resonance,
which occurs in flight rather than on the ground.
The air resonance problem hag received much stiten-

tion in recent years (see, e.g., Refs. 2 and 3).

From the analysis of Reference 1 and others
it is known that the ground resonance problem is
due primarily to a coupling of the blade inplane
motion with the rigid body degrees of freedom of
the helicopter on its landing gear. These analyses
have shown that with the proper selection of blade
lag dampers and landing gear characteristics the
problem of mechanical instability can be eliminated
within the operating rotor speed range. All of the
mechanical instability analyses conducted to date
have one assumption in common - all blades are
assumed to have identical properties. This is a
reasonable assumption under ordinary circumstances;
however, the U.S. Army has a requirement on new
helicopters which invalidates this assumption.
requirement is that the helicopter be free from
ground resonance with one blade damper Inoperative.
Ag will be shown later, this one blade damper inop-
erative requirement has a serious impact on the
clagsical method of snalyzing a helicopter for
mechanical instability. Further, there is at pres-
ent no published method available for treating the
case where each of the blades is permitted to have
different properties. Thus the designer is faced
with the dilemma of trying to satisfy the require-
ment with an analysis method in which one of the
basic assumptions is severely violated.

The

Two methods have been used to circumvent this
difficulty. The first of these involves a physical
approximation so that the classical analysis
becomes applicable. In this approach all blades
are still assumed to have identical lag dampers
even when one blade damper is removed, but the
value of each of the dampers is reduced by the
semount ci/N where N is the number of blades
and ci 1is the original lag damper rate. As can
be seen, with this approach a system is analyzed
which is quite different from the actual situation
of a rotor with no damping on one blade. The sec-
ond method which has been used is to reformulate
the equations of motion allowing for differing
blade characteristics and to obtain the stability
characteristics of ithe system using a time history
integration of the equations. This secand approach
bas the drawback that interpretation of stabllity
characteristics from time history calculations is
often difficult and open to question. The method

will yield correct results, however, provided the
equations are integrated over a sufficiently long
time period.

The purpose of this paper is to present a
method of obtaining the mechanical stability char-
acteristics directly for a helicopter operating on
the ground with one blade damper inoperative. As
will be shown later, the equations governing the
moticn of this system have periodic coefficients.
This fact suggests the use of Floquet theory as the
means for determining the stability characteristics
of the system. In the following, the one-damper-
inoperative problem is formulated and the resulting
equations are solved using the Floquet Transitionh
Matrix method described by Peters and Hohenemser.
Results obtained using this method are compared
with results obtained from the two previonsly used
methods and reccmmendations are made concerning
the future use of the three methods described.

Equations of Motion

The equations of motion for the mechanical
instability problem will be formulated using an
Eulerian approach. It will be assumed, as is done
in Reference 1, that the helicopter on its landing
gear can be represented by effective parameters
applied at the rotor hub. It will be further
assumed that only inplane motions of the hub and
blades are important in determining the ground
resonance characteristics of the helicopter. Thus
the degrees of freedom to be considered consist of
two inplane hub degrees of freedom and a lead-lag
degree of freedom for each blade in the rotor. The
mathematical model to be used in the analysis is
shown in Figure 1. Note that in the figure only a
typical blade is shown. The analysis will be
formulated for a rotor bhaving N blades, and each
blade is assumed to have a rotational spring and
damper which act about the lag hinge.

The blade equations are developed by summing
moments about the lag hinge. The coordinates of
the elemental mass dm in the fixed system are

1

x; =X +ecos ¥ +o cos(Wi + Qi)
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where

¥ = 0t o+ on(1 - 1)/N i=1,2,...,N

These expressions can be differentiated twlce with
respect to time to yleld the accelerations exper-
ienced by the differential mass
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Using D'Alembert's principle the summation of

moments about the lag hinge can be written as
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fp sin (vi + gi)i'idm - fp cos (vi + gi);'iidm

-kt - ety =0 i=1,2,...,8 (3)
where the integrals are evaluated over the length
of the blade. Introducing the expressions for

X, end ifi and defining the following

= Jom

5 (¥)
5= fo* a
the blade equations become
Lt + enesb sin §; - 8,[%) sin(¥; +¢,)
- ¥, cos(¥y + 6] + x5t +ef =0 (5)

1=1,2,...,§

If small displacements are now assumed the blade
equations may be linearized to obtain

€ + s + (a5, + 0D, = (VE/e)E, sin ¥,

+*

- ifh cos ¥, ] i=1,2,...,8 (6)
where the following parameters have been introduced
2 _
Vo T eS.b/ L
o, = k, /T, (1)
ny = oy/h,

Under the assumptions stated earlier the hub
equations of motion can be written directly as

mx}% * cx’ﬁ: + kxxh Px

myyh+cyyh+kyyh—Py

where the coefficients on the left side of these
equations are the effective hub properties in the
x- and y-directions, respectively. The determina-
tion of these properties depends on an extensive
knowledge of the helicopter inertial character-
istics and the stiffness, damping, and gecmetrical
characteristics of the landing gear system. These
properties may be determined either by ground shake
tests of the helicopter, as suggested in Refer-
ence 1, or by direct calculations. The right-bhand
side of the above equations are the forces acting
on the hub due to the fact that the rotor is
experiencing accelerations in the x- and y-
directions. If the accelerations of the rotor
center of mass are ¥ and ¥, respectively, the
P, and P, are givef by

Px = -Nm.biic
P

y°© -l § o

The equations as written also indicate that in the
absence of the rotor the hub degrees of freedom are

I

(8)

!

(9)

I

uncoupled. This is an approximation, but it is
an assumption made in Reference 1 and one generally
used in belicopter mechanical stability analyses.

If all blades in the rotor are assumed to have

the same mass distribution, the coordinates for the
totael rotor center of mass may be written as

1 %
x = + = X,
c xb. N = 1

c
(10)
1 N
Ye =0y, t = Y
c h § gl i e
where Xj, and yi, are the coordinates of the
individual blade center of mmss, measured with

respect to the hub. If the center of mass of the
ith blade is a radlal distance p, from the lag
hinge

Xj, = ecos ¥ + Pe cos(ﬂri + gi)
(11)
yi, = e sin ¥ +p, sin(‘l@L +t)
Making the observation that, for N> 1
N N
kgl cos \Vk= El sin \b’k=0
the rotor center of mass coordinates become
N
X, = %, = (p/N) iz_:l ty sin ¥,
(12)

<
1

N
e =¥ + (pc/N) El ;i cos *i

These expressions may now be differentiated twice
with respect to time and the forces Py and Py
obtained as

N .. -
P_ -Nm.biih+sb iz:l [(gi- Qegi)sin ¥, + 200, cos *_,L]

N r. .
Py = —Nm'bs;h-sb El %gi- ngi)cos Wi- EQCi sin Vi]
(13)

The hub equations of motion thus became
(mx * Nmb)xh * cxih * kx)ﬁn =

N r.. .
Sy > [(Ci - 92Qi)sin ¥, + 20;1‘ cos 1!1]

=1 (14)

(m, + Mo )y + opfy + ko, =
NT. .
-5, 12_:_1[(51 - Qegi)cos ¥ - 20§i sin *i]

The equations of motion for the system thus con-
sist of (N + 2) coupled second-order differential
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equations with the coupling terms having periodic
coefficients. The periodic coefficients arise
because the blade equations are written in a rotat-
ing reference system whereas the hub equations are
in a fixed system. As is shown in the Appendix,
if all the blades have identical lag springs and
lag dampers, the periodic coefficients may be
eliminated through the use of multiblade coordi-
nates. The effect of these coordinates is to
transform the blade equations from the rotating to
the fixed system of reference. The resulting con-
stant coefficient system of equations 1is the set
normally solved in the classical ground resonance
analysis. As is shown, however, if the blades are
allowed to have different lag springs and dampers,
the periodic coefficients cannot be eliminated in
the usual menner.

An alternative does exist; however, for
eliminating the periodic coefficients even when
the blades are allowed to have differing character-
igtics. The alternative consists of transforming
the hub equations into the rotating system of
reference. In order to eliminate the periodic
coefficients using this approach, the additional
assumption must be made that the hub is isotropic.
That is

This is the approach used in Reference 1 for treat-
ing the two-bladed rotor which 1s another case
where the periodic coefficients in the equations
of motion cannot be eliminated by transforming the
blade equations to the fixed system.

The transformetion from fixed to rotating
coordinates is given by

X

i

xhposﬂt+yh sin Ot
(15)

y

n

Xy sin Ot + ¥y cos Qt

Differentiating these expressions allows the fol-
lowing identities to be established

:}hcosﬂt+3}hsin9t=;'c-9§
-:'r.hsith+$rhcoth=3-.r+Q:'c
Sihcosﬂt+ifhsinﬂt=§-92§-29§
-Sihsinﬂt+ifhcosﬂt=§-92§+2§2§c

The hub equations in the rotating system are then
obtained by appropriate combinations of the xp
and y, equations, Equations (14). The resulting
equations are given below

§+qh):&+(u§—92)3-(-29§-9nh§

N
Z: (C -QQ sin %&t-(.j—l)+20§.j cos %’E(J(-légl

+ ¥+ (a;i - 09)5 + 20% + thi

N[ _
_vi El[(cj-necj)cos %—(J-l)— QQCJ sin %n—(J-l)}

«ae

n

(1)
where the following parameters have been introduced
2
g = 8/(m + tm)
o =k /(m + No) (18)

M = cx/(mx + Nmb)

Introducing the rotating coordinates into the blade
equations, Equations (6), results in

PR 14 o, 2 P P
EJ*“JSJ*\‘DOJ"'QV )gj
= (v /e)[(x - 0% - 993) _____ %F (3 -1)

- (5 - o5 + 2mx) cos 2 (3 - 1) (19)

3= 1,2,...,N

Since modern helicopters do not in general
have isotropic hubs, the above equations can only
be used to approximate the effects of a noniso-
tropic rotor. They are, however, easily solved for
the stability characteristics of the system and
thus they might be used to obtain a first approxi-
mation to the mechanical stability boundary for a
helicopter with one blade damper inoperative.

From the foregoing discussion it can be seen
that if either the rotor or the hub is isotropic,
the mechanical stability characteristics of the
system may be obtained using conventional tech-
niques. If both the rotor and hub are nonisotropic
the equations of motion of the system contain
periodic coefficients and thus the standard eigen-
value techniques cannot be used to determine
whether the system is stable or unstable. It is
the purpose of this paper to demonstrate that
Floquet theory can be used to analyze this general
situation of a nonisotropic rotor coupled with a
nonisotropic hub.

Solution of the Equations

If the periodic coefficients in the equations
of motion are eliminated by assuming either an
isotropic rotor or an isotropic hub, the stablility
of the system can be determined using standard
eigenvalue techniques. The general case of a
nonisotropic rotor coupled with a nonisotropic hub
will be treated using Floguet technﬁques as
described by Peters and Hohenemser,~ and Hohenemser
and Yin.> A brief description of the technique
will be presented here for the sake of completeness.

In state vector rotation the free motions of
the system may be written as

2] = [p(+)1}z2] (20)
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where the state variables for the problem being
considered comsist of

Cl.v §2, ey §N; X yh’ ély 62: sesy én: ih’ )"h

and the equations which describe the motions of the
system are Equations (6) and (14). The matrix
[D(t)] 41s periodic with period T and for the
mechanical stability problem T = 2x/0.

Floquet's theorem states that the solution to
the above system of equations has the form
la] = [a(e)) e M) (21)
where [A(t)] is the characteristic matrix and is
also periodic with period T. The columm of
tial conditions ;z(o)} is used in determining
C!-} as
o] = [a(0)17 (o) (22)
The matrix [A(0)], the modal damping A, and the
modal frequency w are determined fram the Floquet

Transition Mstrix [Q] which is defined by the
equation

= [e1{z(0)} (23)

for all sets of initial conditions l2(0)}. 1t 1s
shown in References 4 and 5 that the eigenvalues
AJ of the matrix [Q] can be used to determine Ay
and wy since

a(m)}

(Agticg)T (24)

and the modal matrix of [Q] is just [A(O)]. The
characteristic matrix [A(t)] is tben shown to be
glven by

[A(0)] = [KRIA@I [ (o5

where the state transition matrix [@(t)] is defined
by

Adae

la(e)} = [4(¢)112(0)] (26)

The characteristic multipliers A, of the
system are uniquely defined since the matrix [Q]
is real; however, anly the real parts of the
characteristic exponents p 3 = )\J + iu)J are
defined uniquely since

1

Py=3 (lnIAJI +1 arg Ay) (27)
The imaginary part can only be determined within an
integer multiple of 2:\:/'1‘. This indeterminacy of the
Wy causes no particular difficulty if one is only
interested in the stability of the system. However,
if one is interested in understanding the mechanism
involved in any instability which might be found,
this indeterminacy can be quite troublesome.

The Floquet Transition Matrix which is the
basic element needed in the stability analysis is
easily determined by a numerical integration of
the equations of motion over one period T. If
one desires to compute the characteristic functions
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[A(t)] the matrix [¢(t)] is saved at eamch time
point in the numerical integration to obtain [q].
For the calculations of this paper, the fourth
order Runge-Kutta method with Gill coefficient56
was used for the numerical integration.

A coment is in order concerning the charac-
teristic functions [A(t)]. The matrix [A(t)] is
a complex valued matrix and is determined at as
many time points as desired. The computation of
these functions can be relatively expensive and
intepretation can be difficult. The interpreta-
tion is made easier by the procedure ocutlined in
Reference 5 for converting the complex functims
into real functions which may be plotted as func-
tioms of time. The scheme used is essentlally the
same as that used when it is desired to plot as a
function of time the modes of a system having con-
stant coefficients. That is, for a conjugate pair
of characteristic exponents

Py = Ayt do
Py = Ay - oy

the characteristic functims are also conjugate
pairs. Thus the real modal function colummn for
this conjugate pair of characteristic exponents
will be given by

}Zj(t)g = %Aj(t)'se()\.f”im;’)t - zzd(t){e(xd-imj)t
(28)

lirhere I‘A (t)‘ is the jth colum of [A(t)] and
is the compla conjugate of this columm.

purpose in performing these manipulations is
to be able to plot the modal Punctioms to deter-
mine the relative megnitudes and phases of the
various degreee of freedom in each mode. A discus-
sion of this technique as it applies to constant
coefficient systems is given by Meirovitch.! In
this paper the exp(Ast) is omitted from the above
equation since it is simply a constant which multi-
plies each component of the mode and causes each
component to damp at the same rate. Thus the
plots of the characteristic functions which are
presented later in the paper will appear to be
neutrally damped.

In making the calculations for this peper it
was found that the output from the calculation of
the modal functions became so voluminous and these
calculations became s0 expensive that the modal
functions were only computed for selected points.
Generally a sweep of rotor speed was made and the
results examined. If an unstable region was indi-
cated the rotor speed corresponding to the maximum
positive )‘j was rerun and the modal functions
calculated.

Discussion of Results

In order to demonstrate the application of
the above-mentioned techniques and to obtain a
general understanding of the effect of one blade
damper inoperative on mechanical stability, a set
of parameters were chosen. The parameters in the



mechanical stability analysis were chosen so as to
be in the general range of interest for a single
rotor helicopter and were such that the system was
stable with all dampers functioning up to a rotor
speed of 400 rpm. The parameter values chosen for
the calculations are shown in Table 1.

The parameters presented in Table 1 correspond
to an isotropic rotor and a nonisotropic hub. In
the following discussion results are presented for
the case of an isotropic hub coupled with a non-
isotrople rotor and a nonisotropic hub coupled
with an isotropic rotor as well as the case of
interest which involves a nonisotropic hub coupled
with a nonisotrpic rotor. When an isotropic hub
is mentioned, this means that the hub parameters
in both the x- and y-directions were assigned the
values shown in Table 1 for the x-direction. An
isotroplc rolor ilwmplies Lhat all dampers are
operational and a nonisotropic rotor is meant to
indicate that the lag dsmper has been removed from
blade number 1. The analysis has been formulated
in such a way that any number of blade lag dampers
or lag springs may be removed to make the rotor
nonisotropic. The results presented here, how-
ever, only involve the removal of the lag demper
from one blade.

The case of an isotrcpic hub was first run in
an effort to become familiar with the nonisotropic
rotor results before proceeding with the more
complicated Floquet analysis. The 1sotropic hub
permits the equations to be transformed into the
rotating reference frame and results in a system
of equations with constant coefficients, Equa-
tions (16), (17), and (19), even with a noniso-
tropic rotor.

Figure 2 shows the results of the calculations
for the isotropic hub with all blade dampers work-
ing. Note that since the equations were solved in
the rotating system, the frequencies in the lower
portion of Figure 2 are plotted in the rotating
system. The numbers attached to the different
modes in Figure 2 and in subsequent similar figures
have no significance other than to provide a label
for the various modes. In Figure 2 the dashed
lines represent the uncoupled hub modes. The
uncoupled rotor modes follow along the curves
labeled 1,2 which also represent, in the terminol-
ogy of Reference 5, the rotor collective modes.
Note that the uncoupled blade frequencies are zero
for rotor speeds less than about 65 rpm. This is
due to the fact that the blades are critically
damped for these low rotor speeds. At the higher
rotor speeds modes 3 and 4 are essentially rotor
modes and modes 5 and 6 are essentially hub modes.
At the lower speeds, however, due to the coupling
between rotor and hub, mode U4 changes to a hubd
mode and mode 5 changes to a blade mode. Note
from the damping plot that all the modes indicate
stability over the entire rotor speed range.

The results for one blade damper inoperative
and an isotropic hub are plotted in Figure 3.
Note that the removal of a blade damper has caused
the appearance of a mode which was not present in
Figure 2, namely the mode labeled 3 in Figure 3,
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and that this mode exhibits a mild instability
between 160 and 200 rpm. At rotor speeds below
about 100 rpm this mode bhas a frequency which cor-
responds to the uncoupled frequency of the blade
which has no damper. At rotor speeds above 100 rpm
this mode begins to deviate in frequency from the
uncoupled frequency. Another interesting point is
that mode 1 in Figure 3 is precisely the same as
the collective modes of Figure 2, and in Figure 3
there 1s only one such mode. Thus it appears that
the unstable mode in Figure 3 has evolved from one
of the two collective modes shown in Figure 2
because of the removal of one of the blade dampers.

A time history calculation was made for the
point of maximum instability in Figure 3 which
occurs at approximately 175 rpm. The results of
the time history calculation are shown in Figure 4.
These results were obtained using the same inte-
gration scheme as that used for generating the
Floquet Transition Matrix. The top portion of the
figure represents the individual blade lag motions
whereas the lower portion represents the hub
response in the x- and y-directions. Note from
the figure that each of the degrees of freedom was
given an initial displacement but the initial
velocities were zero. The equations were inte-
grated for 17 rotor revolutions. The figure indi-
cates the blades which have lag dampers are well
damped, but the blade on which the damper is
inoperative experiences large lag excursions.
Also, the hub motions, although not large, do not
appear to have a high degree of damping. From the
time history one would conclude that the system is
stable since the motions of the variocus degrees of
freedom do not appear to be increasing in ampli-
tude with increasing time. The eigenvalue analysis
has shown, however, that an instability exists.
The problem with the time history calculations is,
of course, that the equations of motion have not
been integrated over a sufficiently long time
period for the initial conditions chosen. Herein
lies the difficulty with using the time history
approach for calculating the stability character-
istics of systems. One can never be sure if a
sufficiently long integration period has been
used, and the choice of initial conditions which
will minimize the integration time required is a
trial and error process. It has been observed on
an analog computer that for the ground resonance
problem the choice of initial conditions has a
strong bearing on the conclusion inferred from the
time history traces. The time history integration
is also much more time consuming on the digital
computer than the eigenvalue analysis. The time
to generate Figure 4 which is for only one rotor
speed was much greater than the time required to
generate the eigenvalue results for all of Fig-
ure 3. It is thus concluded that whenever it is
at all possible the eigenvalue approach to sta-
bility calculation is to be desired over the time
history approach.

Having examined the case of one blade damper
inoperative an an isotropic hub, the next logical
step is to examine the more realistic situation of
a nonisotropic hub. Before examining the one
demper inoperative situation it was first desired




to confirm that the system was stable with all
dampers working. The modal damping and freguency
of the various modes with all dampers working and
a nonisotropic hub are shown in Figure 5. As can
be seen from the damping plot, all the modes are
stable. In this case the equations of motion are
solved in the fixed frame of reference and hence
the frequencies are plotted in this frame. The
dashed lines on the frequency plot represent the
uncoupled system: the horizontal dashed lines
being the hub modes and the slanted dashed lines
being the rotor modes. Note that because the rotor
modes become critically damped at low rotor speeds
the two uncoupled rotor frequencies came together
before reaching the origin. The uncoupled rotor
lines also represent the collective modes for the
rotor. These modes are completely uncoupled from
the other modes and hence are not included in the
eigenvalue analysis of the nonisotropic hub
coupled with an isotropic rotor. The damping for
the collective modes is exactly the same as that
shown for modes 1,2 in Figure 2.

The validity of the Floquet analysis was
verified by comparing results from this analysis
with results from both the rotating system analysis
(1sotropic hub) and from the fixed system analysis
(isotropic rotor). In each case the results fram
the Flogquet analysis were identical to results
from the other analyses.

Having thus established the validity of the
Floquet analysis, results were obtained for the
nonisotropic hub and cne blade damper inocperative.
These results are shown in Figure 6. Note that
these results are very much similar to those shown
in Figure 5 except tbhat, as was the case with the
isotropic hub and ope blade damper inoperative,
there are additional modes introduced. Also indi-
cated is a relatively strong instability between
210 and 305 rpm. The frequencies of the addi-
tional modes which are introduced correspond, at
low rotor speeds, to the frequencies of the
uncoupled blade which has no demper. In the rotor
speed range vwhere the instability occurs, however,
the frequency deviates from the uncoupled value as
indicated by the mode labeled 3. In this range
and at higher rotor speeds the mode labeled 5 is
nearer the uncoupled blade frequency. It thus
appears that for this case the instability is more
a coupled rotor hub mode than a pure blade mode as
was indicated for the isotropic hub.

This conjecture is further strengthened by an
examination of the modal functions. The modal
functions for a rotor speed of 255 rpm, which is
the point of maximum instability, are shown in
Figure 7. The functions are plotted over a time
period corresponding to ome rotor revolution. Note
from this figure that blade 1, the blade without a
damper, has a significantly higher comtribution to
the mode than the other blades. Also from the
plot of hub response it can be seen that the par-
ticipation of the lateral hub degree of freedom,
which has the higher of the uncoupled hub fre-
quencies shown on Figure 6, is considerable. It
is thus concluded from Figures 5 and 6 that the

one damper inoperative situation can lead to a
classical mechanical instability.

Time history traces for this same condition
are shown in Figure 8. These traces show the same
general trends as observed in the case of the
isotropic hub, that is, a large response of the
blade having no damper and moderante responses from
the other blades and the hub degrees of freedom.
Agrin the time history traces are inconclusive
regarding the stability of the system.

One of the methods used in the past for
treating the one blade damper inoperative case
involves a smearing of the total blade damping.
The reasoning for this approach is as follows.

If the rotor has N blades then the total damping
available in the rotor is Ney where ci 1s the
danping on one blade. If ane damper is removed,
the total damping becomes (N - 1)cy. Thus, using
this approach, each blade in the rotor would be
treated as if it had a lag damper equal to

ci(N - l)/N.

After an examination of the preceding one
damper Inoperative results it would be expected
that this approach would lead to unconservative
results. This is due to the fact that the insta~
bilities encountered in the previous results
involved large motions of the blade which had no
damper. The smearing technique results in damp-
ing, which is not greatly different fram the
original value, being applied to each blade and
thus the true situation is not adequately modeled.

To illustrate this method, the nonisotropic
hud case was analyzed using the smearing approach.
The results from these calculations are shown in
Figure 9. Note that although mode 3 becomes
lightly demped the system remains stable through-
out the rotor speed range considered. The fact
that mode 3 approaches instability is attributable
to the fact that this mode was not heavily damped
in the original calculations. A run of the iso-
tropic bhub case, where all the modes were origi-
nally well damped, indicated that the smearing
technique resulted in well damped modes for ame
blade damper removed. The smearing technique is
thus not recommended for treating the one blade
damper inoperative situation since it leads to
unconservative results.

Since one way for eliminating the classical
mechanieal instability is to increase the blade
damping, it was decided to attempt this approach
on the instability indieated in Figure 6. The
approach was to leave the damping identically zero
on one blade and increase the damping on the
remaining three blades. The results of this series
of calculations are shown in Figure 10 where the
region of instability is presented as a function
of blade lag damping and rotor speed. As can be
seen from the figure, increasing the blade damping
on three of the blades has very little effect on
the stability boundaries when one blade has zero
damping. This result was somewhat expected since
from the previous calculations it was observed
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that the blade with zero demping responds more or
less independently of the other blades in the
rotor.

During the increased damping calculations no
attempt was made to determine whether or not the
nature of the instability had changed. That is,
whether the instability had changed from one
involving both blade and hub motion to one con-
sisting of primarily blade motion with only small
amounts of hub motion. Further delving into pos-
sible corrective actions for the instability which
occurs with one blade damper inoperative was
beyond the scope of this paper and thus more
research is needed to determine how the instability
may be eliminated.

Conclusions

There are several conclusions which may be

ferred from the preceding results. First of all,

in
the fact that a helicopter is free from mechanical
instability with all blade dampers working does

not guarantee that it will be free of instabilities
with one blade damper inoperative. The instability
encountered with one blade damper inoperative may
be a blade mode instability or it may be the
classical mechanical instability.

The Floquet Transition Matrix method can be
used effectively in examining the mechanical sta~-
bility characteristics of helicopters with one
blade damper incperative. When both the hub and
rotor are considered to be nonisotropic, the equa-
tions of motion contain periodic coefficients and
the Floquet approach provides an efficient means
for dealing with this situation. Since the
Floguet approach yields the stability character-
istics directly, it furnishes a more desirable
approach to stability problems than time history
calculations.

Time history calculations can lead to erron-
eous conclusions relative to the determination of
system stability. The erroneous conclusions stem
primarily from the fact that the time history
calculations require considerable computer time
and the tendency is to integrate over as short a
time period as possible. Thus, if the initial
conditions are not chosen properly, the time
history traces may still contain transients when
the integration is terminated. The time history
approach to stability problems is thus recommended
only when no other recourse is available, and then
several different combinations of initial condi-
tions and integration periods should be examined
before making a conclusion regarding stability.

The smearing approach which has been used in
the past for treating the one blade damper inop-
erative situation leads to unconservative results.
Therefore, this method is cmsidered to be an
unacceptable means for determining stability under
these conditions.

154

References

1. Coleman, R. P., and Feingold, A. M., THEORY
OF SELF-EXCITED MECHANICAI, OSCILIATIONS OF
HELICOPTER ROTORS WITH HINGED BIADES, NACA
Report 1351, 1958.

2. Donham, R. E., Cardinale, S. V., and Sachs,
I. B., GROUND AND AIR RESONANCE CHARACTERISTICS
OF A SOFT IN-PIANE RIGID-ROTOR SYSTEM, Journal
of the American Helicopter Society, Vol. 14,
No. L+, October 1969, Pp. 35—+l.

3, Lytwyn, R. T., Miaso, W., and Woitsch, W.,
ATRBORNE AND GROUND RESONANCE OF HINGELESS
ROTORS, Journal of the American Helicopter
Society, Vol. 16, No. 2, April 1971, Pp. 2-9.

k. Peters, D. A., and Hohenemser, XK. H., APPLICA-
TION OF THE FLOQUET TRANSITION MATRIX TO

PROBLEMS OF LIFTING ROTOR STABILITY, Journal

of the American Helicopter Society, Vol. 13,
No. 2, April 1971, pp. 25-33.

5. Hohenemser, K. H., and Yin, ‘S. K., SOME
APPLICATIONS OF THE METHOD OF MULTIBLADE
COORDINATES, Journal of the American Helicopter
Society, Vol. 17, No. 3, July 1972, pp. 3-12.

6. Carnahan, B., Luther, H. A., and Wilkes, J. O.,
Applied Mumerical Methods, John Wiley & Sons,
Inc., New York, 1969.

7. Meiroviteh, L., Analytical Methods in Vibra-
tions, The Macmillan Company, New York, 1967,
P. L11.

Appendix

If the rotor is considered to be isotropie
the periodic coefficients appearing in the equa-
tions of motion can be eliminated through the use
of multiblade coordinates similar to those
described in Reference 1. These coordinates
essentially transform the blade degrees of freedom
into a fixed reference frame. The transformations
are given by

M=

£y = €, sin ¥
1 & 01 i
g = 2, b, cos ¥
ImT st i

Differentiating these expressions leads to
the establishment of the following identities

N . )
1§1 £y sin ¥y = &5 - Bqg
% . .
t, cos ¥, = E . + QF
P 1 = bt %y (a2)




N

.. .. 2 -
igl’;i sin ¥y = £y - @&y - 2085y
N .. - 5 .
iz_:l ;i cos Wi = §II - Q §n+20§I

It can be seen from these identities that the
transformation is made by multiplying the blade
equations, Equations (6), by either &in ¥; or
cos *1 and adding the equations. Crucial to this
zgeration is the ability to remove the 73 and
e from the summations. This can anly be done
if ail the blades have idemtical lag springs
lag dampers, If cne or more of the blades haye
differing characteristics, the y; and/or aé
cannot be factored fram the summetion and hence
the identities above cannot be applied. Thus, if
one or more of the blades are permitted to bave
different lag springs or lag dampers, the periodic
coefficients cannot be eliminated using the pro-
cedure described in this Appendix.

and

If Equations (6) are first multiplied by
cos ¥3 and summed and then multiplied by sin ¥y
and summed, the following equations are obtained
after introduction of the identities (A2)

.-

s > 2, 2 .
81 * n4byp - [9 (1 -v0) - “’011511 + 208,

N
+ ok = (v:‘:/e)[ih 1):71 sin ¥, cos ¥y

5 o v
- ¥ cos“ ¥
b i=1 i

(a3)

2 2 2 >

Ep + ny8p - [n (1-v)) - “’01] & - 2067y
2 il 2
-t = (v/e)%, X sint ¥y
i=1
>
- ¥ sin ¥, cos ¥
h e i i

Making the following observations that for N > 2

N

.2 sin *i cos *i =0
i=]

X 2 3 2
E cos ¥, = 2 sin *i K/2
i=1 s |
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the equations became

- : 2 2, _ 2 :
fot bt "[ﬂ (1 -vg) - “’oi]gn + 20ty
2)n e
+0q. k. = -(Wv/2e)¥
151 o 22y (%)
- : 2 2y 2 :
r tnyfp - [9 (@ -vo) - woi]gI - 20%qy

- by = (N"i/ze)ih

Thege twn equations describe the rotor motions in
the fixed frame of reference. In terms of the
variables described by Equations (Al) the hub
equations, Equations (14}, become

(mx + Nm'b).xh + cx%l + kxxh = stI
o . (@)
(my + Nmb)yh + cyyh + kyyh = -stII

The stability of the rotor-hub system can now
be determined using Equations (Ak) and (A5) which
have constant coefficients. This set of equations
or a set similar to it is the one normally used in
helicopter mechanical stability analyses.

As a final observation
blade equations, Equations (
the following equation

note that if the
6), are simply summed,

Bt ngf (e + e =0 (a6)
is obtained, where
N
EO = i§l gi (A7)

This equation represents the rotor collective mode
and it may be observed that this equation is com-
pletely decoupled fram the hub degrees of freedom.
Hence, the collective mode cannot influence the
stability of the system and it is therefore not
normally included in the mechanical stability
analysis.



TABLE 1. PARAMETERS USED IN THE SAMPLE CALCULATIONS

Number of blades L

Blade mass, m, 6.5 slugs (9%.9 kg)

Blade mass moment, S 65.0 siug-ft (289.1 kg-m)

Blade mass mament of inertia, I, 800.0 slug—f‘t:2 (108%.7 kg-me)

Lag hinge offset, e 1.0 £t (0.3048 m)

Lag spring, k, 0.0 ft-1b/rad (0.0 m-N/rad)

Lag damper, ¢ 3000.0 ft-lb-sec/rad (4067.5 m-N-s/rad)

Hub mass, o, 550.0 slugs (8026.6 kg)

Hub mass, m, 225.0 slugs (3283.6 kg)

Hub spring, k_ 85000.0 1b/ft (1240481.8 N/m)

Hub spring, ky 85000.0 1b/ft (1240481.8 N/m)

Hub damper, c_ 3500.0 lb-sec/ft (51078.7 N-s/m)

Hub damper, ey 1750.0 lb-sec/ft (25539.3 N-s/m)
v 1-
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Figure 1. Mathematical representation of the rotor FR%%DE?“LCY
and hub. radisec '12
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Figure 2. Modal damping and frequencies for iso-

tropic hub, all blade dampers working. Fre-
quencies plotted in the rotating system.
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Figure 3. Modal damping and frequencies for iso-
tropic hub, one blade damper inoperative. Fre-
quencies plotted in the rotating system.
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Figure 4. Time history calculations for isotropic
hub, one blade damper inoperative, 0 = 175 xrpm.
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Figure 6. Modal demping and frequencies for non-
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Figure 7. Modal functions for nonisotropic hub,
one blade damper inoperative, £ = 255 rpm.
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Figure 8. Time history calculations for noniso-
tropic hub, one blade damper inoperative,
Q = 255 rpm.
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Figure 9 Modal damping and frequencies obtained

for nonisotropic hub, one blade demper inopera-
tive, using the smearing technique.
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Figure 10. Instability reglon as a function of

blade lag damping for the nonisotropic hub and
one blade damper inoperative.
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