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NOTATION
XEA means that x is a member of the set A.
A =B means that A implies B.

{xlx has property A} denotes the set of all x such that x has

property A.
G:A+ B means that the operator (or function) G maps the set A into
the set B.
. dx
otes —_—.
x denote at
Re z denotes the real part of the complex number z.
Im z denotes the imaginary part of =z.
X < ® means that x is finite.

x(t) = a means that .x(t) = a for all t.

Lim x(t) =a , or x(t) *aas t >, means that for all n > O there
toeo is a T such that Ix(t)—a|<r
for all t 2 T.

sup X denotes the supremum (or least upper bound) of the set of
XEA numbers A, i.e. the least number y such that x £ y for all x € A.
inf x denotes the infimum (or greatest lower bound) of the set of
XEA numbers A, i.e. the greatest number z such that x > z for all
X € A.

stp O is the function on the real line defined by
(-a,b) ra, c < 0

stp 0=10, o= 0

(-a,b) I b, o> 0 .

sod O is the function defined by
(-a,b) Sed 0 = (¢ stp O.
(-a,b) (-a,b)

R denotes the set of all real numbers.

Efmn denotes the set of all mxn real matrices.
EJ‘ denotes the set of all n-dimensional real vectors.

A matrix is denoted A, a column~ or row-vector is denoted b.

vii



A scalar is a one-dimensional vector, i.e. a real number.

0  denotes the zero matrix.

I denotes the unit matrix.

L N U

A' denotes the transpose of the matrix A.
tr A denotes the trace of A.

: det A denotes the determinant of A.

n-1

s denotes the set {x € R"|x'x = 1}.

A>B means that the matrix (A-E is positive definite, i.e.
X'(A-B)x > 0 for all x€eR", x # O.

QED denotes the end of a proof.
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CHAPTER 1

SWITCHING VOLTAGE REGULATORS

§1.1 Introduction: Design Objectives

This chapter addresscs itself to the question of stability in DC to
DC convertors. In order to better understand the role of the stakility
question, we shall first review the convertor design task as a whole.

The designer of a DC to DC convertor usually has in mind four primary
design objectives, which are (i) Efficiency (ii) Stability (iii) Regula-
tion (1v) Smoothing. There are secondary considerations such as size,
weight, and cost, but these can be considered for any one design only when
the primary objectives have been met.

In order to meet high efficiency requirements amy conversion process
considered should be inherently lossless, i.e. given ideal components the
process considered would yield a 100% efficient convertor. We shall there-
fore restrict ourselves at first to the study of lossless circuits, and
concentrate our efforts on the theoretical problems involved in meeting
simultaneously the requirements of stability, good regulation, and good
smoothing. Our components available are inductors, capacitors, transfonvers,
and switches (i.e. ideal transistors, thyristors, amd diodes). The only
resistors involved are the load resistance and possibly the source resis-
tance. The intentional introduction of resistors in the conversion process
is disallowed. 1In practice, of course, the non-ideal nature of the com-
ponents used will involve small losses. Our justification for ignoring
these in our initial analyses is that such losses tend to aid in stabiliza-

tion rather than hinder, so that the most difficult design case occurs when

-1-
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these losses vanish. In fact the idea that dlssipation aids in stabiliza-
tion is expressed formally in the Positive Operator Theorem, which we use
in Chapter 1 and which we shall discuss further in Chapter 2.We therefore
phrase our theoretical problem as "Given an input DC voltage source,
jroduce a stable power convertor to deliver power at some other DC voltage
to a possibly time-varying load, using only inductors, capacitors,
transformers, and switches, and meeting some prespecified requirements
on regulation and smoothing."

There are two types of regulation to consider:

(1) "Line regulation": to make the output voltage insensitive
to input voltage variation,

(ii) "Load regulation": to make the output voltage insensitive
to load resistance variation.

As well as being concerned with the steady-state regulating capabilities
of the convertor, the designer may be interested in ensuring that the
convertor also has a good transient response, e.g. a quick recovery from
a temporary short circuit. For a periodically varying load, the output
impedance of the convertor as a function of fregquency may be important.
Since all DC to DC convertors necessarily involve some AC process,
(23], [38), [39)), it follows from the smoothing requirement that in
general a low pass filter must be utilized on the output side of the
convertor. However .a low pass filter has an inherent lag associated
with it, so that by lowering the cut-off fregquency of the output filter
the dasigned may very well degrade the transient response performance.
For a given low pass filter the transient response can be improved by
increasing the closed loop feedback gain, but stability considerations

impcse limits on this gain.
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If the smoothing requiremer: is dropped completely, then the problem
may be easily solvable in the ideal case. For instance, one may have a
pulse-width-modulated system with the design requirement that the integral
of the output voltage over each modulation cycle be constant. Designing
a modulator to meet this requirement is then easy, in principle.

To summarize, we see that the basic theoretical problem confronting
the designer of a DC to DC convertor is that of meeting the three simultan-
eous requirements of stability, regulation, and smoothing, while using
only lossless ccmponents. Further, these three requirements cannot be
considered independently, and in order to obtain an optimum compromise
between the demands of good regulation and good smoothing, a designer must

thoroughly understand the stability problem.

§1.2 A Classification of Convertor Types

The stability question can be tackled only after an extensive
classification of the different types of convertor, since different
mathematical methods will be applicable in each case. The first character-
istic of a convertor is whether its output voltage is to be larger or
smaller than the input voltage, and the second characteristic is whether
or not transformers are involved. In this chapter we consider transformer-
less downconvertors, or switchingvoltage regulators. Even in this class
there are many different analysis situations, depending for example on
whether or not a load is present, whether or not the load is purely
resistive, whether or not the smoothing filter is lossless, whether or
not the voltage source has an internal impedance, whether or not the source
impedance is purely resistive, and whether or not the source voltage is

time-varying.
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§1.3 Switching Voltage Requlators without Source Impedance

Given a fixed DC source voltage E, we wish to obtain a near-constant
voltage of QE with 0 < a < 1. The scheme we consider .- that ..2wn in
Fig. 1.1. The low-pass filter is of the form shown in Fig. 1.2. The
switch represents a suitable interconncction of diodes and “ransistors or
thyristors. The scalar u is the control variable, which takes on the
values 0 or 1 depending on the position of the control switch. A load

resistance may or may not be present at thc output of the low pass filter.

Low-poss
Filter

.

Fig. 1.1

L| Lz Lh
_-_-_---_nﬂY\1———o

Cy C2 Chn R

- e

Fig. 1.2
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The approach we follow here is a state-feedback approach, that is,
we assume knowledge of the capacitor voltages and inductor currents, and
use this to determine the desired position for the switch at any one tine.
We must choose a feedback control law which brings the output voltage V0
as close as possible to the desired value GE, and gives the overall system
good requlatory and smoothing characteristics. The assumption that we
have full knowledge of the state is not unreasonable, since a fully satis-
factory performance will not be obtained without it, and in practice it
should not be too difficult to obtain a good estirate of the state from
measurements (of the capacitor voltages, for instance). The state-feedback
approach is the most reasonable in a situation such as this. To adopt some
other scheme such as pulse-width-modulation is to arbitrarily ‘mpose con-
straints which can only hinder the attempt to obtain an opi‘ m overall
performance.

In steady-stcte operation it is fairly clear that <& switch will be
working in a periodic way, fuch that the average value of voltage on the
output side of the switch is aE. The amount of ripple present at the
filter output will be determined by the frequency of the switch operation,
and by the size and number of filter components. Since the filter is a
low-pars one, a higher switching frequency will yield a smaller output
ripple. However because the particular thyristor or transistor switch
uced will have a finite switching time during which it dissipates some
power, the operating efficiency decreases as the switching frequency
increases. We assume that a lower limit »n the allowable efficiency is
prescribed, and thus that an upper limit on the switching frequency is

obtained. The feedback controller should insure that the switching



frequency does not excecu this allowable limit, Once this limit is pre-
scribed, the ripple will be determined by the number and size of the
filter inductors and capacitors. Because of physical bulk it is impor-
tant to reduce the tctal inductance and ca?acitance involved. For a given
total inductance and tctal capacitance, better high-frequency rejection
for a filter of the type shown in Fig. 1.2 is obtained as the number of
filter components n incrrases. Consider for example the filters shown

in Figs. 1.3 and 1.4, which have tha same total inductance and total

capacitance.

ViT C% cC T TVo

Fig. 1.3

Fig. 1.4
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Fer Fig. 1.3

v, (s)

Hz(s) -;,-;-(-;) = 1 + 41Cs

2

and for Fig. 1.4

vi(s)
Vo(s)

=1 4+ 3LCs2 + chzs4

H4(s) =

So for a sinusoidal input signal of angular frequency W

HaOW 3 - 3pow? + 12c%4
Hy(30) 1 - arcw’
2
w w
= 2 2 where W 2 = i
\ 2 (-] LC '

3

If — >> 1,

H, (jw) 1/ \2

H, (jw) Z(J;) ’
i.e. the higher-order filt:r is much more efficient. Thus we are partic-
ularly interested .u high-order filters. Unfortunately, the stability
question becwmes ircreasingly difficult to analyze as n increases. In the
limit, one might conclufe that a transmission line would gé the best type

of filter to use, but difficulties with the stability analysis and with

the state estimaticn probably rule out this possibility.

§1.4 Second-Order Lossless Regulator

(a) Choice of aFeedback Law

We now consider the first member of the series of regulators

of Figs. 1.1 and 1.2. For the particular control law which we choose



the stability analysis is fairly simple. We devote some time to it, .
however, since it turns out that this is the only member of the series

for which the analysis is simple, yet it illustrates most of the features

of the higher-order regulators. Fig. 1.5 shows the system under consider-

ation. The load resistance R is assumed constant; R = ® denotes the

no-load condition. .

0 3
E —= Source C - Rz Vv,
Volta ™ 1 0
ge Load
Resistance .
-
Fig. 1.5
The governing equations are
LI = uE - V
o
. 1 e a1
CVo =1 (R)Vo (I denotes dt) .
Letting Y, = I/L and Y, ='V'OJE we obtain '
. = u(s_) - (_1_) v
Yoowvel el 2
: . 1 ) _ (1)
Y27\l 17 \xe) Y2 .
i.e. .
- - - po T r~
dy, K Wy Y, b ]
dat
= + u
e I I 0
| dat ) | © - | _YZ i | )

R R
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vhere u, = (—/i%), w = (:—C-) , b= (-EJ—E)

We now introduce time- and amplitude-scaling which allows us to assune

without loss of generality that E = L = C = 1, For, letting T = 0 _t

Wy 0
and z, = B we obtain
i ) " - 1T7 M1 ]
dzl 4] 1l zl i 1
art
= + u
ds, 1 -(:—;) z, 0
L at | | JUL "% L
1.€e.
a
'd-[ig.a_.z.."'.bi.u .

and z_. are called

In what follows we assume that w, =1, i.e., t = 1. z1 2

0

the state variabies and the vector z is called the state vector.

We want to nake u a function of z, (i.e. the ccntrol u e function

of the measured variables z, and zz) so that z_, comes as close as possible

1 2

to its desired value o (where 0 < a < 1). That is, we want

1lim

t + >

zz(t) = 0 ’

for any initial condition (zl(O), 22(0)). We call this global asymptotic

stability about z_ = do. Now if 22 < o one would expect that the switch

should be in the u = 1 position, and if z, > o that the switch should be

in the u = 0 position. This leads us to try the feedback control

1 ., 22 <a

o , z, >a

¥ Ve e T e e e Al L o o I R . L - e 4 P U I e

‘ 1 i . i 1 i
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(We postpone till part (b) a discussion of what happens at z, = 0.)

Using the methods of §1.4 (b), (c), (d), or (e) we can show that this
feedback control does give the desired asymptotic stability about z, =
provided that R has a finite value. When the load is removed (R = =)
asymptotic stability is not obtained. Indeed in §1.9 we give consideration
to the effect of an inevitable small lag in the feedback controller, and

find that in this situation a small lag yields instability about z, = o;

is

in fact an oscillation whose frequency is of the order of

an/LC

obtained. Note that the no-load case is the most difficult to stabilize,
and for this reason we shall henceforth analyze only the no-locad case.
The reason that this initial choice of control law is unsatisfactory

is that it takes no account of the inductor current zl. In conventional

servomechanism theory terms, we need to provide some "rate feedback" as
P

well as "output feedback". If z, is slightly less than a while z, is

large and positive then it should be fairly clear that we want u = 0 rather

L J
than u = 1. Since z1 = 22 when R = ® let us consider the control law

1, z,
u = for some B > 0 .

+ 822 > a

+ B£2<:a

o , z2

In §1.4 (b), (d) and (e) we shall show that this control law gives a
regulator with good stability about z, = o for all values of R. We discuss
implementation of this control in §1.9. The parameter B can be chosen by
the designer to give a good transient response to changes in operating
conditions, such as changes in o, in E, or in R. One value of B cannot
give an optimum response for every condition, so a compromise value will

have to be chosen. An analog computer simulation shows that setting B

between 0.8 and 1.0 gives a reasonable overall performance.
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(b) Stability by Phase Plane Analysis

First we make a change of variable so that the desired stahility

is about 0. Let

‘ X = 221

l X, = 222 - 20

| so that our system is

i
;1 = -x, * 2(u - a)
X, = %) :

the desired equilibr’um point being the origin in the (xl,xz) plane.

Next we introduce the "step" function

stp x={0 , x=0
("a 'b)

v

-

x .
v

o

stp x
(’O,b) b

Fig. 1.6

cmn esa s ene e boEe s memie o ae
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We now let .
1, sz +x,<0

2
u=s{ a , sz +x, = 0

o , sz + x, >0

1. e.
1 'y
u =520 ~ stp (Bx2+x2)
(-2+2a,20)
so that our system is
X, = =X, - stp (8§ +x.)
1 2 (~2+20,20) 2 "2
Xy, = %) .

We assume henceforth that the value of a is known, and abbreviate
stp to stp.

Some remarks are necessary concerning the use which we shall
be making of the stp function. This is a discontinuous function, and a
statement such as

d
b |XI = stp X = sdn X
dx ("lrl)

requires rigorous mathematical treatment in order to make strict sense
for all values of x. However, we shall use the stp function merely for
its notational and conceptual convenience, since it is the limit of

various classes of continuous functions such as sat kx (Fig. 1.7) or

tanh kx (Fig. 1.8) where k is an arbitrarily large positive re¢al number;
such functions are more accurate descripticns of a “real-world" switching
function than stp x is. In order to put our treatise on a firm mathemati-
cal footing we need only replace stp x by sat kx (or some othar suitably

smooth function) each time it is used, and show that the relevant
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sot kx
(-a,b)
b_ a——
X
(~a, x < -:
~-a
sat kx =4 kx, ~LEx g :
("a.b)
b
b, x >~i
\
Fig. 1.7
tanh kx
HF=——=======
-
X
—-————-———.‘ﬂ-t
Fig. 1.8

conclusions still hold true. In fact, many of our results hold true if
stp x is replaced by f(x) where f is any monotone nonlinearity with
f£(0) = 0. (A monotone function £(0) is one for which f(xl) < f(xz)
whenever x. € xz.)

1

Now we continue with the phase-plane analysis of

X+xe -stp(Bi +x) .

.

The trajectories in the (x,x) plane are arcs of circles, rcpresenting

L]
piccowisc-simple-harmonic motion. If x + Bx > O these arcs are centcred

Y
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on {0,-20), and if x + B; < 0 the arcs are centered on (0,2-2a). Fig. 1.9
shows the trajectories obtained when a = %-and 8 = 1. The line x + Bi = 0

is called the switching line, and we need to consider carefully what happens

at this line. We have said that the feedback nonlinearity is in practice
© & continuous function, and one way to determine what happens along the
switching line would be to replace stp 0 by é function like sat ko, with

k very large. However because of the chattering behavior along switching
lines which is observed in practice, it is better to consider the feedback
nonlinearity either as a stp function preceded by a small time delay, or
as a stp function modified to include a small amount of hysteresis. A
small delay in the feedback path will aliays be unavoidable in practice,
representing for instance the switching-time of the power transistor used
as the control switch. In addition, the designer will want to include
either a small fixed delay or a small amount of hysteresis, in order to
limit the switching frequency of the power transistor because of
efficiency considerations, as discussed in §1.1 and §1.3. In this thesis
we adopt the policy that hysteresis is undesirable, and that a predetermined
small fixed delay is used. The disadvantags with the hysteresis method
of frequency limiting is that the switching frequency depends on the load
resistance, and furthermore this dependence is difficult to analyze. By
using the fixed delay method the designer can easily set the switching
frequency to some desired value which will be independent of the load
resistance. However, whether a fixed delay or hysteresis or a combination
of both are employed, the conclusions which we shall reach concerning

behavior along the switching line are essentially the same.
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rig. 1.9

Trajectories of Yex = -sqn(§+x)

A

CETEe e
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(1,0

X+x =0

1,0

Fig. 1.10

Typical path for %+x = =-sgn(x+x)
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We now consider in some detail the behavior of feedback systems
which have a stp function in the feedback path. For a rigorcus treatment
the reader is referred to the work of Filippov [13]. Other useful
references are [ 1] (Chapters 6 and 12), [18] (Chapter 6),and [22].

Consider the feedback system shown in Fig. 1.11, described by
the equations

x(t) = £(x(t), u(t), ¢

u(t) = -stp ¢ x(t)
(-a,b)

Fig. 1.11

where x(t) € ®" and u(t), y(t) are scalars. The switching surface ¢ x = 0
(which is a line when n = 2, a plane when n = 3, etc.) divides the state
space into two regions, in one of which y > 0, u = -b, and in the other

y <0, u= a, We shall use the symbol S to denote the switching surface.
The scalar quantity p = ¢ x is the distance of the point x from S, with
due attention to algebraic sign. The scalar B - E.é.gives the rate at
which the point x on a trajectory is apprcaching S. If we consider an

arbitrary point on S together with values of p and 6 nearby we can

Xy
identify several situations with respect to the possible signs of p and 5.

Fig. 1.12 shows the four main cases of interest (we are not considering
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cases where 5 = Q).

p>0

(o)

pP<0 S %,
(c) M (d) / p<O
4 $>0 N

Fig. 1.12

The figures in Fig. 1.12 show typical trajectories on each side of S. 1In
cases (a) and (d) switching is instantaneous,since trajectories approach
S, cross it, and move away on the other side. In case (b) no trajectories
approach S, thus no .witching occurs; if a sjstem is started in a state
50 on S, the subsequent trajectory could leave S on either side. In case
(c) trajectories on both sides head toward S: no trajectories leave x_,
and the differential equation é_- £(x, u, t) apparently cannot be solved
beyond this point. Such a pnint is culled an "endpoint". To obtain a
solution we can rodefine the stp function in one of two ways: either we
can precede it by a short time delay T, or we can include a smzall amount
of hysteresis. We follow the former approach here, for the reacons given

earlier. Thus, if p changes sign instantancously at time t, from a nega-

1

tive to a positive value, u changes from a to -b at time tl + T. This will

give rise to a zigzag type of trajectory along S, the frequency of the

crossings increasing as T decreases. This chattering behavior is cbserved
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in practice, even though the function labelled stp is actually a continuocus
function with bounded slope at the origin: if this slope at the origin
were small enough the chattering would cease. The system is now describcd
by

x(B) = £(x(1), ult - T, t)
u(t) = - stp ¢ x(t)

We adopt the notation £+ to denote f£(x, -b, u). i.e. _f_+ is £ when ¢ x > O.

similarly f denotes £(x, a, t), i.e. £ i. A wnen

io

X < 0. We obtain first

a condition for a state X, on the switching surface

point. From Fig. 1.12(c) we see that p > 0 implies

€ x =0 to be an ena-
p < 0 in the vicinity
of x , i.e. ¢ £ < 0. Similarly p < 0 implies p > 0, i.e. ¢ £ > O.

Taken together these two conditions are sufficient for %5 to be an endpoint,

4 -
i.e. ¢ £ <Oandcf > 0. Now we determine the rate at which thc state

rhatters along S. Suppose that for ¢ < t. the state lies in the region

1

€ %X <0, and that x(t,) = (where ¢ x, = 0), i.e. the trajectory mects

X
= 5(t1 + T) which is the state when u switches from

S at time tl. Let _)52

a to -b, and let X, = 1(1:1 + At) be the state when the trajectory next

intersects S. In the interval [tl, t. + T} we have u = a, so that

1

X -50+'r£-+0{12] .

=2
Fort>tl+‘rwehaveu=-b, 80O
+ 2
53-12-0- (At - 1) E + O[(At - T)7)
= X, + Ot f + ‘r(_f_' - f) + 0[12] + 0Lt - 7).
Multiplying this from the left by ¢ and remembering that 25_3 = c 50 =0

we obtain
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*

o]

(£ -
At = -1

in
+

ignoring the higher order terms in T and At. Thus

37 X + -+ S-ET
e "L - E-f) ——
clf -£)
cff -cff
=
etg £ :

Now if we were to consider a switching - ransition going in the other
direction we would obtain this same result, even if the switching delay
was different from T: this can be seen easil/ by observing that the
result is unchanged when gf is exchanged with gf and that the result is
independent of T. Thus, letting T + 0 we see that the system trajectory

approaches arbitrarily clogse to the trajectory defined by

That this trajectory remains on ¢ x = O can easily be checked by evaluating
g.é, which is 0. This formula has a simple graphical interpretation. 1In
Fig. 1.13 the vectors AB = Sf and AD = £T are the velocities on each side
of s, at the point A on S. Note that the arrows denoting f+ and f in

Fig. 1.13 are drawn on the opposite side of 5 to those of Fig. 1.12. The
resulting velocity vector is é'- SE where C is the intersection of BD

with S. When the situation of Fig. 1.13 is as in Fig. 1.14 the resulting
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velocity along S will be to the left or to the right according to whether

AG is larger or smaller than AH.

D

Fig. 1.14

If the operator in the forward path of Fig. 1.1l is linear and

time-invariant we have the situation depicted in Fig. 1.15.

"
-
o

Fig. 1.15

ORI | PO ST S SR
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Here
.
2‘_- f(io“yt) -_A__X_*_b_“
y=c¢cx

u=-stp y
(-a,b)

£t -

-b

k4
Ix
1-4

_f-n

>
I

+ab .

The condition for a point x on ¢ x = O to be an endpoint is

CAX-bcb<0 and cAx+ach>0
i.e.,
~acb<cAx<bgb,

and the chattering motion is described by

(cAx+achbl(Ax-bb) -~ (cAx-bch(Ax+ab)

£ (a+big b

(cAxb

cb

i-@—g)Aa :

A plausible but nonrigorous argument suggesting this result is as follows.

-Ax-

jo*
(2]

L=

o
x=0,i.e. cAx-cbstpcx=0,

A trajectoisy on ¢ x = 0 satisfies ¢
chx .
80 Stp ¢ x can be replaced by ——4—- Then the equation x = A x - b stp ¢ x

becomes

. CAx

i A s = e ©



s g %8

LR

bp i s N TR

-23-

i.e.

This will define an asymptotically stable motion along S if and only if the

be
matrix F = (_]; - E—b)-& has n-1 eigenvalues with negative real parts; the
- bc

remaining eigenvalue must be zero since ¢ F = c(I - '[;_5)5 = 0, It is an

interesting and useful fact that the nonzero eigenvalues of F are the zercs

of the numerator polynomial of G(s) = c(I s - a) -lp_, as we now prove:

Theorem 1.1
Let

G(s) = c(Ls-n b

- als)
p(s)
9y P4 qn_zl s"2 +ootgg
s” + Py s Pp-2 P2 44 P,
vhere (A,b,c) is a minimal realization of G(s) and assurme that 9.1 # 0.

-b--c— s-(s)
Let F = ( - —-_-)A. Then det(l s ~ F) = ==L

- sb” -1
Proof
Let
N ™ A
A/={0 1 0 .. 0 1o,=fo0] g= [q, @y.-.q,_,)
0 0 1 ces 0 4]
. l .
-po -pl . se s -pn-l 1

LA AU S

e
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and let
b, ¢
=l =1
Then
=0 1 0 . . . 0 )
(4] 0 1l 0
. 1
o 9 9 ~In-2
| -1 Tp-1 -1 |
so that
s n-1 n-2
Is- L —
det(I s - H) T, (qn—l s + qn_2 s +e0at qo)
= S q(s)
-1

Now (A,b,c) is minimal, and (_A_l,p_l,gl) is also minimal, being the standarad
controllable realization of G(s), ([ 71, section 17), so there exists a

a matrix P such that

A=2aPt ,b=pb ,g=gp

Therefore

c
det(I s - F) =det(_I_s—_§._+——§A

8
o))
1}
o
—
)
n
'
j'o
k-4
[
i
fun
|
$t
L]
o
h SRS

1
[« 1)
1]
(a4
I
O
7]
]
2
o+
jo
[sA
2]
i
>
g
]
-

[ ]
[o 1)
(0]
o

L)
)
I

n

!
z
<)
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= det (Is~H
o 2.4(s) QED.

) -1

Theorem 1.1 also follows from equation (13) of reference (5].

Corollary: The feedback system of Fig. 1.16 is asymptotically stable in

the chattering mode if and only if the numerator polynomial of G(s) =

g};g-gp_l b is strictly Humritz, (i.e. has ~'" its zeros in Re s < 0).

A plausible argument suggesting this corollary is as follows: 1If the stp
function feedback operator of Fig. 1.16 is replaced by the sat kx function
of Fig. 1.7, asymptotic stability in a neighborhood of the origin is cb-
tained if and only if q{(s) + %-p(s) is strictly Hurwitz. Letting k tend
to infinity makes sat kx approach stp x, and the zeros of q(s) + %-p(s)

approach the zeros of q(s), and the result follows.

Now we return to the lossless second order regulator described

by
X + x = -stp (B;+x)
(-2+20,20)
i.e.
x=Ax-bstp cx
(-a,b)
where
A=[o 2alp=[1] e=® 1, x=[x]=[x
1 o0 |, 0], Xy x J,
a-2-2€1, b=2a,
: The switching line S is x, + Bx1 = 0, and x is an endpoint if

-agb<cAx<bgchb

- © e sty e
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which becomes

-B(2-20) < -sz + * < 208

or
-2 + 20 < —(1 + l--) x. < 2a
2 2
8
-x"
since x1 = —E—y i.e.
2 2
-2&( g ) < x2 < (2*20)( g ).
B7+1 B +1
Motion along S is governed by x = F x where
be
Es= (l '1531)31
1l 0 1 B 1l 0 -1
= - -
0 1 8 0 0 1l 0
i.e. 1
B
E= 1

We note that det(Is-F) = E%Bs+1), in accord with the theorem. Thus

chattering occurs along the switching line x, + Bx1 = 0 in the region

2 2
=20, 8 < x, < (2=2a) 8 , with motion in this region being determined
2 2 2
£8°+1 1 87+1
by x = -(E) Xy-

Three conclusions of practical significance arising from these

results are:

(i) That on the switching surface a small value of B
is desirable for quick settling (i.e, a short
transient response), thcugh this is not necessarily
true for the overall transient response,

(ii) The state vector x will not reach the origin in
finite time,



WA ST

Ao

-27-

(iii) The turn—-on and turn-off delays of the switch

need not be equal for the foregoing analysis
to apply.

An examination of the trajectories of Fig. 1.9 shows that indeed
the desired stability about (0,0) is obtained, for any initial condition.
Fig. 1.10 shows a typical path.

We can see why asymptotic stability is not obtained when B = 0

by considering Fig. 1.16, in which we see that the switching line x + Bi = 0

is now the ; axis. The paths form closed trajectories representing sustained

W

Fig. 1.16

oscillations.

b

(c) Stability by Total Gain Linearization

The system we are considering is

X+xXx= - stp(8;+x)
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By taking Laplace transforms we can represent this in the usual feedback

system form of Fig. 1.17. Consider now a feedback system with transfer

function G(s) in the forward path, and nonlinearity £(0) in the feedback

X+ X Bs +1

BX+x

2 +1

stp
=

Fig. 1.17

path, as in Fig. 1.18. Assume that £(0) = 0. We can associate with this

the linear system of Fig. 1.19, with feedback gain k.

G(s)

f (o)

o

Fig. 1.18

e

G(s)

Fig. 1.19

mend

e v T —
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Aizerman's Conjecture ([34], Chapter 7) states that for the system of
Fig. 1.18 we would expect to have glocbal asymptotic stability if the

associated system of Fig. 1.19 is globally asymptotically stable for all

f(0)
(¢]

values of k lying in the range of values taken on by as ¢ varies

- along the real line. This method of investigating the stability of a

feedback system is called the method of total gain linearization. Aizerman's

Conjecture is not true in general, though it appears to be true for the
type of systems considered in this thesis, and it can be shown to be true
for second-order systems ([34) Chapter 7). The nonlinearity stp 0 lies in
the first and third quadrants, with §£g—g-taking on all values between 0
and +#°, The total gain linearization stability conditions are thus fulfilled
if the Nyquist locus of G(s) does not ('ross the negative real axis. This
is so for the system of Fig. 1.17 for which the Nyquist locus is as shown
in Fig. 1.20.

The Circle Criterion is not useful here, pecause the interior
of the disc is the left half plane, and the Nyquist locus enters this
region. The Popov Criterion does prove stability for this second order
system, however we shall not consider its application because it is a
special case of the Positive Operator Theorem method we consider next:
the'Popov Criterion makes use of a first-order multiplier, which is useful

for our purposes only for the second-order regulator.

(d) Stability by the Positive Operator Theorem

We now make use of some concepts from the theory of Positive
(or Dissipative) Operators. The most important result which we use from
this theory is called the Positive Operator Theorem. It is felt that one

of the main contributions of this thesis is in showing the utility of the
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l Re G(jw)

Im Gljw)

Fig. 1.20

Nyquist locus of —-;:-J-:-
8°+1
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ideas associated with this theorem. We devote more attention to positive

operators in Chapter 2. For our purposes here, a positive operator is an

operator with input u(t) and output y(t), where 0 € t < =, for which

fT uy 4t 2 0 for all T 2 0, and for which y(t) = 0 for all t whenever

u?t) = 0 for all t. This last requirement can be written GO = 0. If the
operator is a convolutior operator, and if it can be represented by a
rational transfer function G(s), then it can be shown ([36) Theorem 1,[41]),
[21]) that positivity is equivalent to the requirement that G(s) have no
poles in the right half plane, that any poles on the imaginary axis be
simple with real positive residues, and that Re G(jw) 2 O for all w, i.e.
the Nygquist locus of G(s) must lie entirely in the right half plane. An
equivalent requirement ([ 2], [16]) is that Re G(jw) 2 O and if G(s) = g%g%

then p(s) + g(s) must be strictly Hurwitz, (i.e. all its zeros must lie

in Re 8 < 0). Such functions are called positive real and play an impor-

tant role in electrical network synthesis, since the driving point impedance
of a linear passive network is positive real, and any positive real function
is the driving point impedance of an RLC network.

The Positive Operator Theorem gives a sufficient condition for

input-output stability of the feedback system of Fig. 1.21 in which ul,yl,

uz,yz,vl,v2 are all functions of t for 0 £ t < &,
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The functions vy and v, are the inputs, and can be used to represent driving

functions, driving noise, or initial condition responses. By choosing v
and vy appropriately we can use the Positive Operator Theorem to obtain

conclusions about the behavior of ul,yl,u as t * ®, To do this we

2'¥2

- need a measure of the "size"of a function of time x(t); we use the Lz-norm

{ o 1

[x(e) ]| = (! 2 at)? .
¢

Using this norm we can only handle func:ions x(t) for which I x2 at is

0
finite; the set of all such functions is denoted Lz. There are many func-

tions of interest which are not in Lz, for example the constant functions.
This difficulty is overcome by using truncated functions, that is, func-
tions which are zero after some time T. Now it can be shown that for any
function x(.) € L2 for which Q(t) is bounded or square-integrable (i.e.
[”.2 dt < ) ,we must have Lim x(t) = 0. An operator G is said to be

P
Qgggggg if there exists a :;:1 number M such that %%%f%l
Ar operator G with input u(t) and output y(t) is said to be strictly posi-
tive if f: uy dat > nIT u2 dt for some N> 0, and GO = 0, (Alternatively

0
we can say that G is strictly positive if G - NI is positive for some

< M for all x.

N> 0, I being the identity operator).
We can now state the Positive Operator Theorem ([42), (34)

Chapter 4):

Theorem 1.2

If Gl and G2 are positive with one of them being strictly positive and

bounded, then ul,yl,uz,yz are all in L2 whenever v1 and v, are in Lz, and

there exist positive constants ol and p2 such that
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oy ey 1l ugli g, 1 € oyl 1oyl + 0yl 1wyl

Before applying the theorem we need to consider the requirement
GO = 0 when G is a convolution operator. A convolution operator G(=)}
mapping u into y as depicted in Fig. 1.22 is usually taken to mean the
operator with input u(t) and output y(t), 0 € t < ®», defined by the dif-

ferential equation

p(D) Y(t) = q(D) u(t) vhere T = -:—t
i.e.
Pn Y(n) (t)+pn-ly(n.1k}"0-o+ Po Y(t) = qm u(m) (t) +...+ qo u(t) ’

tocether with a given set of initial conditions

(n-1)

y 0 .., y" M) .

y(0) ,

LI PO s q 8™ egy | yih)
s pls) pns"+----~+p°

Fig. 1.22

If m £ n this means that we can describe G in state space form by
x(t) = A x(t) +b u(t)

y =¢x(t) +dau(t)

I®

x(0) = x,
where x(t) € r", _c_:_(ls-y-l b = G(s), and (A,b,c,d) is assumed to be a

minimal realization. Now the operator G defined thus has the property

GO = 0 if and only if Xy = 0. For, G{u(t)) is given [7] by

e e
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t
y(t) -ce-A-t_o-O-I e 2T win ar ¢ aue

0

thus

u(t) 5 0= y(t) = ¢ e x
-x, =0 if y(¢) =20 since (A,c) is observable
since (A,b,c,d) is minimal.
Further,

dk
-g @ —% = 0

x
-0 at

t=0
for 0 € k € n-1, since (A,c) is observable.
In what follows we shall depict the initial conditions associ-

ated with G explicitly by means of an arrow, as in Fig. 1.23. If no such

L

—l G(s) >

Fig. 1.23

.arrow is shown we shall mean that the initial conditions are unspecified.

Now an operator G(s) with iritial conditions as in Fi ., 1.23

3N
can be represented as an operator with zero initial conditions followed by

the addition of an external signal which is the initial condition response

of G to X, as depicted in Fig. 1.24. We shall make u.e cf this equivalence
in applying the Positive Operator Theorem.
Before applying the Theorem to our regulator problem we shall

. (s+2)
first consider a simple example. Let Gl(s) be (541) (531" and let the
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&g 9.9"“50
+
y
u
G(s) 3
Fig. 1.24

feedback operator G, be sat kx, as in Fig. 1.25., We have Gl(s) = Ef5§'5>-53

|
(s+2)
(s+1)(s+3)

sat kx

where

1] .

>
L}
o
-
jo
L]
O
G
L}
p—
L8 ]

-3 -4 1

’ !

This gives us the equivalent formulation of Fig. 1.26, in which the
initial condition response is considered as an external input. The opera-
tors in Fig. 1.26 now both satisfy GO = 0. Since it is a first- and third-

quadrant function, sat kx is a positive operator, and Gl(s) is also a

2(w2+3)
) {wé+1) (w2+5)
p(s) + q(s) = s + 55 + 5 which is strictly Hurwitz. It is easy to show

positive operator, since Re Gl(jw) = > 0 for all w, and

that G2 is strictly positive and bounded, (the finite slope at the erigin

being necessary for this boundedness). In fact G1 is also bounded,
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lQ

Yy (s+2) Y
- (s +1)(s+3)
y u, *Y 4
2 sat kx |- 2 V= ¢ eé'go
Fig. 1.26

since [Gl(jw)[ is bounded, since Gl(s) has no poles on the

imaginary axis. Now in Fig. 1.26 the initial condition response v, =

[} eﬁt X is in L, because the eigenvalues of A, which are the poles of Gl(s) '
lie strictly in the left half plane. We can now apply the Positive Operator
Theorem as stated above to deduce that the functions ul(t) ’ yl(t) P uz(t) R
yz(t) of Fig. 1.26 all beleng to L2. This implies that they all approach
zero as t + ®, which is the desired asymptotic stability, provided that

we can show that all of their derivatives are bounded or square-integrable.

Now it can be shown for a system of the form

L
x=Ax+bu
y=cx

that if u € L, then vye L,, provided that A is an asymptotically stable
matrix, i.e, all its eigenvalues lie in the half-plane Re s < 0. Thus,

by describing G, in this state space form we see that in Fig. 1.26 §'1 € L,.

1
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Then, since \.r EL .. :1 € Lz. Now for the operator Gz(x) = gsat kx, we

2 e 2

have-d—-G(x(t))- 3—-"—"— thus si e&<°° v €L andsofx EL
at 2 ax at '’ nee i ' Yy B Ly 1 ¢ b

We therefore have the desired asymptotic stability.

Now we consider application of the Positive Operator Theorem
to the feedback system of Fig. 1.27, which represents our second-order
lossless voltage regulator. We have replaced the stp x function with a
sat kx function, k being arbitrarily large, in order to ensure that

-g?(sat kx(t)) is bounded, as just discussed.

Iio
Bs+1
2

- | sc+ 1
sat kx
Fig. 1.27
s+l . . X .
Now Gl(s) = > is not a positive operator, since its Nyquist locus enters
s°+1

the left half plane, as depicted in Fig. 1.20. However, 62 = sat kx is
"very strongly positive", and by introducing two multiplying factors into
the loop we can make use of this fact, so that we end up with two positive
operators. Wow Gl(s) has poles on the imaginary axis, and therefore its
initial condition response will not be an L2 function. To take care of

this fact we can introduce a very small amount of damping, so that Gl(s)

s+l . . ;
becomes Bsti for some arbitrarily small r > 0. This represents a small
5 +trs+l
' -
i
sk e o i . | . B | L N |
-y v v -
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amount of series resistance in the inductor of Fig. 1.5, which is a case
we consider in §1.6.
Let Z(s) be a transfer function, and consider the operator H

with input u(t) and output y(t) defined by Fig. 1.28.

u(t) w(t) { y(t)
— Z(s) b 2(8)
Fig. 1.28
Suppose that n
_pls) _ P, S +...+ pg
Z(s) q(s) =

qmsm +...+qo .
Then since

p(D) u({t) = gq(b) w(t) = p(D) y(t) ,

p(D) [u(t) - y(t)} =0 ,

( (1)

so u(t) = y(t) if and only if u i)(O) =y (0) for 0 £ i { n~1l. Thus H

is the identity operator if and only if the initial conditions of its

second operator Z-l(s) match the initial conditions of the input function.

Bs+l

32+1

fied to the form of Fig. 1.29, where M is a matrix relating the initial

Consider now the system of Fig. 1.27 (where Gl(s) = ) modi-
conditions of z-l(s) to those of Gl(s), as just discussed. We now

modify this to the form of Fig. 1.30, which still represents the same
system, provided that vl(t) and vz(t) are 0 for all 0 £ t <=, and M is
suitably chosen. Now let Gl(s) Z{s) = EfEF'ﬂ)—lE' so that we have the
configuration of Fig. 1.31. The configuration of Fig. 1.3! is of the -

form we want, except for the initial condition in the feedback opera-

E x

tor, which we want to be zero so that the feedback operator satisfies GO = O.
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e lM.’So

G(s) = Zs) [ 2 \(s)

sat kx et
Fig. 1.29
%o
)
o Gl(s)Z(s)
+
sat kx fe— 2! (s) ta—o : Y2

Fig. 1.30

To circumvent this difficulty we assume that the system is started at time
t = -1 with all initial conditions zero, and that in the interval 0 < t < 1
the inputs vl(t) and vz(t) drive the system to the state shown in Fig. 1.30
at time t = 0. We let v and v, be 0 for 0 £ t < ®, Now the desired

stability follows from the Positive Operator Theorem as outlined above,

prnvided that we can show that the forward and feedback operators of




C sl

iR R v

-40-

o

- G1(s) Z(s)

+
sat kx fe—z"!(s) v,+gedlx
+
s,
Fig. 1.31

Fig. 1.31 are positive, with one of them being strictly positive and

bounded. We take Z(s) = Ys+l where Yy =-%, so that we have

Gl(s) Z(s) = (Bs+1) (ys+1)

52+l

w1+ BBy =1,
2
s +1

i.e. Re G (Jw) Z(3u) = 1> 0 for all w; and p(s) + q(s) = 25 + (B4y)s + 2
which is strictly Hurwitz; thus Gl(s) Z(s) is a positive real function.

We now show that tﬁe operator of Fig. 1.32 is also positive, where f(0) is
any first- and third-quadrant nonlinearity with bounded slope at the origin,
Y >0, and w(0) = 0.

Let

x
[ f(0) a0 = F(x) , 2 0 for all x.
0

i
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w f y = f(w)

Usw+yw {
> T35s — 'é —

Now

Fig. 1.32
F(x)
X
Fig. 1.33
T T
] uy 4t = I (wyw) £(w) dt
0 4]
JT T ©aw
= | w f(w) dt + YJ f(w) 57 dt
0 0 dt
T w(T)
= I w f(w) 4t + YJ £(w) dw
0 0

T
= f w £{w) 4t + YF(W(T)) - YF(W(0))

since we assume w(0) = 0. Thus the operator of Fig. 1.32 is indeed

positive.

We make two comments here about the multiplier (l+ys), Y = éu

Firstly, it is easy to show that in this case this is the only such multi-

. ‘eas s gs : . . s+
plier (to within a multiplicative constant) which will make 82 1
8 +1
& 1 - 4 - q. EST T ]
1
A e et v L u el Ao i

become

- 1 u---m-.‘.‘,.T e ey

R e
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positive real. Secondly, we could have predicted that such a multiplier
exists by making use of a theorem of Brockett and J. L. Willems ([ 6],
Theorem 2), which says that the feedback system of Fig. 1.19 is asymptot-
ically stable for any feedback gain k satisfying 0 < k < k*, if and only
if there exists a positive real function Z(s) such that Z(s)[G(s) + l;J
is positive real. g

In §1.5 (d) we summarize the application of the Positive Oper-

ator Theorem to a stability analysis of this kind.

(e) Stability by Lyapunov's Method

Now we show that the lossless second-order regulator is stable
by means of the method of Lyapunov. First, we give some definitions and
use them to state the Lyapunov theorem we wish to apply. Then, we make
use of Dissipative System concepts, as described in Chapter 2, to obtain
a Lyapunov function for the second-order regulator. Although we have
already established that the regulator is stable using the Positive Oper-
ator Theorem, the use of Lyapunov's Method is important here, because of
its extension to the resistive-source-impedance case, §51.7. A useful
reference on Lyapunov Theory is [37].

Consider the system of equations

; £00,8) = 0; x(t) e R.

x(t) = £(x(£),8); 0§t <o x(0) = Xy

A real-valued function V(x,t) is called a Lyapunov function for this

system if
(1) V(x,t) has first partial derivatives with respect
to x and t which are also continuous with respect
to x and t, and
(ii) V(x,t) is bounded if ||§J| is beunded, and
‘ ) i
R T R G 1 i o~ i i ' i
o R S Y ST SRST SR
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(iii) b(z,t), the time rate of change of V as given by

. n
Vix,t) =(Z -g-}:—- fi) « X
=1 %%

satisfies
Vix,t) € W(x) O
for all x, and some continuous function W(x).

V(x,t) is called positive definite if V(0,t) = 0 and if thecre exists a

continuous increasing scalar-valued function of a scalar argument Vl(U).

such that vl(O) = 0 and

vix,t) 2 v (| ]zl

V(x,t) is called radially unbounded if Vl(c, approaches infinity as o

approaches infinity. V(x,t) is called decrescent if there exists a
second scalar function of a scalar argument V2(0) which i1s continuous

and nondecreasing, such that V2(0) = 0 and
viz.t) < vo(llxlD .

We then have the following Lyapunov Theorem:

Theorem 1.3
If V(x,t) = V(x,t+T) is a Lyapunov function for the periodic or time-

invariant system of equations
x(t) = £(x,t) = £(x,t+T)

x(8) eRY 0 €t <o x(0) = x; £(0,t) =0,

and if V(x,t) is positive definite, decrescent, and radially unbounded,
then the system is globally asymptotically stable about x = 0, provided

*»
V(x,t) is not identically zero along any nonzero solution.
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For a proof of this theorem the reader is referred to the work of LaSalle
(171, and also to [37].

We now show that the second-order regulator is stable using
concepts from the theory of Dissipative Systems, which is closely allied
with the theory of Positive Operators, as discussed in Chapter 2.

Let G be an operator (or system) with input u(t) and output
y(t), 0 £ t < », defined by the equations

x(t) = fix,u)
Y = g(x)
x(0) = x,

The vector x(t) is called the state vector for G. Let W(u,y) be a real-

valued function of u and y. Then G is said to be dissipative with respect

to the supply-rate w(u,y) if there exists a nonnegative function V(x) with

V(0) = 0 such that

V-wgo.

V is called the storage function for G. In this thesis the only supply

rate w which we consider is the product uy, so that when we refer to an
operator as dissipative we have this supply rate in mind. In Chapter 2
we shall show that an operator is dissipative if and only if it is a
positive operator.

Consider for instance a one-port RLC electrical network with
input current u(t) and voltage y(t), as in Fig. 1.34. The operator G

mapping u(t) into y(t) represents the impedance of the netwnrk; expressed

as a transfer function G(s) it is a positive real function. The requirement

iy S—yE Ty
1

1
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u(t)
o et—
y(h} RLC
network
Fig. 1.34
T
for G to be a positive operator, i.e., f uy dt 2 0, says that the net
0

* e

energy absorbed by the network is u% all times positive, the concurren<

requirement being that G maps zero into zero, i.e. that nu initial energy

is stored in the network. If G is viewed as a dissipative operator the

storage function V is the energy stored in the network, and the suprly

rate w = uy is the rate at which energy is supplied. The requirement

G - uy £ 0 says that the rate of increase of stored energy is not greater

than the rate of supply, (because of dissipation within the networ)). This

requirement is independent of the initial conditions within the network.
Now cons_der the feedback connection of Fig. 1.21 with

v1 H vy Z 0. Let Glbe a dissipative operator with state vector X and

storage function Vl(gl), and let. G, be dissipative with x, and V,(x,).

Then

V1 - ulyl £60

v <

Va mup¥p $0 -
But vy = -y2 and u2 = yl, so if we let V(gi,ge) = Vl(zi) + vz(ga) we
obtain

V=V1+V2

=V TtV T uy,
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¥ SRRV

Thus, a Positive Operator Theorem proof of stability provides us with a

Lyapunov function for use with the Lyapunov Theorem, provided that the
positive operators can be described in dissipative operator form.
Fig. 1.35 repvesents the second-order regulator, with f = 1

for notational convenience.

u s+i z
enc— ) >
sc+1
stp
Fig. 1.35

A state-space description of this system is

( i =0 -170[x 7+ 1 | u

L 2 .
k u = -s5tp 2
i.e.
x=hx+bu
z2=gx
u = -f(z)
where
gasn e -
i s8°+1
|
g
z
%7 ‘ ) '
|
T S———— I SO - d d 4 ok o
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Fig. 1.36 depicts the same system with multiplier (1+s) included in the
forward path and (1+s)"1 included in the feedback path. As we saw in
§1.4 (d), introducing these factors has no effect provided that the
initial conditions of (;%i) are correctly chosen. This means that there

is a linear relationship between the initial conditions of the operator

1 28
(s*l) and those of (1 + -?r—).

s +1
u |+ %s y
A s+
stp @z 1 g :
s+ }+2
Fig. 1.36

A state-space description of the system of Fig. 1.36 is a non-minimal

realization of the system of Fig. 1.35. We have

[il}-[o -1 ’x1“+[1]u
X, 1 0]_x2J 0

z = -z + y with z(0) = xl(o) + x2(0)

u = =§tp z
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2= =z +y
\ u-= -£(2)

vhere

cIs-a) lp+am14 is .

8 +1

Note that

z(t) = xl(t) + xz(t) '
since

‘z4+zm y= 2x1 +us= (§1+§2) + (xl+x2) .

28

32+l

From Chapter 2 we know that a storage function Vl(x) for (1 + ) is

%i K x where K = X' satisfies the matrix equation

-1

KA+AK+ (Kb-cV(2) "hh'k-¢g =0 .

In this case this equation has a uniyue solution K = 2I, so that the storage
28 . ' 2
—_] is Vl(g_c_) =x'x=x, <+ Xy o In Chapter 2 we show

2
s2+1 1
that the unique storage function for the feedback operator of Fig. 1.37 is

function for (1 +

sod z = z stp z.

i+2 { 2 ' stpz
S+ ! SI1P —

Fig. 1.37

Since z = Xy + Xy we Lave Vz(l) = Sod(xl+x2). Thus a Lyapunov function

for the second-order regulator described by

[P
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X) = "%y - stp(x1+x2)

_ 2 2
V(gc_) = Vl(l(_) + Vz(l‘.) Xy + x, + Sod(xl+x2) .

Differentiating we get

Vix) = 2xlxl + 2x2x2 + (xl+x2) stp(xl+x2)

= --2xlx2 - 2xl stp(xl+x2) + 2x1x2 + (xl—xz-stp(xl+x2)) stp(xl+x2)

2
(xl+x2) stp(x1+x2) - stp (x1+x2)

2 .
= Sod(xl+x2) stp (xl+02)

€ 0, = 0 if and only if x +x2=0.

1
But

X, + Xy = X) T Xy - stp(xl+x2)

= 0 on {xl+x =0} only at x, = x, =0 ,

2 1 2
i.e. 6(59 is identically zero only aleng the solution x = 0. Thus, by
the Lyapunov Theorem 1.3 we cbtain the desired global asyrptctic stability
about x = 0. Notice that for Fig. 1.36 we have provec s_ability for any
initial conditions in the forward path and any initial conditions in the
feedback path; this includes the case where there is a linear relationship
between these two sets of initial conditions, this case being the system
of Fig. 1.35.

In conclusion of this section we note that the Lyapunov method
is superior to the Positive Operator Theorem method for determining

stability, since with the Tyapunov method initial conditions do not require

special attention, nor do we have to modify G,(s) to have poles which are
1

[P SN SNSRIy SR S

o v i 10
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off the imaginary axis. The Positive Operator Theorem is perhaps more
useful for providing a Lyapunov function. We also tound it necessary to
modify stp x to be continuous at thc origin, however the behavior at the
origin is taken care of by the chattering behavior analysis of §1.4 (b),
in which stp is better left as a discontinuous function. The Positive
Operator Theorcm and the Lyapunov method are thus used to deterrmire that
the state will reach a neighborhood of the origin from any starting point

in state space.

§1.5 Pourth-Order Lossless Regulator

(a) Choice of a Feedback Law

The second member of the series of voltage regulators of Figs.
1.1 and 1.2 is shown in Fig. 1.38, where we have assumed unit values for
the components. As with the second-order regulator this assumption barely
limits the generality of our case: it represents all requlators of the
type of Figs. 1.1 and 1.2 where the inductances are all equal and the

capacitances are all equal. We want lim =z
)

4(t) = a for some given

0<oac<1l.

N e e e

\‘Foj Z 23
L

+
T~ 14

{

b |
17
~

N

1 1

Fig. 1.38
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The state evolution equations are

(z,]=[0 -2 o o[z ]+[2] wu
z, 1 o -1 olfz 0
z, o 1 o -1z, 0
Lz, Lo o 1 oflz Llol.
Now in steady-state operation we want 22 =2z, = o and ;2 = 54 = 0. The

natural ext~nsion of the control law we chose in §1.4 (a) is thus

u=1}1, if 81z2 + Bz‘zz'a) + 8324 + 84(z4-a) <0

0, otherwise,
where Bl, 82, 63, 84 are suitably chosen positive constants.

(b) Stability by Total Gain Linearization

We make the change of variables x, = 22l ' X, = 2(22-a) '

1
Xy = 2z3 y Xy = 2(24-a), and thus obtain
" x. | = - 7 ) i -a) |
X, o -1 o o x, |+ [ 2o
x, 1 0 -1 0 X, 0
Xy 0] 1l o -1 Xq 0
x,1 Lo o 1 oflx, ] Lo |
where 2(u-0) = =-stp (8 x., + B.x, + 8B X, + B,x,). By expressing
(o2420,20) 1 2%2 7 P34 T Fa¥y

Xy Xyr Xg in terms of x, = x we can put this in the fomm

4

X+ 3 +x = —stp[Bl'i'+ 82§ + (81+83) X + (B,+8,)x] .

The desired stability is about x = 0. Taking Laplace transforms we obtain
the feedback representation of Fig. 1.39. This is of the form of Fig. 1.1€.

Using the Routh-Hurwitz Criterion it is easy to show that the asscciated
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85>+ Bos2 +(B, +B3)s +(By+B,)
$9+352 +1

>

stp

-
At
S

Fig. 1.39

feedback system of Fig. 1.19 is stable for all 0 < k < ® if and only if

3 1
8.2 <B._(B.+B.)
3 17173
B,B, < 6,8,

In particular we note that Bl = 82 =8 = ] satisfies these require-

3= B4

ments. In §1.5 (d) we shall show that indeed Aizerman's Conj.cture is

=B, = 1. This may not be too surprising,

4 2
s>4s’40s+2

s4+352+1

shown in Fig. 1.40. The pcle-zero pattern of G(s) is shown in Fig. 1.41.

correct here for 81 = 82 = 83

considering the nature of the Nyquist Locus of G(s) = , which is
For design purposes the total gain linearization method appears to provide
a reasonable approach for an (initial) investigation of the stability of
this class of regulators; the above threc inequalities for 61, 82, 83, 84
are probably the necessary and sufficient conditions for global asymptotic

stability of the fourth-order regulator.
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1.7
1.4

0.6

'

-0.6

-1.4
-1.7

]
-

(c) Chattering Behavior

Fig. 1.40

Fig. 1.41

2.
2s + 2
G(S)='s——+——2—'—s +
s4+3s +1
- (s+l)(52+2)
(s +2.61) (s +0.38)

We follow the development of § 1.4(b). The system of Pig. 1.39

is of the form of that in Fig. 1.15, with
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A=Jo -1 o o] p= [1] ¢~ [31 B, 8576 64] pox=[x]
1 0 -1 o© 0 x,
0 1 0 -1 0 X,
_O 0 1l OJ' | 0., _xq '

a=2-2a,Db=20,
The switching surface § is the hyperplane ¢ x = VU ,
i.e. Byxy + Byxy + (BB )x, + B,x, =0,
and x € S is an endpoint if
facb<cAx<bgch

-B.)x

-(2-—2u)81< Ble + (i33--261)x2 + (B4 LT (81-83)x4 < 2a61 .

For example when Bl = 82 = 83 =8, =1 we have: S is the surface

Xy + X, + X, = 0, and the conditions for chattering to occur at x € S are

- < - <
2 + 20 xl x2 2a

=2 + 20 < --2x2 - x, < 200

4

< <
20 222 + z, 20 + 1 .

Motion along S is governed by x = F x where

det (Is-F) = 5—18153 + 8252 + (B8 )s + (B48))]

Bl
Mow the conditions for a cubic polynomial a3s3 + a252 + als + ao to be
strictly Hurwitz are
|
|
[T TR Wp— L 4 du i i "
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ao, al, az, a3> 0
a3, = a3, >0.

Therefore for asymptotic stability of the chattering mode on S we reqg.ire
By B0 By By >0
BB, > BB, -

The second of these is a strict inequality (whereas in (b) above we had

>’ R : : . : = = = - .
8263 8184) and is not quite satisfied by Bl 82 63 B 1: for

these values of Bi we have

det(Is-F) = s(s>+s2425+2)
2
= s(s+1) (s"+1) .
However in what follows we use these borderline values for convenience.

(d) Stability by the Positive Operator Theorem

Following the development of §1.4 (d), we wish to find a multi-

plier Z(s) such that G(s)Z(s) is positive real, where

G(s) = s3+52+25+2 - (s+1)(52+2)
s43s+1  (s242.61) (s2+0. 18)

We also want Z—l(s) followed by stp x to yield a positive operator. At

this stage we encounter the difficulty of testing a function for positive

realness. There are several different characterizations of positive real

functions, ([16] Chapter 5), but it seems that the least difficult method

to apply is to test whether Re G(jw) 2 0 for all w, and p(s) + q(s) is

strictly Hurwitz. Using this method one can show thet for
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3,.2
+28+
G(s) = E—%E——gg—z-the required multiplier 2(s) cannot be of the form (s+a),
8 +3s"+1 2
nor of the form E-E%%:E. The simplest multiplier Z(s) is therefore of
83+asz+bs+c
the form ——————, For this we obtain
8 +ds+e
. . (2-w2) H(w)
Re G(jw) Z(jw) = 3 5 ™) 22
(W"=2.61) (W"-0.38) [(e~w“)" + 4d"W"]
where

H(w) = (c-aw?) (e+dw’~w?) + w2 (b-w) (d-e+w?) .
Thus Re G(jw) Z(jw) 2 0 for all w if and only if
2 2 . 2
H{w) = k(2-w") (w"-2.61) (w"~0.38) for some k > 0 ,

and this leads to the requirements

( ce=2 -(1)
< b(d-e) + c(d-1) ~ a e = -7 -(2)

b+e~d=-ad+a=5 -(3) .
\

To ensure that Z-l(s) followed by stp x yields a positive operator we

make use of the following theorem of O'Shea ([26], (32], [12)}):

Theorem 1.4
The operator F shown in Fig. 1.42 with input u(t) and output y(t) and Z(s)
rational, is a positive operator for any monotone nonlinearity €(0) for

which £(0) = 0, if and only if

Z(s) =gy + Ys - g(s)

wherxe © ®

Y20, 4(s) = f g(t)e-Stdt , g(t) 2 0, and 9 > §(0) = I g(t) dat.

0 0]

-
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ult) | ! o f(o) y(t)
Z(s) -7|4—o-

Fig. 1.42

For a proof of this theorem the reader is referred to reference [12].

Applying this theorem to our Z(s) we obtain the constraints:

a, b' C, d, e > 0 "(4)

dg<a -(5)
2

da” 2 4e -(6)

d(a-d) > b-e -7

e(a~d) > v

After some trial and error one can find a set of values for a, b, ¢, d, e

which satisfy (1) through (8). One such set of values is

a=200,b=96,c=4,d"l.45,e=0.5;
so that

3 2
+ 4
z(s) = s +200s  +96s+

5241.45540.5

We also need to show that G(s) 2(s) = %%E% has p(s)+q(s) strictly Hurwitz,
By following through an argument similar to that of §1.4 (d) we conclude

that the fourth-order requlator of §1.5 (a) is globally asymptotically

stable when Bl = 82 = 83 = 84 = 1. The practical implications of this are
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that it is just as easy to stabilize a fourth-order regulator as it is to
stabilize a second-order regulator.

To summarize the application of the Positive Operator Theorem
to switched regulators of this kind, we see that the first step is to
bring the problem to the form of determining stability of the null state
for a svstem of the type shown in Fig. 1.15 or Fig. 1.18. We then consider
the associated system of Fig. 1.19. If this is not stable for all k > 0
then we carnot make any conclusions in general, though instability for all
k > ko > 0 will imply local instability in Fig. 1.15, and instability for
all k < k1 will imply instability in Fig. 1.15 for large initial conditions.
If the system of Fig. ‘1.1% is stable for all k > 0 then we know ([C },
Theorem 2) that there exists a class of positive real functions 3 such that
G(s) Z(s) is positive real for each Z(s) in 5. Stability then follows if
therec is a zl(s) in s such that Zl(s) satisfies the conditions of the O'Shca

Theorem above. Behavior in the chattering mode is analyzed as outlined in

§1.4 (bj.

(e} Stability by Lyapunov's Method

In §1.4 (e) we saw how to obtain a Lyapunov function for the
feedback systecm, by making use of the fact that we could express the forward
and feedback positive operators in dissipative form. For the linear operator

given by G(s) z(s) = c(Is-A) "%

b + d we need to solve the matrix equation
KA+AK+ (Kb-c"(2d) "(h'kg) =0.

This can usually be done, using suitable numerical methods if neccssary.
However, to obtain a storage function V(x) for an operator of the form of

Fig. 1.42 is not easy. In Chapter 2 we shall show that if a positive
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operator maps u(t) into y(t), the functions

t
va(g_‘_) = sup - 1 w(t) dt , Vr(i) = inf ftl uy dt

2
120 % £ 20 °
0) =
x(0)=x %(0) =0
x(t,)=x

are suitable storage functions. Unfortunately trese definitions
require the solution of a nonlinear optimization procblem which can be
solved for all initial conditions only when 2(s) is of order 1 or 2. For
our fourth-order regulator problem Z(s) is third crder, so we must try
some other means to find a suitable V(x). The most promising approach
seems to be to attempt to find a realization (A, b, ¢) of Z(s) which

satisfies the requirements of the following theorem:

Theorem 1.5
Suppose ~A is a hyperdominant matrix, b' = [0 0 ... 0 A}l ,A>0,
c= [0 0...0 1), and f is any monotone nonlinear:ty with £(0) = 0.

Then the operator mapping u(<) inte y(t) defined by

L]
X =

i»
1%

+£u

N

]
jo
1%

y = £(2)

. n
is dissipative, with storage function V(x) = f'z F(xi), where
i=]

z
F(z) = ] f(o) 4av .
0

We shall give a procof cf this Theorem in Chapter 2. A hyperdominant
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f(z)
— , . —>

Fig. 1.43

c
Ix-
"
13
+
o
c
~N

0 >

~
”
I

n
matrix M is one for which mij € 0 vwhenever i ¥ j, and z mij 2 0 and
i=]1
) myy 2 0 for all 1,4
For our fourth-order regulator we have

2
2 l(s) = H(s) = 3s + 1.:55 + 0.5 .
ST + 200sT + 96s + 4

The standard controllable realization ([ 7 ] Chapter 17) is H{s) = EXEF'E’—%E

where
E=| 0 1 o] g=[0] h (0.5 1.45 1]
0 0 1 0
-4 -96 =200 |, 1], .
Now let
p=[1 o o] =] 1 0 0
0 1l 0 0 1 0
0.5 1.45 1 -0.5 =-1.45 1

so that we obtain the realization H(s)= gjl§-5)-1§ where

a=pret-lo 1 o | o=rpz={0o] g=nEt=10 0 1
-0.5 -1.45 1 Y
95.3 192.4 -198.61}, 1] .
[ P i ekt s it stindetnicote. b e e wed
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Now -A is not hyperdominant, but if we choose R such that Rb = b and

g_l{l = c then -R A _11"1 may be hyperdominant. Such an R is of the form

R=[a b 0] gr'=[a -b 0] ad-bc=1

It seems to be an inpossible task to find values for a, b, ¢, 4 which will
make -5.5_5:1 hyperdominant, without the aid of a digital computer. In
Chapter 2 we reconsider this question using tridiagonal realizations. We

also show in Theorem 2.7 that it would even be helpful %o find a, b, ¢, 4

n
which will make -F A R . M column dominant, i.e. m,, 2 Y |m |.
=== "= 33 % & 13
ir}

(£f) Higher-Order Regulators

As a design procedure for sixth- and hiv.er-order regulators
it seems reasonable to assume that Aizerman's Conjecture holds true for
the class of feedback systems cbtained by using the kind of feedback control
law described in §1.4 (a) and §1.5 (a). The chattering mode analysis of
§1.4 (b) and §1.5 (c) shows that the numerator polynomial of the forward-
path transfer function must be strict Hurwitz, but this requirement will
be covered by the conditions obtained by using total gain linearization,

(i.e. the system of Fig. 1.19 must be stable for all 0 < k < @),

§1.6 Second-Order Requlator with Inductor Loss

In this section we consider the regulator of Fig. 1.5 with a resistance
added in series with the inductor. We know in advance that this will not
affect our conclusions about the stability of the second-order regulator,
since "Dissipation aids stabilization". However, we wish to obtain a

Lyapuanov function for this case, in preparation for §1.7.
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Fig. 1.44 shows the regulator under consideraticn, with unit values
for source voltage, inductance, and capacitance. The series resistance

has value r.

iy

Fig. 1.44

¥Following the pattern of §1.4 and §1.5 we obtain the feedback representation

of Fig. 1.45, which is seen to be of the form of Fig. 1.i8. As in §1.4 (e)

s +1
s2+rs+1
stp |
Fig. 1.45
we take B=l1 for notational convenience. Fo: r 2 1,G(s) = -33:1—— is a
s +rs+l

positive real function, so that no multiplier is necessary in such a
case to prove stability using the Positive Operator Theorem. Fig. 1.46
depicts the Nyquist locus of G(s) when r = %u 1, anud 2. However we do not

make use of this positivity of G(s) for r 2 2, because we want one storsge

function V(x) for all r, for the purposes of §1.7. We must use the same
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Im G(jw)

Fig. 1.46

2
multiplier as before, Z(s) = s + 1. Then G(s) z(s) = ~Lstl) , which is
8 +rs+l

a positive real furrtion for all r 2 0. We have

+ (2-r)s

sz+rs+1

Gls) 2(s) = 1 = c(Is-3) b + @

where
A=|-r -1 b=1]1 c=[2-r 0], d=1

1 0 0

’ ! -

As in §1.4 (e) we therefore describe the system of Fig. 1.45 by

( %=

>
%
4
o
[«

y = + du

la
%

z=-z+y with z(0) = x,(0) + x,(0)

\ U -stp 2 .

In Chapter 2 we introduce the concept of a storage function and show that
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2s

52+1

a storage function vy (x) for (1 + ) is given by %5'5 X where K = K'

satisfies the matrix equation

KA+A'K+ (Kb-c"(2) " (b'ke) =0 .

k

k1 k2
If we let K = tiien we obtain
2 k3
K 2

2 -4k:=0

kz(kl+r-2) + z(k3-rk —kl) =0

2
2 =
(k) +r-2)° + 4(k,-rk,) = 0

from which we get the four possible solutions

K, = [ r2-2/2r 0 K, = [ r+2+2/2r 0
i 0 r+2-2/2r o r+2+2/2r
Ky = [ r+2-2/2r-4 4 K, = [ r+2+2/2x72 4
B 4 r+242Y2r-4 L 4 r+2-2v2r-4 | ,

We see that for r < 2 the solutions _153 and 54 are not real, so we consider

only X, and K,. Since K, <Kk, we see that -;'—5'1(_15 must be the available
storage function, and % _:5'525_ must be the regquired supply (see Chapter 2).
Since the convex combination of these two storage functions is again a
storage function, we know that % x'Q x is a storage function whenever

Q= nl(.l + (Zl.-n)l(_2 for some 0 £ n € 1. Thus, if -1 € ¥ € 1 we have

the storage function
1 2 2
v = 3 (r+2+2y/§})(xl+x2) .

To check that the operator mapping u into y is dissipative we evaluate

s L A | [ d . e .. wnrasrmr soes

b - 1 T w 1 T‘ e ——— -1 RSP -y gy
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I 1‘ . . 2
V-uys= ztr+2+2vv’i?) (x)X +x,%,) = (2-x)x,u = u

= - [(r+YJ5;)xl - u]2 - (l-Yz)xlz on substituting
£ 0 since IYI < 1.

We can now establish stability by noting that the storage function for the

feedback operator is as it was in §1.4 (e), namely Vz(z) = Sod(x ).

1t%2
Thus if we describe the regulator of Figs. 1.44 and 1.45 by the equations

X)=-rx -x, - stp(x1+x2)

we have the Lyapunov function

1 2.2
VX) =V (x) + V() = S(re2427v20) (x, +x,7) + Sod(x *x,) .
Then
Vix) = (r+2+3Y¢5;5(x1x1+x2;2) + (xl+§2) stp(xl+x2)

- [(z+/2E)x, + stp(x1+x2)]2 - 2:(1-72):(12 - S0d(x,+x,) -

By choosing Y # %1 we have

{I(§)$O,=Oonlyatxl=x2-0.

This allows us to conclude stability about x = 0 using the following theorem
of Yoshizawa [29 ), whiLh we introduce here with a view to the time-varying

situation of §1.8.

Theorem 1.6

If v(x,t) is a Lyapunov function (as defined in §1.4 (e)) for the system

of equations

s ey -

S Y

B ]
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x(t) = £(x,t)

x(t) ER' ; 0gt<® ; x(0) =x ; £(0,8) =0,

L3N
and if V(x,t) is positive definite, decrescent, and radially unbounded,
then the system is globally asymptotically stable about x = 0, provided

that -W(x) is positive definite, where G(i,t) < W(x) ¢ 0.

For a proof of Theorem 1.6 the reader is referred to [37].

1.7 Second-Order Regulator with Resistive Source Impedance

(a) Introductory

Inclusion of a resistance in series with the source voltage E
of Fig. 1.1 leads to é much more difficult stability analysis. For the
second-order regulator with source resistance, the network acts some of
the time (u = 0) like that of Fig. 1.5, and for the rest of the time
(u = 1) like that of Fig. 1.44. Hence, using the same control law we
might expect to have stability, since both of the regulators of Figs. 1.5
and 1.44 are stable. Furthermore, stability is to be expected from the
notion "Dissipation aids stabilization". 1In fact, we do find that these
expectations are true; however, this not so easy to establish. For
the second-order case we can fall back .n a phase plane analysis, but for
higher~-order cases a Lyapunov approach seems the only way. We provide in
part (c) here a Lyapunov analysis of the second-order case, which makes
an elegant use of the ideas of dissipative systems. Ia part (b) we apply
a totél-gain linearization as an initial investigation of stability.

The second-order regqulator is shown in Fig. 1.47.
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‘N' IY'Y'Y\ -l
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Fig. 1.47
The evolution equations are
zl'] = 0 -1 +ul -r © ) z1 + 1l u
z, . 1 0 0 o ‘ z, 0

z = (50+q&1) z+bu.

We see that the control variable u enters the state evolution equations
in a multiplicative way, as well as in the usual additive way. As before

we let

= - <
u 1, 22 + 22 a

" >
0, 22 + zz o

and x, = 22 X

1 1’ = 222 - 20, which yields

2

X) = "Xy - urx; + 2(u-o)

2(u-a) = -stp (x1+x2)
2 (-2+2G,20)

Py s ol s st vt a1l it 2 010 [P P PPPSTPY SRR | < €7 e e it

TS S g = s L1 110 e e e

oy ey .
: y "y T T — :
- T ——
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i.e.

X, = —2aqx1 - X, + (qxl-l) stp(xl+x2)

T . . . . . :
where q ='5 for notational convenience. Now we can write this equation in

two ways, the first way being
% + 200% + x = (gx=1) stp(x+x)
and the second way being

x + qf2o - stp(x+;)] X+x=- stp(;+x)

1.e.
X + rd (x) X+ x= - stp(;+x)
where ¢(x) = %{2a-stp (x1+x2)]. ¢(x) takes on the values O and 1.

(-2420,20)
The first way leads us to the feedback system representation

of Fig. 1.48. On comparing this with that of Fig. 1.45 we might hope that

X+ 2aqx +x s+ X +X

—»
_@ s+ 2aqs+1

q x stp (x+x) qx qs
s+1

-(qx-1)stp(x+x) A4

stp -

stp(x+x)

Fig. 1.43
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the feedback operator in Fig. 1.48 is a positive operator. However, this
is not the case. The representation of Fig. 1.48 does not seem to be
helpful at all, so we look at the other way of describing this regulator.
This second way in state-cpace form is

» - r~

xlj = ‘.'!‘¢(?_{_) -1 Xy +]11]u
x2 1l 0 X, o]
z=[1 1 [x
*2
us=-stp 2
lie.
X =AXx+bu
z2=gX
u = =-stp 2z

Fig. 1.49 depicts this in feedback form:

x = A(x)x + bu
u = === = 2
Z = gx
stp |-
Fig. 1.49
1
i
s

At

Ut e
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(b) Stability by Total Gain Linearization

Following the total-gain linearization argument of §1.4 (c),
and comparirng Fig. 1.49 with Fig. 1.17, we expect stability for the
system of Fig. 1.49 if it is stable when stp 0 is replaced by ko, for all
0 <k <«, 7this gives us the cquations

1= -(20g+k) =(1+k) X + qul(x1+x2)

1
-
o
»®

2 0

i.e.

For these we can use the following theorem:

Theorem 1.7

The system of equations
x(t) = A(t) x(8) + £(x,t)

x(t) eR’ ; 0¢ t <o ; x(0) = £(0,8) =0

?_(_0 i

/A

is locally asymptotically stable (i.e. 1if ||§O|| M for some 0 < M < @) if

X

X(t) = A(t) x(8) , x(0) = x

is exponentially stable, and

[l 0}]

Timll -__TT7FTF" = 0 , uniformly in t.
x| * 0 -

By IIEJI we mean the usual Euclidean norm #xfﬁ; exponential stability means

-~ -

that |lgjt)|| & ae-bt for some a,b > 0; and by

Lim 4g(x,y) =0 uniformly iny
x—>0
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we mean that for all n > 0 there is a § > 0 which is independent of y, such
that |9(x,y)| < n whenever |x| < §. For a proof of Theorem 1.7 the reader
is referred to Chapter 4 of Bellman [4 ].

Now we have det(Is-A) = s2 + (2aq+k)s + (1+k), thus A has its

eigenvalues in the left half plane, so i.' A x is exporentially stable. And

HE@ || Jaks, (x,+x,)
11x]] * ’ — ,'* 0as [|x|| +0, for all 0 <k <= .,
- Vx12+x22

Thus we have local asymptotic stability for the system when stp O is

replaced by kO.

(c) Stability by Lyapunov's Method

In attempting to find a suitable Lyapunov function we can start
with that of §1.4 (e) and modify it by trial and error. Here let us take
o= %-for convenience, so that stp becomes sgn. In §1.4 (e) we had

Vix) = %1x2+§‘) + %1;+x|. One possible approach here is to add to this

a term in |x|. So let us try
V(x) = %(x2+;2) + a|x+§l + b|x| where a,b > 0.

Then

[ ] e @ .

6 = XX + xx + a(x+§3 sgn(x+;) + bx sgn x
= -q;zll-sgn(x+;)] + [(a—l)i-ax] sgn(x+;) - a sgnz(x+§)
+ aqi[sgnz(x+i) - sgn(x+x)] + bx sgn x .

Now if we take a = %'and b = 20q we have

V= -qizll-sgn(x+§)] -'%|x+§| - l'sqnz(x+;5 + lq;c[sgnz(x+§)-5gn(x+;c)+2sgnx]

2 2

€W= - %1x+;| + % q§[1~sgn(x+;) + 2 sgn x] when x + ; ¥ 0.
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By looking at the four cases given by x z 0, x 2 0, we find W & 0 (and
hence V £ 0) for all x,§ if and only if q < %u Thus we have the desired
global asymptotic stability, using Theorem 1.6, provided that r < 1. This
makes us wonder whether we might obtain instability if r is large enough.
Further study of the above V shows that we can improve on

this bound on r. For, collecting terms in a different way we obtain
. *2 . . . 2 .
V = -gx“ [1-sgn(x+x)] + [(a-ag-l)x-ax] sgn(x+x) - a sgn” (x+x)
L] 2 * L
+ agx sgn (x+x) + bx sgn x .

Now if we let b = aq and a-a2q-1 = -a, i.e., a = E%E' (which requires g < 2

for a > 0), we get

Ve -q§2[l~sgn(x+;] - a|x+;| - a sgnz(x+§) + aq;[Sqnz(x+;) + sgn x]

EW= - a|x+§| + aq;(sgnz(x+§) + sgn x] .

Looking at the four cases x 2 0, x 2 0, we now find that W £ 0 (and hence
V § 0) for all x,x if z.d only if q < 1, so by Theorem 1.6 we now have
global asymptotic stability provided r < 2.

We can do better than this, however, using the ideas of
Dissipative Systems. We make use of the fact that for a dissipative
system, the convex combination of Va and Vr is also a storage function,
where Va is the available storage and Vr is the required supply (see
Chapter 2). Now in §1.6 we described the introduction of the maltiplier
(s+1) by a nonminimal state-space representation. If we follow that

method here we obtain the nonminimal state-space representation:

3 : ' | 3 i " A | TPORRPTRIT S o
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) ;tl}-[-rﬁgg) -1][3& +T1]w

y = [2-r¢(x) O] x, | +u
X2

2= -z + Y with z(0) = xl(o) + x2(0)

U= - stp 2

z= -z +y with 2(0) = xl(O) + x2(0)

u= - stp 2 .

We depict this in Fig. 1.50, which is to Fig. 1.42 as Fig. 1.36 is to

Fig. 1.35. We wish to show that the forward path operator mapping u into y

x = Alx)x + b
u - =- y
y = cluiz + au
-— I
stp s +1
Fig. 1.50
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is a dissipative operator. Let us try the storage function we obtained

in §1.6, i.e.

Vix) = §1r+2+2yJ5;)(x12+x 2) where =1 £y £ 1.

2
Then
vV - uy = (r+2+2Y/2_r_) (xlxl+x2x2) - uy

= -rd(r+2+2yv2r) x 2, [r(1+¢) + 2yv/2r) x,u - u2

1

- u]2 - (1-Y2) x12 when ¢ = 1

{"[(I'PY/Z—:) %,

(r+2Y/2r) Xu - u2 vwhen ¢ = 0 .

We will therefore always have V - uy £ 0 if we can choose Y so that

. . T . .
(r+2YJ5;5 =0, i.e., ¥ = —JK%. Since Y 2 ~1 this means that our vgiiator
is dissipative for all r < 8. The storage function for the forward-path
operater is therefore Vl = (x12+x22), and tor the feedback operator of
Fig. 1.50 we know the storage functicn is v2
the Lyapunov function to try is V = (x12+x22) + Sod(xl+x2), which, admittedly,

= Sod z = Sod(x1+x2). Thus

is the one we started with. Indeed, since

X + rd(x) X +x= - stp(;c+x)

we have
VeE2x X+2xx+ (x+x) stplx+x)
02 L] [} 2 .
e =2rpx“ - {(ré+1) x + x] stp(x+x) - stp” (x+x)
*2 . . 2 I .
= -2rdx“ ~ réx stp(x+x! - stp” (x+x) - Sod(x+x)
= - [%Q x + stp(;c+x)]2 - %9(8—r¢) ;2 - SOd(§+x)
£ 0 for all x,* if r < B, since ¢ is 0 or 1.
e —— iy ~ | 4 d A A d
S SR S+ vy o
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When ¢ = 0, V= 0> x + x = 0, so we need to use Theorem 1.3 to conclude

stability, which we have since x + x = 0 is not a trajectory of the system.
We have not been able to obtain a Lyapunov function which gives

Perhaps the next step in this direction is to

stability for all r 2 0.
try to find such a V by looking directly at the definition of a storage

function.
(4) Stability by Phase Plane Analysis
Fig. 1.51 shows a set of phasec-plane trajectories for the case
o= %u r = 10. I.e., the trajectories of Fig. 1.51 are the solutions of

X + 10[1-:-5%215:5L] X + x = -8gn(x+x)

In order to obtain Fig. 1.5]1 we need to know the shape of the trajectories

(Y] L
x+rx+x=0.

for
For a discussion of phase-plane

= 10.

These are shown in Fig. 1.52, for r
trajectories of this type, the reader is referred to Chapter 7 of refer-

ence [11) and Chapter 3 of reference [37].
From Fig. 1.51 we conclude that all trajectories will reach
To determine whether the

the chattering region of the switching line.
resulting chattering motion is stable we need to apply the methods

Our system obeys

developed in §1.4 (b).

where
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Fig. 1.51

Trajectories of W+S5x+x = (5x%~1) sgn(x+x)
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Alx) = [ -rd(x) -1 ¢(x) = 3120 - stp (Bx +x,) ]
(-2+20,20)

b=11| c¢c=[ 1) a=2-20 b=21.

0
Let
50 = 1] -1 and 51 &= -r -1
1 0 1 o .
Then
£t =2 x-bb and £ =a x+ab
= TpETh2éne L =L xva2 .

The switching line S is ¢ x = 0, i.e. Bxl +x, = 0. The first endpoint

oy . + , . .
condition is ¢ £ < 0, which on substitution becomes

2
5 =208

x
2 82+1 .

The second endpoint condition is E.fr < 0, which becomes

2
(2-2a) B . B+1

X3 < Bei-mg . MET<TF
5 —(2-20) 82 if ¢ > B+1

X2 7 TrRB-1 Y Tg -

Thus, for a = %, B =1, r > 2, as in Fig. 1.51, we have chattering behavior

on the half line

l -1
> - e, c—
3(2 max( 2, 2) .

Motion along the chattering line obeys

+

c f
x=£ - ——
clf -
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which, on substituting, becomes

* 1 .
X, -(Eo x| with Bxl + x, = 0.

X, )

Thie is the same result as for §1.4 (b). We therefore have the desired

global asymptotic stability, for all f > 0 and for all r 2 O.

§1.8 Further Refinements

(a) Preregulation

The source imp.:dance shown in Fig. 1.47 is the simplest kind.
It does not increase the dimeasion of the state equations. In practice
the source impedance may well be like that depicted in Fig. 1.53. The

capacitor C provides a €orm of preregulation, that is, a smoothing of ary

{ u L I
At KO\ A »
R==E' ? 4
_L + 1L L+
E T Vs_f-\c CZAN_VZ
| i 4
Fig. 1.53

time-variations in the source voltage. In that case the evolution equations

are

[
n
!

<

+

=

<
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1 1

Lettingz-IE-,z-fo-.x-Ivf:_,w- y W, = '

1l 171" 72 2 72 3 373" 2 JITIE; 3 "ITl-C_;
bng:-.gng—,weobtain

fe €3
3

z | = 0 -y, o]+ 0o 0 w x, | +[o

22 wz 0 0 0 0 0 x2 o]

z, 0 0 =g —w3 ] 0 xq b .

Suppose, for example, that W, = m3 = b = 1, and that we want stability

2

about z_, = G. Then, letting x, = 2z_, x_, = 2z, - 20, x_ = 2z3 - 2, we

2 1 1’ 72 2 3
obtain
;‘1 =[o -2 w[x]+[2w2
x2 1 0 0 x2 0
xq -u 0 =g x, 0
Let 2u - 20 = ~stp (Bxl+x2), as before. Then we have
(-2+2a,20)
S B 0 -1 &¢(x) X0 - stp(8x1+x2) ]
X, 1l 0 0 x, 0
X, “¢(x) 0 -g Xy 0
where
d(x) = %lm - stp (Bx,+x,)1 .
(-2+20,20)

We now wish to prove that this defines a motion which is asymptotically
stable about x = 0. As yet, we have nct done this. Probably the desired
stability can be obtained by extending the methods of §1.7 (b) and (c),
that is, to view these equations in the form of a system like that of

Fig. 1.49. Certainly it is to be expected tha* this system will be
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stable. An even more difficult stability question will be provided by

replacing the resistor of Fig. 1.53 with an inductor.
§ .
{ (b) Time-Varying Scurce Voltage
¢
g So far we have only considered a fixed source voltage, and have
%

shown that the output voltage will settle to its desired value after a

L oepeeg e

change in input voltage or a change in the load resistance. In practice
the source voltage will be time-varying, between limits. Usually this
variation will be periodic, as for instance in rectification applications.

In terms of the regulator of Fig. 1.5, this means that we have

E(t) = E,L + El(t), where E. > 0

0
and El(t) 2 0 for all ¢t.

0

This modifies the evolution equations of §1.4 (a) for zy and z, to be
z, | = 0 -1 z, + | l+elt) u
22 1 0 22 0

where e(t) > 0 for all t. Using the same feedback law we obtain, for X,

and x2
;1 = -x, - stp (Bx1+x2) + e(t) [20 - stp (Bxl+x2)]
(~2+20.,20) {-2+20,20)
2%
i.e.
*|= o -1 x| - f(c x,t)

]
[
o
»

o

where
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f(c x,t) = | -2(1+e(t)) + 2a , Bxl 4 x,. <0

2
> -
20 ’ Bxl + x, 0
We can think of f(c x,t) as stp (c x). The system of Fig. 1.17 now
(-a(t) pb)

becomes that of Fig. 1.54,

\ G(s)

f(-,t) |j————

Fig. 1.54
Bs+1 . . R
where G(s) = > Now f(.,t) is a positive operator. If we have a
s +1
. 1. . . . Bs+l .
resistance r 2 g in series with the indu<ter, then G(s) = ——=— is a
s +rs+l

positive real function, and so by the Positive Operator Theorem we will
have the required stability. As yet we have not proven stability for more

general cases.

§1.9 Practical Considerations

We now discuss briefly some of the practical aspects of implementing
the control laws we have been considering. Fiy. 1.55 shows a schematic for
one possible implementation of the type of regulator we have been discussing.
The two-position control switch is effected by means of the return-path
diodes D1 and D2, the power transistor Tl' and the driver trans:stor Tz.
The two resistors marked Rl are used to obtain a measure of half of the

output voltage Vo. This and half the desired output voltage of QE are fed
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into the operational amplifier network which gives k(Bs+1)(v0-aE), i.e.
R

k(BVb+V0-0E), where p = R2C2 and k = 3%—. The comparator gives a digital
2

(0 or 1) output depending on whether the output of the operational ampli-
fier is positive or negative. This digital signal controls the driver
transistors through the digital delay, the purpuse of which is to limit
the switching frequency of the transistors, so that the overall efficiency
remains high. The parameter 8 should be chosen to give a good transient
response to changes in load. The easy extension of this method of imple-
mentation to the fourth-order case should be clear. Note that when a load
resistance is present we are more concerned with 60 than with IL' so there
is no need to measure inductor current.

In practice the operational amplifier will involve a lag term in the

measure of (Vo—aE), so that the voltage at its output is more accurately

+
given by k(%:%s)(vo-aa), where § << B. Alternatively, it may be nccessary
to introduce this lag 1165 intenticnally by placing a capacitor C3 in

parallel with R., where C_R

3 3Ry = 8, so that the operational amplifier network

does not become too receptives to hign freguency noise.
We must therefore re-examine the system depicted in Fig. 1.17, and

ascertain whether this is stab.e when the forward-path transfer function

{Bs+1)

(s2+1) (5s+1)

shows that the associated linear feedback system of Fig. 1.19 is stable

is generalized to be of the form G(s) = A short calculation
for all k > 0 provided § < B. We therefore kinow that a positive real
multiplier Z(s) exists such that G(s) zZ(s) is positive real. The first
multiplier to try is the simplest, i.e., 2(s) = (l+ys), as used in §1.4 (q)

and §1.6. We find
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(Bs+1) (ys+1)
(s“+1) (8s+1)

G(s) 2(s) =

1 - (By-68-8y)w?
(1-w?) (146202 ,

Re G(jw) Z(jw) =

so Re G(jw) 2(jw) > 0 for all w if and only if By-8B8-8y = 1, i.e.

Y= éigs ; and Y > 0 if and only if § < B. We thus find that the same

type of multiplier as considered for the simu.le second order case can be
used here to prove stability. The reason for this is, essertially, that

in that case we had Re G(jw) Z(jw) = 1 for allw, i.e. we had some

"room to spare". The important conclusion here is that since the lag

term ((8s+l) in the denominator of G(s)) will always be present in practice,
some form of phase advance ((Bs+l) in the numerator of G(s)) is necessary
for stability, with B > §. Indeed, an analog computer simulation shows

that if B is reduced below §, an oscillation will occur, at a frequency

of the order of 1 .
2m/iC

References [25] and [14] are recent publications summarizing state-
of-the-art techniques used in practice in the design of solid-state power
supplies. Both give actual design examples of second~order switching
voltage regulators which are similar to that considered here; ([25],
Vol. 2, p. 165; {14], p. 196). The circuit given in [25] is of the type
shown in Fig. 1.56, which will be seen to be very similar to that shown in
Fig. 1.55. Frequency limiting is effected by the hysteresis in the Schmitt
trigger, the circuit cf which is shown in detail in Fig. 1.57. The Schmitt

trigger can be approximated (very roughly, but adequately for our purposes)

as being equivalent to a linear system with transfer function (Bs+l),
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followed by a hysteresis device with two-state output. The important
point is that since our analysis has shown that B must be nonzero, we

see that the 0.15 UF "commutating" capacitor in the Schmitt trigger circuit
plays a crucial role in determining stability and ensuring a reasoneble
transient response, since it is responsible for the phase advance term
(Bs+l). Both authors [25], [l4) give considerable attention to other less
important design features, but do not even mention stability considerations,
let alone explain the presence of this capacitor. Furthermore, neither
author considers the possibility of using a fourth- or higher-order filter,
vhich we have shown to be just as easy to implement and stabilize, while
having superior design advantages.

Reference [15] also considers a second-order switching regulator, in
which the Schmitt trigger is considered to have no dynamics, i.e. it
cannot introduce a stabilizing phase advance factor (fs+l). The regulatoers
considered in [15) are assumed to have a small resistance in series with
the output filter capacitor. This will introduce the desired phase advance
term in the forward-path transfer function. We might call this an
"accidental" stabilization, which is another example of dissipation aiding
stabilization. Clearly there is no control of the transient response in
this design.

In conclusion we note that all of the various methods of stability
analysis which we have considered in Chapter 1 are needed for a {ull

urderstanding of systems of the type we have been considering.



CHAPTER 2

POSITIVE OPERATORS AND DISSIPATIVE SYSTEMS

§ 2.1 Introduction

The intent of this chapter is to outline the relevant background
material for Chapter 1. In § 2.2 we follow the development of
reference [ 34 ) in providing a simple proof of the Positive Operator
Theorem, which we believe is a useful thecrem, though so far has been
applied relatively little. For more extensive and rigorous treatments,
the reader is referred to [34] and {42]. 1In § 2.3 we discuss concepts
of Dissipative System Theory following the development in the recent two-
part paper by Willems, [35}, [36]. In § 2.4 we address the problem of
obtaining state-space realizations for transfer functions of the O'Shea

type, as introduced in § 1.5(d) and (e), Theorems 1.4 and 1.5.

§ 2,2 Positive Operators

(a) Operators, and functions of time

We consider functions of time on the interval 0 € t < ®. The
functions will all be real-valued, though our statements and theorems are
easily generalized to the case of vectcr-valued functions of time. An
operator F maps a fuaction of time x(t) into another functicn of time y(t);
we write y = Fx. Usually we think of these two functions x and y as the

input and the output, and of the operator as an input-output syr“em. An

-89-
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operator may be specified by a characteristic graph, a convolution integral,
a transfer function, or other means. We assume that all operators con-
sidered are causal, i.e. present and past values of the outputs do not

depend on future values of the inputs. If Fl and F2 are operators and O

is a real number then the operators Fl + F2 and aFl are defined by

(Fl + Fz)x = le + sz and (arl)x = a(le) respectively. The operator

FzFl is called the composition of F, with Fl and is defined by (FzFl)x =

2

If F.F, =F F2 then we say that F. and

Fz(le). In general FzFl ¢ FF,. 1 1 1

F2 commute. An operator F is linear if F(alxl + azxz) = alFxl + azsz

holds for all X0 % The identity operator I is defined by lx = x, and

5

the zero operator 0 is defined by Ox = 0. An operator F is invertible if
1

there is another operator F-l such that FF-l = F-lF = ]. (Fzrl)-

-1 -1
1 Fa o

(more usually called a projection operator), defined by

F

An operator of importance to us is the truncation operator PT'

(PTx)(t) ={x(t) for 0 € t £ T < ™

0 otherwise .

An operator F is causal if PTF commutes with PT for all T, i.e. PTFPT = PTF

for all T. (Note that P; = PT)' This is equivalent to requiring that

P x =P xz =$»PTFx = PTsz for all T, (provided FO = 0).

T1 T 1
We assume that the reader is familiar with the concept of a vector

space. A vector space V is called a normed vector space if a map, called

the norm and denoted by ll ||, from V into the real numbers R is defined

on V, such that for all x, y € V and a € R,
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(1) Ixl> 0, = 0 if and only i x = 0
) |fax|] = |a| [Ix]]

(3) ||x+y|| < ||x|| + ||y|] (the triangle ineguality).

A real inner product space is a vector space V with a map, dcnoted by

<,> and called the inner product, from V x V into R such tha*. for all

X, Yy, 2€ Vand a, B e R

(1) <x,y> = <y, x>
(2) <ax+by,z> = a<x,z> + B<y,2z>

(3) <x,x> 2 0, = 0 if and only if x = 0,

An innexr product space is » normed vector space, with l[xlI = V<X, x> .

The Cauchr’-Schwartz inequality states that
lex,y>| < |l«l] - |yl] -

The inner-product space which we consider is the space of real-valued

square~integrable functions of time, L2[O,w]. A function x(t) is in L2 if

j'w x2 dt < », For x, Y € L2 the inner product is defined by
o]

<x,y> = f: xy dt, so that |[x|] = v_fom %2 dt.

There are many functions of interest to us which are not in L for

2 ’
. . t
example the constant functions, or functions such as t and e . In order

to be able to handle these we introduce the extended space L o’ which

2

consists of all those functions x{(t) for which PTx € L2 for all finit- T.

This includes all functicns y(t) for which t < ® =3|y(t)| < = .,



-92-

We assume henceforth that all operators considered satisfy FO = 0,

The operator F is said to Lhe bounded if

oo L7l
xeL, || x|
x#0

This supremum will be called the gain of F, and deroted ||F||. It is easy

to show that IleFlll < ||F2|l. |IF1||, that ||PTx|| < ||x]]| for air T,

and that ||PTF|| < ||F|| for all T. F is said to be Lipschitz continuous

if
sup UEx-FYll o
eyer, 1141
Xty

This supremum will be called the Lipschitz constant of F, and denoted

IIFIIA; it satisfies the inequalities just given for ||F||.

(b) Positive Operators

. -+
Let F.L2 L2, i.e. F maps L2 into L

on L2 if for all x € Lz,

5 Then F is said to be Egsitive

<x,Fx> 2 0 ,

i.e. fw xy dt 2 0 where y = Fx,
0
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F is said to be strictly positive on L2 if F - nI is positive on L, for

2
> nllxl]®.

some N> 0, i.e. <x,Fx> 2

Suppose now that F:LZe + L2e' Then T is said to be positive on

R . . T
L2e if for all x ¢ L2e and all T < ®, <PTx,PTkx> 2 0, 1.e../z xy dL 2 O

for all T, where y = Fx. F is strictly positive on LZe if T - nI is

positive on L2e for some N> 0. The relationship between positivity of
an operator on L2 and L2e is simple:

2 2

only if it is positive on L

. <> . - i iti i
Lemma 1f F'LZe L2e and F:L L., then F is positive on L2e if and
e

Proof Since F is causal, for all x € L2e we have

< Fx> = < FP x> = < >
PTx,PT X PTx,PT Tx PTx,FPTx '

. Now assume
2e

<x,Fx> < 0. Since

which shows that positivity on L2 implies positivity on L
that F is positive on L2e' but that for some x € L2,

lim PTx = x, this implies by continuity of <,> that for some T,

T-+c0

<p_x,Fx>
&

<PTx,PTFx> < 0, which yields the contradiction. Q.E.D.

Note that the lemma still holds if "positive" is replaced by "strictly

positive".

If Fl and F2 are positive and o, and a2 are nonnegative real numbers,

then alFl + a2F2 is positive. If F = exists and F is positive then F_l

. . -1
is also positive, (since if y = Fx then <F "y,y> = <x,Fx> 2 0). Note that
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. T
the inequality J; xy dt 3 0 can be viewed as a statement about the
correlation between the functions of time x and y, a point of view which

is utilized in the proof of the O'Shea theorem (Theorem 1.4), [12]1.

Examples of positive operators are (i) A positive linear gain,

(FPx) (t) kx(t) where k 2 0, (ii) A first- and third-quadrant ncnlinearity,

(Fx) (t) f(x(t)) where 0f(C) 2 0, e.g. the functions stp O, sgn O,
sat k 0, defined in Chapter 1, (iii) A time-varying nonlinearity, (Fx) (t)=
f(x(t),t) where O0f (C,t) > 0, as for example in 8 1.8. All of these
examples are memoryless operators; that is, present values of the outputs
depend only on present’ values of the inputs. An operator which is not
memoryless is said to be dynamic. An important class of dynamic operators
is the convolution operators, i.e. those for which Fx = y where y(t) =
j:: g(t~-T)x(T)A8Tr. Usually these are defined by a rational transfer
function G(s), which is a function of the complex frequency variable s,
representing a differential equation relating y(t) and x(t), and given by
2e

(-~} -
G(s) = J; e Stg(t)dt. Such an operator will be positive on L, if and

only if G(s) is a positive real function, as discussed at the beginning

of § 1.4(d). This requires that Re G(jw) > O for all w, and strict
positivity requires that Re G(jw) 2 n > 0 for all w, for some

n> o.

To indicate why this is true we make use of Parseval's equality of
Fourier transform theory, ([ 3] section 1.3, [29]). We extend our time
interval of definition to (-~ ,®) by letting x(t) = 0 for -«<t<0, Now if

. . T -juwt .
x(t) € L, (-®,®) let X(jw) = lim j' x(t)e dt. Then X(jw) € L (-=,®),
2 Tom =T 2
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and X(jw) is called the limit-in-the-mean Fourier transform of x(t). We

have the inverse transform x(t) = -2%? m f: X(jw) ejwtdw. Parseval's

equality states that f: u(t)y(t)dt = _2}1'1 j_l: U(jw)?(jw)dw . where the

overbar denotes comple< conjugation.

Supposc now that y(t) = ft g(t~-T)u(T)dTt, so that
0

Y(jw) = G(jwIu(jw).

f‘” U (jw) ¥ (Gw) dw by Parseval
~ 00

men  [° wwyma = L

-0

U (50) G(5w) U (jw) &

]
SIS
e
8

§

O o
T 2m -.‘;,° U (30) |26 (3w) aw
1 pe o |
= = lu(5w) | 2ReG(§w) dw since u(t) and
Lo

y(t) are real.

From this it follows that r uydt 2 0 for all u € L2[0,°°) if and only if

-0

Re G(jw) > O for all w.

Finally, another important class of positive operators are those
obtained by the composition of a monotone nonlinearity F with a transfer
function G(s). For a specific nonlinearity F, such as £(®)= c?, it
is not known at present how to determine conditions on G{s) for FG to be a
positive operator. However, if we require FG to be positive for any

monotone nonlinearity £ with £(0) = 0, then the theorem of 0'Shea (our

Theorem 1.4) provides the answer.
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(c) The Positive Operator Theorem

Consider the feedback system of Fig. 2.1.

Fig. 2.1

The governing equations for this system are

(el e TR
< €27 T Y
Y17 6%
¥ = 6% :

We assume that the operators G, and G, satisfy Gi 0=0, (i=1, 2). Ve

1 2
call ul, u2 the inputs; el, e2 the errors; and yl, y2 the outputs. The

inputs may represent driving functions, driving noise, or initial condition

responses. Assume that for any Uy, ou, £ L2e' solutions € v €50 Y1 Y, in

L2e exist for the above equations, and depend on Uy u, in a causal way;

this assumption is called well-posedness.

We would like to know when the feedback system is stable in the

sense that bounded inputs yield bounded errors and outputs.
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Definition The feedback system of Fig. 2.1 is finitc-gain stable if any

inputs ul, u, £ L2 yield ey ey yl, Y, € L2, and there exist

<
constants pl, pz « such that for any ul, u2 € L2

eyl Heyllo yylle Hygll € py Hoglle o, sl -

Theorem 2.1 ([ 34 ), Chapter 4). Suppose that G2 is bounded and either

G, is bounded or ||PTG2x\| > q||PTx]| for all x € L, , for some n > 0.

Then the system of Fig. 2.1 is finite-gain stable if and only if

-1
Ha+ 6,607 <= on L,
The theorem holds if the roles of G2 and Gl are reversed.
Proof Since e, =u - G2e2 =y - GZ(G1e1+u2)’ (I+G2Gl)el = u + Gzclel—
-1 . .
G2(Glel+u2), so (I+G2G1) exists on L2e and is causal, by well-posedness.
Let Uy, W, € L2 be given. Then
[ -
llpT(1+Gzcl)el,, = IIPTul + PG,G e PTGz(G1e1+u2)[l
< ||PT“1|| + llpTcszGlel - PTGZPT(Gle1+u2)|l
< ||pTul|| + IIPT62|IA llpTclel - PT(Glel+u2)ll
¢ Alugll+ oyl « il -
Now e, = (I+G.G )-1(I+G G.)e
1 271 271’71
-1
So PTel = PT(I+G261) (I+G2Gl)el
1

- . -1 .
PT(I+G2G1) PT(I+C~2G1)el since (I+GZG1) is causal

TR B
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-1
Thus “PTeln - ”PT(I+GZGI) . PT(I+G2Gl)e1”
-1
< HPT(I+G261) []. IIPT(I+G2G1)el||
-1
€ ||(I+G2Gl) I . HPT(I+G2Gl)elH )
-1 -1
Therefore, ||PTel|| < I’(I+G2Gl) ll.llulll + ||(1+ngl) |'.I|62||.||u2||,

for all T. Thus e, € L2, and the finite-gain condition is

satisfied. Since y2 = ulfel, y2 also satisfies these conditions. Now if

||G1|| <> , we see that y.. e  also satisfy these conditions. Alternative-
Y

2

ly, if nIIPTeZII £ IIPTy2|| then e €L

2fL, with ||e2HS n-lllyzll, and yl€L2 also,

since Yy =€ - u,. The necessity of |l(I+G2G1)-l]| < o for finite-gain
stability follows from

-1 .
= (I+G2Gl) uy o if we take u, = 0. QED

€1

Theorem 2.2. Positive Operator Theorem ([42],[36] Chapter 4). The system

of Fig. 2.1 is finite-gain stable if G1 and G2 are positive on L2e' and

one of them is strictly positive and Lipschitz continuous on L2.

Proof. Suppose G, is strictly positive and Lipschitz continuous. We shall

2

show that the conditions of Theorem 2.1 are met. For any x € L2e we have

nHPTxH2 < <P G x,PTx> by strict positivity of G

2 2

/A

||PTG2x||. IIPTxll by the Cauchy-Schwartz

inequality.

Thus, IIPTszll 2 n||PTx!| for all T. We therefore only need to show that

||I+GzGl)-ll, < ®© on L So let x € L, and cuprose (I+G2Gl)y = X. Then

2° 2

Yy € L2e by assumption, and PTy + PTG2Gly = PTx.
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= >
Now < Py + P,G,G,¥,PiG)y > = € PGy ¥iPpy > +< PpGoGy¥,PpGyy
2
2 0+ nllp,G yll

since G1 is positive and G2 is strictly

positive.
Thus nllegeyl1® € < poxpcyy > < Hlegxl . [pgSyyi] by the
Ccauchy~-Schwartz inequality,
so Gyl € ntlegel] < n M Ixl] .

Therefore, Gly € L2 and ||Gly|| < n-ll!x[l. Furthermore,
legeyyll < Hellogyll €« n7M syl HIxll. wow v = -G8y + x,
so y €L, and ||y|| = ll-Gzcly + xll
¢ oozl + lxl]

¢ el Il + Hixll

Thus, since y = (I+G2Gl)-l x, we have ||(I+G2G1)-1|| £ n-1||62|| + 1<,

and the conditions of Theorem 2.1 are satisfied. QED.

It is interesting to note that if in addition Gl-l exizts, then

G1(1+G2G1)-1 turns out to be itself strictly positive and bcunded on L

2
u, when u

. -1 .
({34), p. 39). Since Y, = Gl(I+GﬁG1) 1 5 = 0, this says that the

closed-loop system itself is a positive operator. We can interpret this

in terms of passive electrical networks, [42]: Let Gl be the driving-point

impedance of a passive two-terminal network, and let G

. . -1 _ -1, -1 ,-1 -1 -1,
point admittance. Then Gl(I+Gzcl) Glcl (G1 +G2; = (G

the dr iving-point impedance of the series connection, as shown in Fig. 2.2,

and this is passive if Gl and G2 are passive.

5 be a passive driving-

o Hudan b
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Impedance
- Gy

Admittance
- - Gz

Impedance
G,(I+6,6,)”'

Fig. 2.2

It is also interesting to note that the requirements of Theorem 2.2 can be

and G_., but no boundedness.

altered to strict positivity of Gl 2

§ 2.3 Dissipative Systems

In Chapter 1,§ 1.4(e),§ 1.5(e),8 1.6, and § 1.7(¢c) we introduced and
made use of the idea of a dissipative system. Dissipative systems are of
interest in engineering and physics; typical examples are passive electric-
al networks in which part of the energy is dissipated in resistors as heat,
viscoelastic systems where energy is lost through viscoelastic friction, and
thermodynamic systems for which the second law of thermodynamics postulates
a form of dissipatior. leading to an increase in entropy. We use the term
dissipative as a generaiization of the concept of passivity, and the term

storage function as a generalization of the concept of stored energy or

entropy.
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Let G be an operator, or system, with input u(t) and output y(t),

0 ¢ t €< », defined by the equations

x(t) = £(x,u,t)
r = g
x(0) = X,

The vector x(t) is called the state vector for G; the space X to which
x(t) belongs is called the state space for G. Let w(u,y) be a real-valued

function of u(t) and y(t). Then G is said to be dissipative with respect

to the supply-rate w(u,y) if there exists a nonnegative function V(x) with

V(0) = 0 such that
V-wgoO.

V is called the storage function for G. The inequality V -w g0 is called

the dissipation inequality, and it is easy to show (using for instance

Theorems 6.10 and 6.15 of reference [27] that this is equivalent to the

inequality
1
Vixy) + fw(t) dt 2 V(x,)
%o
where x(tg) = x4 o x(ty) = x, .

Now we introduce a quantity called the available storage; it is a

generalization of the concept of "available energy" or "recoverable work".
For the network of Fig. 1.34 it represents the maximum possible energy
available at the terminals, starting from some given initial condition. The
available storage Va of the system G in state 50 is defined by

t

1
Volxy) = sup -fw(t) dt
0

t1>0

x(0)=x 4
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The supremum is taken over all motions starting in state x . at time O,

0
and all possible u(t). The available storage is an important function in

determining whether or not a system is dissipative, as is shown by the

following theorem:

Theorem 2.3.[35] The available storage V_ is finite for all X5 if and

a
only if G is dissipative. Morecver, 0 < Va < V for &ny storage function

vV, ané Va itself satisfies the dissipation inequality.
The reader is referred to [35) for a proof.

The state space X of the system G is said to be reachable from

x € X if for any x, € X there is an input function ul(t) which will

0 1

transfer the state of G from X  to x,. We shall assume henceforth that

0 1
all storage functions V have the property V(0) = 0, i.e. 0 is the point of
minimum storage for G in X.

Next we introduce another quantity, called the required supply:

this is the minimum amount of supply which must be delivered to the system
in order to transfer it from its state of minimum storage (the zero state)

to some other given state. The reyuired supply Vr for the state % of the

system G is defined by
t

1
Vr(?gl) = inf f uy dt
1"30 0
x(0)=0
x(ty)=x,

The infimum is taken over all possible motions starting in state x(0) = 0

and terminating at time t, in state x,. We now have:

1 1



R, CAERPE

-103-

Theorem 2.4 [35] Let G be dirsipative with storage function V for which
V(0) = 0. Then O ¢ v, &V < V_. Moreover, if the state space X of G is
reachable from 0 then Vr < and Vr is itself a possible storage

function.

For a proof of this theorem the reader is again referred to [35]; we show
that Vr satisfies the dissipation inequality in the proof of Theorcm 2.5.
From Theorem 2.4 we see that the storage function V of a dissipative
system always satisfies the inequality va <€ V€ Vr , 1.e., a dissipative
system can only supply to the outside a fraction of what it has stored and
can store only a fraction of what has heen supplied. Va and vr themselves
always satisfy the dissipation inequality, and hence are storage functions.

However, not every function Vl(g) which satisfies Va £V, € vr will be a

1 €
storage function. It appears to be difficult to state other general proper-
ties of the set of possible storage functions, evrept for its convexity:

If V1 and V2 are storage functions, then sr s avl + (l-a)V2 for any

O£ agl., This follows immediately from - issipation inequality. 1In
particular, if the state space is reachable from 0 then ava + (l-a)Vr is a
storage function for any 0 £ a £ 1.

As a consequence of the normalization V(0) = O we obtain the following

expected relationship between positive operators and dissipative systems:

Theorem 2.5 Let an operator G with input u(t) and output y(t) bc defined

(
by X = g(‘x_'u't)

Yy = g(x)

’ 0Og t <>

ottt g
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and assume that the state space of G is reachable from 0. Then when

¥o

respect to the supply rate uy with a storage function V(x) > 0 for which

= 0 G is a positive operxator if and only if G is dissipative with

v(0) = 0.

proof. If G is dissipative then when x . = 0 we have

0
A ' T.
juy a 2 -[ vat = vx(T)) - V(x(0))

0
= V(x(T) > 0,

and thus G is a positive operator. Suppose now that G is a positive

operator whenever - 0. Then

t1
V(x,) = inf f uy dt which is the
-1
t.20
1
%(0)=0

x(t,)=x,

Then V(_:_c_l) 2 0 since fl uy dt 2 0, and \}(g) = 0 by taking tl = 0.

0 required supply.

To show that \'I-uy < 0 we observe that
Y
V(_:_t_o) + uy 4at 2 V(il) since
t
Y t
to tl 1l
inf f uy dt + fuy dt > inf / uy dt
> 2
€520 g t,30 o
€<t xleg)=x x(0)=0
x(t,)=x, x(t,)=x,
x(0)=0
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Fig. 2.3

Fig. 2.3 illustrates this last inequality, which we see is precisely the

dissipation inequality. QED.

Note that we could also make use of the available storage to define V,
rather than the required supply. The advantage of the positive operator
concept is that it is an input-output concept which does not involve
introduction of state space notions. However, in this approach we are
restricted to considering operators which map O into 0, which though not

a serious restriction, does in fact mean that we know something about the
intexrnal properties of such an operator, i.e. it must start from a state of
minimim internal storage; the dissipative property of a system is indepen-
dent of its initial condition. 1In applications both viewpoints are
essential. For instance, in Chapter 1 we saw that for the second-order
systems ¢ dissipative system characterization of operators was superior
since it led to Lyarunov functions, while for the fourth~order systems we
had to fall back or the positive-operator methods.

If we write d = V - w then d is called the dissipation rate. When

d E 0 the system G is called lossless. An example would be the driving-
point impedance of a network containing only inductors and cepacitors.

Energy storage and retrieval is 100% efficient for such a system. 1In
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this case the cCissipation inequality hecomes an equality, and the storage

function is defined uniquely by Va =V = vr = f w dt.

It may happen that Va = Vr for a system which is not lossless; such a

system is called quasi-lossless since it can be transferred between states

with arbitrarily small dissipation if the input is suitably chosen. All
first-order systems (such as that of Fig. 1.32) are quasi-lossless. As an
example consider the system of Fig. 2.4, where £(0) is a function with

X
£(0) = 0 and cf(0) > 0. Let F(x) = J f(o)do.
0

‘x(o)

us X + X { X flo) f(x)=y
e

abry - _ice

Fig. 2.4

If w=uy = (x+x)f(x) = xf(x) + £(x)%x we have

t

1l
Va(xo) = s:g - f [xf(x) + f(X)% ]dt

tl 0

x(0)=x0
Y
=  sup [-—fxf(x)dt - F(x(t))) + F(x(O))] .
1l

t,20 *

1 0
x(0)=xo
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Now we can always choose u so that xf(x) is bounded. Thus, letting x(tl)

= 0 and t, * 0 we obtain Va(xo) = F(xo). Similarly

1
5
. V - =
%) ti:g [ / x£ (x) at +F(xl)] Flx) .
1/
x(0)=0 0
x(t,)=x,

Let us consider an electrical interpretation of this when £(0) = 0. In
Fig. 2.5 u is the applied input voltage to a resistor-inductor network,
and x is the resulting current, given by x + x = u. If x(0) = O then the

energy supplied to the network in the interval 0 € t € t_ is

1
t’l t]_
2 1 2
. E1=fuxdt=fxdt+-2-x1 ,wherexl—-x(tl).
0 0 1.2
The energy stored in the inductor at time t1 is E2 =7x (tl). In order to

demonstrate the quasi-lossless property of this network we must exhibit a

t
u(t) for 0 £ t € t. which will make the difference E_,k - E2 = I 1 x2 dt

1l 1l
0
arbitrarily small. One such u(t) is the constant function u(t) =
( Xy ) x. (1 -e%
- for 0 £ t £ t,, which gives x(t) = -~ £ x, .,
l-etl 1l l-etl 1
tl )
so that J x dat < tlx1 , which approaches zero as tl + 0. Thus, the
0
x 1Q
o -AN N
' “? 1H

Fig. 2.5
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most efficient driving function for this network is an impulse, i.e. for
high efficiency the energy should be delivered to the network in as short
a time as possible.

Consider now the linear system G described by

%
n
1>
1%
+
|
1=

+

pa

"
10
%
|o
e

where x(t) € " ; u(t), yl(t)e !Rm, and A,B,C,D, are constant matrices of
appropriate dimensions. Assume that (A,B,C,D) is minimal. We wish to
know when this system is dissipative with respect to the supply rate
w=u'y. IfD +D'is invertible the evaluation of the availakle storage
va and the required supply Vr reduces to an optimal control problem which
may be solved by ccnsidering appropriate solutions of the matrix equation

~1

KA+A'R+ (KBC') (D+D') " (B'K-C) = 0.

It can be shown [36] that this has a real symmetric positive definite

solution if and only if G is dissipative. Then Va(ll_) = %i'l(_-)_t. and

v, (x) = %- _)g'_lfa,where -1§_+ and 5- are solutions of the above matrix equation.
If D + D' is not invertible then §_+ and 1(: are given by the limits as
n-+o0 of _l§+n and l(_-n , which are solutions of the above matrix equation
obtained by replacing D by (D + nI). We also have that G is dissipative
with respect to w = u'y if and only if there is a real matrix @ = Q' 2 O

which satisfies

AQ+QA | QB-C
[]
SN E— - <o
f ]
Boc | -p-D'
g % ] :
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Moreover, %-3:_'25_ is a storage function if and only if Q satisfies this
inequality. In particular 5+ and 1(_- satisfy it, and every solution Q

satisfies 0 < _15- §Q¢ §+.

§ 2.4 Realizations for O'Shea Functions

Suppose we have an operator F with input u(t) and output y(t) defined

on 0 € £t < © by the equations

(i = Ax+bu
z = LXx

<y = f(z)
x(0) = O

\

vhere £(0) is a monotone function with £(0) = 0, as depicted in Fig. 2.6.

As stated in Theorem 1.4, we know that F is a positive operator if and only
[ ]

if Z(s) = [c(Is-A) 'BI ™ = g + Ys - g(s), vhere Y20, gls) = [ g(tle "at,
0
g(t) > 0, and g, > §(0) =f°° g(t)dt. If we also know that f(0) is odd,
.0
i.e. f(0) = -f(-0) , then we can relax the conditions on Z(s) to require

that z(s) = 9o * VS - §(s) wherey 2 0, §(s) = ’0 g(t)e-Stdt, and

o
/ |g(t) Idt g go. These results are due to 0O'Shea, [26],
0.

flo) | y

| =
N

woon
o0 1>

1%

+
o

[ =

N

1%

Fig., 2.6
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[32], (12), and we call a transfer function z-l(s) for which z(s) meets

these conditions an 0'Shea function.

Given an O'Shea function z-l(s) we would like to be able to construct
a realization (A,b,c} of z(s), as in Fig. 2.6, which will allow us to
write down a storage function for F as a function of the state vector X.
As yet a general solution is not known to this problem, however, we have

the following theorem, (cf. Theorem 1.5):

Theorem 2.6 Suppose that -A(t) is a hyperdominant matrix for all t,
b'=1(00 ««0Y] , Y>>0, c=1[00 ~~~01], and £ is any monotone non-
linearity with £/0) = 0, Then the operator mapping u(t) into y(t) defined

by

%
"
i
[%
+
o
ll‘-‘

L}
rh
—
N
—r

Yy

is dissipative with respect to the supply rate uy; with storage function

n
Vix) = %- 2 F(xi) , where F(z) = !z f(o) d0. Furthermore, if f is odd,
i=1 0

then -A(t) need only be dominant.

A matrix M whose ijth element is mij is said to be dominant if

n n
LI L and ms ) |mi.| for all i,3; that is, for each row and
Y= TSR
i i#3

ijl

column the on-diagonal elements are larger than the sum of the moduli of

the off-diagonal elements. M is said to be hyperdominant if it is dominant

and all the off-diagonal elements are negative; i.e. M is hyperdominant if

n n
m,<Owheni#3j,and] m_ 20and ) m 20 for all i,3.
ij 4=y 13 j=p 13
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Proof of Theoroem 2.6:

T aF 1
V(x) = 121 X " \_I?_ X  say
where !.’i - [t(xl) f(xz) f(xn)].
Thus \'I()=-1-V I\x+1V bu
= A=x=27 X
ui:y_xﬁ_x_ + uf(x )
1

"X Uyhx vy

Therefore vV - 1 .
=%y

Now, it can be shown ([33] [34]) Chapter 3) that if f(0) is any monotone
function with f(0) = 0 then y__ A x is neqative for all x if and only if

=A is hyperdominant, and that if f(0) is any odd monotone function then

_\in\_ X i5 negative for all x i€ and only if -A is dowinant. Oh

Necessary and sufficient conditions on A for Y-xﬁ- X to be negative for
all x when f is a particular given function are not known in genecral,
However  there is one function f of intereat (particularly with reqard to
applications of Chapter 1) for which these conditions are known: this is
the sgn function. IlLet a row-dominant matrix M be one for which

> I m, foralli,

j#l
> r “1 ™~ -3
xl sgn xl st} xj
and if x = X, then let sgn x = |sgn X, and stp x = stp X,
X L.ﬂqn an :,fp \

we have:
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Theorem 2.7  x'M sgn x 2 0 for all x if and only if M is row-dominant,

and (sgn x)' M x > 0 for all x if and only if M is column-dominant.

Proof. Sufficicncy: x'M sqn x = xl(m

11 1 12

+ xz(m21 sgn xl $oon

4+ e

= [ 2 [ [ “e @ ® [+ [
= ,xl] [mll(.-gn xl) + m_ . {sgn xl) (sgn xz) 4 F m n(..gn xl) (sqgn .

12 1
Fous (assuming xl # 0)

2 0 if M is row-dominant .

Necessity:  Suppose row 1 has m, - z lmijl < 0, (the proof for the cauce

i
mii - z Imi.l < 0 being similar). Let x = (1, - nsgn ml2’ cee , =~ I 5gn m
j#L
Then sgn x = (1, -sgn m12' -sgn ml3,---, -sgn mln)'.

T} S tM san = - g + 4 %% 4
ws, x'M sgn x n sgn m12(-—m12—- +

n
m - Z |m..l )
11 j=2 1j 2n

< 0 for n sufficiently small. QID,

Onc can also show in a similar way that a sufficient (but not necesgaiy)

condition for x'M stp x to be nonncgative for all x is that m s 2 M z lm
(-a,b) b a jrd
for cach i, where U is the larger of ;-and P

"

Let us call a realization (A,b,c) of li(s) which mects the conditions

of Theorem 2.6 a dissipative (hyper)dominant rcalization. Though it is

not known what thc necessary and sufficient conditions are for a given H(s)
to have a dissipative (hyper)dominant realization, clecarly it is necessary
for H(s) to be an 0'Shea function: 1i(s) = (go + Ys-fj(s))—1 with vy # 0.

I conjecturce that this is also a sufficient condition; i.e. the conjecture

is that every O'Shea function of the type (gp + Ys-a(s))_l with vy # 0

sgn X, +m sgn x2 $oeot mlnﬂqn xn)

)]

in

).
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has a time-invariant dissipative (hyper)dominant realization. Let us
further discuss this question.

Firstly, it is easy to show that the conjecture is true for a
second-order O'Shea function, and that such a function need not have real
poles. Secondly, it is always possible to find a realization (A,b,c)with
b' = [0 ~~~0A) and ¢ = [0:+-0 1] for a given transfer function H(s) pro-

vided that Lim s H(s) = A ¥ 0. For, let

s-)ﬂ
9, g™l q 772 4oy q
H(s) = L n-2 0 where = )
n n-1 , 9n-1 ‘
s + P15 4o Py

Then we have the st ..rd controllable realization ([7) Chapter 17)

H(s) = ﬁ(_I_s-F)-lg. where

[0 1 © . ['o'
0 0 1
L= 1= B Sl T SRR Y
1 0
-_po 'Pl o o o -pn-lJ , | lj ,
Now let
[1 o ] (1 9
p= [0 1 Pl 1
1 0 1 0
. 99 Y “9h-2 1
qo qlo LI ] q -2 q _l o« .o
n n ] qn-l qn—l qn—l qn-l
e » - J
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Then we have the realization H(s) = E}Ep-ei)-lg.where

ad o —
A -PFP-I b-Pg_ L : c-hP-l-[O-o.O 1]
—1 - - '— - l - - - ¢

0

L -1 J
Now Al thus obtained will in general not be hyperdominant; the conjecturc
is, however, that if H(s) is O'Shea then there exists an R such that
-__gigfl = -&2 is hyperdominant, Rb = b, and ¢ 5-1 = ¢, Note that if
H(s) = (go + Ys-§(s))_l withyYy¥ 0 then Lim sH(s) = 1-1. For R to satisfy

1 s> ®
Rb=Dband cR ™ = C we must have

[]
R 1 0
R = =11 g -
= - o o ofp o e o
i
o 41

In § 1.5(e) we considered an example of this approach for a third-order
O' Shea function.

Now let us consider another approach. An interesting subclass of the
O'Shea functions is the class of RC impedance functions Z(s) which have

Z2(®) = 0. A general RC impedance function Z(s) can always be expressed

93

S+s,
i

n
([2],[16),[42)) as Z(s) = 9 + Z
i=]

where 9,0 8 2 0 for all i. If
9y = 0 then Z(®) = 0. An RC impedance has poles and zeros alternating on
the negative real axis, and a Nyguist locus which lies inside a circle in
the right half plane. It is proven in reference [42] that such an RC
impedance is an O'Shea function. Now the four canonical RC network

realizations of an RC impedance are the Cauer I, Cauer II, Foster I, and

Foster II methods. Of these the Cauer I methcd is of interest to us
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here, because it lecads to a tridiagonal realization which in some cases
is hyperdominant. A tridiagonal realization (A,b,c)is one for which the
matrix A is tridiagonal, i.e. the only nonzero entries are on the
diagonal and immediately above and below it: a 14 = 0 unless
jefi-1,1,i+1} . Consider the network of Fig. 2.7 w.th input current

I and resulting terminal voltage V.

vV, -v \'
. 2 1 1
We have cV, = - =
11 Rl Ro
e o 32 VN
2°2 R2 Rl

vn-vn-l - vn-l.vn-Z

v
n-1 n-l Rn—l Rn-2
-V =v
c n_n-l .,
nn R
n-1
1

Letting x, =V, VC, , u=/C_ ,y=VVC_, we obtain
i i i n n

Fig. 2.7

P e et e

s g
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vwhere
"1 1+1 1 o-ooo
Al \x ®)) o=
1 0 R1 C1C2
1 ~1/1+1 1
R, VE.C C2\Ry  Ry) rCC
1 7172 2 273
0 1 1(1+1>
 —— " C.\R, R,
R2¢C2C3 3 2 3
) _1[1+1)
(o R R
n—l\ n=-2 n=-1 R vC Cc
n-1 n-1n
1 -1
R C
R vc C n-ln
L n-l n-ln

b'=[{00...01],¢c=[00 ... 01],da= Rncn' Now -A is hyperdominant if
and only if Ci = C for all i. Thus, if Z(s) is an RC impedance with Z(®)=0
which can be realized by a Cauer I network with all capacitances equal,

then Z(s) has a tridiagonal dissipative hyperdominant realization. However,

& general RC impedance cannot be realized by a Cauer I network with all

s+)

capacitances equal, (For example cannot). For n £ 3 it appears

s +3s+1
that every RC impedance does indeed have a tridiagonal dissipative hyper-
dominant realization; furthermore one can show that every such realization
for n £ 3 is an RC impedance.
In obtaining a Cauer I network realization of a given Z(s), z(s) is

expressed as a continued fraction expansion. For instance, for

s+l

sz+3s+1

Z(s) =

we write
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z(8) = 3

1
4 +

L
(1/2)
This gives the network of Fig. 2.8.

naanmpeees on—
Vi
1 4

e
I Ri=%
R T
1V szi C'=4
Fig., 2.8

To obtain realizations for O'Shea functions in tridiagonal fomm we make

use of analog computation symbols as defined in Fig. 2.9,

(We leave
initial conditions unspecified).
K, ommmm——]
1
X e > y=-[ixexp)at
2 -
X
{
\ y=-(x‘+x2)
Xy //,/”ﬁ
X A/E;?\ sO(X
. [> &) Y
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(M 1
Now & transfer functio: Gl(s) = asif(3) with input u and output y can be

realized by the configuration of Fig. 2.10. Similarly a transfer function

1 :
Gz(s) " Bif(s) °an be reu.iced by the ~onfiguration of Fig. 2.1l.

v NN
v

f(s)

Fig. 2.10

c

(0

~_ .,
e

f(s)

Fig. 2.11

Now given any transfer function Z (s) with Lim sZ(s) ¥ O we can always
s - W

obtain a tridiagonal realization (A,b,c) with b' = [9-::0)) and ¢ = [0.°*01)

by ~xpressing Z(s) as a continued fractior expansion and representing this
expansion by a succession of connections as in Figs. 2.10 and 2.11. To

illustrate this method consider the RC impedance

- l'( 1 1 1l )
G(s) 3 s+l + s+2 + s+3

11
52 + 45 + TT

53 + 652 + 1lls + 6
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- 1
[ 1
3 +
3 1
> +
2s + 1
3 1
-_— +
10 Sgs + 30

Using the connections of Figs. 2.10 and 2.11 we now obtain the represen-
tation of Fig. 2.12, in which we have made the thrce integrator outputs

proportional to the state variables Xy Xy iXqe

grator outputs gives rise to a tridiagonal realization.

Such a labelling of inte-

Fig. 2.12
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o iy e

We have
( 50 . 10
Jox, = F (sz—axl) - 30ax1
2 Bx - 3(x -8x.,) -}-Q(Bx -ax. )
$ 1 ) 2} = 5 (Pxymax,
x
3 u 2
\ 3 3 3(x3-3x2)
- . - B - ( - r -
* 1 2 5a 0 X ° "
i€ x, | T |5 -2 1 x, | + 0
38 3B
i3 0 2B ~2 x 1
L - L B 3 i L 3

X
Yy = [ (o} 0 1]

Xy

X3J

The conditions which o and B must satisfy for this to be a hyperdominant

realization are

a,B > 0
8 68-1
Top $%¢ 5 .

The allowable values for & and B are depicted in Fig. 2.13. For example,

if we pick o = A - .14, and B = 2. .41, then A is symmetric:

5Y2 V6 -
-2 L 0
A= £l
1 - ]’Z
/3 3
B
0 3 -2
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ol

B R Gl st e

{tr———_—————

region

Couerd
, Network
- Realization-

|
l
*VAHowoble
[
[
[
|
[
{
4
1

Fig. 2.13

This corresponds to the Cauer I network realization of Fig. 2.14.

oo I Ry® Rt'i%

| D A

) 1 50 4
Fig. 2.14

In a realization of a given Z(s) by this method, if we let X, = kiwi where
v, is the output of integrator i and ki is some positive constant, then the
A matrix obtained will have diagonal elements negative and off-diagonal ele-
ments positive if and only if the coefficients in the continued fraction
expansion are all positive. If this is so then Z(s) can be realized as a
{Cauer I) RC network impedance.

Consider now the O'Shea function which we obtained in § 1.5(4d):
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82 + 1.45s + 0.5
G(s) = 3 2 - .
s° + 2008° + 965 + 4
1
[ _{
s + 1 —_—
1 1
196.6 & )
2055 +
-0.326 + 1

-1.68s5 + 2.24

This gives us the representation of Fig. 2.15, from which we obtain the

state equations

PR g 1 (.10 )
%) -0.49 -1.82 ¢ 0 %) o,
. = o 0.97
X, 0.015 7 -0.96 = x,, 0
x5 | | o 198.68 -198.6 | | x; | 1

y = [o 0 1] g W

)

L™

This realization cannot be made hyperdominant for any values of & and B;

we need to label the integrator outputs of Fig. 2.15 with a general linear
combination, i.e. we must label the outpur: of the lower two integrators
(axl + sz) and (Yx1 + 6x2), then look for suitable values of a,8,Y,S.

This, however, is essentially the same task as finding a,b,c,d for the

matrix R of § 1.5(e).
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X3 =y
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CHAPTER 3

SWITCHED ELECTRICAL NETWORKS AND BILINEAR EQUATIONS

§ 3.1 Introduction

A linear dynamical system can be described by a set of equations of

the form .
X = Ax+Bu
(1)
¥ = Cx+Du

where u is the vector of inputs or controls, y is the vector of outputs,
and x is the state vector for the system. We saw in Chapter 1 that
equations of this form describe the behavior of certain types of electri-
cal networks: in Chapter 1 these were voltage~conversion networks
operating from a battery with zero internal impedance, and we were able

to exploit the fact that the resulting evolution equations were linear,
for this led to a feedback system with a linear ope.ator in the forward
path. However, the class of systems describable by linear equations is a
restricted one; most of the systems encountered in the field of electrical
power processing (i.e. DC-DC conversion, DC-AC conversion, etc.) cannot be
described by linear equations. 1In this Chapter we address ourselves to the
equation "What kinds of state question arise in the description of power
processing systems?" Having answered this question in § 3.2, we then ask
in § 3.3 "What statements can ve make about classifying such systems:
what canonical forms for the state equations do we have?" 1In § 3.4 we
outline the role played by Lie groups and Lie algebras in characterizing

these systems, and in § 3.5 we give network examples.
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PRECEDING PAGE BLANK NOT FILMED:

P . -~ - .- - C— - 0 . L d e I I O I e T VO



e ———

-126-

§ 3.2 Bilinear Equations

Consider an electrical network composed of resistors, inductors, cap-
acitors, transformers, batteries, current sources, and ideal switches.

With these components, we can model the essential features of power con-
version networks. The state of this network will be a vector x(t) in R"
whose instantaneous value represents the inductor currents and capacitor
voltages; usually we take the state variables X, to be scalar multiples
of these currents and voltages.

If the topology of the network is fixed, that is, the switches are all
held in one set of positions, the state evolution equations will take the
linear form (1) given in § 3.1. The reason for this is that capacitor
voltages and inductor currents obey linear first-order differential
equations. The matrix A of § 3.1 will be a constant matrix vhose
eigenvalues represent the natural frequencies of the cjircuit. These natural
frequencies are determined by the component values and the topology of the
network, which will be changed if the switch positions are changed.

Consequently, if we have a network in which the switches are considered
as controls, with the position of switch i being given by u, where ui =0
or 1, then the matrix A will be a function of the ui's. The resulting

state evolution equations take the form

(2) { x=(A_ + uA, + uA_ +-*+ud)x + (b.u
- = m-m’ - =1

ST SR T T Y0 1t Rpuy +reedb ).

2
As a simple example consider the regulator of § 1.7, shown in Fig. 3.1.

We have

LlIl = -V2 + u(b-rIl)
Gv.= 1 .
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i Fig. 3.1
i = = .]; ' 3 )
Thus, letting xl I1 in and x, = V2 /cz (so that 3 x'x is the stored
energy in the network) and w = 1 ., we get
YL.C
172
x 0 - R 0 X b u
1 L 1 i
. o= + u + 1
x, w 0 0 (¢] X, 0

i.e. x-= (50 +1qil)§_+ bu ,

When R = 0 then 521= 0 and the state equation is linear; in terms of the
network we see that when R = 0 the natural frequency is unchanged by the
switch position, since the dynamic impedance of the loop including L1 and
C2 is the same for both switch positions. This example is of the simplest
kind, though of considerable practical significance. In § 1.8(a) we
briefly considered higher-order regulators of this type.

Now any system which can be realized by a set of equations of the

! form (2), i.e.

(3) (

m m
°+i=21 “151)5- + Lug

Ine
I™

i=1

P

n
|:!:
|N

A T pome St o s <y r
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can be realized by a set of equations of the form

m
= - (‘&°+1§ uib‘*)i

L = €Cx

(4)

To see this we let bﬁi be obtained by adding an extra row and column to

Eﬁ' thus:
o Ee e N LT
2o -1
° 0 0 0
’
and letting x = |2 and ¢ =[H 0] .
1

We are therefore interested in equations in the form of (4). Ths
is called the bilinear form. This form is even more general than we have
just shown it to be, for it is shown in reference (9] that if

P(x) = g(xl,x ---,xn) is a multinomial expression in the variableg

2'

x --*,xn . then any system of the form

1'

3}_=A+fu.A.)x
(5) ( 0 . i=— -

Yy = R

can also be realized in the form of (4). Thus nonlinear output maps can
be reduced to linear forms provided that they are of the finite power
series type. Again, this is done by extending the dimension of the state
vector. For example, the equations

X=-x+u

y = X3

can be written as



i I - 4 4 [P S SUPR |

-129-
ol ( — p- he \ -~ 9
p ] o o o0 0] 0o 0 O0 0O 1
x 0 -1 0 0 1 0 o0 o x
-é— 2 - < + > 2
at | x 06 0 -2 0 Ylo 2 o o X
! x> 0 0 o0 -3 o 0 3 0 x>
o \ L. . - - ) L -

This technique for handling nonlinear combinations of the state variables
is of more than passing interest to us. Consider, for instance, the
voltage regulator we studied in § 1.4.

There we had

X+ x=au
y = Bx + x
us=-stpy ,
We found that once the state reached the chattering region of the switch-
ing line near the origin, the settling time was proportional to B. Thus,
near the origin we want B small, while for large values of ||§|| we do not.
In order to obtain an improved overall transient response we might

therefore try a feedback strategy of the form y = i3 + x. We can now put

the equations

u = -stpy

in the bilinear form (4). It mast be pointed out that this technique will
lead to state equations of large dimension; in this regulator example the

state is l0-dimensional:
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RS LRI R R R ).
For a power conversion network with state evolution equations in
the form of (2) or (4), it will sometimes be the case that some of the .
variables u, are restricted to being functions of the state. Such a
situation may arise if there are diodes in the network, as for example in

Fig. 3.2, for which

R"

$
A elt) Cpet :E‘z $Re"

Fig. 3.2

we have
x2 = -x2 + u(e-xz)
l , x2 <e
vhere v =
o, x, e |

In this thesis tne only type of switch that we consider is the ideal two-

position switch depicted in Fig. 3.3.

Fig. 3.3
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We use this switch in obtaining "well-posed" network models for power
conversion systems; by a well-posed network we mean one for which capacitor
voltages and inductor currents are continuous functions of time. Fig. 3.4

is an example of an ill-pcsed network (cf. Fig. 1.5). This is not well-

I
E.[ L c-,[[fvo R

Fig. 3.4

posed because an infinite voltage would be developed across the switch if
it were to be opened when the inductor current I was nonzero. By pro-
viding an alternate path for the inductcr current when the switch position
changes, as in Fig. 1.5, the current will b; a continuous function of time.
Implementation of an ideal two-position switch will in general
require the use of two transistors (or thyristors) and two “freewheelino"

diodes, as for example in Fig. 3.5 which shows a scheme for implemerting

0
DU o o o oW
L
A-E T
T ; x0, c
T2

b

AY]
n

Fig. 3.5
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the regulator of Fig. 1.5 (or of Fig. 3.1 with K = 0). When u = 1 the
transistor Tl is turned "on" (i.e, acts as a short circuit) while the
transistor T2 is turned "off" (i.e. acts as an open circuit). In this
condition, the network of Fig. 3.5 is equivalent to that of Fig. 3.6, in

which the inductor current I flows through T, when I > 0 and back through

1
O
PR
et Y Y Y ™\ aammm——
+ L
T,
TE ! cC=
Fig. 3.6

D1 vhenever I € 0, When u = C‘Tl is "off" and Tz is "on", and then the

network is equivalent to that of Fig. 3.7, in which the inductor current

flows through 02 when I > 0 and through T2 when I < 0.

L 4

E+ Y & C
2 2
Sl

Fig. 3.7
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In practice, when constructing a regulator of this type, it is
usual to omit the transistor T2 (as in Figs. 1,55 and 1,56). This still
yields a well-posed network, however the analysis of Chapter 1 will
apply only if the condition {u = 0, I < 0} never arises, which will be
the case if the load current is large enough to ensure that at all times
1> 0.

In conclusion, we see that the state equations for power conversion
networks will be of the bilinear form (4), with some of the ui's restricted

to heing functions of the state, while others can be chosen freely.

§ 3.3 cCanonical Forms and Equivalent Systems

Since a wide variety of complex electric power conversion networks
have state equations of the form of (4), we are particularly interested in
classifying bilinecar systems. We would like to be able to determine when
twc electrical networks which are topologically different have similar
dynamical characteristics; not only would this be conceptually helpful,
but a feedback law which was found to be suitable for one network could
be translated into a suitable feedback law for the other. Reference [9]
describes some recent results which answer the question uf when two bilinear
systems a2re dynamically similar. We shall now briefly out ne these.

Suppose we have two systems of bilinear equations:

m
xX= (b.o+ iz ui-A-j_) X

4) 1
r=Cx
. m
@ | = (£° ' i-z-l uigi) -
L=Hz
i " - R .
- i ! —i 'mmwiﬂmmu-.-:-i
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Let u = (ul, u "'um) be the input vector, and y the output vector. We

2'
say that (4) and (6) are equivalent if there exists a nonsingular matrix

1 1

P such that gi- P for 0 € i<mandH = (_3__!1- . Our reason for

A.P
—-—1_—
this definition is that if we are given (4), and we let z = P x, then we

1 and H = g_grl; in this case (4) and (6)

obtain (6) withF . =PA P
are realizations of the same input-output map. We would like to know
when the condition that (4) and (6) realize the same input-output map
implies that they are equivalent. We shall answer this question below in
Theorem 3.1, which is similar to the well-kncwn result on the equivalence
of realizations of a linear system ([7], section 18).

We call a realization in the form of (4) irreducible if there is no

invertible matrix P such that for 0 € i € m

i

R
pa et = | .
Ba B

i
11

no choice of basis is the realization in block triangular form. Otherwise

where the B are square matrices, all of the same dimension. That is, for
it is called reducible. It is a fact ([9], Theorem 3) that every bilinear
realization (4) is eguivalent to one in which the matrices ﬁni are in block

triangular form, with the diagonal blocks being irreducible, thus:

- ﬂ
A . .
Al o o
A, = i i
* Ea B & -
i i i
Ea Bag B33 - -

A . Lo e ‘l..‘..a..-_............_m.mk... s e bt e o

“”"r‘""""""‘ o 1 i vl T - 1 v ki Al
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We shall call 50 an equilibrium state of the bilinear system (4) if

AyX,= 0. This is the same as requiring that x , be an equilibrium
solution of (4) when v, = 0 for all i.

We have

Theorem 3.1 ([9], Theorem 8): Suppose that we are given two realizations

of the same input-output map

m
x(t) = b—O + 2 .‘:.‘11_\.1 X
i=1
(4)
b4 = Cx x(0} = Xo
. m
t) = +
z(t) Lo 121 wEo) 2
(6) {
Y = Hz ; z2(0 = 2y

Let X, and Z, be equilibrium states. Suppose that both realizations are
controllable in the sense that the set of states reachable from Xg Or

Zy is not confined to a proper linear subspace of the state space for

X or z. Suppose also that both systems are observable in *he sense that

any two starting states (not necesserily 5_0 and _z_o) can be distinguished

by means of the measurement of y, for a suitable choice of u. Then the two

realizations are equivalent.

§ 3.4 The Nature of Solutions for Bilinear Eguations

For the linear equations (1) given in § 3.1 it is well known that the

explicit solution for x(t) in terms of u(t) is given, for all t, by




-136-

t
(7) { x(t) = e2'x(0) +J 2 yimar .
0

This formula for x(t) is sometimes called the Variation of Constants
Formula, and is useful not only for explicit calculation of solutions, but
also for determining properties of these solutions.

It is not possible to write down an analogous explicit solution to
equation (4) for all t. However, as shown in [8] we can study the intrinsic
properties of the solutions of (4) by using the tools provided by the theory
of matrix Lie Groups and Lie Algebras ([20), ([28], [8), (3], [30), [10]).

To this end, we now introduce these concepts.

Letl.".nxn denote the set of real nxn matrices; it is a vector space of
dimension n2. A Lie algebra L in R is a vector subspace of R™*" which
has the property that if X and Y belong to L, then so does [X,Y] = XY-¥X.

We call [X,Y] the commutator or Lie product of X and Y. As examp'es of

matrix Lie algebras we have:
Example 1: The set of all real nxn matrices R0 is itself a Lie

algebra, sometimes called the general linear Lie algebra and denoted gl(n,R).

Ex&mgle 2: The set of all nxn real matrices with zero trace is called the

special linear Lie algebra, and denoted sl(n,R).

Example 3: The set of all nxn real skewsymmetric matrices, i.e. those
which satisfy X'+ X =0, is called the orthogonal Lie algebra and denoted
o(n,R),

Example 4: The set of all 2n x 2n real symplectic matrices,i.e. those which

satisfy X'J + J X = 0 where
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|o
U
]

Jd= , is called the symplectic Lie algebra and
1 0

denoted sp(n,R).

Example 5: Consider the three matrices

0o 0 o o o0 1 0 -1 0
B« = 5 = 5 =
0 o0 -1 Ylo o o z 1 o o
o 1 o -1 0 o0 o o0 O

These are a basis for o(3,R), and we find that

RR,1=R,, [R,R1=R_, (R, R ]=R_.

Example 6: The affine algebra of the line, aff(l), consists of all real

matrices of the form uv . The two matrices X = 1 ¢ and
0 0 o} (o]
0 1 . .
Y = form a basis, and we find that [X,Y] = Y.
0 0

Given an arbitrary subset cof R we can add additional elements to it
so as to imbed it in a Lie algebra. To obtain the smallest Lie algebra
which contains a given set N we first add to N all linear ccmbinations

of elements of N so as to obtain a vector space N.. Then we form all pos-

1

sible Lie products of elements in N, to obtain a set [Nl,Nll. We add this

1

. - + 7 . . . in N w
to Nl and obtain N2 Nl lNl,NI] If N2 is not contained in 1 e

N3 = N2 + [Nz, N2], etc. This process must stop in a finite number of
steps since otherwise at each stage we increase the dimensicn of the

vector space by at least one, and the dimension cannot exceod n2. We call

the Lie algebra thus obtained the Lie algebra genecrated by N, and we
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denote it {N}A + For example, in Example 5 above the Lie algebra

gencrated by any two of B-x 'R gz is o(3,R).

Y
Let L be a Lie algebra. The set [L,L] of all possible Lie products

of elements in L is called the derived a.gebra of L and is denoted L'.

The derived algebra of L' is denoted L". Continuing, we have the

derived series:

. (m)

LOL' OL" D .o L ) L(m+1)3 vee )

(m)

The Lie algebra L is said to be solvable if L is zero for some m. We

shall call L simple if L' = L. For example o(3) in Example 5 above ic
simple, while if L = aff(l) as in Example 6, then L' is spanned by Y and
L" is zero, so that L is solvable. It is a fact that any Lie algebra can
be decomposed into the semidirect sum of simple and solvable parts,

{28].

For each X in the Lie algebra L we define the operator adx by

adx Y= [5,!] for all YeEL.,

Powers of adx are defined by

ad .Y_= [1'[51“'1(£1_Y_]"']] .
Ny’

n times

L=

Using this notation, we can state the following result, which we use in

§ 3.5:

Lemma (Baker-Hausdorff): If X,Y are elements of the Lie algebra L then

X ve® e L ana yeX - (eadx)_Y_= Y+ [X,Y] + 'zl'i- (X, [%,¥]]

1
+ 3—1[51 [ir [Z_vl] ] ]+ .
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For a proof of this the reader is referred to [19]. (To see how the series

is obtained let

f(s) = eSEZP-sx
Then ft(s) = eszx Y e-sx es§§_§ e-s§
= e ~[X,Yle "=
similarly £ (s) = Eagly &%
a 52
Then f(s) = £(0) + sf'(C' + 3} £'(0) + *+-*
2

Y+ sIXY) 427 (X (XX1] + «oo
and the result follows on putting s = 1.)

Having introduced matrix lLie algebras we next introduce the con-
cept of a matrix Lie Group. If M is a set of nonsingular matrices in
R, we let {M}G denote the multiplicative matrix group generated by M,
i.e. it is the smallest set of matrices in R'°" which contains M and

which is closed under multiplication and inversion. If N is a linear

subspace of Rnxn' then let P be the set of all matrices of the form

X X X
e e s e_p where X, € N for each i and p=0, 1, 2, *** . P contains
=i
5T
no singular matrices since for any matrix §i,det(e ) = e > 0,

([7], section 4). Since it is closed under multiplication and inversion,
P is a group, and we write P = {exp N}G. It is an interesting and useful

fact that {exp N}G = {exp {N}A}G ({8] Theorem 1.)

If L is a Lie algebra then we call {exp L}G the Lie group associated

with L. For a full treatment of the relationship between Lie groups and

Lie algebras the reader is referred to [30]) and [10]. We now give the

e B
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Lie groups which are associated with the six Lie algebras given above:

Example 1: The general linear group GL(n,R) consists of all real nxn

invertible matrices.

Example 2: The special linear group SL(n,R) consists of all real nxn

matrices with determinant 1.
Example 3: The orthogonal group 0(n,R) consists of the real nxn matrices

which satisfy X'X = I. The special orthogonal group SO(n) consists of

all matrices in both 0(n) and SL(n,R).

Example 4: The symplectic group Sp(n,R) consists of the real 2n x 2n

matrices which satisfy X'J X = I where

o -L

-J-::

I 9
Example 5: The group S0(3) consists of all r.al 3 x 3 matrices which
have determinant +1 and satisfy X'X = I.
Example 6: The affine group of the line consists of all real 2x2 matrices

a b

whose secon? row is [0 1}. 2Any such matrix is of the form '
01

and represents a transformation y = ax+b of the real line.

Now we can discuss the question of obtaining solutions to the

equation
. T n
(8){_§= (50 +izlui§_i )5_.§_(0)=§osm .

It is well known ([{7], section 3) that the solution to (8) is given by

(9) { x(t) = Q(t)gc_o

where ¢(t) is an nxn matrix, called the transition matrix for (8), which

is the solution of

B e e e ]
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. m
(10) { $(t) = (ﬁo +i§lui§_i ) ¢ , 8(0)=1.

We are, therefore, interested in solutions of equation (10). Now it can
be shown ([8], Theorem 5) that for all t, ®(t) belongs to the matrix Lie

Group {exp{i\_i} A} that is, the matrix g(t) will evolve on the Lie Gronp

G’
associated with the Lie Algebra generated by the coefficient matrices
BoRy il

There are two important consequences of this fact for power conver-
sion networks described by bilinear equations. The first of these stems
from the fact that in addition to having the properties of a group, a
Lie Group has the properties of a manifold, that is, a subset of Euclidean
space Ré with special geometrical characteristics. The two-dimensional
surface of a sphere in three~dimensional space is an example of a manifold.
The geometrical characteristics of the particular manifold on which the
state of a bilinear system evolves will play a fundamental role in deter-
mining the nature of the behavior of the system. For example, if the Lie
group is compact, i.e. closed and bounded as a subset ofIRnxn, then we know
that the state of the system is bounded, i.e. the amount of energy stored
in the inductors and capacitors will be finite. For instance, the Lie
group SO(n) is bounded, and the group Sp(n) is not. Thus, given a bilinear
system of equations, the natural first question we ask is "On what Lie
group does its state transition matrix evolve?"

The second consequence is that questions about the system (such as
controllability, reachability, observability, and stabilizakility) can be

reduced to questions about the Lie algebra generated by the coefficient

matrices. In many cases it is possible to arrive at conditions which are

g e ————————
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easily visualized and tested, as for example our results of Chapter 4, or
the results of reference (8). Of relevance here is the classification
result from the theory of Lie algebras, by which any simple Lie algebra is
shown to be equivalent to one of a short list of canonical algebras,
([28) Chapter 2, [24)). For solvable algebras there is no such complete
list of all possibilities, although a good many facts are known, [28].
Note that if P is a nonsingular matrix, equation (8) is unchanged by the
change of variable x » x P, and equation (10) is unchanged by 9_ -+ g P.
Now let us further discuss the problem of obtaining a solution to
equation (10). Let {_)_(_1 ' _)52 ,}_(_Q be a basis for the Lie algebra L
generated by {ﬁo , 51 g 'ﬁm} . In reference [19] Magnus showed that
there exists a t0 such that for 0 ¢ t < to the solution to (10) can be

expressed in the form

b (t)X .+ b (t)X_ +-°°+b (t)X
(11){g(t)=e1"12 2 koK

where b_,***,b, are scalar functions of time satisfying differential

1’ k

equations which depend on L and u,,*** ,um. The difficulties with this

ll

approach to obtaining a solution are that it is difficult to derive and

solve the differential equations for b ”',bk, and that only in severely

1?
restricted cases [31] is the representetion (11) valid for all t in [0, ).
Wei and Norman [31] showed that it is often preferable to look for a
solution in the form of a product of exponentials. 1In fact they showed
that there exists a to such that for 0 € t < to the solution to (10)

can be expressed in the form

-

om0 g e —— s — e sy 0 wa 4 ks 1
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g (t)X,  g,(t)X,

gk(t)§
(12) { g(t) = e e see @

k

where gl,gz,----,gk are scalar functions of time satisfying differential
equations which depend on L and on ul,°"um . Moreover, if L is solvable,
or if the matrices are 2x2, then this representation is global, i.e.

it holds for all 0 € t <= ., In § 3.5(c) we give an example of such a
global representation.

In conclusion we note that while in some cases it may be possible to
analyze the behavior of electrical power conversion networks with piecewise-
linear models, concepts from the theory of Lie groups and Lie algebras are
useful in chaiacterizing the inherent dynamical features of such systenms,
especially since the methods and conclusions are basis-free, i.e. they
do not depend on the particular basis chosen for the state space. We

give examples in § 3.5,

§ 3.5 Network Examples

(a) An 50(3) Network

Fig. 3.8 shows a simple network in which charge stored on one capacitor
can be transferred by means of the inductor to the other capacitor. If
the capacitances are different a voltage conversion will he effected. A
transferral cycle might be exccuted as follows. Starting from

vl(O) =V, _, 13(0) = 0, V2(0) = 0, the switch is held in the u = 0 position

i0

until Vl = 0 and all the energy is stored in L3, at which time the switch

is changed to the u = 1 position. It is held there until I3 again becones

zero, at which time the switch is reverted to the u = 0 position. All the
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Fig. 3.8
Cl
initial energy is now stored in C2, with v2 =-c Vlo. While this network
2

is toc simple to model a complete DC-DC convertor, it may very well model
the conversion portion of a convertor in which the charge on Cl is
replenished from an external supply during the u = 1 portion of the cycle, .

and a load current is drawn from C2 during the u = 0 portion. The equa-~

tions for this network are

11 3
C2 2 = q 13
L313 = -(1—u)vl - uvz .
X3 *3 1
Letting Vi = _—_ for i=1, 2 and 13 = — 8§50 that 5(3_(_‘5_) is the total
c, Vi
i 3
stored energy, we obtain
X o o o 0 -
! “ [ 1 * -
;(2 = 0 0 O]+ u 0o o w x2
%, l..wl o 0 lwl -w2 0 Xy
[T R — s —— o nsnsnciisntaiic i ) " i
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where wl = -E—- ' w2 - 1 '
"1y¢ LyC,
i.e. X -
X = [(1 u)ﬁi + “ﬁq]ﬁ
where 51 = 0. 0 wl 52 =10 0 0
0O 0 © 0 0 w2
-wl 0 © 0 -w2 0 .

We see that A, and A, are just scalar multiples of R and R of the Lie
=1 =2 - -

algebra Example (5) in § 3.4. Thus the Lie algebra generated by ﬁi and

A, is 0(3), and the transition matrix $(t) for this network evolves on the

Lie group SO(3). The state vector x(t) evolves on the 2-sphere 82.

(b) Simple and Solvable Parts

If we add a current sink in parallel with c2 of Fig.3.8, to represent

a load for instance, we obtain the network of Fig. 3.9.

I
* 1 *
3 o
Ctav\ V' L ‘:Z.FNva
3
. o -
Fig. 3.9
- .& Aiuiie Mciiaie -".'ll.l —— e 4 4 d
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The state equations &re now
x 0 0 0
1 0 wl 0 -0)1 xl
x
2 = 0 0 0 + u 0 0 w2 xz + Y
X
3 l:wl 0o 0 w W, O X, 0

Letting X, = 1 we can use the method of § 3.2 to put this in bilinear

form, thus:
- . - '1 - '1 - -
xl'\ 0O 0 wl 0 0 0 -wl 0 xl
»
x2 o o0 © Y 0O o w2 0 x2
= + u
)
x3 0 -wl 0 0 ml —w2 0 0 x3
)
Lx“ ] L0 0O O 0 ] L0 0 0 0 J L_x“ ]
iu‘o £ = (90 + u.B_l)l(_ .

and B, is six-dimensional and has as a

The Lie algebra L generated by B B,

basis the following matrices:

6 6 o0 o (0 0o 1 o] o -1 0 o)
0o 0 -1 0 o 0 0 o 1 o o n
2%, 1 o0 o 2%, 0 0 of B o o 0 |
o 0o o o 0 0 o o] o o o o
s T m ooy e g e . '
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6o 0 o 1| 0o 0 0 o 0 0 ¢ o
o 0 0 o o 0 0 1 5 0 0 0
X = ¥ = X =
= 0 0 0 0 = o 0 0o o ° o 0 0 1
0o 0 0 o o 0 0 o0 o 0o o .
L o~ L - Lo ”

We see that 51, 52, 53 are a reducible representation of ©0(3), while

54, 55, 56 represent a solvable Lie algebra. Thus . is decomposable into
simple and solvable parts, with the simple part determined by the "natural
dynamics" of the network, i.e. the interconnection of its inductors and
capacitors, while thec solvable part is contributed by the "driving forces",
i.e. the batteries and current sources. This type of decomposition is

a general characteristic of the types of networks we are considering,

(as introduced at the beginning of § 3.2).

(¢) A Transformerless DC~-DC Convertor

If we now replace the capacitor C, of Fig. 3.9 by a battery and allow

1l
the switch to take a third position in which the inductor is unconnected,

we obtain a model of a simple DC-DC convertor, as shown in Fig. 3.10.

e -~

. f
Uy I | U 2 1
: T Ly CpR Vz
- —
Fig. 3.10
il I A auinh b 4 wed T a1 i s+ s o et
— > T T T O . - -
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We have used two switches in Fig. 3.10 to represent the switching action;

ui = ] denotes that switch i is closed, and ui = 0 denotes that switch i

is open, where 1 = 1, 2. To ensure that the model is well-posed (as
discussed in § 3.2) we require (a) that ul(t)uz(t) = 0 for all t, (i.e.
both switches cannot be closed simultaneously), and (b) that if one switch

is open, the other chnnot be opened unless I1 = 0. The conversion cycle

we envisage is similar to that described in example (a) above, i.e. first

we set u, = 1 until I1 reaches some predetermined desired value, then we

let u, = 1 until I1 is again zero. 1In order to obtain a smoother output

voltage it may be desirable to use a low-pass filter at the output, as

depicted in Fig. 3.11.

1
i

O
o

3l

/1
£

Al

N
()

Fig. 3.11

The network of Fig. 3.10 might be implemented with a scheme such as that
shown in Fig. 3.12, in which u1 = 1 when transistor“r1 is turned on, and
u, = 1 when the current in diode Dl is nonzero.

We shall now illustrate the method of Wei and Norman for obtaining
solutions to the state-evrolution equations of the network of Fig. 3.10.

These are:
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D,
$ot- *r—
T
£ : @)
Yy
Fig. 3.12
. -‘\
x O 0 o0 0O o0 B 0O -a O x
1 1
x2=00-4y-4-ulo00+uzm00;x2
X, 0O 0 O 0O 0 © 0 0 O Xy
1l E I
where x. = I.vL, , x.=V./C, , x,=1,0= — ,B= —,Y=—"—",
1 171 2 2 72 3 i C i Je
172 1l 2
i.e. x = (A, + ull_\_l + uzﬁz)a_t_ .
. _ _ af L Gy
We find that [ﬁo, _I_\_l] =0, [51, ﬁzl i Ay [ﬁz, 1\_0] B 51 .
Thus the Lie algebra generated by _1_\_0, 5_1. 52 is solvable and has 50' ﬁl'
5_2 as a basis. By the Wei-Norman result we therefore know that there
exict functions go(t) ' gl(t) ' gz(t) such that for all t in [0, =) ,
g.A. 9.A, 9.A
3(t)=eo—oelle22
where é = (1\_0 + ulé-l + uzﬁz)_?_ and $(0) =1 .
: i [ | 1 1 _{
- . o i e o i F—
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To obtain the differential equations satisfied by go, gl, g2 we look at

gA. g A g.A g A g.A. g A g.A. g A g.A
3 o0 “1=-1 "2=2 0—0. 1=1 722 0—0 “1-1, 22
i = g:ACe e e + e gl.l_\_le e. + e e ngze
g,A qA) (91\ g,A -gA-gA)
=g A 2+gl( Ae 2+g2 e e Ae e $

We now make use of the Baker-Hausdorff le.wwua (§ 3.4) to obtain:

2
g A, -g,A g
00 00 -0
e A AL+ gglA A + 2 A A A T 4 e
= 'A-l .

Similarly
R, TR L () g
22 2 "Y'/ %1~
g.A -g . A
00 00 _fxy
and e Q_ze = 1_\_2 (B )gol_\l ]

We therefore obtain

$ - l(‘:'o‘“%s’gl‘.’z)ﬂo * (‘31 '%—goéz)ﬂl +"32¢2]2

which, on comparison with the defining equation for g , yYields
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. 0B .
f g0 + Y— glgz = 1
. - _(_!_Y_ -
9 9 8 9072 Y
\ 9, = u, .

Since $(0) = I we have gO(O) = gl(O) = 92(0) = 0. We can therefore write

the defining differential equations for 9o 93¢ 95 as

- L r N 7 - ~
: w8 1 ) ]
3, 1 o g |12 g,(0) 0
b = & =
g o o 1 u, |, 0 o |.
ng - L / L 2, ng( ) - L P

(d) Two Fourth-Order Lossless Networks

Lossless electrical networks are of interest to us since they may
define that part of a power conversion network corresponding to the simple
part of the Lie algebra, as discussed in example (b) above. Here we show
how a small change in network topology yields a fundamental change in the
associated Lie algebra. Consider the network of Fig. 3.13, where we assume
that the two switches are operated synchronously, i.e. the single control

variable u denotes the state of both switches. Ac usual we let xl = Il/il,

X, = VZVE;, etc., and we let a = —~l-— , B = —E;- ¢ Y = __l_ ' = _E~..
¢L1C2 v‘L3C4 VLlC4 VL3C2
Then we obtain

““"’_ﬂf‘m‘l‘w—y-w-!Hl-mul'l-:ﬂ T ‘ » - w'_‘[ - 1‘ _'_’_ 1 T — . . ‘ o
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Fig. 3.13
x = (a,+uA)x
where (0« 0 0] (0 0 o0 -y
« 0 0 0© o ¢ & 0
T [ 0 -8 2% 5 0 o
o o 8 o] vy o ¢ of .

Now the Lie algebra generated by 50 and 51 is six-dimensional, except
when a = 8 or Y = § when it is four-dimensional. If a = B and Y = § then
a=8 =y = § and the Lie algebra is two-dimensional, with basis A, A,.

Now the network of Fig. 3.13 can be redrawn as shown in Fig. 3.14.

PO TSRS GNP i A 4 "

e,
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Fig. 3.14

We can modify this network slightly by adding another synchronized switch

which has the effect of reversing the polarity of C4. Fig. 3.1% depicts

this sitvation.

Va
- *
Y
70
Ca
Fig. 3.15
For this we obtain
x = (E‘O + u_}ll)x
] 1 y o e —
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. B r 3
where O ~-a 0 O o 0 0 Yy
a 0 0 0 o 0o & o0
A = A, =
=0 o 0o o -] * Jo -5 o o
0 0 B o0 - 0 0 0
L P - p

with o, B, Y, § defined as before. Again we find that the Lie algebra
generated by 50 and éi is six-dimensional, except when a = f ory = 6§
when it s four-dimensional. This time however, if a = 8 =y = § then the
Lie algebra is three-dimensional, and in fact is a representation for the

Lie algebra o(3). Thus, whena = 8 =y = § the state transition matrix for

the network of Fig. 3.15 evolves on the Lie group SO(3).

(e) Higher-Order sSO(3) Jetworks

The aBstract Lie algebra o(3) is defined by the relationships

(§Y' ‘S'Z] =_S_x

A representation of this abstract Lie algebra is a set of three matrices

which satisfy these relationships. A representation is said to be

irreducible if its component matrices cannot simultaneously be put in block

triangular form, as in § 3.3. Now it can be shown ([28], Chapter 1) that,
over the complex field, all irreducible nxn irreducible representations
of 0(3) are equivalent to the following representation, where J =-E:l-and

2
“1 = {(n-41):
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- 0 /;Tl 0
§ S = - =y/=1 »/;T1 0 »’;T2
0 ﬁx‘z 0
L n-1 0 )
. )
0 /ﬁ 0
1
=z |Thoo |
. 0 “/“_2 0
i -A ;0 )
- R
J
S = /=1 J-1
ﬂ
J-2
L -J .

. An nxn complex representation of 0(3) can be made into a 2n x 2n real

representation by identifying a glven complex matrix (R + /:I'Q) with the

real matrix
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3 we obtain the % x 6 real representation of o(3)

given by
_ - ) _
lo -1 o o 1 o0
|
A= L (-1 o0 -1|la =21 o 1:
= vz | Y i ’
i 0 -1 0 0 -1 01
S SR —— e
o 1 } o 1 o
[]
1 o : -1 0 1
! [
0o 1 ' 0 -1 o0
- ! 4, L ! J
- | -
L 1o 0
}
A = 1 © 0 (4]
= I
| O 0 -1
e
!
o o o,
|
0 0 1
- P .

Suppose now that we would like to find a sixth-order network which has the

state equations

X = [uA + (1-w)A ]x ]
x= |uA A lx
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Fig. 3.16

Sixth Order SO(3) Network
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To do this we examine éx and éy and reverse the process by which we

normall’ obtain the state equations for a network. Assume that x1 is an

inductor current. We see from Ax that when u = 1 we need element 5 to be

a capacitor C_ and element 3 to be an inductor L_, with L, and L. connected

5 3 1 3

in parallel with C From A we see that when u = 0 we need L, and L. in

5° —y 1 3
parallel with a capacitor Cz, and C5 in parallel with inductors L4 and Le.
The resulting network obtained by this process is shown in Fig. 3.16 in
which the switches all operate synchronously: the switches denoted —

are closed when u = 1 and open when u = 0, while those denoted ——

are closed when u = 0. and open when u = 1.

By a similar process we can construct a network of order 2n for

any n 2 2 whose state transition matrix evolves on the Lie group S$0(3).

(£) A Reducible Network

Our final example shows how reducibility of the Lie algebra can
correspond to reducibility of the network. 1In Fig. 3.17 we wish to trans-

fer energy from the battery E to the output capacitor C We might ask

2°
whether an unlimited amount of energy can be extracted from the battery.
The two switches are operated synchronously. In a similar manner as

before we obtain the state evolution equations as

x = (a,+uw) x

o red o — .
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. Vi t-u
7 2l [ Vo
LAY
Cy
* 13 +l_
E—T+ Vv, th
L3
Fig. 3.17
where r0 0 0 0 (0 0 -w, 0
50 = 10 0 w, 0 51 = {0 0 -w, 0
0 -wz 0 0 wl w: ¢ =Y
¢ 0 0 0 (o] 0 0 0
~ J' ~ J
wherewls._}_. ’ mzs.._l__ ) Y = _E_
iy /L3C2 /173

The Lie algebra generated by and 51 is o(3), and thus we conclude that

A,
this network is dynamically similar to that of Fig. 3.8 and that only a

finite amount of 2nergy can be stored in C., C2, L. since the associated

1 3

Lie group is bounded. This may at first seem surprising, sirnce

the network of Fig. 3.17 has a battery in it. In the case w, =W, = 1

the Lie algebra has as a basis
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(0 o o o] (0 0 1 o] (0 -1 o0 o)
o o0 -1 o0 ©o 0 0 o 1 0 0 -y
2700 1 o o2 o o Y "6 0 0 o
o o o o] o o o of Jo o 0o o

where [!2,§3l = 510 “_(30’_(1] - !2' [)-(1')-(2] = 5_3 .

Examination of the network of Fig. 3.17 shows that we can reduce
it to a simpler form. The network is unchanged if the switch a and capaci-

tor C. are interchanged, giving the network of Fig, 3.8 but for a battery

1l
in series with Cl' Now the total energy which can be extracted from the
combination of Fig.3.18 is-%-CEZ. (This is an interesting singular
e ) I(')
+
C A~ V(0)=0
E —t
T —d

Fig. 3.18

optimal control problem which may be solved by observing that the arrange-
ment of Fig. 3.18 is externally identical with that of Fig. 3.19, since
both are governed by

L[t
v(t) =a+—-f I(t)dr . )
¢

In fact we see that the network of Fig. 3.17 is essentially the network

of Fig. 3.8, but with the capacitor C, being given an extra initial voitage

1
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+
C 7~ VIO)=E

o

Fig. 3.19

of E. The matrices 51, §2, §3 given here are a recducible representation
of the Lie algebra o(3): they can be reduced by eliminating from each one
the last row and column, which represents the contribution of the

batteries and current sources in the network, 21s we saw in example 3.5(b).
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CHAPTER 4

FEEDBACK STABILIZATION OF BILINEAR SYSTEMS

In Chapter 3 we showed that bilinear systems arise naturally in the
study of power conversion networks. Since it will in many cases ke desired
to stabilize such systems by means of state feedback, we are interested in
the general study of feedback stabilization for bilinear systems. 1In
Chapter 1 we discussed this question for a certain class of DC-DC conver-
sion networks. In Chanter 4 we shall address ourselves to the questicn of
feedback stabilization of systems which evuive on the (n-1) sphere Sn-l,
i.e. systems whose state vector X € r" satisfies §f§_= constant. We have
in mind two specific questions concerning the feedback stabilization of a
general bilinear system: {i) 1If the system is controllable (in some
approximately defired sense), can we find a feedback law such that the
closed-loop system is asymptotically stable about a particular point?

{(ii) If the system is controllable, can we find a feedback law such that a
given oscillation is stabilized for the closed-loop system?

Theorem 4.1 Consider the system of equations

. m n
x=Juhx , x(t) erR , x'(0)Q x(0) =1,

where g§i+ 5'19 =0 for 1l < i ¢mand Q' = Q> 0. Given some 50 which

satisfies _)5'0250 =1, suppose that the matrix whose columns are 2_51_)50 ’

25250,..., Ql‘mio has rank n - 1. Let u = [ul u? um] . Then there

exists a feedback control law u = u(x) such that the closed-loop feedback

system is asymptotical'y stable from any starting point x(0) other than X4
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Proof. Let M denote the set of points x satisfying x'Qx = 1; when 9 = I

then M is the (n-1) sphere Sn_l. First, note that we have x'(t)Q x(t)=1 for

d . . .
all t in [0, ») if x{0) € M, since -a-g_x_'g__:g =x'0x + x'Q9x = 0 since
25_1 + _A_'ig = 0 for each i. Next, consider the Lyapuncv function

V= % (x-x,)'" g (x-x,). Since 9 > 0 we know from the Lyapunov theorem

0

of §1.4(e) that if in some subset N of M with X € N we have i £ 0 with

0
V=0 only along the trajectory x(t) = X then the desired asymptotic

stability about X, will be obtained.

Now since x(t) € M for all t we have

V=g RQx - x
Q

thus the desired stability about x € NCM will ensue if x\ 0% 3 0 in N,

0

X AP .
with ﬁog:_g 0 only at -’EO
Now let £(0) be any odd function on the real line for which £(0) = 0O

= = ! i < n.
only at ¢ = 0. Let u, f(ggoggii) for 1 <« i < m. Then

m
x'0Q [ flx\ QA XA x

x\\Qx =
0 i= 1
m
= ] (x')Q3 0 £(x' 04 x)
i=1
m
= 121 (}.'ﬂigio)f(?s éigig)

) (5-25150)“&-95#_0) since QA + Afg = 0 and f is

n
" e~18

i
cdd.
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Thus 5'02_:5_ 2 0 for all x ¢ M, and _:_t'og__:g = 0 if and only if x'Q Ax = 0
for 1 £ i € n. Now since [25_1_:_(_0 'Qﬁzio ""'Qﬁm’—‘o] is of rank n-1 and
X, is in the one-dimensional subspace perrmendicular to {25150 ree QR X4 },

we must have that
[] = i =
-’Eg-éiio 0 for all i = x kl(_o
for some real k. From x'Qx = 1 we obtain k = + 1, and the result follows.

QED
The following theorem was proved jointly by Professor R. W. Brockett and

myself.

Theorem 4.2. Consicer the system of equations

= (a+ wB)x , x(t) eR", x'(0)x(0) = 1,

1%«

where A' + A = B' + B = 0. Suppose that x' = 1 and that Ax, = 0 and

0Zo

Bx 0 #¥ 0. Let u-= f(.’i'os_l‘.) where f£(0) is any function on the real line
satisfying O0f(0) 2 0, with £(0) = 0 only at ¢ = 0. Then the resulting

closed-loop system is asymptotically stable about x = in a neighborhood N

0

of X5 if and only if the pair (i'og,g) is observable (in the linear system

sense). Moreover, a sufficient but not necessary condition for this is that
. k . .
the set of matrices {AdAg,l_%} span the space of skewsymmetric matrixes,

where k = 0,1,2,-++, and Ad,}:E- is as defined in §:.4.
Proof. Since x = Ax + f£(x'

Bx)B x we have x' :'c_= (x' Bx)f(_:i'o_f_i_f_) 20

=0 0 Zo=2
for all x. Now _)5'0_55_ = 0 for all t if and only if i'og_:g = 0 for all t,
i.e. if and only if _>_c_'o_B_ e ﬁtzc_l = 0 for all t for some X - Thus, by the

Lyapunc~ method in the proof of Theorem 4.1, we conclude that asymptotic

stability in N is equivalent to the requirement that there does not exist

an x, # x . in N such that x' B e étg_l = 0 for all t.But this is equivalent

0 0
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({7], section 13) to the requirement that there is no x, in N such that
O-B—e-iil = 0 for i = 0,1,2,°**, which is equivalent to the requirement

that Q‘-.OE-'-&) be observable ([7], section 14). Thus, asymptotic stability

xl

ensues if and only if (5'0_8_.5) is observable. Now if _:5'05 =0, it is

straightforward to show by inauction that _:g'o Ad:g= (-1)m 5'055_"' for
m=0,1,2,---. (E.qg: lc_'oAdA_B_= i'o (AB~BAa=- E‘OE A ). Thus asymptotic
stability in N ensues if there is no E.3) in N such that _Jg_'o AdAkg_ X = 0
k k N
for all k and x' = 0. ! = ! c X!
a 50}_\_3_(_‘ OB“t.’.‘.oAdAE?.‘.l trAdég_ﬁlg_c.o,ancgo_F:_)gl

= tr .& l‘.l!...o'

Y=1Y'; and if x y' is symmetric then y = ¢ x for some c € R. Hence, if the

Now if tr X ¥' = O for all X satisfying X + X' = 0 , then

matrices {AdAkg,g} span the skewsymmetric matrices then §'0AdAkg X =
. T _ . n-1
x' 551 = 0 will imply that X = +x 0 (assuming that X0 X 0 €S ).

i.e. If {AdAkg_, } spans the space of skewsymmetric matrices then asymptotic

scability ensues, from any starting point in S“-l other than -'lco. To show

that this conditicn is not necessary, consider the case where

r B o A
o 1 o 0 o 0 0O o0 o 0
A = -1 0 1 0 0 B = ¢] 0 0 0 0
0o -1 0 1 0 c 0 c o0 O
0 0 -1 0 0 0 0] 0 0 1l
0O o0 © 0O o 0 (o) o -1 0
| _ L -~

Then the Lie algebra generated by A and B is the space of 5 x 5 skewsymmetric
matrices, but {AdAkg,g_} is the set of all matrices of the form

0 1 0 o a |
-1 0 1 0 c
-1 0 1 b
0O -1 0 a
-d -¢c -b -a O

- J




which is not the whole space of 5 x 5 skewsymmetric matrices. Now the only

n-1
X, in s satisfying A X, = 0 is
.

0

§0=
0

From this we find that (56 B, A) is observable, and the result follows.

QED

In general, it is not possible to obtain a global stabilization on
Sn-':l for systems of the type considered in Theorems 4.1 and 4.2 when the
feedback control law u(x) is restricted to being a continuous function.
(Cf. Hopf's Theorem concerning the number of singular points of a smooth
vector field on a manifold without boundary). In practice the fact that
there will always be a "deadpoint" X # Xy such that .ilx = 0 would pro-
bably be of little concern. However, one might ask the ;uestion "Can the
point 5_1 be chosen to be any other point on Sn-l?" We would expect that
it can, since this amounts to a smooth topological deformation of the

vector field obtained in Theorems 4.1 and 4.2. As an example, consider

the system on sl given by

xl 0 1 xl

Xe
!
[
o
L

2 2

Suppose that it is desired to stabilize this about the point (a,b) where
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a2+b2=1 and a,b > 0. Then let u= a - xl. One can show that asymptotin
1
stability about (a,b) ensrues, from any starting point in § other than

(a,-b). The vector field is as shown in Figure 4.1.

X2

(a,b)

(a,-b)

Fig. 4.1

- . 2 cqs
A similar example can be given on S°. 1In such cases one proves stability

in st -{d} about ¢ by showing that there is a neighborhood N, about ¢

%

ith c'x > 0 in N,, and that there is a neighborhood N, about d with

2

d'x £ 0 in N,, such that N, U N, = shl . {al.

1
Finally, We consider the problem of stabilizing an oscillation on

-1

S . Given 3'(__ = f(x,u) one should choose, if possible, u(x) so that
X*>E-= {_:_c_|\.l(§) = 0} where V is a suitable Lyapunov function and E is the
set of points in the desired orbit. One should also choose u(x) so that

on E x follows the orbit cyclically.

We consider first an example on 52. Suppose



-169-

Ke
s

1 0 l (4] 0 0 (] ‘ xl
X, | = u, -1 0 oOo}+ u, 0 0 =1 ( X,
x3 0 0 0 0 1l 0 x3

and that it is desired to stabilise an oscillation around the set {xl = a},

for sore 0 £ a < 1.

2
o
s\ﬂ/ '
\
d X
a i
|
!
\’/
X
3
Fig. 4.2
Let u, = 1, so that when u, = 0 on {xl = a} we have the simple harmonic
oscillation given by
x2 ) 0 -1 x2
Xq 1 0 X, .

It then remains to choose u1(§) so that Xy + a,

We shall make use of the Invariance Principle of LaSalle, [17],

[37)]. Consider the periodic or time-invariant system of equations
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x(t) = £(x,t) = £(x,t+T)

n
<o = -
x(t) eR ; 0 €t<o; x(0) = x,

Let V(x,t) = V(x,t+T) be a Lyapunov function (not necessarily positive
definite) on a closéd bounded set G for this system of equations, as
defined in § 1.4(e). Let E = {g_c_lw(i) = 0, x € G} where \'I(a_c_, t) € W(x) < O.
Then the Invariance Principle of LaSalle (from which our Theorem 1.3
follows) states that any solution of the above equations which remains in
G for all t 2 0 approaches a subset of E which is the urnion of all the
invariant sets which lie entirely within E. (An invariant set H is one

for which _>g_(tl) e H = i(tz) € H for all t_ 2 tl).

2
® o 2
Now since X, = U X, let us try u, = (a-xl)xz. Then X, = (a-xl) Xy

Consider the closed bounded subset Nl of 52 defined by Nl={§_ € 52|x1 < al.

Let Vl = -a'x where a = (a, 0, 0).

Then \.Il = =-a'x

2
—a(a-x])xz

N

0 in Nl.

Now X, = a defines a trajectory for the system, thus no other trajectory
can cross {x:l = a} , i.e. Any motion starting in N, at t=0 remains in N,
for all t 2 O.

Let E, = {xe N[V =0}

2
= {x €S ]xls a and either x, = 0 or x = a}.

1



-171-

On {xz = 0} we have §2 = -x3 = 0 on El only at (0, 0, -1}. Thus the union

of the invariant sets in El is

{xe Nllxl =aorx'= (0,0, -1},

Furthermore a motion starting from any point in Nl other than (0, 0, -1)
cannot approach (0, 0, -1), since il > 0. Thus, by the Invariance
Principle, we conclude that the desired oscillation is stabilized from any

starting point in Nl other than (0, 0, -1).

Considering the subset N, of 82 defined by N2 = {5_6 82 X, > a}

2

together with V_ = a'x , we conclude by a similar argument that the oscill-

2
ation is stabilized from any starting point in N2 other than (0, 0, 1l).
Thus, we have stabilized a circular (simple harmonic) oscillation on

the sphere sz around x. = a from any starting point other than (0, 0, %#1).

1

Furthermore this means that we have stabilized such an oscillation around
. 2 \ . . . .
any circular orbit on S°, since bilinear evolution equations are invariant

under the transformation x + x P , as mentioned in § 3.4.
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