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NOTATION 

x c A means t h a t  x i s  a member of the  s e t  A. 

A 3 B  means t h a t  A implies B. 

{ x / x  has property A) denotes the  set of a l l  x such t h a t  x has 
property A. 

G:A + b means t h a t  the operator (o r  function) G maps the  s e t  A i n to  
the  s e t  B. 

dx denotes - 
3t ' 

R e  z denotes the  r e a l  p a r t  of the  complex number z. 

I m  z denotes the  imaginary p a r t  of z. 

x < means t h a t  x is f i n i t e .  

x ( t )  a means tha t .x ( t )  = a  f o r a l l  t. 

Lim x ( t )  = a , o r  x ( t )  + a as t -t , means t h a t  fo r  a l l  n > 0 there  
t- i s  a T such t h a t  I x ( t ) - a l < n  

fo r  a l l  t 2 T. 

sup x denotes the  supremum (or  l e a s t  upper bound) of the  s e t  of 
XE A numbers A ,  i .e .  t he  l e a s t  number y such t h a t  x < y f o r  a l l  x E A.  

inf  x denotes the  infimum (o r  g rea tes t  iower bound) of the  s e t  of 
XE A numbers A ,  i . e .  the  g rea tes t  number z such t.hat x 2 z fo r  a l l  

x E A. 

s t p  U is the  function on the  r e a l  l i n e  defined by 
( - a h )  l a  O s t p  Q = 0, G = 0 

(-a,b) I b,  O > 0 . 
Sod U is the  function defined by 
( - a h )  sod o = Q s t p  u . 

(-a,b) (-a,b) 

IR denotes the  s e t  of a l l  r e a l  numbers. 

mmXn denotes the  set of a l l  mxn r e a l  matrices. 

lRn denotes the  s e t  of a l l  n-dimensional r e a l  vectors. 

A matrix is denoted 5, a column- or row-vector is denoted k. 
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A s c a l a r  is a one-dimensional vector ,  i .e.  a r e a l  number. 

0 denotes t h e  zero matrix. - 
I denotes the  u n i t  matrix. - 
A' denotes the  transpose of the  matrix A. - - 
tr - A denotes the  t r ace  of 5. 

d e t  A denotes the  determinant of A. - 
,n-1 denotes the  s e t  {x E lRnlx'x = 1).  - - - 
A > B  meansthat  t h e m a t r i x  (A-E  is posi t ive  de f in i t e ,  i.e. - - - - 

X'(A-B)X > o t o r  a l l  x E d', # 0 .  - --- - 
QED denotes the  end of a proof. 
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CHAPTER 1 

SWITCHING VOLTAGE REGULATORS 

81.1  Introduction: Design Objectives 

This chapter addresses i t s e l f  t o  the  question of s t a b i l i t y  i n  Dc t o  

DC convertors. I n  order  t o  b e t t e r  understand the  ro le  of the  stability 

question, we s h a l l  f i r s t  review the  convertor design task as a whole. 

The designer of '  a DC t o  DC convertor usually has i n  mind four primary 

design object ives,  which a r e  (i) Efficiency (ii) Stab i l i ty  (iii) Regula- 

t i o n  ( iv)  Smoothing. There a r e  secondary considerations such a s  s i z e ,  

weight, and cos t ,  but  these can be considered f o r  any one design only when 

the  primary objectives have been met. 

I n  order  t o  meet high eff icjency requirements any conversion process 

considered should be inherently loss l e s s ,  i .e.  given idea l  components the  

process cons.idered would y i e l d  a 100% e f f i c i e n t  convertor. We s h a l l  there- 

fo re  r e s t r i c t  ourselves a t  f i r s t  t o  the  study- of lossless c i r c u i t s ,  and 

concentrate our e f f o r t s  on the  theore t i ca l  problems involved i n  meeting 

simultaneously the  requirements of s t a b i l i t y ,  good regulation, and good 

smoothing. Ocr components avai lable  a r e  inductors ,  capacitors,  t r ans fomers ,  

and switches (i . e. i d e a l  t r a n s i s t o r s ,  t h y r i s t o r s ,  arrd diodes) . The only 

r e s i s t o r s  involved a re  the  load res is tance  and possibly the  source resis- 

tance. The in tent ional  introduction of  r e s i s t o r s  i n  the  conversion process 

is disallowed. I n  prac t ice ,  of course, the  non-ideal nature of the con- 

ponents used w i l l  involve small losses. Our jus t i f i ca t ion  f o r  ignoring 

these i n  our i n i t i a l  analyses is t h a t  such losses  tend t o  a i d  i n  s t a b i l i z a -  

t i o n  ra the r  than hinder, s o  t h a t  the  most d i f f i c u l t  design case occurs when 



these losses  vanish. In  f a c t  t h e  ides  t h a t  d iss ipa t ion  a ids  i n  s t ab j l i za -  

t i o n  is expressed formally i n  the  Posi t ive  Operator Theorem, which we use 

i n  Chapter 1 and which we s h a l l  discuss fu r the r  i n  Chapter 2.We therefore 

phrase our theore t i ca l  problem a s  "Given an input  DC voltage source, 

1.roduce a s t ab le  power convertor t o  de l iver  power a t  some other  M: voltage 

t o  a possibly time-varying load, using only inductors ,  capacitors ,  

transformers, and switches, and meeting some prespecified requirements 

on regulat ion and smoothing." 

There a r e  two types of regulation t o  consider: 

(i) "Line regulationo1: t o  make the  output voltage insens i t ive  
t o  input  voltage var ia t ion ,  

(ii) "Load reg;lationW : to  make t h e  output voltage insens i t ive  
t o  load res is tance  variat ion.  

A s  well  a s  being concerned with the steady-state regulat ing capab i l i t i e s  

of the  convertor, t he  designer may be in te res ted  i n  ensuring t h a t  the 

convertor a l so  has a good t r ans ien t  response, e.g. a quick recovery from 

a temporary s h o r t  c i r c u i t .  For a periodical ly varying load, the  output 

impedance of the convertor a s  a function of frequency may be important. 

Since a l l  DC t o  DC convertors necessari ly involve some AC process, 

( 1231, (381, [39]), it follows from the  smoothing requirement t h a t  i n  

general a l o w  pass f i l t e r  must be u t i l i z e d  on the  output  s i d e  of the  

convertor. Hawever a low pass f i l t e r  has an inherent  l ag  associated 

with it, so t h a t  by lowering t h e  cut-off frequency of the  output f i l t e r  

the  3;wigned may very well degrade the  t r ans ien t  rcsponse performance. 

For a given low pass f i l t e r  the  t r ans ien t  response can be improved by 

increasing the  closed loop feedback gain ,  bu t  s t a b i l i t y  ccnsiderations 

impcse l i m i t s  on t h i s  gain. 



If the smoothing requiremen.L is dropped completely, then the problem 

may be eas i ly  solvable i n  the i d e a l  case. For instance,  one may have a 

pulse-width-modulated system with the  design requirement t h ~ t  the i n t e g r a l  

of the  output voltage over each modulation cycle be constant.  Designing 

a modulator t o  meet t h i s  requirement i s  then easy, i n  pr inc ip le .  

To summarize, we see  t h a t  the  bas ic  theore t i ca l  problem confronting 

the  designer of a DC t o  DC convertor is  t h a t  of meeting the  t h r e e  simultan- 

eous requirements of s t a b i l i t y ,  regulat ion,  and smoothing, while using 

only loss l e s s  ccmponents. Further,  these th ree  requirements cannot be 

considered independently, and i n  order  t o  obta in  an optimum compromise 

between the  demands o f  good regulation and good smoothing, a desisner  must 

thoroughly understand the  s t a b i l i t y  problem. 

91.2 A Class i f ica t ion  of Convertor Types 

The s t a b i l i t y  quest ion can be tackled only a f t e r  an extensive 

c l a s s i f i c a t i o n  of the  d i f f e r e n t  types of  convertor,  s ince  d i f f e r e n t  

mathematical methods w i l l  be applicable i n  each case. The f i r s t  character- 

is t ic  of a convertor i s  whether i ts  output voltage is t o  be  l a rge r  o r  

smaller than the  input  voltage, and the  second c h a r a c t e r i s t i c  is whether 

o r  not transformers a re  involved. I n  t h i s  chapter w e  consider transformer- 

less dwnconvertors,  o r  switchingvoltage regulators .  Even i n  t h i s  c l a s s  

there  a r e  many d i f fe ren t  analysis  s i tua t ions ,  depending f o r  example on 

whether o r  not a load is present ,  whether o r  not  t h e  load is  purely 

r e s i s t i v e ,  whether o r  not t h e  smoothing f i l t e r  is l o s s l e s s ,  whether o r  

not the  voltage source has an in te rna l  impedance, whether o r  not the source 

impedance is purely r e s i s t i v e ,  and whether o r  not t h e  source voltage is  

time-varying . 



5 1.3 Switching Voltage Regulators without Source Impedance 

Given a f ixed DC source voltage E,  we wish t o  obtain R near-constant 

voltage of QE with 0 < a < 1. The scheme we consider ..r- that  .1.9un i n  

Fig. 1.1. The low-pass f i l t e r  is of the form shown i n  Fig. 1.2. The 

switch represents a suitable interconczction of diodes and tsansistors or 

thyristors. The scalar u is  the control varhble ,  which takes on the 

values 0 or 1 depending on the position of the control switch. A load 

resistance may o r  may not be present a t  t h ~  output of the low pass f i l t e r .  

Fig. 1.1 

-eoo.. . -e- ""r 
mo-.Io...-- -23  2- 

Fig. 1 . 2  



The approach we follow here i~ a state-feedback approach, that  is ,  

we assume knowledge of the capacitor voltages and inductor currents, and 

w e  th i s  t o  determine the desired positzon for the switch a t  any one tine. 

We must choose a feedback control law which brings the output voltage Vo 

as close as possible t o  the desired value m, and gives the overall system 

good regulatory and smoothing characteristics. The assumption that  we 

have f u l l  knowledge of the s t a t e  is  not unreasonable, since a ful ly  sat is-  

factory performance w i l l  not be obtained without i t ,  and i n  practice i t  

should not be too d i f f icu l t  to  obtain a good es t i sa te  of the s t a t e  from 

measurements (of the capacitor voltage;, for instance). The state-feedback 

approach is  the most reasonable in  a si tuation such as this .  To adopt some 

other scheme such as pulse-width-modulation is  to  a rb i t ra r i ly  :mpose con- 

s t ra in ts  which can only hinder the attempt to  obtain an OF+:  m overall 

performance. 

In s teady-s t~ te  operation it i s  fa i r ly  clear that 2 switch w i l l  be 

working i n  a periodic way, cuch tha t  the average value of voltage on the 

output side of the switch is UE. The amount of ripple present a t  the 

fil+.er output w i l l  be determined by the frequency of the switch operation, 

and by the s ize ant number of f i l t e r  components. since the f i l t e r  is  a 

low-pam one, a higher switching frequency w i l l  yield a smaller output 

ripple. However because the particular thyristor or  t ransis tor  switch 

used w i l l  have a f in i t e  switching time during which it dissipates some 

power, the operating efficiency decreases as the switcZing frequency 

increases. We assume that  a lowex l i m i t  on t h e  allowable efficiency is 

prescribed, and thus that an upper l i m i t  on the switching frequency i s  

obtained. The feedback controller should insure that the switchin? 



frequency does not exceeu thin allowable limit. Once this limit is pre- 

ocribed, the ripplc will be determined by the number and size of the 

filter inductors and capacitors. Because of physical bulk it is impor- 

tant to reduce the tc+.al inductance and capacitance involved. For a given 

total inductance and tctal capacitance, letter high-frequency rejection 

for a filter of the type shown in Pig. 1.2 is obtained as the number of 

filter components n increases. Consider for example the filters shown 

in Figs. 1.3 and 1.4, which have ths same krtal ii~ductance and total 

capacitance. 

Fig. 1.3 

Fig. 1.4 



Fr,= Fig. 1.3 

and fo r  Fig. 1.4 

So f o r  a sinusoidal  input  s ignal  of angular frequency 0 

a - 3 r  + (k] where wo 2 = - 1 
LC ' 

i.e. the  higher-arder f i l t ~ r  is much more e f f i c i en t .  Thus we a r e  part ic-  

u lar ly  in teres ted  .hi high-order f i l t e r s .  Unfortunately, the  s t a b i l i t y  

question becomes i rcreas ingly  d i f f i c u l t  t o  analyze as n increases. In the  -. 
l i m i t ,  one might conclcse t h a t  a transmission l i n e  would be the b e s t  type 

of f i l t e r  t o  use, but  d i f f i c u l t i e s  with the  s t a b i l i t y  analysis  and w i t h  

the  s t z t c  estimatics. probably ru le  out  t h i s  poss ib i l i ty .  

91.4 Second--Order Lossless Regulator 

(a) Choice of a F eedback L aw 

We now consider the  f i r s t  member of the  s e r i e s  of regulators  

of  Figs. 1.1 and 1.2. For the  pa r t i cu la r  control  law which we choose 



the s t a b i l i t y  analysis  is f a i r l y  simple. We devote 6-e time t o  it, 

huwever, s ince  it turns  out  that t h i s  is t h e  only member of the  s e r i e s  

for which the  analysis  is  simple, y e t  it i l l u s t r a t e s  most of the  fea tures  

of t h e  higher-order regulators.  Fig. 1.5 shows t h e  system under consider- 

' ation. The load res is tance  R is assumed constant; R = denotes the 

no-load condition. . 

I 
= - 

E ,- Source C T< 0 
Voltage Lood 

Resistance 
i D 

Fig. 1.5 

The governing equations a r e  

d I  
(I denotes $ . 

. . 
Lett ing yl = I& and y2 - v0fi  we obtain ' 



where w 

We now introduce time- and amplitude-scaling which allows us t o  assume 

without l o s s  of general i ty t h a t  E = L = C = 1. For, l e t t i n g  'I 
U o t  

@ o Y i  and zi = - b 
w e  obtain 

I n  what follows we assume chat wo = 1, i. e. , t = T. z1 and z2 are called 

the  s t a t e  variabics and the  vector 2 is  ca l led  the  s t a t e  vector. 

We want t o  nake u a function of 2, (i.e. t he  ccnt ro l  u e function 

of the  measured variables zl and z2) s o  t h a t  z2 comes as close  as poss ib le  

t o  its desired value a (where 0 < a < 1). That is, w e  want 

f o r  any i n i t i a l  condition (el (0) , z2 (0) ) . We c a l l  t h i s  g lobal  asymptotic 

s t a b i l i t y  about z@ Now i f  z2 < a one would expect t h a t  the  switch 

should be i n  the  u = 1 posit ion,  and if z2 > U t h a t  the  switch should be 

i n  t h e  u = 0 posit ion.  This leads us t o  t r y  the  feedback control  



(We postpone till p a r t  (b) a discussion of what happens a t  z2 = 0.) 

feedback contro l  does give the  desired asymptotic s t a b i l i t y  about z2 = a 

provided t h a t  R has a f i n i t e  value. When t h e  load is removed (R = a) 

asymptotic s t a b i l i t y  is  not obtained. Indeed i n  51.9 we give consideration 

t o  the  e f f e c t  of an inevi table  small lag  i n  the feedback con t ro l l c r ,  and 

f ind  t h a t  i n  t h i s  s i t u a t i o n  a small lag  y ie lds  i n s t a b i l i t y  about z2 = a; 

i n  f a c t  an o s c i l l a t i o n  whose frequency is of the  order  o f  - is 
2ITE 

obtained. Note t h a t  the no-load case is the  most d i f f i c u l t  t o  s t a b i l i z e ,  

and f o r  t h i s  reason we s h a l l  henceforth analyze only the no-load case. 

The reason t h a t  t h i s  i n i t i a l  choice of  control  law is unsat isfactory 

is t h a t  it takes no account of the  inductor current  zl. In cor~ventional 

servomechanism theory terms, we need t o  provide some " r a t e  feedback" a s  

well  a s  "output feedback". I f  z2 is s l i g h t l y  l e s s  than a while zl is 

large  and pos i t ive  then it should be f a i r l y  c l e a r  t h a t  we want u = 0 ra the r  

than u = 1. Since z = z2 when R = l e t  us consider the  cont ro l  law 
1 / 

1 , zZ + $z2 < a 
u = f o r  some B > 0 . 

I n  $1.4 (b), (d) and (e) we s h a l l  show t h a t  t h i s  cont ro l  law gives a 

regulator  with good s t a b i l i t y  about e2 = a f o r  a l l  values of  R. We discuss 

implementation of t h i s  control  i n  51.9. The parameter f3 can be chosen by 

t h e  designer t o  give a good t r a n s i e n t  response t o  changes i~ operating 

conditions, such a s  changes i n  a ,  i n  E ,  o r  i n  R. One value of $ cannot 

give an optimum response f o r  every condit ion,  so  a compromise value w i l l  
. , 

J: 
have t o  be chosen. An analog computer simulation shows t h a t  s e t t i n g  $ 

between 0.8 and 1.0 gives a reasonable overal.1 performance. 



(b) Stabil ity by Phase Plane Analysis 

First  we make a change of variable so  that the desired s t h i l i t y  

is about 0 .  L e t  

s o  that our system is 

the desired equilibr'uh point being the origin i n  the (xl,xZ) plane. 

Next we introduce the "step" function 

Fiq. 1.6 



We now l e t  

u = +[2a - s t p  
(-2+2a, 2a) 

s o  t h d t  our system is 

= -x2 - s t p  (8i2+x2' 
(-2+2a, 201) 

. 
We assume henceforth t h a t  the  value of  a is known, and abbreviate 

s t p  t o  stp. 
(- 2+2a12a) 

Some remarks a r e  necessary concerning the  use which we s h a l l  

be making of the  s t p  function. This is a discontinuous function,  and a 

statement such a s  

d 1x1 - s t p  X =  s g n x  

(-1 11) 

requires rigorous mathematical treatment i n  order  t o  make s t r i c t  sense 

f o r  a l l  values of  x. However, we s h a l l  use the  s t p  function merely for 

i ts  nota t ional  and conceptual convenience, s ince  it is the  l i m i t  of  

various c lasses  of  continuous functions such a s  s a t  kx (Fig. 1.7) o r  

tanh kx (Fig. 1.8) where k is  an a r b i t r a r i l y  l a rge  pos i t ive  r e c l  number; 

such functions a r e  more accurate descr ip t icns  of a "real-world" switching 

function than s t p  x is. I n  order  t o  put  our t r e a t i s e  on a f i rm mathenati- 

c a l  footing we need only replace s t p  x by s a t  kx ( o r  some other  su i tably  

smooth function) each time it i s  used, and show t h a t  the relevant  



I sot kx 
(-o,b) 

s a t  kx = kx, 
(-a,b) i 
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1 tonh kx 

Fig. 1.8 

conclusions  st i l l  hold true .  In f a c t ,  many o f  our r e s u l t s  hold true  i f  

s t p  x i s  replaced by f(x) where f is any monotone nonl inear i ty  wi th  

f (0) = 0 .  ( A  monotone funct ion f (0) is onc f o r  which f (x  1 < f (x 1 
1 2 

whcnevcr x $ xZ.) 1 

Now w e  continue with the phase-plane a n a l y s i s  o f  

a 

TIlc t r a j c c t o r i c s  i n  the  (x ,x)  planc are arcs of c i r c l e s ,  rcprcscnting 
a 

piccewisc-simple-harmonic motion. I f  x + Rx > 0 these  a r c s  arc ccntcrcd 



b 

on (0,-la) , and i f  x + @x < 0 t he  arcs  a r e  centered on (0,l-la). Fig. 1.9 

1 shows the  t r a j e c t o r i e s  obtained when a = 5 and $ = 1. The l i n e  x + 6; = 0 

is ca l l ed  the  switching l i n e ,  and we need t o  consider careful ly  what happens 

a t  t h i s  l ine .  We have sa id  t h a t  the  feedback nonlineari ty is i n  prac t ice  

a continuous function, and one way t o  determine what happens along the  

switching l i n e  would be t o  replace s t p  U by a function l i k e  s a t  kU, with 

k very large. However because of the  chat ter ing  behavior along switching 

l i n e s  which is  observed i n  prac t ice ,  it is b e t t e r  t o  consider the  feedback 

nonlineari ty e i t h e r  as a s t p  function preceded by a small t i m e  delay, o r  

as a s t p  function modified to include a small amount of  hys teres is .  A 

small delay i n  the  feedback path w i l l  a b a y s  be unavoidable i n  p rac t i ce ,  

representing f o r  instance t h e  switching-time of  the  power t r a n s i s t o r  used 

a s  the  cont ro l  switch. I n  addit ion,  the  designer w i l l  want t o  include 

e i t h e r  a small f ixed delay o r  a small amount of hys teres is ,  i n  order  t o  

l i m i t  the  switching frequency of the  power t r a n s i s t o r  because of  

eff iciency considerations, as discussed i n  9 1 . 1  and 91.3. I n  t h i s  t h e s i s  

w e  adopt the  policy t h a t  hys teres is  is undesirable, and t h a t  a predetermined 

small f ixed delay is used. The disadvantagrt with the hys teres is  method 

of frequency l imi t ing  is  t h a t  the  switching frequency depends on the  load 

res is tance ,  and furthermore t h i s  dependence is d i f f i c u l t  t o  analyze. By 

using the  f ixed delay method the  designer can eas i ly  set the  switching 

frequency t o  some desired value which w i l l  be independent of the  load 

resistance.  However, whether a f ixed delay o r  hys teres is  o r  a combination 

of  both a r e  employed, the  conclusions which we s h a l l  reach concerning 

behavior along the switching l i n e  a r e  e s sen t i a l ly  the  same. 



Pig. 1.9 

Trajectories of 'i+x = -sgn(;+x) 



Fig. 1.10 

Typical path for %+x - -sgn(;+x) 



We now consider i n  some d e t a i l  t he  behavior of feedback systems 

which have a stp function i n  the  feedback path. For a rigorous treatment 

the  reader is refer red  t o  the  work o f  Fi l ippov [131. Other useful  

references a r e  [ 1 I (Chapters 6 and 12) , [181 (Chapter 6) ,and [22Ie 

Consider t h e  feedback system shown i n  Fig. 1.11, described by 

the equations 

I I-" - 

Fig. 1.11 

where x( t) C PI" and u (  t) , y ( t) a r e  sca la r s .  The switching surface  2 - 0  

(which is  a l i n e  when n = 2,  a plane when n - 3, etc.) divides the s t a t e  

space i n t o  two regions, i n  one of which y > 0 ,  u = -b, and i n  the  o ther  

y < 0 ,  u = a. We s h a l l  use the  syrtbol S t o  denote the  switching surface.  

The s c a l a r  quanti ty p = 2~ is the  distance of the  point  from S,  w i t h  

b 

due a t t en t ion  t o  algebraic sign. The s c a l a r  p = - c - x gives the  r a t e  a t  

which the  point  5 on a t r a j ec to ry  is  appr~aching S. I f  we consider an 

a rb i t r a ry  point  x+ on S together with values of  p and p nearby we can 
a 

i den t i fy  severa l  s i tua t ions  with respect  t o  the  possible s igns  of p and p. 

Fig. 1.12 shows the  four main cases o f  i n t e r e s t  (we a r e  not  considering 



case8 where p 0) .  

Fig. 1.12 

The f igures  i n  Fig. 1.12 show typica l  t r a j e c t o r i e s  on each s ide  of  S. In 

cases (a) and (dl w i t c h i n g  is instantaneous,since t r a j e c t o r i e s  approach 

St cross  it, and move away on the  o ther  s ide.  I n  case (b) no t r a j e c t o r i e s  

approach S, thus no ,witching occurs; i f  a system is s t a r t e d  i n  a s t a t e  

x on S, the  subsequent t r a j e c t o ~ y  could leave S on e i t h e r  side. I n  case 
-0 

(c) t r a j e c t o r i e s  on both s ides  head toward S: no t r a j e c t o r i e s  leave x+,, 
9 

and the  d i f fezen t i a l  equation - z(5, u, t) apparently cannot be  solved 

beyond t h i s  point.  Such a point  is c i l l e d  an "endpoint". To obtain c 

solu t ion  we can redefine the s t p  function i n  one of two ways: either we 

can precede it by a shor t  time delay T, o r  we can include a small amount 

of hysteresis .  We follow the former approach here, fo r  the reasons given 

e a r l i e r .  Thus, i f  p changes s ign  instantaneously a t  time tl from n nega- 

t i v e  t o  a pos i t ive  value, u changes from a t o  -b a t  t i m e  tl + T. This w i l l  

give r i s e  t o  n zigzag type of t r a j ec to ry  along S ,  the frequency of the 

crossings increasing as  T decreases. This chat ter ing  behavior is observed 



i n  p rac t i ca l  even though the function label led  s t p  is ac tua l ly  a continuous 

function with bounded slope a t  the  or ig in :  i f  t h i s  slope a t  the o r ig in  

were small enough the  chat ter ing  would cease. The system is now described 

- _  
k( t1  = f ( x ( t 1  , u ( t  - T) , t) - - - 
u ( t )  = - s t p  5 i:(t\ 

+ + 
Wc adopt t h e  notat ion 2 t o  denote f(2, -b, t) . i . e .  is .- f when E 5 > 0 .  

Similarly LO denotes f (5, a l  t) , i.e. f i, - A when 5 11 < 0. We obtain f i r a t  

a condition fo r  a s t a t e  x on the  switching surface c z  = 0 t o  be an enci- 
-0 

point. From Fig. 1.12(c) we see  t h a t  p > 0 implies I; < 0 i n  the  v ic in i ty  

+ 
o f & ,  i .e .  s f  < 0 .  Similarly p < 0 implie* 6 > 0,  i .e .  - c - f- > 0. 

Takcn together these two conditions a re  s u f f i c i e n t  fo r  t o  be an endpoint, 

+ 
i . e .  f < 0 and 5 g- > 0. Now we dctcnnine tho r a t e  a t  which thc state 

cha t t e r s  along S. Suppose t h a t  fo r  t < tl the s t a t e  l i e s  i n  the  region 

c x < 0 ,  and t h a t  x(tl) = & (where & = 0) , i .e .  the  t r a j ec to ry  mccts - - 
S a t  time tl. Let z2 - z(tl + f )  which is t-hc s t a t e  when u switches from 

a to -bl and le t  x = z(tl + A t )  be the state when the  t r a j ec to ry  next 
-3 

i n t e r s e c t s  S. In the i n t e r v a l  I t l ,  tl + T ]  we have u = a ,  so t h a t  

For t > t + r w e  have u = -bl so  1 

Multiplying this from the l e f t  by 2 anci rcmcmbering t h a t  =z3 = 5 %  = 0 

we obtain 



ignoring the higher order  terms i n  t and A t .  Thus 

Naw i f  we were t o  consider a switching - r a n s i t i o n  going i n  the  o ther  

d i rec t ion  w e  would obtain t h i s  same r e s u l t ,  even i f  the  switching delay 

was d i f fe ren t  from r: t h i s  can be seen easil;  by observing t h a t  the  

+ 
r e s u l t  is  unchanged when f is  exchanged with f and t h a t  the  r e s u l t  is 

independent of r. Thus, l e t t i n g  T -* O we see t h a t  the  system t ra j ec to ry  

approaches a r b i t r a r i l y  close t o  the  t r a j ec to ry  defined by 

That t h i s  t r a j ec to ry  remains on g~ = 0 can eaa i ly  be checked by evaluating 

c ;, which is 0. This formula has a simple graphical  in terpre ta t ion .  In  - - - + 4 - 
Fig. 1.13 the  vectors AB = and AD = f a r e  the  ve loc i t i e s  on each s ide  

+ 
of S, a t  the  point  A on S. Note t h a t  the  arrows denoting f and f- i n  

Fig. 1.13 a r e  drawn on the  opposite s ide  of S t o  those of Fig. 1.12. The 
4 

resul t ing  veloci ty vector  is 5 = AC where C is  the  in te r sec t ion  of BD 

with S. When the  s i t u a t i o n  of  Fig. 1.13 is as  i n  Fig. 1.14 the  resul t ing  



velocity along S w i l l  be to  the l e f t  or to the right according to whether 

AG is larger or smaller than AH. 

B 
Fig. 1 .13 

Fig. 1.14 

If the operator i n  the forward path of Fig. 1.11 is linear and 

time-invariant we have the situation depicted in Fig. 1.15. 

Fig. 1.15 



The condition for a point % o n  2% = 0 t o  be an endpoint is 

and the chattering motion is  described by 

A plausible but nonrigorous argument suggesting t h i s  result i s  as follows. 

A trajectoly on 2~ 3 0 s a t i s f i e s  2 5  = 0 ,  i . e .  2 ; ~  - gb- s t p  ~5 = 0 ,  
c A x  --- 

s o  s t p  5 can be replaced by - Then the equation 5 = & 5 - s t p  5 c b  - - 
becomes 



This w i l l  define an asymptotically a tab le  motion along S i f  and only i f  the 
b c - - 

matrix - (I. - has n-1 eigenvalues with negative real parts; t h e  
L I b c 

remainj.ng eigenvalue must be zero s ince  2 = 5 = 0 .  It is an 

in te res t ing  and useful  f a c t  that the nonzero eigenvalues of a r e  t h e  zercs 

of t h e  numerator polynomial of  G(s) = s - - A)-\, as w e  now prove: 

Theorem 1.1 

Let 

where (A,b,c) --- is a minimal r ea l i za t ion  of G(s) and asstme t h a t  qn-l # 0 .  
b c - - s '(s) L e t  - (I- - Then d e t ( 1  - s - F) - e. - 41-1 

Proof - 
L e t  



and let 

Then 

s o  that 

Now (fi,b,g) is minimal, and (A b ,c is a l s o  minimal, being the standard 
-1'-1 -1 

controllable realization o f  G ( s ) ,  ( [  7 I ,  sect ion 171, s o  there e x i s t s  a 

a matrix g such 'hat 

Therefore 

d e t ( L s  - F) = det - 

= det P ( I  s - H) - - - 



~heotem 1.1 also follows from equation (13) of reference f 5 1 . 

QED 

Corollary: The feedback system of Fig. 1.16 is asymptotically stable i n  

the cha'cteri-g mode i f  and only i f  t he  numerator poly~~ondal  of G(s)  = 

c(Is-&))-' b is s t r i c t l y  HumStz, (i.s. has its zeros i n  R e  s < 0). - - 
A plausible argument suggesting t h i s  corollary is  as follows: I f  the s t p  

function feedback operator of Fig. 1.16 is replaced by the s a t  kx fur.ction 

of Fig. 1.7, asymptotic s t a b i l i t y  i n  a neighborhood of the origin  i s  ob- 

1 tained i f  and only i f  q(s) + j; p(s)  is  s t r i c t l y  Hurwitz. Letting k tend 

1 t o  in f in i ty  makes s a t  kx approach s t p  X,  and the zeros of q ( s )  + - p ( s )  k 

approach the zeros of q(s) ,  and the r e su l t  follows. 

where 

Now we return t o  the loss less  second order regulator described 

The switching l i ne  S is  x2 + $xl = 0, and 5 i s  an endpoint i f  



which becomes 

-x., 
a. s ince  xl = -g-, i .e. 

Motion along S is governed by & = 5 where 

S 
3Je note t h a t  det(Ls-E) = -($s+l B .) i n  accord with the theorem. Thus 

chat ter ing  occurs along t h e  switching l i n e  x, + Bx, = 0 i n  the region 
6 L 

(2-1aI(&)r with motion i n  t h i s  region being determined 
B +1 

Three conclusions of p r a c t i c a l  s ign i f i cance  a r i s i n g  from these 

r e s u l t s  are: 

(i) That on the switching surface  a small  value of 8 
is des i rab le  for quick s e t t l l n g  (i.e, a s h o r t  
t r a n s i e n t  response) ,  though t h i s  is not necessar i ly  
t r u e  f o r  the  o v e r a l l  t r a n s i e n t  response, 

(ii) The s t a t e  vector  5 w i l l  not  reach the  o r i g i n  i n  
f i n i t e  time, 



(iii) .Zhe turn-on and turn-off delays of the  switch 
need not be equal f o r  the  foregoing analysis  
to apply 

An examination of the  t r a j e c t o r i e s  of Fig. 1.9 shows t h a t  indeed 

the  desired s t a b i l i t y  about (0,O) is  obtained, f o r  any i n i t i a l  condition. 

Fig. 1.10 shows a typica l  path. 

We can see  why asymptotic s t a b i l i t y  i s  not obtained when 6 = 0 

by considering Fig. 1.16, i n  which we see t h a t  the switching l i n e  x + B; = 0 

i s  now the x axis. The paths form closed t r a j e c t o r i e s  representing sustained 

osc i l la t ions .  

Fig. 1.16 

(c) S t a b i l i t y  by Tota l  Gain Linearizat ion 

The system we a re  considering is 



By taking Laplace transform we can represent t h i s  i n  the wual feedback 

system form of Fig. 1.17.  Consider now a feedback system with transfer 

function G ( 8 )  i n  the forward path, and nonlinearity f ( 0 )  i n  the feedback 

Fig. 1.17 

path, as i n  Fig. 1.18. Assume that f(0) = 0. We can associate with th i s  

the linear system of Fig. 1.19, with feedback gain k. 

T * * U s )  

I + 
f (0) 

.. 

Fig. 1.18 

F i g .  1.19 



Aizerman's Conjecture ( [341,  Chapter 7) s t a t e s  t h a t  f o r  the  system of 

Fig. 1.18 w e  would expect t o  have global  asyroptotic s t a b i l i t y  i f  the  

associated system of Fig. 1.19 is globally asymptotically s t a b l e  f o r  a l l  

f (0 )  values o f  k lying i n  the  range of  values taken on by - as  < v a r i e s  u 

along the  r e a l  l ine .  This method of inves t iga t ing  the s t a b i l i t y  of a 

feedback system is ca l l ed  the  method of t o t a l  gain l inear iza t ion .  Aizerman's 

Conjecture is not t r u e  i n  general,  though it appears t o  be t r u e  f o r  the  

type of  systems considered i n  t h i s  t h e s i s ,  and it can be  shown t o  be t r u e  

f o r  second-order s y s t e m  ( (341  Chapter 7) .  The nonlineari ty s t p  U lies i n  

the f i r s t  mi t h i r d  quadrants, with taking on a11 values between 0 

and *. The t o t a l  gain l inea r i za t ion  s t a b i l i t y  conditions a r e  thus f u l f i l l e d  

i f  the  Nyquist locus of G ( s )  does not (TOSS the  negative r e a l  axis .  This 

is s o  f o r  the  system of Fig. 1.17 f o r  which the  Nyquist locus is as shown 

i n  Fig. 1.20. 

The Circ le  Cr i ter ion  is not useful  here,  oecause the i n t e r i o r  

o f  the  d i s c  is  the  l e f t  ha l f  plane, and t h e  Nyquist locus enters  t h i s  

region. The Popov Cr i ter ion  does prove s t a b i l i t y  fo r  t h i s  second order  

system, however we s h a l l  not consider its applicat ion because it is a 

spec ia l  case of the  Pos i t ive  Operator Theorem method we consider next: 

the Popov Cr i ter ion  makes use of a f i r s t -o rde r  mul t ip l ier ,  which is useful  

f o r  our purposes only f o r  the  second-order regulator.  

(d) S t a b i l i t y  by the  Pos i t ive  Qperator Theorem 

We now make use of some concepts from the  theory of Posi t ive  

(or  Dissipat ive)  Operators. The most important r e s u l t  which we use from 

t h i s  theory is ca l led  the  Posi t ive Operator Theorem. I t  is f e l t  t h a t  one 

o f  the  main contr ibutions of this t h e s i s  i s  i n  showing the  u t i l i t y  of the  



Fig. L.20 

s+L Nyquist locus of - 2 
8 +1 



ideas  asrocia ted  with t h i s  theorem. We devote mote a t t en t ion  t o  pos i t ive  

o2erators  i n  Chapter 2. For our purposes here, a posi t ive operator is an 

operator  with input  u ( t )  and output y ( t )  , where 0 $ t < 0 ,  f o r  which 

1; uy d t  2 0 o r  a l l  T 3 0,  and f o r  which y ( t )  = 0 t o r  a l l  t whenever 

u ( t )  - 0 f o r  a l l  t. This l a s t  requirement can be wri t ten GO = 0 .  I f  the 

operator  is a convolutior. operator ,  and i f  i t  can be represented by a 

ra t iona l  t r a n s f e r  function G ( s )  , then it can be shown ( P6 1 Theorem 1,141 1 , 

[211) t h a t  p o s i t i v i t y  is equivalent t o  the  requirement t h a t  G (s) have no 

poles i n  the  r i g h t  ha l f  plane, t h a t  any poles on the imagindry ax i s  be  

simple with r e a l  pos i t ive  residues,  and t h a t  R e  G ( j w )  3 0 f o r  a l l  U, i .e .  

the Nyquist locus of G ( s )  arst l ie  e n t i r e l y  i n  the  r i g h t  ha l f  plane. An 

equivalent requirement ( [ 2 I ,  I161 is t h a t  Re G (  j w )  3 0 and if G ( s )  q(s)  
p ( s )  

then p(s) + q ( s )  must be s t r i c t l y  Hurwitz,  (i.e. a l l  i ts  zeros must l i e  

i n  R e  s < 0 ) .  Such functions a re  ca l l ed  pos i t ive  r e a l  and play an impor- 

t a n t  r o l e  i n  e l e c t r i c a l  network synthesis ,  s ince  the  driving point  impedance 

of a l i n e a r  passive network is  pos i t ive  r e a l ,  azzd any pos i t ive  r e a l  function 

is the  driving point  impedance of an RLC network. 

The Posi t ive  Operator Theorem gives a s u f f i c i e n t  condition fo r  

input-output s t a b i l i t y  of the  feedback system of  Fig. 1.21 i n  which ul,yl, 

,y ,V r V  a r e  a l l  functions of t for  0 ,< t < w. u 2 2 1 2  

Fig. 1.21 



The functions vl and v are  the inputs, and can be used t o  represent driving 2 

functions, driving noise, o r  i n i t i a l  condition responses. By choosin? v 1 

and v2 appropriately we can uae the Positive Operator Theorem t o  obtain 

conclurions about the behavior of u ,y ,U ,y a s  t + ". To do t h i s  we 
1 1 2 2  

need a measure of the "size"of a functior~ of time x ( t ) ;  we use the L2-norm 

Using this mnn w e  can only handle funckions x ( t )  f o r  which x2 d t  is 
0 

f i n i t e ;  the s e t  of a l l  such functions is denoted L2. There are many func- 

t i o w  of in te res t  which are  not i n  L2, f o r  example the constant functions. 

This d i f f icu l ty  is overcome by using truncated functions, t h a t  is, func- 

t ions which are  zero a f t e r  some time T. Now it can be shown thft  for  any 

function x(;) c L2 fo r  which x ( t )  is bounded o r  square-integrable (i.e. 
r(D 

x d t  < 0)  ,we must have Lim x ( t )  = 0 .  An operator G is sa id  t o  be 1 ' 2  
'0 t + =  l l ~ x l  l bounded i f  there exis ts  a rea l  number: M such t h a t  - < M fo r  a l l  x. 

11x1 I 
Ar. operator G with input u ( t )  and output y ( t )  is said  t o  be s t r i c t l y  posi- 

F IT , 
t i ve  i f  jo uy d t  3 n j o  u1 d t  fo r  some V >  0 ,  and GO = 0. ( ~ l t e m t i v e l y  - 
we can say t h a t  G is s t r i c t l y  posit ive i f  G - V  X is  posit ive for  some 

T l >  0, I being the ident i ty  operator). 

We can now s t a t e  the  Positive Operator Theorem ( 1421, [341 

Theorem 1.2 

If G~ and G2 are  posit ive with one of them being s t r i c t l y  posit ive and 

bounded, then UlrY1,U2,Y2 are  a11 i n  L2 whenever v and v2 are i n  L2, and 
1 

there ex is t  positive constants p and p2 such tha t  1 



Before applying the theorem we need t o  consider the requirement 

GO = 0 when G is a convolution operator. A convolution operator G l a )  

mapping u in to  y as depicted in  Fig. 1.22 is usually taken t o  mean the 

operator w i t h  input u ( t )  and output y ( t ) ,  0 Q t < 00, defined by the dif- 

ferent ia l  equation 

(n- 
Pn Y ( ~ ) ( ~ ) + P ~ - ~ Y  yt)+*..+ Po y ( t )  = c&, u(%, +...+ c+, u ( t ) .  

Fig. 1.22 

tooether with a given s e t  of i n i t i a l  conditions 

~ ( 0 )  I Y ( l ) ( O )  , . . * I  y (n-1) (o) 

I f  m 4 n th i s  means that  we can describe G in  s t a t e  space form by 

where ~ ( t )  E 9, ~(1s-A)-' b - G ( s ) ,  and (Alblc,d) is assumed t o  be a -- - - --- 
minimal realization. Now the operator G defined thur has the property 

00 = 0 i f  and only i f  x+ - 2. For, G(u(t)) is given ( 7  1 by 

y(t) 
I ). 

u(t) 

-- 

q(s) -9,sm+q,-, s- m - l + * * * + q o  
G(s) - - 

p( s) p,s"+ * 
+ 

A 



& = i f  y ( t )  5 0 s ince  (1,~) is observable 

s ince  (&,b_,~,d) is minimal. 

Further,  

f o r  0 4 k 4 n-1, s ince  (&s) is observable. 

I n  what follows we s h a l l  depict  the  i n i t i a l  conditions associ- 

ated with G e x p l i c i t l y  by means of an arrow, as i n  Fig. l.23. If no such 

Fig. 1.23 

.arrow is shown we s h a l l  mean t h a t  the  i n i t i a l  conditions a r e  unspecified. 

Now an operator G (s) with i r - i t i a l  conditions x+ as in FJ . 1.23 

can be represented a s  an operator with zero i n i t i a l  conditions followed by 

the  addit ion of an external  s igna l  which is  the  i n i t i a l  condition response 

of G t o  q, a s  depicted i n  Fig. 1.24. We s h a l l  W e  k e  ef t h i s  equivalence 

i n  applying the  Posi t ive  Operator Theorem. 

Before applying the  Theorem t o  our regula tor  problem we s h a l l  

f i r s t  consider a simple example. L e t  G l ( s )  be (s*2) (s+,31 , and le t  the  



Fig. 1.24 

feedback operator G2 be s a t  kx, as i n  Fig. 1.25. We have G1(s) = c(S-A)-b 

Fig. 1.25 

where 

This gives us the equivalent ionnulation of Fig. 1.26, i n  which the  

i n i t i a l  condition response is  considered as an external  input.  The opera- 

t o r s  i n  Fig. 1.26 now both s a t i s f y  GO = 0 .  Since it i s  a f i r s t -  and third-  

quadrant function, s a t  kx is a pos i t ive  operator,  and G l ( s )  is a l s o  a - 
posi t ive  operator ,  s ince  Re G l ( j w )  = 2(u'*3) > 0 f o r  a l l  ~ i ,  and 

i w S + l )  (u2+5) 
p(n) + q ( s )  = s2 + 5s + 5 which is s t r i c t l y  Huwitz. It. is easy t o  show 

t h a t  G2 is s t r i c t l y  pos i t ive  and bounded, ( the  f i n i t e  s lope a t  the  o r ig in  

being necessary f o r  this boundedness) . I n  f a c t  G1 is a l s o  hounded, 



1 2 1 -  sat kx 2 & et v = c e  go 2 - 

Fig. 1.26 

since I G~ ( j w )  I i s  bounded, s ince  G ( 6 )  has no poles on the  1 

imaginary axis .  Now i n  Fig. 1.26 the  i n i t i a l  condition response v2 = 

A t  
c e x is i n  L because the  eigenvalues of  A, w h i ~ h  a r e  the  poles of G l ( s ) ,  - -0 2 

l ie  s t r i c t l y  i n  the  l e f t  ha l f  plane. We can now apply the  Pos i t ive  Operator 

Theorem a s  s t a t e d  above t o  deduce t h a t  the  functions ul (t) , y (t) , u2 (t) , 
1 

yZ (t) of Fig. 1.26 a11 belong t o  L2. T t i s  implies t h a t  they a l l  approach 

zero as t +  @, which is the  desired asymptotic s t a b i l i t y ,  provided t h a t  

w e  can show t h a t  a l l  of t h e i r  der iva t ives  a r e  bounded o r  square-integrable. 

Now it can be shown for a system of the  form 

that  i f  u E L2 then 9 E L2, provided t h a t  5 is an asymptotically s t a b l e  

matrix, i . e .  a l l  its eigerrvalues l i e  i n  the  half-plane Re s < 0 .  Thus, 

0 

by describinq G1 i n  t h i s  s t a t e  space form we see  t h a t  i n  Fig. 1.26 yl E L2. 



0 0 

Then, s ince  v2 E & , .  a2 6 L2. Now f o r  the operator  Q Z ( x )  = o a t  kx, w e  
9 ; .  

d dG2 "'* dx 8 thus since-c', i2 C L~ and so L1 c L ~ .  have ; i ~  G2(x(t) 1 = &- dx 

We therefore have the  desired asymptotic s t a b i l i t y .  

Now we consider applicat ion of the  Pos i t ive  Operator Theorem 

to  t h e  feedback system of Fig. 1.27, which represents our second-order 

loss l e s s  voltage regulator.  W e  have replaced the s t p  x function with a 

s a t  kx function, k being a r b i t r a r i l y  la rge ,  i n  order  t o  ensure t h a t  

d -(sat kx( t )  ) is bomded, as j u s t  discussed. d t  

sat kx 
. 

Fig. 1.27 

1 
"+' is no t  a pos i t ive  operator ,  s ince  i ts  ~ y q u i s t  locus enters  Now G (s) = -- 
2 s +I 

t he  l e f t  ha l f  plane, a s  depicted i n  Fig. 1.20. However, G2 = sa t  kx is 

"very strongly posi t ive",  and by introducing two multiplying fac to r s  i n t o  

the  loop w e  can make use of t h i s  f a c t ,  s o  t h a t  we end up with two pos i t ive  

operators. Now G (s) has poles on the  imaginary ax i s ,  and therefore i ts 
1 

i n i t i a l  condition response w i l l  not be an L2 function. To take care  of 

t h i s  f a c t  we can introduce a very small amount of damping, s o  t h a t  G l ( s )  

becomes "+' f o r  some a r b i t r a r i l y  small r > 0. This represents a small 2 s +rs+l  



amount o f  series r e s i s t a n c e  i n  the induc tor  o f  Fig.  1.5, which is a case  

w e  consider  i n  91.6. 

Le t  Z(s) be  a t r a n s f e r  func t ion ,  and cons ider  t h e  opera tor  H 

with input  u ( t )  and output  y ( t )  def ined b.1 Fig. 1.28. 

Fig. 1.28 

Suppose t h a t  

Then s i n c e  

so  u ( t )  f y ( t )  i f  and only i f  u ( ~ )  (0) = y( i )  (0) f o r  0 i 4 n-1. Thus H 

is the  i d e n t i t y  ope ra to r  i f  and only i f  t h e  i n i t i a l  condi t ions of  i ts 

-1 
second ope ra to r  2 (s) match t h e  i n i t i a l  condi t ions  o f  t h e  i npu t  funct ion.  

Bs+i 
Consider now t h e  system o f  Fig.  1.27 (where Gl ($1 = - 

2 
1 modi- 

s +1 
f i e d  t o  t h e  form of  Fig. 1.29, where _Y is a mat r ix  r e l a t i n g  t h e  i n i t i a l  

-1 condi t ions of  Z (s) t o  those  of  G l ( s ) ,  a s  j u s t  discussed.  We now 

modify t h i s  t o  t he  form o f  Fig. 1.30, which s t i l l  represen ts  the same 

system, provided t h a t  v l ( t )  and v 2 ( t )  a r e  0 f o r  a l l  0 ,< t < -, and M i s  

su i t ab ly  chosen. Now l c t  GI ( 6 )  Z (s) = - c  IS-^)-\, - s o  t h a t  we have t h e  

configurat ion of  Fig. 1.31. The conf igura t ion  of Fig. 1.35 i s  of  t h e  

form we want, except  f o r  the  i n i t i a l  condi t ion M x i n  t n e  feedback opcra- 
-0 

t o r ,  which we want t o  be zero s o  t h a t  t h c  feedback opera tor  s a t i s f i e s  GO = 0. 



Fig. 1.29 

> 

sat kx 

IMX -- -0 
Fig. 1.30 

4 h 

To circumvent t h i s  d i f f i c u l t y  w e  assume t h a t  t he  system is s t a r t e d  a t  t i m e  

t = -1 with a l l  i n i t i a l  condi t ions zero,  and t h a t  i n  t h e  i n t e r v a l  0 < t < 1 

t h e  inputs  v (t) and v 2 ( t )  d r i v e  t h e  system t o  t he  s t a t e  shown i n  Fig.  1.30 
1 

a t  t i m e  t = 0. We l e t  v and v2 be 0 f o r  0 ,< t < -. Now t h e  des i r ed  1 

s t a b i l i t y  follows from the  Pos i t i ve  Operator Theorem a s  ou t l i ned  above, 

provided t h a t  w c  can show t h a t  the forward and feedback opera tors  o f  



Fig. 1.31 

Fig. 1.31 a re  pos i t ive ,  with one of them being s t r i c t l y  pos i t ive  and 

1 bounded. We take Z ( s )  = y s + l  where Y = B, s o  t h a t  we have 

i .e .  Re G ~ (  jo) Z (  j w )  = 1 > 0 f o r  a l l  o; m d  p ( s )  + q(s )  = 2s2 + ( 8 4  

which is s t r i c t l y  Hurwitz; thus G (s) Z ( s )  i s  a pos i t ive  r e a l  function. 1 

We now show t h a t  the  operator of Fig. 1.32 is also posi t ive ,  where f(U) is 

any f i r s t -  and third-quadrant nonlineari ty with bounded slope a t  the  o r ig in ,  

Y > 0,  and w(0) = O. 

Let 



Fig. 1.32 

Fig. 1.33 

Now 

since we assume w(0) = 0 .  Thus the operator of Fig. 1.32 i s  indeed 

posit ive.  

We make two comments here about the multiplier ( l + y s ) ,  y = 
1 
F' 

First ly ,  it is easy t o  show that i n  th i s  case th i s  is the only such nulti-  

"*' become pl ier  ( t o  within a multiplicative constant) which w i l l  make - 
s2+1 



posi t ive  rea l .  Secondly, w e  could have predicted tha t  such a mul t ip l ier  

e x i s t s  by making use of a theorem of Brockett and J. L. W i l l e m s  ( [  61 ,  

Theorem 2 ) ,  which says t h a t  the  feedback system of Fig. 1.19 is asymptot- 

* 
i c a l l y  s t ab le  f o r  any feedback gain k sa t i s fy ing  0 < k < k , i f  and only 

1 
i f  there  e x i s t s  a pos i t ive  r e a l  function Z ( s )  such tha t  Z ( s )  

i s  pos i t ive  r ea l .  

In  51.5 Id) w e  summarize the  applicat ion of the  Pos i t ive  Oper- 

a t o r  Theorem t o  a s t a b i l i t y  analysis  of t h i s  kind. 

(el S t a b i l i t y  by Lyapunov's Method 

Now we show t h a t  the  loss l e s s  second-order regulator  is s t a b l e  

by means of the  method of Lyapunov. F i r s t ,  we give some def in i t ions  and 

use them t o  s t a t e  the  Lyapunov theorem we wish t o  apply. Then, w e  make 

use of Dissipative System concepts, a s  described i n  Chapter 2, t o  obta in  

a Lyapunov function f o r  the  second-order regulator.  Although we have 

already established t h a t  the  regulator  is  s t a b l e  using t h e  Pos i t ive  Oper- 

a t o r  Theorem, the  use of Lyapunov's Method i s  important here,  because of  

i t s  extension t o  the  resistive-source-impedance case, 51.7. A useful  

reference on Lyapunov Theory is 1371. 

Consider the  system of equations 

( t )  = t t ; 0 4 t < ' i  ~ ( 0 )  = q; f (0 . t )  = 2; C dl. - 
A real-valued function V ( 5 , t )  i s  ca l led  a Lyapunov function f o r  t h i s  

system i f  

(i) V(x,t)  has f i r s t  p a r t i a l  der iva t ives  with respect  
to-x and t which a r e  a l so  continuous with respect  
t o  and t, and 

(ii) V ( x , t )  is bounded if I 1 - xl 1 is bcmded, and 

i ,- 
, I 

. 1 .,,- ---l---.--.,-, *,, -I-,A I..,tm,.- ".+,A Ad... . , .*...,., A , .  + A , , ,  . . 
w,.,-!->.-#w-~,., .-..,.., - =!.%.,.##--.9 <",, .""""'-"",""-'~'- 7 '*"""'.."." '"-#"" .-,,-- "7 "" ,.- .," .'..."" .-..-,, ,-'""'-", '".",'-"'. 
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(iii) ~ ( x , t ) ,  - t h e  time r a t e  o f  change of V a s  yivcn by 

s a t i s f i  cs 

V ( x , t )  $ W(J$ < 0  

f o r  a l l  2, and some cor~ t inuous  func t ion  W ( E ) .  

V(x , t )  is c a l l e d  p s i t i v c  d e f i n i t e  i f  V ( 2 , t )  = 0  and i f  t h e r e  e x i s t s  iI - 
continuous i n c r c a s i n g  scalar-valued f u n c t i o n  o f  a  s c a l a r  argument Vl(o),  

such t h a t  V1(0) = 0 and 

v ( ~ , t )  3 v ~ ( ~ ~ ~ ~ ~ )  . 
V ( x , t )  - is c a l l e d  r a d i a l l y  unbounded i f  V ( o )  approachcs i n f i n i t y  a s  U 1 

approaches i n f i n i t y .  V(x,t) is c a l l e d  dccrcscen t  i f  t h e r e  c x i s t s  a 

second s c a l a r  f u n c t i o n  o f  a  s c a l a r  argument V2(a) which is continuous 

and nondccrcasing,  such t h a t  VZ(0) = 0 and 

We t h e n  have t h e  fol lowing Lyapunov Theorem: 

Theorcm 1 .3  

If V(x , t )  = V(x,t+T) is a Lyapunov f u n c t i o n  f o r  t h e  p e r i o d i c  o r  tirne- - 
i n v a r i a n t  system o f  equa t ions  

and i f  V ( x , t )  i s  p o s i t i v e  d e f i n i t e ,  d c c r e s c e n t ,  and r a d i a l l y  - unbounded , 

t h e n  t h e  system i s  g l o b a l l y  asympto t ica l ly  s t a b l e  about 2 = 2, providcd 

V(x , t )  - i s  n o t  i d e n t i c a l l y  ze ro  along any nonzero s o l u t i o n .  



For a proof o f  this theorem the reader  is  r e f e r r e d  t o  t h e  w x k  o f  LaSal le  

[171, and a l s o  t o  [37]. 

We now show t h a t  t he  second-order r egu la to r  i s  s t a b l e  using 

concepts from t h e  theory of  Diss ipa t ive  Systems, which is c lo se ly  a l l i e d  

with t h e  theory of  Pos i t i ve  Operators,  a s  discussed i n  Chapter 2. 

Let G be an operator  ( o r  system) with input  u ( t )  and output  

y ( t ) ,  0 4 t < a p t  defined by t h e  equations 

The vec to r  ~ ( t )  is c a l l e d  t h e  s t a t e  v e ~ t o r  f o r  G. Let w(u,y) be  a r ea l -  

valued funct ion of  u and y. Then G i s  s a i d  t o  be  d i s s i p a t i v e  with r e spec t  

t o  t!x supply-rate w(u,y) i f  t he re  e x i s t s  a nonnegative func t ion  V ( x )  with  

V(g)  = 0 such t h a t  

V is  c a l l e d  t h e  s torage  funct ion f o r  G. I n  t h i s  t h e s i s  t h e  only supply 

r a t e  wwhich w e  consider  is t h e  product uy, s o  t h a t  when we r e f e r  t o  an 

opera tor  a s  d i s s i p a t i v e  we have t h i s  supply r a t e  i n  mind. I n  Chapter 2 

we s h a l l  show t h a t  an opera tor  is d i s s i p a t i v e  i f  and only i f  it is  a 

p o s i t i v e  opera tor .  

Consider f o r  i n s t ance  a one-port RLC e l e c t r i c a l  network wi th  

input  cu r r en t  u ( t 1  and vol tage y ( t ) ,  a s  i n  Fig. 1.34. The ope ra to r  G 

mapping uCt) i n t o  y ( t )  represen ts  t h e  impedance o f  t h e  network; expressed 

a s  a t r a n s f e r  funct ion G ( s )  it is  a p o s i t i v e  r e a l  funct ion.  The requirement 



network I RLC I 

f o r  G t o  be a pos i t ive  

energy absorbed by the  

requirement being =hat 

Fig. 1.34 

operator ,  i. e., uy d t  2 0 ,  says t h a t  the net  1: 
network is i.t al l  times pos i t ive ,  the  concurrent 

G maps zero i n t o  zero, i .e .  t h a t  nu i n i t i a l  energy 

is  s tored  i n  the network. I f  G is viewed a s  a d i s s ipa t ive  operator the  

s torage  function V is  the  energy s tored  i n  the  network, and the suprly 

r a t e  w -- uy is the  r a t e  a t  which energy i s  supplied. The requirement 

V - uy < 0 says t h a t  the  r a t e  of increase of s tored  energy is not g rea te r  

than the  r a t e  of supply, (because of d i s s ipa t ion  within the  network). This 

requirement is  independent of the  i n i t i a l  conditions within the  network. 

Now conslder the  feedback connectibn of Fig. 1.21 with 

- - v = v2 = 0. Let Gibe a d i s s ipa t ive  operator with s t a t e  vector  x and 
1 -1 

storage function V (2 1, and l e t  G2 be d i s s ipa t ive  with at2 and V2(z2). 1 1  

Then 

- ulY1 d 0 

V 2 ' U 2 Y 2 5 0  I 
But ul = -y h.-.d u 

2 2 - Y ~ ,  
so i f  we l e t  V(~~C,~~) - V 1 ( q )  + V 2 h 2 )  we 

obtain 



Thus, a Positive Operator Theorem proof of s tabi l i ty  provides us with a 

Lyapunov function for use with the Lyapunov Theorem, provided that the 

positive operators can be described in  dissipative operator form. 

Fig. 1.35 repvesents the second-order regulator, with 8 = 1 

for notational convenience. 

Fig. 1.35 

A state-space description of th i s  system is 

where 



Fig. 1.36 depic ts  the  same system with mul t ip l ier  (l+s) included i n  the 

folvard path and (I+.)-' included i n  the  feedback path. As we saw i n  

91.4 (d) , introducing these fac tors  has no e f f e c t  provided t h a t  the 

i n i t i a l  conditions of a r e  correc t ly  chosen. This means that the re  

is a l i n e a r  re la t ionship  between the  i n i t i a l  conditions of the ozerator  

( and those of . 

h 4 

2 1 
StP 4 ,LI 

- 
s+1 

- * 

1 t + z  , 

Fig. 1.36 

A state-space descript ion of the system of Fig. 1.36 is a non-minimal 

r ea l i za t ion  of the system of Fig. 1.35. We hove 

; = -2 + y with z(0)  - x1(0) + 



where 

Note t h a t  

since 

2s 
From Chapter 2 w e  know t h a t  a storage function Vl(x) f o r  (1 + -1 is 

1 
s 2+1 

- x'K x where 5 = &' s a t i s f i e s  the  matrix equation 2 - - -  

Ir. this case t h i s  equation has a unique solut ion 5 = 2 1 ,  s o  t h a t  the  storage 

function fo r  1 + - 2 2 ( s::l) 
i s  V 1 ( ~ )  = 5 ' ~  = x + x2 . I n  Chapter 2 we show 

1 

t h a t  the unique storage function f o r  the  feedback operator of Fig. 1.37 is  

Sod z = z stp 2. 

Fig. 1 .37  

Since z = x1 + x2, we have V2(z) = Sod(x1+x2). Thus a Lyapunov function 

fo r  the second-order regulator  described by 



Differentiat ing we g e t  

2  = -(x +X ) stp(x1+X2) - s t p  0C1+x2) 
1 2  

2 = - Sod(x t x  ) - s t p  (x +x 
1 2  1 2  

C 0 ,  = 0 i f  and only i f  x  +x =O. 
1 2  

nut 

(x  -x - s t p  (x +x ) s t p  (xl+x;) 1 2  1 2  

= on {x +x =o) m l y  a t  xl = x = 0 , 
1 2  2 

a 

i.e. V(2)  is ident ica l ly  zero only along the  so lu t ion  5 = 2. Thus, by 

the  Lyapunov Theorem 1.3 we obtain the  desired global  a s p p t c t i c  s t a b i l i t y  

a b o u t 2  = 2. Notice t h a t  f o r  Fig. 1.36 we have prove? s l & i l i t y  f o r  any 

i n i t i a l  conditions i n  the  forward path and any i n i t i a l  conditions i n  the 

feedback path; t h i s  includes the  case where the re  is a  l i n e a r  r e l a t ionsh ip  

betwcen these two s e t s  of i n i t i a l  conditions, t h i s  case being the  system 

of Fig. 1.35. 

I n  conclusion of t h i s  sec t ion  we note t h a t  the Lyapunov method 

is superior  t o  the  Posi t ive Operator Theorem method fo r  de temin ing  

s t a b i l i t y ,  s ince with the  ,yapunov method i n i t i a l  condit ions do not requi re  

special  a t tent ion ,  nor do we have t o  modify G l ( s )  t o  have poles which a r e  



o f f  the  imaginary axis.  The Posi t ive  Operator Theorem is perhaps more 

useful fo r  providing a Lyapunov function. W e  a l s o  found it necessary t o  

modify s t p  x t o  be continuous a t  t h c  o r i g i n ,  howevar t h e  behavior a t  the 

or ig in  is taken care  of by the  chat ter ing  behavior analys is  of  51.4 (b) , 

i n  which s t p  is b e t t e r  l e f t  a s  a discontinuous function. The Pos i t ive  

Operator Theorcrn and the  Lyapunov method a r e  thus used t o  deterrir.e t h a t  

the  s t a t e  w i l l  reach a neighborhood of t h e  o r i g i n  from any s t a r t i n g  point  

i n  s t a t e  space. 

1 . 5  Fourth-Order Lossless Regulator 

(a) Choice of a Feedback Law 

The second member of the  s e r i e s  of voltage regula tors  of Figs. 

1.1 and 1.2 is  shown i n  Fig. 1.38, where we have assumed u n i t  values f o r  

the  components. As with the  second-order regula tor  this assumption barely 

limits the  genera l i ty  of our case: it represents  a l l  regulators  of the  

type of Figs. 1.1 and 1.2 where the  inductances a r e  a l l  equal and t h e  

capacitances are a l l  equal. W e  want l i m  z4 (t) = a f o r  sane civen 
t * =  

O < a < 1 .  

Fig. 1.38 



The s t a t e  evolution equations are 

0 0 

Now i n  steady-state operation w e  want z2 = z4 = a a n d z 2 = z 4 = 0 .  The 

natura l  extnnsion of the  control  law w e  chose i n  51.4 (a)  is  thus 

I u = 1 , i f  8112 + B 2  (z2-a) + $3;4 + B4 (z4-a) < 0 

0, otherwise, 
where B1, B 2 ,  B3, B4 a r e  su i tably  chosen pos i t ive  constants.  

(b) - ~ t a b i l i ' t y  by Total  Gain ~ i n e a r i z a t i o n  

We make the  change of var iables  xl = 2z1 , x2 = 2(z2-'1) , 

x = 2 z j  , x4 = 2(z4-a),  and thus obtain 
3 

where 2 (u-a) = -s tp  + B2x2 + B3x4 + B4x4) . BY expressing 
(-2+2a, 2a) 

xl, x2, x i n  terms of  x = x we can put  t h i s  i n  the  form 
3 4 

The desired s t a b i l i t y  is  about x = 0 .  Taking Laplace t ransfonrs  we obtair.  

the  feedback representat ion of Fig. 1.39. This is of the fonn of Fig. 1.16. 

Using the Routh-Hurwitz Cr i ter ion  it i s  easy t o  show t h a t  the asscc ia ted  



Fig. 1.39 

feedback system o f  Fig. 1.19 is s t a b l e  f o r  a l l  0 < k < if hnd only i f  

I n  p a r t i c u l a r  we note  t h a t  8 = P2 = B 3  = e4 = 1 s a t i s f i e s  t he se  requirc-  

ments. I n  51.5 (dl we s h a l l  show t h a t  indeed Aizerman's CoajLi ture  is  

c o r r e c t  here  f o r  0 1 = B 2 =  B3 = B4 = 1. This  may not  be t o o  s u r p r i s i n g ,  
3 2 

consider ing t h e  nature  o f  t h e  Nyquist Locus of  G ( s )  = s +s +2s+2 
4 2 

, which i s  
s +3s +1 

shown i n  Fig. 1.40. The pole-zero p a t t e r n  of G ( s )  is shown i n  Fig. i - 4 1 .  

For design purposes the  t o t a l  gain l i n e a r i z a t i o n  method ay~pears t o  proulde 

a reasonable approach f o r  an ( i n i t i a 1 ) i n v e s t i g a t i o n  o f  the s t a b i l i t y  o f  

this c l a s s  of r egu la to r s ;  t he  above th ree  i n e q u a l i t i e s  t o r  B1, f 12 ,  B 3 ,  Bq 

a r c  probably the  necessary and s u f f i c i e n t  condi t ions for g loba l  asymptotic 

s t a b i l i t y  of t h e  fourth-order regula tor .  



Fig. 1.40 

iw 
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(c) Chattering Behavior 

We follow the development of 5 1.4(b) .  The system of F i g .  1.39 

is of the form of that i n  Fig. 1.15, with 



The switching surface S is the  hyperplane E 5 = O , 

and x E S is an endpoint i f  - 

For example when B1 = B2 = B3 = 6, = 1 w e  have: S i s  the  surface 

x + x2 + x4 = 0 ,  and the  conditions f o r  chat ter ing  t o  occur a t  € S a r e  1 

a 

Motion along S i.s governed by = 2 where 

low the conditions f o r  a cubic polynomial a s3 + a2s2 + a s + a t o  be 
3 1 0 

s t r i c t l y  Hurwitz a r e  



Therefore f o r  asymptotic s t a b i l i t y  of the chatter ing mode on S we reqiAire 

The second of these is a  s t r i c t  inequali ty (whereas i n  (b) above we had 

B B B B 1 .  and is not q u i t e  s a t i s f i e d  by B1 = B2 = B3 = B4 = 1: f o r  2 3  1 4  

these values of fli we have 

3 2 det(1s-F) - s (s +s +2s+2) - - 

However i n  what follows we use these borderline values fo r  convenience. 

(d) S t a b i l i t y  by the  Pos i t ive  Operator Theorem 

Following the  development of 31.4 ( d ) ,  we wish t o  f ind a  multi- 

p l i e r  Z ( s )  such t h a t  G ( s )  Z(s) i s  pos i t ive  r e a l ,  where 

- 1 We a l s o  want Z (s) followed by s t p  x t o  y ie ld  a  pos i t ive  operator.  A t  

t h i s  s tage  we encounter the  d i f f i c u l t y  of t e s t i n g  a  function fo r  pos i t ive  

realness. There a r e  severa l  d i f f e ren t  characterizat ions of pos i t ive  r e a l  

functions, ([161 Chapter 5 ) ,  but  it seems t h a t  the  l e a s t  d i f f i c u l t  method 

t o  apply is t o  t e s t  whether Re G( j w )  3 0 f o r  a l l  w ,  and p ( s )  + q ( s )  i s  

s t r i c t l y  Ilurwitz. Using t h i s  method one can shaw t h c t  f o r  



3 2 s +s +2s+2 
G ( s ) =  the  required mul t ip l ier  Z (s) cannot be of the form (s+a) , 

+3s s2+as+b 
nor of the  form . The simplest mul t ip l ier  Z(s) is therefore of - s+c 

s J+asL+bs+c 
the  form . For t h i s  we obtain 

s +ds+e 

where 

2 2 2 2 2 2 
H(w) = (c-aW (e+du -U ) + w (b-16 1 (d-e+w ) . 

Thus Re G (  j w )  Z ( j w )  2 0 f o r  a l l  w i f  and only i f  

and t h i s  leads t o  the  requirements 

To ensure t h a t  Z - l ( s )  followed by s t p  x y ie lds  a pos i t ive  operator we 

make use of the  following theorem of O'Shea ( I261 , [321, (121 : 

Theorem 1.4 

The operator F shown i n  Fig. 1.42 with input  u ( t )  and output y ( t )  and Z ( s )  

r a t iona l ,  is a pos i t ive  operator f o r  any monotone nonlineari ty f ( U )  f o r  

which f (0) = 0 ,  i f  and only i f  

where 



Fig.  1.42 

For a proof of this theorem the  reader i s  refer red  t o  reference 1121. 

Applying t h i s  theorem t o  our Z ( s )  we obtain the  constraints:  

8, t, C ,  d l  e > 0 

d < a  

d3 3 4e 

d(a-d) > b-e 

e(a-dl > y 

After some t r i a l  and e r r o r  one can f ind a s e t  of values f o r  a ,  b ,  C ,  d ,  e 

which s a t i s f y  (1) through ( 8 ) .  One such s e t  of values is 

so t h a t  

We a l s o  need t o  show t h a t  G(s1  Z ( s )  = 90 has p ( s ) + q ( s )  s t r i c t l y  Hurwitz. 
p ( s )  

By following through an argument s imi lar  t o  t h a t  of 91.4 (dl we conclude 

t h a t  the  fourth-order regulator  of 91.5 (a1 is globally asymptotically 

s t a b l e  when B1 = B 2  = 8)  = B 4  = 1. The p r a c t i c a l  implications of t h i s  a r e  



t h a t  it is j u s t  a s  easy t o  s t a b i l i z e  n fourth-order  regula tor  as it is t o  

s t a b i l i z e  a  second-order regula tor .  

To summarize t h e  app l i ca t i on  of  the  Pos i t i vc  Opcrator Theorcm 

t o  switched regulators of  t h i s  kind, we see  t h a t  t h c  f i r s t  s t e p  is t o  

br ing t h e  problem t o  t h e  form of determining stability of t he  n u l l  s t a t e  

for a s?sLcrn of  t he  t y p  shown i n  F ig .  1.15 o r  Fig.  1.18. Wc then consi dcr 

t h e  assoc ia ted  system of  Fig. 1.19. I f  t h i s  i s  not  s t a b l e  f o r  a l l  k > 0 

then we cacnot make any cor~clusions i n  genera l ,  though i n s t a b i l i t y  f o r  a l l  

k > k > 0 w i l l  imply loca l  i n s t a b i l i t y  i n  Fig. 1.15, and i n s t a b i l i t y  f o r  
0 

a l l  k < k w i l l  imply i n s t a b i l i t y  i n  Fig.  1.15 f o r  l a rge  i n i t i a l  condi t ions.  
1 

I f  t he  system o f  Fig,  -1.15 i s  s t a b l e  f o r  a l l  k  > 0 then we know ( I G I ,  

llhcorem 2 )  that t h e r e  e x i s t s  a  c l a s s  of posit i .ve r e a l  funct ions 3 such t h a t  

G ( s )  Z ( s )  i s  p o s i t i v e  r e a l  f o r  each Z ( s )  i n  . S t a b i l i t y  then foll?ws i f  3 
t he rc  is a  Z1(s)  i n  3 such t h a t  Z (s) s a t i s f i e s  t ho  condi t ions of  t h e  O'Shca 

1 

Theorem above. Behavior i n  t h e  cha t t e r ing  mode is analyzed as  ou t l i ned  i n  

51.4 (b j .  

(e )  S tab j  l i t y  by Lyapunov's Method 

I n  91 .4  (e l  we saw how t o  ob ta in  a  Lyapunov funct ion f o r  t h e  

feedback system, by making use of the f a c t  t h a t  we could express  t h e  forward 

and feedback p o s i t i v e  opera tors  i n  d i s s i p a t i v e  form. For t h e  l i n e a r  opera tor  

given by G ( s )  Z ( s )  = - c(Js-A) - - b + d wc need t o  so lve  t h e  matr ix  equat ion 

This can usual ly  be done, using s u i t a b l e  numerical methods i f  necessary. 

ffowcvcr, t o  ob ta in  a  s torage  funct ion V ( x )  f o r  an opera tor  of  t h e  form of 

Fig. 1.42 is not easy. In Chapter 2 wc s h a l l  show t h a t  i f  a p o s i t i v e  



operator maps u ( t )  i n t o  y ( t )  , the  functiens 

a r e  su i t ab le  sLorage functions. Unfortunately tl-ese de f in i t ions  

require the  so lu t ion  of a nonlinear optimization problem which can be 

solved f o r  a l l  i n i t i a l  conditions only when Z ( s )  i s  of order  1 o r  2 .  For 

our fourth-order regulator  problem Z ( s )  is  t h i r d  crder ,  s o  we must t r y  

some other  means t o  f ind a s u i t a b l e  V ( x ) .  The most promising approach 

seems t o  be t o  attempt t o  f ind a r ea l i za t ion  (5, b, 2) of Z ( s )  which 

s a t i s f i e s  the requirements of  the following theorem: 

Theorem 1.5 - 
Suppose -& i s  a hyperdominant matrix, k' = [0 0 ... 3 A] , A > 0 , 
c = [O 0 . ,. 0 1 1 ,  and f is any monotone n o n l i n e a r ~ t y  with f ( 0 )  = 0. - 
lhen the  operator napping u(:) i n t o  y (t) defined by 

is  diss ipa t ive ,  w j  t h  s torage function V(1)  = f f F (xi) where 
i-1 

We s h a l l  give a proof c f  t h i s  Theorem i n  Chapter 2. A hyperdominant 
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matrix is one for  w?dch rn ,< 0 whenever i + j ,  and f m i ,  ) 0 and i j  
n i= 1 
% .ij 3 0 for  a l l  i l j e  
j=l 

For our fourth-order regulator we have 

The standard control lable  rea l izat ion  ( [ i 1 Chapter 17) is H ( s )  = 2(Ls-E)-l5 

where 

Now l e t  

so that we obtain the rea l izat ion  ~ ( s )  = c(Is-E)-$ where 



Ncm -& is not hyperdominant, but  i f  we choose 5 such t h a t  & - and 

c C' = 5 then -R A d" may be hyperdominant. Such an R is of the  form - - --- 

It seems t o  be an inlpossible task t o  f ind  values f o r  a ,  b ,  c ,  d which w i l l  

make -R .--- A RD1 hyperdominant, without the  a i d  of a d i g i t a l  computer. In  

Chapter 2 we reconsieer t h i s  question using t r id iagonal  r e a l i z a t i o n ~ .  We 

a l so  show i n  Theorem 2.7 t h a t  it would even be helpful  t o  f ind  a,  b ,  c,  d 
n 

which w i l l  make -F. --- A dl = column dominant, i .e.  > T  Im I. 
mjj  iSl i j  

i?fj 
( f )  Higher-Order Regulators 

As a design procedure f o r  s ixth-  and h i~ ' i e r -o rde r  regulators  

it seems reasonable t o  assume t h a t  Aizerman's Conjecture holds t rue  f o r  

the c l a s s  of feedback systems obtained by using the  kind of feedback control  

law described i n  61.4 (a) and 91.5 (a) . The chat ter ing  mode analysis  of  

91.4 (b) and 81.5 (c)  shows *that the  numerator polynomial of the  forward- 

path t r ans fe r  function must be s t r i c t  Hurwitz, bu t  this requirement w i l l  

be covered by the conditions obtained by using t o t a l  gain l inea r i za t ion ,  

(i.e. the system of Fig. 1.19 must be s t a b l e  f o r  a l l  0 < k < = I .  

91.6 Second-Order Pegulator with Inductor Loss 

I n  t h i s  sect ion we consider the  regulator  of Fig. 1.5 w i t h  a res is tance  

added i n  s e r i e s  with the  inductor. We know i n  advance t h a t  t h i s  w i l l  not 

a f f e c t  our conclusions about the s t a b i l i t y  of the  second-order regulator ,  

s ince  "Dissipation a ids  s t ab i l i za t ion" .  However, we wish t o  obtain a 

Lyapmov function fo r  t h i s  case,  i n  preparation f o r  91.7. 



Pig. 1.44 s h w s  the  regulator  under consideratian, with u n i t  values 

for  source voltage, inductance, and capacitance. The ae r i e s  res is tance  

hau value r. 

Fig. 1.44 

Po l lwing  the  pa t t e rn  of  91.4 and 91.5 we obtain the feedback representat ion 

of Fig. 1.45, which is seen t o  be of the form of Fig. 1.i8. A s  i n  51.4 (el 

Fig. 1.45 

s+l 
we take B = 1  fo r  notat ional  convenience. Fo; r Z l , G ( s )  = 

2 
is a 

s +rs+l 
pos i t ive  r e a l  function, so  t h a t  no mul t ip l ier  i s  necessary i n  such a 

case t o  prove s t a b i l i t y  using the  Posi t ive Operator Theorem. Fig. 2.46 

1 depicts  the Nyquist locus of G(s)  when r = 7, 1, al~d 2. However we do not 

make use of t h i s  p o s i t i v i t y  of G ( s )  f o r  r 2 2, because we want one s t o r q e  

function V(x)  - f o r  a l l  X ,  f o r  the  purposes of 51.7. We must use ~e same 



Fig. 1.46 

(s+l) ' , which is m u l t i p l k r  as  before, Z ( s )  = s + 1. Then G ( s )  Z ( s )  = 
s +rs+l  

a pos i t i ve  real function for a l l  r 3 0. We have 

whexe 

As i n  91.4 ( e )  we therefore describe the system o f  Fig.  1.45 by 

In Chapter 2 we introduce the concept of a storage function and show that  



2s a s torage  funct ion V 1 ( ~ )  f o r  (1 + - 
2 

) is  given by f ~ ' 5  E where 5  = X ' 
15 +1 

s a t i s f i e s  t h e  matr ix equation 

If we let  5 = Elen we obta in  

from which we g e t  t h e  fou r  poss ib le  solutSons 

We s e e  t h a t  f o r  r < 2 t h e  so lu t ions  and K a r e  no t  r e a l ,  s o  w e  consider  
-4 
I 

only El and lC2. Since K < lC2 we s e e  t h a t  - -1 
x'K x must be t h e  ava i l ab l e  

2 - -1- 
1 

s torage  funct ion,  and 5 ~ ' $ 5  must be  the  required supply ( see  Chapter 2 ) .  

Since the  convex combination of these  two s torage  funct ions is again a 

1 
s torage  funct ion,  we know t h a t -  x t Q  x is  a s torage  funct ion whenever 2 -  - 
g =  nEl + ( l - n ) E 2  f o r  some 0 6 rl $ 1. Thus, i f  -1 4 y d 1 we have 

the  s torage  funct ion 

To check t h a t  t h e  operator  mapping u i n t o  y is  d i s s i p a t i v e  we evalua te  



2 2 - Y X ~  - I - (1-y )x12 on subs t i tu t ing  

We can now es tab l i sh  s t a b i l i t y  by noting t h a t  t h e  storage function f o r  t h e  

feedback operator  is a s  

Thus i f  w e  describe the  regula tor  of  Figs. 1.44 and 1.45 by the equations 

we have the  Lyapunov function 

V ( 5 )  = V# + V 2 ( g  

Then 

By choosing y # 21 we have 

t(?l) < o , = o only a t  x = x - 0 . 
1 2  

This allows us t o  conclude s t a b i l i t y  about 5 = 2 using +ke following theorem 

of Yoshizawa @ 9 j ,  w h i ~ h  we introduce here with a view t o  the time-varying 

s i t u a t i o c  of 51.8. 

Theorem 1.6 

I f  V(x,t) - i s  a Lyapunov function (as  defined i n  91.4 (el) f o r  the  system 

of equations 



and i f  V(x,t) - is  pos i t ive  d e f i n i t e ,  decrescent,  and rad ia l ly  unbounded, 

then the  system is globally asymptotically s t a b l e  about 5 - 2, provided 

t h a t  -W(x) - is pos i t ive  d e f i n i t e ,  where V(x,t) - S W(x) c 0 .  

For a proof of Theorein 1.6 the  reader i s  refer red  t o  [37 ] .  

1.7 Second-Order Regulator with Resist ive Source Impedance 

(a) Introductory 

Inclusion of a res is tance  i n  s e r i e s  w i t h  the  source voltage E 

of Fig. 1.1 leads t o  a' much more d i f f i c u l t  s t a b i l i t y  analysis .  For the  

second-order regulator  with source res is tance ,  the  network a c t s  some of 

the  time (11 = 0 )  l i k e  +bat  of Pig. 1.5,  and f o r  the  r e s t  of the  time 

(u = 1) l i k e  t h a t  of Fig. 1.44. Hence, using the  same control  law we 

might expect t o  have s t a b i l i t y ,  s ince  both of the  regulators  of  Figs. 1.5 

and 1.44 are  s t ab le .  Furthermore, s t a b i l i t y  i s  t o  be expected from the  

notion "Dissipation a ids  s t ab i l i za t ion" .  I n  f a c t ,  we do f ind t h a t  these  

expectations a re  t rue ;  however, t h i s  not so  easy t o  es tabl i sh .  For 

t h e  second-order case w e  can f a l l  back an a phase plane analys is ,  but  f ~ r  

h i g h e r o r d e r  cases a Lyapunov approach seems the  only way. We provide i n  

p a r t  ( c )  here a Lyapunov analysis  of t h e  second-order case, which makes 

an elegant  use of the  ideas of d i s s ipa t ive  systems. 21 p a r t  (b) we apply 

a total-gain l inea r i za t ion  as an i n i t i a l  inves t iga t ion  of s t a b i l i t y .  

The second-order regulator  is  shown i n  Fig. 1.47. 
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The evolution equations are 

We see that the control variable u enters the s ta te  evolution equations 

i n  a multiplicative way, as w e l l  as i n  the usual additive way. A s  before 

we l e t  

and x = 2 5 ,  x2 = 2z2 - 2a, which yield? 1 
/ "  



r where q - for notational convenience. Now we can write  t h i s  equation i n  

two ways, the first way being 

and the second way being 

I where $ (z) = $2a-stp (xl+xZ) I .  takes on the values 0 an8 1.  
(-2+2a, 2a) 

The f i r s t  way leads us t o  the feedback system representation 

o f  Fig. 1.48.  On comparing t h i s  with that  o f  F ig .  1 .45 we might hope that  

Fig. 1 .43  

6.. -''-.. -1.- ,,...... .-.,.. ,,, , .u.rru---i--------.... -..L...- ............,. r . A , , ,  *, ",,.,*.A ,, .\ . .. . . I  - 



t he  feedback operator  i n  Fig. 1.48 is a pos i t ive  operator.  However, t h i s  

is not the  case. The representation of Fig. 1.48 does not seem t o  be 

helpful  a t  a l l ,  s o  we look a t  the  o ther  way of describing t h i s  regulator .  

This second way i n  state-space form is 

Fig. 1.49 depicts  t h i s  i n  feedback form: 

i = A ( x ) x  + b u  - - 0  0 z 
= g z  

Fig. 1.49 



(b) S t a b i l i t y  by Tota l  Gain Linearization 

Following the  total-gain l inea r i za t ion  argument of  91.4 ( c )  , 

acd comparing Pig. 1.49 with Fig. 1.11, we expect s t a b i l i t y  f o r  the 

system of Fig. 1.49 i f  it is  s t a b l e  when s t p  0 i s  replaced by kU, f o r  a l l  

0 < k < ". This gives us the equations 

For these w e  can use the following theorem: 

Theorem 1.7 

The system of equations 

is  local ly  asymptotical1.y s t a b l e  (i.e. i f  I 

is exponentially s t ab le ,  and 

uniformly i n  t. 

r By 1 lxl 1 we mean the  usual Euclidean norm 2 ' ~ ;  exponential s t a b i l i t y  means 

-bt 
t h a t  IIx(t)II G a e  f o r  some a,b > 0; a n d b y  

Lirn g(x,y)  = 0 uniformly i n  y 
x-+  0 



we mean t h a t  f o r  a l l  fl > 0 there  is a 6 > 0 which is  independent of y l  such 

t h a t  Ig(x,y) I < fl whenever 1x1 < 6. For a proof of Theorem 1.7 the  reader 

is  refer red  t o  

Now 

eigenvalues i n  

Chapter 4 of Bellman [ 4  1,  

we have det(ls-A) - s2 + (2aq+k)s + ( l + k ) ,  thus A has i ts 
' 

the  l e f t  ha l f  plane, s o  - x = - -  A x is exponentially s t ab le .  And 

Thus we have l o c a l  asymptotic s t a b i l i t y  f o r  the  system when s t p  U is 

replaced by kU. 

(c) S t a b i l i t y  by Lyapunov's Method 

I n  attempting t o  find a s u i t a b l e  Lyapunov function w e  can s t a r t  

with t h a t  of  51.4 (el and modify it by t r i a l  and e r ro r .  Here l e t  us  take 

1 a = - f o r  convenience, s o  t h a t  s t p  becomes sgn. I n  8 1 .4  (e) we had 2 
1 2 ' 2  1 '  

V(E) = ~ ( x  +x ) + -;Ix+xl. One possible approach here is  t o  add t o  this 
L 

I X I .  SO l e t  us t r y  

Then 

' 2 ' ' 2 '  
= -qx (1-sgn(x+;)] + [(a-1)x-ax1 sgn(x+x) - a sgn (x+x) 

2 + aqk[sgn (x+k) - sgn(x+k) I + bk sgn x . 
1 

take a = - and b = 2aq we have 
2 

' 2 2 1 '  2 ' -qx il-sgn (x+;) 1 - $1 IC+;I - L sgn (x+x) + ~x [sgn (x+x)-sgn(x+;) +2sgnxl 
2 2 

1 '  1 '  w = - -Ix+xl + -qx[l--sgn(x+;) + 2 sgn x] when x + ; # 0. 
2 2 



> * ?  
By looking a t  the four cases given by x C 0,  x C 0 ,  we f ind  W $ 0 (and 

1 
hence V d 0) f o r  a l l  x,x i f  and only i f  q < y. Thus we have the desired 

global  asymptotic s t a b i l i t y ,  usiag Theorem 1.6, provided t h a t  r C 1. This 

makes us wonder whether we might obtain i n s t a b i l i t y  i f  r is  large  enough. 

Further study of the above V shows t h a t  we can improve on 

t h i s  bound on r. For, collcct.ing terns  i n  a d i f f e ren t  way we obtain 

2 2 = -qx [ l -sgn(x+hl  + [(a-aq-1);-ax] sgn(x+;) - a sgn (x+x) 

2 + aq i  sgn (x+g) + b; sgn x . 

(which requires q < 2 Now i f  we l e t  b = aq and a-cq-1 = -a, i . e . ,  a = - 
2-q ' 

2 < w = - a1 x+;l + aq; [sgn (x+x) + sgn XI  . 
> > 

Looking a t  the four cases x < 0, x < 0, we now f ind  t h a t  W < 0 (and hence 

a 

V 4 0) for  a l l  x,; if h a  0 1 . 1 ~  i f  q < 1, so  by Theorem 1.6 we now have 

global asymptotic s t a b i l i t y  provided r < 2.  

We can do b e t t e r  than t h i s ,  however, using the  ideas of  

~ i s s i p h t i v e  Systems. We make use of the f a c t  t h a t  f o r  a d i s s ipa t ive  

system, the convex combination of Va and V is a l so  a s torage function, r 

where V is the  available s torage and Vr i s  the  r e q u ~ r e d  supply (see 
8 

Chapter 2).  Now i n  51.6 we described the  introduction of the  m d t i p l i e r  

( s+ l )  by a nonminimal state-space representation. I f  we follow t h a t  

method here we obtain the norminimal state-space representation: 



z = - z t y  with z (0 )  = xl 

We depict t h i s  i n  Fig. 1.50, which is  t o  Fig. 1.45 as Fig.  1.36 is t o  

Fig. 1.35. We wish t o  ehow that the fornard path operator rapping u in to  y 

Y 

i = A(%)!! + b.1 
.I, - - Y 
y ~ ( $ 4  + f l u  

' - - 

+ 

Z 1 4 b 
I s t 9  

- 
s +l  

Fig. 1.50 



is  a d i s s ipa t ive  operator.  Let us t r y  the  storage function we obtained 

i n  91.6, i.e. 

Then 

2 - [ ( r + y E )  xl - u] - (1-y x12 when 4 = 1 

- I ( r + 2 y 6 )  xlu - u2 when 4 = 0 

We w i l l  therefore always have V - uy < 0 i f  we can choose Y so that 

( r + 2 y K )  = 0, i . e . ,  f = - Since y 2 -1 t h i s  means t h a t  our ~;;i&or 

i s  d i s s ipa t ive  f o r  a l l  r < 8. The storage function f o r  the  forward-path 

2 2 
operator is  therefore V1 = (xl +x2 ) ,  and f o r  the  feedback operator  of 

Fig. 1.50 we know the  storage function is  V2 = Sod z = Sod(x 1 2  +x ) .  Thus 

2 2 
the  Lyapunov function t o  t r y  is  V = (xl +x2 + Sod(xl+x2) , which, admittedly, 

is the  one we s t a r t e d  with. Indeed, s ince  

we have 

2 
= -2r@i2 - r& stp(;+x! - s t p  (x+x) - ~od(;+x) 

< 0 f o r  a l l  x,; i f  r $ F!# s ince  $ is 0 o r  1. 



8 8 

When $J 0 ,  V = 0 -0 x + x = 0 ,  s o  we need t o  use Thcorm 1 .3  t o  conclude 
8 

s t a b i l i t y ,  which we  have s i n c e  x + x = 0 i s  no t  a t r a j e c t o r y  of  the system. 

We have not  been ab l e  t o  ob ta in  a Lyapunov funct ion which g ives  

s t a b i l i t y  f o r  a l l  r >, 0 .  Perhaps the next  s t e p  i n  t h i s  d i r e c t i o n  i s  t o  

t r y  t o  f i nd  such a V by looking d i r e c t l y  a t  t h e  d e f i n i t i o n  of a s to r age  

function. 

(8) S t a b i l i t y  by Phase Plane Analysis 

Fig.  1.51 shows a set  of phase-plane t r a j e c t o r i e s  f o r  t h e  case  

1 a = 5, r = 10. I.e., t h e  t r a j e c t o r i e s  of  Fig. 1.51 a r e  the so lu t ions  of  

In  o r d s r  t o  ob t a in  Fig. 1.51 w e  need t o  know the  shape of the  t r a j e c t o r i e s  

f o r  

x + r x + x t O .  

These a r e  shown i n  Fig. 1.52, f o r  r = 10. For a d i scuss ion  of  phase-plane 

t r a j e c t o r i e s  of t h i s  type,  the reader  i s  r e f e r r e d  t o  Chapter 7 of re fe r -  

ence [ l l ]  and Chapter 3 of re fe rence  1371. 

From Fig. 1.51 we conclude t h a t  a l l  t r a j e c t o r i e s  w i l l  reach 

t h e  cha t t e r ing  region o f  t h e  switching l i n e .  To determine whether t h e  

r e s u l t i n g  cha t t e r ing  motion is  s t a b l e  we need t o  apply the methods 

developed i n  61.4 (b) . Our s y s t e s  obeys 

where 



F i g .  1.51 

Trajectories of '&5i+x = ( 5 i - 1 )  sgn (i+x) 



Fig. 1.52 

Trajectories of ?+10;+x = 0 



-' 1 1 $(3 = p a  - s t p  (8xl+x2) 1 
(-2+2a,2a) 

Let 

r2 " [: -:I and 

" =  [-: -:I 
Then 

The switching l i n e  S is = x  = 0 ,  i . e .  8xl + x2 = 0 .  The first endpoint 

+ 
condition is zL < 0 ,  which on subst i tut ion  becomes 

The second endpoint condition is - c - f- < 0 ,  which becomes 

1 Tk.us, for  a = - B = 1 ,  r > 2 ,  a s  i n  Fig.  1 .51 ,  we have chattering behavior 
2 ' 

on the hal f  l i n e  

1 -1 
x2 > max(- 5, r-2) . 

Motion along +Ae chattering l i n e  obeys 

A 



which, on subs t i tu t ing ,  becomes 

This is the  same r e s u l t  as f o r  91.4 (b). W e  therefore have the des i red  

global asymptotic s t a b i l i t y ,  fo r  a l l  f3 > 0 and f o r  a l l  r >, 0 .  

5 1 8 Further Refinements 

(a1 Preregulation 

The source imp!dance shown i n  Fig. 1.47 is the simplest  kind. 

It does not increase the  dime,sion of the  s t a t e  equations. I n  p rac t i ce  

the  source impedance may well  be l i k e  t h a t  depicted i n  Fig. 1.53. The 

capacitor  C provides a Corm of preregulat ion,  t h a t  is, a smoothing of ary 

Fig. 1.53 

time-variations i n  the  source voltage. I n  t h a t  case ihe evolution equations 

a r e  



Suppose, f o r  example, t h a t  w2 = w3 = b = 1, and t h a t  we want s t a b i l i t y  

about z2 = a. Then, l e t t i n g  x = 2zl, x2 = 2z2 - 20, x3 = 22 - 2, we 
1 3 

obtain 

Let 2u - 2a = - s tp  (Bx1+x2), as before. Then we have 
(-2+2u, 2a) 

where 

We now wish t o  prove t h a t  t h i s  defines a motion which is asymptotically 

s t a b l e  about & = 2. As y e t ,  we have nc t  done t h i s .  Probably t h e  desired 

s t a b i l i t y  can be obtblncd by extending the methods of 91.7 (b) and (c) , 

t h a t  is ,  t o  view these equations i n  the  form of a system l i k e  t h a t  of 

Fig. 1.49. Certainly it is  t o  be expected #a4 this system w i l l  be 



stable.  An even more d i f f i c u l t  s t a b i l i t y  question w i l l  be provided by 

replacing the res i s to r  of Fig. 1.53 with an inductor. 

(b) Tine-Varying Source Voltage 

So f a r  we have only considered a fixed source voltage, and have 

shuwn tha t  the output voltage w i l l  s e t t l e  t o  i ts  desired value a f t e r  a 

change i n  input voltage or a change i n  the load resistance. In  practice 

the source voltage w i l l  be time-varying, between l i m i t s .  Usually t h i s  

variat ion w i l l  be periodic, a s  f o r  instance i n  rec t i f i ca t ion  applications. 

In  terms of the regulator of Fig. 1.5, t h i s  means t ha t  we have 

E ( t )  = Eo + E l ( t )  I where Eo > 0 

and E l ( t )  3 0 fo r  a l l  t. 

This modifies the evolution equations of $1.4 (a) for  z1 and z2 t o  be 

where e ( t )  >, 0 f o r  a l l  t. Using the same feedback law we obtain, for xl 

and x2 

(Bx1+x2) + e ( t )  [2a - s t p  @x1+x2) 1 
(-2+24,20) I X1 = -X - stp 

(-2+2a,2a) 

whexe 



We can think of f ( = r , t )  as s t p  ( 2) . The system of Fig. 1.17 now 
(-a( t )  ,b) 

becomes t h a t  of ~ i g .  1.54, 

e r e  G( 

Fig. 1.54 

Bs+l s) = - 
2 

. Now f ( - , t )  is  a pos i t ive  operator.  I f  we h ~ v e  a 
s +1 

~ e s i s t a n c e  r > i n  s e r i e s  with the  indu-tor,  then G ( s )  = 
Bs+l 

'B 2 
is a 

s + r s + l  
pos i t ive  r e a l  function, and so by the  r o s i t i v e  Operator Theorem we w i l l  

have the  required s t a b i l i t y .  As y e t  we have not proven s t a b i l i t y  f o r  more 

general cases. 

51.9 P rac t i ca l  Considerations 

We now discuss b r i e f l y  some of the  p r a c t i c a l  aspects  of implementing 

the  control  laws we have been considering. Fit,. 1.55 shows a schematic f o r  

m e  possible implementation of t h e  type of regula tor  we have been discussing. 

The two-position control  switch is  ef fec ted  by means o f  the return-path 

diodes Dl and D the  power t r a n s i s t o r  T1. and t h e  d r ive r  t r a n s x t o r  T 
2 ' 2 '  

The two r e s i s t o r s  marked R1 a re  used t o  obtain a measure of ha l f  of the  

output voltage Vo. This and hal f  t h e  desired output voltage of aE a r e  fed 
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i n t o  the  operat ional  amplif ier  network which gives k (Bs+l) ( v ~ - ~ E ) ,  i g e a  - 
K 

k($V +V -a), where D = RZC2 and k = - 
0 0 

. The comparator gives a d i g i t a l  
2R2 

(0 o r  1) output depending on whether the  output of  the  operat ional  ampli- 

f i e r  is  pos i t ive  o r  negative. This d i g i t a l  s igna l  controls  the  dr ive r  

t r a n s i s t o r s  through the  d i g i t a l  delay, the  purpose of which is t o  l i m i t  

the  switching frequency of the  t r a n s i s t o r s ,  s o  t h a t  the overa l l  e f f ic iency 

remains high. The parameter B should be chosen t o  give a good t r ans ien t  

response to  changes i n  load. The easy extension of t h i s  method of imple- 

mentation t o  the  fourth-order ccse should be c l ea r .  Note tha t  when a load 

res is tance  is present  we a r e  more concerned with V than with IL, SO there  0 

is  no need t o  measure inductor current.  

I n  p rac t i ce  the  operat ional  amplif ier  w i l l  involve a lag term in  the  

measure of (VO-aE!, so  t h a t  the  voltage a t  i ts output is more accurately 

l+Bs 
given by k (x) (VO-aE) , where 6 << 6. Alternat ively,  it may be necessary 

1 
t o  introduce t h i s  l a g  - I+& in tent ional ly  by i l a c i n g  a capacitor  C3 i n  

p a r a l l e l  with R where C R = 6 ,  s o  t h a t  the  operat ional  amplif ier  network 3' 3 3 

does not become too receptive t o  hign frequency noise. 

We nust  therefore re-exmine the  system depicted i n  Fig. 1.17, and 

asce r t a in  whether t h i s  i s  s t a b - e  when the  forward-path t r a n s f e r  function 

i s  generalized t o  be of the  form G ( s )  = 
(Bs+l) . A shor t  ca lcula t ion  

(s2+1) (6s+l) 
shows t h a t  the  associated l i n e a r  feedback system of Fig. 1.19 i s  s t a b l e  

f o r  a l l  k > 0 provided d $ B. We therefore kaow t h a t  a pos i t ive  r e a l  

mul t ip l i e r  Z (s )  e x i s t s  such t h a t  G ( s )  Z (s) is pos i t ive  r ea l .  The f i r s t  

mul t ip l i e r  t o  t r y  i s  the  simplest ,  i . e . ,  Z (s) = ( l+ys)  , a s  used i n  5 1.4 (dl 

and 51.6. We f ind  



s o  Re G ( j w )  Z ( j w )  > 0 f o r  a l l  w i f  and only i f  By-6Pby = 1, i . e .  

1+6B 
Y - ; and Y > 0 i f  and only i f  6 < 6. We thus f ind  t h a t  the  same 

type ~f mul t ip l i e r  a s  considered f o r  the  sirn!.de second order case can be 

used here t o  prove s t a b i l i t y .  The reason f o r  t h i s  is,  e s s e a t i a l l g ,  t h a t  

i n  t h a t  case we had Re G ( j w )  Z ( j w )  = 1 f o r  a l l w  , i . e .  we had some 

"room t o  spare". The important conclusion here is t h a t  s ince  the  l ag  

term ( ( 6 ~ + 1 )  i n  the dehorninator of G ( s ) )  w i l l  always be present  i n  p rac t i ce ,  

some form of phase ad..rance ((Bs+l) i n  the  numerator of  G ( s ) )  is necessary 

f o r  s t a b i l i t y ,  with $ > 6. Indeed, an analog computer simulation shows 

t h a t  i f  $ is reduced below 6 ,  an o s c i l l a t i o n  w i l l  occur, a t  a  frequency 

A 
of the  order  of - . 

2lT E 
References 1251 and [14] a re  recent  publicat ions summarizing s t a t e -  

of-the-art techniques used i n  prac t ice  i n  the  design of so l id - s t a t e  power 

supplies. Both give ac tual  design examples of second-order switching 

voltage regulators  which a re  s imi lar  t o  t h a t  considered here; (1253, 

Vol. 2, p. 165; (141, p. 196). The c i r c u i t  given i n  [25] is of the  type 

shmn i n  Fig. 1.56, which w i l l  be seen t o  be very s imi la r  t o  t h a t  shown i n  

Fig. 1.55. Frequency l imi t ing  i s  ef fec ted  by the hys teres is  i n  the  Schr.itt 

t r i g g e r ,  the c i r c u i t  cf which i s  shown i n  d e t a i l  i n  Fig. 1.57. The Schmitt 

t r i g g e r  can be approximated (very roughly, but adeqcately f o r  our purposes) 

a s  being equivalent t o  a  l i n e a r  system with t r ans fe r  function (Bs+l) , 



SCHMIT 1' k ( V ~ - a E )  LONG- TAILED PAIR - 
T RIGGER REFERENCE AMPLIFIER 

Fig. 1.56 

Fig. 1.57 



followed by a hys teres is  device with two-state output. The important 

point  is  t h a t  s ince  c a r  analysis  has shown t h a t  B must be nonzero, we 

see  t h a t  the  0.15 pF "comnutating" capacitor  i n  the  Schmitt t r igge r  c i r c u i t  

plays a c ruc ia l  r o l e  i n  determining s t a b i l i t y  and ensurfng a reasonoble 

t r ans ien t  response, s ince  it is responsible f o r  the  phase advance t e r n  

(Bs+l) . Both authors [2S ] , [l4 ] give considerable a t t en t ion  t o  other  l e s s  

important design fea tures ,  but  do not even mention s t a b i l i t y  considerations, 

l e t  alone explain the  presence of t h i s  capacitor .  Furthermore, ne i ther  

author considers the  poss ib i l i ty  of using a fourth- o r  higher-order f i l t e r ,  

which w e  have shown t o  be jus t  a s  easy t o  implement and s t a b i l i z e ,  while 

having superior  design advantages. 

Reference 1151 a lso  considers a second-order switching regula tor ,  i n  

which the  Schmitt t r i g g e r  is considered t o  have no dyn=ics, i .e .  it 

cannot rntroduce a s t a b i l i z i n g  phase advance f a c t o r  (Bs+l). The regulators  

considered i n  1151 a r e  assumed t o  have a small res is tance  i n  s e r i e s  with 

the  output f i l t e r  capacitor.  This w i l l  introduce the desired phase advance 

term i n  the forward-path t r a n s f e r  function. We might c a l l  this an 

"accidental" s t a b i l i z a t i o n ,  which is another example of d iss ipa t ion  aiding 

s t ab i l i za t ion .  Clearly there  is no control  of the t r a n s i e n t  response i n  

t h i s  design. 

I n  conclusion we nate t h a t  a l l  of the  various methods of s t a b i l i t y  

analys is  which we have considered i n  Chapter 1 a r e  needed f o r  a F u l l  

uc9erstanding of systems of the type we ham been considering. 



CHAPTER 2 

POSITIVE OPERATORS AND DISSIPATIVE SYSTEMS 

5 2.1 Introduct ion 

The i n t e n t  of t h i s  chapter  is t o  out . l ine t he  re levant  background 

ma te r i a l  f o r  Chapter 1. I n  § 2.2 w e  follow the  development of  

re fe rence  [ 341 i n  providing a simple proof of t h e  P o s i t i v e  Cperator 

Theorem, which we be l ieve  is  a usefu l  theorem, though s o  f a r  has been 

appl ied r e l a t i v e l y  l i t t l e .  Fox more extensive and r igorous  t reatments ,  

t h e  reader  is r e f e r r ed  t a  [ 3 4 1  and [ 42 I .  I n  5 2.3 we d i scus s  concepts 

of Diss ipa t ive  System Theory following t h e  development i n  t h e  recent  two- 

p a r t  paper by Willems, [ 35 ] ,  [ 36 ]. I n  § 2.4 we address  t h e  problem o f  

ob ta in ing  s ta te-space r e a l i z a t i o n s  f o r  t r a n s f e r  f u n c t i o m  of  t h e  O'Shea 

type,  a s  introduced i n  5 1.5 (dl and (el  , Theorems 1.4 and 1.5. 

5 2.2 Pos i t i ve  Operators 

(a) Operators,  and func t ions  of time 

We consider  func t ions  of  time on t h e  i n t e r v a l  0 C t < m. The 

func t ions  w i l l  a l l  be real-valued, though our  s ta tements  and theorems a r e  

ea s i Jy  general ized t o  t h e  case  of vectcr-valued func t ions  of  t i m e .  An 

opera tor  F maps a f u x t i o n  of t i m e  x ( t )  i n t o  another funct ion of time y ( t ) ;  

we write y = Fx. Usually we think of these  two func t ions  x and y as t h e  

input  and the  ou tput ,  and o f  t h e  operator  as an i~put -outpu-c .~~ .  An 

- 8 9 -  
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operator  nay be spec i f i ed  by a c h a r a c t e r i s t i c  graph, a convolution i n t e g r a l ,  

a t r a n s f e r  func t ion ,  o r  o the r  means. We assume t h a t  a l l  opera tors  con- 

s idered  a r e  causa l ,  i . e ,  p resen t  and p a s t  va lues  of  t he  ou tputs  do no t  

depend on f u t u r e  

is  a real  number 

values  of  t h e  inputs .  I f  F and F a r e  opera tors  and a 1 2 

then t h e  opera tors  F + F and aF a r c  def ined by 
1 2  1 

+ F x and (UF ) X  = a ( F  x) respec t ive ly .  The opera tor  
2 1 1 

F2F1 is c a l l e d  t h e  composition of F2 with F and i s  def ined by (F F ) x  = 
1 2 1 

F 2 F 1 x .  I n  general  F F f FlF2. I f  F2Fl = F F then we say  t h a t  Fl and 
2 1 1 2  

F commute. An operator  F is l i n e a r  i f  F ( a  x + a x 1 = a Fx + U Fx 
2 1 1  2 2  1 1  2 2  

holds  f o r  a l l  xl, x2. The i d e n t i t y  operator  I is  defined by l x  = x ,  and 

t h e  zero operator  0 is  def ined by Ox = 0. An opera tor  F' i s  i n v e r t i b l e  i f  

- 1 - 1 
t h e r e  is another opera tor  F such t h a t  FF-' = F - ~ F  = 1. (F2F1) = 

- -1 
Fl IF2 . An opera tor  of imlortance t o  u s  i s  t h e  t runca t ion  operator  P T ' 

(more usua l ly  c a l l e d  a p ro j ec t i on  o p e r a t o r ) ,  def ined by 

x ( t )  f o r  0 d t d T < 

0 otherwise . 

An operator  F is causal  i f  P F commutes with P f o r  a l l  T ,  i . e .  PTFPT = PTF 
T T 

2 
f o r  a l l  T. (Note t h a t  PT = PT) . This  is equiva len t  t o  requi r ing  t h a t  

P x = P x JPTFxl = PTFx2 f o r  a l l  T, (provided FO = 0 ) .  
T l  T 2  

We assume t h a t  t h e  reader  is f ami l i a r  with t h e  concept of a vector  

space. A vec tor  space V i s  c a l l e d  a normed vec tor  space i f  a map, c a l l e d  

t h e  norm and denoted ky I I I I ,  from V i n t o  t he  r e a l  numbers IR is def ined - 
on V,  such t h a t  f o r  a l l  X r  y E V m d  u c R, 



A r e a l  i n n e r  product  space  i s  a  v e c t o r  space  V with  a map, dcnotcd by 

<,> and c a l l e d  t h e  i n n e r  p roduc t ,  from V x  V i n t o  IR such tlia4- f o r  a l l  

X ,  y ,  z E: V and a, B E: R 

(1) <x,y> = <y,x> 

( 2 )  <ax+by,z> = a(x ,z> + B<y,z> 

( 3 )  <x,x> 2 0 ,  = 0 i f  and o n l y  i f  x = 0.  

An i n n e r  ~ r o d u c t  space  is  b norncd v e c t o r  s p a c e ,  with 1 1 xl 1 = . 
The Cauch~r-Schwartz i n e q u a l i t y  s t a t e s  t h a t  

! < x r ~ > l  < 11x1 I . I l ~ l  l 

T~ ,,, inner-product  space  which we con .s t h e  space  o f  r ea l -v  

square - in tegrab le  f u n c t i o n s  of t ! m e ,  L2[0,wl.  A f u n c t i o n  x ( t )  i s  i n  L2 i f  

low x2 d t  < For  X ,  y  c L2 t h e  i n n e r  p roduc t  is  def ined  by 

<xrY> = 1: xy d t ,  so t h a t  11x1 1 = (I-. 
0  

There a r e  many f u n c t i o n s  of  i n t e r e s t  t o  u s  which a r e  n o t  i n  L  f o r  
2 '  

t example t h e  c o n s t a n t  f u n c t i o n s ,  o r  f u n c t i o n s  such as t and e  . I n  o r d e r  

to  be a b l e  t o  handle t h e s e  we i n t r o d u c e  the  cxtended space  L  which 
2e r  

c o n s i s t s  o f  a l l  those  f u n c t i o n s  x ( t )  f o r  which P x  E I, f o r  a l l  f i n i t - :  T. 
T 2 

This  inc ludes  a l l  f u n c t i c n s  y (t) f o r  which t < y  ( t )  ( < w . 



We assume henceforth t h a t  a l l  operators considered s a t i s f y  FO = 0. 

The operator F is s a i d  t o  be bounded i f  

This supremum w i l l  be ca l led  the  gain  of  F, and demted I IF  I I .  I t  is easy 

f o r  a l l  T. F is  s a i d  

I s 11x1 1 f o r  a l l  T, 

Lipschitz continuous 

This supremum w i l l  be ca l led  the  Lipsch5tz constant of F, and denoted 

I I F  1 I*; it s a t i a f  i e s  the  inequa l i t i e s  j u s t  given for  I 111 I . 

(b) Pos i t ive  Operators 

L e t F : L 2 +  L i .e.  F maps L i n t o  L2. Then F is s a i d  t o  be p s i t i v e  
2 * 2 

on L i f  f o r  a l l  x E L2, 
2 

i . e .  xy d t  2 0 where y = Fx. 
0 



F is said to be strictly positive on L i f  F - 71 is positive on L2 for 2 

some o >  0 ,  i.e. <x,Fx> 3 q)lx)12. 

Suppose now that F:L -+ L . Then F is said to be positive on 
2e 2e 

L2e 
if for all x c L and all T < w ,  <P x,P fx> 2 0, i.e. 

2e T T hT xy dc 2 0 

for all T I  where y = E'x. F is strictly positive on L if F - ?I is 
2e 

positive on L for some T ) >  0. The relationship between positivity of 
2 e 

an operator on L and L is simple: 2 2e 

Lemma If F:LZe + L2e - and F:L2 + L then F is positive on LZe if and 2 ' 
only if it is positive on L 

2' 

Proof Since F is causal, for all x E L we have - 2e 

which shows that positivity on L2 implies positivity on L . Now assume 
2e 

that F is positive on L but that for some x E L2, <x,Fx> < 0. Since 
2e * 

lim P x = x, this implies by continuity of <,> that for some TI 
w T 

<P,x,Fx> = <P x,P Fx> < 0, which yields the contradiction. Q.E.D. 
A T T 

Note that the lemma still holds if "positive" is replaced by "strictly 

positive". 

If F and F are positive and al and a are nonnegative real numbers, 
1 2 2 - 1 

then a F + a2F2 is positive. If F-' exists and F is positive then F 
1 1  

-1 
is also positive, (since if y = Fx then <F y,y> = <x,Fx> 2 0). Note that 



T 
t h e  inequal i ty  $ xy d t  3 0 can be viewed a s  a s ta tement  about t h e  

0 

co r re l a t ion  between the  funct ions of time x and y,  a po in t  of view which -- 
is u t i l i z e d  i n  t h e  proof of t h e  O'Shea theorem (Theorem 1.41, 112 I .  

Examples of p o s i t i v e  opera tors  a r e  (i) A p o s i t i v e  l i n e a r  gain,  

(Fx) (t) = kx( t )  where k 2 0, (ii) A f i r s t -  and third-quadrant ncnl inear i ty  , 

(Fx) (t) = f ( x ( t ) )  where Uf ( U )  3 0,  e.g. t h e  func t ions  s t p  0, sgn 6, 

s a t  k 6, defined i n  Chapter 1, (iii) A time-varying nonl inear i ty ,  (Fx) (t)= 

f ( x ( t )  ,t) where of ( b , t )  >, 0,  a s  f o r  example i n  5 1.8. A l l  of these  

examples a r e  memoryless opera tors ;  t h a t  is, present  values of t h e  outputs  

depend only on present 'values of the inputs .  An opera tor  which is not  

memoryless is s a i d  t o  be dynamic. An important c l a s s  of dynamic opera tors  

is t h e  convolution opera tors ,  i . e .  those  fo r  which Fx = y where y ( t )  = 

jot t -  d .  Usually these  a r e  def ined by a r a t i o n a l  t r a n s f e r  

funct ion G ( s ) ,  which is a funct ion of t h e  complex frequency va r i ab l e  s ,  

represent ing a d i f f e r e n t i a l  equation r e l a t i n g  y ( t )  and x ( t ) ,  and given by 

-st 
G ( s )  = I; e g ( t ) d t .  Such an operator  w i l l  be p o s i t i v e  on L i f  and 

2 e 

only i f  G ( s )  is a p o s i t i v e  r e a l  funct ion,  a s  discussed a t  the  beginning 

of 5 1 .4 (d ) .  This r equ i r e s  t h a t  Re G ( j w 1  3 0 f o r  a l l  w ,  and s t r i c t  

p o s i t i v i t y  requi res  t h a t  Re G ( j w )  >, r) > 0 f o r  a l l  w ,  f o r  some 

T) > 0. 

To ind ica t e  why t h i s  i s  t r u e  we make use of Parseva l ' s  equa l i t y  of 

Fourier  transform theory,  ( [  341 sec t ion  1 .3 ,  [ 291) .  We extend our time 

i n t e r v a l  of d e f i n i t i o n  t o  (-,m) by l e t t i n g  x ( t )  = 0 f o r  -co<t<O. Now i f  

x ( t )  E L ~ ( - ~ , W )  l e t  X(jU = l i m  J T  x ( t )  e-jwtdt. Then X (  jo) E L2(&."1 I 

T-KD -T 



and X (  j w )  is ca l led  the  limit-in-the-mean Fourier transform of x ( t )  . We 

1 have the  inverse transform x ( t )  = -- l i n  x ( j w )  ejotdw. Parseval 's 
2'rW-J 

equali ty s t a t e s  t h a t  1 I_" u ( t ) T ( t ) d t  = C u (jw)?i (jw)dw , where the 

overbar denotes complex conjugation. 

supposo now t h a t  y ( t )  = lt g(t-T)  u(T)dT, s o  that  

Then u ( t ) y ( t ) d t  = I" Ll(jo)T(jw)dw by ~ a r s e v a l  
-0 -00 

From t h i s  it follows t h a t  uydt >I 0 f o r  a l l  u C LZIO,OO) i f  and only i f  
-00 

Re G ( j w )  b 0 f o r  a l l  w. 

F inal ly ,  another important c l a s s  of pos i t ive  operators  a r e  those 

obtained by the  composition of a  monotone nonlineari ty F with a t r a n s f e r  

function G ( s )  . For a spec i f i c  nonlineari ty F ,  such as f ( U) = c3 , it 
is not known a t  present how t o  determine conditions on G ( s )  f o r  FG t o  be a 

pos i t ive  aperator .  However, i f  we require FG t o  be pos i t ive  f o r  any 

monotone nonlineari ty f  with f ( 0 )  = 0,  then the  theorem of O'Shea (our 

Theorem 1 .4 )  provides the  answer. 



( c )  z e  P o s i t i v e  Operator Theorem 

Consider t h e  feedback system of Fig. 2.1. 

Fig.  2.1 

The governing equat ions f o r  t h i s  system a r e  

We assume t h a t  t h e  opera tors  G and G s a t i s f y  Gi 0 = 9, (i = 1, 2 ) .  We 
1 2 

c a l l  ul, u2 t h e  inputs ;  el, e t h e  e r r o r s ;  and yl, y2 
2 

t h e  ou tputs .  The 

inpu t s  may represen t  d r iv ing  func t ions ,  d r iv ing  noise ,  o r  i n i t i a l  condi t ion 

responses.  Assume t h a t  f o r  any ul, u 
L2e' 

so lu t ions  e l ,  e 2 ,  yl, y2 i n  
2 

L2e 
e x i s t  f o r  t h e  above equat ions,  and depend on ul, u2 i n  a causa l  way; 

this assumption is c a l l e d  well-posedness. 

We would l i k e  t o  know when the feedback system is  s t a b l e  i n  t h e  

sense t h a t  bounded inputs  y i e l d  bounded e r r o r s  and outputs .  



Defin i t ion  The feedback system of F i g .  2.1 is f in i t c -ga in  s t a b l e  i f  any 

inputs  u , u2 E L2 y i e l d  el, e2, yl , y2 E L2, and t h e r e  e x i s t  

constants  p 
1' P 2  < ao such t h a t  f o r  any u 1' U2 =2 

Theorem 2.1 ( [  34 I ,  Chapter 4 ) .  Suppose t h a t  G2 is bounded and e i t h e r  

G1 is bounded o r  I I P  G x l l  2 lpTxll f o r  a l l  x L L2e, f o r  some 9 > 0. 
T 2 

Then t h e  system of Fig. 2.1 is f in i t e -ga in  s t a b l e  i f  and only i f  

1 1 I + G G  ' 1  1 < on L 
2' 

The theorem holds i f  the r o l e s  of G and G a r e  reversed. 
2 1 

Proof Since el = u - G e = ul - G (G e +u ) ,  (I+G G ) e  = u + G G e - 
1 2 2 2 1 1  2 2 1  1 1 2 1 1  

-1 
G ( G  e +u , so  (I+G2G1) e x i s t s  on L2e and i s  causa l ,  by well-posedness. 
2 1 1  2 

L e t  u E L be given. Then 
1 2 

= PT(I+G G 1-I* ( I + G  G e s i n c e  (I+G G 1-I is causal. 
2 1  T 2 1  1 2 1 



Thus 

- 1 
 heref fore, IIpTe1lI E I I ( I + G ~ G ~ )  ~ ~ - ~ ~ u l ~ ~  + ~ ~ ( I + G ~ G ~ ) - ~ I I . I I G ~ I I - I I U ~ I I ,  

f o r  a l l  T. Thus el  € L , and t h e  f i n i t e - g a i n  c o n d i t i o n  i s  
2  

s a t i s f i e d .  S ince  y2 = u  -e 
1 1' Y2 

a l s o  s a t i s f i e s  t h e s e  cond i t ions .  Now i f  

I 1G1 I I < , we s e e  t h a t  y. . e  a l s o  s a t i s f y  t h e s e  cond i t ions .  Al te rna t ive -  
A 2  - 1 

l y ,  if T I I I P ~ ~ ~ I I  Q IIpTy211 t h e n  e 2 ~ ~ 2  w i t h  I l e J i ~  n Ily2111 and y  1 2  EL a l s o ,  

-1 
s i n c e  y  - 

1 - e2 - U2' 
The n e c e s s i t y  o f  I I (I+G2G1) I I < ' f o r  f i n i t e - g a i n  

s t a b i l i t y  fo l lows  from 

- 1 e = ( I + G  G ) ul , i f  we t a k e  u2 = 0. 
1 2  1 

Theorem 2.2. P o s i t i v e  Operator  Theorem (1421 , 1361 Chapter 4 ) ,  The system 

o f  Fig.  2.1 is f i n i t e - g a i n  s t a b l e  i f  G and G a r e  p a s i t i v e  on L  and 1 2  2e1 

one o f  them is  s t r i c t l y  p o s i t i v e  and L i p s c h i t z  cont inuous  on L 2' 

Proof .  Suppose G2 is s t r i c t l y  p o s i t i v e  and L i p s c h i t z  continuous.  W e  s h a l l  

show t h a t  t h e  cond i t ions  o f  Theorem 2.1 a r e  met. For  any x € L we have 2 e  

T I I  1 ~ ~ x 1  l 2  C < P G x , P x >  T 2  T b y s t r i c t p o s i t i v i t y o f G  2  

I 1 ~ ~ ~ ~ x 1  1 . I 1 ~ ~ x 1  1 by t h e  Cacchy-Srhwartr 

i n e q u a l i t y .  

Thus, I I P ~ G ~ X I  I 3 TI I I pTx1 I f o r  a l l  T. We t h e r e f o r e  on ly  need t o  show that 

I I I + G ~ G ~ ) - ~ I I  < -  on L2. So l e t  x E. L and rJpyase ( I + G  G ) y  = x. Thcn 
2  2 1 

L ~ e  
by assumption, and P  y + P G G y = P x. 

T T 2 1  T 



s i n c e  G1 is p o s i t i v e  and G 2 is s t r i c t l y  

pos i t ive .  

- 1 
Thus, s ince  y = ( I S  G 1-I x,  w e  have I I ( I + G ~ G ~ ) - ~ I I  < 11 1 ~ ~ ~ 1 ~  + 1 w , 2 1 

and the  condit ions of  Theorem 2.1 a r e  s a t i s f i e d .  QED. 

- 1 
I t  is  i n t e r e s t i n g  t o  note t h a t  i f  i n  add i t i on  G exi:ts, then 

1 - 1 
G1(I+G2G1) t u r n s  ou t  t o  be i t s e l f  s t r i c t l y  p o s i t i v e  and bcunded on L 

2 
- 1 ( [ 3 4 ] ,  p. 39) . Since y = G (I+G,G1) u  when u = 0 ,  t h i s  says t h a t  t h e  

1 1  1 2 

closed-loop system i t s e l f  is a  pos i t i ve  operator .  We can i n t e r p r e t  t h i s  

i n  terms o f  passive e l e c t r i c a l  networks,[421: Let G be t h e  dr iving-point  
1 

impedance of a passive two-terminal network, and l e t  G2 be a passive dr iving-  

-1 -1 - -1 poin t  admittance. Then G1(I+G2G1) = G G -1+~2)  = ( G ~  '+G*) is  
1 1 (G1 

the  dr iving-point  impedance of t he  s e r i e s  connection, a s  shown i n  Fig.  2 .2 ,  

and t h i s  i s  passive i f  G and G are passive.  
1 2 



It is also 

altered to 

7 + 
- Impedance 
L 

Vi G1 b 

+ 
Admittonce - .- G2 

h 

Impedance 
G, (I +G2G, 1- ' 
Fig. 2.2 

interesting to note that the requirements of Theorem 

strict positivity of G and G but no boundedness. 
1 2 ' 

2.2 can be 

5 2.3 Dissipative Systems 

In Chapter 1,s 1.4 (e) ,§ 1.5 (el ,§ 1.6, and 5 1.7 (c)  we introduced and 

made use of the idea of a dissipative system. Dissipative systems are of 

interest in engineering and physics; typical examples are passive eiectric- 

a1 networks in which part of the energy js dissipated in resistors as heat, 

viscoelastic systems where energy is lost through viscoelastic friction, and 

thermodynamic systems for which the second law of thermodynamics postulates 

a form of dissipatioc leading to an increase in entropy. We use the term 

dissipative as a generalization of the concept of passivity, and the term 

storage function as a generalization of the concept of stored cncrgy or 

entropy. 



- 101 - 
Let G be an operator, or system, with input ~ ( t )  and output y(t) 

0 6 t < ", defined by the equations 

The vector 5 (t) is 'called the state vector for G; the space X to which 

x(t) belongs is called the state space for G. Let w(u_,a be a real-valued - 
function of u(t) and y(t). Then G is said to be dissipative \dth respect 

to the supply-rate w(g,y) if there exists a nonnegative function V(g with 

v (2) = 0 such that 

V is called the storage function for G. The inequality - w < 0 is called 

the dissipation inequality, and it is easy to show (using for instance 

Theorems 6.10 and 6.15 of reference [27] that this is equivalent to the 

'0 
where - x(tO) = X O  , ~ , ( t ~ )  = x -1 

Now we introduce a quantity called the available storage; it is a 

generalization of the concept of "available energy" or "recoverable work". 

For the network of Fig. 1.34 it represents the maximum possible energy 

available at the terminals, starting from some given initial condition. The 

available storage V of the system G in state x is defined by 
a -0 

V a h 0  = sup -4 w(t) dt 



The supremum is taken over all motions starting in state E~ at time 0, 

and all possible l(t). The available storage is an important function in 

determining whether or not a system is dissipative, as is shown by the 

following theorem: 

Theorem 2.3. [3Sl  The available storage V is finite for all xo if and 
a 

only if G is dissipative. Moreover, 0 < V < V for kny storage function 
a 

V, an2 V itself satisfies the dissipation inequality. 
a 

The reader is referred to [351 for a proof. 

The state space X of the system G is said to be reachable from 

x C X if for any x c X there is an input function ul(t) which will 
-0 1 

transfer the state of G from x to x We shall assume henceforth that 
-0 -1' 

all storage functions V have the property V(2) = 0, i.e. c i s  the point of 

minimum storage for G in X. 

Next we introduce another quantity, called the required supply; 

this is the minimum amount of supply which must be delivered to the system 

in order to traasfer it frpm its state of minimum storage (the zero statc) 

to some other given state. The required supply V for the state x of the 
r -1 

system G is defined by 

The infimum is taken over all possible motions starting in state ~ ( 0 )  = 

and terminating at time t in state x We now have: 
1 -1' 



Theorem 2.4 [351 Let G be dif.~ipative with storage function V for which 

V(2) - 0 .  Then 0 S Va 6 V < Vr. Moreover, if the state space X of G is 

reachable from 2 then V < 00 and V is itself a possible storage 
r r 

function. 

For a proof ofthistheorem the reader is again referred to [351;  we show 

that V satisfies the dissipation inequality in the proof of Thcorcm 2.5. 
r 

From Theorem 2.4 we see that the storage function V of a dissipative 

system always satisfies the inequality V d V s V , i.e. a dissipative 
a r 

system can only supply to the outside a fraction of what it has stored and 

can store only a fraction of what has been supplied. V and Vr themselves 
a 

always satisfy the dissipation inequality, and hence are storage functions. 

However, not every function V (a$ which satisfies V < V1 d Vr will be a 
1 a 

storage function. It appears to be difficult to state other general proper- 

ties of the set of possible storage functions, evcept for its convexity: 

If V and V are storage functions, then sr 
1 2 

s aV + (1-a)V2 for any 
1 

0 d a < 1. This follows immediately from - issipation inequality. In 

particular, if the state space is reachable from - 0 then aVa + (l-a)Vr is a 

storage function for any 0 6 a $ 1. 

As a consequence of the normalization V ( 2 )  = 0 we obtain the following 

expected relationship between positive operators and dissipative systems: 

Theorem 2.5 Let an operator G with input u(t) and output y(t) bc defined 



and asswna t h a t  the  s t a t e  spaco of G is reachable from c. Then when 

x = 0 G i e  a pos i t ive  operator i f  and only i f  G is d i s s ipa t ive  with -0 - 
respect  t o  the  supplv r a t e  uy with a storage function V($ !) 0 f o r  which 

Proof. I f  G is  d i s s ipa t ive  then when E~ = 2 we have - 

and thus G is a pos i t ive  operator.  Suppose now t h a t  G is a pos i t ive  

operator whenever = c. Then 

V(zl) = inf  uy d t  which is the  

required supply.  
x (O)=O_ 

xTt =zl - 
Then V (zl) 5 0 s ince  l uy d t  % 0, and ~ ( 2 )  = 0 by taking el = 0. 

To show t h a t  c-uy $ 0 we observe t h a t  

>, inf  
t120 

x (01 =g - 

s ince  



Fig. 2.3 

Fig. 2.3 illustrates this last inequality, which we see is precisely the 

dissipation inequality. QED . 

Note that we could also make use of the available storage to define V, 

rather than the required supply. The advantage of the positive operator 

concept is that it is an input-output concept which does not involve 

introduction of state space notions. However, in this approach we are 

restricted to considering operators which map 0 into 0, which though not 

a serious restriction, does in fact mean that we know something about the 

internal properties of such an operator, i.e. it must start from a state of 

minlnm internal storage; the dissipative property of a system is indepen- 

dent of its initial condition. In applications both viewpoints are 

essential. For instance, in Chapter 1 we saw that for the second-order 

systems c dissipative system characterization of operators was superior 

since it led to Lyapunov functions, while for the fourth-ordcx system we 

had to fall back oc the positive-operator methods. 

If we write d = - w then d is called the dissipation rate. When 
d E 0 the system G is called lossless. An example would be the driving- 

point impedance of a network containing only inductors and capacitors. 

Energy storage and retrieval is 100% efficient for such a system. In 



this case the Cissipation inequality becomes an equality, and the storage 

function is defined uniquely by V = V = V = I w dt. 
a r 

It may happen that V = V for a system which is not lossless; such a 
a r 

system is called quasi-lossless since it can be transferred between states 

with arbitrarily small dissipation if the input is suitably chosen. All 

first-order systems. (such as that of Fig. 1.32) are quasi-lossless. As an 

example consider the system of Fig. 2.4, where f(a) is a function with 

f ( 0 )  = 0 and @(a) > 0. Let F(x) = f (a)da. JX 0 

Fig. 2.4 

~f w = uy = (x+k)f (x) = xi (x) + f (x)k we have 

= sup 
5 2 0  

x (0) =xo 



Now we can always choose u so that xf (x) is bounded. Thus, letting x(tl) 

- 0 and tl + 0 we obtain V (x ) = F(xo). Similarly 
a 0 

V (x ) - inf [ dt + I? (xl) I = F(x,) . r 1 
t130 

0 
x ( 0 )  =o 
x(tl) =x 

I. 

Let us consider an electrical interpretation of this when £(a) = a. In 

Fig. 2.5 u is the applied input voltage to a resistor-inductor network, 

and x is the resulting current, given by ;( + x = u. If x(0) = 0 then the 

energy supplied to the network in the interval 0 C t d tl is 

1 
=1 x dt + - x 2  2 1 , where x 1 = x(tl) . 

0 0 
1 2  

The energy stored in the inductor at time t 1 is E = - x  (tl). In order to 
2 2 

demonstrate the quasi-lossless property of this network we must exhibit a 

u(t) for 0 6 t ', tl which will make the difierence - E2 = IP x2 dt 
0 

arbitrarily small. One such u(t) is the constant, function u(t) = 

x dt < t x , which approaches zero as tl + 0. Thus, the 
1 1  

Fig. 2.5 



most efficient driving function for this network is an impulse, i.e. for 

high efficiency the energy should be delivered to the network in as short 

a time as possible. 

Consider now the linear system G described by 

where ~ ( t )  E 9 ; u(t), y(t)E tRm, and A,B,C,D, are constant matrices of ---- 
appropriate dimensions. Assume that (A,B,C,D) is minimal. We wish to ---- 
know when this system is dissipative with respect to the supply rate 

w = goy. If + E' is invertible the evaluation of the available storage 

Va and the required supply V reduces to an optimal control problem which r 

may be solved by considering appropriate solutions of the matrix equation 

It can be shown [361 that this has a real sjmmetric positive definite 

1 - solution if and only if G is dissipative. Then Va(s) = - x'K x and 2 ---  
1 + + Vr ( ~ 1  = 7 1'5 5,where K and 5- are solutions of the above matrix equation. 

+ 
If - D + - Do is not invertible then K and K- are given by tha limits as - - 

+ 
II + 0 of K and K- , which are solutions of the above matrix equation -n -n 
obtained by replacing D by (D - + qI). - We also have that G is dissipative 

with respect to w = c'yif and only if there is a real matrix g =  8' 3 

which satisfies 
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1 
Moreover, ~ E ' Q E  is a storage function i f  and only it 2 s a t i s f i e s  t h i s  

+ 
inequali ty.  I n  pa r t i cu la r  5 and 1 s a t i s f y  it, and every solu t ion  2 

s a t i s f i e s  - o c - K- < p r - I(+. 

5 2.4 Realizations fo r  O'Shea Functions 

Suppose we have an operator F w i t h  input u (t) and output y ( t )  defined 

on 0 < t < 00 by the  equations 

where f  (a) is  a monotone function with f (0) = 0,  a s  depicted i n  Fig. 2.6. 

A s  s t a t ed  i n  Theorem 1.4 ,  we know t h a t  F is a pos i t ive  operator  i f  and only 
m 

h h -st 
i f  Z (s) = [C(I~-&)-'~]-' - - = go + y s  - g ( s )  , where y a 0 ,  g ( s )  = I g ( t ) e  d t ,  

0  
g ( t )  2 0, and go 3 e(0)  =I g ( t ) d t .  I f  we a l so  know t h a t  f (  a) is  odd, 

i .e .  f ( 6 )  = - f ( -U)  , then we can re lax  the  conditions on Z ( s )  t o  require 

t h a t  Z(s) = go + y s  - e(s )  where y 2 0, e(s)  =K g(t)e-stdt ,  and 

Ig(t) l d t  E go. These r e s u l t s  a r e  Cue t o  O'Shea, [261, 

Fig. 2.6 



[ 321 , (121 , and we c a l l  a t r a n s f e r  f u n c t i o n  Z-' (s) f o r  which z (sl  meets 

t h e s e  c o n d i t i o n s  an O'Shea func t ion .  

Given an 0' Shea f u n c t i o n  2 - I  (s) we  would l i k e  t o  be able t o  c o n s t r u c t  

a r e a l i z a t i o n  (A,b,c; o f  ~ ( s )  , as i n  F ig .  2.6, which w i l l  a l low u s  t o  ---  
w r i t e  down a s t o r a g e  f u n c t i o n  f o r  F as a f u n c t i o n  o f  t h e  state v e c t o r  5 

A s  y e t  a g e n e r a l  s o l u t i o n  is n o t  known t o  t h i s  problem, however, we have 

t h e  fol lowing theorem, ( c f  . Theorem 1.5) : 

Theorem 2.6 Suppose t h a t  - A ( t )  is a hyperdominant m a t r i x  f o r  all t ,  - 
b' = [O 0 -0 y]  , y > 0 , = = [ O  0 0 11 , and f i s  any monotone non- - 
l i n e a r i t y  w i t h  f!O) = 0. Then t h e  o p e r a t o r  mapping u ( t )  i n t o  y ( t )  d e f i n e d  

i s  d i s s i p a t i v e  w i t h  r e s p e c t  t o  t h e  supply rate uy; w i t h  s t o r a g e  f u n c t i o n  
n 

V ( 2 )  = +  F(xi)  , where F ( z )  = f ( 0 )  do. Furthermore,  i f  f i s o d d ,  
1x1 0 

t h e n  - A ( t )  - need on ly  be dominant. 

A m a t r i x  - M whose i j t h  element is  m is  s a i d  t o  be dominant i f  
n i j 

n 
m 8 1 l rn i j l  a n d m  3 1 Inij!  f o r  a l l  i , j ;  t h a t  is ,  f o r  each row and 
i i 

j =l j j  iel 

column t h e  on-diagonal e lements  a r e  l a r g e r  t h a n  t h e  sum of  t h e  moduli of 

t h e  off -diagonal  elements.  - M is  s a i d  t o  be hyperdoninant i f  it i s  dominant 

and a l l  t h e  o f f -d iagona le lements  a r e  nega t ive ;  i .e.  - M is  hyperdominant i f  

m S Owhen i f j ,  and 1 mij S O  and 1 m 2 0 f o r  a l l  i , j .  
i j i=1 j=1 i j 



Proof of l'hcorcm 2.6 8 

1 r r  3 - uy E xx 5 5 . - 
Now, i t  can  be shown ( [ 331  , 1341 C h a p t e r  3 )  that  i f  f (a) is ally nlonotot~c* 

f u n c t i o n  w i t h  f (0 )  = 0 t h e n  V A x is n c q a t i v c  for a l l  x i f  and o n l y  i f  
- x u  - - - 

-A i s  hypcrtlomitmnt:, and t h a t  i f  f (a) is rcny odd aonoto tw f11nr.t i on  th1111 - 

Ntvxw;;u-y and s u f f i c i e n t  condl  t i o n s  on A f o r  V A x t o  bc! ncgat ivc. f o ~  - - x -  - 
i l l1  5 whcn f is a ~ m r t i c u l a r  q i v c n  funct  ioli  arc: n o t  known i n  111~11c*rol. 

Ilnvrw.r t.hc.1-c is olw f u n c t j o r ~  f o f  i ntclrt!r;t ( ~ l i 1 1  t j ruli lrly w j  t11  I ~ v a r  t l  1 ( I  

o p p l i c a t  i o n s  of Chapter I )  f o r  which tlrtw! c o n d i t i o n s  arc known: t h i s  is 

t h c  ogn f u n c t i o n .  I e t  a row-dominant m a t r i x  M be o w  for whjcll 

i i 
for a l l  i ,  

and i f  x .: - and s t p  x =: -- 



l'ht~orcnr - 2.7 5'Ef ignsz/  0 f o r  a l l  x-if and o n l y  if - M is  row-dominmt, 

and (z 2) ' fi x ), 0 for a l l  5 if and o n l y  i f i s  column-domi nan t .  

+. . . (assuming x # 0) 
1 

3 0 i f  - M i s  row-dominant . 
r Nccc-ss i ty :  S u p p s c  row 1 h a s  m - L Inij 1 < 0 , ( t h o  proof  f o r  t h e  ca::tl 

l1 j+! 

n 
~ 1 0 9 ,  _X *% sgn  x = n - 1 (mi,  1 - sgn  m ( t m  t *+m I 

11 j-2 1 2 - 1 2 -  - 2 n  

< 0 f o r  7 suf fj.cj e n t l y  s m a l l .  QI,:I>. 

c o n d i t i o n  f o r  x'E 2 5 t o  b c  nonncqa t ive  for a11 is t h a t  mii 2 U 1 I m  i j I 
(-a,b1 b a j + i  

f o r  cach  i ,  whcrc )1 is the l a r g e r  o f  - a n d  - . 
a k 

L c t  u s  c a l l  a r e a l i z a t i o n  (A,b,c) - - -  o f  Il(s) which mccts  t l ~ c  condj t ion: ;  

of 'I'hcor c m  2.6 n _ d i s s i ~ - m t j v c  (hypcr)dominant  r c n l  izatjon. Though i t  is  

n o t  ki~own what t h c  n c c c s s a r y  and s u f f i c i c n t  c o n d i t i o n s  a r c  f o r  a g i v c n  t1(!:) 

to  hnvc a d i s s i ~ ! n t i v c  (hypc r )  dominant  r e a l i z a t i o n ,  c l e a r l y  it j s nccclsr;ary 

-1 
f o r  )I(.) t o  bc  an  O'Shca f u n c t i o n :  Il(s) = + ys - ; j ( s ) )  w i t h  y # 0. 

I c o n j c c t u r c  t h a t  t h i s  is a l s o  a s u f f i c j c n t  c o n d i t i o n ;  i . c .  t h c  con jcc tu rc \  

I n  t h a t  c v c r y  OtShca f u n c t i o n  o f  thr- typr (rl C + yn-8(s) ) -1  w i t h  y # 0 
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has a time-invariant dissipative (hyper)dominant realization. Let us 

further discuss this question, 

Firstly, it is easy to show that the conjecture is true for a 

second-order O'Shea function, and that such a function need not have real 

poles. Secondly, it is always possible to find a realization (&,b,=)with 

b' = 10 0 XI and 5 = [O* 00 11 for a given transfer function H(s) pro- - 
vided that Lim s H(s) = + 0. For, let 

s+=' 

n-1 
qn-1 + qn-* sn-2 + * * * +  

H(s) = 90 
n where qn,l = X . 

+ Pp1 n-1 +. . . . , 
Po 

Then we have the st4 -AT-d controllable realization ([71 Chapter 17) 

F = - 

Now let 



Then we have the realization H ( s )  - c (1.4 )-'b where - - -1 - 
r 0  1 

Now A thus obtained will in general not be hypcrdominant; the conjecture 
1 

is, however, that if H ( s )  is O'Shea then there exists an such that 

-R - A -1- R-I = -A is hyperdominant, R b = b, and p f1 = 2. Note that if 
-2 

- 1 
H(s) = (go + ys-$(s)) withy+ 0 then ~ i m  SH(S) - g-l. For to satisfy 

s* 00 

R b = b and c R-' = C we must have -- - - - - 

R = - 
- I 

In 5 1.5(e) we considered an example of this approach for a third-order 

0' Shea function. 

Now let us consider another approach. An interesting subclass of thc 

O'Shea functions is the class of RC impedance functions Z(s) which have 

Z P )  = 0. A general RC impedance function Z(s) can always be expressed 

gi 
(121 1161 ,[421) as z(s) - go + 1 where g s 2 0 for all i. If 

in1 
i' i 

i 

go 
= 0 then Z P )  = 0. An RC impedance has poles and zeros alternating on 

the negative real axis, and a Nyquist locus which lies inside a circle in 

the right half plane. It is proven in reference [421 that such aa RC 

impedance is an O'Shea function. Now the four canonical RC network 

realizations of an RC impedance are the Cauer I, Cauer 11, Foster 1, and 

Foster I1 methods. Of these the Cauer I method is of interest to us 



here ,  because it leads  t o  a t r i d i a g o n a l r e a l i z a t i o n  which i n  some cases  

is hyperdominant. A t r i d i agona l  r e a l i z a t i o n  (A,b ,c ) i s  one f o r  which t h e  --- 
matrix A is t r id i agona l ,  i.e. the only nonzero e n t r i e s  a r e  on t h e  - 
diagonal and immediately above and below it: 

a i j  = O 

j E ' !.-1 ,i , i + l j  . Consider t he  network of  Fi9. 2.7 w- t h  input  cu r r en t  

I and r e su l t i ng  terminal vol tage V.  

We have 

Let t ing  x = V i i 
v we ob ta in  

Fig. 2.7 



where 

b' [ O  0 ... 0 1 1 , ~  = [O 0 ... 0 11,d = RnCn. NOW -11 is hyperdominant if - 
and only if Ci = C for all i. Thus. if Z(s) is an RC impedance with Z P ) = O  

which can be realized by a Cauer I network with all capacitances equal, 

then Z(s) has a tridiagonal dissipative hyperdominant realization. However, 

a general RC impedance cannot be realized by a Cauer I network with all 

capacitances equal,(For example s+l 
2 

cannot). For n 6 3 it appears 
s +3s+l 

that every RC impedance does indeed have a tridiagonal dissipative hyper- 

dominant realization; furthermore one can show that every such realization 

for n < 3 is an RC impedance. 
In obtaining a Cauer I network realization of a given ~ ( s )  . Z ($1 is 

expressed as a continued fraction expansion. For instance, for 

*+l we write Z(s) = 
s +3s+l 



This gives the network of Fig. 2.8. 

Fig. 2.8 

To obtain realizations for OIShea functions in tridiagonal form we make 

use of analog computation symbols as defined in Fig. 2.9. (We leave 

initial conditions unspecified). 

Fig. 2.9 



Now ir transfer functio:: G ( 8 )  = 
1 with input u and output y can be as+£ (s) 

realized by the configuration of Fig. 2.10. Similarly a transfer function 

1 
G$s) = - 

btf (sl can be re-Lked by the configuration of Fig. 2.11. 

Fig. 2.10 

Fig. 2.11 

Now given any transfer function Z (s) with Lim s Z ( s )  # 0 we can always 
s -* crs 

obtain a tridiagonal realization (A,b,=) with b' = [3-**OX] and 2 = IO***011 

by *xpressing Z(s) as a continued fractio~ expansion and representing this 

expansion by a succession of connections as in Figs. 2.10 and 2.11. To 

illdstrate this method considcr the RC impedance 

1 

11 - 
s2 + 4s + J 

I- 

2 s3 + 6s + Ils + 6 



Using the connections of Figs. 2.10 and 2.11 we now obtain the represen- 

tation of Fig. 2.12, in which we have mzde the three integrator outputs 

proportional to the state variables xl, x2,x3. Such a labelling of inte- 

grator outputs gives rise to a tridiagonal realization. 

Fig. 2.12 



We have 

The conditions which a and 0 must satisfy for this to be a hyperdominant 

realization are 

The allowable values for a and 8 are depicted in Fig. 2.13. For example, 

1 if we pick a = - 
5 6  



Couer l 
Net wor h 
Realizatio 

Fig. 2.13 

This corresponds to the Cauer I network realization of Fig. 2.14. 

In a realization of a given 2 (s) 

w Is the output of integrator i 
i 

Fig. 2.14 

by this method, if we let x = k . w .  where 
i 1 1  

and k. is some positive constant, then the 
1 

A matrix obtained will have diagonal elements negative and off-diagonal ele- - 
rents positive if and only if the coefficients in the continued fraction 

expansion are all positive. If this is so then Z ( s )  can be realized as a 

(Cauer I) RC network impedance. 

Consider now the O'Shea function which we obtained in 1.5(d): 



This gives us the representation of Fig. 2.15, from w\ich we obtain the 

state equations 

This realization cannot be made hyperdominant for'any values of a and 8; 

we need to label the integrator outputs of Fig. 2.15 with a general linear 

combination, i.~. we must label the outputs of the lower two integrators 

(ax + 8x2) and (yxl + 6x2) , then look for suitable values of a,$ .y,d. 
1 

This, however, is essentially the same task as finding a,b,c,d for the 

matrix R of 5 1.5 (e) . 



Fig. 2.15 



CHAPTER 3 

SWITCHED ELECTRICAL NETWORKS AND BILINEAR EQUATIONS 

3.1 Introduction 

A linear dynamical system can be described by a set of equations of 

the form 

where is the vector of inputs or controls, x i s  the vector of outputs, 

and r i s  the state vector for the system. We saw in Chapter 1 that 

equations of this form describe the behavior of certain types of electri- 

cal networks: in Chapter 1 these were voltage-conversion networks 

operating from a battery with zero internal impedance, and we were able 

to exploit the fact that the resulting evolution equations were linear, 

for this led to a feedback system with a linear ope~ator in the forward 

path. However, the class of systems describable by linear equations is a 

restricted one; most of the systems encountered in the field of electrical 

power processing (i.e. DC-DC conversion, DC-AC conversion, etc.) cannot be 

described by linear equations. In this Chapter we address ourselves to the 

equation "What kinds of state question arise in the description of power 

processing systems?" Having answered this question in 5 3.2, we then ask 

in 5 3.3 "What statements can ore make about classifying such systems: 

what canonical forms for the state equations do we have?" In 5 3.4 we 

outline the role played by Lie groups and Lie algebras in characterizing 

these systems, and in 5 3.5 we give network examples. 
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5 3.2 Bilinear Equations 

Consider an electrical network composed of resistors, inductors, cap- 

acitors, transformers, batteries, current sources, and ideal switches. 

With these components, we can model the essential features of power con- 

version networks. The state of this network will be a vector ~ ( t )  in lRn - 
whose instantaneous value represents the inductor currents and capacitor 

voltages; usually we take the state variables xi to be scalar multiples 

of these currents and voltages. 

If the topology of the network is fixed, that is, the switches are all 

held in one set of positions, the state evolution equations will take the 

linear form (1) given in 5 3.1. The reason for this is that capacitor 

voltages and inductor currents obey linear first-order differential 

equations. The matrix - A of 5 3.1 will be a constant matrix whose 

eigenvalues represent the natural frequencies of the circuit. These natural 

frequencies are determined by the component values and the topology of the 

network, which will be changed if the switch positions are changed. 

Consequently,if We have a network in which the switches are considered 

as controls, with the position of switch i being given by u where u = 0 
i i 

or 1, then the matrix &will be a function of the u 's. The resulting 
i 

state evolution equations take the form 

As a simple example consider the regulator of 5 1.7, shown in Fig. 3.1. 

We have 



Fig. 3.1 

Thus, letting x - I a1 and x = V2 (so that 1 
1 1  2 

- xtx is the stored 
2 -- 

energy in the network) and w = - , we get - 

When R = 0 then A1 = 0, and the state equation is linear; in terms of the 

network we see that when R = 0 the natural frequency is unchanged by the 

switch position, since the dynamic impedance of the loop including L and 
1 

C is the same for both switch positions. This example is of the simplest 
2 

kind, though of considerable practical significance. In 8 1.8 (a) we 

briefly considered higher-order regulators of this type. 

Now any system which can be realized by a set of equations of the 



can be realized by a set of equations of the form 

f 1 m 

To see this we let A 
-i 

thus : 

A 
-0  

and letting - x = [,I 
We are therefore 

be obtained by adding an extra row and column to 

interested in equations in the form of (4 )  . Th:s 

is called the bilinear form. This Form is even more general than we have 

just shown it to be, for it is shown in reference [9] that if 

P ( x )  = P(xl,x2.= **,x ) is a multinomial expression in the variable. - n 

x ... 
1' lXn 

then any system of the form 

can also be realized in the form of (4). Thus nonlinear output maps can 

be reduced to linear forms provided that they are of the finite power 

series type. Again, this is done by extending the dimension of the state 

vector. For example, the equations 

can be written as 



This technique for handling nonlinear combinations of the state variables 

is of more than passing interest to us. Consider, for instance, the 

voltage regulator we studied in 5 1.4. 

There we had 

We found that once the state reached the chattering region of the switch- 

ing line near the origin, the settling time was proportional to $. Thus, 

near the origin we want B small, whlle for large values of I I I I we do not. 
In order to obtain an improved overall transient response we might 

therefore try n ieedback strategy of the form y = i3 + x. We can now put 

the equations 

in the bilinear form ( 4 ) .  It mast be pointed out that this technique will 

lead to state equations of large dimension; in this regulator example the 

state is 10-dimensional: 



For a power conversion network with s t a t e  evolution equations i n  

the form of (2)  or (41, it w i l l  sometimes be the case that  some of the 

variables ui are restricted to  being functions of t h e  s ta te .  Such a 

situation may ar ise  i f  there are diodes i n  the network, as for example i n  

Fig. 3.2, for which 

Fig. 3.2 

we have 

where 

In th i s  thesis the only t y ~ e  of switch that  we consider i s  the ideal two- 

position switch depicted in  Fig. 3 .3 .  

Fig. 3 . 3  



We use this switch in obtaining "well-posed" network models for power 

Conver8ion systems; by a well-posed network we mean one for which capacitor 

voltages and inductor currents are continuous functions of time. Fig. 3.4 

is an example of an ill-posed network (cf . Fis. 1. 5 ) .  This is not well- 

Fig. 3.4 

posed because an infinite voltage would be developed across the switch if 

it were to be opened when the inductor current I was nonzero. By pro- 

viding an alternate path for the inductor current when the switch poe ,ition 

changeti, as in Pig. 1.5, the current will be a continuous function of time. 

Implementation of an ideal two-position switch will in general 

require the use of two transistors (or thyristors) and two "freewheelinq" 

diodes, as for example in Fig. 3.5 which shows a scheme for imple~~ecting 

Fig. 3.5 



the regulator of Fig. 1.5 (or of Fig. 3.1 witn R = 0) , When u = 1 tho 

transistor T is Urned "onM (i,e. acts as a short circuit) while the 1 

transistor T ir turned "off" (i.e. acts as an open circuit) . In this 
2 

condition, the network of Fig. 3.5 is equivalent to that of Fig. 3.6, in 

which the inductor current I flows through T when I > 0 and back through 
1 

Dl 

Fig. 3.6 

D whenever I < 0 .  Whe~i u = C, TI is "off" and T is "on", and then the 1 2 

network is equivalent to that of Fig. 3.7, in which the inductor current 

flows through D when I > 0 and through T when I < 0. 
2 2 

T 

Fig. 3.7 



In practice, when conntructing a regulator of this type, it is 

usual to omit the transistor T (as in Figs. 1.55 and 1.56) . This still 
2 

yields a well-posed network, however the analysis of Chapter 1 will 

apply only if the condition {u = 0 ,  I < 0 )  never arises, which will be 

the case if the load currant is large enough to ensure that at all times 

In conclusion, we see that the state equations for power conversion 

networks will be of the bilinear form ( 4 ) ,  with some of the u.'s restricted 
1 

to baing functions of the state, while others can be chosen freely. 

5 3 . 3  Canonical Forms and Equivalent Systems 

Since a wide variety of complex electric power conversion networks 

have state equations of the form of ( 4 1 ,  we are particularly interested in 

classifying bilinear systems. We would like to be able to determine when 

twr, electrical networks which are topologically different have similar 

dynamical charccteristics; not only would this be conceptually helpful, 

but a feedback law which was found to be suitable for one network could 

be translated into a suitable feedback law for the other. Reference [9] 

describes some recent results which answer the question of when two bilinear 

systems ere dynamically similar. We shall now briefly out ne these. 

Suppose we have two systems of bilinear equations: 



Let u = (ul, u2 , ' 'U be the input vector, and y_ the output vector. We 
m 

say that (4) and (6) are equivalent if there exists a nonsingular matrix 

-1 P such that F = P A P-' for 0 I i C m and K = C P . Our reason for - -i --i- 

this definition is that if we are gi-ren (4), and we let = = P x, then we - - 
- 1 obtain (6) with Ei = P A P - 1 

and H = C P ; in this case (4) and (6) - --  
are realizations of the same input-output map. We would like to know 

when the condition that (4) and (6) realize the same input-output map 

implies that they are equivalent. We shall answer this question below in 

Theorem 3.1, which is similar to the well-knckn result an the equivalwce 

of realizations of a linear system ( [71 ,  section 18). 

We call a realization in the form of (4)  irreducible if there is no 

invertible matrix P - such that 

- 21 

for 0 

0 - 
Bi - 22 

where the pi are square matrices, all of the same dimension. That is, for 
11 

no choice of basis is the realization in block triangular form. Otherwise 

it is called reducible. It is a fact ( [ 9 ] ,  Theorem 3) that every bilinear 

realization (4) is eq~ivalent to one in which the matrices A are in block -i 

triangular form, with the diagonal blocks being irreducible, thus: 

. , ... l..,,-,., I . . .  &,.,......... I .,,.. . . . .  I I ... " "  ,..-,>-nl. ...., ",.A , , . , . . . . , .  , ........- 1 . .,.. , 

1 -  * 



We shall call x an equilibrium state of the bilinear system ( 4 )  if 
-0 

A x = 0 .  This is the same as requiring that x be an equilibrium - 0 - 0  - -0 

solution of ( 4 )  when u = 0 for a11 i. 
i 

We have 

Theorem 3.1 ( [ 9 ] ,  Theorem 8 ) :  Suppose that we arc given two realizations 

of the same input-output map 

Let xo and z0 be equilibrium states. Suppose that both realizations are 

controllable in the sense that the set of states reachable from xo or 
z is not confined to a proper linear subspace of the state space for -0 

s or 5. Suppose also that both systems are observable in the sense that 

any two starting states (not necesse.rily x and z ) can be distinguished 
-0 -0 

by means of the measurement of y, for a suitable choice of - u. Then the two 

realizations are equivalent. 

5 3.4 The Nature of Solutions for ~ilinear ~quations 

For the linear equations (1) given in 5 3.1 it is well known that the 

explicit solution for ~ ( t )  in terms of ~ ( t )  is given, for all t, by 



This formula for ~ ( t )  is sometimes called the Variation of Constants 

Formula, and is useful not only for explicit calculation of solutions, but 

also for determining properties of these solutions. 

It is not possible to write down an analogous explicit solution to 

equation (4 )  for all t. However, as shown in [ 8 ]  we can study the intrinsic 

properties of the solutions of ( 4 )  by using the tools provided by the theory 

of matrix Lie Groups and Lie Algebras ( [20] , [281 , 181 , 131 , [301 , [lo1 1 . 
To this end, we now introduce these concepts. 

Let pnXn denote the set of real nxn matrices; it is a vector space of 

2 dimension n . A Lie algehra L in IRnXn is a vector subpace of lRnXn which 

has the property that if X and Y belong to L, then so does &,Yl = XY-YX. - - - -- -- 
We call [;,:I the commutator or Lie product of X and Y. As examples of - 
matrix Lie algebras we have: 

Example 1:  he set of all real nxn matrices mnXn is itself a Lie 

algebra, sometimes called the general linear Lie algebra and denoted gP(n,~). 

Example 2: The set of all nxn real matrices with zero trace is called the 

special linear Lie algebra, and denoted sl(n,R). 

Example 3: The set of all nxn real skewsymmetric matrices, i.e. those 

which satisfy X ' +  X = 0 , is called the orthogonal Lie algebra and denoted - - -  
o (n $1 . 
Example 4: The set of all 2n x 2n real symplectic matrices,i.e. those which 

satisfy X'J + J X = 0 where -- --  - 



, is called the symplectic Lie algebra and 

denoted sp (n ,lR) . 
Example 5:  Consider the three matrices 

These are a basis for o(3,R) , and we find that 

Example 6: The affine algebra of the line, aff (11, consists of all real 

matrices of the form . The two t r i e s  

= 1 and 

= (1 :] form a basis. and re find that [X.Yl - - = - Y. 

Given an arbitrary subset of ISnXn we can add additional elements to ir 

so as to imbed it in a Lie algebra. To obtain the smallest Lie algebra 

which contains a given set N we first add to N all linear combinations 

of elements of N so as to obtain a vector space N Then we form all pos- 
1 ' 

sible Lie products of elements in N to obtain a set [N N I. We add this 
1 1' 1 

to N and obtain N = N + :N ,N I .  
1 2 1 1 1  2 1 

If N .is not contained in N we 

N3 = N2 + [N2, N21, etc. This process must stop in a finite number of 

steps since otherwise at each stage we increase the dimension of the 

2 vector space by at least one, and the dimension cannot excccd n . We call 

the Lie algebra thus obtained the Lie algebra generated by N, and we 



denote it { N ) ~  . For example, in Example 5 above the Lie algebra 

generated by any two of R R , R is O(3,R). 
- x ' - y  - 2  

Let L be a Lie algebra. The set [L,L] of all possible Lie products 

of elements in L is called the derived algebra of L and is denoted L'. 

The derived algebra of L' is denoted L". Continuing, we have the 

derived series: 

L 3, L' , L" , . . ' p) -J L(m+l) > . . . . 
The Lie algebra L is said to be solvable if L') is zero for some m. We -- 
shall call L simple if L' = L. For exmple 0(3! in Example 5 above is 

simple, while if L = aff(1) as in Example 6, then L' is spanned by Y and 

L" is zero, so that L is solvable. It is a fact that any Lie algebra can 

be decomposed into the semidirect sum of simple and solvable parts, 

[=I. 

For each _X in the Lie algebra L we define the operator ad by X - 
adx Y = [X,Y] - - for all Y E L. - - 

Powers of ad are defined by X - 

n times 

Using this notation, we can state the following result, which we use in 

Lemma (Baker-Hausdorff): If X,Y are elements of the Lie algebra L then - - - 
X -X X -X 1 e-ue - E L and H e  - - = (eadx)y= - Y +  IX,Yl + [X,[K,SI - - 



For a proof of this the  reader is refer red  t o  [19]. (TO see how the s e r i e s  

is obtained l e t  

sx - s X  
f ( s )  = e -Y-e - 

S X  -sx 
Then f 8 ( s )  = es5x - - Y eoSZ - e -Y - - x e - 

(n) sx n -sx Similarly f (s) = e - adx e -- - 

and the  r e s u l t  follows on putt ing s = 1.) 

Having introduced matrix Lie algebras w e  next introduce the  con- 

cept of a matrix Lie Group. I f  M i s  a s e t  of nonsingular matrices i n  

lRnm, w e  l e t  {MI denote the  mul t ip l ica t ive  matrix group generated by M ,  
G 

i .e .  it is the  smallest  s e t  of matrices i n  5tnx'' which contains M and 

which is closed under mult ipl icat ion and inversion. I f  N is  a l i n e a r  

subspace of lRmn, then l e t  P be the s e t  of a l l  matrices of the  form 
X X 
-1 -2 

X 
e e " -  .-where% E N f o r  each i a n d p =  0,  1, 2,  * * *  . P contains 

-4. 
X t r  X+ i no s ingular  matrices s ince  f o r  any matrix X , d e t ( e  ) = e 

i ' 0, 

( [ 7 ] ,  sec t ion  4 ) .  Since it i s  closed under mul t ip l ica t ion  and inversion, 

P is  a group, and we  wr i t e  P = {exp N } ~ .  I t  i s  an in te res t ing  and useful 

f a c t  t h a t  {exp N } ~  = {exp { N ) ~ ) ~  ( [8] Theorem 1.) 

I f  L is  a Lie algebra then w e  c a l l  {exp L) the  Lie group associated 
G 

with L. For a f u l l  treatment of the  re la t ionship  between Lie groups and 

L i e  a lgebras the reader i s  refer red  t o  [301 and [ l o ]  . We aow give the  



Lie groups which are associated with the six Lie algebras given above: 

E x w l e  1: The general linear group GL(n,R) consists of all real nxn 

invertible matrices. 

Example 2: The special linear group SL(n,R) consists of all real nxn 

matrices with determinant 1. 

Example 3: The orthogonal group O(n,~)consists of the real nxn matrices 

which satisfy - -  X'X = - I. The special  orthoqonal group Soh) consists of -. .------ ---- 
all matrices in both 0 (n) and SL (n,R) . 
Example 4: The symplectic group Sp(n,R) consists of the real 2n x 2n 

matrices which satisfy X ' J  X = I where --- - 
r~ -LI 

Example 5: The group SO(3) consists of all ra. a1 3 x 3 matrices which 

have determinant +1 and satisfy = I. 
Exanple 6: The affime group of the line consists of all real 2x2 matrices 

whose secon? row is [ O  11. Any such matrix is of the form 

and represents a transformation y = ax+b of the real line. 

Now we can discuss the question of obtaining solutions to the 

equation 

It is well known ( [ 7 1 ,  section 3) that the solution tg (8) is given by 

where 4Jt) is an nxn matrix, called the transition matrix for (a ) ,  which 

is the solution of 



We are, therefore, interested in solutions of equation (10). Now it can 

be shown (181 , Theorem 5) that for all t, %(t) belongs to the matrix Lie 

Group {exp{&) that is, the matrix - (t) will evolve on the Lie Grol~p 
associated with the Lie Algebra generated by t h c  coefficient matrices 

There are two important consequences of this fact for power conver- 

sion networks described by bilinear equations. The first of these stems 

from the fact that in addition to having the properties of a group, a 

Lie Group has the properties of a manifold, that is, a subset of Euclidean 

d 
space IR with special geometrical characteristics. The two-dimensional 

surface of a sphere in three-dinensional space is an exan.ple of a manifold. 

The geometrical characteristics of the particular manifold on which the 

state of a bilinear system evolves will play a fundamental role in deter- 

mining the nature of the behavior of the system. For example, if the Lie 

group is compact, i .e .  closed and bounded as a subset of IRnxn , then we know 

that the state of the system is bounded, i . e .  the amount of energy stored 

in the inductors and capacitors will be finite. For instance, the Lie 

group Soh) is bounded, and the group Sp(n) is not. Thus, given a bilinear 

system of equations, the natural first question we ask is "On what Lie 

group does its state transition matrix evolve?" 

The second consequence is that questions about. the system (such as 

controllability, reachability, observability, and stabilizatility) can bc 

reduced to questions about the Lie algebra generated by the coefficient 

matrices. In many cases it is possible to arrive at conditions which are 

I.. . /.., ... ... ... _I.__....-.,...-.. 
-7 , , ,  ,,.- .. 

Ivw-,.I. - ...,..,,,., ., ...,.. . ,..., . , ,?  -- 



easily visualized and tested, as for example our results of Chapter 4, or 

the results of reference [el. Of relevance here is the classification 

result from the theory of Lie algebras, by which any simple Lie algebra is 

shown to be equivalent to one of a short list of canonical algebras, 

(1281 Chapter 2, [ 241 ) .  For solvable algebras there is no such complete 

list of all possibilities, although a good many facts are known, [281. 

Note that if E i s  a nonsingular matrix, equation (8) is unchanged by the 

change of variable x + E, and equation (10) is unchanged by 2 + E. 

Now let us further discuss the problem of obtaining a solution to 

equation (10) . Let {X- , 1( , * X  be a basis for the Lie algebra L -2 
generated by {A - , 5 , ,im} . In reference (191 Magnus showed that 

there exists a t such that for 0 Q t C to the solution to (10) can be 
0 

expressed in the form 

where bl,--*,b are scalar functions of time satisfying differential 
k 

equations which depend on L and u *-• 

1 * u The difficulties with this 

approach to obtaining a solution are that it is difficult to derive and 

solve the differential equations for b -**,bk, and that only in severely 
1, 

restricted cases (311 is the representetion (11) valid for all t in [O,m). 

Wei and Norman [311 showed that it is often preferable to look for a 

solution in the form of a product of exponentials. In fact they showed 

that there exists a t such that for 0 C t < t the solution to (10) 
0 0 

can be expressed in the form 



where g1 ,g2, ,gk are scalar functions of t!.me satisfying differential 

equations which depend on L and on u 
l l * * * U  

. Moreover, if L is solvable, 
m 

or if the matrices are 2x2, then this rcpresentation is global, i.e. 

it holds for all 0 S t c < . In 5 3.5 (c) we give an example of such a 

global representation. 

In conclusion we note that while in sone cases it may be possible to 

analyze the behavior of electrical power conversion networks with piccewise- 

linear models, concepts from the theory of Lie groups and Lie algebras are 

useful in characterizing the inherent dynamical features of such systems, 

especially since the methods and conclusions are basis-free, i.e. they 

do not depend on the particular basis chosen for the state space. We 

give examples in § 3.5. 

5 3.5 Network Examples 

(a) An % ( 3 )  Network 

Fig. 3.8 shows a simple network in which charge stored on one capacitor 

can be transferred by means of the inductor to the otlisr capacitor. If 

the capacitances are different a voltage conversion will be effected. A 

transferral cycle might be executed as follows. Starting from 

V1(0) - VI0, I , ( O )  = 0, V2LO) = 0, the switch is held in the u = 0 

until V = 0 and all the energy is stored in L at which time the 
1  3' 

is changed to the u = 1 position. It is held there until I again 
3 

zero, at which time the switch is reverted to the u = 0 position. 

position 

switch 

becones 

All the 



Fig. 3.8 
C. 
1 i n i t i a l  energy is  now s to red  i n  C , with  V2 = - - 

2 C2 v10 . While t h i s  network 

is t o e  simple to model a complete DC-DC convertor ,  it may very wel l  model 

t h e  conversion por t ion  of a convertor  i n  which t h e  charge on C is 
1 

replenished from an ex te rna l  supply during the  u = 1 por t ion  of t h e  cyc le ,  

and a load cu r ren t  is  drawn from C2 during t h e  u = 0 port ion.  The equa- 

t i o n s  f o r  t h i s  network a r e  

X X 3 1 
f o r  i = 1, 2 and I~ = - s o  t h a t  3(xvx) is t h e  t o t a l  Le t t ing  Vi = - 

% % 
s to red  energy, we obta in  



1 where wl - 1 
w 2 - -  I 

G-1 h,C2 

i.e. 

where 

We see t h a t  and k2 a r e  j u s t  s c a l a r  mul t ip les  of R and R o f  the Lie 
Y --X 

algebra Example (5)  i n  1 3.4. Thus the Lie algebra generated by $ and 

A is 0 ( 3 ) ,  and the  t r a n s i t i o n  matr ix  g(t) f o r  t h i s  network evolves on t h e  
-2 

2 
Lie group SO(3) . The s t a t e  vec tor  ~ ( t )  evolves on t h e  2-sphere S . 

(b) Simple and Solvable  Pa r t s  

If we add a cu r r en t  s i nk  i n  p a r a l l e l  with C of  Fig.3.8, t o  represen t  
2 

a load  f o r  ins tance ,  we ob ta in  t h e  network of Fig.  3.9. 

Fig.  3.9 



the state equation8 are now 

1 where y a . 
E2 

Letting x4 = 1 we can use the method of 1 3.2  to put t h i s  i n  bil inear 

form, thus: 

The L i e  algebra L generated by B+ and El is six-dimensional and has as a 

basis  the following matrices: 



We see that El, E2, z3 ate a reducible representation of 0(3), while 
X represent a solvable Lie algebra. ?:..=.a f is ~ecomposable into 1Lo~ 115) 4 

simple and solvable parts, with the simple part determined by the "natural 

dynamics" of the network, i.e. the interconnection of its inductors and 

capacitors, while thc solvable parr; is contributed by the "driving forces", 

i.e. the batteries and current sources. This type of decomposition is 

a general characteristic of the types of networks we are considering, 

(as introduced at the beginning of 5 3.2) . 

(c) A Transfomerless DC-DC Convertor 

If we now replace the capacitor C of Fig. 3.9 by a battery and allow 
1 

the switch to take a third position in which the inductor is unconnected, 

we obtain a model of a simple DC-DC convertor, as shown in Fig. 3.10. 

Fig. 3.10 



We have used two switches i n  Fig. 3.10 t o  represent the switching act ion;  

u = 1 denotes t h a t  switch i is closed, and ui = 0 denotes t h a t  switch i 
i 

is open, where i = 1, 2. TO ensure t h a t  the model is  well-posed (as  

discussed i n  5 3.2) we require (a)  t h a t  u l ( t )  u2 (t) = 0 f o r  a l l  t, (i .e. 

both switches cannot be closed simultancously) , and (b) t h a t  i f  one switch 

is  open, the  other  cannot be opened unless I = 0. The conversion cycle 
1 

we envisage i s  s imi lar  t o  t h a t  described i n  example (a) above, i .e .  f i r s t  

we set u = 1 u n t i l  I reaches some predetermined desired value, then we 1 1 

l e t  u2 = 1 u n t i l  I is again zero. I n  order t o  obta in  a smoother output 
1 

voltage it may be des i rable  t o  use a low-pass f i l t e r  a t  the  output,  a s  

depicted i n  Fig. 3.11. 

Fig. 3.11 

The network of Fig. 3.10 might be implemented with a scheme such as  t h a t  

shown i n  Fig. 3.12, i n  which ul = 1 when t r a n s i s t o r T  is turned on, and 
1 

u = 1 when the  current  i n  diode D is nonzero. 
2 1 

We s h a l l  now i l l w t r a t e  the  method of Wei and Norman f o r  obtaining 

solut ions t o  the  state-,cqrolution equations of the  network of Fig. 3.10. 

These are: 



Fig. 3.12 

1 = l , a =  - E I 
where x = x1d1 x2 = v2C2 , x, 8 = -  

1 
T 2  

aB 
We f ind t h a t  [A+, ill] = 0, [Ell i 2 1  = - w 

Y 
, , I = - A  f3 -1 ' 

Thus the  L i e  algebra generated by A A A i s  solvable and has A+, L1, 4, -1' -2 

A as a bas is .  By the  Wei-Norman r e s u l t  w e  therefore know t h a t  the re  
-2 

e x i s t  functions g (t) , g l ( t )  g2 (t) such t h a t  f o r  a l l  t i n  [0, -1 , 
0 

where 



To obtain the d i f f erent ia l  equations s a t i s f i e d  by go, gl, g2 we look at 

We now make use of  the Baker-Hausdorff l e , u r ~ a  ( 5  3.4)  t o  obtain: 

Similarly 

A -g&, 
and e 0 ' 0 ~  e -2 

We therefore obtain 

which, on comparison with the defining equation for  - @, y i e l d s  



Since - @ ( O )  = - I we have go(@) = gl(0) = g2(0)  = 0. We can the re fo re  w r i t e  

t h e  def in ing  d i f f e r e n t i a l  equations f o r  g O R  g l#  g2 a s  

(dl Two Fourth-Order Lossless  Networks 

M s s l e s s  e l e c t r i c a l  networks a r e  of  i n t e r e s t  to us s i n c e  they may 

def ine  t h a t  p a r t  of a power conversion network corresponding t o  t h e  simple 

p a r t  of t h e  Lie  algebra,  a s  discussed i n  example (b) above. Here we show 

how a small  change i n  network topology y i e l d s  a fundamental change i n  t h ~ \  

assoc ia ted  Lie algebra.  Consider t h e  network of Fig. 3.13, where we assume 

t h a t  t h e  two switches a r e  operdted synchronously, i . e .  t he  s i n g l e  con t ro l  

va r i ab l e  u denotes t h e  s t a t e  of both switches.  As usual  we l e t  x = I ~ K ~ ,  
1 

1 x = V c, e t c . ,  and we l e t  ar = -- 1 1 1 
2 2 2  t B D  - Y = -  , 6 =  - .  

h l C 2  "qF4 h , c 4  JLJC2 

Then we obta in  



where 

Fig. 3.13 

Now the Lie algebra generated by % and il is  six-dimensional, except 

when a = B or y = 6 when it is four-dimensional. If a B and y = 6 then 

a = $ = y = 6 and the Lie algebra is two-dimensional, with basis  A +,# El* 
Now the network of Fig. 3.13 can be redrawn as  shown i n  Fig. 3.14. 



Fig. 3.14 

We can modify t h i s  network s l i g h t l y  by adding another synchronized switch 

which has the e f f e c t  of reversing the po lar i ty  o f  C4. F i g .  3.15 depicts  

t h i s  sitr.ation. 

Fig. 3.15 

For t h i s  we obtain 



where o o o y  

0 0 6 0  

0 - 6  0  0  

0 0 0  

with a, 0, y ,  6 d led a s  before.  Again w e  f i n d  t h a t  t h e  Lie  algebra 

generated by A+ and A is six-dimensional, except when a = 6 o r  Y = 6 
-1 

when it is four-dimensional. This  time however, i f  a = $ = y = 6  then the  

Lie  algebra is three-dimensional, and i n  f a c t  is a representa t ion  f o r  the 

Lie algebra o(31. Thus, when a = $ = y = 6 t h e  s t a t e  t r a n s i t i o n  matrix f o r  

t he  network of Fig. 3.15 evolves on t h e  L i e  group SO(3). 

(e)  Higher-Order SO ( 3 )  Jetworks 

The a b s t r a c t  Lie  algebra o(3)  is defined by t h e  r e l a t i onsh ips  

A representa t ion  of t h i s  a b s t r a c t  Lie  algebra is a s e t  of t h r e e  matr ices  

which s a t i s f y  these  r e l a t i onsh ips .  A representa t ion  is s a i d  t o  be 

i r r educ ib l e  i f  i t s  component matr ices  cannot simultaneously be put  i n  block 

t r i a n g u l a r  form, as i n  5 3.3. Now it can be shown ( t281,  Chapter 1) t h a t ,  

over t h e  complex f i e l d ,  a l l  i r r educ ib l e  nxn i r r e d u c i b l e  representa t ions  

n-1 
of o(3)  a r e  equivalent  t o  t h e  following representa t ion ,  where J =T and 



An nxn complex repxesent.ation of  o ( 3 )  can be made into  a 2n x 2n rea l  

r epre~enta t ion  by identifying a given complex matrix (R + fi 2) with the  - 
r e a l  matrix 



For instance, when n = 3 we obtain the 6 x 6 real  representation of o(3) 

given by 

Suppose now that we would l i k e  t o  find a sixth-order network which has the 

state  equations 



Fig.  3.16 

Sixth  Order SO(3) Network 



To do t h i s  we exmine  A and A and reverse the process by which we 
7( Y 

nomal14r obtain the  s t a t e  equations f o r  a network. Assume t h a t  x is an 
1 

inductor current .  We see  from A t h a t  when u = 1 we need element 5 t o  be 
7( 

a capacitor C5 and element 3 t o  be an inductor L3, with L and L connected 
1 3 

i n  p a r a l l e l  with C From A we see  t h a t  when u = 0 we need L and L i n  
5'  Y 1 3 

p a r a l l e l  with a capacitor  C2, and C5 i n  p a r a l l e l  with inductors L4 and L6. 

The resu l t ing  network obtained by t h i s  process is shown i n  Fig. 3.16 i n  

which the  switches a l l  operate synchronously: the  switches denoted -/- 

a r e  closed when u = 1 and open when u = 0 ,  whiLe those denoted 2- 

a r e  closed when u = 0.and open when u = 1. 

By a s imi lar  process we can construct  a network of order  2n fo r  

any n >, 2 whose s t a t e  t r ans i t ion  matrix evolves on the  Lie group SO(3). 

( f )  A Reducible Network 

Our f i n a l  example shows how reduc ib i l i ty  of the  Lie algebra can 

correspond t o  r educ ib i l i ty  of the  network. I n  Fig. 3.17 we wish t o  t rans-  

f e r  energy from the  ba t t e ry  E t o  the output capacitor  C We might ask 
2 

whether an unlimited amount of energy can be extracted from the  bat tery .  

The two switches a r e  operated synchronously. In  a s imi la r  manner a s  

before we obtain the  s t a t e  evolution equations a s  



where 

% = 

where W1 = - 
d z  3 1 

Fig.  3.17 

The L ie  a l g e b r a  genera ted  by A and il is 0 ( 3 ) ,  and t h u s  we conclude t h a t  
-0 

t h i s  network is dynan ica l ly  similar t o  t h a t  o f  Fig .  3.8 and t h a t  on ly  a 

f i n i t e  amount of m e r g y  can be  s t o r e d  i n  C C2,  L3 since t h e  a s s o c i a t e d  1 ' 
L i e  group is  bounded- T h i s  may a t  f i r s t  seem s u r p r i s i n g ,  sir.ce 

t h e  network of Fig .  3.17 h a s  a b a t t e r y  i n  it. I n  t h e  c a s e  LOl = w 2 = 1 

t h e  L ie  a l g e b r a  has  as a b a s i s  



Examination of  t h e  network of  Fig. 3.17 shows t h a t  we can reduce 

it to a s impler  form. The network i s  unchanged i f  the  switch u and capaci- 

tor C1 are interchanged, g iv ing  t h e  network of  Fig.  3.8 bu t  f o r  a b a t t e r y  

i n  s e r i e s  with C Now t h e  t o t a l  energy which can be ex t r ac t ed  from t h e  1 ' 
1 2  

combination o f  Fig.3.18 i s  2 C E  . (This  is an i n t e r e s t i n g  s ingu la r  

optimal con t ro l  problem which may be  solved by observing t h a t  the arrange- 

ment of  Fig.  3.18 is ex t e rna l ly  i d e n t i c a l  with t h a t  of Fig.  3.19, s i n c e  

both a r e  governed by 

I n  f a c t  we see t h s t  t h e  network of Fig.  3.17 is e s s e n t i a l l y  t he  network 

of Fig. 3.8, bu t  w i t h  the  capac i to r  C1 being given an e x t r a  i n i t i a l  vo l tagc  



Fig.  3.19 

of E. The matrices X_t, g2, given here are a reCccible representation 

of the Lie algebra o ( 3 ) :  they can be reduced by e1iminati:q from each one 

the last row and col&, which represents the contribution o f  the 

bat ter ies  and current sources i n  the network, 3s we saw i n  exanple 3 . 5 ( b ) .  



CHAPTER 4 

FEEDBACK STABILIZATION OF BILINEAR SYSTEMS 

In  Chapter 3 we showed t h a t  b i l inea r  systems a r i s e  na tura l ly  i n  the  

study of power conversion networks. Since it w i l l  i n  many cases be desired 

t o  s t a b i l i z e  such systems by means of s t a t e  feedback, we a re  in teres ted  i n  

the general study of feedback s t a b i l i z a t i o n  f o r  b i l i n e a r  systems. In 

Chapter 1 we discussed t h i s  question f o r  a  ce r t a in  c l a s s  of DC-DC conver- 

s ion networks. In  Chzt)ter 4 we s h a l l  address ourselves t o  the quest icn of 

n- 1 feedback s t ab i l i za t ion  of  systems which evjlqe on the  (n-1) sphere S , 
n i .e .  systems whose state vector  x E IR s a t i s f i e s  x ' x  = constant. We have - - 

i n  mind two spec i f i c  questions concerning the  feedback s t a b i l i z a t i o n  of a 

general b i l inea r  system: (i) I f  the  system is  control lable ( i n  some 

approximately defired sense) ,  can we f ind a feedback law such t h a t  the  

closed-loop system is asymptotically s t ab le  about a  pa r t i cu la r  point? 

(ii) I f  the  system i s  control lable,  can we f ind a feedback law such t h a t  a  

given o s c i l l a t i o n  is s t ab i l i zed  f o r  the  closed-loop system? 

Theorem 4 .1  Consider the  system of equations 

where g A . +  A'.Q = 2 for  1 s i ,( m and g' = Q > 0. Given some x which 
-1 -1 - - 4 

s a t i s f i e s  x '  p o = 1 , s u p p o s e  #at the  matrix whose columns a r e  Q i l r O ,  
-0  

Q F & J C ~ , * - * ,  Q-A,zO has rank n - 1. Let - u = [ul u2 - - -  urn I . Then there  

e x i s t s  a  feedback control law 1 = ~ ( 5 )  such tha t  the  closed-loop feedback 

system i s  asymptotically s t ab le  from any s t a r t i n g  point  ~ ( 0 )  o ther  than -z0. 



Proof. L e t  M denote t h e  set of po in t s  x s a t i s f y i n g  x '  Qs = 1; when Q = I - - - 
then is t h e  (n-1) sphere sn-l. F i r s t ,  n3 te  t h a t  w e  have l' ( t ) Q  ~ ( t )  -1 f o r  - 

d a l l  t i n  10, 0 0 )  if - x!O) 6 M, s i n c e  - x 'Qx = ~ ' Q X  + X'Q i = 0 s i n c e  d t . . -  - - a -  

PAi - + $Q - 9 f o r  each i. Next, consider  t h e  Lyapuncv func t ion  

1 v = - 2 (2 - z O ) '  2 (5 - z0). Since Q > 0 w e  know from t h e  Lyapunov theoren - 
of  51.4(e) t h a t  i f  i n  some subse t  N of M with x E N we have 6 z' 0 with 

-0 

v = 0 only along the t r a j e c t o r y  ~ ( t )  3 x then t h e  des i red  asymptotic 
-0 ' 

s t a b i l i t y  about x g  w i l l  be obtained. 

Now s i n c e  - x ( t )  E M f o r  a l l  t w e  have 

thus  the des i r ed  s t a b i l i t y  about zoE NcM w i l l  ensue i f  x ' ~ Q ~  - 4 0 in N, 

with x' g& = 0 only a t  x . 
-0  -0  

Now let  f (0)  be any odd funct ion on t h e  r e a l  l i n e  f o r  which f(U) = 0 

only a t  U = 0. Let u = f ( x l  Q A.  x) f o r  1 i < n. Then 
i -0-1- 

F .' 8 ;  = x '  p 1 f c~'~g'l~x)A+ 2 -0  - -0  - 
i= 1 

m 

= 1 ( ~ ' Q A , ~ ,  1 f ( ~ ' p ~ x ~ )  s i n c e  pA + A!p = 2 and f i s  
-i 

i=1 
odd. 



Thus 5' Q& 2 0 f o r  a l l  _x € M. and X ' o ~ ~  = 0 i f  and only i f  2'2 A.x = 0 
0 1- 0 

A g 1 is o f  rank n-1 and for  1 6 i ( n. Now s ince  [QR1xO ,Q&pO ,*-*,j)-m 

x is i n  t h e  one-dimensional subspacc perpendicular  t o  (1 5 . ,QA,.z 1, -0 

w e  must have t h a t  

x 'g l i ixO = 0 f o r  a l l  i ? x = k x o  - - 

f o r  some r e a l  k. Froa 5'21 = 1 we obta in  k = - + 1, and the  result follows. 

QED 

The following theorem was proved j o i n t l y  by Professor  R. W .  Brocket t  and 

myself. 

Theoren 4.2. ConsiZer t h e  system of equat ions 

where A '  + A = _B' + _B = 0. Suppose t h a t  x' x = 1 and t h a t  A&= and - - - -0-0 

B x # 2. Le t  u = f (x '  B x) where f (0) i s  any funct ion on t h e  r e a l  l i n e  -- 0 - c+- 
s a t i s f y i n g  o f  (0) 2 0 ,  with f (0) = 0 only a t  0 = 0. Then t h e  r e s u l t i n g  

closed-loop system is  z.symptotically s t a b l e  about x i n  a neighborhood N 
- 0  

o f  x i f  and only i f  the p a i r  ( E ' ~ _ B , ~ )  is  observable ( i n  t h e  l i n e a r  system 
-0  

sense) .  

t h e  s e t  

where k 

Proof. - 
f o r  a l l  

i . e .  i f  

Moreover, a s u f f i c i e n t  bu t  n o t  necessary condi t ion f o r  t h i s  is t h a t  

k 
of matr ices  { ~ d ~ g , & )  span t h e  space of  skewsymmetric mat r ixes ,  

k 
= 0,1,2,-• -, and Ad B is  as  def ined i n  52 .4 .  

A- 

Since i =  A x  + f ( x l  B x f B x  we have x '  = (x'  ~ x ) f ( x 6 2 ~ )  > 0 -- -0-- -- -0-  -0-- 

x. Now zvOg = 0 f o r  a l l  t if and only i f  x'ogx = 0 f o r  a l l  t ,  - 
A t  

and only i f  x' B e - x = 0 f o r  a l l  t f o r  some x Thus, by t h e  a- -1 -1 

Lyapunc-7 method i n  t he  proof o f  Theorem 4.1, we conclude t h a t  asymptotic 

s t a b i l i t y  i n  N i s  equivalent  t o  the  requirement t h a t  t h e r e  does no t  e x i s t  

a n  x # zo i n  N such t h a t  x' B e "x = 0 f o r  a l l  t. But t h i s  is  equivalent  
-1 -0-  -1 



( P I ,  sec t ion  13) t o  the requirement t h a t  t he re  is  no x i n  N such t h a t  
-1 

i 
x' B A  x = 0 f o r  i = 0 , 1 , 2 , * - * ,  which i s  equivalent  t o  t h e  requirement -om- -1 

that (x'g=,$ be observable 471, s ec t ion  14) . Thus, asymptotic s t a b i l i t y  

ensues i f  and only i f  ( S ' ~ ~ , A )  is observable.  Now i f  x '  A = 0,  it is -0- - 
m s t ra ight forward  t o  show by inauc t ion  t h a t  ?16~d:B-= (-11 E ' o ~ ~ m  f o r  - 

k s t a b i l i t y  i n  N ensues i f  t he re  is no x i n  N such t h a t  x' Ad B x = 0 
-1 - 0  A - - 1  - 
k k f o r  a l l k  a n d z o o  52' = 0. ~ u t x ' ~  A d A ~  x = tr Ad B x x' , anc' x'  A x - - -1 A - - 1 - 0  - - 0- -1 

= t r  - A -1- x x' 0 Now i f  tr X Y '  = 0 f o r  a l l  X s a t i s f y i n g  & + X '  = 0 , then - - - - - 
Y = Y ' ;  and i f  x y' is symmetric then y = c 5 f o r  some c E R. Hence, i f  t h e  - - - 

k k 
matrices  { ~ d ~  B,!) span t h e  skewsymmetric matr ices  then x' Ad a I C ~  = - - 0  - A 

n- 1 x' A x = 0 w i l l  imply t h a t  x = 2 5 (assuming t h a t  x x E S 1 .  - 0 - - 1  -1 -1' - 0 
k i.e. I f  {adA a,$ spans the  space of skewsymmetric matrices then asymptotic - 

n- 1 s ~ a b i l i t y  ensues,  from any s t a r t i n g  po in t  i n  S o t h e r  than -x To show 
-0' 

t h a t  Vi i s  condi t icn i s  not  necessary, consider  the case where 

Then t h e  Lie algebra generated by - A and B i s  t h e  space of 5 x 5 skewsymmetric 
k 

matrices ,  bu t  ( ~ d  B,A) i s  t h e  s e t  o f  a l l  matr ices  of  t h e  form 
A - -  - 

O l O O d  



which is not the  whole space of 5 x 5 skewsymmetric matrices. Now tbe only 

% i n  sn-l sa t i s fy ing  A x = 0 is 
0 - 0  - 

From t h i s  we f ind  t h a t  ( x '  E, A) i s  observable, and the  r e s u l t  follows. 
-0 - 

QED 

I n  general ,  i t  is  not  possible t o  obta in  a global s t a b i l i z a t i o n  on 

sn-l 
f o r  systems of the  type considered i n  Theorems 4.1 and 4.2 when the 

feedback control  law - u(x) - is r e s t r i c t e d  t o  being a continuous function. 

(Cf .  Hopf's Theorem concerning t h e  number of s ingular  points  of a smooth 

vector  f i e l d  on a manifold without boundary). I n  prec t ice  the  f a c t  t h a t  

the re  w i l l  always be a "deadpoint" x f such t h a t  41. = 0 would pro- 
-1 - 

-1 
bably be  of l i t t l e  concern. However, one might ask the  question "Can the  

point  x be chosen t o  be any o ther  point  on sn-'?" We would expect t h a t  
-1 

it can, s ince  t h i s  amounts t o  a smooth t o p o l ~ g i c a l  deformation of the  

vector f i e l d  obtained i n  Theorens 4.1 and 4.2. A s  an example, consider 

1 
t h e  system on S given by 

Suppose t h a t  it is  desired t o  s t a b i l i z e  t h i s  about the  point  (a ,b)  where 



a2+b2=l and a , b  > 0 .  Then le t  u - a *= x One can l o w  t h a t  asymptotic 
1' 

1 
s t a b i l i t y  about (a ,b)  ensues, from any s t a r t i n g  po in t  i n  S o the r  than 

(a,-b). The vector  f i e l d  is  a s  shown i n  Figure 4.1. 

Fig.  4.1 

2 
A s imi l a r  example can be  given on S . I n  such ca se s  one proves 

i n  sn-' -{GI about 5 by shoving t h a t  t h e r e  is a neighborhood N 
1 

w i t h  - c u t  - ) 0 i n  N , and t h a t  t h e r e  is a neighborhood N2 about d 
1 - 

n- 1 
d S & < O i n N t  s u c h t h a t N 1 U N 2 = S  -{GI. - 2 

s t a b i l i t y  

about c - 
with 

F ina l ly ,  w e  consider  t h e  problem of s t a b i l i z i n g  an o s c i l l a t i o n  on 

sn-l . Given k =  f ( x , u )  - - -  one should choose, i f  poss ib le ,  ~ ( x )  s o  t h a t  

x + E = { I C ~ + ( ~ )  = 0) where V is a s u i t a b l e  Lyapunov funct ion and E i s  the - 
set  of po in t s  i n  t h e  des i r ed  o r b i t .  One should a l s o  choose ~(sl s o  t h a t  

on E - x follows t h e  o r b i t  cyc l i ca l l y .  

2 
We consider  f i r s t  an example on S . Suppose 



and that it is desired to stabilise an oscillation around the set { x l  = a), 

for s m e  0 C a C 1. 

Fig. 4.2 

Let u2 - 1, so that when ul = 0 on {x = a} we have the simple harmonic 
1 

oscillation given by 

It then remains to choose ul(xJ so that x + a. 1 

We shall make use of the Invariance Principle of LaSalle, [171, 

[371. Consider the periodic or time-invariant system of equations 



Let V ( ~ , t l  = V ( x , t t T )  be a Lyapunov function (not necessarily pos i t ive  

de f in i t e )  on a closed bounded set G f o r  t h i s  system of equations, a s  

defined i n  5 l . 4 ( e ) .  Let E = ( X ~ W ( ~ )  - = 0,  - x E G )  where {(x, - t) d W ( 5 )  S O .  

Then the  fnvariance Pr inc ip le  of LaSalle (from which our Theorem 1.3 

follows) s t a t e s  t h a t  any solut ion of the  above equations which remains i n  

G f o r  a l l  t 2 0 approaches a subset of E which is the  union of a l l  the  

invar iant  s e t s  which l i e  e n t i r e l y  within E. (An invariant  s e t  H i s  one 

f o r  which x ( t  ) E H ==3 x ( t 2 )  E H f o r  a l l  t2 2 tl). - 1 - 
Now s ince  i ,  ;. = U1X2: l e t  us t r y  ul = (a-xl) x2. Then & = (a-x x 

2 
1 1 2' 

2 2 
Consider the  closed bounded subset  N of S defined by Nl=fx E S I x1 Q a}. 1 

Let V1 = -5'5 where 5 = ( a ,  0, 0 ) .  

0 0 

Then V1 = -5'5 

Now x = a defines a t r a j ec to ry  f o r  the  system, thus no other  t r a j ec to ry  
1 

can cross {x = a )  , i .e .  Any motion s t a r t i n g  i n  N a t  t = O  remains i n  N 
1 1 1 

f o r  a l l  t 2 0. 

Let E, = { x e  N ~ I ; ~ ( ~ )  = 01 
2 !;r e S ix  g a and e i t h e r  x - 0 o r  xl = a}. 1 2 



On {x2 = 01 we have ; = -x j  = 0 on El only a t  (0 ,  0, -1;. Thus t h e  union 
2 

of the i nva r i an t  s e t s  i n  El is 

Furthermore a  motion s t a r t i n g  from any po in t  i n  N o ther  than (0 ,  0 ,  -1) 
1 

cannot approach (0,  0 ,  -l), s i n c e  il 3 0. Thus, Ly the  Invariance 

P r inc ip l e ,  w e  conclude t h a t  t he  des i r ed  o s c i l l a t i o n  is s t a b i l i z e d  from any 

s t a r t i n g  po in t  i n  N o t h e r  than (0,  0 ,  -1) . 
1 

2 2 
Considering t h e  subse t  N2 of S defined by N2 = {x E S Ixl 3 a )  

toge ther  with V2 = 5'5 , we conclude by a  s imi l a r  argument t h a t  the o s c i l l -  

a t i o n  is  s t a b i l i z e d  from any s t a r t i n g  po in t  i n  N o ther  than (0 ,  0 ,  1). 
2 

Thus, we have s t a b i l i z e d  a  c i r c u l a r  (simple harmonic) o s c i l l a t i o n  on 

t h e  sphere s2 around x = a  from any s t a r t i n g  po in t  o ther  than ( 0 ,  0, 21) .  
1 

Furthermore t h i s  means t h a t  we have s t a b i l i z e d  such an o s c i l l a t i o n  around 

2 
any c i r c u l a r  o r b i t  on S , s ince  b i l i n e a r  evolut ion equations a r e  i n v a r i a n t  

under t h e  transformation E +  EP- , a s  mentioned i n  5 3.4. 
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