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Airborne Scatterometer observutions were made for agricultural terrain 

in  May and June, 1970 at  a NASA test site near Garden City, Kansas. Data 

from 13.3 GHz and 400 MHz scatterometer were analyzed. I t  was observed that 

f o ~  incidence angle less than 40°, the 13.3 GHz data showed a difference in 

backscatter from wet and dry fields of the order of 7 dB. The averages of the 

various crop types were within a spread of only 5 dB. Other ground parameters 

such as cultivation pattern and vegetation row effects showed even less distinguishing 

characteristics on the backscatter. The 400 MI ,;.. data also showed a slight moisture 

dependency. 



I t  i s  well known that the dielectric constant of a target affects the magnitude 

of the backscattering of energy incident upon it; and that the moisture content of the 

target material influences both the real port and the imaginary part of the dielectric 

ccnstant, Some investigations have been conducted to explore the extent of influence 

of the moisture variations on the backscattered energy from the ground. I t  i s  the purpose 

of this paper to document the extent of research activit ies thct had been done in the 

past and to report scatterometer observations of ground moisture variations among changes 

in  other parameters observed at a test site near Garden City, Kansas. 

Two scatterometer systems, one operating in  the Ku-band and the other in  

P-band, were used together in  the investigations which consibted of two missions flown 

by NASA/MSC a month apart i n  the growing season. The Ku-band scatterometer i s  
0 

sensitive to ground moisture changes for antenna viewing angles of 5 - 45' from the 

vertical whereas the P-bond scatterometer shows much less but st i l l  observable 

responses. 

The moisture content of soil hcls long been a matter of great concern to 

hydrologists, agriculturists, environmental conservationists, highway construction 

engineers, farmers, etc. Accurate determination of the amount of the moisture con- 

tent i n  the soil can be accomplished by meazurement in the f ield which i s  time 

consuming and, in mony cases, impractical. Therefore a need exists to measure soil 

moisture content by remote sensing devices. 

The earliest and sti l l  the most widely employed remote sensing tool i s  photo- 

graphy. Ael ia l  photo reconnaissance i s  useful i n  a l imited capacity to infer the 
1 

gross top soil moisture condition by nature of  it. tonal contrast . Its satisfactory oper- 

ation i s  heavily dependent upon favorable weather condition and the presence of 

adequate ambient l ight . 
Photographic sensors that operate in  the infrared spectrum are also inadequate 

because they are only sensitive to the surface soil of a fraction of a millimeter . Sub- 

surface moisture variations, which could be indicative of the prcscncc of two types 

of soil of different porosity and permeability, would not be detccted by such sensors. 



Electromagnetic I adiation at m i c ~  owave frequencies has been ut i  I ized to assess 

the moisture status of soil. Edgerton's wi th microwave radiometers showed that 

measured microwave temperature i s  dependent on sensor frequency and polarization, 

and that sizable differences i n  radiometric response are caused by differences in 

moisture content, particle size, and surface roughness. Particle size and surface 

roughness variations influence the general shape and slope of the radiometric temperature 

vs antenna viewing angle plots whereas moisture content variations cause the curve to  
4 

shift along the temperature axis. MacDonald and Waite also reported a delineation of 

soil moisture difference on side-looking airborne radar imagery. Here again, the same 

factors, i .e.  surface roughness, incidence angle, polarization, frequency, dielectric 

properties, etc, govern the backscatter radiation pattern. I t  i s  wel l  known that moisture 

content variations in  the rodor target w i l l  change its dielectric properties and different 

amount of microwave er?ergy i s  backscattered when the dielectr ic properties of  the 

scatterer change. 
5 

O f  a l l  the sensors mentioned above, the side-looking radar seems to be the 

most promising instrument for ground moisture detection. Unlike photographic 

sensors that operate in the visible range o f  the spectrum, microwave imagers are 

operational under diverse weather conditions. Since the imager is  an active sensor, 

the lack of ambient l ight does not 4amper ik operation. Furthermore, the returned 

signal does not come from the surface alone, as i n  the case of visible and infrared 

sensors, but from the upper volume of the soil as wel l .  Therefore, subsurface moisture 

variations can also be monitored. The advantage o f  sidelooking radar over the 

other sensors that operate in the microwave region, such as radiometers and 

scat terome ters, becomes more appare~  t as the sensor platform increases from aircraft 

to space satellite altitude . With radiometers and scatterometers, degraded resolution 

~ a r o l  le l  with increasing range, whereas with the advent of  synthetic ape  ture, fixed 

resolution independent of range i s  possible with the fu l ly focused synthetic aperture 

~mager . 
In  spite c f  its advantages over the other sensors, actual f ie ld data from 

imaging radar on soil moisture variation i s  scarce. One of the reasons could be 
0 that the majority of present imaging radars scan from 40 incidence outward to near 

6 grazing while i t  has been reported that to detect gross soil moisture changes, the 

incidence angles have to be less than 45'. 



Airborne scatterometer systems, such as the NASA 13.3 GHz vert ical ly 

polarized and the 400 MHz multi-polarized scatterorneters, allow for more detailed 
7 

observa:ion of  radar scattering behavior than radar imagers . Variations of  scattering 

coefficients with incidence angles can be observed with scatterometry. With some 

scatterorneter systems, the effect of polarization and wavelength can also be studied. 

The trade-off for these added features comes i n  poorer resolution and less ground 

coverage. In  order to determine the optimum parameters such as dynamic range, 

incidence angle, frequency, polarization, e tc . , for the design of a specific 

imaging radar, the terrain scattcsometry datu analysis becomes especially helpful. 

The description of an operational system and its data analysis showing the effect of 

soil moisture as well  as other ground parameters w i l l  be discussed later in the report. 

BAC KSCATTERING OF MICROWAVES - 

The backscattered radiation i s  affected by both the sensor parameters and 

the ground parameters. For a radar imager, the sensor parameters are viewing 

angles, polarization, wavelength, power, and illuminated area. I he ground 

parameters include the complex dielectric properties, surface roughness, subsurface 

roughness to depth where attenuation reduces waves to negligible ampl itudes8, and 

possible layering effects. 
9 

Although theories have bee, formulated and many controlled programs 

conducted, the scattering problem under f i e ld  conditions has not been solved. 

I t  i s  known, in general, that surfac~s with RMS roughness heights much less than 

the order of a wavelength are smooth, and scattered energy i s  strongest in 

the specular direction. On the other hand, surfaces with the roughness on the order 

of a wavelength or more are rough and scattered energy tend to be more 

isotropic. 
10 

The complex dielectric properties affect the returned energy in a different 

manner. For a given rough surface at a fixed viewing angle, the higher the complex 

dielectric constant, the grnater w i l l  be the amount of returned energy. 

The effect of ch~i lges in  the moisture content i s  known to change the 
5 

dielectric properties of thc buckscatterer. Lundien conducted a caretully controlled 

experiment at the U. 5. Army Engineer Waterways Erperimental Station to determine 



the tadar lesponse to laboratory prepated soil samples. The soil samples were placed 

in a cart and the top surface smoothed over. The cart was then placed at the axis 

of a large arch along which mu1 ti-frequency radars could gather the radar resr,:--cn 

of the soil under test for different viewing angles. The most important f i r  ' l , , . : ,  i n  i .  

effort i s  a documentation of the variations i n  dielectr ic properties of  the >u i l  

samples as a function of the moisture content (Figure 1 a-b). Lundien also indicated 

that the dielectric constant o f  soil depends only on the quantity cf water, and t i l t  

effect o f  soil type i s  minor at  P-band (Figure 2 ) .  A similar experiment dealing with 

plant moisture content was done by ~ a r l s o n "  at Ohio  State University. Figure 3 

shows some of the results o f  Carlson's investigations. 

Barrick and Pe&e l 2  did theoretical investigation in back. ,. .rter from 

slightly rough surfaces using the perturbation approach. Figure 5 cites one of  

their results. In  this figure, a Gaussian correlation function was used to model 

the spatial auto-correlation function of surface heights. Although such functions 

are mathematically tractable, they fa i l  to agree with other experimental curves 
8 

for incidence angles away from the vert ical. Nevertheless, i t  serves to illustrate 

the vertical displacement of the radar cross section curve as the dielectr ic constant 

changes. 

In  the sections following, radar return frcm very wet vegetated land 

( C/C, 30 or higher) w i l l  be compared with that from the dry vegetated land 

( t/6, < 1 0  1. This i s  done by selecting fields where irrigation was in  

progress at the time of  the mission. Ports of the f ie ld where irrigation water had 

flowed in would constitute the wet land while the unirrigated portion would be the 

dry Iclnd. The moisture dependency w i l l  then be compared WI th 0th-r ground 

parameters. These analyses w i l l  fol low after a discussion on the experimental 

procedures and equipments used. 
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FIGURE 1B. CONDUCTIVITY VS . MOISTURE CONTENT AT P-BAND. 
(AFTER LUNDI~N)  
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FIGURE 4. AVERAGE INCOHERENT BACKSCATTERING CROSS-SECTION PER 
UNIT AREA WITH VERTICAL POLARIZATION. (AFTER BARRICK) 
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EXPERIMENIAL EQUIPMENTS AND PROCEDURE --------.---- 

The data analyzed in this ~epott were cbtained during the two missions made 

on 27 May and 26 June, 1970 from NASWJSC using 0.4 and 13.3 GHz scatterometers. 

Both missions were conducted over the same test site, 76, near Garden City, Kansas. 

30th radar scatterorneters were carried in a P3A aircraft, with antennas 

mounted beneath the wing and fuselage (0.4 GHz) and on the bottom of the fuselage 

(13.3 GHz). Antenna patterns are fan shaped, with narrow bewm transverse to 

the flight path, and wide beams along the flight path. Angle of incidence within 

the wide beam i s  determined by filtering out appropriate Doppler-shifted components 

of the return. The 0.4 GHz system uses a superheterodyne receiver to process the 

backscatter and a calibrated signal located 500 Hz above the transmitted frequency. 

The end result i s  a translated replica of the Doppler spectrum about the center line 

of the transmitted spectrum plus the calibrated signal 500 Hz above the zero Doppler 
13 

point. By knowing aircraft velocity and transmitted frequency, i t  i s  possible to 

make a translation between Doppler frequency and angle. The 13.: GHz system 

uses a homodyne receiver with in-phase and quadrature channels to permit recording 

components necessary to separate the positive and negative Doppler shifts in the 

analysis. The 13.3 GHz antenna has a cross-track beam width of 2.5' and i s  only 

vertically polarized. The 0.4 GHz antenna has a cross-track beam width of 6.7O 

and has both vertically and horizontal ly polarized elements. Thus i t  can be used 

to obtain four polarizations: VV, HH, VH, and HV. 

As the aircraft flies by a ~ a t c h  of ground, the first signal observed i s  from 

a point 60' ahead of vertical; later the signals from this patch are received at other 

angles down to vertical itself, and then as the aircraft flies away the incidence 

aqles from this patch again increases out to 60'. The ground returns from the 

different angle, are therefore displaced from each other in time, with the -140' 

signal arriving first and the -60' signal last. These displacemen k are removed i n  

data processing so that observations from a given point on the ground may be 

observed simultaneously for the different angles. 

The Garden City test site consists of an area of 600 fields about three miles 

north-west of Garden City, Kansas. In  this region the terrain i s  very flat, and 

both irrigated and dryland farming are practiced. Crops grown include alfalfa, 

corn, grain sorghum, sugar beets, wheat, and hay. The fields are large and laid 



out in a rectangular grid bounded on the east and west by parallel roads a mile 

apart. Many of the fields are half a mile wide, but another large group i s  only a 

quarter mile wide. The flight path of the mission aircraft was parallel to the 

north-south rood and a quarter mile from the rood, so that i t  passed through the 

center of the half mile wide fields but along the boundaries of the quarter mile wide 

fields. At the flight altitude of 3000 feet, the half power illuminated width of the 

13.3 GHa scatterometer i s  131 feet and the 0.4 GHz system i s  320 feet. Actually 

this beam width is  somewhat different at different angles of incidence, for the beam 

i s  not a perfect fan, but the values used may be considered representative. 

Aerial photographs were obtained during the scatterometer run, so that the 

path of the aircraft can be plotted by mosaicking these pictures. Hence, the 

locations of the illuminated areas are well established. Ground parties visited al l  

the fields along the road, although some of the fields away from the road were 

missed; air-photo interpre ta tion permits reasonable estimates to be made of the state 

of these fields in terms of the information gathered for similar looking fields. The 

ground parties recorded the following information: vegetation type, percent ground 

cover, heights of plants, growth stage, crop condition, clod size, cracking and 

crack size, sol t accumulation, ground treatment, row directions, qualitative 

moisture description, type of irrigation, and ground photos. For some fields, 

information was collected on plant moisture content at various levels (determined 

by bringing samples to the lab for weighing and drying). For a few fields, soil 

moisture content was determined with a neutron probe. Unfortunately the soil 

moisture was not measured in the fields being irrigated at the flight time. 

Data processing by NASA/JSC involves converting recorded signal spectra 

into values of scattering coefficient for each ground element and angles. The 

results ore plotted both as q0 vs. time with angles as a parameter and as graphs of 

o0 vs. angle for each ground element. The time plots are aligned with the photo 

mosaics to allow grouping of the ground elements associated with each field. Ground 

elements are observed long enough to obtain moderately good averages of the fading 

signals, although a compromise is  necessary because of the inconsistency of good 

averaging and good resolution. l 4  For 13.3 GHz each element represents 150 feet 

along the track and for 0.4 GHz i t  i s  450 feet. For this observation involving 

partial fields, the 450 foot cells probably were too long, and reprocessing of the 

data may be necessary to allow adequate resolution of the field segments. 



EXPERIMENTAL RESULTS A N D  DATA ANALYSIS --- - .-.--- 

i n  both missions, the same aircraft, NASA 927-NP3A, was used for in-f l ight 

data gathering. This eliminated the caused by different aircraft structures 

on the antenna beam. The following analysis involves the entire data set for mission 

133 and the first half of the bulk of dota %om mission 130. Thiq is  due to the fact 

that the time history data from the last three runs of mission 130 were abnormally 

f lat  (less than 5 db dynamic range) compared to a normal dynamic rangeof 13-18 db 

for agricultural terrain. Since the test site was fair ly homogeneous as evidenced 

from aerial photo mosaics, the discontinuity between the first three f l ight lines and 

the. remaining three lines was attributed to sensor system malfunction and the associated 

data from the last three lines was riot used. 

The ~catterometry data originally obtained from NASA,/JSC wete i n  two 

forms: 11ic scattering coetficient tirnc !iictoty for different angles with time as a 

variable, and the scattering c x f f i c i e n t  V S .  antenna viewing angle plots for each 

resolution cel l  on the ground. In aligning the scattwometry time history with the 

simultaneously obtained aerial photography, i t  was found that a sharp increase i n  

backscatter on the order of 5-7 db, with incidence angles less than 40°, was 

observed for agricultural fields under irrigation (Figure 5). For mission 130, flown 

by NASA on June 26, 1970, i t  was found that at the time of overflight eleven 

fields were being irrigated comple:ely and eight fields were part ial ly being 

irrigated. As for mission 130, conducted on May 27, 1970, there were f ive total ly 

irrigated and two partial ly irrigated fields, Table 1 lists the ten partiul ly  wet 

fields from both nissions together wit l i  theit respective crop types, crop height, 

arid percent gro3nd cover. 

The analysis of these part ial ly wet and part ial ly dry fields w i l l  illustrate 

the effect of changing the dielectric properties of the ground scatterers. This is  

val id because ;he only variable within each f ield i s  the moisture content of the soi l .  

Looking at the data from mission 130, only two part ial ly irrigated fields 

were included. They were both bare fields where one was plowed and the other 

dri l led. A t  13.3 GHz the scattering coefficient, (To, curves for the wet and dry 

segments for both fields are plotted in  figure 6 a-b. The wet ~Ocu rves ,  in  both 

cases, were above the dry curves by about 5 db or more for incidence angles less 

than 35' from the vertical. I t  i s  interesting to note that while both field: ore 
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'TABLE 1. 

PARTLY IRRIGATED AND PARTLY DRY FIELDS 

Mission 

130 

130 

133 

133 

133 

133 

133 

133 

1 33 

133 

Field 

139 

159 

27 

1 08A 

1 l9A 
222 

229 

412 

425 

435 

Crop Type 

plowed bare ground 

drilled bare ground 

corn 

alfalfa d sugar beets 

corn d bare ground 

corn 

corn 

sorghum 

alfalfa 

alfalfa 

Crop Height 

NA 

N A 

36" 
N A 

N A 

19" 

7" 

5" 

10" 

13" 

Vegetation 
Coverage 

OO/o 

wo 

70% 

N A  

N A 

40% 

10% 

5% 

1 Wh 

1 w/o 

bare, the slopes of the 60 curves are quite different. The plowed field, having 

distinctive rows and large clods (2-3" diameter), bear the resemblance of a composite 

surface; and the drilled field, having no rows and very fine clods, might be 

approximated by the smal l perturbation surface ! On the other hand the eight 

partiaily irrigated fields from mission 133 were al l  vegetated fields. Using the 

same approach, the curves of the wet and dry segments are plotted on the same 

graph for each of the eight fields. Figure 7 a-c are three samples of these graphs. 

Although the shapes of the 0' curves in Figure 7 have the added contribution from 

different crop types besides the original effects from rows and clods, the general 

trend is  stil l a separation of about 7 db from the change i n  ground moisture for 

incidence angles less than 40'. Above 40' the two curves tend to converge. 

This trend i s  best exhibited in Figure 8, which i s  an average of the eight 

partially irrigated fields of mission 133. As a further check on the trend, averaged 

c0 curves were computed for al l  the fields in the test site that might be considered 

dry and all f i e l d  that might be considered wet. These curves are shown in  Figure 

9 o-b. Figure 90 i s  an average of eight wet fields and forty-five dry fields 

from mission 130, and Figure 9b i s  an average of nineteen wet fields and 687 

dry fields from mission 133. 



M I S S I O N  1 3 3  

FREQUENCY 1 3 .  3 GI12 

POLAR1 7ATION VV 

SI'I'E GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

F I E L D  4 1 2  

UNDER I R R I G A T I O N  
3 RESOLUTION CELLS 

------- DRY 
2 RESOLUTION CELLS 

- 8 I I I 1 I 1 I I I I 1 J 

0 1 0  2 0 3 0 4 0 5 r, 6 0 

INCIDENCE ANGLES (DEGREES) 

FIGURE 7A.  SORGHUM 5 INCHES, KU-BAND. 



M I S S I O N  1 3 3  

FREQUENCY 1 3 . 3  GHz 

POLARIZATION W 

S I T E  GARDEN CITY, KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

F I E L D  108 

UNDER IRRIGATION 
4 PRSOLUTION CELLS 

-------- DRY 
9 RESOLUTION CELLS 

INCIDENCE ANGLES (DEGREES ) 

FIGURE 78. ALFALFA AND SUGAR BEETS, KLkMND. 



MISSION 1 3 3  

FREQUENCY 1 3 . 3  GHz 

POLARIZATION W 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

FIELD 222  

a- UNDER IRRIGATION 
3 RESOLUTION CELLS 

INCIDENCE ANGLES (DEGREES 

FIGURE 7C. CORN, 19 INCHES, KU-BAND. 

CELLS 



MISSlON 133 

FREQUENCY 1 3 . 3  JHz 

POLAHI ZATION VV 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

UNDER I R R I G A T I O N  
'7 RESOLUTION C E L L S  

------- C .  
4 3  RESOLUTION C E L L S  

INCIDENCE ANGLES ( D E G W E S  

FIGURE 8. AVERAGE OF THE PARTIALLY WET AND DRY FIELDS OF 
THE ENTIRE TEST SITE, KWMND, 



MISSION 1 3 0  

FREQUENCY 1 3 .  3 G l l ~  

POLARIZATION W 

SITE GARDEN CITY, KANSAS 

DATE MAY 2 7 , 1 9 7 0  

UNDER IRRIGATION 
35 RESOLUTION CELLS 

------- DRY 
896 RESOLUTION CELLS 

INCIDENCE ANGLES (DEGREES) 

FIGURE 9A. AVERAGE OF ALL THE WET AND DRY FIELDS IN THE ENTIRE 
TEST SITE, KU-BAND, MISSION 130. 



MISSION 1 3 3  

FREQUENCY 1 3.3 GHz 

POLARIZATION W 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

UNDER IRRIGATION 
85 RESOLUTION CELLS 

------- DRY 
4 2  39 RESOLUTION CELLS 

0 1 0  2 0 3 0 4 0 50 6 0 

INCIDENCE ANGLES (DEGREES) 

FIGURE YB. AVERAGE OF ALL THE WET AND DUY FIELDS IN THE ENTIRE 
TEST SITE, KU-BAND, MISS ION 133. 



I t  i s  intercstirig at thi, point to ~ ~ m m i n c  thc differences in backscatter 

from vctrious clop types and compote with the variation within the same field 

due to moisture difference. The data from mission 133 was categorized according 

to crop type for each of the anterna viewing angles. The mean of each field 

i n  the test site i s  computed and a plot i s  made for the spread of al l  themeans of the 

individual fields at a particular incidence angle. For each crop type, the average 

of the fields belonging to that crop was calculated. Figure 100-10f are histograms 

showing the absolute return of the fields in the test site at various incidence angles. 

The irrigated fields were not included i n  the plots. Each dot represents the mean 

value of a field, and the bar i s  the overage of a l l  the fields that fal l  within a 

particular crop category. The shaded regions represents the spread of one standard 

deviation from the mean. 

I t  can be seen from the histograms that a hint of clustering can be made 

among the crops considered, especially at 30' and 40' incidence. The usual ly  

irrigated crops of corn, sorghum, and sugar beets exhibited higher returns than 

the much drier wheat stubbles, weeds, and grain wheat ehich were mostly ripe 

and dry i n  the month of June. The categories of aifalfa an' bareground fel l  

somewhere i n  between. 

I t  i s  also observed that the averages of a l l  the categories of crops considered 

fall within a spread of only 5 dB, and the overlapping of the means of the individual 

fields belonging to different categories on the vertical axis i s  significant. For 

other viewing angles, the overlapping i s  even more pronounced. 

I n  an attempt to further segregate the different crop types, the technique 

known as the Standard Farm approach i s  applied. I n  the Standard Farm approach, 

only fields having homogeneous, healthy crops of at least 30 per cent ground 

coverage were enlisted. For example, alfalfa fields of the Standard Farm quality 

would be in ful l  bloom, and bare fields were tilled, ~ l o u ~ h e d ,  or cultivated fields 

free of stubble or stalks. Figures 1 la-1 I f  are the distribution of the Standard 

Farm Fields. Notice that categories such as sorghum and sugar beets have been 

deleted since they have not attained sufficient growth i n  the month of June, and the 

category "weeds" was composed of an assortment of weeds and hence not considered. 

With the Standard Form Fields, the distinctions among cro,s are enhanced. 

.I hirty degrees and 40' incidence angles are still the optimal angles for crop 

separation and i t  can be seen that corn i s  almost comple+ely differentiable at 30°, 

and at 40' the lowest return i s  dominated by standing wheat stubble and the dry and 

ripe wheat. 
23 
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Otllcl ground pclrameters which might have accounted for the radar back- 

\cc i t~c~ include plowing pattern, vegctut ion height and cover, row orientation, 

ground clacking pattern, clod size, plant moisture content, etc. The only additional 

pa~zweters considered are ground plowing pattern ar.d vegetation row orientation. 

To investigate the ./ariation in  radar backscatter caused by a difference in  

ground plowing direction, bare fields having rows parallel to the scatterometer 

f l  ight path and rows orthogonal to the flight path were considered. Since the flight 

path was in a north-south direction, the E-W rows are orthogonal and the N-S 

rows parallel to the scatterometer look direction. The c9 curves for the averaged 

E-V, and N-S oriented fields are shown in Figure 12. The curves cross at 25' 

incidence but the important fact i s  the separation between the two curves which 

i s  always less than 2 dB. Similarly, vegetated fields have both E-W and N-S 

planted rows. Figure 13 shows the averaged u0 curves of the vegetated fields of 

orthogonal row direction. The two curves again cross at midrange and the greatest 

separation between the two i s  stil l about 2 dB. 

O f  the ground parameters investigated so far, soil moisture variation i s  the 

major factor contributing to the differences in backscatter at 13.3 GHz. The 400 

MHz scatterometer , being mu1 ti-polarized, offers an additional system parameter of 

polarization in the data analysis. Owing to the bulk of the data, the only ground 

parameter investigated so far i s  the soil moisture variation. 

Some typical 400 MHz curves corresponding to the 13.3 GHz curves of 

Figure 8 a-c from mission 133 are shown in Figure 14 a-d. These curves, including 

those not shown, exhibit a difference be tween corresponding curves for irrigated 

and non-irrigated fields. However, the magnitude of the difference and the range 

of incidence angles over which the difference i s  significant varies much more from 

f ield to field than with the 13.3 GHz data. Further, for some fields there are 

incidence angles at which the two curves cross. 

Averaged curves from both missions are shown in Figure 15a-d. They 

correspond to Figure 10 a-b of the 13.3 GHz data. A stronger hint of a pattern i s  

present in the averaged 400 MHz curves although i t  i s  not as evident as the 13.3 

GHz curves. 



M I S S I O N  133  S I T E  GARDEN CI'I 'Y, KKJSAS 

FREQUENCY 1 3 . 3  Gfl z DA'A'E J U N E  26,1970 

POLARIZATION VV 

FLIGHT DIRECTION N-S 

------- E-W PLOUGHED 
4 5 0  RESOLUTION C E L L S  

N - S  PLOUGHED 
9 8  . X S O L U T I O N  C E L L S  

I N C I D E i J C E  AiJGLE (DEGREES)  

FIGURE 12. BACKSCATTER FOR E-W AND N-S PLOUGHED BARE FIELDS. S 



MISSION 133 

FREQUENCY 13.3 GHz 

POLARIZATION VV 

FLIGHT DIRECTION N-S 

SITE GARDEN CITY, KANSAS 

DATE JUNE 95, 1970 

-------- E-W ROWS 
1230 RESOLUTION CELLS 

N-S ROWS 
186 RESOLUTION CELLS 

INCIDENCE ANGLE (DEGREES) 

FIGURE 13. BACKSCATTER FOR E-W PLANTED AND N-S PLANTED 
VEGETATION. 



MISSIOK 1 3 3  

FREQUENCY 4 0 0  MHz 

POLAR1 ZATION W 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

F I E L D  27 

1 5 r  

LJNDER I R R I G A T I O N  
1 RESOLUTION CELL 

------- DRY 
2 RESOLUTION CELLS 

- 2 0  - 
L 4. 

-25 - - 4  

INCIDENCE ANGLE (DEGREES 

FIGURE 14A. CORN, 36 INCHES, P-BAND, W POLARIZATION. 



------- DRY 
2 RESOLUTION CELLS 

MISSION 1 3 3  

I.'WUIIENCY 400  MI12 

POLARIZATION 11H , l1V 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE J U N E  2 6 , 1 9 7 0  

F I E L D  27 

UNDER I R R I G A T I O N  
1 RESOLUTION C E L L  

0 I. 0 2 0 3 0 4 0 5 0 6 0 

I N C I D E N C E  ANGLE (DEGREES) 

FIGURE 148. CORN, 36 INCHES, P-BAND, HH AND HV POLARIZATION. 



MISSION 133 

FREQUENCY 400Mhz 

POLAR1 ZATION W 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

F I E L D  1 0 8 A  

UNDER IRRIGATION 

2 RESOLUTION CELLS 

------ DRY 

5 WSOLUTICY CELLS 

FIGURE 14C. ALFALFA AND SUGAR BEETS, P-BAND, W POLARIZATION. 



S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

FIELD 1 0 8 A  

UNDER IRRIGATION 

2 RESOLUTION CELLS 

------- DRY 

5 RESOLUTlON CELLS 

INCIDENCE ANGLE (DEGREES) 

FIGURE l4D. ALFALFA AND SUGAR BEETS, P-BAND, HH AND HV POLARIZATION. 



MISSION 1 3 0  

FREQUENCY 4 0 0  M H z  

POLAR1 ZATION W 

S I T E  GARDEN CITY,  KANSAS 

DATE MAY 2 7 , 1 9 7 0  

UNLER IRRIGATION 

2 1  RESOLUTION CELLS 

------- DRY 

3 2 7  RESOLUTION CELLS 

'--I-- ------ 

INCIDENCE ANGLE (DEGREES) 

FIGURE 15A. AVERAGE BACKSCATTER FROM MISSION 130 FOR 400 MHz 
W POLARIZATION. 



MISSION 1 3 0  

E'IIEOUENC'I 400 N11z 

I'OLAHl%A'I'ION I1 1 1  

S I T E  GARDEN C I T Y ,  KANSAS 

DA'I'E MAY 2 7 ,  1970 

UNDER 1 HRIGATION 

2 1 RESOLUTION C E L L S  

------- DRY 

32 9 RESOLUTIOIJ  C E L L S  

0 10 2 0 3 0 4 0 5 0 6 0 

INCIDENCE AIIGLE (DEGREES 

FIGURE 15B. AVERAGE BACKSCATTER FROM MISSION 130 FOR 400 MHZ 
HH POLARIZATION. 



MISSION 1 3 0  S I T E  GARDEN CITY, KANSAS 

FREQUENCY 400  M H z  DATE MAY 2 7 , 1 9 7 0  

POLARIZATION HV 

UNDER I RRIGATIOl  

2 1  RESOLUTIOiJ CELLS 

------- DRY 
3 2 9  RESOLU'TION CELLS 

0 10 2 0 3 0 4 0 50 6 0 

IN: IDENCE ANGLE ( D E G W E S )  

FIGURE 1X. AVERAGE BACKSCATTER FROM MDSION 130 FOR 400 MHz 
HV POLARIZATION. 



MISSION 1 3 3  

FItEQUENCY 4 0 0  MHz 

POLAitI ZATI ON VV 

S I T E  GARDEN C I T Y ,  KAilSAS 

DATE JUNE 2 6 , 1 9 7 0  

UNDER IRRIGATION 

4 6  Rl:SOLUTIoN CLLLS 

-------- DRY 

1 5 5 2  RESOLUTION CELLS 

INCIDENCE AYGLE (DEGREES) 

FIGURE 15D. AVERAGE BACKSCATTER FROM MISSION 133 FOR 400 MHZ 
VV POLARIZATION. 



MISSION 1 3 3  

FREQUENCY 4 6 0  MHz 

POLAR1 ZATION HH 

S I T E  GARDEN C I T Y ,  KANSAS 

DATE JUNE 2 6 , 1 9 7 0  

UNDER IRRIGATION 

4 6  RESOLUTION CELLS 

------- DRY 

1 5 5 2  RESOLUTION CELLS 

INCIDENCE ANGLE (DEGREES) 

FIGURE M E .  AVERAGE BACKSCATTER FROM MISSION 133 FOR 400 MHZ 
HH POURIUTION. 



The analysis so f a ~  has cleal-lY shown thc significant dominance of the 

moisture var ia t im on the backscatter at 13.3 GHz and weaker but st i l l  observable 

dependency at 400 MHz. 

For incidence angles less thaq B GO, the 13.3 GHz dot, shows a difference 

i n  bckscatter from wet and dry fields of the order of 7 dB. The diffc~nnces caused 

by variations i n  other ground purametcrs arc not as significant. Analysis shows the 

averages of the various crop types that fa l l  within a spread of only 5 dB. Gther 

ground parameters such at cult ivation pattern and vegetation row effects t ~ ~ c  even 

less distinguishing character istics on the backscatter. thany questions, emecial ly 
0 

those that deal with specific shape and slope of the (1  cucves, are st i l l  unanswered. 

For example, Figure 9 and 10 suggest a slope dependence that might be associated 

with particular ground treatment and clod size; vegetatio.; height and percent 

coverage might hnve in f l8~enced the ihapcs cf the curves in Figure 8 a-c. Conclusive 

statements, however, can only be made after further analysis. 

At  this point few statements can be made of the 400 MHz data other than to  

note the slight moisture dependency. Row direction, however, i s  expected to  

influence the data more at this longer wavelength. 

These data are m l y  for June and, at 13.3 GHz, for VV polarization. 

General ci>nclusions applicable to other months or polarizations should be avoided 

irisofa~ us vegetation echo i s  concerned. Presumably the conclusions regarding 

soil moisture effects are FS;C general. 
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