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SUMMARY 

Within the second year of research i t  became p la in  t h a t  

user appl icat ion of remote sensing techniques being developed 

i n  t h i s  contract  m the cont inental  s h e l f ,  both physical and 

biological ,  were s t i l l  a few years away even with the  frenzy of 

OCS a c t i v i t y  associated with search f o r  o i l .  It a l s o  became 

pla in  t h a t  the s ing le  most important physical process required 

by users i n  the marine environment i s  c i r cu la t ion  and dispersion 

information. Circulation i s  d i f f i c u l t  t o  study a t  bes t  and 

remote sensing appears t o  be the most promising too l .  

Unfortunately c i r cu la t ion  s tudies ,  where cos t  must be kept 

modest, require  developsent of new techniques and the time 

required t o  do t h i s  poses a serious problem f o r  cont rac tura l  

work which expects yearly user appl icat ion of the  techniques. 

User requirements i n  the  lower Chesapeake Bay, however, 

i n  cont ras t  t o  the cont inental  shelf  a re  manifold and 

increasing. Requests f o r , a s s i s t a n c e  from c i t i e s ,  s t a t e  agencies, 

and others a r e  a r r iv ing  weekly. Last year ( the  f i r s t  year of 

t h i s  cont rac t ) ,  f o r  example, we were able  t o  respond t o  the, 

Navy, t h e  Virginia Department of Highways and the Hampton Roads 

Sewer D i s t r i c t ,  using the  remote sensing techniques being 

developed f o r  the cont inental  shelf  by t h i s  cont rac t .  

Given t h i s  present r e a l  world s i t u a t i o n ,  i n  which the  

g r e a t e s t  need fo r  user  appl icat ion of remote sensing l i e s  not  

on our adjacent cont inental  she l f  but within the estuary,  a 

decision was made LO s h i f t  the emphasis of t h i s  cont rac t  away 



from the cont inental  she l f  i n t o  the lower Chesapeake estuary 

where user needs a re  g rea t  and where, therefore,  the remote 

sensing techn.iques would have the best  chance f o r  immediate 

appl icat ion.  In  t h i s  sense we hope t o  maximize both the user  

appl icat ion and our chances t o  f u l f i l l  t h e  requirements of the  

granting agency. 

Work done developing drogues and the Omega navigation 

system w i l l  no t  be l o s t  because ,both a re  highly useful  within 

the estuary.  Furthermore, the increase i n  a c t i v i t y  on the  

cont inental  she l f  implies t h a t  user needs w i l l  dramatically 

increase there i n  the  next  few years.  

This decision appears t o  have been wise because s ince 

June ( the beginning 4 t he  current  year) we have had two 

occasions t o  respond t o  user  needs and one of these w i l l  

r e s u l t  i n  placement of engineering works, but t h i s  i s  a s to ry  
\ 

f o r  next year ' s  repor t .  

The following work was pursued i n  the pas t  year: 

1.) Continued development of the  Omega system. 

2. )  Coordinated study of Wachapreague In le t :  

Biological 
Hydrological 
Sedimentation 

3 . )  Continental shelf  current  s tudies :  

1 . )  Field support f o r  SKYLAB mission 

2 . )  Continuous deployment of EOLE 
buoys wf t h  ~A§A/tangley. 

The above topics  a re  presented i n  complete d e t a i l  as an 

appendix t o  t h i s  repor t .  



Omega System 

From the inception of t h i s  grant  it has seemed t o  us t h a t  

understanding.of most water qua l i ty  problems i s  l imited by lack 

of understanding of c i r cu la t ion .  We s t i l l  bel ieve t h i s  t o  be 

t rue .  From the beginning we have sought t o  use a remotely 

sensed drogue which would have the  following q u a l i t i e s :  

1 )  Cheap; 2) v e r s a t i l e  i n  t h a t  i t  could respond t o  

s a t e l l i t e s ,  or a i r c r a f t ,  o r  boats ;  3) be useful  a s  a platform 

f o r  co l lec t ing  more than one kind o f  da ta .  

After considerable thought we s e t t l e 1  on the Omega System 

f o r  Navigation. dnf or tunately , the  manufacturer had oversold 

h i s  product. He was a f u l l  year l a t e  i n  de l ivery  and the u n i t s  

were not i n  working order upon a r r i v a l .  In  any event, the pas t  

year was one of f r u s t r a t i o n ;  however, the system i s  now i n  one 

place and the t ransmit ter  under cont rac t  t o  be delivered i n  

Septernbe,~ 1974. 

Given t h i s  s i tua t ion ,  f i e l d  t r i a l s  a r e  planned f o r  autumn 

1974, and if a l l  goes well  the  Omega System should be a 

functional tool  by winter. With t h i s  i n  mind, we an t i c ipa te  

wri t ing a contract  proposal t o  support the  system and use it t o  

the appropriate in teres ted  agency, such as  ONR or  MARAD. 

Wachapreague I n l e t  

When the second year began our thinking was s t i l l  on 

nearshore c i r cu la t ion  on the  cont inental  she l f .  Within the  

l imi t s  i n i t i a l l y  defined i n  t h i s  cont rac t  i t  was plain t h a t  

nearshore c i r cu la t ion  would be strongly influenced by i n l e t s .  



The whole Eastern Shore i s  perforated by i n l e t s .  Therefore, 

i t  was decided t o  study a s ingle  i n l e t ,  t he  bes t  known one, 

and determine the b io logica l ,  hydrographical and sedimentologi- 

c a l  in terac t ions .  A three year study of Wachapreague I n l e t  

had jus t  ended, considerable l o g i s t i c a l  support i n  boats and 

people were avai lab le ,  so we elected Wachapreague a s  the 

prototype. 

The b io logica l  s tudies  were designed with the  following 

objectives i n  nind: 

a , )  Is there  a n e t  flux of organic mater ial  frm 
the i n l e t  t o  the ocean? 

b.) What biologica l  parameters can be used t o  
d is t inguish  between nearshore waters and 
marsh waters? 

c . )  What i s  the  bes t  parameter f o r  remote 
sensing t o  answer the above? 

Measurement of n e t  f lux  was not  possible,  given t h e  time 

and e f f o r t  pr ior  t o  the decision t o  abandon the she l f .  Flux 

i s  extremely d i f f i c u l t  t o  measure even when the substance i s  

pure water. Progress however was s u f f i c i e n t  t b s t  a new 

proposal i s  being wr i t ten  so le ly  t o  study f lux .  

Chlorophyl per s e  proved not  t o  be a r e l i a b l e  indica tor  

t o  d is t inguish  between seawater and marsh water because of 

general high tu rb id i ty .  Variations i n  heterotrophic 

metabolism, however, was useful .  This conclusion l e f t  the 

answer t o  a remote sensing parameter unanswered; however, with 

the decision t o  work t h i s  th i rd  year within the  estuary,  the 

usefulness of chlorophyl w i l l  probably be enhanced because of 



i t s  re la t ionship  t o  plankton blooms and a possible  r e l a t ionsh ip  

between blooms and pol lut ion.  

Sediment Plume 

Marsh water i s  more turbid than ocean water and therefore 

a plume of discolored water i s  discharged from the i n l e t  on ebb 

t i d e .  The plume i s  v i s i b l e  and therefore can be examined by 

several  remote sensing techniques. I n  the case of Wachapreague 

we used a s e r i e s  of photographs from three  missions flown by 

NASA/Johnson Spacecraft Center and thermal imagery which when 

enhanced by NASAIHouston was s u i t a b l e  f o r  measuring temperature 

cont ras ts  between the plume and seawater. 

The shape and behavior of t h e  plume proved t o  be the b e s t  

index of in terac t ion  between i n l e t  and nearshore c i r cu la t ion .  

Although the program did no t  continue long enough t o  d i s c w e r  

why volume of sadiment calculated from remote imagery d id  not  

f i t  previous theory. Thermal imagery followed very well  the 

v i s i b l e  plume and we conclude t h a t  i t  would be a prime too l  for 

nearshcre c i r cu la t ion  s tudies .  The r e s u l t s  showed t h a t  indeed 

there was strong thermal cont ras t  between seawater and marsh 

water. 

Contrnental Shelf Current Studies 

When the second year began t h i s  was the  pr inc ipa l  object ive.  

Lacking the Omega Navigation System the researchers had t o  do 

other experiments. The f i r s t  was a SKYLAB mission which 

required ground t r u t h  near the mouth of t h e  Chesapeake Bay. 

The f i e l d  team assembled and used the Radar Drogue System 



developed the year before with ass is tance  from NASA/Langley and 

NASA/Wallops. The r e s u l t s  were given t o  D r .  Maynard Nichols of 

VIMS, who was the SKYL4B pr inc ipa l  invc "gat. f o r  t h i s  mission. 

A grea ter  e f f o r t  went i n t o  the EOLE $ r i f t i n g  buoy program 

as a j o i n t  e f f o r t  between NASAILangley and !':MS. These buoys 

a re  tracked by the NASA funded French S a t e l l i t e  and the r e s u l t s  

thus f a r  a re  t o  provide the most concrete p ic tu re  of currents  

on the cont inental  she l f  off  Virbinia.  Currents tend t o  move 

southerly t o  Cape Hatteras and become entrained i n  the Gulf 

Stream a t  t h a t  point from whence they turn northeast  and move 

rapidly out of our area.  These background s tudies  w i l l  prove 

extremely valuable f o r  fu ture  programs on the  cont inental  shelf  

and would have been basic  i n  experimental design. 

A c r i t i c a l  response t o  user  request  arose from these 

s tudies  although i t  would be s t r e t ch ing  a point  t o  claim 

Application of Remote Sensing Techniques f o r  t h e  response. 

The Hampton Roads Sewer Distr!.ct proposes t o  construct  an ocean 

o u t f a l l  a t  Dam Neck. This area i s  r i g h t  i n  the center  of t h e  

EOLE program. D r .  Welch analyzed ex i s t ing  da ta  and pointed out 

t h a t  the proposed o u t f a l l  could r e s u l t  i n  the beaching of 

e f f luen t .  As a r e s u l t  HRSD has contracted fu r the r  studies,  with 

Alpine Geophysical and Hydrosciences, Inc., t o  determine what 

might bes t  be done. A copy of D r .  welch's r epor t  was sen t  t o  

you in  t h i s  year t o  keep you infrrmed, 

A l l  i n  a l l  then, these lessons a r e  t o  be t ransfer red  i n t o  

t l  t: lower Chesapeake Bay f o r  appl icat ion.  4lready they have 

be,.!, applied and the advicl:.: derived from them t rans la ted  i n t o  

d o l l a r s  and cents  engineering. 



APPENDIX 1 

THE STUDY OF NEARSHORE CIRCULATION I N  THE V I C I N I T Y  OF 
A NATURAL TIDAL INLET B REMOTE SENSING TECHNIQUES 

Object 

The object of t h i s  study was t o  i w e s t i g a t e  the use of 

remote sensing i n  the study of nearshore c i r cu la t ion  i n  the 

v i c i n i t y  of a n a t u r a l  t i d a l  i n l e t .  An economical technique was 

needed t o  inves t iga te  changes i n  the e n t i r e  v i s i b l e  and 

temperature plume, c h a r a c t e r i s t i c  of nearly a l l  t i d a l  i n l e t s ,  

thru  a t  l e a s t  one t i d a l  cycle .  The importance of t h i s  endeavor 

i s  t o  study the extent  of influence the  v i s i b l e  and temperature 

plume has on nearshore c i r cu la t ion  th ru  changes i n  plume 

s t ruc tu re  and i n d i r e c t l y  i n  t ransport  of sedir  ~n and out of 

i n l e t s .  Due t o  the  l a rge  area of plume inf l i . ,  . even i n  

moderate s i z e  i n l e t s  i t  was hoped t h a t  remote sensing techniques 

would be t h e  most des i rab le  method t o  cover the e n t i r e  a rea  of 

study fo r  the required length of time. 

The study area was located a t  Wachapreague I n l e t ,  a 

na tu ra l  t i d a l  i n l e t  with l i t t l e  man-made influences,  on the  

Eastern Shore of Virginia.  This i n l e t  was the s i t e  f o r  several  

previous s tudies  on i n l e t  dynamics by i n s t i t u t e  personnel. 

Results 

A complete t i d a l  cycle of twelve hours was photographed by 

a i r c r a f t  supplied by NAsA/John~on Spacecraft Center on 6 Apri l ,  

7 August, and 1 7  November 1973. Color f i lm,  color  infrared 

f i lm and thermal scanner imagery were supplied on these missions. 



The color  infrared f i lm supplied the bes t  imagery of the  v i s i b l e  

tu rb id i ty  plume. 

The growth sequence of a la rge ,  well  developed tu rb id i ty  

plume was photographed during the ebb t i d a l  cycle on 6 Apri l .  

The decay seouence of a smaller, l e s s  developed tu rb id i ty  plume 

was photographed during the flood t i d a l  cycle on 7 August, 

Weather l imi ta t ions  negated the  use of the  th i rd  s e r i e s  of 

photographs. Calculations of the  changes i n  area i n  the 

tu rb id i ty  plume were determined f o r  the  usable portions of the 

t i d a l  cycle from the color infrared fi lm. The volume of the  

water column from surface t o  bottom contained within the  plume 

boundary was  computed and compared with the  estimated volume 

storage of the Wachapreague I n l e t  s torage system in the  marsh 

landward of the i n l e t  which was developed previously by D r .  R .  

B y ~ n e  and M. Penney of the  I n s t i t u t e .  It can be infer red  by 

the poor c r ~ r c l a t i o n  between the computed volume and the  

storage system volume t h a t  while the suspended sediment i s  

r e l a t i v e l y  homogeneously mixed throughout the water c o l ~  i n  

the throa t  of the i n l e t ,  a s  the  t u r b i d i t y  plume expands sea-.*;ard 

over the ebb t i d a l  d e l t a ,  there  i s  mixing of sediment laden 

i n l e t  water with ocean water. The r e s u l t s  show t h a t  the , 

imagery allows estimation of tu rb id i ty  depth once a s torage 

volume graph has been developed f o r  a pa r t i cu la r  i n l e t  system. 

The thermal imagery was inhanced and r e c t i f i e d  i n  order t o  

inves t iga te  the relacionship of the  v i s i b l e  tu rb id i ty  plume 

with the sensed thermal plune. Water d i r e c t l y  r e l a t ed  with the  

inlet-marsh storage system wf 11 have a d i f  £el-ent temperature 



from the surrounding ocean water and be delineated by a 

thelmally sensed plume. Comparison of the area of the  

thermally sensed plume with the area of th.e v i s i b l e  tu rb id i ty  

plume shows a good cor re la t ion ,  However, the surface s t ruc tu re  

of the thermal plume i s  more complex than the v i sua l  tu rb id i ty  

plume. This  thermal image s t ruc tu re  was then analyzed by 

v i sua l  methods d i r e c t l y  from the inhanced and r e c t i f i e d  f i lm 

and also by density s l i c i n g  technique. While v i sua l ly  analyzing 

the thermal imagery fo r  the ebb t i d a l  cycle several  concentric 

bands developed with a l t e rna t ing  moderate t o  cool water which 

expanded as the t i d e  ebbed. 

Using the color encoding densitometer on the thermal 

imagery gave the most complete p ic ture  of a complex thermal 

s t ruc ture .  More d e t a i l  could be distinguished on the concentric 

bands with the warmest r e l a t i v e  temperature i n  the i n l e t  md 

progressively cooler bands radia t ing  seaward from the i n l e t  

mouth. A tongue of cool oceanic water can be seen progressing 

up-coast, b i s e c ~ i n g  the thermal plume during the ebb t i d a l  

cycle. A d i s t i n c t  body of warm water, possibly from a preceding 

t i d a l  cycle,  was v i s i b l e  proceeding seaward and slowly cooling 

as the t i d a l  cycle progressed. 

Future 

This research shows t h a t  remote sensing i s  a v iable  tool  in  

the stuJy of nearshore c i rcula t ion  i n  the  v i c i n i t y  of t i d a l  

i n l e t s .  The work w i l l  continue a t  a low leve l  f o r  lack of 

immediate technology t ransfer .  Information gained through t h i s  



research w i l l ,  however be of value i n  fu ture  remot= seqsing 

pro jec ts .  

Introduction 

Necrshore c i r cu la t ion  in  the  v i c i n i t y  of c n a t u r a l  t i d a l  

i n l e t  has been studied by remote sensing. From three separate  

s e r i e s  of sequent ial  a e r i a l  photographs, i t  was possible  t o  

document a complete t i d a l  cycle and evaluate the nearshore 

influences of auc'h c i r cu la t ions .  Using a e r i a l  photographs, 

it was possible t o  compute the  r e l a t i v e  changes i n  the  area 

and t o t a l  volume of the suspended sediment plume during the 

t i d a l  cycle and compare them t o  a known approximate s torage 

volume function of t h e  complex inlet-marsh storage syst?m. 

Conparison of the  v i sua l  t u r b i d i t y  plume from color  photography 

with the thermal plume from thermal imagery was a l s o  

accomplished. 

The study area was located a t  Wachapreague I n l e t  i n  the 

b a r r i e r  i s land  chain on the Eastern Shore of Virginia.  This 

i n l e t  i s  a good example of a downdrift o f f s e t  i n l e t  common 

along t h i s  coast  (Fig. I. l j  . The i n l e t  i s  bordered on the 

north by Cedar Island and on the south by Parramore Island. 

The morphology of t h i s  i n l e t  cons is t s  of an i n l e t  t h r o a t  

channel, a well-developed crescent ic  ebb t i d a l  d e l t a  on the 

e a s t  and a system of bays, marsh and t i d a l  channels t o  the 

west. The i n l e t  th roa t  channel reaches a maximum depth of some 

65 f e e t ,  while the ebb t i d a l  d e l t a  has a depth on the order of 

twelve f e e t  (Fig. 1.2).  Rapidly changing shoals per iodica l ly  

above sea l eve l  a re  present on the north s i d e  of the  i n l e t  



t h roa t  channel with smaller shoals on the  south s ide  j u s t  off  

Parramore Is land.  The nearshore shelf  bathymetry i s  r e l a t i v e l y  

smooth landward of the 36 foot  contour. Complex r idge and swale 

topography with a rough northeast  l inea t ion  i s  found seaward of 

the  36 foot contour. The in teres ted  reader i s  re fer red  t o  a 

study by DeAlteris and Byrne (1973) and Byrne, Bullock and Tyler 

(1973) on the recent  h i s to ry  and response cha rac te r i s t i c s  of 

Wachapreague I n l e t .  

Experimental Procedure 

Three photographic missions were flown by NASA/~ohnson 

Spacecraft Center on 6 Apri l ,  7 August and 1 7  November, 1973. 

A complete t i d a l  cycle of twelve hours was covered on these 

three days. Each phase of the t i d a l  cycle  photography consisted 

of three overlapping flyovers of the  southern, middle and 

northern portions of the  i n l e t  and marsh system. The center  

f l i g h t  path photographs were used whenever possible  i n  t h i s  

sttidy. The a i r c r a f t  was equipped with color  f i lm,  color  

infrared f i lm and thermal scanner. The photo sca le  was 

1:40,000 on the 6 Apri l ,  7 August and the f i r s t  run of 17 

November. The remaining photographs of 17 November a re  a t  a. 

sca le  of 1:3G,000. On 6 Apri l ,  four passes of the ebb t i d a l  

cycle were photographed a t  1106, 1225, and 1346 and 1504 EST. 

The f l i g h t  l i n e s  a re  shown i n  Figure 1.3.  The 7 August s e r i e s  

consisted of one l a t e  phase of the ebb t i d a l  cycle photographed 

a t  0720, low t i d e  photographed a t  0820, and three  s e r i e s  of 

photographs of the  f i r s t  ha l f  of flood t i d e  a t  0910, 1000, and 

1058 EST, The f l i g h t  l i n e s  a re  shown on Figure 1.4. The 



1 7  November s e r i e s  consisted of three  passes of t h e  flood t i d a l  

cycle which were photographed a t  1033, 1124, and 1240, high t i d e  

photographed .at 1342, and one phase of ebb t i d e  a t  1435 EST. 

The f l i g h t  l i n e s  a re  shown in  Figure 1.5. 

Description of Raw Data 

A la rge ,  well developed plume of suspended sediment 

or iginat ing i n  the marsh was read i ly  v i s i b l e  flowing out of the  

i n l e t  mouth and expanding during the ebb t i d a l  cycle on 6 April .  

A smaller suspended sediment plume was observed t o  decrease i n  

area during low slack water and f i r s t  h a l f  of the flood t i d a l  

cycle on the 7 August photographs. The ou t l ine  of t h e  v i s i b l e  

sediment plume was traced on c l e a r  ace ta te  overlay paper from 

the  a e r i a l  photograph f o r  each hour of the  t i d a l  cycle  flown. 

Unfortunately, a tu rb id i ty  plume was not  v i s i b l e  on the 17 

November flood t i d a l  cycle photographs due t o  morning cloud 

cover and high northwest winds, possibly d i s s ipa t ing  the 

surface s t ruc tu re  of the  plume. Therefore, ca lcula t ions  of 

changes in  the tu rb id i ty  plume during t h i s  portion of t h e  t i d a l  

cycle could not be determined. 

A de ta i led  bathymetric map of Wachapreague I n l e t  (Fig. 1.2) 

was constructed a t  three foot  depth in te rva l s  using U .  S. Coast 

and Geodetic Survey hydrographic sounding sheets  numbers 5674, 

5703, 5715 and 5770 (sca les  of 1:40,000 and 1:20,000) done i n  

1934. Detailed bathymetry a t  the I n l e t  proper was constructed 

o r ig ina l ly  a t  a sca le  of 1:10,000 from f i e l d  da ta  col lected by 

VIMS personnel on 11 and 1 2  December 1972. A boat equipped 



a Fathometer and Radar Transpmder was located i n  the  i n l e t  by 

radar  equipment located a t  the town ~f Wachapreague supplied by 

~ASA/Wallops (see Welch and Haas, 1973) . 

Analysis Technique 

A Map-0-Graph was used t o  bring the various sca les  of the  

cha r t s  and overlays i n t o  one common sca le  of 1:16,400. The 

out l ine  of the suspended sediment plume f o r  each portion of the  

t i d a l  cycle could then be plot ted over the bathymetry. 

These constructed p lo t s  of the ou t l ine  of th,e sediment 

plume over the bathymetry f o r  each hour of the  t i d a l  cycle were 

planimetered a t  three  foot contour in te rva l s  t o  compute the  

area of the plume seaward from the i n l e t  mouth. When mult ipl ied 

by the  three  foot  depth i n t e r v a l ,  the volume of the  water column 

from bottom t o  surface was computed. This volume was o r ig ina l ly  

hypothesized t o  contain the complete suspended s2diment plume 

f o r  each phase of the  t i d a l  cycle.  

This volume was then compared with t h e  estimated volume 

storage of the Wachapreague I n l e t  s torage system, computed from 

a graph developed by Byrne anc Penney (1974) r e l a t i v e  t o  the  

t i d e  gage a t  the town of Wachapreague. The t i d a l  height  a t  t h e  

time of each a e r i a l  photograph was read o f t  a s t r i p  cha r t  £'=om 

a t i d e  gage located a t  the i n l e t .  In  order t o  use the graph, 

the time of readings on the Wachapreague I n l e t  t i d e  gage had 

t o  be corrected f o r  a phase l ag ,  between high and low waters of 

-0.6 h r s  and -0.7 h r s ,  respect ively,  t o  the town of Wachapreague 

t i d e  gage, approximately 1 2  km d i s t a n t  v i a  channels from the  

i n l e t .  A height  correct ion was a l so  needed due t o  an 0.5 f t  



dif ference  in  height  t o  mean low water between the two t i d e  

gages. 

Results 

T h e  progressive increase i n  area of the well  developed 

suspended sediment plume on 6 April  i s  seen i n  Figure 1.6 a s  

the  ebb t i d a l  cycle progressed. The wind on t h a t  day was out 

of the  northwest between nine t o  f i f t e e n  MPH a t  the time of the  

photography, which may have some r e l a t i o n  t o  the  plume formation. 

Storm conditions prevailed f o r  several  days p r io r  t o  the  photo- 

graphs, causing the e n t i r e  marsh area between Wachapreague and 

Parramore Island t o  be flooded a t  high t i d e ,  which allowed a 

la rge  amount of sediment t o  be placed i n  suspension i n  the 

system. From Figure 1.6 and Figure 1 . 7  i t  i s  noted t h a t  the 

seaward edge of the  plume developed a f inger- l ike  s t r u c t u r e  

from 1346 on. It  was noted above t h a t  t h e  r idge and swale 

bathymetry develops seaward of the t h i r t y - s i x  foot  contour 

(Fig. 1 .2) .  The or ienta t ion  of the  f ingers  of suspended 

sediment a re  roughly p a r a l l e l  t o  these nor theas t  trending 

r idges.  

Contrasting the  la rge  change i n  plume area during the ebb 

on 6 A p r i l ,  the changes of the  suspended sediment plume on 

7 August 1973, dur ing  the  l a s t  s tage of ebb, low, and f i r s t  

ha l f  of flood t ides  a r e  i l l u s t r a t e d  i n  Figure 1.8 as being 

extremely small u n t i l  1058, approximately 3 hours a f t e r  low 

t i d e .  The 7 August plume a t  i t s  maximum area  was approximately 

four times l e s s  than the maximum area  of t h e  6 April  plume. 



Figure 1.9 shows t h e  shape of the suspended sediment plume 

during the flood cycle on 7 August, a s  contrasted t o  the  shape 

of the ebb plume of 6 April  (Fig. 1 .7) .  I t  can be noted from 

Figure 1.8 t h a t  there  was r e l a t i v e l y  l i t t l e  change i n  the  t o t a l  

a rea  of the plume on 7 August during t h a t  s e r i e s  of photographs, 

although i t  covered the t i d a l  cycle from ebb through low t o  

flood. The wind on t h a t  day was calm t o  5 MPH from the south- 

e a s t .  The area of the plume increased toward low t i d e  t o  i t s  

maximum a t  0820 EST, then decreased f o r  one hour of flood as 

expected but anomalously increased almost t o  i t s  maximum low 

t i d e  area again a t  1000 EST; then decreasing ra the r  rap id ly  

within the next hour of f lood. The maximum area of change 

during t h i s  time was observed a t  the  i n l e t  f lanks of the plume, 

of spec ia l  note being the northern flank between the  shoal and 

Cedar Island Beach. The "v" shaped plume edge can be seen 

migrating s l i g h t l y  seaward t o  low t i d e  and then reversing t o  

migrate i n t o  the beach approximately 1 nau t i ca l  mile north of 

the i n l e t  a t  1058. The main flow a t  1058 i s  through the t h roa t  

of the i n l e t .  

In terpre ta t ion  

There was generally poor corre la t ion  between the volume of 

the suspended sediment plume calculated by the above described 

method and the volume calculated i n  the s torage system by the  

method of Byrne and Penney (1974). The suspended sediment 

concentration i n  the plume was assumed t o  be constant with the 

t o t a l  volume of the plume from surface t o  bottom. From Table 1.1 



it can be seen t h a t  the volume of the plume was c lose  t o  the 

volume of the s torage system f o r  the f i r s t  hour of ebb studied 

on 6 April and again on the l a s t  hour of flood on 7 August. 

A t  both of these times the suspended sediment plume was 

bas ica l ly  confined t o  the  main i n l e t  throa t  channel and the  

landward edge of the  ebb ticla1 d e l t a .  It can be assumed t h a t  

i n  t h i s  region the suspended sediment concentration i s  

r e l a t i v e l y  homogeneous throughout the water column. As the  

suspended sediment plume expands seaward over the ebb t i d a l  

d e l t a ,  there  i s  mixing of the sediment laden water of the  

i n l e t  with ocean water. A hypothetical  cross-sect ional  s t ruc-  

ture i s  i l l u s t r a t e d  i n  Figure 1.10 witb a homogeneous 

concentration landward of the ebb t i d a l  d e l t a ,  with a 

d i s t i n c t l y  l e s s  homogeneous plume of turbid water over c l e a r  

ocean water seaward of t h e  d e l t a .  

To compte  a r e l a t i v e  depth of suspended sediment, the 

change i n  the calculated volume of the  storage system between 

successive photographs was divided by the change i n  the  

measured area of the plume between successive photographs. 

From Table 1.1 the average depth of the  plume appears t o  be 

22 f t  on 6 April  and 29 f t  on 7 August. The anomalously low 

number of 6.18 f t  between 1346 and 1504 on 6 April  14?3 

accompanies 3n increasr. i n  area of the plume by a f ac to r  of 

2 .  The anomalous depth of 18.92 f t  a t  0820 on 7 August occurs 

a t  low t i d e  when the system i s  changing fro13 one of ebb t o  one 

of flood. Another anomalsus depth occurs when the area  r F the 

plume f i r s t  decreases then izcreases  on the beginning s tage of 



flood t i d e .  From the photos a t  0910 and 1000, the plume appears 

t o  increase i n  a rea  a t  both the northern and southern f lank of 

the i n l e t .  Thus, the  la rge  number of 88.81 comes from the f a c t  

t h a t  both the area of the  plume and s torage volume a r e  

increasing a t  the same time which i s  opposite the  standard 

condition where on a flooding t i d e  the plume area should 

decrease with time. 

The depths computed here ,re only " re la t ivef '  depths s ince 

no p ro f i l e s  of suspendea sediment concentration were col lected 

a t  the time of the overf l ights .  The r e s u l t s  show t h a t  the  

imagery allows estimation of tu rb id i ty  depth once the  s torage 

volume f o r  the spec ia l  a rea  has been computed. 

Thermal Imagery 

Thermal imagery was recorded concurrently with the 

photography f o r  a l l  of the overf l ights .  The thermal imagery 

f o r  the 6 April  1973 f l i g h t  was enhanced by ~ A ~ A / ~ o u s t o n  t o  

gain the maximum cont ras t  between plume water and ocean water. 

The cen t ra l  40" of the center  f l i g h t  l i n e  imagery f o r  each hour 

of the ebb t i d a l  cycle on the 6 Apri l  was r e c t i f i e d  using a 

Bausch and Lomb ZT-4 zoom t rans fe r  scope a t  NASA/Langley 

Research Center. This r e c t i f i e d  image of the  thermal plume 

was traced on a l i n e  drawing of the i n l e t  taken from the a e r i a l  

photography f o r  each hour of the t i d a l  cycle t o  r e t a i n  a common 

sca le  of 1: 20,000. 

The purpose of t h i s  portion of the  study was t o  inves t iga te  

the re la t ionship  of the  v i s i b l e  suspended sediment o r  t u r b i d i t y  



plume with the sensed thermal plume. We expect t h a t  water 

d i r e c t l y  r e l a t ed  with the  i n l e t  storage system should be of a 

d i f f e r e n t  temperature than the surrounding ocean water due t o  

the d i f f e r e n t i a l  heat ing e f f e c t  on the  shallower marsh area a s  

opposed t o  the she l f  water. The thermal scanner should sense 

t h i s  differc-nce i n  temperature and de l inea te  the marsh water 

accurately i n  a thermal plume. A comparison was therefore 

undertaken t o  see i f  the, thermal imagery more accurately 

measured the change in  marsh water f l o r i n g  through the i n l e t  

than the v i sua l  color  and color  inf rared  imagery. 

The out l ine  of the area  of the v i s u a l  tu rb id i ty  plume was 

superimposed on the thermal plume f o r  each hour of t h e  ebb 

t i d a l  cycle photographed. It i s  i n t e r e s t i n g  t o  note  t h a t  t h e  

out l ine  of the thermal plume corresponds very well with the  

v i s u a l  tu rb id i ty  plume. 

The surface s t ruc tu re  of t h e  thermal plume i s  more complex 

than the v i sua l  tu rb id i ty  plume. From Figure 1.11 a la rge  

body of r e l a t i v e l y  very warm water i s  v i s i b l e  t o  the e a s t  of 

the moderately warm i n l e t  water which corresponds t o  the  

tu rb id i ty  plume. This very warm water may be i n l e t  water from 

a previous ebb t i d a l  cycle from Wachapreague I n l e t  o r  f r m  

another nearby i n l e t ,  A s  the ebb t i d a l  cycle progresses, 

several  concentric bands develop with a l t e rna t ing  moderate t o  

cool water (Fig. 1.12). The very warm water t o  the  e a s t  i s  

s t i l l  v i s i b l e .  The l a s t  two hours of ebb show the warmest 

water i s  now progressing from the  i n l e t  mouth (Fig. 1.13 and 

1.14). A band of r e l a t i v e l y  cool water separates  the  warm 



water from the moderately warm water. The f inger- l ike  s t r u c t u r e  

of the eastern edge of the tu rb id i ty  plume i s  somewhat r e f l ec ted  

i n  the thermal plume on Figure 1.13, but the re  is  no d i r e c t  

cor re la t ion  on Figure 1.14, approximately one hour l a t e r ,  

The temperature differences on the  thermal imagery are 

only r e l a t i v e .  Ground t r u t h  da ta  was taken by a s ing le  boat 

(see Welch and Haas, 1973). However, the  boat was on a s t r i c t  

sampling schedule with spec i f i c  s t a t i o n s  over a la rge  area  of 

the  mouth of the  i n l e t ,  which was covered once over the four  

hours of the  ove:rflight. Simultaneous temperature measurements 

i n  d i f f e ren t  areas  of the  thermal plume were therefore  not  

avai lable ,  

In an e f f o r t  t o  f u r t h e r  def ine  the thermal s t ruc tu re  of 

the  plume development, the  enhanced thermal imagery was viewed 

on a s p a t i a l  da ta  systems 32 l eve l  color  encoding d e n s i t m t e r ,  

supplied by U .  S. Geological Survey, Reston, Virginia.  A Nikon 

FTN 35mm camera using kodak ektachrome x 135 f i lm with a 

s e t t i n g  of f 3.5 a t  1/4 sec was used t o  photograph each hour 

of the ebb t i d a l  cycle  on the  v i s u a l  d isp lay  tube. The color  

s l i d e  was then r e c t i f i e d  using tne Bausch and Lomb ZT-4 zoom 

t rans£  e r  scope a t  ~ASA/Langley Research Center. This r e c t i f i e d  

image was then traced on a l i n e  drawing of the i n l e t  from the  

a e r i a l  photography f o r  each of the  four hours of t h e  t i d a l  

cycle studied a t  a common s c a l e  of 1:20,000. 

The color encoded image produced the most de ta i l ed  and 

complex s t ruc tu re  of the thermal plume development. Figures 

1.15 thru 1,18 show a black and white representat ion of the 



color  encoded image. Table 1 . 2  gives the code f o r  the numbered 

contour l i n e s  which represent  r e l a t i v e  densi ty  values,  which 

correspond t o  r e l a t i v e  temperature valces .  Increasing 

numerical value represec.+s cooler r e l a t i v e  temperatures. A s  

expected, the warmest water i s  i n  the marsh and i n l e t  throa t .  

The area of warm water suspected t o  be from the  l a s t  t i d a l  

cycle i s  indicated by the number 15 contour l i n e  i n  Figure 

1.15. A tongue of cooler oceanic water represented by the  > 

number 30 contour can be seen migrating upcoast pas t  the  i n l e t ,  

b isec t ing  the warmer i n l e t  thermal plume (Figures 1.15 t o  1.18). 

The concentric bands of the  i n l e t  thermal plume become more 

pronounced and expand as the  t i d a l  cycle progresses, while the  

offshore thermal contours show a more complex pa t te rn .  The 

thermal plume reaches i t s  longest area on Figure 1.18 where i t s  

outer boundary i n t e r s e c t s  the cooler tongue of oceanic water 

moving upcoast. 

Conclus ion 

Remote sensing techniques have been applied t o  the study 

on nearshore c i r cu la t ion  i n  the  v i c i n i t y  of a n a t u r a l  i n l e t .  

Using sequential  overf l ights  on three days i t  was possible  to 

photograph a complete t i d a l  cycle.  Using inf rared  color  f i lm 

it was possible t o  char t  the growth and decay of a v i s u a l  

turbidit-r  plume and ca lcula te  the change i n  area.  The r e s u l t s  

show tha t  the imagery allows estimation of t u r b i d i t y  depth once 

a storage volume graph has been developed f o r  a pa r t i cu la r  

i n l e t  system. 



Comparison of v i s u a l  tu rb id i ty  plume with thermal imagery 

indicates  t h a t  the boundary of both the turbid water and 

temperature differences a re  s imi lar .  More d e t a i l  i n t o  the 

s t ruc tu re  of a plume i s  possible using thermal imagery. To 

bes t  u t i l i z e  t h i s  imagery f o r  de ta i led  s t ruc tu re  color  encoding 

with a densitometer i s  nc -C~SF -- -. It i s  i n t e r e s t i n g  t o  note  

the presence of banding st.ruc .. ~1 on the  thermal imagery, 

Visual inspection of the  imagery shows a l t e rna t ing  bands of 

r e l a t i v e l y  warmer and coo1e.r water. However, color  encoding 

indicates  these bands a re  of progressively cooler temperatures 

seaward of the i n l e t .  
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Tablr  1.2 



S O U T H E R N  D E L M A R V A  PENINSULA 

Figure 1.1. Location Map. 



Figure 1.2.  Bathymetry Map. 



Figure 1 . 3 .  F l i g h t  Lines, 6 A p r i l .  

-26- 
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Figure 1 .4 .  F l i g h t  Lines, 7 August. 



15 19 - 15:50 GMT 16:17 - 1 6 : 4 2  GMT 

17:25 - 17:50 GMT 

1 9 ~ 1 9  - 1 9 : 3 8  GMT 

I7 N O V E M B E R  1973 

Figure 1.5. F l i g h t  L ines ,  17 November 
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Figure 1 .8 .  Change i n  Suspended Sediment Plume on 
7 August 1973,  dur ing Last Stage of Ebb, 
Low and F i r s t  Half . . of Flood Tide (from 
Aer ia l  Photography) . 
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IDENTIFICATION OF INDICATORS OF BIOLOGICAL ACTIVITY 

The second year of work under t h i s  con t r ac t  witnessed the  

continuation and termination of the  b io log ica l  mcnitoring a t  

Wachapreague I n l e t  on the  Eastern Shore of Vi rg in ia .  The 

primary ob jec t ives  of t h i s  work remained the  same: t o  measure 

a  wide v a r i e t y  of b io log ica l  and hydrographic ind ices  i n  the  

marsh and nearshore waters (0-4 miies offshore)  t o  determine 

which ind ices  b e s t  cha rac t e r i ze  the  r e spec t ive  water types,  

with the  eventual  goal  of remote sensing those considered 

s i g n i f i c a n t ;  t o  determine the  d i r e c t i o n  and magnitude of t h e  

f l u x  of b io log ica l ly  r e l a t e d  ma te r i a l s  ( inorganic  and f ixed 

carbon) between the  marsh and nearshore waters .  

The seas ide  of V i r g i n i a ' s  Eastern Shore i s  p a r t i c u l a r l y  

w e l l  su i ted  f o r  a  study of t h i s  na tu re .  It  contains  6.60 x lo4 
4 acres  of s a l t  marsh and 6.65 x 10 ac re s  of t i d a l  mud f l a t s ,  

40 t o  85 percent respec t ive ly  of ~ i r g i n i a ' s  t o t a l s  (Wass and 

Wright, 1969) ly ing  adjacent  t o ,  but separated from the  c o a s t a l  

waters by a  chain of b a r r i e r  i s l ands  (Fig .  2 . 1 ) .  I n t e r a c t i o n  

between the  marsh and adjacent  c o a s t a l  waters normally occurs 

through well  defined i n l e t s  t h a t  punctuate the  c o a s t l i n e .  One 

of t hese ,  Wachapreague I n l e t ,  i s  of p a r t i c u l a r  i n t e r e s t  because 

ef r e l a t e d  hydrographic work a t  t h i s  i n l e t  described elsewhere 

i n  t h i s  r epo r t .  



The general technique u t i l i z e d  i n  t h i s  study was t o  

measure a  va r i e ty  of b io logica l  :I;;.: hydrographical indices  a t  

hourly in te rva l s  over a  t i d a l  cycle a t  fixed points near the 

I n l e t  and on t ransec ts  extendin3 from within the marsh t o  

several  miles offshore a t  selected times (usually s lack t ides)  

during a  t i d a l  cycle.  Stat ion designations a re  shown i n  

f igures  2 . 1 ,  2 . 2  and 2.3. A l l  samples were taken a t  about one 

half  meter depth. 

The indices were measured and t h e i r  method of measurement 

was as follows: 

Water temperature was measured by stem thermometer. 

Sa l in i ty  was measured by an indur t i v e  salinometer . 
Dissolved oxygen was measured by the azide Winkler 
t i t r a t i o n .  

The ext inct ion coeff ic ient  (designated k and in  terms of m-l) 

i s  a  measure of l i g h t  a t tenuat ion through the water column and 

therefore,  i s  a  function of water tu rb id i ty .  It  was determined 

with a  submersible lux meter i n  conjunction with a  measure of 

incident light using the formula: 

- -  - e  -kz 
Lo 

where: L = l i g h t  l eve l  a t  depth z i n  meters 

Lo = incident Light l eve l  

e = natura l  based logarithm 

k = extinctioy coe f f i c i en t  (m") 

Chlorophyll, a  content of the water, was determined by 

f luorometric measurement (Turner model fl.uorometer) of 90% 



acetone ex t rac t s  of fi1tere;-1 water sampLes (100-250 m l  f i l t e r e d  

with Gelman type A glass  f i b e r  f i l t e r s ) ,  

Potent ia l  primary productivity i s  a r e l a t i v e  measure of 

carbon f ixa t ion  by the phytoplankton and was determined by the  

r a t e  of 14c bicarbonate assimilat ion under control led l i g h t  and 

ambient temperature conditions.  

Heterotrophic metabolism (termed Vmax) i s  a r e l a t i v e  

measure of the metabolic r a t e  of the heterotrophic plar.kton 

(presumably bacter ia)  and was measured by the r a t e  of 14c 

glucose assimilat ion a t  various added subs t ra t e  leve ls  (37.5 t o  

375 pg l - l ) .  

Nutrients: p a r t i c u l a t e  organic n i t rogen,  dissolved 

organic nitrogen, ammonia, n i t r a t e ,  n i t r i  -, reac t ive  phosphate, 

dissolved organic carbon, pa r t i cu la te  organic carbon and 

bicarbonate were measured with methods taken from Strickland 

and Parsons (1968). 

Results 

On April 3 ,  water samples were taken a t  s t a t ions  X and Y 

a t  hourly in te rva l s  over the ebb t i d e  and the f i r s t  t h ree  hours 

of flood (Table 2.1).  The temperature showed a steady increase 

and decrease during the ebb and flood t i d e s  respect ively,  ~ 5 t h  

a s lack t i d e  difference of nearly 4°C. S a l i n i t y  decreased and 

dissolved oxygen incr  ~ 2sed with the ebb t i d e  althoug' s lack 

t i d e  differences were not l a rge ,  especia l ly  f o r  dissolved 

oxygen. Both chlorophyll and Vmax appeared t o  reach maximum 

values a t  mid-ebb and mid-flood with low values a t  times of 

s lack t ides .  Primary productivity was no t  measured. 



On Apri l  6 ,  sampling :~:ns coordinated with a NASA/Houston 

over£ l i g h t  of Wachapreague Ic i e t .  During the  ebb t i d e ,  samples 

were taken near s t a t i o n s  X and Y a t  twenty minute i n t e r v a l s .  

Concurrently a boat  took a t o t a l  of t L i r t y  samples i n  a 

repea t ing  p a t t e r n  offshore  (Fig.  2 . 2 ) .  The pos i t i on  of t h e  

boat  a t  the  time of each sample was determined from the  over- 

f l i g h t  photographs. 

Temperature and s a l i n i t y  values  f o r  s t a t i o n s  X and Y were 

q u i t e  s imi l a r  (Table 2 .2) .  The temperature increased an 

average of 3.5"C and s a l i n i t y  decreased about 1% over t he  

course of t he  ebb t i d e .  Dissolved oxygens a t  s t a t i o n s  X and Y 

showed no p a r t i c u l a r  trend and va r i ed  a t  both s t a t i o n s  over a 

range of 2 rnglml .  Chlorophyll va lues  a t  s t a t i o n  Y were g r e a t e r  

and var ied  over a wider range than a t  X b u t  i n  n e i t h e r  case  d i d  

they d i sp l ay  any p a r t i c u l a r  trend over the  ebb t i d e .  

Of t he  t h i r t y  offshore  water samples obtained on Apr i l  6, 

s i x  were determined no t  t o  be i n  t h e  t u r b i d i t y  plume and twelve 

t o  be i n  the  t u r b i d i t y  plume (Table 2.3).  Average temperature 

i n  t he  plume was 1 . 2 5 " ~  higher than ou t  ~f the plume. The 

average s a l i n i t y  .33% lower i n  t h e  plume than out  of t h e  plume. 

The " in  plume" chlorophyll  average of 4.14 pgl-l agrees c l o s e l y  

wi th  the  a ~ ~ r a g e  chlorophyl l  values  of s t a t i o n s  X and Y over 

t h e  ebb t i d e .  In l i g h t  of tbe  twofold g r e a t e r  chlorophyl l  

values  i n  the  plume than ou t ,  one might have expected lower 

chlorophyl l  values a t  s t a t i o n s  X and Y nea r  the  time of high 

s lack  t i d e .  Vmax values  were t h ree  times g r e a t e r  i n  t he  plume 

than out  of t he  plume ( .53 v s  .17 pgl'lhr-l), the  l a t t e r  va lues  



r a r e l y  exceeding . 2  pgl-lhr ' l .  Vrnax was not measured a t  

s t a t i o n s  X and Y. 

On May 30, s t a t i o n s  X and Y we-re sampled hourly over a 

complete t i d a l  cycle. In  addition s t a t ions  A aild D were 

sampled a t  the  approximate time of the  three s lack t ides .  

Sampling on the morning of May 31 made up fo r  heterotrophy 

samples l o s t  on the previous day (Table 2.4) . 
A slack t i d e  temperature range of 3.5"C was noted over the  

t i d a l  cycle with the marsh waters warmer than the nearshore 

waters, resu l t ing  i n  increasing and decreasing temperature with 

ebb and flood t i d e s  respect ively.  Temperatures a t  s t a t i o n  D 

were s imilar  throughout the day (ca lg°C). S ta t ion  A tempera- 

tures  were higher especia l ly  a t  low slack when the t i d a l   reek 

was nearly depleted of water. 

S a l i n i t y  values a t  X and Y ranged l e s s  than 0.3 ppt over 

the t i d a l  cycle with the  lower values near low slack.  No 

pa r t i cu la r  trend was seen i n  dissolved oxygen values or  

ex t inc t ion  coe f f i c i en t s  throughou~ the  t i d a l  cycle .  

Chlorophyll values,  s imi lar  a t  s t a t ions  X and Y ,  decreased 

with the ebb t i d e  and increased with the flood t i d e .  This 

indicat ion of higher chlorophyll leve ls  offshore i s  no t  

supported by the cons is ten t ly  low values ( <  3.0 pgl'L) a t  

s t a t ion  D on t h a t  day. S ta t ion  A chlorophyll values approached 

t h e  offshore values a t  high slack t ides  but were much g rea te r  

a t  low s lack .  

Vmax values a t  s t a t i o n s  X and Y increased with the  ebb 

t l d e  and dzcrrzce:! wlth the flood t i d e .  S ta t ion  D values were 



-uniformly low (<  .2 pgl-lhr-') . Stat ion A values were 

r e l a t i v e l y  low a t  high s lack  and extremely high a t  low slack. 

On May 31, we were able  t o  sanple ins ide  and outside a 

foam l i n e  demarcating the offshore extent  of t h e  ebb t i d e  

turbid2ty plume. Vmax values were . 7 3  and .13 in  and out of 

the  plume respect ively,  while ext inct ion coe f f i c i en t s  were 

1.45 and .69 i n  and out respect ive iy .  

On Ju ly  2 ,  a  t ransec t  of four s t a t i o n s  extending from the 

mouth of Wachapreague I n l e t  t o  4 miles offshore (Fig. 2 . 2 )  was 

sampled a t  high s lack,  mid-ebb and low slack t i d e s .  Since the 

tu rb id i ty  plume associated with the  ebb t i d e  was e a s i l y  v i s i b l e  

offshore,  we were able  t o  ascer ta in  our sampling posi t ion 

r e l a t i v e  t o  i t .  

Temperature values showed no cons is ten t  r e l a t ionsh ip  with 

the  plume, increasing i n  an offshore d i rec t ion  a t  high s lack  

and decreasing offshore a t  low slack (Table 2.5) . Dissolved 

oxygen values averaged .66 q1- l  higher out of the plume than 

i n  the plume,  Extinction coe f f i c i en t s  were cons is ten t ly  near 

1 .0  out of the plume and average 1.86 i n  the  plume. The higher 

values (more turbid water) showed a steady outward progression 

with the plume. 

Chlorophyll values were nearly the  same i n  and out of the 

plume. Primary productivity values show l i t t l e  r e l a t ionsh ip  t o  

the offshore progression of t he  plume and l i t t l e  d i f ference  i n  

and out of the plume. 



Vmax values averzged f o ~ r  times g r e a t e r  i n  the  pl~une than  

out  of t he  plume * i ~ d  t he  incresrc-.ci values  show a steady outward 

progression with the  plume. 

On Ju ly  3 ,  s t a t i o n s  X and Y were sampled over a t i d a l  cyc le  

and s t a t i o n s  A and B were sampled near low and high s l ack  t i d e s .  

The temperature showed a 4°C s l ack  t i d e  range with low 

values  near  high s lack  and high values  near  low s lack .  

Dissolved oxygen values  were higher  a t  high s l ack  and decreased 

a t  low s lack  with a range of c a  0.8  mgl-' over t he  day .  

Ext inc t ion  c o e f f i c i e n t s  decreased with t h e  h igh  s lack  t i d e  

although the  low values  of about I .  0 assoc ia ted  wi th  of f  shore 

waters on the  previous day were no t  evident  a t  the  i n l e t .  

Chlorophyll va lues ,  which showed no d i f f e r e n c e  on the  

previous day i n  d i r e c t  sampling in  and out  of t h e  plume, and 

produc t iv i ty  both appeared t o  peak a t  noontime i n  a s soc i a t i on  

with the  high s l ack  t i d e .  

Vmax values were high a t  low s lack  and low a t  high slack 

t i d e s ,  i n  agreement with the  previous day ' s  r e s u l t s .  

Sampling a t  s t a t i o n  A near  low s lack  again produced 

extremely high chlorophyl l ,  praduc t i v i t y  and heterotrophy 

values  s imi l a r  t o  t he  s i tuat . ion found i n  May. Concurrenc . 
sampling a t  s t a t i o n  R r e su l t ed  i n  v a l u e s  more c l o s e l y  a l igned 

with the  values from X and Y .  

On September 25, we sarn?led a t  s t a t i o n  Y ever a t i d a l  

cycle  (Table 2 . 7 ) .  Temperature and s a l i n i t y  were both s l i g h t l y  

h igher  a t  low s l ack ,  but  t he  s lack  t i d e  ranges were q u i t e  small, 

0 . 5 " C  and . 2 1  ppt  r e spec t ive ly .  Levels of d issolved oxygen 



1 were lower near low slack with a slack t i d e  range of .8 mgl' . 
Extinction coe f f i c i en t s  increased throughout the ebb t i d e ,  

decreased with the  f i r s t  of flood ?hen increased with the  end 

of fload chlbrophyll  and primary produc t i v i t y  increased 

generally throughout the day. Vmax values ranged f r m  .45 t o  

1.0 pgl-lhr'' and showed no apparent trend over the t i d a l  cycle. 

On November 11 and 1 2 ,  we u t i l i z e d  the R .  V, Ridgely 

Warfield from Johns Hopkins University on a c ru4se  along the  

seaside of ~ i r g i n i a ' s  Eastern Shore. On November 11 we 

occupied s i x  s t a t i o n s  in  a 2x3 gr id  d i r e c t l y  offshore of 

Wachapreague I n l e t  (Fig. 2 . 2 ) .  These s t a t i o n s  were sampled 

such tha t  by v i sua l  observation, s t a t i o n s  1, 2 and 3 were 

beyond the influence of the low slack tu rb id i ty  plume, s t a t i o n  

4 was d i r e c t l y  in  the plume, s t a t i o n  5 on the southern edge of 

the  plume and s t a t i o n  6 t o  the  north of the plume. 

The temperature of the  water in  the plume was 3.5OC cooler 

than outside.  The s a l i n i t y  was lower bv 0.6 ppt. E x t i n c t i m  

coeff ic ients  averaged two times krea ter  i n  the plume than out 

(1.66 vs .80). Chlorophyll values did no t  appear t o  change 

grea t ly  r e l a t i v e  t o  posit ion in  or out of the plume and 

productivity r a t e s  were not ava i lab le  due t o  improperly 

prepared ' ' ~  bicarbonate. Vmax values a t  s t a t i o n  ?re two 

times grea ter  than a t  s t a t i o n  1, 2,  o r  3 ( . I60 vs .077 

pgl-'hr-I). 

On Ncvember 1 2 ,  a s e r i e s  of s t a t i o n s  were occupied on a 

t ransect  extendicg from the southern t i p  of Assateague Island 

south t o  Wreck Island. The s!-a+'.ons were positioned such t h a t  



sauples were taken d i r e c t l y  . l i )posite the  major i n l e t s  on the 

Cas t e rn  Shore and opposire the  mc j or  b a r r i e r  isla?.ld (Fig. 2.1) . 
We an t i c ipa t ed  t h a t  by sampling i n  th i  ,: mannei the  influence of 

t he  i n l e t s  on the  nearshore zone could be di.scerned. 

There were s eve ra l  d a f  i c i enc i e r  inherent  i n  t h i s  samp?..?ng 

scheme. Low s lack  t i d e ,  "hen the  g r e a t e s t  i . n f l ~ w w e  o f  xarsh 

water might be expected of f shore ,  was no t  u n t i l  mid-afternoon. 

Therefore,  our morning s t a t i o n s  may n o t  adequately r e i l e c t  t h e  

f u l l  p o t e n t i a l  of t h i s  inf luence.  The sampling was fL:thev 

complicated by our l ack  of experience i n  l oca t ing  t u r b i d i t y  

plumes a t  i n l e t s  o ther  thsn Wachapreague I n l e t .  S t a t l on  

designat ions  had t o  be supplied i n  cdvance and could not  be 

a l t e r e d  -- en rou te  even i f  turbid  water was encountered opposi te  

a p a r t i c u l a r  i n l e t .  

Water temperature was measured a t  f requent  in . tervals  as 

the  boat was moving. It displayed a cons i s t en t  1.5"C drop 

opposi te  each of t h e  major i n l e t s .  S a l i n i t y  d id  n o t  r e f l e c t  

t he  presence of t he  i n l e t s  and the  range f o r  a l l  s t a t i o n s  Mas 

only 0.5 ppt .  Ext inct ion c o e f f f c i e n t s  ranged from . 7 5  t o  1.25 

and the  h ighes t  value  was fourd opposi te  Wachapreague I q l e t .  

Chlorophyll values  were very high opposi te  ASP %ague$ 

I s land ,  by f a r  the  h ighes t  v s l i i ~ s  not associa ted with sediments 

seer, i n  the e n i i r e  stud:?. Chlorophyll dropped r a t h e r  s t  2adily 

a s  we moved south reach ,r,g .. low poin t  opposi te  Cedar Is land.  

From t h i s  point  south there  was a general increase  i n  va lues .  

Vmax values  were cons i s t en t ly  higher  opposi te  the  major 

i n l e t s .  The h ighes t  value was found opposite Wacnapreague I n l e t .  



Discussion 

O f  the  seven b io log ica l  hydrographic ind ices  rou t ine ly  

neasured i n  t h i s  study,  almost a l l  exhibi ted s t rong  g rad ien t s  

e i t h e r  over time o r  space on a t  l e a s t  one v i s i t  t o  t h e  

Wachapreague area .  Assuming t h a t  t i d a l  t r anspor t  was the  

prfmarv f a c t o r  con t r ibu t ing  t o  these  s r a d i e n t s  suggests  the  

exis tence of quantif ia.ble d i f f e r ences  becween the  marsh and 

nearshorz waters and the  p o s s i b i l i t y  of n e t  f l u x  of ma te r i a l s  

through the  i n l e t .  It  i s  apparent however t h a t  of the  s eve ra l  

types of measurements made over t he  course of a  year  some a r e  

more r e l i a b l e  than o thers  t o  d i s t i n g u i s h  q u a n t i t a t i v e l y  between 

the  marsh and nearshore waters.  

Strong temperature g rad ien t s ,  of t en  approaching 4 ° C  i n  

2agnitude, gene;-ally exis ted between the  marsh and nearshore 

waters. The smal les t  temperature g rad ien t  ( . 5 " C )  occurred on 

September 25. Although the  marsh waters were genera l ly  warmer 

than the offshore  waters ,  the  November c r c i s e  i nd i ca t e s  t h a t  a t  

times the  reverse  may be t r u e .  I t  i s  s i g n i f i c a n t  t h a t  sur face  

water temperatures a r e  easy t o  remote sense and the  app l i ca t ion  

of t h i s  rechnique i s  i l l u s t r a t e d  elsewhere i n  t h i s  r epo r t .  

The degree of asy~nmetry i n  s equec t i a l  temperature measure- 

ments over a t i d a l  cyc le  near the  i n l e t  may be a good ind ica to r  

of the  n e t  exchange o t  marsh and offshore  waters over a complete 

t i d a l  cyc le .  A syrmnetrical temperature curve ind i ca t e s  t h a t  

the  wat-er en te r ing  the  i n l e t  on a f lood t i d e  i s  the same water 

t h a t  ex i s ted  on the  previous o r  ensuing ebb t i d e .  The d a t a  

from May 30 serves  as  an i l l u s t r a t i o n .  During the ebb t i d e ,  



t he  temperatures a t  s t a t i o n s  X and Y increased approximately 

l i n e a r l y  from 17 t o  21°C. On the ensuing flood t i d e ,  the water 

temperature decreased t o  20 degrees during the f i r s t  two hours, 

then suddenly dropped 2 O C  within an hour indica t ing  t h a t  i n  

t h i s  instance more cooler nearshore water entered the  i n l e t  on 

the  flood t i d e ,  then l e f t  the i n l e t  on the previous ebb t i d e .  

A problem with t h i s  analysis  i s  t h a t  our sampling was 

r e s t r i c t e d  t o  the surface and t h i s  asymmetry may r e f l e c t  a wind 

re la t ed  anomaly t h a t  i s  l imited t o  surface wzters and no t  

indica t ive  of t ransport  through the e n t i r e  water column. 

However, a s t r i n g  of temperature sensors through the water 

col-m.  i n  the I n l e t  may indicat-e the extent  t o  which n e t  

exchanges of water types occur on a given t i d a l  cycle.  

Variations i n  s a l i n i t y ,  although c m s i s t e n t  ( the  marsh 

waters being l e s s  s a l i n e  than the  nearshore waters) ,  were of 

such small range (generally l e s s  than 1 ppt) as  t o  be of l i t t l e  

value as  a water t r a c e r .  The small s a l i n i t y  gradient  i s  

primarily a r e s u l t  of the  very l imited freshwater input  i n t o  

the marsh area influenced by Wachapreague I n l e t .  The r e s u l t  is 

marsh s a l i n i t i e s  consis tent ly  near 30 ppt. 

D i~so lved  oxygen values,  l i k e  s a l i n i t y ,  were generally 

cons is ten t  i n  t h e i r  va r i a t ion  (marsh water had lower oxygen 

levels  than nearshore) but exhibited very small ove ra l l  range 

i n  t h e i r  magnitude. Sampllng near tk~e surface i n  such w e l l  

mixed waters,  i t  i s  not  surpr is ing  tha t  the oxygen values 

showed so l i t t l e  va r i a t ion  and were probably close t o  sa tura t ion  

f o r  the pa r t i cu la r  s a l i n i t i e s  and temperatures found. The 



s l i g h t l y  decreased oxygen levels  i n  the marsh waters may 

r e f l e c t  the increased heterotrqi:Lc metabolism of those waters 

a s  indicated by the  consister.tly kig't>er Vmax values.  Were i t  

not f o r  the  nearly complete t i d a l  mixing one might expect t o  

f ind g rea t ly  reduced oxygen values back i n  the small marsh 

channels where heterotrophic metabolism i s  highest .  

The ext inct ion coe f f i c i en t  i s  a function not  only of water 

turbrd i ty  but a l s o  of the  sun angle and degree of surface 

ref lectance.  Consequently, although the marsh waters a r e  

obviously more turbid than the nearshore waters,  under c e r t a i n  

conditions t h i s  d i f ference  might not  be r e f l ec ted  i n  higher 

ext inct ion coe f f i c i en t s .  For example, i n  May strong gradients  

were observed i n  temperature, Vmax and s a l i n i t y  over a t i d a l  

cycle indica t ing  the  increasing influence of marsh water near 

the i n l e t  toward low slack t ide .  This condition was not  

re f lec ted  by increased ext inc t ion  coe f f i c i en t s  . This may be 

due t o  the f a c t  t h a t  the  time of low slack,  when m e  would 

expect the most highly turb id  water near the i n l e t  ( i . e ,  high 

ext inct ion coeff ic ients )  coincides with the  time of minimum sun 

angle (noontime) which would tend t o  decrease ext inct ion 

coeff ic ients  by decreasing surface ref lec tance .  

The most cons is ten t  differences i n  ext inct ion coe f f i c i en t s  

a r e  found when d i f f e r e n t  water types a r e  monitored over a shor t  

time span i n  an e f f o r t  t o  e l iminate  varyin8 sun angle and 

surface ref lec tance  conditions as modifying Influences. In  

those cases where t h i s  was done (May 31, Ju ly  2 and November 11) 

obvious differences in  water tu rb id i ty  were r e f l ec ted  i n  widely 



divelrgent ext inct ion coef f i c i c lc t s .  

Since water tu rb id i ty  i s  one of  the primary indices  

rout inely monitored by remote sensing, i t  i s  apparent t h a t  a 

d i r e c t  r a the r  than indire, , t  measure of water t u r b i d i t y  i s  

preferable.  

Variation in  chlorophyll leve ls  between the marsh and 

nearshore waters appear puzzling. A t  t imes, chlorophyll 

gradients were noted with sequent ial  sampling near the i n l e t  

over a t i d a l  cycle when no d i f ference  could be found i n  d i r e c t  

sampling i n  the marsh and nearshore waters (July 2 and 3 ) .  A t  

other times, exactly the opposite was t r u e  (April  6) .  A 

possible explanation of t h i s  paradox may be found i n  the f a c t  

t h a t  phytoplankton a re  known to  undergo d a i l y  rhythms i n  

chlorophyll content. Given the f a c t  t h a t  nearly a l l  +he t i d a l  

cycles monitored encompassed the twelve dayl ight  hours, it 

would be d i f f i c u l t  t o  determine i f  a noontime peak i n  

chlorophyll was the  r e s u l t  of a t i d a l  excursiol: centered on 

midday or an endogenous rhythm i n  chlorophyll prcduction keyed 

t o  dsyl ight  but anrelated t o  the t i d a l  cycle.  

It would appear, therefore,  t h a t  comparable samples of 

marsh and nearshore waters c lose ly  spaced in  time would most 

 early r e f l e c t  t rue  differences t h a t  might e x i s t .  On two of 

t h t ~  three  occasions when t h i s  was accomplished (April  16,  

Ju ly  2 and November 11) no difference was d iscern ib le  i~ the 

chlorophyll content of the  two water types.  

The r e l a t i v e l y  iow chlorophyll l eve l s  as  canpared w i t h  the 

York River 7r Chesapeake Ray found throughout t h i s  study 



1 ( r a r e l y  grea ter  than 10 pglul and generally close t o  5 ml' ) 

a r e  probably caused by several  f ac to r s .  The high s a l i n i t y ,  

high tu rb id i ty  and well  mixed nature of the marsh waters wculd 

a l l  tend t o  i n h i b i t  a well developed phytoplankton community, 

even i n  the presence of adequate l eve l s  of nu t r i en t s .  

The occasional high chlorophyll l eve l s  found a t  s t a t i o n  A 

a t  low t i d e  (May and July) when only a few centimeters of water 

remained i n  the creek probably r e f l e c t  the presence of mud 

diatoms in  the  water sample. These benthic algae may be so 

dense a t  times t h a t  the mud surface appears t o  be covered with 

a yellow-brown slime and t h e i r  contr ibut ion t o  marsh 

productivity may be s ign i f i can t .  Concurrent sampling a t  

s t a t i o n  E on July 3 indica tes  t h a t  the  high s t a t i o n  A va!cles 

on t h a t  day were r e s t r i c t e d  to  tha t  l a t t e r  s t a t i o n .  

In view of the  foregoing discussion, it would appear t h a t  

chlorophyll l eve l  per - se  i s  not  a r e l i a b l e  indica tor  t o  

d is t inguish  between marsh and nearshore waters. Given t h e  

generally low leve l s  of chlorophyll and the high tu rb id i ty ,  

the  a b i l i t y  t o  remotely sense surface chlorophyll l eve l s  would 

appear remote indeed. 

The tzse of the  r a t e  of primary productivity a s  an 

indica tor  of water types su f fe r s  the same drawbacks as  

chlorophyll .  Even when productivity i s  measured under constant 

l i g h t  conditions as we d id ,  the  r a t e  undergoes a d iurna l  rhythm 

depending on the  time of day the  sample i s  taken. Our 

experience i n  the York River indica tes  tha t  mid-morning and 

mid-afternoon r a t e s  a re  highest  separated by a noonday "slump". 



With our sampling method, it i s  impossible t o  d is t inguish  

between va r i a t ions  i n  primary produc t i v i v r  caused by d iurna l  

rhythms and those caused by t i d a l  t ransport .  

Variations i n  heterotrophic metabolism as  r e f l ec ted  i n  

Vmax values appeared t o  be qu i t e  cons is ten t .  Marsh waters had 

higher values than nearshore waters and t h i s  difference was 

re f l ec ted  cons is ten t ly  whether measurements were made Dver time 

a t  a  f ixed point or  over space a t  a  f ixed time. September 25 

was the only instance when t h i s  pa t t e rn  was not detected.  

The extremely high Vmax values found a t  s t a t i o n  A a t  low 

t i d e  (May and July) were probably caused by the inclusion of 

abnormal amounts of sediment i n  the water sample and r e f l e c t  

what may be a  d i r e c t  cause and e f f e c t  r e l a t i o n s h i ~ t h a t  i s  the 

high Vmax values of the marsh waters may r e s u l t  from t h e i r  

increased sediment and d e t r i t u s  load with t h e i r  accompanying 

b a c t e r i a l  f l o r a .  I f  t h i s  were the case, one might expect a 

strong re la t ionsh ip  between ext inc t ion  coe f f i c i en t s  (as  a 

measure of tu rb id i ty )  and Vmax. In one instance,  there  appears 

t o  be a  strong d i r e c t  cor re la t ion  betwe?-,I the two values (Table 

2.10). In  other cases the corre la t ion  2s not so s t rong,  I n  

view of the inadequacy of the  ext inc t ion  coe f f i c i en t  a s  a t r u e  

measure of tu rb id i ty ,  these corre la t ions  woiild probably be 

enhanced by more exact measure of tu rb id i ty .  I f  t h i s  were the 

case, then i n  t h i s  pa r t i cu la r  instar.?e, va r i a t ions  i n  hetero- 

trophic metabolism could be remotely sensed by t h e i r  

quant i f iable  associat ion with tu rb id i ty .  



Although i t  was our o r ig ina l  intent ion t o  measure n u t r i e n t  

l eve l s  i n  a l l  of the  water samples, d i f f i c u l t i e s  i n  having them 

analyzed have delayed t h i s  p o s s i b i l i t y .  The sarnples a re  s t i l l  

i n  cold storage and we an t i c ipa te  eventually having the  r e s u l t s .  

During the second year of t h i s  study it  became apparent 

t h a t  with the c a p a b i l i t i e s  a t  our disposal  we would be unable 

t o  make s u f f i c i e n t  kinds or numbers of measurements t o  

adequately estimate the f lux  of mater ial  through Wachapreague 

I n l e t .  However, based on the  knowledge and experience gained 

through t h i s  pro jec t ,  a proposal t o  an a l t e r n a t i v e  funding 

agency focusing so le ly  on t h i s  question i s  present ly i n  

preparation. 

With the termir~ation of the  hydrographic study a t  

Wachapreague I n l e t ,  the l o g i s t i c s  of continuing the b io logica l  

work increased s t ead i ly .  CouFled with a g rea te r  need f o r  

b io logica l  information from other  areas  and the  p o s s i b i l i t y  of 

again cooperating with other  personnel i n  t h i s  grant  i n  

co l lec t ing  and developing t h i s  in fxmat ion ,  we decided i n  the  

winter  of 1973 t o  terminate the b io logica l  work a t  Wachapreague. 

Since t h a t  time, our e f f o r t s  have centered on the  ecological 

aspects of the  plankton community of the  York River i n  

an t ic ipa t ion  of several  imminent developmental pro jec ts  i n  

t h i s  area ( i . e .  channel dredging, sewage d isposa l  p lant ,  b i lge  

water treatment p lant ,  increased power p lant  capacity) with the  

po ten t i a l  t o  ser iously a l t e r  t h i s  community. 
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Table 2.2 

A p r i l  6 ,  1973 S t a t i o n s  X and Y 
High Slack 0947 Low Slack  1551 

T i m e  Temp. S a l i n i t y  D.O. CHL" a" 
(OC 1 ( u g l - l )  

X Y 
( P O  

X Y X X Y 
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J u l y  2 ,  1 9 7 3  S t a t i o n s  1' ,2' , 3 '  , 4 '  , 
High S l a c k  (HS) 1006  Low S l a c k  (LS) 1 6 1 2  

D.O. 
( m g l ' - l  ) 

3 ' - 
6 . 7 8  
6.14 

P r i m a r y  P r o a u c t i o n  
(ingCm-3hr-1) 

4  ' - I n *  22.24 
2 2 . 2  
2 3 . 0  Ou t*  22.34 

4  ' - I n  6 .20  
6 .84  
6.96 O u t  6.80 

4  ' 
. 8 8  I n  1 . 8 6  

1 - 0 5  
1 . 0 8  O u t  . 98  

4  ' 
5 . 4 4  In 6 . 6 1  
8 .32  
6 .45  O u t  7.19 

2  ' 3 ' 4  ' 
1 2 . 4 7  11 .66  6 .85  I n  1 4 . 8 8  
1 3 . 3 0  1 3 . 0 0  1 7 . 2 3  
1 2 . 9 3  1 0 . 0 0  5 .90  O u t  1 2 . 8 5  

Vma x 
( ~ ~ 1 - 1 h r - l )  

2  ' 3 ' 4  ' 
. 20  . 1 9  .08  I n  .95 
. 7 5  . 3 1  . 1 9  
.88 . 5 5  . 2 0  Out .20  

* T h e s e  v a l u e s  are a v e r a g e s  of s t a t i o n s  i n  and o u t  o f  t h e  plume.  
S t a t i o n s  l ' H S ,  l'ME, l l L S ,  2'HS, 2'ME and 3 'LS w e r e  i n  t h e  
p lume.  S t a t i o n s  2'HS, 3 'HS,  3'ME, 4'HS, 4'ME and 4 . ~ 5  were 
o u t  of t h e  plume.  
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Table 2 . 8  

S ta t ion  

1 

2 

3 

4 

5 

6 

November 11, 1973 
High Slack 0742 

T i m e  Temp 
("0 

1030 13.15 

1200 13 .12  

1310 13 .25  

1420 9 .58  

15 25 10 .61  

1620 12 .90  

Sa l  
( P P ~ )  

31.59 

31.56 

31.54 

30.89 

31.01 

32.39 

-66- 

,. 1. 

Low Slack 1421 I 



Table 2.9 

Station 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

T ime 

0735 

0907 

1018 

1055 

1130 

1210 

1255 

1335 

1412 

1500 

November 12, 1973 
~ i g h  Slack 0831 

Temp 

("0 

11.68 

11.82 

12.84 

12.99 

11.37 

12.14 

11.05 

12.28 

11.06 

11.93 

Sal 

( P P ~ )  

31.12 

31.13 

31.43 

31.53 

31.21 

31.12 

31.02 

31.25 

31.04 

31.00 

Low Slack 1510 

Chl "a" 

(~1.9 

15.83 

6.43 

6.44 

2.40 

5.40 

5.39 

7.65 

8.00 

7.83 

7.13 

Vmax 
( ,.&hr-l) 

.089 

.I18 

.045 

.I00 

.231 

.064 

.I34 

.067 

.I21 

.213 
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APPENDIX 3 

DEVELOPMENT OF A REMOTE NAVIGATION SYSTEM FOR TRACKING 
FREE DRIFTING BUOYS 

% 
'If 

Introduction 

The requirement f o r  a capab i l i ty  t o  accurately t rack 

d r i f t i n g  buoys has been long standing within the oceanographic 

world. Many types of systems have been developed and no 

attempt w i l l  be made here t o  descr ibe them. Suff ice t o  say 

t h a t  most have met with l imited success f o r  one reason or  

another . 
Within the confines of t h i s  grant ,  i t  i s  f e l t  t h a t  a means 

of ground t ru th ing  water c i r cu la t ions  i s  necessary t o  substan- 

t i a t e  the findings noted i n  the various remote sensing 

techniques. 

With t h i s  requirement i n  mind, the development of a buoy 

tracking system has been undertaken. We have based our work on 

t h a t  of D r .  E. Michelena who i n  f a c t  developed a p i l o t  system 

u t i l i z i n g  the Omega Navigation Network f o r  de tennining buoy 

posi t ions.  H i s  work showed t h a t  indeed such a system was 

feas ib le ,  the next log ica l  s t e p  being t o  bui ld and deploy an 

ac tua l  prototype. 

Brief Description of the  Omega System 

Omega was developed by the Navy i n  order t o  provide 

worldwide posit ioning information t o  i t s  ships .  Thz network 

i s  serviced by a t o t a l  of e igh t  s t a t i o n s  throughout the  world: 



Norway, Trinidad, Hawaii, North Dakota, Reunion, Argentina, 

Japan and Austral ia .  The f i r s t  four w i l l  a l l  be operational 

i n  August of t h i s  year (1974); the others  a r e  i n  planning 

s tages.  They a l l  broadcast a t  a frequency of 10.2 kHz i n  the 

format shown schematically i n  Figure 3.1. 

Worldwide coverage i s  achieved due t o  the  extremely long 

propagation of rad io  waves a t  10.2 kHz. Sta t ions  a re  

iden t i f i ed  by noting the pa t te rn  of transmissions. One of the  

advantages of the system i s  t h a t  the  e lec t ronics  t o  der ive the 

necessary posi t ion information i s  r e l a t i v e l y  simple. 

Each pa i r  of s t a t i o n s  has a family of curves of equal 

phase difference ca l led  l i n e s  of pos i t ion  (LOP'S) associated 

with it.  Two LOP'S ( th ree  s t a t ions )  a r e  required f o r  a fix. 

The advertised accuracy of f i x e s  i n  the Omega System i s  

three naut ica l  miles (5.5 km). This f a i r l y  la rge  e r r o r  is due 

t o  the many mknown fac tors  a f fec t ing  the  transmission paths of 

the s igca l s .  These a r e  due t o  regular  d iurna l  s h i f t s  of the  

ionsphere and random atmospheric noise due, f o r  instance,  t o  

thun~ers torms and sunspots. The d iu rna l  s h i f t  i s  f a i r l y  

predictable  md correct ion t ab les  have been published t h a t  

account fo r  much of t h i s  e r ro r  source. The others  a re  e n t i r e l y  

unpredictable and i n  severe cases can cause t o t a l  d a t a  drop out .  

Often a good t rack determination becomes a game of s t a t i s t i c s .  

A mode of operation of the  system termed "di f ferent ia l"  

eliminates much of the l o c a l  e r r o r  due t o  some of these 

sources. In  t h i s  mode the LOP'S of a fixed loca t ion  a r e  

determined from s igna l  receptions and from ac tua l  LOP 's p lo t ted  



on a char t .  The two a re  compared and a d i f f e r e n t i a l  e r r o r  

calculated which can be applied t o  other  da ta  taken i n  t h e  

same locale .  A reasonable assumption i s  made here t h a t  the 

e r ro r s  within a 50 km range a r e  approximately the  same a t  the 

same point i n  time. It i s  hoped t h a t  an accuracy of 0.15-1 km 

can be obtained by u t i l i z i n g  t h i s  scheme i n  our system. 

Areas where good reception has been noted include the  

Eastern Shore of Virginia,  Hampton, Virginia ,  NASA/Langley 

Research Center and Hampton Roads, Reception has been good 

enough t o  j u s t i f y  the  u t i l i z a t i o n  of Omega i n  our system. 

VIMS i t s e l f  has proved t o  be a poor locat ion f o r  Omega 

reception due t o  much power l i n e  noise and the  Coleman Bridge 

which shor ts  much of the  s igna l  t o  ground. This problem i s  

f e l t  t o  be l o c a l  and moving a few hundred yards up or  down 

r i v e r  i s  expected t o  improve matters.  

The Scheme of our Development 

Our approach i s  t o  bui ld a cheap, simple buoy and 

e lec t ronics  package t h a t  w i l l  receive the Omega s ignals  and 

retransmit them v i a  a 2.398 MHz telemetry l i n k  t o  a base 

s t a t i o n .  There they w i l l  be reconstructed and input  t o  a 

commercial Omega processor f o r  determination of buoy LOP 's . 
To achieve "d i f fe ren t i a l  omega" the base s t a t i o n  LOP'S w i l l  

a l s o  be determined. A l l  of t h i s  information i s  input  t o  a 

Data General 1220 mini computer f o r  s torage,  correct ion,  and 

averaging. 



Brief Description of the Buoy System 

The buoy e lec t ronics  c o n s ~ s t  of three  bas ic  subsystems as  

noted in  Figure 3.2. Every e f f o r t  i s  being made t o  keep the  

weight and cos t  of these as  small as  possible  i n  order t o  make 

them "throw away" items. This i s  done i n  view of the  expense 

of ship time t o  r e t r i e v e  them should they d r i f t  long dis tances.  

A br ie f  descr ipt ion of each subsystem follows. 

The Omega s ignal  a t  10.2 kHz is t o  be received by an 

antenna hanging down from t h e  buoy i n  the  water. This 

configuration i s  des i rable  i n  order t o  el iminate  radio  

frequency interference,  p a r t i c u l a r l y  t h a t  of t h e  telemetry i i 

l i nk ,  from the input s ignal .  (RF frequencies a r e  g rea t ly  t 
! 

attenuated by seawater.) The s igna l  is  then fed i n t o  a highly 1 
i 

sens i t ive  narrow band-width receiver  and a-plif ied .  A£ t e r  

amplification the  10.2 kHz s igna l  i s  fed t o  the  t ransmi t te r  t o  

modulate a 2.398 MHz telemetry l ink .  An experimental FCC 

l icense  has been obtained t o  transmit i n  the  s ing le  s ide  band 

mode with only the  low s i d e  band suppressed, t h e  c a r r i e r  and 

high s ide  band being transmitted.  Power f o r  the  system i s  

provided by two lead-acid automobile b a t t e r i e s  and supplied 

through a switching c i r c u i t  t r iggered by a c r y s t a l  control led 

clock. Should power requirements indica te ,  it would be 

des i rab le  t o  use smaller b a t t e r i e s .  The accuracy of the  clock 

i s  within a few seconds per day. I n  the i n i t i a l  system of f i v e  

buoys the  c1ock.s w i l l  be s e t  t o  turn on each buoy sequent ial ly  1 
f o r  a ten minute period. Thus, each buoy w i l l  be iden t i f i ed  by 

the time s l o t  during which i t  i s  ac t ive .  a 



Brief Description of the  Base Stat ion - 
The base s ta t ion  consists  of the three subsystem noted in  

Figure 3.3. They w i l l  eventually be assembled i n  a mobile van 

o r  hut fo r  on s i t e  operation. 

The receiver demodulator i s  unique in  that  it i s  required 

t o  have a 10.2 kHz bandwidth, and the demodulation technique 

must carefully preserve the  phase relationships of the original  

Omega signals.  These are  not normally requirements i n  commercial 

receivers. It has been necessary t o  contract out the job of 

constructing t h i s  receiver t o  the Biological Instrumentation 

Sys tems firm i n  Newport News. 

The LlTCOM ORN-101 Omega receiver i s  the hear t  of bese i 

f 
i 

s ta t ion  and indeed the en t i r e  system. It receives and processes i 4 

s ignals s e q u e ~ t i a l l y  from each buoy and i n  i t s  own t i m e  s l o t ,  a 

s ignal  f r m  i t s  own antenna. 

The processor in the  ORN-101 consists  of a small dedicated 

mini computer t h a t  synchronizes on the input s ignals  and 

determines the phase relat ionships between them. Two l ines  of 

position (LOP'S) a re  chosen on i t s  f ront  panel v i a  thumb wheel 

switches and these are displayed v i a  a Nixie tube readout. Also 

displayed i s  a signal quali ty indication tha t  shows when the 

signal t o  noise r a t i o  of an incoming signal  i s  greater  than 1 : l O .  

The ORN-101 must be switched between several s ignals ,  t ha t  

from i t s  own antenna and those from the  buoys. A t  each 

switching tke phase locks must be re-attained. This process, 

which may take several minutes, places a lower l i x n i t  on sampling 

intervals .  
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As large amounts of data  w i l l  need t o  be processed, 

averaged, corrected and stored, the ORN-101 was purchased with 

an interface t o  a Data General 1220 mini computer, The two 

LOP'S, time and signal  qaiality information, a re  output i n  a 

binary format t o  the 1220. 

The Data General system consists  of centra l  processor, 

1 1 2  inch tape drive un i t ,  teletypewriter and casset te  tape 

drive uni t .  Programs are  being developed t o  handle the 

incoming data.  

System Status 

Buoy 

The buoy electronics a r e  being designed and constructed by 

VIMS and are  a t  the  following stages of completion: 

Power transmitter 85% 

Modulator 90% 

Osci l la tor  100% 

Receiver 80% 

Crystal Clock 80% 

Power Switching 0% 
Circui t  

It is  expected tha t  the  en t i r e  buoy electronics system w i l l  

be packaged and integrated by 1 November. 
. 

No hardware fo r  the  buoy i t s e l f  has been f i n a l l y  designed. 

The shape and s i z e  w i l l  depend on what the  electronics and pasar 

supply look l ike .  Our i n i t i a l  test bed w i l l  be a boat-shaped 

surplus rocket launcher. This can be moored and i s  convenient 

t o  work from. 



Base Station 

The base s ta t ion  receiver i s  being constructed by 

Biological Instrumentation Systems. We have asked them for  a 

delivery date of 30 September. 

The LITCOM ORN-101 Omega receiver has not been fu l ly  

tested.  This has been due t o  two factors: The Omega network 

has not been up for  much of the l a s t  year so no signals were 

available fo r  test ing.  When they were available they were of 

poor quality due t o  poor reception a t  VIM. 

The other facet  of the ORN-101 requiring checkout i s  the 

mini computer interface.  The interface has been b u i l t  and the  

hardware i s  currently operating, with signals  having been 

tranqferred successfully t o  the NOVA 1220. 

The Data General 1220 mini computer system i s  ins ta l led  

and functioning. Several programers have been u t i l i z ing  it, 

familiarizing themselves with the  various capabi l i t i e s  and 

quirks *of the  system. A program has been written t o  exercise 

the interface to  the LITCOM ORN-101. 

We expect to  begin f u l l  scale f i e ld  tes t ing on 1 Nwernbr, 

of . \ i s  year (1974). 
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APPENDIX 4 

EXPERIMENTAL DESIGN OF AN ESTUARINE TIDAL CIRCULATION 
STUDY EMPLOYING REMOTE SENSING 

Remote sensing techniques have made possible  a s i g n i f i c a n t  

advance i n  es tuar ine  t i d a l  flow determinations. The following 

i s  a descr ipt ion of a study we plan t o  undertake next year 

which takes nearly f u l l  advantage of such advances. 

The determination of surface water cur rents  from a e r i a l  

photographs has been reported on extensively.  The techniques 

have involved Fnterpretat ion of sequent ial  images using 

variolls i d e n t i f i a b l e  "targets" on the water surfacG. These 

have been e i t h e r  converted t o  equivalent topography through 

standard p h o t o g r m e t r i c  me~hods or  located d i r e c t l y  with 

respect t o  fixed points on the  two photographs. Ei ther  tech- 

nique i s  idea l ly  su i ted  f o r  work in  the  Virginia  e s tua r i e s ,  

because image posi t ion can e a s i l y  be r e l a t ed  t o  landmarks 

using images obtained from moderate 7 eights .  A n  extension t o  
! 

cont inental  bhelf work may be possible by usjng a technique 

referred t o  i n  Yeske, -- e t  a1 (1973). 

A weakness i n  image analysis  f o r  determination of cur rent  

v e l o c i t i e s  i s  i t s  dependence on t a rge t s .  The ve loc i ty  of the  

water i s  in fe rmd by determining the  ve loc i ty  of something 

v i s i b l e  i n  the water. Such objects  can be azfected by both 

wind and wave induced drag, i f  they a r e  l a rge  enough t o  be 

detected i n  the image. Natural t a r g e t s ,  i n  pa r t i cu la r  foam 

s l i c k s  occur because of s i n g u l a r i t i e s  i n  the flow f i e l d ,  



notably regions of g rea t  convergence and shear flow. They a r e  

valuable in  images f o r  t h a t  reason, but  can be expected - not t o  

r e f l e c t  a typica l  ve loc i ty  of the  water. 

The weakness i s  inherent i n  the method, but can be g rea t ly  

reduced by appropriate t a r g e t  design. The t a r g e t  we have 

2 designed cons is t s  of a small f loa t ( -  135 cm projected area) 

attached t o  a aindow shade drogue (Monahan, - e t  - 9  a1 1973) with a 

1 square meter cross  sect ion area.  This r e s u l t s  i n  a f r o n t a l  

area r a t i o  of 73 t o  1 and a r e s u l t i n g  ve loc i ty  e r r o r  of 12% of 

the ve loc i ty  d i f ference  between the  surface f l o a t  and the 

drogue (Welch & Haas, 1973). The f l o a t  has about 2 c m  f ree-  

board and contains a c a s t  s lug  of 10% polyvinyl alcohol 90% 

uranine dye mixture. This mixture re leases  dye f o r  several  

hours producing a dye patch v i s i b l e  from a 5000 f t  e levat ion 

a e r i a l  photograph. The patches should last f o r  a s i x  hour h a l f  

t i d a l  cycle.  

The use of remote sensing and image analysis  has resul ted  

i n  two s ign i f i can t  improvements i n  the  technique. The f i r s t  i s  

t h a t  the e f f o r t  of d i r e c t  wind on the drogued buoy assembly i s  

v i r t u a l l y  eliminated. This not only redtces  the  sources of 

e r r o r ,  but i t  reduces them t o  a point where the f i r s t  order 

correct ion t o  the primary source of e r r o r  can be calculated 

from data  avai lab le  i n  the images. In  addi t ion,  the  appearance 

of the dye plume gives an independent qua l i t a t ive  estimate of 

the  importance of the  remaining primary e r r o r  source. The 

second improvement i s  t h a t  the number of independently tracked 

t a rge t s  which can be followed during a given experiment 



increases  a t  l e a s t  twentyfold over previously used techniques. 

This increase w i l l  allow us t o  obtain f o r  the  f i r s t  time a 

synoptic survey of a ha l f  t i d a l  cycle of cur rent  i n  an estuary.  

The survey w i l l  introduce us t o  a la rge  sca le  da ta  handling 

problem which has been alluded t o  by several  previous inves t i -  

gators .  Groen, - e t  -- a 1  (1971) chose 2 1  of 172 photographs i n  

which a t o t a l  of 81 x 3 o r  243 separate  points a re  located fn  

an estimate of oceanic d i f fus ion .  They a r e  able ,  f o r  the  most 

pa r t ,  t o  ident i fy  individual t a rge t s  from one photograph t o  the 

11 next  by pa t te rn  recognition of the  t a r b e t  swarm". With a 

s imi lar  problem, ~ j u r i :  and Leribaux (1974) break up a c l u s t e r  

of f loa t ing  objects  i n t o  subgroups on a predetermined g r i d  and 

make no attempt t o  iden t i fy  individuals  between successive 

photographs. f i e -  a la rge  number of points i s  used, the 

impl ic i t  pat tern recognition technique of photogrammetric 

current  measurement (Cameron, 1952; Yeske, -- e t  a l ,  1973, f o r  

example) i s  used t o  obtain each of two components of cur rent  

l?elocity in  turn.  

In the proposed study, a somewhat new m~thod w i l l  be used 

t o  solve the  problems of t a r g e t  i d e n t i f i c a t i o n  and ve loc i ty  

f i e l d  determination. The f i r s t  s t e p  i n  da ta  processing f o r  a 

given frame w i l l  be to  loca te  by horizontal  coordinates as 

many of the dye t a rge t s  as a r e  v i s i b l e .  These w i l l  then be 

placed i n  a horizontal  coord i i - a~e  gr id  on the ea r th  using 

iden t i f i ab le  landmarks i.3 t he  photographs and the predetermined 

coordinates of the  landmarks. Individual i d e n t i f i c a t i o n  of the  

points w i l l  be done by associat ion of the  observed points with 



a prediction based on previous da ta .  The correspondence which 

produces the l e a s t  square e r r o r  i n  the t o t a l  predicted minus 

observed posi t ion f i e l d  between photographic runs w i l l  be 

chosen as  the  iden t i f i ca t ion  f i e l d  f o r  the  new s e t  of posi t ions.  

The square root  of the  e r r o r  f i e l d  divided by the  t o t a l  t r a v e l  

dis tance between successive images can be used as a f ignre  of 

meri from which estimates of g r e a t e s t  allowable time between 

photographic runs can be produced. 

The e n t i r e  da ta  reduction procedure i s  adaptable t o  

machine processing from the  i n i t i a l  scanning of phot~graphs  t o  

the f i n a l  production of a smoothed ve loc i ty  f i e l d .  The manual 

inclusion of apparent ve loc i ty  d i scon t inu i t i e s  can a l so  be 

added t o  the da ta  processing. Final ly ,  several  q u a l i t a t i v e  

indica tors  can be obtained from the  appearance of the  dye 

s t reaks .  The s ignatures  of surface and subsurface drogued 

buoy f i e l d s  a r e  l i k e l y  t o  d i f f e r ,  and a buoy f i e l d s  a re  l i k e l y  

t o  d i f f e r ,  and a buoy aground i s  going t o  produce a much 

d i f f e r e n t  dye s t r eak  than one a f l o a t .  In  the fu ture ,  a buoy 

may be designed which s e a l s  off the  dye ports  i f  the  tension 

on the drogue i s  severely reduced, a s ign t h a t  the drogue has 

becone separated from the  buoy. 

The iden t i f i ca t ion  of buoys on successive runs depends t o  

some degree on t h e  predicted ve loc i ty  f i e l d .  Such a f i e l d  

must be b u i l t  up f o r  the  f i r s t  few s e t s  of images i n  a given 

experiment. The i n i t i a l  construction of t h i s  f i e l d  must be 

done frqm the  f i r s t  two s e t s  of photographs using d i r e c t  ': 
! 

pat te rn  recognition.  For t h i s  reason, the  f i r s t  two s e t s  of i 
i 

\ 
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photographs must be more c lose ly  spaced i n  time than later ones. 

In  addition,  a regular  gr id  of weil  spaced i n i t i a l  posi t ions f o r  

buoy deployment w i l l  be very he lpfu l  i n  producing the i n i t i a l  

iden t i f i ca t ion  f i e l d .  

As a moderately la rge  number of objects  w i l l  t e  strewn in 

the  e s tua r i e s  of Virginia during t h i s  study, some thought has 

been d i rec ted  t o  the materi,:ls from which the t a rge t s  a re  

constructed. In p a r t i c u l a r ,  mater ia l s  have been sought which 

w i l l ,  i n  the  course of a year or so,  be converted i n t o  

b io logica l ly  assimilable  substances with the thought t h a t  a 

small increase i n  b io logica l  and chemical oxygen dcmand i s  

preferable  t o  the c r e a t i m  of indestructable  l i t t e r .  The 

resu l t ing  construction of the  t a rge t s  i s  from unpainted wood 

and muslin. The attachment cord i s  s t i l l  a synthe t ic  f i b e r ,  

as  the breaking s t rength of cot ton s t r i n g  i s  much l e s s  f o r  a 

given cross  sect ion.  As we gain experience handling the  

t a rge t s  i n  the f i e l d ,  we may be able  t o  s u b s t i t u t e  an 

assilrrilable f i b e r  s t r i n g  i n  the design. 

The experiments r e su l t ing  from t h i s  design work should 

prove t o  be easy t o  run, highly informative, compatible with 

modern da ta  analysis  techniques without s a c r i f i c i n g  the  

qua l i t a t ive  advantages of photographic analys is ,  and non- 

exacerbating to  those problems t o  which they a r e  addressed. 



APPENDIX 5 

SKYLAB SUPPORT WORK 

The SKYLAB support mission was run on May 31, 1973, using 

the  technique which had been developed the  previous year i n  

the James River and a t  Wachapreague I n l e t .  Our e f f o r t  was 

again supported by personnel and a radar  from NASA/Wallops 

Island Stat ion as  well  a s  personnel and equipment from 

NASA/Langley Research Center. The pr inc ipa l  inves t iga tor  a t  

VIMS was D r .  Maynard Nichols of the  Department of Geological 

Oceanography. The raw d a t a  were supplied t o  D r .  Nichols. 

The posi t ions of deployment of the  buoys as  wel l  as  t h e i r  

subsequent t racks a re  shown i n  Figure 5.1. The corresponding 

v e l o c i t i e s  c ~ l c u l a t e d  have t h e i r  speeds displayed i n  Figure 5.2. 

They f a l l  within the range of speeds predicted near the  area  

the buoys d r i f t e d  through in  the t i d e  t a t l e s ,  which a r e  shown 

with a v e r t i c a l  bar on the  same char t .  

Several features  of the ebb flow through the Chesapeake 

Bay mouth a re  apparent i n  these displays,  the  f i r s t  being a 

convergence of surface water towards Cape Henry O L ~  ebb t i d e .  

This i s  cons is ten t  with other  observations of t h e  flow through 

the  Bay mouth, although the extent  of the  convergence is  some- 

what surpris ing.  The second fea ture  apparent is  t h a t  the 

speeds off shore a re  grea ter  than those i n  the  Bay. Less 

evident i s  the f a c t  t h a t  the offshore t r ack  followed an 

extension of t h e  Chesapeake Channel and vent outs ide of the  



f i r s t  offshore bar.  The increase i n  speed may be due t o  a 

phase s h i f t  in  the  t i d a l  wave between Chesapeake Bay and the  

At lant ic  Ocean o r  due t o  a relaxing of the  bottom f r i c t i o n  

e f f e c t  i n  deeper water such as  was observed i n  the James River 

Drogue Study (Welch & Haas, 1373). In  any case,  t h e  sudden 

and dramatic accelerat ion observed i n  the Wachapreague I n l e t  

case was not reproduced a t  the mouth of Chesapeake Bay. 
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