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Abstract

This paper presents the method of potential func-
tions using B-splines as potential functioms in
the estimation of likelihood functions (probabil-
ity density functions conditioned on pattern
classes) or of the resulting discriminant func-
tions. Integrated mean square consistency of
this technique is discussed. Experimental
results of using the likelihood functions thus
obtained in the classification of remotely

sensed data are given.

Fokk

The method of "potential functions" (also called
"kernel functions") for the direct construction
of likelihood functions and discriminant func-
tions has been widely discussed in the literature
on statistics and pattern classification (see
for example [4] and the references therein).

In what follows, first we review very briefly
thie method. Second, we present its integrated-
mean-square (IMS) consistency and give a formula
for the value of the mesh parameter h{N) (to be
defined in section 2) which is optimal with re-
spect to IMS convergence. Next, we discuss the
use of multivariate B-splines as potential func-
tions, bringing into the discussion the IMS
consistency criteria mentioned above. Finally,
we present some of the experimental results ob-
tained when likelihood functions constructed

by means of B-spline potential functions were
used to classify remotely sensed data pertaining
to the Purdue LARS flight Iine Cl.

1. Likelihood Functions and Discriminant Func-
tions in Pattern Classification

As a preamble to our results, let us briefly
recall the Bayesian solution to the pattern
classification problem,

Suppose that observations made on patterns,
which are to be classified as pertaining to one
of the pattern classes HI, ..., HM, appear as
n-vectors belonging to the real Fuclidjian space
R?, Then any given observation x = col (%p5 «en
xn) may be viewed as a realization of a random
vector X = col (X1, ..., Xn). Associated with
each pattern class HJ, }=1, ..., M, there is
the conditional probability density function®*
fx(x/ud), c?lled the likelihood function for
the class H', and the prior probability #l for
that class, The Bayes decision rule, which
minimizes the probability of misclassification,
conglsts of classifying any observed x as arising
from H if

Rui J. P. de Figueiredot
Rice Universily
Houston, Texas

James R. Thompson*
Rice University
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pyfy (x/md) =Py £y (x/HD)> 0, 143, i=l,...on (D)

The left side of (1)

831 (X) = Pyfx(x/ M) Py £y (x/R) (2)
is called a discriminant function. BSince (1)
is equivalent to

Ej1(0) = log(fx (x/83) / £g(x/01)) +10g(P3/P1) > O,
(1a)

Eﬂi(x) is also sometimes called a discriminant
function.

For 3 = 1, ..., M, let there be given the n-
vectors (i) (i i i)
}'1 - COI(YII ] -'-!yln )9 Y2 3 meay
(3)_ &) (N
yNj = col( yle s sans YNjn 3 constituting

the training set T (N1) belonging to the pattern
class HI. The proglehs to which we will be
addressing are:

{a} Given Tj(Nj) construct an estimate

%x(x/Hj,rj(Nj)) of fx(x/UI);

(b)Y Giwven Tj(Nj) and T;(Nj)} construct an
estimate

éji(K;Tj(Nj},Ti(Ni)) of gyi(x).

For simplicity in notation, from now on we will
drop the superscript and subscript j whenever it
is clear that we are referring to the estimation
of a likelihood function pertain. .ag,to a glven
class H, and rewrite fy(x/n1} and fX(x/HJ,Tj(Nd))
simply as fx(x) and fx(x/T(N))’ respectively.

2. The Method of Potential Functions

We will now indicate how the method of potential
functions is used in the solution of problems
(a) and (b} above.

\

According tothis:nethod,ig the solution of prob-
lem (a), the estimate of fyx(x/T(N)) is constructed
in the form N

E /1) = N7 wlx,y,), )
k=1

where ®(x,z) called a "potential function™ or

"kernel function" is a real-valued function of
the n-vectors x and z, satisfying appropriate

conditions,
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For the one-dimensional case, i.e. for x and Y
" in RY, Parzen [7] was one of the first investiga-
tors to suggest the construction of a probability
density function using (3) and for this reason
(3) is often called a Parzen estimator of the
probability density function £ (x).

Parzen supgested specifically potential functions
of the form

P(x,2) = b (MK Lw) (x-2)), )

where h{N), is a "mesh parameter", dependent on
N, sufficiently small so as to validate the
assumption of fy(x) being nearly constant on

any interval (z-h(N), z+h(N}). Parzen [7] gave
conditions on K and h{N), which guarantee mean
square consistency of (3) for a wide class of
densities. He also gave a formula for optimal
h(N), i.e. the values of h(N), n=1, 2, ...,
which maximize the rate of convergence of an
approximation te the mean square error to zero.

Parzen's results were extended to the n-dimen-
sional case by Murthy {6] and Cacoulles [1].
Note that in this case, we have in general n
scalar mesh parameters hl(N), vevy by (N) and
(4) is replaced by

9(x,2)=(h; (Nh, () .. .h_(9) KE (W) (x-2)), (5)
where

H(N) = Diag(hq(N}, ..., h,(N)) (6)

However, by suitable normalization, we may make
all hy (W), i = 1, ., n the same, i. e.

By(N) = hy(N) = ... = hy(N) = h(N), (7)

which when substituted in (5) leads to

#(x,z)=h TR TN (x-2)) . (8)

So from now on, without losg in generality we
will assume equation (7) and equation (8) hold.

Referring next to Problem (b), it is clear that
the above technique can be used to estimate giy (x)
directly from the training sets Tj(N ) and Ti{Ni).
In fact, let the elements of T.(N-)U%i(Ni),
ordered in any arbitrary way, fe labeled 2y,
k=1, ..., Ny+Nj, and define the function

¢j1(X.zk)ENinw(x,zk)uj(zk)-NjPim(xazk)ui(zk),

(%)
where, for 1 = j,i

1, if 2 €T, (N
- [ A A
“L(zk) = (10)
0, otherwise.

Then substituting (3) in (2) and using (9), we
. ohtain

N, +N,
: t

TCLNCRACHIECE DY ;%;i,¢ji(x,zk) (11

It clearly follows from this definition that our
consistency results developed for (3) apply also
to (1l). .

3. Integrated Mean Square Consistency and Opti-
mality

The above-mentioned consistency and optimality
results are with respect to the mean square
error

Bl /1) - £ (12)

for a given x. However, in approximating £

one is most likely to have some a priori know-
ledge of the "global behavior'", like "global
smoothness", of the function to be approximated
rather than 1ts "local behavior". In such cir-
cumstances, the integrated mean square (IMS5)
error criterion in the coice of optimal h(N) be-
comes more meaningful as we shall explain in
section 4. The IMS error is defined by

V) = B /) £ lax,  (13)

where the integration is performed over RD,
The following result is proved in the Appendix.

Theorem 1. Suppose

(I) The random samples yjp, ..., ¥y are
independently and identically distributed as X
whose density is fx;

(II) £y € LZ(RM);
(111} K:RR = R' (where RY = set of nonnegative
real numbers) is such that )
(III-1) KEL® (R™M),

(III-2) an(x)dx =1,
R

(I11-3) ess sup K(x) < =,
%€ R

(II1-4) 1im lix|[K(x) = 0,

B -
where |ixii = (xlz, + ...+ an)Q’ and
(IV) h(N) is such that

(Iv-1) 1lim h(W) = 0
o

and n
(Iv-2) 1lim Nh (N} = = ,
o

Then fy(x/T(N)) is a consistent estimator of
fy(x) in the IMS error sense, that is

lim V(T(N)) = O .

Nree
We next seek a formula for the value h¥(N)
of h(N), which optimizes the IMS rate of con-
vergence, of f, to fy. This is obtained by
modifying Cacoulles' [1] result for the mean
square convergence case as follows:



&. B-Splines as Potential Functions

“Theorem 2. Let the hypotheses of Theorem 1 hold

and assume, in addition, that K is symmetric Tt is clear from the formulas in (19) and (20)
(L.e. K(-x) = K(x)) and fy is thrice differen- that the choice of the optimal h*(N), and hence
tiable and such that the second partial derivative V*(T(N)), depends on the properties of £ and
of fy are in L2(R"). Then within o(h*(M)) the on the structure of the product kermel K.
IMS error {defined by (13)) is minimized by ”
choosing The L° norm of the second derivative of & func-
nHKH2 1 tion represents a measure of the "global smeoth-
2 s ness" of the function. In this sense, according
R (N) = N"Iﬂhﬁq 32 121 s (14) to (22), A,{f,) is a monotonically Increasing
a ; x |l ! function o} the "global smoothness" of f,. Thus
%1 ._luij axialeb ﬁ an a priori knowledge of the smoothness ¢an be
=T i ) incorporated in the formulas (19), (22), and (20)
by assigning a value to
where, for a fupction g, a Bzf 12
Il = x) |¥axy 17 (15) | 5 X
llgll, (jRnlgc )| E =,
and
“ij _ I . xiij(x)dx . (16) in those formulas.
R In picking K one would like to choose its struc~-
The optimal rate of convergence, corresponding ture so that the optimal kernel-dependent rate of
to the choice (1l4), is py CoOMVergence (K,) is minimized. Then the
2 vy choice of the support of K, represents & compro-
- T ik iin =n a fx | mise betwegn the minimization of its second moment
V*(T(N)) = (4—1n+1)n N 7T By o SEa lz and ite L“ norm, K, must also be at least as
i=] j=1 1% xj smooth as £, particularly if only a few train-
8 ing samples are available. Based on these con-
e wt siderations, we suggest for the structure of K
K + o(h " (N)). (17} a univariate B-spline, and hence for X a proguct
2 of n such splinea. 5Such a choice for K
If, as we shall assume in the following section, constitutes a compromise between a Gaussian
the kernel K has the product form kernel and a square kernel
o 1, Ix]<1
= g # -~

0 , otherwise,

We note that a multivariate polynomiagl, as sug-
gested by Specht [10}, while certainly adequate

where K. 1is an even one-dimensional kernel, then
Theorem 9 further simplifies to:

Theorem 3: Under the condition on K just stated, for approximating a large class of discriminant
The results (14) and (17) of the preceding theorem functions given in the form (la), is certainly
assume the forms (19) and (20) Lelow: unsuitable for the representation of K over
1 the entire RM since it violates the conditions
o1 oo ST (II1) of Theorem 1.
) T | alkgli®|®
W (N) = N A (193 Let "
5 . et any given component variable x, of x be
4 n X2 denoted by £ . Then a univariate ~B-spline of.
GOH‘El ;~——H2 degree m-1 with support on (83,E ) and knots
1= X,
i EO < §I< ...{Em s (25)
n 4
- — D ie 97
1 7 v ie defiped by [2,3,91:
V*(T(N) = {& o+l)n N Al(fX)AZ(KO)’ (20)
M (E) = Z @5 -0 e (g)) (26)
where m =0 Y L
o0
2 2 21
op = I@ x; KO(Ki)dxi’ ) 2D where ]
) iﬁik w(F) = (E~E) (8- )...(E-F ) (27)
n atf and -
X (22) i
gy =l B = a2y, 1f &(®) > o,
1V'X {=1 axi 2 g+(E) = i (28)
LO s 1f g(8y <o,

and

[l
4n ;jﬁL If we:{1) assume that the degree of the B-gpline
C s A " hn+4 (23 is odd, i.e., r =m-1 = 2k-1, k a positivg in-
Az(KO) 0 oliz teger; (2) center the spline about the origin as
. tequired by Theorems 2 and 3; and (3) let the knots
We will call AZ(KO) the 9?52@31 kernel-dependen of the apline occur at integer values; then we may
rate of convergence since it represents the Eart ?g??%“ the B-spline representatfon for Ko (see
of the rignt side of (20) which depends Oni Q- 1k IHe [21 r
We omit proofs of theorems 2 and 3 above since Ko(8) = Mo (B = T Z (-1 ( )(%-5) s (29)
ent stralghtforward extensions of those ¢ =k L4k +

they repres
in [1].



‘where, -as indicated above, m= r+l = 2k ,

1 ¥ T
=5 Ly, W;-0 (35)
Substituting (29) In (21}, (23} and thew {19) and i=1
(20), we obtain the formula for optimal h*(N)
,and the optimal kernel-dependent rate of conver- where the superscript T denotes the transpose.
gence A2(K0): Then 7(%,Z;x) will be called the "sample
1 normal density'.
- - E:Z 144n(M (0)) na The simulation results mentioned above are shown
h(N) = 7 (30 in Figs., 1 through 6.
”i=1 Bxﬁ ” Fig., 1 is a graphic display of the bimodal
i 2 density '
and £,(x) = pM(py,23x) + (1-p) 7, ,T3%) (38)
LY Y x\F) T Py X Py 223
Az(KO) - (TE) Yon ? Gh . with the mixing parameter p = ,%, and By =
where col(-2,0), Hy = col(6,0) and
‘ . 5.75  4.34 .
r+1 2 2 Z =( ) - (37)
ﬁ'r—!-_l)" T (- 1)J+r+1( (r+1))j r+l . (32) 4,34 6.64 X
=1 (i+r+1) Figs. 2 and 3 are displays of f£_(x/T{N))
' obtained by the B-spline potential function
Numerical values for A%(K o) slven by (31), for algorithm corresponding respectively to N=50
r = 1,3, and 5, are listed in Table I. and N = 300 samples from the ahove density.
TABLE I Fig. 4 shows the sample normal density approxi-
' mation of the same density on the basis of 50
r AQ(KO) ' * gamples.
1 .353075
3 .357836 To show the effect of the increase in dimengion-
5 .359683 ality on the performance of ocur algorithm, we
present In Figs. 5 and 6 the cross-sections
Let M(p,I;x) denote the value at x  of the thro?gh the x%—axis of the dens%ty estimates,
normal density with meap p and covarlance matrix obtal?ed by the B—s?llne poten?lal function
T . For K.(x) = M0 Oz;x) we have algorlthmf of Fhe bimedal density (36) on four-
0 and six-dimensional spaces under the conditions
HW(Q)(O,GZ; .)”2 - (3/8H-'50-5). (33) given in those figures.
Using (33), with o = 1, in (30), we get the In all this work we used cubic B-splines witn

the mesh parameter W (N) equal te the second

*
formulas for h"(N), for any dimension n and entry in Table IT,

r = 1,3, presented in Table II.

TABLE TT From the above few results we cencli-de that the
: - B-spline potential function algorithm appears
i r (W) to fare well in the construetion of likelihood
: - a 11/ocHy functions from only a modest num 'r of samples
i 1 l36n é?ig66) N Lhnth) and with densities that are not unecessarily-uni-
i - .y e modal and on spaces that are not necessarily of
i In(.49365) - 1/n+a too low a dimensiom.
j 3 N
’ L2115
§ 6. Applicatior to Remote Sensing

5., Computer Simulation Results _ To test the effectiveness of the B-spline

potential function algorithm for classification,
discriminant functions were obtained from the
likelihood functions generated by the algorithm,
for Bayesian classification of agricultural

In this section we present scme of the computer
simulation results performed on the Rice Univer-
sity IBM 370/155 digital computer for the purpose
of testing how well the B-spline potential function crops. The algorithm was based on cubic B-splines
algorithm performs in the 00“3thCt1°“ of likeli- chosen as in section 4 of this paper, and was
hood functions. implemented in the LARSYSAA VERSION 2 .' ':! was
developed at the Laboratory for Applicationsof
Remote Sensing, Purdue University, Lafayette,
Indiana. We also performed classification using
sample normal densities as likelihood funetions.

Given a set of samples T(N) = {yl,...,y }, where
each y, 1s an independent realizatien Bf a
random varigble X with density £ let the

sample mean T and sample covariance matrix T {See¢ the beginning of section 5 for the defini-
be defined in the usual way, 1i.e. tion of "sample normal density.")
N
1
™= 5 T ™ (34) The data used in our experiments pertained to
=1 the Purdue LARS flight 1line C}, which has been
and widely employed for testing algorithms on

remote sensing. This data consists of the output
of a twelve channel spactrometer which analyzes
the reflected radiance from the object being

4



" senged, Let a glven crop field belonging, say,
to the pattern class HJ, be discretized (parti-
tioned) inte N, polnts, called “resolution
elements". Thejspectrometer maps each resolu-
tion element int 12-tu of real numbers,

say yig?= col(yEi?,...,yE}?z), and the whole
field prot}ges Nj i??h 12-d}menaiona1 vector
samples vy seee3Yys which can be used to train
a classif}er in theJacquisition of the likelihood
function corresponding to HY ,

Our first example is designed to show the poor
results cbtained when normality is assumed on
bimodal data. In this example, we used data from
only one channel, namely Chamnel 1 (.40yu to .44y),
to clagsify data cTrresponding to the two bimodal
pattern classes: H™: RED CLOVER HAY and CORN1;

and R2: BARE SOTL1 and ALFALFAl. Figs. 7 and 8
show the histograms of the classes. The per-
centages of the number of correct classifications,
for g typic§1 set of observations corresponding
to H® and H", are indicated in Table III, both
for the algorithm presented here and for the
sample normal classification algorithm.

TABLE ITI
Potential Sample
Function Normal
Algorithm Algorithm
nl g6f 26%
e 98% 3%

It is clear that the much superior performance
of the potential function algorithm in relat{oen
to the sample normal algorithm may be attributed
to the bi-modality of the data.

Our second example is for the purpose of testing
the effectiveness of the potential function algo-
rithm for normal data. In this example, we used
3 channels, namely Chammels 1 ({,40u - .44p), 10
(,66p - .72u), and 12 (.60y - 1,004), to classify
nl: sovseans, H2: corw, ®3: OATS, and H*: WHEAT,
The percentages of correct classifigations are
displayed in Table IV, for HL and H

TABLE IV
Potential Sample
Function Normal
Algorithm Algorithm
gl 97% 99%
1 o4 99%

Even though the efficiency of classification by
the potentiagl function algorithm is lower than by
the sample normal, we note that the ability of
the potential function algorithm to clagsify
effectively data that s normal .is comparable
with the sample normal in quality of classifica-
tion.
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Appendix

Proof of Theorem 1

For notational convenience let

K (x) = bk o). (A1)
Then, clearly” (see for example [5, p. 172]),

B{(F (x/TN) - £,00)%)

=Var (F,(x/TM)) + B {E (x/T))),  (A-2)

where
Var({£g (x/T(N)) = E(E2(x/T(N)))

a Ez{%x(x/T(N))] (4-3)

and - a
B(fy (x/T(M))) = EL£(x/T(N))} ~ £y(x).(A-4)

Hence it follows that
LinllE( (E (x/T(N)) - fx(x))z}ﬂl
]

= limllVar(£ (x/TOO ]|
Lim X 1

+ UnllB(ECe/Ta0 NI (a-5)
o

The proof will consist of showing that each term
ot the right side of (A-5) tends to zero.

Since the random varisbles Y,, 1 =1,.,.,N
are each independently distributed as X, we have,
in accordance with (3 ), that

E{EX(xIT(N))} = ElK, (x - 0}, (A-6)
d .
anvar{fz(x/T(N))} = N'1Var{Kh(x-x)}, (A-7)
Now

Ky, (e)¥ £y (X)= £nKh(x-z)fx(z)dz

E[Kh(x-X)}

E(F(x/T(N))), (A-8)

where, in going from the third to the last
member, we have used (A-6),

Similarly,

*In this Appendix, we use capital letters for
symbols denoting random variables and corras-
ponding small letters for realizations of these
random variables, In (A-2), f (x/T(N)) is to
be regarded as a function of the random variables
Yl,...,Y the realizations of which are the

training samples yl,...,yN.



'“rKi(x)QfX(x) = E{Kﬁ(x-x)] . (A-9)

Henhe, from (A-7), using (A-8) and (A-9) we get

War (£, (x/Taud)lly = jRnVar(fX(xfT(n)))dx

= [ n[E{Ki(x-X)] - EZ{Kh(x-X)}]dx
R

= Me(? (x-} 1, - e, (x-xyHI2

= an™y o), * £eoll

ik, o = £ ol (4-10)
where
@ (x)), = h K n . (4-11)
By Young's inequality (see [8], p. 148), we
have
I, () * £ Goll3 < Ngycoll; (4-12)
since 9
e, Golly s (A-13)
and again by Young's inequality
N2 (), * £, Gy < Gy Iy (A-14)
since
fo(x)ul =1, (A-15)
By a change of variables we obtain
HEe? G, Il = kol (4-16)
and so0 (A-14) becomes
HR? Gy, * £ Gl < Gl (A-17)

Using the triangle inequality on the right side
of (A-10), and then substituting into it (-17)
and (A-12), we obtain

A n,~1 2
IVar (£, (/T < (D TR

+ N-lﬂfx(x)ﬂz i (A-18)

Finglly, rescrting to the hypotheses II, III-1,
and IV-2 of the theorem, we have
lim|[Var(£(x/TNI; = 0 .

N—eo

Now consider the bias term (A-4) and use (A-38)
to write it in the form

(4-19)

B(E,(x|T(N))) = K (%) * £,00 - £.(x). (A-20)

Then by Theorem 2, Part (c) in Stein [11, p.62]
we get

LinlB(E (x/TMMI, = 0. (a-21)
o

ﬁgquations (A-5), (A~19), and (A-21) show that
£, (x/T(N)) 'is a consistent estimator of fx(x)
in the IMS sense,
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