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Page 281 should read 

Expanding equation (3 -B7) for large Z shows that 

1 1 00 ( -2) W = -- n dy 1 + 0 Z 
2rriZ -c/2 

as Z - 00. Hence, it follows from equations (3-45), (3-B3), and (3-B5) that 

-ik1UooT 
akU e foo 

p '" - 2 1 00 In I Z Indy 1 
2rr -c/2 

as Z - 00. The pressure fluctuation can therefore remain bounded as Z - 00 only if 

fOO n dY1 = 0 
-(c/2) 

Inserting equation (3-B20) into this relation and carrying out the integration yield 

l
c/2 

nO = ik1 n(y l)dy 1 
-(c/2) 

while inserting equation (3 -B20) into equation (3 -B19) yields 
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PREFACE 

Aeroacoustics is concerned with sound generated by aerodynamic forces 
or motions originating in a flow rather than by the externally applied forces or 

motions of classical acoustics. Thus, the sounds generated by vibrating violin 

strings and loudspeakers fall into the category of classical acoustics, whereas 

sounds generated by the unsteady aerodynamic forces on propellers or by tur­

bulent flows fall into the domain of aeroacoustics. The term aerodynamic 

sound introduced by Lighthill (who developed the foundations of this field) is 

also frequently used. 

Because most of the dominant noise sources in aircraft are aeroacoustic 

in nature, the literature in this field is often closely connected with aeronau­

tical applications. Up to this time, no systematic text devoted specifically to 

aeroacoustics has been written - probably because the field is still in a fairly 
early stage of development. But, after teaching this subject to a group of en­

gineers and scientists working on aircraft noise at the Lewis Research Center, 

I concluded that such a text could serve a useful purpose. I felt that the book 

should be moderately advanced and aimed at the reader with a knowledge of 

fluid mechanics and applied mathematics at the master's degree level. 

There is sometimes a tendency in the literature to try to separate aero­

acoustic problems into an acoustic part and an aerodynamic part and to treat 

each one separately. In this book, I have not attempted to make this distinc­

tion and have combined all the acoustics and aerodynamics needed to relate 

the sound field to the basic parameters of the problem. 

The first chapter is concerned with certain aspects of the acoustics of 

moving media which are required in the remaining chapters. It also serves to 

familiarize the reader with some basic concepts of classical acoustics. Its 

main function , however , is to develop the mathematical techniques needed in 

the remaining chapters. The second chapter introduces Lighthill's acoustic 

vii 



analogy and applies it to the case where the solid boundaries do not directly 

influence the sound field. This is the situation in jet noise. A detailed anal­

ysis of subsonic jet noise and a qualitative discussion of supersonic jet noise 

are given. The third chapter develops the acoustic analogy to include the ef­

fect of solid boundaries. The results are applied to the discussion of the sound 

generated by struts, splitters, propellers, helicopter rotors, and so forth. 

The effects of a uniform mean flow are included in the fourth chapter, and the 

concepts are used to obtain detailed analyses of the various fan noise mech­

anisms. In chapter 5 the acoustic analogy approach is abandoned, and a direct 

calculational procedure is developed. It is applied to the prediction of com ­

pressibility effects on the sound generated by a blade row. Finally, in the last 

chapter the effects of a nonuniform mean flow are included, and equations are 

developed which are intermediate between Lighthill's acoustic analogy and the 

direct calculational approach. These results are used to predict the effects of 

the mean flow field on jet noise. 
Credit is given to the original source of an idea whenever possible. Al ­

though some of the analyses and formulations developed are somewhat original 

or extensions of analyses in the literature, the omission of a reference is not 

meant to imply originality on my part. In fact, I wish to apologize in advance 

if I have inadvertently not given credit to the originators of any of the ideas 

which appear in this text. 
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CHAPTER 1 

Review of Acoustics of 
Moving Media 
1.1 INTRODUCTION 

In order to make the material in this book available to as broad an audi­

ence as possible, portions of the first chapter are devoted to a review of those 

aspects of cl~ssical acoustics and the acoustics of moving media which are 

necessary for understanding the theory of aerodynamic sound. In addition, a 

number of the mathematical techniques needed in the succeeding chapters on 

aerodynamic sound theory are developed. It is assumed that the reader is 

familiar with basic fluid mechanics. 

A vector quantity is denoted by an arrow (A) and the m~nitude of the vec­

tor by the same letter (A). The components of the vector A are denoted by 

Ai with i equal to 1, 2, or 3. An asterisk (*) denotes complex conjugates. 

Whenever possible, the capital and lower case of the same letter are used to 

denote Fourier transform pairs with respect to the time variable. Overbars 

C) denote time averages, and brackets <> denote space averages. The letter 

T (without subscripts) denotes a large time interval. Other commonly used 

symbols are defined in appendix 1. c. 

1.2 DERIVATION OF BASIC EQUATIONS 

We shall now consider an inviscid non-heat-conducting flow whose motion 

is governed by Euler's equation (i. e. , the momentum equation for inviscid 

flow) 

. - -- ~---- -- J 



AEROACOUSTI CS 

(av - -) -p a T + v· \1 v = - \1p + I (1-1) 

the continuity equation 

ap - -- + V· 'Y P + P 'Y. v = pq (1-2) 
aT 

and the energy equation (which we write in the form) 

as -- + V· \1 S = 0 (1-3) 
aT 

where 'Y is the vector operator 

-:- a -:- a A a 
l--+]--+k--

aYI aY2 aY3 

v = {v 1,v2 ' v3 } is the velocity of the fluid, p is its density, p is its pres­

sure , and S is its entropy. The time is denoted by T, {y l' Y 2' Y 3} are 

Cartesian spatial coordinates, q denotes the volume flow being emitted per 

unit vol urn e by any sour ce of fluid within the flow, and 1 denote s an exter­

nally applied volume force. 

Now, in general, any thermodynamic property can be expressed as a 

function of any two others. Thus , in particular, 

p = p(p , S) 

Hence , 

dp = 1-dp + (ap) dS 
c2 as p 

2 

--- .--

(1-4) 



REVIEW OF ACOUSTICS OF MOVING MEDIA 

where 

0-5) 

Consequently , 

op - 1 (op - ~ - + v· \l P = - - + v· \l p 
aT c2 aT 

(1-6) 

For a steady flow with velocity v 0 ' pressure PO' density PO' entropy 

So '= S(po'po) ' and Co '= c(po ' PO), equations 0-1) to (1-3) and (1-6) become 

(1-7) 

- 2-
vO· \l Po = Co vO· \l Po 

provided there are no external forces or mass addition. 

Consider an unsteady disturbance with characteristic length A traveling 

at a propagation speed whose typical value is C through a fluid in which the 

velocity , pressure , and density are otherwise determined by equations (1-7). 

This disturbance introduces changes in velocity, pressure I density, entropy, 
2- - -, , , 2 2 2 

and c (u '= v - v 0 ' p '= p - PO' P '= P - PO,S '= S - SO ' c '= c - cO ' respec-
tively) as it passes by a fixed observer. 1 These changes all occur on the time 

scale Tp = l / f, where f = CIA is the characteristic frequency of the disturb­

ance. The propagating disturbance is shown schematically in figure 1-I. 

IThe flow velocity u induced by the passage of the disturbance is called the 
acoustic particle velocity. It is entirely distinct from the propagation speed C of the 
disturbance. 

3 



AEROACOUSTI CS 

liil.p',p', 5', or c2' 

-~--------~------------------~-- y 

11-.. --- 11 ---; .. ..,1 

Figure 1-1. - Propagating disturbance. 

The amplitude of the disturbance is measured by the magnitude of the 
. -", 2' . fluctuatIOns u, p , P , S , and c . We shall consIder only those flows for 

which this amplitude is so small that not only is 

(1-8) 

2 , I , 2' 2 
but also p « (PO)' P « (PO)' S « (SO), and c «(cO). Thenthe 
amplitude of the disturbance can be characterized by a dimensionless variable 
E such that 

o < E « 1 (1-9) 

and 

2The first inequality requires that the velocity induced by the disturbance be small 
compared with its propagation speed. The remaining inequalities ensure that the fluc­
tuations in thermouynamic properties are small relative to their mean background 
values. 

4 
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REVIEW OF ACOUSTICS OF MOVING MEDIA 

p'/ (po> = O(E) 

p'/ (po) =O(E) 

S'/ ( SO> = O(E) 

c2'/ ( c~ > = O(E) 

(1-10) 

Inequality (1-8) involves the assumption (to be verified subsequently for spe­

cific cases) that for sufficiently small disturbances the propagation speed C 
is independent of the amplitude of the disturbance. 

We allow IV 0 I to be of the same order as C. Then since the changes of 

time and length associated with the disturbance occur on the scale of Tp and 

A, respectively, it is reasonable to introduce the nondimensional variables3 

T = T/ T = fT 
P 

y. = y· / A 
1 1 

3Recall that the pressure variations in a steady inviscid flow are of order 
2 

(PO) (VO)' 

L_ - ~-.~~--~-

5 



AEROACOUSTI CS 

When these quantities are substituted into equations (1-1) to (1-3) and (1-6), 

we obtain after subtracting out equations (1-7) 

,...., ,...." 

ap""'" ,...., [f" ,....,,:;: ,....,,::. ] (PO + Ep )q 
- + 'i1. ~Po + Ep )u + P v 0 = d 
aT 

But since the nondimensionalization has been specifically chosen to make the 

dimensionless variables of order 1, the inequality (1-9) shows that the terms 

multiplied by E in these equations can be neglected to obtain, upon reverting 

to dimensional quantities, 

6 



REVIEW OF ACOUSTICS OF MOVING MEDIA 

(1-11) 

2 
( 

, )' , ap - ,- 2 - ap - ,-Co -+vo·"ilp +u'''ilpo +c vo·"ilPo=-+vo·"ilp +u'''ilpo 
aT aT 

These equations are frequently referred to as linearized gas-dynamic equa­

tions. We have shown that they govern the propagation of small disturbances 

through a steady flow. 

Perhaps the simplest nontrivial solution to equations 0-7) is provided by 

a unidirectional, transversely sheared mean flow wherein 

Po = Constant Po = Constant (1-12) 

... 
and i denotes the unit vector in the u 1 direction. This velocity field is il-

lustrated in figure 1-2. For several reasons the main emphasis will be on 

cases where the background flows are of this type. 4 The first is the relative 

simplicity of this flow. Since the equations governing the propagation of sound 

in a moving medium are, in general, quite complex, it is helpful to consider 

one of the simplest cases. The second reason results from the fact that in the 

following chapters only the effects of velocity gradients on aerodynamic sound 

generation are considered and not the effects of gradients in thermodynamic 

variables. Since the flow field given by equations (1-12) has only velocity gra­

dients and no pressure or density gradient, it is particularly suitable for il­

lustrating the effect of the former. Finally, it turns out that in many of the 

4 A more complete treatment of the acoustics of moving media from a different 
point of view can be found in Blokhintsev (ref. 1). 

7 
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------~----+---------------~ y1 

Figure 1-2. - Unidirectional, transversely sheared, mean 
flow. 

cases for which the study of aerodynamic sound is important the mean flow 

field is, to a first approximation, of the type given by equation (1-12), 

Inserting equations (1-12) into equations (1-11) and eliminating p' 

between the first and last equation shows that 

1 Do!' -
----+v·u=q (1-13) 

c2 Dr Po 0 

where 

8 

I 

J 



REVIEW OF ACOUSTICS OF MOVING MEDIA 

and we have dropped the prime on p so that it now denotes the fluctuating 

pressure. This will be done whenever no confusion is likely to result. 

The operator DO/ DT represents the time rate of change as seen by an 

observer moving along with the mean flow. The third equation (1-13) there­

fore states that the entropy does not change with time for such an observer. 

Thus, if the entropy were uniform and steady far upstream, it would have to 

be constant everywhere. But equation (1-4) shows that, whenever the entropy 

is constant, 

1 
dp = -dp 

c2 

and the fourth equation (1-10) shows that for small E, 

Then, since c~ is constant, integrating the previous equation from the back­

ground state implies that 

_p_ = p - Po == E!.. 

Poc~ Po Po 
for S = Constant (1-14) 

The quantity on the right is called the condensation. 

Since 

taking the divergence of the first equation (1-13), operating with DO/D T on 

the second, and subtracting the result give 

9 



AEROACOUSTICS 

(1-15) 

Because this equation has two dependent variables, it cannot by itself be 

solved to determine the disturbance field. However, in the special case where 

the mean velocity U is constant, the last term on the left side drops out and 

we obtain the equation 

2 
2 1 DO 

Vp----p=V· (1-16) 
2 2 

CODT 

which (together with suitable boundary conditions) can be solved to unambig­

uously determine the fluctuating pressure p. Once this pressure is found, 

the acoustic particle velocity IT can be determined from the first equa-

tion (1-13). Equation (1-16) is an inhomogeneous wave equation for a uni­
formly moving medium. The reason for this terminology will be clear 

subsequently. 

Equations (1-14) and (1-16) show that, if the entropy is everywhere con­

stant, the density fluctuation also satisfies an inhomogeneous wave equation 

for S = Constant (1-17) 

Finally, when U = 0, equation (1-16) reduces to the inhomogeneous wave equa ­

tion for a stationary medium or simply the inhomogeneous wave equation 

(1-18) 

which forms the basis of the field of classical acoustics. 

10 
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REVIEW OF ACOUSTICS OF MOVING MEDIA 

We now return to the general equation 0-15). This equation closely re­

sembles the wave equation 0-18) for a nonmoving medium with a/a T replaced 

by DO/ DT. However, the additional term on the left side involves the velocity 

and must be eliminated in order to obtain a single differential equation for the 

pressure . To this end, we differentiate the Y2-component of the momentum 

equation in 0-13) with respect to y 1 to obtain 

(1-19) 

Then operating on equation 0-15) with DO/ DT and substituting equation (1-19) 

into the result yield 

(1-20) 

Thus, in the general case of a transversely sheared unidirectional mean flow 

the wave equation is of higher order (in two of the variables) than it is for a 

uniformly moving medium. 

1.3 ELEMENTARY SOLUTIONS OF ACOUSTIC EQUATIONS 

In principle, all acoustic phenomena which occur in a transversely 

sheared flow can be analyzed simply by solving the wave equations derived in 

section 1. 2. In this section we shall obtain a number of simple solutions to 

these equations which either illustrate certain physical principles or serve as 

tools to synthesize more complicated solutions. We shall first consider the 

case of a stationary medium. 

1.3. 1 Solutions of Stationary-Medium Wave Equation 

The basic properties of the Fourier series and transforms which are used 

in this text are listed in appendix 1. A. The notation and sign conventions 

adopted therein are adhered to whenever possible. 

11 



AEROACOUSTI CS 

Multiplying both sides of the stationary-medium wave equation 

(1-21) 

by eiwT and integrating by parts over the appropriate time interval reduce 

this equation to the inhomogeneous Helmholtz equation 

(1-22) 

where P and r are the Fourier coefficients or Fourier transforms (depend­

ing on whether the process is periodic, stationary, or vanishing at 00) of p 

and y, respectively. (We shall henceforth refer to quantities such as P and 

r simply as Fourier components. ) 

Solutions to equation (1-21) can be obtained by inserting the solutions to 

equation (1-22) into the appropriate Fourier inver sion formula. If the source 

terms and boundary conditions are simple harmonic functions of time, the so­

lution p of equation (1-21) is also a simple harmonic function. That is, 

1. 3.1. 1 Plane wave solutions. - The simplest case occurs when the re­

gion under consideration is all of space and there are no sources present. 

Then equation (1-22) becomes 

(1-23) 

The three-dimensional Fourier transform of this equation is 

12 



REVIEW OF ACOUSTICS OF MOVING MEDIA 

wher e 

But since xB(x) = 0 , this equation has the solution 

where A is an arbitrary function of the unit vector -; == k/k in the k­
direction. Hence, the solution to equation (1-23) is 

where dK denotes the element of solid angle. 

When 

- 0(8 - 80)0( <;0 - <;00) 
A(K) = A - - --- ­

sin 8 

where 8 and <;0 are polar coordinates determined by 

-; = {sin 8 cos <;0 , sin e sin <;0 , cos e } 

(1-24) 

(1-26) 

and eO' <;00 bear a similar relation to the fixed unit vector KO' equation (1 - 25) 

be comes 

13 



AEROACOUSTICS 

(1-27) 

where kO = w/ cO and kO/ kO = KO. Equation (1-25) shows that the general so­

lution of equation (1-23) is simply a linear superposition of solutions of this 

type. Hence, the general solution of the homogeneous wave equation 

(1-28) 

can be expressed as a superposition of solutions of the type 

(1-29) 

called plane waves. 5 The constant A is called the complex amplitude of the 

wave, q>0 ;: arg A;: tan- 1 JHtA/ i<e A is called the phase constant, and 

q> = kO y - W T + q> a (1-30) 

is called the instantaneous phase or simply the phase. 

When the solution to equation (1-28) is given by equation (1-29), the pres­

sure at each fixed point y executes a simple harmonic variation in time 

whose amplitude is IA I. The angular frequency of the motion is w; its 

frequency f is f = w/ 2rr and its period T p is T P = 1/f. The vector kO is 

called the wave number. 

The pressure oscillations at every point have the same frequency and the 

same amplitude IA I. However, the pressure oscillations at different points 

will, in general, not be in phase. The difference in phase between any two 

points, say y 1 and y 2' is given by ka . (y 1 - y 2) and hence remains constant 
in time. This also shows that the phase is constant on any plane perpendicular 

to the kO-direction. Since the trigonometric functions are periodic, with 

5when complex solutions to the wave equation are given, generally the solution to 
the physical problem is understood to be the real part. 

14 
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REVIEW OF ACOUSTICS OF MOVING MEDIA 

period 27T, the pressure fluctuation at any two points will be in phase when­

ever the distance (kolko) . (Y1 - Y2) between the two points measured along the 

ko -direction is 

This distance, which we denote by A, is called the wavelength. Thus, at any 

time t = to' the pressure will vary along the kO-direction in the manner 
shown by the solid curve in figure 1-3 and will remain constant along any plane 
perpendicular to this direction. At a time 1/ 4 period later, the wave will ap­
pear as the dotted curve. Hence, the individual pressure oscillations at each 

point are phased in such a way that they result in a wave of unchanged shape 

moving through the medium in the ko -direction. In other words, the pressure 

oscillations at each point are passed on to adjacent points with a phase relation 

that causes them to propagate as a wave with unchanging shape. Every sur­
face of constant phase q> (given by eq. (1-30)), called a phase surface, must 

be perpendicular to the kO-direCtion and move along with the wave, as shown 

schematically in figure 1-4. 

p 

, Position of wave at time t 
\ <- Position of wave 1/4 period later 

\~, I- A \ \ 
\ \ 

\ \ 
\ 

Figure 1-3. - Plane wave propagation 1/4 period after time t. 

15 
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Figure 1-4. - Motion of phase surfaces for plane wave. 

It can be seen from equation (1-30) that the common velocity of the phase 

surface and the disturbance is cO' This velocity is called the speed of 

sound. 6 We have therefore shown that, at least in this special case, the ini­

tial assumption used in deriving the basic wave equations (i. e., that the prop­

agation speed of a small disturbance is independent of the amplitude of that 

disturbance) is justified. 

1. 3. 1. 2 Solutions in arbitrary regions. - When the region in which the 

wave equation is to be solved is not all of space, the solution is usually not ex-

6For an ideal gas, this propagation speed Co is given in terms of the absolute 
temperature ® 0 of the background state by 

which is equal to about 335 m/sec (1100 ft/sec) in air at standard conditions. 
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pressed as a superposition of plane waves but rather as the superposition of a 

number of eigenfunctions P QI of Helmholtz 's equation, called modes, which 

are appropr iate to the region under consideration. Thus, the solution to the 

wave equation will appear as the sum or integral (or perhaps both) of a number 

of simple harmonic solutions P (y)r -i w T. Or upon expressing P in com-
QI QI 

plex polar form, this becomes 

where k == 0.'/ co and S and A are real. 

We may regard the quantity 1> = k[S(y) - Co T] as being the analogue of the 

instantaneous phase which appeared in the plane wave solutions discussed in 

se ction 1.3. 1. 1. At any given instant of tim e, 1> will be constant on any sur­

face S(y) = Constant. The surfaces of constant phase are called wave fronts 

or wave surfaces, and the function S6) is called the eikonal. However, the 

amplitude of the wave A(y) is not necessarily constant on the wave front as it 

is for plane waves: 

Now the wave surface 

will, in general, move ~ith ~ime. Thus, the point y on 1> = C 1 at time T 

will move to the point y + By at time T + 0 T and 

k[S(y) - COT] = k[S(y + By) - CO(T+ OT)] 

= k[S(y) + 'VS· Oy - CO(T+ OT)] + 0[(Oy)2J 

This shows that, to first order in OT, 

Hence, in the limit as OT - 0, 

17 
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Y'S . (dY\ = Co 
d T )<I>=Constant 

(1-31) 

But since Y'S is always perpendicular to the wave fronts, Y'S I I Y'S I is the 

unit normal to these surfaces (see fig. 1-5). And since (dy/ dT)<I>=Constant is 
the time rate of change of position of a point which moves with the wave front 

<I> = C l , 

is the velocity of the wave front <I> = C 1 normal to itself. It is called the 

phase velocity, and equation (1-31) shows that 

v = p (1-32) 

18 
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1. 3.1. 3 Point source solutions. - Returning to the general solution (1-25), 

we now take A to be independent of ;. Then upon introducing the polar co­

ordinates given by equation (1-26) with the polar axis now taken along the y­

direction, we obtain a solution 

f
27Tf7T 

(
w)2 i(w/ cO)y cos e . 

p = - A e sm e de d<p 
c o 0 0 

(
W) A i(w/ co)Y (w) A -i(w/ cO)y = 27T - - e - 27T - - e 
Co iy Co iy 

to Helmholtz's equation (1-23) which depends only on the magnitude y of IY"I­
In fact, it is easy to see that, if yolO, each of the terms 

(
W) A ±i(w/ cO)Y 

27T - - e 
Co iy 

in this solution is itself a solution to equation (1 -23). Hence, any superposi ­

tion of solutions of the type 

ro iW(±Y/ CO-T) 
-e 
47TY 

satisfies the wave equation (1-28). The wave fronts are given by 

<P = ±ky - W T and the eikonal is equal to ±y so that 

/\7S/=l 

(1-33) 

But in view of equation (1-32), this shows that the phase velocity is again 

equal to the speed of sound cO. Since the phase surfaces of the solution with 

the upper sign move in the direction of increasing y, this solution must rep-

19 
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resent an outward-propagating wave . The solution with the lower sign repre ­

sents an inward-propagating wave. 7 

In any region including the origin y = 0 , however, the equation 

± r 0 ±i(w/ cO)Y 
P = - -e 

47TY 

does not provide a solution to the Helmholtz equation (1-23) but rather satis ­

fies the inhomogeneous Helmholtz equation 

(1 -34 ) 

with a delta function source term at the origin. In order to show this, we 

shall need to use the divergence theorem 

1 'V . A dy =.£ n . A dS (1 - 35) 

where A is any vector and lJ is an arbitrary volume bounded by the surface 

S with outward-drawn normal ~. Thus, if lJ is taken to be a sphere of ra ­

dius r 0 centered about the origin y = 0 and if dn denotes an element of 

solid angle , this shows that 

7 It will be seen subsequently that thi s type of behavior i s quit e typical of soluti ons 
for any boun ded source region . Hence, solutions which behave like (l /y)ei ky for large 
yare called outgoing wave solution s, and solutions whic h behave like (l /y)e- iky a r e 
called ingoing wave solutions . 

20 
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i t 2] f() 2 lIro 2 ± w ± - 2 oP± u.' 2 V P + (~O) P dy ~ TO ay- y~T dQ + (~O) p"y dy dQ 
11 47T 0 47T 0 

But since 

1 B(y)dy ~ 1 

and o(y) = 0 in any region where p± satisfies the homogeneous Helmholtz 

equation, we conclude that p± satisfies equation (1-34). By shifting the loca­

tion of the origin, we find that 

± r 0 ±i(w/ cO)r 
P == - e 

47Tr 

with 

r == Ix - yl 

satisfies the Helmholtz equation 

----- - - -- -- -- ~ 
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2 ± W ± --

( )

2 
V'P + Co p =rOo(x-y) 

with a delta function source term at the arbitrary point x. 

Taking the inverse Fourier transforms shows that 

± 1 f -iw(TU/ cO) 1 ~ r) 
p =- e rOdw=-yo T.:t--

4rrr 4rrr Co 
(1-36) 

(where r 0 is the Fourier transform of YO) satisfies the inhomogeneous wave 

equation 

(1-37) 

with a point source of strength yO( T) located at the point x. 

In order to interpret this result, notice that rp + is constant everywhere 

along each line Co T - r = Constant in the r - T plane shown in figure 1-6. 

Figure 1-6. - Propagation of spherical waves. 

22 
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It therefore represents an arbitrary pulse propagating outward in the radial 

direction with unchanged shape. The propagation speed is again equal to the 

speed of sound cO. Hence, p+ represents a pressure pulse which propagates 

outward with unchanged shape in the radial direction with its amplitude dimin­

ished by the factor 1/ r. 

Upon choosing YO to be the delta function o(t - ;), it follows from equa­

tions (1-36) and (1-37) that 

0_ 1 ( r) G = --0 T-t+-
41Tr Co 

(1-38) 

is an incoming wave which satisfies the inhomogeneous wave equation 

( 2) 2 1 a 0 - -
\J - 2" -2 G = -o( T - t) B(y - x) 

Co aT 
(1-39) 

with an impulsive point source acting at the time t and located at the point x. 

Since r is always positive, this solution together with all its derivatives 
must certainly vanish whenever t < T. 

1.3.2 Solutions to Acoustic Equation for a Uniformly Moving Medium 

Now suppose that the velocity U of the medium is constant so that the 

wave motion is governed by equation (1-16). The equation closely resembles 

the stationary -medium wave equation (1-18). This resemblance is not acci­

dental, for suppose we carry out the analysis in a coordinate sy~tem moving 

at the constant velocity U. Then the medium ought to appear at rest, and 

therefore the equation for sound propagation in this coordinate system ought 

to be the stationary -medium wave equation. In fact, introducing the change 

in variable 

t 
T = T for (1-40) 
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into equation (1-16) results in the stationary-medium wave equation 

~ 2) ,2 1 a ,- aq 
\1 - - -- p = \1 . I - Po -, 

C~ a 7,2 a 7 

( 1-41) 

where \1' denotes the operator 

':' a ':' a ... a 
l-+]-+k--

aYl aY2 aY3 

Solutions to the moving-medium wave equation (1-17) can therefore frequently 

be obtained simply by transforming solutions to the stationary-medium wave 

equation (1-41) back to the laboratory frame. Thus, transforming the plane 

wave solution 

. (k- -, ") 
1 . Y -w 7 

P = e - ' for k = /k / = ~ 
Co 

to the wave equation (1-41) (with the source term omitted) back to the fixed 

frame by equation (1-40) shows that 

p = e 
ik· y--(w'+k. U)7 

... 
where U = Ui. This solution represents a plane wave in the fixed laboratory 

frame with a frequency 

w :; W' + k . U = w'(l + M cos e) 

where M = U/ cO is the mean-flow Mach number and e is the angle between 

the direction k/ k of propagation and the mean flow direction (see fig. 1-7). 

The phase speed of the wave is 

v p = ~ = (1 + M cos e)cO = Co + U cos e 

24-
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-.. u 

Figure 1-7. - Plane wave propa­
gation in a constant-velocity 
medium. 

This shows that the wave is traveling with a speed equal to co' the prop­

agation speed relative to the medium, plus U cos e, the component of the 

velocity of the medium in the direction of wave propagation. The frequency in 

the laboratory frame is increased if the medium has a component of its veloc­

ity in the direction of wave motion and is decreased if it has a component in 

the direction opposite to the wave motion. However, the wave has the same 
wavelength, A = 27T/ k, in both reference frames. This is simply a conse­

quence of the fact that the moving wave pattern must appear the same to both a 

stationary and moving observer and only the frequency and apparent velocity 

of the wave can differ. 

1.3.3 Solutions to Acoustic Equation with Velocity Gradients: 

Geometric Acoustics 

Returning now to the general moving-medium wave equation (1-20), with 

source terms neglected, we find that the Fourier components of the pressure 

satisfy the transformed equation 

(1-42) 

where M = U/ cO is the mean-flow Mach number and k = w/ cO. Then the so­

lution to equation (1-20) will be the sum or integral of terms of the form 
Pe-iwT. 
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As in the case where the mean velocity is zero, we write P in the com­

plex polar form 

(1-43) 

so that the general term in the solution is of the form 

(1-44) 

Thus, the wave fronts (surfaces of constant phase) are given by 4> == k[S(y) -

Co T] = Constant; and the phase velocity is given by V p = cOl I'VS I. 
In order to simplify the situation , we shall consider the case where the 

velocity varies slowly with y 2. Thus, we require that the length Lover 

which U changes by a unit amount8 be so large that 

1 
E = - « 1 

kL 

This means that L/ A » 1/ 21T or A« L. Hence, the velocity changes occur 

over a distance of many wavelen~ths. 

We are interested in obtaining solutions to equation (1-42) which are ana­

logous to the plane wave solutions discussed in the preceding sections. Since 

the mean velocity varies slowly on the scale of a wavelength, we anticipate 

that equation (1-42) will have solutions which behave locally as plane waves. 

Thus , suppose there exists a solution of equation (1-42) such that 

8This i s the l ength L for which 

26 
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where 7j = y/ L. SO(O) = 0 and the derivatives of So and AO with respect to 

T/i are of order 1 (i. e . , So and AO change on the scale of 7j). Then expand­

ing So and AO in a Taylor series about 7j = 0 shows that for ky = 0(1) or 

y "* O(A) 

- ~ 2 
A = AO(O) + T/ ' (\7AO)7j=O + O(E ) 

kS = kL[ r7- (~SO)rj=O + 0(E2~ 

where 

~~ a -:- a ~a 
\7=l - -+J -- +k - -

aT/ 1 aT/2 aT/3 

It follows that 

where we have put 

Hence, for changes in T/ of the order of a wavelength, the solution (1-44) re­

duces approximately to the plane wave solution 

In order to find an expression for this solution which is valid for all 

values of y (and not just for y = O (A)), we nondimensionalize the length scales 

in equation (1 -42) with respect to L , introduce equation (1-43) for P with A 

and S given by equation (1 -45). and neglect terms of order E = (kL) - l in the 
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resulting equation. Then upon reverting to dimensional quantities , we obtain 

for the real and imaginary parts of this equation, respectively, 

_ M _0_ A / \7S /2 + 2 oM A ~ ~ = 0 
oy 1 oy 2 oy 1 ay 2 

and 

Since A::/; 0, the latter equation has two families of solutions. The interesting 

solution is 

(1-46) 

... 
where U = iU is the velocity vector. Since the unit normal to the phase sur-

face n is given by 

... \7S 
n=--

/\7S/ 

and U cos e == ij . n is the component of mean velocity normal to the wave 

fronts (see fig. 1-8), equation (1-36) can be written as 

or 

28 
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CP = Constant, 5 = Constant 

Figure 1-8. - Velocity of phase surface. 

Co /V's/ =----
U COS e ± Co 

Now suppose the flow is subsonic. Then since /V's / > 0 , only the plus sign 

can hold and 

U cos e + Co 

The phase velocity V p is therefor e given by 

Co 
V = -- = U cos e + Co 

p /V's/ 

This is identical to the expression for the phase speed in a uniformly moving 

medium given in section 1. 3.2. In order to interpret this result, consider an 
initially plane wave moving to the right in a velocity field which is increasing 

in the upward direction, as shown in figure 1-9. The phase velocity will be 

larger on the upper part of the wave surface than on the bottom. Hence, the 

velocity of the wave surface normal to itself will be larger on the top than on 
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Y2 

----
u / 

/ 
/ 

--...... / 
r-------1-----~~~~----~~---Vf 

Figure 1-9. - Bending of phase surface by mean flow. 

the bottom. As a consequence, the wave front will bend in toward the lower 

velocity region as it moves. Similarly, if the wave is traveling to the left, it 

will bend upward toward the higher velocity region. 

1.4 INTEGRAL FORMULA.S FOR SOLUTIONS TO THE WAVE EQUATION 

1.4. 1 General Formulas 

Before proceeding with the material of this section, it is helpful to recall 

three well-known integral formulas from vector analysis. Thus , let v( T) de­

note an arbitrary region of space bounded (internally or externally) by the sur­

face S( T) (which is generally moving), and let A be an arbitrary vector de­

fined on v( T). Then the divergence theorem (1-35) states that 

(1 -47) 

provided the integrals exist. If V s(y, T) denotes the velocity at any point y of 

the surface S( T), the three-dimensional Leibniz's rule shows that 

(1-48) 
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for any functi on \¥(Y • • ) defined on v{ Tl. Finally , it is a direct consequence 

of the divergence theorem that Green's theorem 

(1-49) 

holds for any two functions \If and tl; defined on v. In this equation we have 

written e\lf l en in place of n . W. 

In this section these formulas will be used to derive an integral formula 

which expresses the solution to the inhomogeneous, uniformly moving medium, 

wave equation 

2 
2 1 DO -

V P - - -- p = -y (y, T) (1 - 50) 
2 2 Co DT 

in terms of a solution G(y, T lx, t) of the equation 

(1-51) 

for an impulsive point source. 9 This result is used extensively in subsequent 

chapters to deduce the effects of solid boundaries on aerodynamic sound 

generation. 

It was shown in section 1. 3.1. 3 for the special case of a stationary me­

dium, that, equation (1-51) possesses a solution (given by eq. (1-38)) at all 

points of space which together with all its derivatives vanishes for t < T. In 

any region v which does not include all of space, equation (1-51) possesses 

many such solutions. Hence, let G denote any solution of equation (1-51) 

satisfying the condi tion 

8C is called a fundamenta l soluti on of the wav(' equati on. 
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for t < T (1-52) 

Then applying Green's formula to p and G and integrating the result with 

respect to T from -T to +T (where T is some large interval of time) show 

that 

_ (T ( [Gy(y, T) _ B(t _ T)B(y - x)p]dy dT IT Jv( T) 

(1-53) 

But since 

it follows from applying Leibniz's rule to the first term and the divergence 

theorem to the second that 

!~ 2 2) f~ j DO DOG _ d DOp DOG_ 
G - p - p -- dy = - G - - p -- dy 

D 2 D 2 dT DT DT 
~~ T T ~rl 

1 ... - ... ~ DOp DOG) -+ (Ui - V s) . n G - - p -- dS(y) 
S(T) D T DT 
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Hence, 

where 

v' = (V - iu) . ~ n s (1-54) 

is the velocity of the surface normal to itself relative to a reference frame 

moving with the velocity iu. The causality condition (1-52) implies that the 

integrated (fir st) term vanishes at the upper limit (T = T). At the lower limit 

this term represents the effects of initial conditions in the remote past (ref. 2, 

p. 837). Since in most aerodynamic sound problems only the time­

stationaryl0 (and not the transient) sound field is of interest, this term will be 

omitted. 11 Hence, 

10 See appendix 1. A, section 1. A. 3. 

l1It is assumed that the boundary condition is such that the effect of any initial 
state will decay with time. In any event, it is always possible to require that 

p 
DOp 
- = 0 
DT 

at T = -T 
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Substituting this result into equation (1-45) and carrying out the integrals 

over the delta functions show that 

- (a v~ DO) - 1- J - {p6Z
,t) - p(y, T) -+ -- G(y, T x,t) dS(y) = 

an c2 DT ° 
° 

if x is in vet) 

if x is not in vet) 

(1-55) 

This equation provides an expression for the acoustic pressure at an arbitrary 

point x within a volume v in terms of the distribution y of sources within 

v and the distribution of the pressure and its derivatives on the boundary of v. 
We make extensive use of it in chapters 3 and 4 to predict the emission of 

aerodynamic sound in the presence of solid boundaries. 

The region v( T) in equation (1-55) can be either exterior or interior to the 

closed surface (or surfaces) S( T). However, for exterior regions the solution 

P(y, T) of equation (1-50) must be such that the surface integral in equa-

tion (1-45) vanishes when carried out over any region enclosing S( T) whose 

boundaries move out to infinity. This will usually occur whenever p(y, T) be­

haves like an outgoing wave at large distances from the source. When applying 

equation (1-55), it is necessary to be sure that the direction of the outward­

drawn normal {l to S is always taken to be from the region v to the region -- -
on the other side of S. 

The preceding argument applies just as well to the case where the sur­
face S( T) is absent. Hence, equation (1-55), with the surface integral 

omitted, holds even when the region v is all of space. However, in this 

case, there is only one possible solution to equation (1- 51) which satisfies con­

dition (1-52) and vanishes at infinity. When U = 0, this is the function GO 
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given by equation (1-38). Then, in this case, equation (1-55) becomes 

(1-56) 

This equation can be used to compute the pressure at any point from the known 

source distribution y whenever the region of interest is all of space. 

More generally, if the surface S is stationary and the velocity U of the 

medium is zero or tangent to the surface (so that n· i = 0), the normal rel­

ative surface velocity v~ becomes the normal surface velocity 

v = V . n n s (1-57) 

and equation (1-55) reduces to the usual integral formula for the wave equation 

i T f - iT 1~ ) {P(X,t) d T yG dy + d T G ap _ p aG dS = 
-T v -T S an an ° 

if x is in v 

if x is not in v 

(1-58) 

Of course, when U = 0, p and G satisfy the inhomogeneous stationary­

medium wave equations 

(1-59) 

2 1 a2G - -'i1 G - --- = -6(t - T)6(x - y) (1-60) 

c~ aT2 
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1.4.2 Boundary Conditions: Green's Function 

1. 4.2. 1 Definition and properties. - Up to this point we have not explic­

itly taken into account the effects of solid boundaries on the sound field. The 

presence of such boundaries imposes certain restrictions (that is boundary 

conditions) on the allowable solutions to the wave equation. 

For the small-amplitude motions consistent with the acoustic approxima­

tion the boundary conditions are usually linear; that is, they consist of linear 

relations between p and its derivatives (and perhaps integrals) specified on 

the boundary of the region in which the solution is being sought. For example, 

in the case of a stationary rigid surface the boundary condition arises from the 

requirement that the normal acoustic velocity u· n vanish at the surface. 

But in this case (since the mean flow, if it exists, m::st be tangent to the sur­
face), it follows from the first equation (1-13) (with f = 0) that 

ap .... 
-=n·Vp=O 
an 

for y on a fixed surface 

This provides a condition which the solution p to the wave equation must sat­

isfy on the boundary. 

Now whenever solid boundaries are present, equation (1-55) cannot, in 

general, be used directly to compute the solutions to the inhomogeneous wave 

equation (1-50) because the pressure and its derivatives which appear in the 

surface integrals cannot be specified independently and the relation between 

them is a priori unknown. However, whenever the solutions of equation (1-50) 

satisfy linear boundary conditions, this difficulty can, in principle, be elim­

inated by imposing additional restrictions on the fundamental solution G. The 

resulting function is then called a Green's function. We shall restrict our at­

tention to the case where the boundary surfaces are stationary12 and the mean 

flow, if it exists, is tangent to the surface. In this case, equation (1-55) re­

duces to equation (1-58). 

12If the motion of the surface has a small amplitude, we can treat the surface as 
stationary at its mean pOSition and take account of its motion through boundary condi­
tions at the mean position of the surface. 
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A Green's function for a region v is defined to be a solution G(y, T!X, t) 
to the inhomogeneous, uniformly moving medium, wave equation (1-51) which 

satisfies linear homogeneous boundary conditions on the surface of S as well 

as the causality condition (1-52). If the region v extends to infinity, we re­

quire, in addition, that G vanish as y-1 when y - 00 . Then the function GO 

defined by equation (1-38) is the Green's function for the case where the region 

v is all of space and the mean flow is zero. It is called the free - spac e 

Green's function. 

When the mean flow is zero, the Green's function satisfies the reciprocity 
relation 13 

G(y, T /X, t) = G(x, -t !y, - T) 

Inserting this relation into equation (1-59) shows that 

where 

2 - 1-\7~(y T!X t) _ ~ a G(y, T x, t) 
x ' , 

c~ at2 
= - oCt - T) o(x - y) 

2 A:}2 A:}2 A:}2 
\7_ = i _V_ + j _V_ + k _V_ 

x 2 2 2 aX1 aX2 aX3 

Thus, G(y, T!X, t) also satisfies the wave equation in the variables x and t . 

But since condition (1 - 52) shows that G vanishes for t < T, we can interpret 

G as the pressure field at the point i and the time t caused by an impulsive 

source located at the point y at the time T. The causality condition (1-52) 

then ensures that events will propagate forward in time. The moving-medium 

Green's function can be interpr eted in a sim Har fashion . 

Suppose that it is desired to find a solution to the inhomogeneous wave 

equation (1-50) subj ect to either of the linear boundary conditions 

13We omit the proof of this important result. The interested reader is referred to 
ref. 2, section 7. 3. 
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Case A: op + b(y, T)p = a(y, T) 
an 

or for y on S (1-61) 
Case B: 

where b and a can be any function of y and T. And suppose that a Green's 

function can be found which satisfies the homogeneous boundary conditions 

Case A: 

Case B : 

aG(y, T/;;, t) + b(y, T)G(y, T/X, t) = 0 
an 

for y on S (1-62) 

Then inserting the corresponding pairs of boundary conditions from equa­

tions (1-61) and (1-62) into the surface integral in equation (1-58) shows that 

for x in j) 

Case A: p(x, t) = fT dT f G(y,T /x,t)y(y,T)dy iT Jj) 

(1-63) 

Case B: p(x, t) = fT dT f G(y, T/i , t)y(y, T)dy iT Jj) 

Thus, once the appropriate Green's function has been found , the solution to 

the wave equation (1-50) subject to the linear boundary conditions (1-61) can 

be expressed in terms of the volume source distribution y and the prescribed 
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boundary values a by using equation (1-63). When no solid boundaries are 

present, this can be accomplished by using equation (1-56). 

Since a Green's function is a solution for the sound field emitted from an 

impulsive point source located at the point y at the time T, equation (1-63) 

shows that in the general case the acoustic pressure is just the superposition 

of the pressures due to the volume sources y(y, T) and the boundary sources 

a(y, T) . 

1. 4.2. 2 Calculation of Green's functions. - There are two fairly general 

methods for finding Green's functions. These may be referred to as the 

method of images and the method of eigenfunctions. We shall first consider 

the method of images. 

1. 4.2. 2. 1 Method of images: Since the only singularity of the Green's 

function G(y, TI;Z, t) occurs at the source point at the time the impulse is ini­

tiated, it must be of the form 

(1-64) 

where GO is the free-space Green's function (eq. (1-28)) and h is a solution 

of the homogeneous wave equation with no singularities in lJ. The details of 

the method are best illustrated by considering a particular example. 

Thus, suppose that the mean flow is zero and let lJ be the region y 2 2: 0 

(shown in fig. 1-10). We shall construct a Green's function whose normal 

derivative vanishes on the solid boundary y 2 = 0 of this region. The function 

h must be chosen so that this boundary condition is satisfied. Since 

o - 1- 1 ~ r~ G (y, T x, t) = - 6 T - t + -
41Tr Co 

is a solution to the inhomogeneous wave equation, and since this equation is 

invariant under the transformation y 2 - -y 2' it follows that (1 / 47Tr ') 6( T - t + 

r'l cO)' with r' = Ix -y' I and y' = h1 -]Y2 + kY3' is also a solution to this 

equation. But because y' is never in lJ, this function is nonsingular in this 

region and therefore satisfies the conditions imposed on the function h. 

Hence, 
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r' 

Figure 1-10. - Coordinate system for half-space Green's function. 

- 1- 1 ~ r) 1 ~ r ') G(y, T x, t) = -- 6 T - t + - + --, 6 T - t +-
47Tr Co 47TT Co 

(1-65) 

satisfies the wave equation (1-59) in the region v. It is now easy to verify 

that it also satisfies the boundary condition 

at Y2 = 0 

and is therefore the required Green's function. 

1. 4.2.2.2 Method of eigenfunctions: We now turn to the method of eigen­

functions. Suppose that the function b in the boundary conditions (1-62) is in­

dependent of T. Then it can be seen from equation (1-51) that G depends on 

T and t only in the combination T - t. Hence, upon taking the T-Fourier 

transform of this equation and the boundary conditions (1-62) and introducing 
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the function G w(Y IX), which is related to the Fourier transform t§ jy lx, t) 
of G by 

we find (after taking complex conjugates) that 14 

and that 

Case A: 

Case B: 

2 2 a . a 2 -- --~ 2 ) \1 - M - - 21Mk - + k Gw(Y Ix) = -6(x - y) 

ayi ay 1 

aGw 
- + bG = 0 an w 

G = 0 w 

for y on S 

(1-66) 

(1-67) 

(1-68) 

where as usual k == wl co and M == U/ cO is the mean-flow Mach number. 

Then it follows from equation (1-66) that the time -dependent Green's function 

G can be determined from the solution Gw to this boundary-value problem 

by 

(1-69) 

It is frequently possible to solve the problem posed by equations (1-67) 

and (1-68) by expanding the solutions in terms of appropriate "eigenfunctions" 

of equation (1-68). However, caution must be used in carrying out the inver­

sion integral in equation (1-69) since G will generally have singularities 
w 

along the w-axis. It will then be necessary to deform the contour of integra-

tion around these singularities in a manner dictated by the causality condition 

(1 -52). 

14 
It is easy to show that causality condition (1-52) will be satisfied if the solution to 

this equation represents an outgoing wave at infinity. 
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Yz 

Figu re 1-11. - Duct geometry for Green's function. 

These ideas are again best illustrated by considering an example . Thus, 
suppose the region 1/ is the interior of an infinite , straight , hard-walled duct 
(shown in fig. 1-11) whose cross-sectional area is A and whose axis is in the 
y 1-direction. In order to construct the Green 's function Gw which satisfies 
the boundary condition 

for y on S 

it is convenient to first consider the functions 'IF sa tisfying the two­
dimensional Helmholtz equation 

in the region A and the boundary condition 

42 

a'lF = 0 
an 

on the boundary D of A 

0-70) 

(1-71) 

(1-72) 
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It can be shown 15 that such solutions exist only for a discrete set of real 

values, say Kn for n = 0, 1,2, . " , of the constant K, called eigenvalues. 

The corresponding solutions, ~ n' are called eigenfunctions. The eigenfunc­

tions satisfy the orthogonality condition 

1 {o ifm*n 

'A ~m~~ dY2dY3 = rn if m =n 
(1-73) 

where 

(1-74) 

We attempt to expand the solution to equation (1-67) in terms of eigen­

functions ~ n to obtain 

Then the boundary condition (1-70) on the surface of the cylinder is automati­

cally satisfied. Substituting this expansion into equation (1-67), multiplying 

the result by ~~, and integrating over the cross-sectional area A show, in 

view of equations (1-72) to (1-74), that the expansion coefficients fm satisfy 

the equation 

where 

15 See, e. g., ref. 2, ch. 11. 
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But the solution to this equation is 

where 

(1-75) 

And in order to ensure that this solution remains bounded for large values of 
Ix 1 - Y 1 I for all k and Km , we must choose the branch of the square root in 

equation (1-75) so that it is equal to i times the absolute value of the radical 
when k 2 < {:32 K~. Hence, 

(1-76) 

Finally, substituting this into the inversion formula (1-69) shows that the 
Green's function is 

00 

x (1-77) 

The contour of integration in the complex w-plane which ensures that the 
causality condition (1-52) is satisfied is shown in figure 1-12. 
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/Path of integ ration 

--~====E==3~------ Rew -cd3kn ", cd3kn 
'~ Branch cut for square root 

Figure 1-12. - Contour of integration for inversion of Green's function. 

In a number of important cases 16 it is convenient to express the index n 

in terms of a doubly infinite set of indices, say m and n. Then the eigen­

values are denoted by Km n' the eigenfunctions by ~m n' and equation (1-77) , , 
becomes 

x 

JW(T_t)+Mk(Y1_X 1hkn,m !Y1-x 1 ~ 
L {3 2 {3 2 J 

e dw (1-78) 
k n,m 

For example, in the case of a circular duct of radius R, it is easy to see 

by introducing the polar coordinates 

16When the surface D is a coordinate surface in a coordinate system where equa­
tion (1-71) is separable. 
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into equation (1-71) that the eigenfunctions w are given by m,n 

(1-79) 

where J m is the Bessel function of order m and is the nth root of Km n , 

(1-80) 

~ 2 m2) 2 r = 7T R - -- J (K R) m,n 2 m m,n 
Km n , 

(1-81) 

and m = 0, ±1, ±2, ... , n = 1,2, ... 

1.5 SOURCE DISTRIBUTION IN FREE SPACE: MULTIPOLE EXPANSION 

1.5.1 Interpretation of Solution 

The simplest case discussed in section 1. 4 occurs when the mean flow is 

zero and there are no solid boundaries present. The sound field due to a local­

ized source distribution y is then given by equation (1-56). But inserting the 

expression (1-38) for the free-space Green's function into this equation and 

carrying out the integration with respect to T show that 

f ~ r) y Y,t --

p(x, t) = ~ Co dy 
47T r 

(1-82) 
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w her e as usual 

r == !x - y! 

The integration is over all of space, but only those points where y(y, T) is non­

zero contribute to the integral. We, of course, assume that y vanishes fast 

enough as !y I - 00 so that the integral converges. 

Comparing equation (1 - 82) with equation (1-36) shows that the volume el­

ement dy emits an elementary wave 

y(y,t - ~) 
1 Co 

41T r 

which is exactly the same as that emitted from an acoustic point source of 

strength y and that the resultant acoustic pressure field is just the super ­

position of these solutions. 

Since the time it takes a sound wave to travel a distance r is r i cO' the 

time t - (r i cO) which appears in equation (1-82) is just the time at which the 

sound wave had to be emitted from the point y in order to reach the observa ­

tion point x at the time t. It is called the retarded time. 

1.5.2 Multipole Expansion 

Expanding 17 the integrand in equation (1-82) in a Taylor series (with re ­

spect to the variable r = x -y) about the point r = x while treating the var ­

iable y as constant shows that 

17 The expansion procedure used in this section follows the treatment of Doak 
(ref. 3). 
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Y(Y' t - -cro)~ aj +k+Z 
-----

, k l 41Tr 
ar]1 ar 2 ar 3 r =x 

j: k: Z : 47TX 

Substituting this into equation (1-82) shows that 

(1-83) 

where 

is called the instantaneous multipole moment and the j, k, l th term of the ex­

pansion (1-83) is called a multipole of order 2j+k+l. Of course, it is as­

sumed that the source distribution vanishes at infinity rapidly enough to en­

sure convergence. 

Since, as shown in section 1. 3. 1. 3 , each term 

-m'k t--1 (x) 
41T X ], ,l Co 
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is a solution to the wave equation and since, as can be easily verified, the 

derivative of a solution to the homogeneous wave equation is also a solution, 

each term in the multipole expansion (1-83) must be a solution of this equation. 

If there exist 3N functions 1/1. .. . (y, t) which vanish together 
11' 12, 13, ... ,IN 

with their first N derivatives sufficiently fast as y - 0() such that 

(1-84) 

it can be shown18 that 

m. k l (t) == 0 J, , 
for all j + k + l < N 

Thus, the first term in the multipole expansion will be a pole of order 2N 

and, aside from this, only higher order poles will occur in the expansion. 

For example, we have seen that an applied force 1 results in a source term 

in the wave equation of the form 

Hence, the lowest order poles appearing in the multipole expansion of a solu­

tion to this equation will be poles of order 2 called dipoles. 

1, . " 
An example of how tlns assertIOn can be proved for the case where N -= 2 is 

given in section 2. 4. 
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'.5.3 Behavior at Large Distances From Source 

Since 

as x - 0() 

and 

a ~ x) xi a (x) -m. k l t-- =---m. k l t--
aXi J, , Co c OX at J " Co 

It follows that for large x, equation (1-83) becomes 

0() 

p(x, t) ~ (1-85) 

j,k,l=O 

Now suppose that the source distribution y is essentially confined to a 

region whose size is of order L. Then the multipole moments are of order 

where (y) denotes the average value of y over the source region. And if 

T P is a typical period of oscillation of the sound source (so that ~ = cOT P is 

a typical wavelength of the sound), it follows that the j, k, l th term in equa­

tion (1-85) is of order 
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Hence, if the source region is very small compared to a typical wave­

length, only the lowest order poles which occur in the multipole expansion 

will contribute to the pressure field at large distances from the source. A 

source distribution satisfying this condition is said to be compact. Thus, for 

a compact source, all the poles which contribute to the sound field at large 

distances will be of the same order and this order will be equal to the largest 

integer N for which the source distribution y can be expressed in the form 
(1-84). For this reason, a source distribution which can be expressed in the 

form (1-84) is called a multipole source of order 2N. Clearly, higher order 

poles will be much less efficient emitters of sound than lower order poles 

whenever the source region is compact. If N = 0 (i. e., if y cannot be 

expressed as a derivative which vanishes at infinity or on the boundary of the 

source region), the source is called a monopole, or a simple source. We 

have already indicated that when N = 1 the source is called a dipole source, 

and if N = 2 the source is called a quadrupole. 
It can be shown that any dipole source can be constructed by bringing to­

gether two equal-strength monopole sources in such a way that the product of 

their strength times their distance remains constant. Similarly, any quad­

rupole source can be constructed by bringing together two dipoles, and so on 

with higher order sources. 

1.6 RADIATION FIELD 

Again suppose that the mean flow is zero. An important special case of 

equation (1-58) occurs when G is taken to be the free-space Green's function 
GO. Thus, if there are no volume sources present in v (i. e., y == 0 in 

v), inserting the free-space Green's function into equation (1-58) shows that 

i T dTj fco op _ P OGO)dS = {P(X, t) 
\: on on 0 x outside v 

-T S 

(1-86) 

x in v 

(The formula obtained by substituting equation (1-38) into this formula and 

performing the integration with respect to T is known as Kirchhoff's theorem. ) 
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v 

P 

- P = Po 

-s 

Po 

Figure 1-13. - Interior and exterior regions. 

This equation applies to any solution p of the homogeneous stationary­

medium wave equation 

(1-87) 

within any region v bounded externally or internally (or both) by the surface 

S (as shown in fig . 1- 13). 

Let us apply equation (1-86) to a solution p of equation (1-87) in the re­

gion v exterior to a closed surface S and also to a solution PO of this equa­

tion in the region Vo interior to S. Suppose , in addition, that the solution 

Po takes on the same boundary values on S as does the exterior solution p. 

Then for any point x in v 

i T 1( ) ° ap aGO -d T G ~ - p - dS = p(x , t) 
-T S an an 

~ 0 apo aGO) G --p- dS = 0 
an an 
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We must realize that the direction of the normal in the first formula is oppo­

site to that in the second formula; hence, a/an in the first formula is -a/ an 

in the second. Then subtracting these two equations shows that 

0-88) 

where we have put 

- _ ap apo 
QI(y, T) = - - - for y on S 

an an 

Upon inserting equation (1-38) into (1-88) and carrying out the integration 

with respect to T we obtain 

p(x, t) = - - QI y, t - - dS(y) - 1 i 1 (- r) - (1-89) 
41T S r Co 

Equation 0-89) shows that the pressure at any point x of an exterior region 

v (which is devoid of any volume sources) is just the sum of the pressure 

fields resulting from a distribution of simple sources over its bounding sur­

face S. 

Now consider that case where all the sources producing the sound field 

and all solid boundaries which reflect or interact with the sound are confined 

to a finite region of space, and let S be an imaginary surface enclosing these 

sources and reflecting surfaces as shown in figure 1-14. Then equation (1-89) 

describes the sound pressure in the region exterior to S. 

For a source-free region with zero mean flow the first equation (1-13), 

expressed in terms of the variables x and t, becomes 

-au Po - = -V':;p 
at x 
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Figure 1-14. - Emission from bounded source 
region. 

But inserting equation (1-89) into this equation shows that 

au 1 f;- [1 (- r) 1 a a (- r )~ -- = -- - - a y, t - - + - - y, t - - dS(y) 
at 41TPo S r2 r Co Co at Co 

Hence , there exists a function h(y, T) such that 

and 

a(y, T) = ah(y, T) 

aT 

- 1 [ r [1 (- r) 1 ah(- r)~ -u = -- - -h y,t - - +-- y,t - - dS(y) 
41TPo S r2 r Co Co at Co 

111 ah(- r) -p = - - - y, t - - dS(y) 
41T r at Co 

S 

If T is a typical period of oscillation of the sound source and hence if 
- P 

( 1-90) 

(1-91) 

A = cOT is a typical wavelength of the sound, the ratio of the first to second 
p -

terms in the integrand in equation (1-90) is of the order Air. Thus, suppose 

that the observation point is many wavelengths distant from the surface S; 

that is, r > > >: (for any point y on S). Then the first term in equation (1-90) 
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can be neglected compared with the second to obtain 

(1-92) 

Now suppose that /2Z / is much larger than the largest dimension of S. 
Then for y on S 

Upon inserting this result into equations (1-91) and (1-92) we find that 

p(x, t) 

~(2Z, t) ~ _1_ np(2Z, t) 
POcO 

(1-93) 

where n = 2Z/ x is the unit vector in the 2Z-direction. The integral depends on 

the magnitude x of the vector 2Z only in the combination t - (x/ cO) and other­

wise depends only on its orientation. The latter quantity can be characterized 

by the two polar coordinates e and cp shown in figure 1-15. Thus, the time 

derivative of the integral in the first equation (1-93) depends only on the var­

iables t - (x/ cO), e, and cp and therefore 

- 1 ~ x J p(x, t) ~ - g t - -, e, cp 
47TX Co 

(1-94) 

The radiation field, or far field, is defined to be that region of space 

which is far enough away from the sources and reflecting obj ect, in terms of 

both the wavelength and the size of the source region, for the pressure and 
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Fig u re 1-15. - Pola r coordinates of obse rvation point. 

velocity to have the behavior given by equations (1-93) and (1-94). Ideally, a 

source system can have a radiation field only when it is embedded in a uniform 

medium of infinite extent. In practice, especially in aeronautical applications, 

there is usually a region at some distance from the source system into which 

no appreciable scattered sound comes from reflecting objects lying even fur­

ther from the source system and hence in which radiation field behavior is ap­

proximately achieved. 

Equation (1 -93) shows that the velocity u = nUr is purely radial, and its 

magnitude ur is related to the pressure by 

(1-95) 

The ratio POcO between the pressure and velocity in the radiation field is 

called the characteristic acoustic impedance of the medium. It is equal to 429 

newton -seconds per cubic meter for air at 00 C and 1-atmosphere pressure. 
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1. 7 ENERGY RELATIONS 

1.7. 1 Basic Definitions 

In this section we shall define acoustic energy density E and an acoustic 

energy flux vector I for any flow governed by the linearized gas -dynamic 

equations (1-11). Perhaps the most obvious procedure which comes to mind 

when attempting to introduce a suitable definition of these quantities is to sim­

ply neglect higher order terms in the expressions for the ordinary energy den­

sity and energy flux vectors of an inviscid fluid. However, this approach in­

troduces certain difficulties. Thus, when the energy density and energy flux 

associated with the mean background flow are separated out, the remaining 

terms are of second order . 19 But some of these terms are not simply prod­

ucts of two first-order terms and can therefore not be calculated from the so­

lution to the linear gas -dynamic equations (1-11). In order to obtain a useful 

definition of E and I, we must require that they can be calculated entirely 

from solutions to equations (1-11). 

If lJ is any volume which is free from external sources and enclosed by 

a surface S, the net flux of acoustic energy through S must certainly equal 

the time rate of change of energy within lI. Thus, 

d 1 - 1- ... - - E dy = I . n dS 
d T lJ S 

But since this must hold for an arbitrary volume lJ, it follows from the diver­

gence theorem that E and I must satisfy the conservation law or energy 

equation 

19 The process used in the derivation of the acroustic equations can be thought of 
as the first step in obtaining an asymptotic expansion of the flow variables in powers of 
the (small) amplitude E of the acoustic disturbance. Since the variables which satisfy 
the acoustic equations are of the same order as this amplitude, they can be termed 
first- order quantities. The next smallest terms in the expansion will be of the order 
of the amplitude squared and can be called second- order terms. Clearly, the product 
of two first- order terms is also a second-order term. 
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aE -
-+\7·1=0 ( 1-96) 
a T 

in any source-free region. 

It was shown by Mohring (ref. 4) that it is possible to define an E and I 

entirely in terms of first-order quantities which satisfy the conservation law 

(1-96) by using the Clebsch potentials T), <p, a, and (3 introduced in appen­

dix B by the relations20 

Dr) = -0 
DT 

v = \7 <p + S\7T) + a\7{3 

where 0 is the absolute temperature and 

D a -- = -+v·\7 
DT a T 

(1-97) 

(1-98) 

is the derivative following the motion of a fluid particle. It is also shown in 

this appendix that these potentials can always be chosen (provided the external 

force is conservative) to satisfy the equations 

Drn 2 
_'t'= V + 0S - H 
DT 

(1-99) 

20 The development given by Mohring is followed fairly closely in this section. 
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_ 1 2 _ a cP a1] a{3 
H = h+-v +n=---s--a- (1-100) 

2 aT aT aT 

DH 1 ap an 
- = --+- (1-101) 
DT P aT aT 

Jf == H - K - SK - aK{3 
cP 1] 

(1-102) 

where h is the specific enthalpy , n is defined by 

- V'n 

and K CP' K1]' and K{3 are constants. 
Now consider a flow governed by the linearized gas -dynamic equa­

tions (1-11). Corresponding to this linearization the Clebsch potentials can 

b ·tt 21 e wn en as 

where the primes denote a small fluctuating part (whose squares can be neg­

lected). Upon inserting these results into equations (1 - 97) to (1-102) the 

zeroth-order equations become 

21The zeroth- order time-dependent terms give maximal generality while still 
leaving the zeroth-order physical variables such as v 0' PO ' and Po independent of 
time. 

59 

- ~- -- -- --- --- -- --



AEROACOUSTI CS 

(1-103) 

and the first-order equations become 

- " S ' (3 " (3 u = 'il cp + S 'il17 0 + 0 'il17 + aO 'il + a 'il 0 ( 1-104) 

(1-105) 

a(3 ' - ,-
- + v O' 'il (3 + u , 'il (30 = 0 
aT 

where 

g : h-0S (1-106) 
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, , , 
, ,- - " , 0 cp 071 0{3 

.JF = h + u . vo + n - S K - Ci K ,Q = - - - So -- CiO -71 ~ OT OT OT 
(1-107) 

(1-108) 

Before using these potentials to derive an energy equation , we shall first 

prove that the following two identities hold: 

If the third equation (1-11) and equations (1-105) are used to eliminate vo on 

the left side of equation (1-109), we obtain 

But equations (1-104) and (1-107) show that this expression is equal to the 

right side of equation 0-109). 

Since 

, _ (opo~ I (apo), S' p - - P+-
oPO S asO o Po 

-~~'-- ~ ~ - - - ---
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and 

equation (1-110) is a consequence of equation (1-5) and the Maxwell relation 

(see, e. g. , ref. 5, ch. XIX) 

It can now be shown that the intensity 

(1 - 111) 

satisfies a conservation equation. Thus, it follows from the second equation 

(1-11) and equation (1-108) that 
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.... - ,.... - , .... 
V • I =:If" V· (pou + P v 0) + (pou + P v 0) . v:;f' 

, , apt - .JP' + ~ apt _ p' (a:;f' + an') 
= :;f poq -:If' - + Po u· v "'" 

aT Po aT a TaT 

( , , , ') - as ,a a ,aT] ,a{3 , 
+ pv o' - VT] + - V{3 - - vS - - Va 

aT aT aT aT 

Hence, upon using equations (1-109) and (1-110), we obtain the conservation 
equation 

(1-112) 

where 

, , , , 1 (ae~ ,2 (S VT] + a V{3 ) + - Po - S 
2 asO Po 

(1-113) 

Thus, with the acoustic energy flux defined by equation (1-111) and the acous­

tic energy defined by equation (1-113), the conser~ation law (1-96) holds in 
any source -free region. The energy flux vector I is called the acoustic 

intensity. These definitions, however, are .certainly not unique for, if A is 

any vector formed from the Clebsch potentials and the physical variables, 

E - V . A and I + aA/ a T will also satisfy the energy equation (1-112). 
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1.7.2 Time-Averaged Intens ity and Power 

Taking the time average over the time interval T 2 - T 1 of the energy 

equation (1 - 112) shows that 

If the flow is periodic or stationary and if T 2 - T 1 is taken to be the period 

in the first case and equal to infinity in the second case, the left s ide of this 

equation will vanish . Hence, for any region which is free from acoustic 

sources 

\7·1 = 0 (1 - 114) 

and this implies that 

(1 - 115) 

for any surface 8 enclosing a source -free region. 

The acoustic power crossing a surface 8 (closed or opened) is defined as 

f? = 1 I . ~ d8 
8 

Hence, if 8 1 and 82 are any two surfaces enclosing a source -free region, 

equation (1 - 115) shows that the total acoustic power crossing 81 is equal to 

that crossing 82. It is this property , which is clearly a direct consequence 

of the solenoidal property (1 - 115) of the acoustic intensity, from which the 

concepts of acoustic power and mean acoustic intensity derive their utility. 

One slight inconvenience associated with the definition (1 - 111) for the 

acoustic intensity is that it does not determine this quantity in terms of the 
T T_ 

basic flow variables p, h , u , and so forth, but requires the use of the 

Clebsch potential s . Moreover, these potentials must be found by solving 
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additional equations (although these equations are readily solved whenever the 

governing acoustic equations can be solved). We shall see in the next section, 

however, that in certain important. cases the Clebsch potentials do not occur 

in the expressions for I and E . 

1.7 . 3 Isentropic F lows 

1. 7.3 . 1 Interpretation of energy . - The case which is perhaps of most 

interest is when the entropy is constant so that S = So = S' = O. Equation (1 -

B 6) then show s that 

1 ' - dp = E..... + Second -order terms 
P Po 

Hence, it follows from equations (1 - 14) and (1 - 107) that equations (1 - 111) and 

(1-113) become , respectively , 

(1 - 117) 

In order to interpret the first term in equation (1-117), notice that for a 

constant-entropy process the work done per unit mass by the acoustic pres­

sure p' against the surroundings is 

j
p 

" ,2 , 1 P dp P . P d - = - -- = - - - + Third-order terms 
P 2 2 2 2 P Co 2pOcO 

o 
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Hence, the work done per unit volume by this pressure is 

,2 
- -p-- + Third-order terms 

2 2pOC O 

We can, therefore, interpret the first term, p,2 /2pOC~' in E as the potential 

energy per unit volume associated with the acoustic field. 

The kinetic energy per unit volume is one -half the absolute value of the 

momentum density squared divided by the density. The momentum density in 

the acoustic wave is 

pv - PovO = PO~ + p'vo + Second-order terms 

Hence, the kinetic energy per unit volume is 

/ 
- ,- /2 2 

POu + P v 0 POu ,--
------ = -- + P u . Vo + Third-order terms 

2p 2 

The second term in equation (1-117) can therefore be interpreted as the kinetic 

energy per unit volume in the wave. The third term is clearly the potential 

energy per unit volume associated with the external forces. 

In order to interpret the last term in equation (1-117), it is convenient to 
- -introduce the vorticity vector, W =' 'il x v. It is a measure of the average 

angular velocity of the flow. Taking the curl of equation (1-98) shows that 

W = 'il x v = 'ilS x 'il17 + 'il a x 'il{3 

The first term in this equation accounts for the vorticity introduced by entropy 

gradients, while the second term represents the vorticity introduced external 

to the flow. A flow with zero vorticity is said to be irrotationa~. In such 

flows the entropy must be constant. If the curl of a vector is zero, it can be 

expressed as the gradient of a scalar. Thus, in the case of an isentropic ir­

rotational flow, no generality is lost if we assume that the scalar potential for 
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the velocity is cp (see eq. (1-98)) and that Q' and {3 are zero. The last 

term in equation (1-116) is then a measure of additional energy in the wave 

associated with the angular momentum of the flow. 

1. 7.3.2 Irrotational flows. - For irrotational flows, equations (1-116) 

and (1-117) therefore reduce to 

(1-118) 

(1-119) 

These relations were first obtained for isentropic irrotational flows by 

Chernov (ref. 6). However, Blokhintzev (ref. 1) had previously shown that 

the definition (1-118) for the acoustic energy flux leads to a proper energy 

equation for the case where the wavelength of the sound is very short com­

pared with the scale on which the mean velocity changes. 22 

For regions of the fluid where the mean velocity Vo and the potentia];. n' 
are negligible, equations (1-118) and (1-119) reduce to the definitions of I 

and E used in classical acoustics 

,-
1= P u (1-120) 

(1-121) 

1. 7. 3. 2. 1 Relations for radiation field: One important region where it is 

usually possible to assume that Vo = n' = 0 and therefore that equations (1-

120) and (1-121) hold is the radiation field. In this region the velocity is re­

lated to the pressure by equation 0-93). Hence, it follows from equation (1-

120) that the intensity is in the radial direction n and is given by 

22 Which is the case treated in section 1. 3. 3. 

67 

-~~~-- -- - -- --



AEROACOUSTI CS 

where 

(1-122) 

Taking the appropriate time average of equation (1 -122) shows that 

(1 -123) 

Thus , in the radiation field the mean acoustic intensity is proportional to the 

mean square acoustic pressure. Now most microphones in most cases meas­

ure root-mean-square (rms) sound pressure, and the rms fluctuating pres­

sure at the ear is believed to be most closely related to the sensation of loud­

ness. Since equation (1-123) only holds under special circumstances, the 

acoustic intensity does not always provide a measure of the signal which would 

be sensed by the ear or a microphone. 

An ear, and usually a microphone, is basically a diaphragm encased in a 

reflecting object (head or microphone housing). If the microphone housing is 

not small compared with the wavelength, the pressure it senses is not the 

same as would exist if the microphone were not present. This difference is 

the result of the pressure increase caused by the sound radiated from the 

housing. 

Equations (1-94) and (1-123) show that 

But it is shown in appendix 1. A that the time average is independent of trans­

lations in time for a ny periodic or time-stationary process. Hence, 
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1 2 
1= ----g (t , 8, cp) 

2 2 
167T POcOx 

Thus , the average intensity in the radiation field is proportional to x- 2 

If the sound field is periodic so that 

00 

p = L 
n =- oo 

P e -iwnt 
n 

it follows from equation (1-123) and equation (1-A7) that 

This equation shows that we can interpret the quantity 

IP n l2 

In - - --
POcO 

as the averag e acoustic energy flux being carried by the nth harmonic. It 

can ther efore be called the intensity spectrum. It follows from equation 

(l-A6) that it is related to the normalized pressure autocorrelation function 

r( T) b y 

r( T) ;: p(t)p(t + T) = 

POCO 

(1-124) 
n= - oo 

If the sound field is time stationary, it follows from equation (1-123) and 

equation (1-A22) that 
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where Sl1 (w) is the Fourier transform of the pressure ~utocorrelation func­

tion p(t)p(t + T). Hence, we can interpret the quantity Iw :; Sl1(w) / POcO as 

the average acoustic energy flux per unit frequency and it can therefore be 

called the intensity spectrum. It follows from equation (1-A21) that it is re-

1ated to the normalized pressure autocorrelation function r( T) by 

(1-125) 

These relations have only been shown to hold in the radiation field and do not, 

in general, hold at points near the source region. 

1. 7.3.2.2 Unidirectional transversely sheared mean flow: When the 

mean flow is given by equation (1-12), we can take 

K = e 
17 0 

1 2 O!o = - U 
2 

17 0 = 0 
1 

CPo = - Uy 1 
2 

and equations (1-103) will be automatically satisfied. When these relations 

are substituted into equations (1-105) (with Vo = iU), we obtain a set of first­

order equations in the variables T and y 1 which can easily be solved for the 

perturqation potentials. However, these solutions are best left to specific 

cases. A solution is carried out for a duct flow in reference 4. 

1.8 MOVING SOUND SOURCES 

The sound emission from any real moving source is generally complicated 

by such effects as the interaction of the sound field with the (usually turbulent) 

flow about the body or even a back reaction of the flow on the sound source. 

However, in order to illustrate the essential features of the process, we shall 

consider the sound emitted from an ideal point source where no such flow re­

actions are present. We shall also limit the discussion to the case where the 

source is moving uniformly (no acceleration). As will be shown in chapter 2 
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the acceleration of the source can result in sound emission even if the source 

has no oscillations of its own. 

1 .8. 1 Solution to Equations 

Consider a source moving with a constant velocity V 0 through an infinite 

medium otherwise at rest. The volume source density is then given by 

Such a source could result , for example, from the heating and subsequent ex­

pansion caused by a modulated beam of radiation focused on a point moving 

through the fluid. 

The wave equation (1-18) for the sound pressure now becomes 

It is convenient to introduce a velocity potential t/I by 

(1-126) 

so that 

Upon comparing this with equation (1-59), we find that equations (1-38) and 

(1-56) show its solution to be 
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(1-127) 

In order to evaluate the integral , we use the identity (which holds for any 

functions f a nd g of T) 

where 

00 

_ 00 

i is the i th root of Te 

Then upon putting 

it follows that 
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and therefore that equation (1-127) can be written a s 

where 

- Po 0(x , t) = -
47T 2 i -

OTe -VO x . 
1-------+ Ix -VoT~ 1 

'--_-J Co 
i 

i is the ith solution of Te 

(1-130) 

(1-131) 

This equation , being quadratic in Te , will , in general , have two roots which 

we shall denote by T:. There will then be two terms in the solution given b y 

equation (1-130) , which we shall denote by lj;±. Hence , if we introduce the 

source Mach number 

(1-132) 

and the vector 

(1-133) 

the two terms which appear in equation (1-130) can be written as 

(1-134) 
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where 

(1-135) 

is the cosine of the angle between the vectors R± and MO. And equation 

(1 -131) , which determines the retarded time, can be written as 

(1-136) 

1.8.2 Interpretation of Solution 

Equation (1-133) shows that R is simply the vector between the observa­

tion point ;Z and the position of the source at the time Te (see fig. 1-16). 

But equation (1-136) shows that the length R of this vector is exactly equal to 

the distance cO(t - Te) which the sound wave, arriving at x at the time t, 

has traveled in the time interval t - Te. The sound wave emitted by the 

source at time Te will therefore just reach the observer at x at the time t. 
Hence, R is the distance between the observation point and the source point at 

the time of emission of the sound wave, and Te is the time at which the sound 

wave arriving at x at the time t was emitted (or the retarded time). 

~-------------v~--------------~ 

Figure 1-16. - Orientation of source and observer. 
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Inserting equation (1-136) into equation (1 - 133) and squaring the result 

gives 

This equation can be solved to obtain 

(1-137) 

If MO is less than 1 (i. e., subsonic source motion), the radical will al­

ways be larger than the first term in the numerator . But since R must be 

positive, only the plus sign in equation (1 - 137) can hold. Thus, for sUbsonic 

source motion, there can only be one source location from which the sound 

arriving at x at time t can be emitted. 
When the source motion is supersonic, both positive and negative roots 

can occur. But then the radical will be imaginary (i. e. , no solutions for R 

will exist) unless 

< 1 

Upon defining the Mach angle a by 

- - --"-- -
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and putting 

(as shown in fig. 1- 17) we see that this condition requires that the observation 

point lie within a cone having its vertex at the source and a semivertex angle 

equal to the Mach angle. It is called the Mach cone. Thus, if the observation 

point is outside the Mach cone, no solutions will exist. In order to interpret 
these results, consider the circles shown in figures 1-18 and 1- 19. They cor ­

respond to the surfaces which "contain" the sound emitted by the source at 

certain fixed instants of time, say t = 0, t 1, t 2, and so forth. 

Figure 1- 18 is drawn for the case where source speed is less than the 

speed of sound. It shows that only one of these surfaces can pass through any 

given observation point O. The sound on the surface passing through the 

point 0 in the figure was emitted by the source at the time t = t2 when it 

was located at x = V t 2. s s 
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x Sou rce position at ti me of 
emission of wave front 

Sound emitted 
at t = tl 

Figure 1-18. - Subsonic source motion (at time tl. Source Mach 
number. Mo. 213. 

Notice that the surfaces are closer together in the forward direction (and 

farther apart in the backward direction) than they would be if the source were 

stationary. Thus, more of these surfaces will pass an observer in front of 

the source in a fixed interval of time than if the observer were behind the 

source. Since the total amount of energy emitted by the source in this time 

interval is carried between the first and last surfaces enclosing this interval, 

we anticipate that the intensity of the sound (energy flow per unit time) re­

ceived by an observer in front of the source will be larger than the intensity 

received at a point behind the source. 

When the source is moving faster than the speed of sound (i. e., super­

sonic source motion) , the situation is quite different. In this case the source 

77 



AERO.A.COUSTI CS 

t = 0 

X Source position at time of 

, 
I 
I 

emission of wave front 

L Sound emitted at t = tl 
LSound emitted at t = 0 

Figure 1-19. - Supersonic source motion (at time I). 

I Mach 
angle, a 

= t 

overtakes the sound it emits, and the surfaces "containing" the sound take on 

the configuration shown in figure 1- 19. They are now all tangent to the Mach 

cone and there will be at any time t two such surfaces passing any fixed ob ­

servation point 0 located within the Mach cone. The sound reaching these 

surfaces will have been emitted in the past by the source when it-was at two 

different positions. (In this figure the sound was emitted at the times t1 and 

t2 when the source was at the positions x~ = VOt1 and x~ = VOt2' respec­
tively.) An observer located outside the Mach cone will hear no sound at the 

time t. Thus, an observer located at a fixed point will hear no sound until 

the Mach cone passes. After that he will hear, at any instant of time, sound 

coming from two different points. When the Mach cone passes the observer, 

the sound field will be particularly intense since all the surfaces coalesce 

along this line. 

1.8.3 Explicit Expression for Pressure Field 

In order to obtain an explicit expression for the pressure fluctuations, 

notice that equations (1-131) to 0-136) show 
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±( ±) -- - ( 2)± -R 1 - MO cos e = (x - Vot) . MO - 1 - MO R (1-138) 

Differentiating this equation and using equation (1-137) therefore shows that 

M (M - cos e±) 
~.:! R±(l - M cos e±) = _o....!......_o ___ ...:... 
Co dt ° 1 - MO cos e± 

(1-139) 

and hence that 

- -- - - ------ (1-140) 

Thus, equation (1-134) can be inserted into equation (1-126) to obtain 

(1-141) 

where 

For supersonic source motion, equation (1-141) becomes singular whenever 

the angle e± equals cos-1 (l/Mo). It can be shown23 that this occurs only 

when the observer is on the Mach cone. 

If the source motion is subsonic, the first term in equation (1-141) will 

always dominate at large distances from the source. The equation then re­

sembles the solution for a stationary point source. The principal difference 

23By substituting equation (1-137) into equation (1-138) and recalling that the ob­
server is on the Mach cone only when the radical in equation (1-137) vanishes. 
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is the convection factor (1 - MO cos e±)-2, which appears in equation (1-141) 

and causes the pressure to be higher in the forward direction and lower in the 

backward direction. 

1.8.4 Simple Harmonic Source 

For a simple harmonic source, qO(t) = Ae -iwt and equation (1-141) 

becomes 

±pocOA 
p± = ---------

41TR±(1 - MO cos e±)2 
(1-142) 

This formula is clearly nonperiodic since e± and R± depend on the time. 

However, if the observer is far enough away from both the source and the 

Mach cone, these terms will only change by small amounts during a period 

and can therefore be treated as constants. Hence, the pressure will be ap­

proximately periodic with slowly changing amplitude and phase. In this case 

it still makes sense to talk about the frequency of the sound field. 

In order to show this, we expand R± and R~ == R±(1 - MO cos e±) in 

Taylor series about some fixed time to to obtain 

Then substituting the relation 
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together with equati ons (1-139) and (1-140) into these expansions shows that 

c o 

where we have put e~ == e±(t
O

). But since t - to will change by the amount 

27T / w during one period, the second terms in the square brackets will be neg ­

ligible during this time interval whenever 

Thus, when the observer is many wavelengths distant from the source position 

at the time of emission (and not too close to the Mach cone if the source veloc­

ity is supersonic), equation (1 - 142) becomes approximately 

0 - 143) 

which shows that the pressure is approximately periodic. However, its fre ­

quency is equal to 
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, w 
w = ------±-;-

1 - MO cos eo 

and not the frequency w of the source. This is the well-known Doppler shift 

in frequency. As e ~ varies from 0 to 1T, the frequency w' varies from 

w/ (1 - MO) to w/ (l + MOL Hence, the frequency is increased when the source 

is moving toward the observer at the time of emission and reduced when it 

moves away from the observer. 

For subsonic motion, only the plus sign can hold in equation (1-143). As 

the source approaches the observer the frequency will appear higher than the 

source frequency. It will then progressively deepen in pitch as the source 

moves past the observer. 

When the source velocity is supersonic, the observer will hear the sound 

only after the source has passed him. In this case, there are two locations of 

the source from which the sound reaching the observer at any instant of time 

is emitted. At the location corresponding to the plus sign in equation (1-143) 

the source is moving away from the observer at the time of emission, while at 

the location corresponding to the minus sign it is moving toward the observer 

at the time of emission. An interesting feature of the supersonic source 

velocity is that the sound fields from the two different emission points which 

arrive simultaneously at a given observation point can have different phases 
and therefore interfere with one another. 

1.8.5 Multipole Sources 

The results obtained in this section can be extended to multipole sources. 

Thus, by putting 

N a if;.. . 
1 1,12 , ... , IN 

p=--------
ay. oy . , ... , oy. 

11 12 IN 

in the equation 
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N - -
2 MI· i i (7) 6(y - Va 7) 

2 l' 2'· .. , N 
\7

2
p _ ~ ~ = _ ------------

C 2 0 7 OYi OYi ' •.• ' OYi a 1 2 N 

for the sound pressure from a point multipole source of order N and strength 

M.. . in uniform motion, we see from the results obtained for a 
1 1,12 , . .. ,IN 

monopole source in section 1. 8. 1 that 

N M.. . (7) 
1 0 11 ' 12 , ... ,IN e 

p = - ±I ' ±I 47T ax. ax. , .. . , ax. R 1 - MO cos e 
11 12 IN 

(1-144 ) 
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APPENDIX 1.A 

FOURIER REPRESENTATION OF FUNCTIONS 

1 .A. 1 Periodic Functions 

Any sufficiently smooth periodic function of time f(t) with period Tp can 

be represented as a superposition of simple harmonic functions by the Fourier 

series 

00 

f(t) =L 
n=-oo 

C e -inwt 
n 

(I-AI) 

where w = 27T / T P is called the fundamental angular frequency, f = W/ 21T is 

the fundamental frequency, and the terms with n*-O are called harmonics. 

Each Fourier coefficient Cn is determined by 

T 

Cn = -1-1 P f(t)e
inwt 

dt 
Tp 0 

( 1-A2) 

The absolute value of this coefficient ICn I is called the amplitude of the nth 

harmonic, and the argument of Cn is called its phase. Sometimes C n itself 

is called the (complex) amplitude of the nth harmonic. When the function 

f(t) is real, the Fourier coefficients satisfy the relation 

* C = C -n n fo r n = 1, 2, 3 , ... (I-A3) 

Motion which can be represented by such a series is the basis of all mu­
sical sound. In particular , the vibrations of wind and string instruments can 

be approximately represented in this way, and the "tone quality" of the sounds 

produced is determined to a great extent by the relative amplitudes of the var­

ious harmonics present. Thus , representing a periodic function by a Fourier 

series is more than just a means of representing complex functions in terms 
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of simpler functions . It somehow corresponds to the way we hear and distin­

guish sounds . 

The periodic cross -correlation function 

(1 -A4) 

of any two periodic functions 

00 

f 1 (t) = L Ane -in wt 
n=- oo 

satisfies the relation 

00 

f* (t)f (t ) - '\' A * B e - iwn T 
1 2 + T - n~oo n n (1-A5) 

which shows that A~ Bn is the Fourier coefficient of the cross -correlation 

function. Hence, in particular, the autocorrelation function f~ (t)f 1 (t + T) 

satisfies the relation 

00 

f *(t)f (t ) '\' IAn
l2 e -inwT 

11 +T=i..J 
n= -oo 

(1-A6) 

and the mean square value /fl(t) /2 of fl(t) sati sfies the relation 

(1-A7) 
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The cross -correlation is independent of translations in time, which means 

that 

(1-A8) 

for any to' 

1 .A. 2 Aperiodic Functions Which Vanish at Infinity 

Of course, periodic sounds represent an idealization since they must be 

defined so that their form repeats continuously throughout all time while all 

real sounds must certainly be of finite duration. A periodic sound could, of 

course, be represented by a periodic function which is equal to the sound with­

in the interval where it is nonzero, but it would not represent the sound out­

side this interval. However, it can be shown that any sufficiently smooth func­

tion f(t) which vanishes sufficiently rapidly at t = ±oo can be represented by 

the Fourier integral 

f(t) = L 00 F(w)e -iwt dw (1-A9) 

where the Fourier transform F(w) of f(t) is determined by 

F(w) = -.!. (00 f(t)eiwt dt 
21T 100 (l-AlO) 

The integral shows that any function which vanishes sufficiently rapidly at in­

finity can be represented as the superposition of harmonic functions of all pos­

sible frequencies W/ 21T. 

The quantity IF(w) 12 is called the spectral density of f(t) at the fre­
quency W/ 21T. For small ~w, an electronic filter which cuts out all fre­

quencies except those between W/ 21T and (w + ~W)/(21T) would deliver a meas­

urable power proportional to IF(w) 12 times ~W/21T, the width of the fre­

quency band passed by the filter. 
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A sufficient condition for the Fourier transform of a function f(t) to exist 

is that it be a square integrable function. This means that 

(1-All) 

The cross -correlation function 

(1-A12) 

of any two square integrable functions 

exists and satisfies the relation 

(1-A13) 

which shows that the cross-power spectrum Fr (w)F 2(w) is the Fourier trans­

form of the cross-correlation function. Hence, the power spectrum IF 1 (w) 12 
is the Fourier transform of the autocorrelation function f~ (t)f1 (t + T). Some 

useful properties of the Fourier transform are listed in table 1-I. 
It is also convenient to consider Fourier transforms with respect to spa­

tial variables. In this case, however, the previous results need to be ex ­

tended to three dimensions. Thus, equation (1-A9) can be generalized to show 

that the function f(y) can be represented by the Fourier integral 
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TABLE 1-1. - SOME PROPERTIES OF 

FOURIER TRANSFORMS 

Function, Fourier transform, 

f(t) F(w) 

dnf(t) ( _iw)n F(w) 

dtn 

f 0a + b) la le - iabw F(aw) 

ott ) 1 
-
27T 

LOO 

f(t )g( 'T - t)dt F(w)G(w) 

(l-Al4) 

where the integration is now carried out over the three-dimensional (kl , k2, k3) 

space and the Fourier transform F{k) of f(y) is determined by 

Notice that we have rever s ed the sign convention from that used for the 

Fourier transforms with respect to time. 

1 .A. 3 Aperiodic Stationary Functions 

(l-Al5) 

We shall frequentl y have to deal with functions which are not periodic a nd 

do not possess a Fourier transform. Rather than satisfy the condition (l-All) 

(which would ensure the existence of the Fourier transform) , these functions, 
called stationary functions , merely s atisfy the requirement that the aver age 

value24 

24 According to this definition, periodic functions are always stationary. 
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remain finite. 

/f(t) /2 == lim..!. IT /f(t) /2 dt 
T-oo 2T IT 

For such functions the Fourier transform lim F(w, T) where 
T-oo 

F(w, T) == ~ IT f(t)eiwt dt 
27T iT 

(1-A16) 

(1-A17) 

will not, in general, exist. However, for any two such functions f 1 (t) and 

f2 (t) the cross -power spectral density function 

1
. F;Cw,T)F2(w,T) 

S (w) == 1m 7T ______ _ 
12 T-oo T 

where 

1 /,T . t F.(w, T) == - f. (t)e 1W dt 
] 27T - T ] 

for j = 1,2 

does exist and in fact is equal to the Fourier transform of the cross­

correlation function 

Hence, 

(l-A18) 

(1-A19) 

(1-A20) 
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The autocorrelation function fr (t)f 1 (t + T) satisfies the relation 

and the average value If1 (t) 12 satisfies 

---l 
I 
\ 

\ 

\ 

(1-A21) 

(l-A22) 

where Sl1 (w) is called the power spectral density function . Equations (1-A18) 

and (l -A20) should be compared with equation (1 -A13). 

Equation (1 -A19) shows that fi (t + to)f2(t + to + T) = fr (t)f2(t + T). 

Hence, the cross correlation of a stationary function is independent of time 

translations. 

Since the integral (1 -A17) exists for finite T, we can use the theory of 

Fourier transforms to treat stationary functions by introducing the "shutoff" 

function 

f(t, T) = {O 

f(t) 

It I > T 

It I < T 

Then F(t, T) and f(t, T) are Fourier transform pairs and can be treated by 

using the theory of Fourier transforms. At the end of the analysis the power 

spectral density function can be calculated by taking the limit as T - 0() indi­

cated in equation (1 -A18). 

This trick of only analyzing f(t) during the interval 2T is related to the 

actual measuring process. Thus, the length of time required for the filter to 

separate out the components within a band tlW/ 21T is longer the narrower the 

bandwidth. However, we cannot afford to wait forever, although the only way 

we can obtain a minutely detailed representation of the spectral density is to 

average over an infinite time. 

The stationary functions encountered in practice are usually random var­

iables. Because of the complexity of these functions the information lost by 
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dealing only with the autocorrelation functions and power spectra is usua lly of 

little interest. 

These ideas can be extended to stationary functions of a three-dimensional 

spatial variable y. The cross -correlation function of two functions f 1 (y) and 

f2 (y) is defined by 

(f~ (y)f2
(y + ;j) = lim 1 ;,. r rf~ (y)f

2
(y + ;j)dy 

t:. V - 00 t:. V J J 
t:.V 

where t:. V - 00 indicates that the volume element t:. V grows to fill all space. 

It is related to the cross-power spectral density 

(1-A23) 

where 

(1-A24) 

by the Fourier integral 

(1-A25) 

We have again reversed the sign convention in the Fourier transform. 
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APPENDIX 1. B 

CLEBSCH POTENT IAL 

In this appendix the Clebsch potentials 0', {3 , cp, and TJ introduced by 

Seliger and Whitham (ref. 7) are developed. Let TJ be any solution of the 

equation 

(1-B 1) 

where 

D a -- = - +v· "il (1-B2) 
DT aT 

is the derivative following a fluid particle . Then it is an immediate conse­

quence of Pfaff's theorem (ref. 8) that at any instant of time T there exist 

functions CP(y, T), O'(y, T), and (3 (y, T) such that 

eli - S "ilTJ) • dy = d cp + 0' d{3 (1-B3) 

or equivalently 

v = "il cp + S"ilTJ + 0'''il{3 (1 -B4 ) 

We shall now show that the potentials 0' and {3 satisfy certain very simple 

equations. In order to do this, however, we must first establish an important 

theorem of fluid mechanics. Thus, let y (YO, T) denote the position vector at 

the time T of the fluid particle which patsed through the point yO at the time 

T = 0. Then if the external force per unit mass Tip is conservative so that 

(l-B5) 
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the momentum equatio n (1-1) can be written in Lagrangian variables as 

2- -0 
d yp(y ,T) 1 
_-=--__ = - - 'Vp - 'VQ, 

d T2 P 

where 

is the fluid velocity. Hence, 

o ay. 
1 

p ay~ ay~ 
1 1 

But the second law of thermodynamics (ref. 5) shows that 

1 e dS = dh - - dp 
P 

where 

is the specific enthalpy and e is the specific internal energy . Then 

ayp . 

ay ~ 
1 

(1-B6) 

(1 -B7) 

(1-B8) 
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Upon introducing Lagrangian variables, equations (1- 3) and (l-B1) 

become 

and 

Then equation (1-B8) can be written as 

OYP. 

oy~ 
1 

But since 

I
T 2-

d yP . 

d-f 
o 

where vO 
= v(y° , 0) , integrating equation (l-B9) b y parts shows that 

;. OyP _ v~ = _ ~ + S ~ _ ~s OT}) 
o 1 0 0 ° oy. oy. oy. oy. 0 
1 1 1 1 T= 
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where 

This result is known as Weber's transformation. We shall use it to determine 

the governing equations for 0' and (3 . 

Thus, inserting equation (1-B4) into Weber's transformation shows that 

o -0 0 - (-0 ~ Or] (-0) - a -vi = vi(y ,0) = - [CP(y, T) + x] + S Yi' OJ - Yi' 0 + O'(Y, T) - (3(y, T) 000 oy. oy. Oy. 
1 1 1 

Comparing this with equation (1-B4) shows that functions cp, 0', and (3 can 
always be chosen so that 

-0 -
cp(y ,0) = CP(Yp' T) + X 

r:;0 -
O'\Y ,0) = O'(Yp' T) (l-Bll) 

But since Yp and T are arbitrary points on the path of the fluid particle, it 

follows that 

(l-B12) 

(l-B 13) 

In order to obtain another relation connecting these potentials, notice that 

the vector identity 
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_ _ v 2 - -
v · 'V v = 'V _ - v x ('V x v) 

2 

can be used to write equation (1-1) as 

0; v 2 - - -1 - + \I - - v x (\I x v) + \lQ = - \lp 
aT 2 p 

Then inserting equation (l-B4) into this relation shows that 

(I-B 14) 

1 (ocp 077 0{3 v2) D77 DS D{3 DO! - 'Vp = - 'V - + S - + O! - + Q + - + 'VS - - 'V77 - + 'V O! - - 'V{3 -
P aT aT aT 2 DT DT DT DT 

Hence, it follows from equations (1-3) , (l-Bl) , (1-B6) , (I-BI2), and (I-BI3) 

that 

where 

H == h + .!.v2 + Q 
2 

(1-BI5) 

is the stagnation enthalpy. We can therefore suppose without loss of gen­

erality (since adding a function of time to cp does not change v) that 

a cp 077 0{3 H = - -- S - - O!- (l-B 16) 
aT aT aT 

In order to obtain an equation for the potential cp, notice that taking the 
dot product of equation (l-B4) with v and subtracting the result from equa­

tion (1-BI5) show that 

2 D cp D77 D{3 H-v =---S--O!-
DT D T DT 
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Hence , it follows from equations (l-B 1) and (l-B 13) that 

D rn 2 
_ 't' = V + es - H (l-B 17) 
DT 

-Finally, taking the dot product of equation (l-B 14) with respect to v 
shows that 

Hence, it follows from equations (1-3), (1-B6), (1-B12), and (1-B15) that 

where we have put 

~ ,;f?= .!. op + an 
DT p OT aT 

,;f? == H - K - SK - aK a 
<p YJ fJ 

and K <p' K
YJ

, and K(3 are constants. 

(l-B18) 
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APPENDIX 1. C 

COMMONLY USED SYMBOLS 

B number of pr opell er or fan blade s 

C t convective amplification factor , 1 - M cos e 

c chord length; local speed of sound 

Co speed of sound at steady background state 

e·· viscous stress tensor 
1J 

F total force exerted by solid boundaries 

f frequency; or 111 
1 force per unit area exerted by solid boundaries on fluid 

I force per unit volume of fluid 

G fundamental solution of wave equation 

GO free-space Green's function 

Gw fundamental solution of Fourier transformed wave equation 

Iw Fourier transform of l' 

I magnitude of I 

I intensity vector 

I time-averaged intensity vector 

i unit vector in x 1- or y Cdirection 

j unit vector in x2- or Y2-direction 

k wave number 

k wave number vector 

k unit vector in x3- or Y3- direction 

M Mach number, U/ cO 
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n unit normal vector to solid surface (drawn outward from surface into 

fluid ) 

,~ acoustic power 

p pressure 

PO pressure of steady background flow; or constant reference pressure 

R vector between observation point and center of mOving source paint 

r 

r 

S 

S(T) 

T 

T .. 
1] 

Tp 

T!. 
1] 

t 

U , U oc 

v 

-v 

-x 

y 

r 

or region 

Ix - yl 
x - y vector between observation point and source point 

entropy; Sears' function; fixed surface 

moving surface 

large time interval (eventually put equal to infinity) 

Lighthill's stress tensor 

-1 period, f 

Lighthill's stress based on relative velocity v' 
time associated with the arrival of sound wave at observation point 

mean flow velocity 

number of stator vanes 

surface velocity 

complete fluid velocity 

velocity of fluid in mOving frame, v! = v. - 01. U 
1 1 1 

coordinates associated with observation point 

coordinates associated with source point 

normalized pressure autocorrelation function, p(t)p(t + T) / POC O; 

Fourier transform of y 

y source term 

o (x). Dirac de lta function 

-- --.~-~------~ - -
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B" Kronecker delta (1 if i = j; 0 if i "* j ) 
1J 

S moving coordinates attached to source 

e temperature 

e polar coordinate (po lar angle) or direction between line connecting 

pI 

a 

T 

w 

source and observation pOints and direction of motion of source 

eigenvalue 

wavelength 

volume of fluid exterior to solid surfaces 

density 

density of steady background flow; or constant reference density 

fluctuating density, p - PO 

reduced frequency; inter blade phase angle in chapter 5 

time associated with emission of sound wave 

phase or velocity potential 

polar coordinate (azimuthal angle) 

angular velocity 

I n I, or w(1 - Mc cos e) 

angular frequency, 27Tf 

Subscripts: 

D drag component 

T thrust component 

o constant reference value; or value of quantity in steady background 

flow 

Experimental data are presented as pressure or power levels in deCibels , 

dB. This means that the ordinate of the plot ~s4 either 20 10g10 CP/ Pr )' where 
Pr is some reference pressure (usually 2x 10 dynes/ cm ), or 10 log10 
(tJIJ / $ r )' where tJjJ r is some reference power (usually 10 - 13 W). The unit of 

frequency is the hertz (1 Hz = 1 cycle/ sec) . 
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CHAPTER 2 

Aerodynamic Sound 
2. 1 INTRODUCTION 

In an unsteady flow, pressure fluctuations must occur in order to balance 

the fluctuations in momentum. But since all real fluids possess elasticity 

(i. e., they are compressible), the pressure fluctuations can be communicated 

to the surrounding fluid and propagate outward from the flow. It is these 

pressure waves in the surrounding fluid which we recognize as sound. 

At fairly low Mach numbers the pressure fluctuations in the vicinity of the 
flow are substantially uninfluenced by compressibility and can be determined 

from the velocity field by solving a Poisson's equationl 

in which the source term y is a known function of the flow velocity. However, 

the Biot-Savat law shows that we can consider the velocity field to be in turn 

driven by a prescribed vorticity field. And since Kelvin's theorem of conser­

vation of circulation shows that the vorticity in an inviscid fluid is simply car­

ried along with the flow, an initially localized region of vorticity will remain 

that way for sometime to come. Thus, many flows can be envisioned as rel­

atively localized regions of vortiCity which drive not only the pressure fluctua­

tions in their immediate vicinity but also those which occur at large distances. 
The pressure fluctuations at large distances are weak and satisfy the 

acoustic wave equation. Thus, in this region, which we shall often call the 

IThe se pressure fluctuations are sometimes called pseudo sound. 
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acoustic field, the effects of compressibility and the finite propagation speed 

of acoustic waves are important. 2 

Although the localized pressure fluctuations have been extensively studied, 

the theory of aerodynamic sound is principally concerned with the study of the 

pressure fluctuations in the acoustic field. 3 This subject probably began with 

Gutin's theory (ref. 1) of the noise produced by the rotating pressure field of 

propellers, developed in 1937. However, it was not until 1952, when Lighthill 

(refs. 2 and 3) introduced his acoustic analogy to deal with the problem of jet 

noise, that a general theory began to emerge. Lighthill's ideas were extended 

by Curle (ref. 4), Powell (ref. 5), and Ffowcs Williams and Hall (ref. 6) to 

include the effects of solid boundaries. These extensions include the theory 

developed by Gutin and, in fact, provide a complete theory of aerodynamically 

generated sound which can be used to predict blading noise as well as jet 

noise. 

The fundamental equation which forms the basis of the acoustic analogy 

approach is derived in the next section. The methods of classical acoustics 

given in chapter 1 are then used to obtain solutions to this equation for the 

case where no solid boundaries are present. (The treatment of solid bound­

aries is deferred to chapters 3 and 4.) These solutions are applied to high­

speed subsonic jets, and fairly detailed results are obtained. Supersonic and 

low-speed subsonic jets are treated in a somewhat more qualitative fashion. 

In Lighthillts acoustic analogy, certain terms associated with the propa­

gation of sound are treated as source terms. In practice, this places certain 
limitations on the accuracy of the theory. Alternative approaches developed 

to overcome these limitations are presented in chapter 6. 

2If the Mach number is sufficiently low, there will be an intermediate region where 
the pressure fluctuations have some of the properties of both the localized pressure 
fluctuations and those in the sound field. Thus, in this intermediate region the pres­
sure fluctuations are as weak as in the sound field, but the distances involved are small 
enough so that the effects of finite propagation speed, and hence of compressibility, can 
be neglected. 

3The difference in character between the pressure fluctuations in the acoustic field 
and those in the viCinity of the flow is evidenced by their relation to the flow velocity. 
Thus, the localized pressure fluctuations are of the order pu,2, where u' is a char­
acteristic velocity. But it was shown in chapter 1 that the pressure fluctuations in the 
sound field are of the order pCa u

t • 
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2.2 LlGHTHILL'S ACOUSTIC ANALOGY 

In this section we develop the acoustic analogy approach introduced by 

Lighthill in two classical papers published in 1952 and 1954 (refs. 2 and 3). 

This approach was initially evolved to calculate acoustic radiation from rela­

tively small regions of turbulent flow embedded in an infinite homogeneous 

fluid in which the speed of sound Co and the density Po are constants. 

In this case the density fluctuations , p' == p - PO' at large distances from 
the turbulent region ought to behave like acoustic waves and hence satisfy the 

homogeneous wave equation 4 

Lighthill arranged the exact equations of continuity and momentum in such a 

way that they reduce to this equation outside the region of flow. 

2.2. 1 Derivation of Lighthi (('s Equation 

In order to derive Lighthill's result, notice that upon using the summation 

convention the continuity and momentum equations can be written as 

~ + _a_ pv . = 0 
aT ay. J 

) 

a ae .. 
= _ .EE.. + ----.!l 

ay. ay. 
1 ) 

where e . · is the (i, j)th component of the viscous stress tensor. For a 
1) 

Stokesian gas it can be expressed in terms of the velocity gradients by 

(2-1) 

4The notation introduced at the beginning of section 1. 2 will be used in thi s sec-
tion. 
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(2-2) 

where J1 is the viscosity of the fluid. 

Multiplying the continuity equation (2-1) by vi' adding the result to the 

momentum equation, and combining terms show that 

a a -pv. = - - (pv.v . + 5. ·p - e . . ) 
aT 1 ay . 1 J 1J 1J 

] 

But after adding and subtracting the term 5 c6 ap/aYi' this equation can be 

written as 

where 

apvi 2 ap 
-- + co-= 

aT aYi 

aT .. 
_1_] 

ay. 
J 

T . . = pv.v . + 5.· r(p - PO) - c0
2(p - po)] - e .· 

1J 1] 1] L' 1J 

(2-3) 

(2 - 4) 

is Lighthill's turbulence stress tensor . Finally, differentiating equation (2-1) 

with respect to T, taking the divergence of equation (2-3), and then subtract­

ing the results yield Lighthill's equation 

(2- 5) 

2.2.2 Interpretation of Lighthill's Equation 

Equation (2-5) clearly has the same form as the wave equation governing 

5The subscript 0 i s used he r e to denot e constant r efer ence values, which will 
usually be taken to be the corr esponding propertie s at large distance s from the flow. 
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the propagation of sound emitted by a quadrupole source6 02T . ./ oy. oy. in a 
IJ 1 J 

nonmoving medium (see section 1. 5.2). It therefore shows that there is an 

exact analogy between the density fluctuations in any real flow in arbitrary 

motion and those in an ideal acoustic medium at rest (with sound speed cO) 

due to a distribution of quadrupoles of strength T .. . 
IJ 

The crucial step in Lighthill's analysis is to regard this source term as 

known a priori. (Notice that the nonlinear terms are all contained in the 

source term). However, we never have complete prior knowledge of this term 

since it involves the fluctuating density, which is precisely the variable for 

which equation (2-5) is to be solved. In fact, since Lighthill's equation is an 

exact consequence of the laws of conservation of mass and momentum, it must 

be satisfied by all real flows: most of which are certainly not sound like. 

Thus, in most cases, a knowledge of Tij is equivalent to solving the complete 

nonlinear equations governing the flow problem, which is virtually impossible 

for most flows of interest. 

Even for those flows which are sound like, the source term 

(02T .. /oy. oy.), aside from representing the sound emission, includes such 
IJ 1 J 

real fluid effects as the convection and refraction of the sound by the mean 

flow, the scattering of the sound by turbulence and entropy spottiness, the 

back reaction of the sound field on the flow itself, and the viscous dissipation 

of the sound by the flow. The prediction of any of these effects requires that 

the sound field (which is not known until eq. (2 - 5) is already solved) be in­

cluded in the source term. 

In spite of these drawbacks the acoustic analogy approach serves as a 

foundation for most aerodynamic sound analyses. This is probably due to the 

fact that this approach allows us to use the powerful methods of classical 

acoustics to treat aerodynamic sound problems. In chapter 6 we discuss pro­

cedures which have been developed to alleviate the difficulties associated with 

this approach. 

By incorporating suitable boundary conditions, we can apply Lighthill's 

acoustic analogy to flow in the presence of solid boundaries. As a first step, 

6It is shown in the next section that this source term should vani sh outside the 
r egion of turbulent flow and hence (as indicated in the beginning of this section) eq. 
(2-5) does indeed reduce to a homogeneous wave equation in this region. 
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however, we shall consider the case where the effect of solid boundaries on 

the sound field is negligible. Then the only important applications of the re­

sults will be to jet nois e. (In fact, Lighthill actually developed his theory 

~pecifically to deal with this problem.) In chapter 3 we show how solid bound­

aries can be included in the analysis and apply the theory to a number of spe­

cial cases. 

2.2.3 Approximation of Lighthi II's Stress Tensor 

Lighthill's equation can only serve as the starting point for the solution of 

aerodynamic sound problems if it is possible to regard its right side as a 

lmown source term. We shall now show that there are at least some flows for 

which this is a reasonable assumption. 

To this end, consider a subsonic turbulent airflow (or for that matter any 

unsteady high-Reynolds-number subsonic flow) of relatively small spatial ex­

tent (such as the flow in a jet) embedded in a uniform stationary atmosphere. 

The subscript 0 will now be used to denote the constant values of the thermo­

dynamic properties in this atmosphere. Within the flow we anticipate that the 

viscous stress eij , which appears in T ij' will always be negligible compared 

with the far larger Reynolds stress term pvivr In fact, it is welllmown from 
the study of turbulence that the ratio of these terms is of the order of magni­

tude of the Reynolds number p ULj f.1, which in virtually all applications of 

aerodynamic noise theory is quite large. 

In the region outside the flow (or at least at sufficiently large distances 

from this flow) the acoustic approximation should apply, and hence the veloc­

ity vi should be small. Then the quadratic Reynolds stress term pv i Vj will 

be negligible. In addition, the effects of viscosity and heat conduction can be 

expected to act in this region in the same way as they do for any sound field. 

This means (as shown by Kirchoff, see ref. 8) that they only cause a slow 

damping due to the conversion of acoustic energy into heat and have a Signifi­

cant effect only over very large distances. Thus, it should be possible to ne­

glect eij entirely. 

Now assuming that the flow emanates from a region of uniform tempera­

ture, the effects of heat conduction ought to be of the same order of magnitude 

as the viscous effects (provided the Prandtl number is of order 1 as it is for 

108 

______ ~ _~~ _______________________ 1 



-- -- --- - - - ---

AERODYNAMIC SOUND 

most fluids). Hence, heat conduction should also be negligible within the flow. 

Then the entropy changes will be governed by the inviscid energy equa-

tion (1-3). And, since it is assumed that the flow emanates from a region of 

uniform temperature, this equation shows that the entropy should be relatively 

constant. But it is shown in section 1. 2 that 

(2-6) 

in any isentropic flow in which (as is usually the case in subsonic flows) 

(p - PO)/PO and (p - PO)/ Po are sufficiently small. 
We have therefore shown that T.. is approximately equal to pv. v. inside 

IJ 1 ] 
the flow and approximately equal to zero outside this region. Hence, upon 

assuming that the density fluctuations are negligible within the flow, we can 

approximate Lighthill's stress tensor by 7 

T .. ~ POv.v . 
1] 1 ] 

(2-7) 

But within the flow it is reasonable to suppose that the Reynolds stress POv. v· 
1 ] 

can be determined, say from measurements or estimates of the turbulence, 

without any prior knowledge of the sound field. Then the right side of Light­

hill's equation (2-5) can indeed be treated as a source term. 

2.3 SOLUTION TO UGHTHILL'S EQUATION WHEN NO SOLID 

BOUNDARIES ARE PRESENT 

It is shown in section 2.2 that the problem of predicting the sound emis­

sion from a region of unsteady flow embedded in a uniform atmosphere can be 

reduced to the classical problem of predicting the sound field from a known 

quadrupole source of limited spatial extent. If any solid boundaries which 

may be present do not influence the sound field to any appreciable extent, the 

solution to this problem can be expressed in terms of the free-space Green's 

function. Indeed after comparing equation (2-5) with equation (1-59), we see 

70f course, it is being assumed that no combustion occurs in the flow. This could 
result in large fluctuations in entropy and hence in (p - PO) - c~ (p - PO )' This term 
would then have to be included in T ij . 
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from equation (1-82) that this solution is given byB 

J [2 ] 
1 1 a T .. 

p(x, t) - Po = -- - IJ (y, T) 

4 
2 ray. ay. 

1TCO 1 J T=t-(r/co) 

(2-8) 

where 

r == Ix - ;1 

In order to transform this equation into a more suitable form, it is convenient 

to introduce the differential operator o/OYi' which denotes partial differentia­

tion with respect to Yi with not only t but also r held fixed to obtain 

_ 1 / 02 Tij(Y, t - rico) _ 
p(x, t) - Po = _ dy 

4 2 oy.oy. r 
1TCO 1 J 

(2-9) 

Then since the operator a/aYi denotes partial differentiation with respect to 

Yi with x and t held fixed and a/axi denotes partial differentiation with 

respect to Xi with y and t held fixed, the chain rule for partial differenti­

ation shows that for any function F(y, r, t) 

of aF aF -=-+-
oy. ay. ax. 

1 1 1 

and henc e that 

8As indicated in chapter 1, the omission of the limits on a volume integral denotes 
an integration over all space. 
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+ 
ay. ax . 

1 ] 

+ 

Using this result in equation (2-9) shows that 

+ 

p(x, t) - Po = _1_/ a
2 [T ijj dy + _1_ ~ / ~ rT ijj dy 

4 2 ay. ay. r 4 2 ax. ay. r 
7TCo 1 J 7TCO J 1 

1 
:l / :l [T .. ] 1 a

2 /[T .. ~ u u 1J d- 11 d-+---- -- -- y+-- - -" Y 

4 2 ox. oy. r 4 2 ox . ox. r 
7TC O 1] 7TCO 1 ] 

(2-10) 

provided the integrals exist. In this equation the notation [Ti/r] is used to 

denote Tij(Y, t - r/co)/ r. Notice that the integrand in each of the first three 

integrals is the divergence of a vector. But if SR denotes a sphere of radius 

R, the divergence theorem shows that 

A dy := lim 
R _ oo 

A· dS 

for any vector it for which the integrals exist. Hence, upon assuming9 that 
- 1 T . · is smooth and decays faster than y for large y, we can conclude that 

1] 

9We show in section 2. 2 that outside a locali zed region of turbulent flow where the 
viscous and heat conduction effects are negligible, Tij behaves like pvivj . But in this 
outer region, vi will not decay any slower than the rate y-1 at which the acoustic 
particle velocity decays (eqs. (1-9 3) and (1-94)) . Hence, Tij must decay at least as 
fast as y- 2. But we cannot be sure that the last integral in eq. (2-10) will converge 
unless Tij is lmown to decay faster than y- 2. However, the incompressible flow 
velOCities, which dominate (at sufficiently low Mach numbers) in the region of a local­
ized flow, decay as y- 3 for large values of y. Thus, if we could begin by completely 
neglecting the contribution of the acoustic velocities, Tij would decay as y- 6 and the 
last integral in eq. (2-10) would certainly converge. By using the method of matched 
asymptotic expansion, it can be shown (ref. 9) that tIlis approximation i s valid when­
ever the waveleng-th of the sound is large compared with the size of the source region. 
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these integrals vanish and that equation (2-10) becomes 

p(x, t) - Po = _1_ a
2 J Tij (Y; t - 2....)dY 

4 2 ax. ax]. r \ Co 
1TC O 1 

(2-11) 

In aerodynamic sound problems we are usually interested in the sound 

at large distances from the source where, as we have seen, the expression 

for the sound field becomes particularly simple. Thus, first consider the 

case where the observation paint x is many wavelengths away from any point 

in the source region. (This distance need not be large relative to the dimen­

sions of the source region.) Then upon using the manipulations described in 

section 1. 5.2 the second partial derivative of the integrand in equation (2-11) 

becomes 

where 

a2 

ax. ax. 
1 ] 

Hence, for large r, 

-r = x - y 

/

2 r.r. a T .. 
p(x, t) - Po '" _1_ 1 J 1] (y, t - ~)dY 

41TC~ r3c~ at2 Co 

If the distance between any source point and the observation point is also large 

compared with the dimensions of the source region (i. e., if the observation 

point is in the radiation field), we can (upon assuming that the origin of the 
3 3 coordinate system is in the source region) replace r.r./r by x.x· / x to ob-

1 ] 1 ] 

tain 
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/

2 
1 x.x. 1 a T .. 

p(x, t) - Po ~ ___ 1_J ___ 1J (y, t -~\dy 
41TC6 x 3 C6 at2 CO) 

(2-12) 

provided the integral converges. 10 This equation allows us to calculate the 

density fluctuations in the radiation field once the source term is known. 

2.4 APPLICATION OF LlGHTHILL'S THEORY TO TURBULENT FLOWS 

2.4.1 Derivation of Basic Equations 

The most important application of the solution (2 -12) is the prediction of 

sound from turbulent jets. 11 But for turbulent flows it is reasonable to as ­

sume that the stress tensor T ij is a stationary random function of time. 
Then equation (2-12) shows that the density fluctuation in the radiation field 

must also be a function of this type. For such sound fields (see section 

1. 7. 3. 2.1) both the average intensity and its spectrum can readily be deter ­

mined from the normalized pressure autocorre lation function 

_ [P(x, t + T) - PcJ~(x, t) - po] 
r(x, T) ;: --'-'-----------

POcO 

And since equation (2-6) must certainly hold in the radiation field, it follows 

from equation (2 -12) that this function is related to the source term by 

(2-13) 

laThe convergence of this integral now requires that Tij decay faster than y-3 
for large y. 

11It can also be used to predict the sound from periodic jets. See section 2. 5. 3. 
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where 

t' = t - l x - Y' I 
Co 

(2-14) 

til = t + T -

It is shown in the appendix that the integrand in equation (2-13) can be put 

in the form 

a2
T . . a2

T kl a4 
__ IJ (y', t') (yll, til) = - T .. (Y', t')TklCY", til) 

2 2 4 IJ at at aT 
(2-15) 

But since (as shown in appendix 1. A. 3) the cross correlation of a stationary 

function is independent of time translations, it follows from equation (2-14) 

that 

And since Ix - y' , behaves like 

-, - - , x - -1 x - y' = x - _. y' + O(x ) 
x 

for large x it follows that 

'x -l' I - Ix - yll I (2-17) x 
~- . 

Co x 

Finally, inserting equations (2-15) to (2-17) into equation (2-13) shows that 
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(2-18) 

where 

It is now convenient to introduce the separation vector 7i == y" - y' as a 

new variable of integration in equation (2-18) and to define a two-point time­

delayed fourth-order correlation tensor by 

(2-19) 

where 'Pijkl is an arbitrary time-independent tensor which will eventually be 

chosen to simplify the equations. Then, since the Jacobian of the transform 

y', y" - Y',;; is unity, inserting these quantities into equation (2-19) shows 

that 

rex, T) = 1) _0_ ~ijkl y', 7], T + . - dy' dT) POX.X.XkXl A I! ( iL x) - -
16 2 5 6 a 4 Co x 

(2-20) 

7i cox T 

This equation relates the pressure autocorrelation in the sound field to the 

source correlation tensor ~ijkl. Taking its Fourier transform and using 

equation (1-125) and table 1-1 in appendix 1. A show that the intensity spec­

trum in the radiation field is given by 

4 
W Po 

lw(i) =--
3 ;:, 

327i Co 

( oof( iW[T-(x/x)·17/cO] _ _ __ 
j oo ) } e ~ijkl (y', T) , T) dy' dT) dT 

(2-21) 
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This equation can, in principle, be used to calculate the spectrum of the sound 

field emitted from a turbulent flow whenever solid boundaries do not playa 

direct role in the process. However, most turbulent flows which are not in 

the immediate vicinity of solid boundaries (e. g., jets, wakes, etc.) have 

nearly parallel mean flows. In the next section we deduce certain properties 

of the correlation tensor which will be helpful in understanding the sound 

fields produced by such flows. 

2.4.2 Parallel or Nearly Parallel Mean Flows 

Whenever the mean flow is nearly parallel, it is of interest to consider 

the case where the velocity v(y, t) is the sum of a parallel mean flow iU(Y2) 

as shown in figure 2-1 and a fluctuating part u(f, t) with zero mean so that12 

V. = 0l·U + u. 
1 1 1 

(2-22) 

2.4.2. 1 Special form of Reynolds stress approximation to correlation 

tensor. - Before turning to more general considerations, we shall attempt to 

Y2 

~---+------------------- Yl 

Figure 2-1. - Unidirectional transversely sheared 
mean flow. 

12This type of model for the turbulence correlation tensor appears to have been 
introduced by Ribner (refs. 10 and 11). 
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gain some insight into the connection between the turbulence velocity correla­

tions and the correlation tensor fA ·· kl by approximating T. . by the Reynolds 
1) 1) 

stress . Thus, substituting equation (2-22) into the Reynolds stress approxi-

mation (2-7) and choosing 'Pijkl in equation (2-19) to be 

show, after carrying out a very tedious calculation, that12 

(2 - 23) 

where the double primes indicate that the quantities are to be evaluated at y" 
and t + T, while the primed quantities are to be evaluated at y' and t. The 

notation J = indicates that the quantities on both sides of the equal signs are 

not necessarily equal but merely make equal contributions to equations (2-20) 

and (2-21). In order to obtain this relation, we changed the names of dummy 

indices in the summations and used the equation 

obtamed by changing the variables of integration from y', rj to -T/ and y' + rj 
and then using the invariance of the turbulence correlations under time trans-

1 t · 13 a IOns. 
2.4.2.2 Introduction of moving coordinates. - Let l denote a typical 

correlation length of the turbulence. Then l is roughly the smallest length 

for which 

whenever ITiI > l 

13The calculations are carried out in more detail in ref. 12. 
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Figure 2-2. - Isocorrelation contours in moving frame (measurements in mixing region 1~ diameters down­
stream!. (From ref. 13.) 

If £Iijkl changed so slowly with time that it was practically constant for time 

changes of the order of l / Co (the change in retarded time across a turbulent 

eddy) or, what is the same thing, if T (the characteristic decay time of a 
71 

turbulent eddy) satisfied the inequality 

T » l 
71 

(2-24) 

it would be possible to replace £I ..• --.Gi' , h + x· ii/xco) by ~. 'kl (y', r;, T), _ _ 1JK{, 'J 1J 

since (71/ cO) . x/x == O(l / cO) in the region where the integrand in equa-
tion (2-20) is of significant magnitude. Indeed, if it were not for the mean 

flow, a plot of constant correlation contours might appear as shown in fig­

ure 2-2 and the inequality (2-24) would then be satisfied. However, for mov­

ing eddies, especially at higher velocities, the turbulent fluctuations (seen by 

a fixed observer) will appear to be much more rapid because of the convec­

tion of the random spatial pattern of the turbulence by the mean flow. This 

rapid convection of the eddy pattern thereforp. causes the turbulence flu.ctua­

tions with time seen by an obs-eI'-v-ef' moving wITh the mean flow to be much 
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o 50 
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Time delay. T. Ilsec 

Figure 2-3. - Isocorrelation contours for fixed observer (measu rements in center of mixing region l~ diameters downstream!. 
(F rom ref. 13.) 

250 

slower than those seen by a fixed observer. Hence, the eddy pattern appears 

to be nearly frozen. 14 As a result the constant correlation contours in an ac­

tual flow will resemble those shown in figure 2-3. In fact, this figure is a 

plot of actual measurements of the second-order time-delayed correlation 

u 1 (1', t)u1 (y' + fT/l' t + T) carried out in the mixing region of a jet by Davies , 
Fisher, and Barratt (ref. 13). The inequality (2-24) will therefore not gen­

erally be satisfied in most real flows. But in any coordinate system which , 

roughly speaking, "moves with the eddies" the constant correlation contours 

should again resemble those shown in figure 2- 2. (In fact this figure was ob­

tained from fig. 2-3 by introducing just such a coordinate system. ) 
Thus, suppose that the correlation tensor £i'ijkl (71, T) is expressed in 

terms of the variables T and 

14This result is frequently referred to as Taylor's hypothesis. 
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(2-25) 

~ 

where i is a unit vector in the mean flow direction (i. e., y 1-direction) and 

cOMc is the slope of the dashed line in figure 2-3. Then ~1 will remain 

constant along any line having this slope. Hence, a change in ~ 1 with T 

held fixed corresponds to a movement in the direction perpendicular to these 

lines. The constant correlation contours in the ~ 1 - T plane must therefore 

resemble those shown in figure 2- 2. And, as a consequence, the decay time 

T ~ of the "moving-axis correlation tensor" Rijkl defined by 

(2-26) 

is more likely to satisfy the inequality 

(2 - 27) 

than is the fixed - frame decay time T • 
T) 

Substituting equation (2-26) together with the change of variable (2 - 25) 

into equation (2-21) shows that 

where 

xl 
cos e =-

x 

is the angle between the direction of mean flow and the line between the ob­

servation and source points shown in figure 2- 4. The essential simplicity of 

this equation becomes especially apparent when the four - dimensional power 

spectral density tensor 
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~--------~~------------ Xl 
Mc 

-x 

Figu re 2-4. - Orientation of obse rvation point relative 

to flow di rection. 

- , - - 1 1001 i(wT - k· f) -, - -
H" kl (y , k, w) = -- e R. ·kl (y , ~ , T)d~ dT 

1] 4 _ 00 1] 

(27T) 

is introduc ed to obtain 

(2-2 9) 

Instead of carrying out a similar operation on equation (2 - 20) for the pressure 

autocorrelation function, it is simpler to take the inverse transform of equa­

tion (2 - 28) to obtain 

(2-30) 
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Aside from the possible advantage of being ab le to neglect the retarded time, 

this equation possesses the additional advantage over equation (2-20) of being 

less sensitive to small errors in the correlation function. In order to see this , 

notice that the largest cha nges of the cor relation function with respect to time 

occur as a r esult of the convection of the frozen eddy pattern by the mean flow. 

Hence, the largest part of the time derivatives of 91" kl and therefore of the 
1J 

integrand in equation (2-20) will be due to the convection. But the uniform 

subsonic convection of a frozen eddy pattern cannot contribute to the sound 

fi~ld. Henc e, only a small part of the integrand does not integrate to zero. 

This difficulty does not occur with equation (2-30) since the changes with re ­

spect to time now o::cur on the time scale of the sound-producing turbulence 

fluctuations. The integrand in this equation should therefore be much less 

sensitive to small errors made either in the measurement or in the analytical 

approximation of the turbulence correlation. This is extremely important 

since this quantity is quite difficult to determine accurately. 

As pointed out by Ffowcs Williams (ref . 14) , equation (2 - 29) shows in a 

particularly explicit way which components of the turbulence generate the 

sound field . Thus, it shows that for turbulence measured in the moving frame 

the wave number vector of the sound field (x/x)(w/cO) is the same as that of 

the turbulence which generates it. However, the frequency of the turbulence 
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(Slope = -co(1 - Mc cos 9)1 
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Figure 2-5. - Moving-frame turbulence power spectral density function. 
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is equal to the Doppler facto r (1 - Me cos (1) tim es the fr equency of the sound 

it ge nerat es . A plot of a typical m ov ing -frame turbule nce pow er spectral 

densi ty function (1' f. 14) in wave number - fr equency space is shown in fig­

ur e 2-5. It r eflec ts th fact that in the m ov ing frame the turbulent ener gy is 

concentrat d a r ound the low freque ncies. But equation (2-29) implies that all 

the sound-emitting e l 111 nts must li e a long the lin e shown in the figure. 

Hence. th part of the turbulenc e spectrum containing the m aximum energy is 

by no means a lways the part which emits the most sound. At subsonic con­

vection speeds these parts coinc ide m ore closely for forward emission 

( I e I '- ii / 2) and high Mach numbers than they do for backward emission and 

low Mach numbers. Accordingly, more sound is emitted in the forward dir ec ­

tion than in th e backward direction; and the higher the Mach number , the 

greater the forward emission. 

2.4 .2. 3 Neg lect of retarded time in subsonic flows. - Equations (2-29) 

and (2-30) have been put into a form where omission of the retarded-time 

variation introduces the smallest error . Inspection of equation (2-30) shows 

that this term can be neglected whenever the decay time 7 ~ of the moving­

axis correlation is so long that 

l ------- « 7 
co(1 - Mc cos e) ~ 

(2 - 31) 

Thus, when the inequality (2-31) is satisfied, equation (2-30) can be approxi­

mated by 

Po x.x.x, Xl J 1 fa4 J ~ r(x, t) = __ 1 J K - R .
kl

(?, f, T) 

2 5 6 5 4 IJ 
161T Co x (1 - Mc cos e) aT T=t/ (l-M cos e) 

c 

dfdy' 

(2-32) 

and hence its Fourier transform (eq. (2-29)) can be approximated by 
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(2-33) 

It is important to noti ce that equation (2-33) does not imply that the sound is 

elllitt d by th e zer o- wave -nulllber components of the turbulence . In fact, 

these components r adia te no sound at all. The equation simply implies that 

the ener gy in the turbulence a t the small wave number (w / cO)(x/ x) at which the 

SOllnd is ellli tt~d is approximately the same as the energy in the turbulence at 

k - O. Th quantity l / cO(l - M cos e) which appears in the inequality (2-31) c 
can be int rpr eted as the time it takes a sound wave to cross a moving eddy at 

a n angle (J . Thus, if the eddy is small enough so that this time is much less 

than the eddy decay time, the retarded time can be neglected. Notice that, as 

th e convec tion Mach numb er of the eddy increases, the error created by ne­

gl ecting th e r etarded tim e gets worse. Hence, this approximation is essen­

tially limited to subsonic (or perhaps very high-Mach-number sllpersonic) 

flows . 

2. 5 PHYS ICS OF JET NOISE 

In this section the equations derived in section 2.4 will be used in con­

junction with experimental observations of jet flow fields to explain and pre­

dict various types of jet noise. 

2. 5 .1 H igh- Reynolds-Number Subson ic Cold- A i r Jets 

The sound emission from subsonic cold (i . e. , unheated) air jets has been 

more extensively studied than any other type of jet noise. We shall show sub­

sequently (near the end of section 2. 5. 1. 2) that the inequality (2 - 31) is reason­

ably well satisfied in the sound-producing region of such jets so that equa-

tion (2-32) can be used to predict the noise . However, this cannot be done 

unless the turbulence correlation tensor Rijkl is known. Sinc e our knowledge 

of this tensor is quite limited, we shall try to model it in some approximate 

fashion. This will be accomplished by making a series of progressively more 

r estrictive assumptions. Each of these assumptions will allow us to obtain a 
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formula for the sound field that requires less information about the turbulence 

than the preceding one. 

2. 5. 1. 1 Approximations to source term for subsonic jet flows. - The 
parallel mean flow approximation (2-22) and the Reynolds stress approxima­

tion (2-7) should be adequate to describe the flow in a jet and are ther efore 

adopted in this s ection. Then equations (2-23) and (2-26) show that the 

moving -axis turbulence correlation tensor is the sum of thre e terms. How­

ever, it is shown in r efer enc e 12 that , if the turbulence is assumed to be lo­

cally homogeneous and incompressible, the middle term integrates to zero 

and only the first and last terms contribute to equation (2-32). It is now con­

venient to change the variable of integration in equation (2-32) from y' to y, 
where 

Then in view of equations (2- 23) and (2 - 26), equation (2-32) becomes 

(2-34) 

wh er e 

RO (- t ) = u~u~ u"u" - u~ u ~ U" U'I ijkl y, s, T 1 ) k ! 1] k l 

R~· (Y f T) = u'u" 
1) " ) l 
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are, respectively, the fourth- and second-order time - delayed turbulence ve­

locity correlation tensors. 

Now let l(xl1> denote the average intensity, at the point X, of the sound 

emitted from a unit volume of turbulence located at the point y, and let 

Iw (xl y> and r(xl y, t) denote its associated spectra and autocorrelation func­

tion, respectively. Then 

and it follows from equation (2-34) that 
Po x.x.xkx. r(x\ y, t) = --.:l:......]~-"-l 

2 5 5 6 161T co(1 - Mc cos e) x 

ia4 [r 0 - - - J 0 - - ;\~ x 4 Rijkl (y,~, T)d~ + 4o lio1k U'U"Rjl (y,~, Tld~J 

aT T=t/(l-M cos e) c 

(2-35) 

The first term in this equation is called the self-noise and the second term is 

called the shear noise. This terminology was introduced by Lilly (ref. 15) to 

indicate that the former represents noise generated by turbulence-turbulence 

interactions whereas the latter represents noise generated by turbulence -

mean shear interactions. 

In order to predict the variation in the sound field around the jet, it is 

necessary to make some assumptions about the relative magnitudes of the 

various components of the turbulence correlation tensors. Perhaps the sim­

plest such assumptions are those made by Ribner (refs. 11 and 12). The first 

of these is that the joint probability distribution of the velocities at two points 

is approximately normal. It is shown in books on turbulence (e. g., Batche­

lor (ref. 16)) that this assumption implies that the fourth-order correlation 

can be expr essed as the sum of products 

(2-36) 
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of second-order correlations. The other assumption is that the turbulence is 

isotropic. This means (ref. 16) that the second-order turbulence correlation 

tensor is an isotropiC tensor and hence that there are functions A(L T) and 
B(~, T) such that 

But for incompressible flows the continuity equation implies that A and B 

are related by (ref. 16) 

Introducing these approximations into equation (2-35) and carrying out a rather 

tedious calculation shows that 

r(xl Y, t) = ____ Po ___ _ 

161T2cg(1 - Me cos 8)5x2 

where 

cos cp = 

(2-37) 

~x~ + x~ 

is the azimuthal angle shown in figure 2-6. For axisymmetric jets, averaging 

over this angle will account for the different orientations of the sound sources 

in any given annular slice of jet. Then equation (2-37) becomes 

127 

-----~-~. ------~ - --~----



AEROACOUSTI CS 

-x 
--- / 

/ 
/ 

--'"-t - -----"4(/\ 
.... Flow 

} 
di rection 

Figure 2-6. - Coordinate system for jet flow. 

X2 

x ta4 [IRO df + cos
4

e + cos
2

e 4 j UfUIIRO dfJ} 
4 1111 2 11 

aT / T=t (l-Mc cos e) 

Taking the Fouri er transform of this equation and using the relations (between 

the intensity, its spectra, and the autocorrelation function) given in section 

1. 7.3. 2. 1 now show that 
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(2 - 38) 

is the ratio of the maximum shear noise to the self- noise . By assuming a 

specific model for the turbulence correlation functions, Ribner (refs . 11 

and 12) has estimated that A ~ 1. 

From Similarity considerations we expect 
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to be of the order (u,4l 3 IT i )K, where u' denotes a typical root-mean-square 

turbulence velocity and K is some dimensionless constant. Hence, 

(2-40) 

The total power emitted per unit volume of turbllrence fJ'(Y) is obtained by 

integrating equation (2-40) over the surface of a large sphere of radius x. 

Thus, upon neglecting the variation of the term 

with angle in comparison with the (usually much larger) variation of 

(1 - Mc cos 8)-5 and replacing it by its approximate average value of 3/2, we 

obtain 

(2-41) 

2.5.1.2 Fluid mechanics of subsonic jets. - The approximations given in 

the preceding section were introduced to simplify the equations and are, for 

the most part, not based on any specific information about the flow field in a 

jet. In this section, we shall summarize those aspects of the jet flow field 

which are relevant to jet noise. The information is based on the measure­

ments of Laurence (ref. 17); Davis, Fisher," and Barratt (r ef. 13) ; and Brad­

shaw, Ferriss, and Johnson (ref. 18). 

Consider a high-Reynolds-number air jet issuing from a convergent noz­

zle with a fairly uniform velocity U J into a stationary fluid, as shown in fig­

ure 2-7. As the jet issues from the nozzle an annular mixing region forms 

between the jet and its surroundings. The flow in this region becomes turbu­

lent within about one-half of a jet diameter downstream. It then spreads 
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Figu re 2-7. - Jet structure. 
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Figure 2-8. - Boundary of mixi ng region. 

linear ly into both the jet and the surrounding atmospher e until it fills the en ­
tire jet at 4, or perhaps 5, diameters downstream. Hence, the thiclmess of 

the mixing region is about 0.2 Yl to about 0.25 Yl' The flow within the 

conical region bounded by the turbulent flow remains laminar, and hence this 

region is called the potential core. Of course, the boundary of the jet mixing 

region is not straight as shown in figure .2-7 but has more the appearance 

shown in figure 2-8. Once the mixing region fills the jet its uniform growth 

ceases and it evolves differently as it passes first through a transition region 

and finally, at about 8 diameters downstream, into a region of self-preserving 

flow called the fully developed region. The latter region also grows linearly 

with y 1 but at a different rate than the mixing region. Schlieren photographs 
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132 

(a) Jet-exit Mach number , Ujlco, 0.9. 

(b) Jet-exit Mach number , Ujlco , 0.74. 

Figure 2-9. - Schlieren photographs of flow in a high-velocity subsonic 
jet from a 7.6-centi meter(3-in.)diameter nozzle. (Taken by W. L. 
Howes at NASA Lewis Research Center. ) 
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Figure Z-10. - Mixing-region profiles. 

/- Mean ve locity profile 

Centerline of 
mixing region 

of a typical high-velocity subsonic jet are shown in figure 2-9. 

The mean velocity profile and the mean square turbulence velocity varia­

tion across the mixing region are shown (roughly to scale) in figure 2-10. The 

turbulent energy is confined to a fairly narrow region about the center of the 

mixing region, and the peak turbulence intensity u:Uax at the center of the 

mixing region remains fairly constant well into the transition region. It is 

approximately equal to 

(2-42) 

Within the fully developed region the mean velocity falls off as Y1: 1 

In the mixing region, each turbulent" eddy" is believed to be elongated in 

the direction of flow. 15 Thus, the longitudinal correlation length II in the 

direction of flow is about twice the longitudinal correlation16 length l2 in the 

radial direction. These correlation lengths both vary linearly with distance 

from the nozzle and, in fact , 

15There is some recent evidence to indicate that the long axis may actua lly be at a 
450 angle to the flow direction. 

16The longitudinal correlation length in the itlLdirection is here defined as the 
distance for the longitudinal correlation coefficient 'in that directiOn, %j<Y\ ~ ~ i, 0) / 

Riie)", 0, 0) (no sum on i(i = 1, 2, or 3)), to fall to l / e. The quantity ki denotes the 
unit vector in th e i th-direction. 
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ll~0.lY1 and l2 ~ 0.05 Y1 (2-43) 

In the fully developed region the correlation length is relatively independent of 

y 1 to about 20 diameters. 

A suitable measure of the decay time T ~ is the time taken for the second­

order moving-frame turbulence correlation to fall to 1/ e of its T = 0 value. 

Davies, Fisher , and Barratt (ref. 13) found that along the centerline of the 

mixing r eg ion this quantity satisfied the relation 

(2-44) 

Hence, for U J < cO' the inequality (2 -31) is fairly well satisfied. And, as a 

result, we are fairly well justified in adopting the assumption (see section 

2. 4. 2.2) that the retarded time is negligible. 

The eddy convection velocity Uc = cOMc has been measured in the mix­

ing region by a number of investigators (r efs. 13 and 19 to 21). Measure­
ments taken by Davies, Fisher, and Barratt (ref. 13) are shown in fig -
ur e 2-11. The figure shows that the convection velocity varies across the 
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mixing region but not nearly as much as the mean velocity. It is equal to the 

mean velocity and to about 0.62 UJ at the center of the mixing region, where 

most of the turbulent ener gy is concentrated. These curves vary very little 

witn ax ia l dista nce Y1. 
2.5.1.3 Power emitted per unit length of jet. - In this section we use the 

measurements described in section 2. 5. 1. 2 to estimate 9 1 (y 1)' the power 

emitted per unit length of the jet. This quantity can be approximated by mul­

tiplying the power emitted per unit volume given by equation (2-41) by the 

cross-sectional area of the jet A(Y1) to obtain 

(2-45) 

First consider the mixing region. The cross-sectional area of this an­

nular region is 

7TDy 
A(y 1) = lTD x (Thickness of mixing region) = __ 1 

4 

We can estimate the correlation length land u l 

max in equation (2-45) by 

and 

ul;::j u l 

max 

Then upon inserting the empirical equations (2-42) to (2-44), equation (2-45) 

becomes 

(2-46) 
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This shows (since Mc is independent of y 1) that the power emitter per unit 

length of the mixing region is independent of axial position y 1. 

Notice that, since the local mean velocity V in the mixing region (say 

along the centerline) is independent of y l' equations (2-42) and (2 -44) imply 

that within this region T ~ ex l I v and u l ex V. Although the experimental in­
formation is less complete beyond y 1 = 4D, it is not unreasonable to assume 

that this proportionality is still maintained (even though V now varies with 

y 1). Then equation (2-45) implies 

(2-47) 

Now consider the fully developed region y 1 > 8D. Since the centerline 

velocity falls off as Yi 1 and since the cross-sectional area increases roughly 

as YI, it follows from equation (2-47) that 
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AERODYNAMIC SOUND 

which shows that the power emitted per unit length approaches zero very ra­

pidly in this region. Although the correlation length l becomes proportional 

to y 1 for large values of y l' it appears to be fairly constant to y 1 ;:::j 20D. 

Equations (2-46) and (2-48) show that the power emitted per unit length of 

jet varies in the manner indicated in figure 2-12. Thus, according to these 

arguments, 17 practically all the power is emitted from the first 8 or 10 jet 

diameters, with most of it coming from the mixing region. 

2. 5. 1. 4 Comparison of predicted sound field with experiments. - The 

total power .9'M emitted from the mixing region can be approximated by 

multiplying equation (2-46) by the length 4D of this region to obtain 

Since the factor 

1 M2 + c 

is a slowly varying function of UJ compared with U~, we can replace it by 

its value at Mc = 1/2 to obtain 

If roughly one-half the power comes from the mixing region, the total sound 

power emitted by the jet .9'T is approximately 

(2-49) 

17Th e reasoning used in this section is, of course, highly approximate and the 

actual distribution of emitted power in the jet is still controversial. 

~ - --- --- -- ----
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This is the now famous U8 law of jet noise obtained by Lighthill. The small 

size of the number 1. 6X10- 5 is a consequence of the inefficiency of the quad­

rupole source. Measurements of the sound emission from subsonic air jets 

with low initial turbulence levels indicate that the II Lighthill parameter" 

fJ'T/(POU~D2/ c~) is about 3X10- 5. Hence, considering the very approximate 

natur e of the arguments, equation (2- 49) is in very good agreement with the 
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Figure 2-14. - Experimental directivity data from reference 22. Jet nozzle diameter, D, 5.08 centimeters (2 in. !. 

observations. For jets with high initial turbulence, 18 the Lighthill parameter 

can increase by more than a factor of 30. 

The good agreement of the eighth-power law with the experimental data is 

illustrated in figure 2-13. This figure, taken from reference 22, is a com­

posite of Lewis data and data taken by Lush (ref. 23). Equation (2-40) shows 

that the directional pattern of the jet noise is the result of the convection fac­

tor (1 - Mc cos e)-5, which arises from the motion of the turbulent eddies rel-

18Most jets with high initial turbulence produce considerable internal noise, which 

is difficult to separate from the jet noise. 
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ative to the observer, and the factor 

which results from the structure of the sound sources and is called the "basic 

directivity pattern" by Ribner (refs. 11 and 12). Because of the large expo­
nent (5) the directivity patterns tend to be dominated by the convection factor. 
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Since most of the sound is probably coming from the mixing region, it is rea­

sonable to assume that Mc is approximately equal to 0.62 UJ/cO. The di­
rectivity patterns predicted by (1 - Mc cos 8) -5 with this value of Mc are 
compared with the air-jet sound field measurements of Olsen, Gutierrez, and 

Dorsch (ref. 22) in figure 2-14 and with those of Lush (ref. 23) in figure 2-15. 

(The level of the theoretical curves is adjusted to go through the experimental 

data at 900 from the jet axis, where the convection effect is zero.) It is shown 
in section 6.7 that this agreement can be considerably improved by accounting 

for the effect of the jet velocity field on the convective amplification factor. 

The figures show that the measured sound intensity tends to decline at 
small angles «200

) to the jet axis. It was suggested by Powell (ref. 24) that 

this drop is caused by refraction. Thus, it is shown in section 1. 3. 3 that, in 

the geometric acoustics limit, the sound propagating in the flow direction will 

be turned by the mean flow into the lower velocity region. Hence, the sound 
which is emitted in the downstream direction will be bent out through the sides 

of the jet, leaving a reduction in intensity along the axis. The effects of re­

fraction on the sound field are discussed more fully in chapter 6. 
2. 5. 1. 5 Spectra. - The sound heard by. an observer at the side of a jet 

progressively deepens in pitch as he moves downstream. But since the turbu­

lent eddies are also being convected downstream, the results of section 1. 8 

indicate that there should be a rise in pitch due to the Doppler shift. It has 
been conjectured by Ribner and MacGregor (ref. 25) that there are two effects 
which counteract the Doppler shift and produce the observed concentration of 

low-frequency sound in the jet axis. The first of these is a consequence of the 

self-noise term in equation (2-39) having a higher peak frequency than the 

shear noise term. 19 Since the former term is independent of direction while 

the shear noise is beamed downstream, this results in a net concentration of 
low-frequency sound on the axis. The other effect is a consequence of the 
high-frequency sound being more susceptible to refraction by mean flow than 

the low-frequency sound. 

19 
-(W T)n 

For example, if Rn va ried with time as e f for any integer n, eq. 
-2(WfT)n 

(2-37) shows that Rnn would v ary as e , indicating that the latter term had 

a higher characteristic frequency than the former . 
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2.5.2 SupersonicJets 

The arguments used in section 2. 2. 3 to show that the right side of Light­
hill's equation could be treated as a source term do not apply at supersonic 

speeds. As a consequence, the acoustic analogy approach may no longer be 
valid. Nevertheless, we shall attempt to use it as a guide to obtain a quali­

tative explanation of certain aspects of supersonic jet noise. 

2.5.2. 1 Emission of Mach waves. - The discussion in section 2.5. 1 is 
for the most part limited to subsonic flows. Indeed, for supersonic convec­

tion Mach numbers the denominator of equation (2-32) (on which this discus­

sion is based) will go to zero and as a result r(x, t) will be infinite at all 

points where 1 - Mc cos 8 = 0 (i. e., at points which lie on the Mach cone of 

the moving eddies). However, the inequality (2-31), used in the derivation of 

equation (2-32) from equation (2-30), no longer holds at these points. But 
since any reasonable correlation function must vanish at large times, the 
term 

(-' - x r ) R.. Y ~T+-· 
IJkl " x cO(1 - Mc cos e) 

in the integrand of equation (2-30) must also vanish at these points. Hence, 

the integrand in equation (2-30) can still remain finite. 
The factor (1 - Mc cos 8)5 in the denominator of equation (2-32) is the 

result of source convection effects. As in the case of a point monopole 

source, discussed in section 1. 8, it causes the sound intensity to increase 
whenever the sound sources move toward the observer. However, in the 

present case an additional effect resulting from the decrease in the cancella­

tion between the component monopole sources which comprise the quadrupole 

causes the exponent of the convection factor to be larger. 20 At zero velocity 

this cancellation causes the quadrupole source to be very inefficient. But the 
effect decreases as the source acquires a larger component of velocity in the 

direction of the observer. In fact, when Mc cos e = 1, the source is ap­

proaching the observer at precisely the speed of sound. As a result, the 

20There are also certain differences between the present case and the point mono­
pole source which result from the source occupying a finite volume of space. 
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sound emitted by the elements of the quadrupole further from the observer 

cannot overtake the sound from those nearer the observer. At this condition 

the cancellation effect is absent and the sound behaves as if it were emitted by 

a monopole source. Because of this decreased cancellation, we expect the 

sound field to be relatively intense in the direction 

-1 1 e = cos --
Mc 

Moreover, equation (2-29) shows that in this direction 

(2-50) 

Thus, the wave number of the sound field is the same as that of the turbulence 

which produced it, as it is in subsonic flow. But it is now the zero-frequency 

(stationary) components of the turbulence which produce the sound. Hence, 

the sound is being emitted by an essentially frozen convected pattern of turbu­

lence and the process is therefore analogous to the sound emission by a mov­

ing proj ectile. 21 For this reason it is called eddy Mach wave radiation. 

In order to obtain an expression for the sound field which is finite in the 

Mach wave direction, we take the inverse Fourier transform of equation (2-50) 

to get 

Then separating the vector ~ into its component 'fn in the Mach wave direc­

tion ;'/x and its component fs perpendicular to this direction (as shown in 

21These ideas are discussed from a different point of view in chapter 6. 
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fig. 2-16) shows that 

And therefore that 

xix 

Figu re 2- 16. - Coordinate system for Mach wave 
eq uation . 

(2-51) 

This equation was derived by Ffowcs Williams (ref. 14) . We might try, as we 

did in the subsonic case, to use experimental flow measurements to estimate 

the strength of its source term. However, because of the impossibility of 

making hot-wire measurements at supersonic speeds, much less is lmown 
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about the t urbulenc e. There is hope that, with the recent dev elopment of 

laser-Doppler techniques, this situation will be remedied. In any event we 

can still attempt to determine the dominant characteristics of the sound field 

by performing a similarity analysis. Thus the differentiation with respect to 

~ n ought to scale with the jet diameter D, the integration with respect to 

time TO ought to scale with Dlv J' and Rijkl ought to scale with vj. 

Then, dimensionally, equation (2-51) becomes 

Notice that in this case the radiated sound depends on the jet velocity to the 

third power instead of the eighth. It is now generally accepted that this be­

havior occurs in actual jets at sufficiently high supersonic Mach numbers. A 

typical plot of radiated power as a function of jet velocity (taken from ref. 14) 

is shown in figure 2 -17. 
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(a) Ratio of pressure just ahead of exit to atmospheric pressure , Pe/ Pb ' 1.5. 

( 

(b) Ratio of pressure just ahead of exit to atmospheric pressure, Pe/ Pb' 0.8. 

Figure 2-18. - Flow from a convergent-divergent nozzle at different back pressures (from ref. 45). 
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2. 5. 2. 2 Fluid mechanics of supersonic jets. - The flow characteristics 

of supersonic jets are different depending on whether the pressure at the noz­

zle exit is greater than (underexpanded), less than (overexpanded), or equal to 

the ambient pressure surrounding the jet (fully expanded). In the first two 

cases, shock bottles will be present. The flow fields for these cases are 

shown in figure 2 -18. For certain operating conditions these shock bottles are 

sensitive to slight pressure or velocity variations so that only a slight change 

in external pressure at the jet exit can cause Significant movement of the 

shocks. Aside from the presence of shocks the most significant difference 

between subsonic and supersonic jets is that for supersonic jets the length of 

the potential core increases with Mach number. The general structure of a 

fully expanded supersonic jet is illustrated in figure 2-19. Surrounding the 

supersonic potential core is a region in which turbulent mixing occurs at su­

personic velocities. The potential-core length and the supersonic-mixing­

region length were measured by a number of investigators. The data of 

Nagamatsu and Sheer (ref. 26) together with data of other investigators which 

they collected are shown in figure 2-20. 

-------" Supersonic mixing _---
, --I region , M > 1 _---

D ~ Supersonic core --
, --- - Subsonic turbulent 

____ 1_::=~\ =-~~~~-t~-;-~~== __ -----lr-region, M < 1 1- ---- ---- ------ Y1 

----------------
ft:--potential-:r~ength' :--

Supersonic length, Ls--t-----., 

------

Transition region --+-Of-Fully developed region---\;---

Figure 2-19, - Parallel-flow supersonic jet expanded to ambient pressure, 

147 

-~-~~~~----------- ---~---- ---



AEROACOUSTI CS 

j" 

.<:.-

0. 
.§ 
u 

[ 
~ 
"C 

~ 
Y 

S. 
.§ 
~ y 
~ 

~ 
"'5 
"-

100 

10 

-- Supersonic length , ls 
- -- Potential "i:ore length, Lc 

Open symbols denote supersonic-length 
data from various references 

Solid symbols denote potential -core­
length data from various references 

a 

a /, 
// 

~----~------~-----------~ 

1~----------------------------~------------------------------7 _I 0 LO 
let-exit Mach number, U l ito 

Figure 2-20_ - let potential -core length and supersonic length as function of jet-exit Mach number. (From ref. :!Ii_) 

-- -------, 

2.5.2.3 Location of acoustic sources. - One of the most important 

acoustic properties of a jet is the distribution of the sound sources in the flow. 

Three basic methods have been used to measure the location of these sources. 

The first consists of operating the jet through a small hole in a large sound­

absorbing screen (refs. 27 and 28). The second consists of extrapolating 

back from the directional maxima in the sound field (refs. 29 and 30). And 

the third consists of measuring near-field pressures along the jet boundary 

(ref. 31). There are a number of obj ections to using each of these methods 

(refs. 14 and 27), and a great deal of caution should be observed in interpret-
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ing the results . However, the general indication is that the maximum noise­

producing region occurs just downstream of the sonic line. The measurements 

of Bishop, Ffowcs Williams, and Smith (ref. 27), which indicate that the prin­

cipal sound sources occur well upstream of this line, are an important excep­

tion. 

2.5.2.4 Experimental evidence for existence of Mach waves. - A large 

number of optical measurements have been made to investigate the eddy Mach 
wave radiation emitted by jets. For example, Lowson and Oller head (ref. 32) 

and Dosanjh and Yu (ref. 33) have taken shadowgraphs, and Eggers (ref. 34) 

and Jones (ref. 35) have taken schlieren photographs. Two distinct types of 

waves which show characteristics of Mach waves seem to appear. There is 

one group of waves which appear within the first few diameters of the nozzle 

exit, and there is another which is not prominent in the shadowgraphs but can 

be seen in the schlieren photographs. These latter waves have been observed 

to extend further downstream to perhaps 8 to 10 diameters depending on the 

Mach number. 

Since Mach waves must always originate in the supersonic region and 

since there is experimental evidence to indicate that the dominant sound is 

generated downstream of this region, the Mach wave radiation may not be an 

important source of supersonic jet noise. It is also argued by Tam (ref. 36) 

that the frequencies associated with these waves are too high to contribute to 

the dominant part of the observed acoustic spectrum. 
2.5.2.5 Large-scale structure models of jet noise. - A Mach wave22 

model has been proposed by Bishop, Ffowcs Williams, and Smith (ref. 27) to 

explain certain types of supersonic jet noise. Their experiments indicate that 

the dominant noise sources are extremely large eddies which are coherent on 

a scale much larger than the width of the shear layer and are clustered around 

the potential core of the jet. They propose that these eddies have a relatively 

ordered structure and arise from an instability of the primary flow. A mech­

anism for calculating the structure of these eddies (analogous to the one used 

for laminar instability calculations) is suggested by the authors. 

Tam (ref. 36) has also proposed a model (for a nearly fully expanded su­

personic jet) in which the sound generation is related to the large-scale flow 

22An analysis of Mach wave radiation by P hi llips and Pao i s di scussed in 
chapter 6. 
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structure. In Tam's model, however, it is large-scale spiral-mode instabil­

ities involving the entire jet which are responsible for the noise. These insta­

bilities (it is proposed) arise as a result of a periodiC resonant excitation by 

the shock waves of disturbances originating in the nozzle. This excitation 

causes the disturbances to grow in amplitude. 

2.5.2.6 Noise generated by shock waves. - In addition to the noise­

generation mechanisms discussed in the last section, mechanisms involving 

shock-turbulence interactions and a feedback mechanism involving the shock 

wave structure have been proposed as dominant sources of supersonic noise. 

Thus, when turbulence passes through a shock wave, it causes a localized de­

formation of the shock, which results in the emission of sound. This sound, 

which is broadband but still strongly peaked is usually called "shock associ­

ated noise." Analyses of this process have been carried out by Lighthill 

(ref. 37), Ribner (ref. 38), and Kerrebrock (ref. 39). This mechanism is 

generally regarded as the dominant noise source in supersonic wind tunnels . 

The .feedback mechanism was proposed by Powell (ref. 40) to explain the 

discrete tones observed in the spectrum of choked cold-model jets called "jet 

screech." Powell's explanation involves (like Tam's mechanism) an amplifi­

cation by the shock wave structure of disturbances originating in the nozzle. 

However, in Powell's model the motion of the shock wave emits a sound wave 

which propagates upstream to the nozzle lip. The ensuing change in pressure 

which occurs at this point will be just sufficient under certain conditions to 

cause a new perturbation of the shock system, resulting in a feedback system. 

2. S. 3 Low-Velocity Jets: Orderly Structure 

At very low Reynolds numbers the flow in a jet is laminar and produces 

no sound. However, as the Reynolds number is increased the jet becomes un­

stable to small disturbances and an unsteady periodic flow is set up. 

2.5.3. 1 Plane jets: edge tones. - First, consider a jet issuing with a 

velocity U J from a long slit of width h into an unbounded quiescent fluid. 

When the Reynolds number Po U Jh/ 11 is greater than about 100, the jet be­

comes unstable to disturbances in a certain range of frequencies and begins to 

oscillate, taking on a sinuous appearance. This unsteady flow gives rise to a 

hissing noise which has a peak frequency near f = O. 055 U J/h. 
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Figure 2-21. - Experimental arrangement for edge-tone production. 

Fig u re 2-22. - Vortex 5t ructu re in edge-tone config u ration . 

This noise can be converted into a distinct tone of a much greater inten­

sity, called an "edge tone, " by placing an edge some distance downstream 
from the slit, as shown in figure 2-21. Because these edge tones are involved 

in the sound production by flutes and organ pipes, they have been thoroughly 

investigated both theoretically and experimentally. The experiments indicate 

that the jet oscillations are associated with discrete vortex centers shed al­

ternately from the nozzle lip and the edge vortex, as shown in figure 2-22. A 

plausible explanation of how this configuration can maintain itself in a stable 

fashion was given by Curle (ref. 41), who extended the ideas set forth by 
Richardson (ref. 42). 

For any given jet velocity there is a minimum distance from wedge to slit 

below which no tone occurs. Beyond this distance the frequency of the tone 
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increases with increasing velocity and decreases with increasing distance until 

a condition is reached where there is a marked irregularity in the vortex pat­

tern. At this point there is a sudden jump in the frequency of the tone. Fur­

ther increases in distance or velocity result in a continuous change in fre­

quency until a second jump occurs and so on. When the process is reversed, 

the jumps in frequency will again occur - but at somewhat different values of 

the velocity and distance. 

2.5.3.2 Cin:ular jets: bird tones. - When a round jet issuing from a 

round hole of diameter D becOllles unstable, the vortex sheath at the edge of 

the orifice rolls up into a vortex ring (which is swept downstream), and the 

jet resembles the sketch shown in figure 2-23. This behavior occurs for 

Reynolds numbers in the range 160 < POUJD/ jJ. < 1200. A more pronounced 
periodic behavior can be ol1tained by allowing the circular orifice to discharge 

into a pipe. This periodicity can produce pure tones. However, in order to 

produce a sharp tone which is insensitive to small changes in orifice shape, it 

is necessary to blow through two (suitably shaped and spaced) orifice plates. 

The sound produced by this arrangement is called a "bird tone." It occurs in 

some brass instruments and when a human whistles. 

The behavior of the flow from a circular nozzle is similar to that from 

an orifice with the jet instability evolving from a sinusoid to a helix and 

finally into a train of vortices. When the Reynolds number is increased be­

yond about 1200, the flow in the jet becomes turbulent and the periodic 

Figure 2-23. - Roll up of a low-Reynolds-number jet. 
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structure gradually disappears. The jet then behaves in the manner de­

scribed in section 2.5.1. 2. However, there has been some conjecture (refs. 
43 and 44) that the low-velocity periodic structure persists (even at these 
high Reynolds numbers) in the form of a large-scale orderly structure of the 

turbulence and that it may have a direct bearing on the production of noise 
from high-speed jets. 

2.5.3.3 Sensitive jets. - When a jet is on the verge of becoming turbu­

lent, it is very sensitive to muscial notes. Rayleigh (ref. 8) attributed this 
behavior to the fact that, due to the instability of the vortex sheath surrounding 
the jet column, the sound waves at the exit plane can easily excite interfacial 

waves. The "sensitive jet" phenomenon has received a great deal of study 

since it was first observed in 1850. In this instance it was in the form of a 

gas flame dancing in response to a violoncello. 
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APPENDIX - TRANSFORMATION OF SOURCE CORRELATION FUNCTION 

In this appendix we shall transform the integrand in equation (2-13) into a 
more suitable form. Since we are dealing with a stationary process, this in­
tegrand denotes the time average 

Upon denoting Ti/Y', t') by Th and using a similar convention for Tij, it 
follows from the second equation (2 -14) that 

Since all stationary functions must remain bounded even at large times, inte ­
grating by parts implies that 

T i T aT! . aT" ) __ 1] ~ dt 
at at 

-T 

1 a2 ~T! ' A = lim - - ~ Til 
T_oo 2T aT2 at kl 

-T 

i T aT! . aT" 
--.!1~dt 

at at 
-T 

Then using the second equation (2-14), again, shows that 
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i T aT! . 
__ IJ Til dt 
at kl 

-T 

Finally, upon integrating by parts a second time, we find that 

A = lim _1 _ _ 0_ T~. T'l dt 4 IT 
T-oo 2T 4 -T 1] kl aT 

4 
= _a_ T .. G\ t')T

kl 
(y", til) 

4 IJ aT 
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CHAPTER 3 

Effect of Solid Boundaries 
3.1 INTRODUCTION 

In chapter 2, Lighthill's equation was used to predict the sound from un­

steady flows in the absence of solid boundaries (or more correctly, from 

flows where the effect of such boundaries could be neglected). However, in 

many cases of technological interest, solid boundaries appear to playa direct 

role in the sound generation process, and their presence often results in a 

large increase in the radiated sound. Thus, solid surface interactions are 

directly involved in the generation of sound by helicopter rotors, by airplane 

propellers, and by aircraft engine fans, compressors, and turbines. They 

also have a significant effect on the sound generated by externally blown flap 

STOL aircraft, as well as by high-performance aircraft aboard aircraft car­

riers. 
We might anticipate that solid boundaries will affect the sound field in two 

ways. First, the sound generated by the volume distribution of quadrupoles in 

Lighthill's theory will be reflected and diffracted by the boundaries. And sec­

ond, there may be a resultant distribution of dipole or even monopole sound 

sources at the boundaries. Dipoles are particularly likely since, as we have 

seen, they correspond to externally applied forces, which occur whenever 

surfaces are present in the flow. 

In this chapter Lighthill's acoustic analogy is extended to include the ef­

fects of solid boundaries. 
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3.2 DERIVATION OF FUNDAMENTAL EQUATION 

We shall suppose that the effects of initial transients can be neglected. 

Then the integral formula (1-55) can be used to obtain a solution to Lighthill's 

equation in any region v( T) bounded, wholly or partially, by surface S( T). 

But since Lighthill's equation (2-5) has the form of a stationary-medium wave 

equation, it is appropriate to put B- = 0 and, as a result, to require that the 

functions p and G satisfy the stationary-medium wave equations (1-59) and 

(1-60), respectively. Indeed, comparing equations (1-59) and (2-5) shows 

(upon identifying p' with p) that 

II 2 a T .. 
G 1] dy dT 

ay. ay . 
1 ] 

-T V(T) 

+ (3-1) 

where 

pI = P - PO 

denotes the fluctuating density, V is (since U = 0) the normal component of _ n 

the surface velocity V , and s 

G = GG, TIX-, t) (3 -2) 

denotes any solution of the inhomogeneous wave equation (1-60) which satisfies 

the causality condition (1-52) and vanishes at infinity (if v extends to infinity). 

But using the identity 
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2 
aT.. a aG a T.. a2G 

~ G _ _ 1] __ T .. -= G 1] - T . . --=--..:....-
ay. ay. ay . 1] ay . ay . ay . 1J ay. ay . 

1 J J 1 1 J 1 J 

2 to eliminate a Ti/aYi aYj and applying the divergence theorem (1-47) to 

eliminate resulting volume integrals show (after inserting the definition (1-57) 

of V n and the definition ni( a/ aYi) of a/ an) that 

1 
+- i

T 

c~ -T ~a ( 2 ,) s apj Gn. - T .. + cOo .. p + V. - dS dT 
1 a 1J 1] 1 a y. T 

S(T) J 

n. ~(T .. + c0
2 o. p) aG + V~p' aG~ dS dT 

J 1J 1J ay. ] aT 
1 

S(T) 

Then upon changing the names of dummy indices and introducing equations 

(2-3) and (2-4) , this becomes 

- - ~------- -~~--- -- -
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(3 -3) 

where 

f. = -n.(p - PO) + n.e. · 
1 1 J IJ 

(3 -4) 

is essentially the ith component of the force per unit area exerted by the 

boundaries on the fluid and 

_ ~apvi sap'} aG, s aG h. =G -- -V. - +pv.v. -+p V. -
1 aT 1 aT 1 J aYj 

1 aT 

We shall consider only the case where the surfaces are impermeable to the 

flow 1 so that 

Then 

s n.v. = n.V. 1 1 1 1 
-for y on S 

~ av i aG aG) aG n.h. = n. Gp - + pv. - + pv.v. - -n.POv.-
111 aT laT J1ay. 11aT 

J 

and as a result the continuity equation (2 -1) implies that 

lSince our interest here is in the generation of sound and not its absorption by 
acoustically soft surfaces. 
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(
OPViG 0 ~ n.h . = n. -- + v. - pv.G 

I I I OT I oy. J 
J 

oG 
- n·POv.­

I I OT 

But applying Leibniz's rule (1-48) and the divergence theorem (1-47) to 

opviG/oYi shows that 

[ ~PViG 0 ) = n. -- + v. -pv.G dS 
I OT l oy. J 

S(T) J 

(3 -5) 

Hence, after using the argument which follows equation (1-54) to omit the inte­

grated term 

T=T 

T=-T 

we find that only the last term 

in equation (3 -5) contributes to the integral in equation (3 -3) and hence that 
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i T1 iT! 1 1 a2
G - 1 aG P = - Tij dy dT + - - - fi dS(y)dT 

2 oy. oy . 2 oy. 
Co -T V(T) 1 J Co -T S(T) 1 

+ C~ lTl Po V n :~ dA(Y)dT (3 -6) 

o -T S(T) 

This is the fundam ental equation governing the generation of sound in the 

presence of solid boundaries. It is , aside from the omission of a possible 

initial transient , an exact equation. It applies to any region v( T) which is 

hounded by impermeable surface s S( T) in arbitrary motion provided the 

source distributions T .. and f. are localized enough to ensure convergence 
1J 1 

of the integrals (see footnote 9 of se ction 2.3). 

In the acoustic analogy approach we assume that the stress tensor T . . 
1J 

and the surface force fi can either be modeled mathematically or determined 

experimentally. Then the right side of the equation is known, and the density 

fluctuations in the sound field can be calculated. The first term represents 

the generation of sound by volume sources . The second term represents the 

sound generated by unsteady forces exerted on the fluid by the solid boundar­

ies. The last term represents the sound generated as a result of the volume 

displacement (thickness) effects of the surface. 

In any given problem there will usually be many possible choices for the 

fundamental solution G in this formula. But it should be chosen to obtain an 

optimum apprOXimation to the sound field from the available information about 

the sources f. and T. .. Since this involves a certain amount of intuition, it 
1 1J 

is important to study som e of the specific applications of this equation. The 

remainder of the chapter is devoted to this task. 

3.3 FFOWCS WILLIAMS - HAWKINGS EQUATION 

When the region v is all of space, the surface integrals in equation (3 -6) 

will not be present , and the only possible choice of G will be the free-space 
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Green's function GO given by equation (1-38). In this case, equation (2-11) 

(which was the starting point for the jet noise analysis in chapter 2) is re­

covered. Now even when solid boundaries are present, there is no reason 

why G cannot still be taken as the free-space Green's function. In this sec­

tion, we investigate the consequences of such a choice. 

3.3. 1 Derivation of Equation 

Since equation (1-38) shows that GO depends on y and x only through 

r = 1 x -y I, it follows that 

(3 -7) 
ay. ax. 

1 1 

Hence, inserting equation (1-38) into equation (3 -6) shows that 

p,=_l _a-l Tl-1 6~-T-2..) T .. dydT 
2 ax. ax. 41Tr Co 1) 

Co 1 ] -T V(T) 

1 a i T 1 _1 {j~ - T -2..)f . dS(y)dT 
41Tr Co 1 

-T S(T) 
2 ax. 

Co 1 

ITl 1 Po V " r + _ __n ~ {j ~ _ T - -) dS(y)dT 
2 47Tr aT \" Co 

Co -T S(T) 

(3 -8) 

In order to carry out the integrations o!er T, it is convenient to introduce 

a Lagrangian coordinate system, say ~(y, T) , in which the surface S( T) re­

mains fixed. Then the velocity V and the acceleration a of any point f of 

this coordinate system are given by 
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(=Constant 

(3 -9) 

~=Constant 

And since each point on the surface S( T) is fixed in this system 

""s -V = V (3-10) 

for all points on S( T) . 

Let us now suppose that the region v( T) occupies the exterior of the im­

permeable surface S( T), as shown schematically in figure 3 -1. The last term 

in equation (3-8) appears to represent a monopole source. And if the surface 

S( T) were expanding and contracting in such a way as to cause its enclosed 

volume to change with time, we would certainly expect this term, which repre­

sents the sound generated by volume displacement effect, to be a monopole. 
However, if the surface moves in such a way that the volume of the interior 

region VC(T) does not change with time, we might expect this source to de­

generate into higher order sources. Thus, it is shown in books on elementary 

fluid mechanics (ref. 1) that the time rate of change of an element of volume 

in the Lagrangian coordinate system is proportional to the divergence of the -velocity V of a fixed point in this system. Then if the volume of v (T) is to c 

V(t) 

Figure 3-1. - Moving-coordinate surface. 
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--remain constant in time, there will be at least one s -coordinate system such 

that 

(3-11) 

at all pOints within v c . But when this condition is satisfied , equation (3 -A3) 

of appendix 3. A can be used with 

to transform the last integral in equation (3 -8) and thereby obtain 

1 a2 1 r--11, p' = - -- 0 t - T - - T .. dy dT 
2 ax. ax. ( ) 4.r (. co) 1J 

Co 1 J -T v T \' 

1 a Ir --- - -- -- 0 (t - T - _)poa. dy a.T i T! 
2 ax. 41Tr \ Co J 

Co J -T v (T) 

1 
+ -

2 
Co 

c 

(3 -12) 
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<::1 

Figure 3-2. - Coordinate sys tem fi xed in a surface. 

Thus, the volume displacement effect of the moving surface results in a dipole 
source proportional to the acceleration of the surface and a quadrupole source 

proportional to V. V .. 
1 J 

Instead of evaluating these integrals for a solid surface in arbitrary mo-

tion, we shall restrict our attention to the case where the surface is rigid. In 

this case we can choose the ~ -coordinate system to be Cartesian (as shown in -fig. 3-2). Thus, the coordinate :xes can translate with a velocity VO(T) and 
rotate with an angular velocity n( T) but must always remain Cartesian. In­

deed, any book on classical mechanics (e. g . , ref. 2) will show that the veloc­
ity V of any fixed point f in this coordinate system is 

(3-13) 

We shall carry out the integrations over the delta functions in equation (3-12) 
by introducing this coordinate system. To this end, recall that the Jacobian 

of the transform 

between two Cartesian coordinate systems is unity and that the element of sur-- -face area dS( ~) in the ~ -coordinate system is equal to the element of surface 

area dS(y) in the y-coordinate system. Then since the limits -3f integration of 
the volume and surface integrals are independent of T in the ~ -coordinate 
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system, the order of integration can be interchanged in these coordinates to 

obtain 

1 a2 
p'=- ---

2 ax. ax. 
Co 1 ) [100 _1 0 ~ - T - -.!:.) T .. dJdf 

47Tr Co 1) 
- 00 

1 a 
2 ax. 

Co 1 

1 a ----
2 ax. 

Co ) 

1 a2 
+----

2 ax. ax. 
Co 1 J 

[1
00 

_1 0 ~ - T - E-)poa. dJdf 
47Tr co) 

-00 

_1_ 0 
47Tr 

where we have allowed T to approach 00. 

The integrations over T can now be carried out by using the identity (1-128) 

with g equal to T - t + (ricO). Then, since it follows from equation (3 -9) that 

(
ag

)_ = 1 
aT S 

-r (3 -14) 

(where 
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(3 -15) 

and r == x - y), carrying out these integrations yields the Ffowcs Williams -

Hawkings equation2 (ref. 3) 

p' = _1_ 0
2 

2 ox. ox. 
41TCo 1 J 

Too 
1] 

--
1 

r M r 
r 

1 0 -----
2 

41TC
O 

oXj 

1 a2 
+-- ----

4 
2 ax. ox. 

1TCO 1 J 

d~ 

T=Te 

dS(~) 

T=Te 

POaj 
d~ --r M 

r rl1 
T=Te 

r1-!:.·M 
r 

T=Te 

d~ (3 -16) 

2The equation actually devised by Ffowcs Williams and Hawldngs is more general 
in that it does not require that the surfaces be rigid. 
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where the notation [ ]T=T indicates that the quantity enclosed within the 
e 

brackets is to be evaluated at ~ and the retarded time T = T (x, t, ~), which e e 
is obtained by solving equation 

g(Te,t,X,f) =Te -t+~)X-Y(f,T») = 0 
c e 
o 

(3-17) 

And if more than one solution to this equation exists (as it does at supersonic 

speeds), each term in equation (3 -16) should be interpreted as a sum over all 

such solutions. 

3.3.2 Interpretation of Equation 

Comparing equation (3 -16) with the solution (1-144) obtained in section 1. 8 

(for a point multi pole sour~e moving with a constant velocity) shows that each 

moving volume element d( outside of S(T) emits an elementary wave which is 

-Ib-======-- v(t) 

y(~.t\ 

Figure 3-3. - Moving-source configuration. 
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the same as that emitted by a mOving quadrupole source of strength T .. d~ 
-. 1J 

(see fig. 3 -3), that each element of surface area dS(~) emits an elementary 

wave which is the same as that emitted by a moving dipole source of strength 
-. 

-fi dS(~), and that each moving volume element d~ within S acts as if it 

emitted elementary waves which are the same as those emitted by a dipole 

source of strength -Paa. and a quadrupole of strength PaV .V.. The first 
J 1 J 

term corresponds to the solution which arises in Lighthill's theory. The di-

rect effects of the solid boundaries are accounted for by the remaining three 

terms . The first of these represents the sound generated by the fluctuating 

force fi exerted by the solid boundaries on the fluid. The remaining two 
terms represent the sound generated by the volume displacement effects - the 

dipole term resulting from the acceleration of the surface. 

If the velocity V of any point of the source region is supersonic, the 
Doppler factor 

t 
-. 

C = 1 - !:.. M = 1 - M cos e 
r 

(3-18) 

which occurs in the denominator of each term in equation (3 -16) vanishes at the 

angle 

-1 1 e = cos - (3-19) 
M 

This introduces a singularity of the type discussed in section 2. 5. 2 with the 

resultant emission of Mach waves. The emission of these intense shock waves 

by solid surfaces moving at supersonic speeds is a well-known phenomenon. 

3.3.3 Curle's Equation 

When the surface S is stationary, a = M = V = a, ~;::: y, and equation 
(3-16) reduces to Curle's equation (ref. 4) 
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1 cf JT i . pI _ J 

4 2 ax. ax. r 
1TCO 1 J II 

fu r) -
\" t - Co dy 

1 a ifi ~ r) (;:\ - -- -- - y, t - - dS y J 

4 c2 ax. r Co 
1T 0 1 S 

(3 -20) 

3.3.4 Far-Field Equations 

3.3.4.1 Derivation. - Now suppose that S is bounded and that the volume 

source regio~remains concentrated near this surface. We shall require that 

the velocity V be subsonic at each point of this region so that the Doppler 

factor C t can never vanish. Then equation (3-16) can be simplified when­

ever the observation point is sufficiently far from the source region. In order 

to accomplish this, notice that applying the chain rule to equation (3 -17) shows 

But upon using equations (3-14), (3-17), and (3-18) to eliminate g from this 

equation, we find that 

ax . 
J 

Hence , applying the chain rule to an arbitrary function f(x, T e) shows that 
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af 
ax. 

1 

and therefore, in particular, that 

ar r i -=--
ax. r 

1 

(3-21) 

at T = Te (3 -22) 

Now each integral in equation (3-16) involves a first or second derivative 

with respect to x. of a term of the form 
1 

where (in order to simplify the notation) dependence on ~ has been sup­

pressed. But since A does not depend on x explicitly , equations (3 -22) and 

(3 -18) show that as r -+ 00 

Then equation (3 -21) shows that 

= 
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and hence that 

Thus, at large values of r, equation (3-16) can be approximated by 

p' ~ _1_ 
4 

47TCO 

d l" , (3-23) 

When the surface S is stationary , the retarded time is a linear function 

of t. Hence , derivatives with respect to retarded time can be replaced by 
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derivatives with respect to t and equation (3 -23) reduces to 

x.x. ! pI ~ __ 1.....:J_ 
4 3 

41TCOX 1J 

This shows that no sound is radiated by stationary surfaces when the 

source functions T
i
. and fi are steady (i. e., independent of time). How­

ever, equation (3-23) shows that, even if the sources are steady, sound will 

be emitted whenever the surface velocity V (and as a consequence C t) de­

pends on time. Thus, when the sources are steady, accelerative motion of a 

surface (which occurs, for example, on a propeller) will result in the emission 

of sound, whereas a steady motion will not. Of course, this conclusion only 

applies for subsonic velocities (for which the convection factor C t never 

vanishes). 
Surfaces moving with a constant supersonic velocity will generate shock 

waves which will reach the far field and be sensed as sound (often called a 

sonic boom). 

3.3.4.2 Compact sources. - We saw in section 1. 5.3 that the structure 

of the radiation field from a fixed source region becomes particularly simple 

when this region is compact. This is a consequence of being angle to neglect 

the variation in retarded time across the source. 

3. 3. 4. 2. 1 General equations: A similar Simplification can be obtained 

for a moving source region. To this end let By denote a distance across such 

a region. Then it follows from the mean-value theorem that the corresponding 

change in retarded time tn e is approximately 

(3 -24) 

But since applying the chain rule to equation (3 -17) shows that 
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this equation becomes 

1 
6.T ~ - ------

--r 
e co(l - M cos e) r 

Hence, the change in retarded time across the source region is roughly 

1 
llT ~ --- --

e 1 - M cos e Co 

L 

where L = I Byl is a characteristic source dimension. As pointed out in sec ­

tion 2.4.2.3 (for the case of moving eddies) , 6.T represents the time it takes e 
a sound wave to cross the moving source region. 

Now let T~ denote a characteristic time for the source fluctuations mea­

sured in the moving frame. If this time is large compared with the variation 

in retarded time II T e across the source region, that is, if 

L « T 
cO(l - M cos e) ~ 

(3 -25) 

it will be possible to neglect retarded-time variations in the integrals in equa­

tion (3-23) . We shall also suppose that the variation in Mach number across 

the source region is sufficiently small so that the convection factor C t can be 

treated as a constant in these integrations. Then, with these approximations, 

equation (3 -23) becomes 
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pI", 

(3 -26) 

where T e now denotes the retarded time at the center of the source region, 

R denotes the vector from the center of the source region at the retarded 
time T to the observation point x, V? and al~ are the velocity and acceler-e 1 

ation of the center of the source region 

is the net volume enclosed by S, and 

and 

T .. d~ 
IJ 

R 

R 

F.(t) = ;: f.(f, t)ds(f) 
1 s 1 

(3 -27) 

represent the integr a ted strength of the external quadrupoles and the net force 

exerted by the surface on the fluid, respectively. 
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The first term in equation (3 -26) is clearly a quadrupole source and the 

second is clearly a dipole. If the approximation (2-7) is used, the quadrupole 

strength T ij will be of the order pou,2, where u' denotes a typical fluctua­

ting velocity. The dipole strength fi is (upon neglecting viscous terms in 

eq. (3 -4)) approximately equal to the fluctuating pressure p'. However, in 

most fluctuating flows, p' is of the order pou,2, so that the source strengths 

should be roughly equal. For example, Uberoi (ref. 5) showed that 

p' ~ 0.8 pou,2 for isotropic turbulence. 

If these two sources are of equal magnitude and if their spatial and tem­

poral scales are roughly equal, their ratio will be of the order 

L 

Hence, equation (3-25) shows that in this case3 the quadrupole source can be 

neglected, and equation (3 -26) becomes 

(3 -28) 

3.3.4.2.2 Special results for stationary surfaces: When the surface S 

is stationary, equation (3 -28) reduces to 

x. of. ~ ) p'''' _1 _1 t - cx

o 41TC~X at 
(3 -29) 

where 

3This equation was obtained by Lowson (ref. 6) without the acceleration term. 
This term was included by Ffowcs Williams and Hawkings (ref. 3). 
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F .(t) = r f . (Y, t)dS(Y) 
1 is 1 

And the inequality (3 -25) now shows that this equation applies when 

(3 -30) 

(3-31) 

Then (since the time average is independent of translations) the average sound 

intensity from a time-stationary flow is given (see eqs. (1-14) and (1-123)) by 

I 
x.x. dF .(t) dF .(t) 

I~ ____ ~ __ l_ J (3 -32) 
dt dt 

Suppose that the unsteady forces generating the sound are caused by a 

turbulent flow with mean velocity U and correlation length l. Then, as in­

dicated in section 2. 5. 1. 2, the turbulent eddies will evolve slowly in time 

compared with the time 

which they take to pass a fixed observer (Taylor's hypothesis). The forces in­

duced on any fixed object should therefore fluctuate predominantly on the latter 

time scale. Hence, the inequality (3-31) becomes 

L « .l.. (3 -33) 
M 

where 
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is the mean-flow Mach number. Thus, unless M is very small (in which 

case the sound field will be negligible), the characteristic source dimensions 
must be small compared with the turbulence correlation length. 

Equation (3 -32) can be used to obtain similarity relations (analogous to 
those obtained for jet noise) for the sound field generated by a fluctuating flow 

in the vicinity of a small stationary object. Thus, if Tf denotes the charac­

teristic period of the fluctuating force, we anticipate that 

aF. aF. 1 - 2 _l_l cx: _IFI 
at at 2 

Tf 

and if U c denotes an appropriate characteristic velocity of the flow, 

and 

Hence, it follows from equation (3 -32) that 

The total radiated power £}In will therefore be proportional to 
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Comparing this with the relation 

obta ined in section 2. 5. 1. 4 for the total sound power emitted from a volume 

quadrupole source shows that their ratio is 

Hence, the lower the Mach number, the more likely it is that surface dipoles 

are important relative to volume quadrupoles. 

Equation (3 -29) implies that the cross correlation 

F 2(t)P(t + T) 

between the lift fluctuation acting on a body and the far-field sound pressure 

should be proportional to the time derivative 

of the lift autocorrelation function. Clark and Ribner (ref . 7) measured the 

cross correlation of the sound and lift fluctuations on a small airfoil in a tur­

bulent jet. Their results are shown in figure 3 -4. They attribute the small 

discrepancy (27 percent max. ) to the false enhancement of lift resulting from 
model vibrations . 
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1. 0 
Fttl p(t + T) 

F2(1) p(t + TO) 

0 
0 aT F2(t) F2(t +T) 

0 0 

. 5 
aTo F2(t) F2(t + TO) 

0 

o 

Or-----------------------------'D~~~-----------

o 
o o 

-.5 L-----__ -L-L ______ -L ________ ~ ________ L_ ______ ~ 

o . 6 . 8 1. 0 
Time, T, msec 

Figure 3-4. - Comparison of cross correlation of lift and sound pressure and first derivati ve 
of autocorrelat ion of lift - both norma lized. (F rom ref. 7.) 

3.4 CALCULATION OF AERODYNAMIC FORCES 

In order to use the equations derived in the previous section to predict the 

sound field , it is necessary to determine the fluctuating force F. acting on the 
1 

body. This force can either be determined through the direct measurements 

or calculated analytically from the unsteady flow field in the vicinity of the 

body. In this section a number of the analytical methods are described. 

The calculation of these forces is , in general, a very difficult task. All 

the purely analytical results obtained so far involve the assumption that the 

fluctuating velocity is small compared with the steady velocity. This allows 

us to linearize the unsteady flow calculation. 
Thus , it is a ssumed in this section that the unsteady flow is the result of a 

frozen small-amplitude disturbance pattern (ca~led a "gust") being convected 

past a stationary body by a uniform mean flow i U 00 ' This means that the mag ­

nitude of the disturbance velocity u = {u , v , w } is small compared to Uoo 00 00 00 00 

a nd that far upstream from the body the flow velocity i U 00 + Uoo is steady (but 
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spatially nonuniform} in a reference frame moving with the mean velocity 

i Uoo ' This might, for example, be a good approximation for a turbulent flow 

which (as we have seen) changes slowly in time in a reference frame moving 

with the mean flow. We also assume in this section that the flow is incom­

pressible, with the effects of compressibility being deferred to chapter 5. 

3.4.1 Quasi-Steady Approximation 

First, consider the case where the spatial scale of the disturbance is 

large compared with a typical dimension of the body. Then it is not unreason­

able to assume that the forces acting on the body follow the same relations as 

they do in a steady flow. This is called the "quasi-steady" approximation. 

Thus, we assume that the lift and drag forces acting on the body (L and D, 

respectively) are given by 

(3 -34) 

o 

Y3 
Figure 3-5. - Coordinates for orienting body relative to oncoming flow. 

186 

~--~-- - -- --



fFFE CT OF SO LID BOUNDARIES 

where A is some suitable cross-sectional area of the body, V is the up­

stream velocity, and the lift and drag coefficients , CL and CD' respectively , 

are functions only of the orientation of the body relative to the oncoming flow. 

This orientation is usually characterized by specifying two angles, say 

0' and y, which determine the direction of the oncoming flow relative to three 

mutually perpendicular axes fixed to the body. Thus, with these axes , denoted 

by (y l' Y 2' y 3)' the angles 0' and y can be defined in the manner indicated in 

figure 3 -5. The case of most interest is probably that of a thin, relatively 

two -dimensional body. (For example, blown flaps and fan and compressor 

blades certainly fall into this category.) Then 0' can be taken as the change 

in angle of attack and y as the angle between the projection of oncoming flow 

onto the plane of the airfoil and the mean-flow velOcity UO() (see fig. 3-6). 

y 

a 

L-____ ~~~ ________ D 

y 

Figu re 3-6. - Coordinates for orienti ng a i rfoi I-sha,ed body relative to oncomi ng flow. 
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The total oncoming flow velocity V is given by 

2"'" ~ A _ 

V = (i U + u ). (i U + u ) 
00 00 00 00 

(3-35) 

But since u is assumed to be small compared with U , we find upon 
00 00 

neglecting squares of small quantities that 

and 

where CL and CD denote the time-averaged lift and drag coefficients, and 

the lift and drag slopes are taken as constants. Hence, it follows from equa­

tion (3-34) that the fluctuating lift and drag forces L' = L - Land D' = D - D 

are given by 

1 (OCL oCL -) L' = -oOAU --v + --w + 2CL u 
2' 00 oa 00 oy 00 00 

(3-36) 

1 ~CD oCD -) D' = - POAU -- v + -- W + 2CDu 
2 00 0 a 00 oy 00 00 

The first two terms in each of these equations represent the response of 

the body to transverse gusts, the last terms represent the response to a 

longitudinal gust. For slender bOdies4 , CD ~ 0 and as a result the fluctuating 

4Si nce we are usually interested in high Reynolds number flows. 
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lift will dominate over the fluctuating drag. For a two -dimensional flat plate 

at a small angle of attack (say (1 0) to the oncoming flow iu 00' 3CL/3a = 21T 

and C L = 21Ta O• Hence, for a two-dimensional gust (uoo = {uoo ' v 00'0}) the 

first equation (3 -36) becomes 

L' 
- = POU 1TV + 21TPOU aOu A 0000 00 00 

But since 01 0 is assumed to be small, the second term in this equation should 

be negligible compared to the first and 

L' 1 dCL 
- == - POU v -- = POU V 1T 
A 2 00 00 da 00 00 

(3 -37) 

This equation also applies to two-dimensional airfoil shapes with small 

thickness and camber. It shows that in a two-dimensional flow the fluctuating 

lift acting on such bodies is due solely to the fluctuations in angle of attack 

caused by the upwash velocity v . We shall see that this conclusion holds 
00 

even when the quasi-steady approximation does not apply. 

3.4.2 Calculations Based on Unsteady-Thin-Airfoil Theory 

For thin5 bodies, it is possible to obtain results which apply at much 

higher frequencies 6 than the quasi-steady approximation. The development of 

this subject began in the middle 1920' s with the work of Wagner (ref. 8), who 

determined the growth of lift on an airfoil starting impulsively from rest. Ten 

years later, Theodorsen calculated the lift on a sinusoidally oscillating airfoil 

(ref. 9). Then Kussner (ref. 10), in addition to providing a general approach, 

introduced a unit response function (called the K ussner function) which relates 

the fluctuating lift on a two-dimensional airfoil to a step change in the upwash 

velocity. In 1938, von Karman and Sears (ref. 11) devised a general approach 

which could be used to calculate the lift for any small-amplitude motion of a 

SIn a direction perpendicular to the flow. 
6That is, for much smaller scale disturbances. 
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two-dimensional airfoil. And in 1941 , Sears (ref. 12) used this result to ob­

tain a simple expression, called the Sears fun ction , for the fluctuating lift due 

to a frozen sinusoidal gust impinging on a fixed airfoil. The remainder of this 

section is concerned with Sears' problem and its generalizations. 

3.4.2 . 1 Formulation of problem. - Consider a stationary (nonmoving) 

thin body subject to a small-amplitude gust with a veloCity U. Since the am-
00 

plitude of the incident disturbance and the thickness of the body are now both 

small, w: ~nticipate that the deviation w of the velocity v from the mean 

velocity i U will also be small. Hence , w will be determined (to the first 
00 

order) by linear equations. We shall also suppose that the flow is inviscid 

and incompressible. Then substituting 

(3 -38) 

into the inviscid continuity and momentum equations (1-1) and (1-2) (with 

P = Po and the source terms omitted) shows , upon neglecting terms involving 

squares of W, that 

and 

It is convenient to put 

w = u + u 
00 

(3 -3 9) 

(3 -40) 

(3 -41) 

where u can be thought of as the velocity fluctuation which would exist if the 
00 

body were not present. Then u will coincide with the nonuniform flow far 
00 

upstream from the body if we insist that 

ii-o as I yl - 00 (3-42) 
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And since w becomes equal to u at large distances from the body we 
~ , 

should require that u~ itself satisfy the continuity equation (3 -40). Thus, 

V' . u = 0 
00 

(3 -43) 

But since u~ is steady in a coordinate system which moves with the mean 
flow, 

au au 
~ + U ~ = 0 (3 -44) 
aT 00 aYl 

Hence, it follows from equations (3 -39) to (3 -44) that u satisfies the same 

equations as W, namely, 

1 
-- V'p (3 -45) 

Po 

(3-46) 

For a stationary object in an inviscid flow the appropriate boundary condi­

tion on the surface of the body is that n· v (the normal velocity to the surface) 

vanish. But in view of equations (3 -38) and (3 -41), this implies 

n1U + 0.. u = -0. . u for y on S 
~ 00 

(3 -47) 

The boundary value problem posed by equations (3 -45) and (3 -46) and the 

boundary conditions (3 -42) and (3 -47) is identical to the one which determines 

the flow due to a thin flexible body moving with a constant velocity U 
~ 

through a uniform stationary fluid while 'oscillating normal to itself with the 

velocity -~. U. Then the velOCity i U + u represents the flow due to a 
00 00 A 

flexible body oscillating normal to itself (with velocity -n· u ) in a uniform 
~ 

stream. This implies that the unsteady flow resulting from the convection of 

a frozen disturbance past a fixed body can be determined by solving the prob-

1em of an undulating body in a uniform stream. 

191 

~~---- - -- ----



L 

AEROACOUSTICS 

Up to this point, the effects of viscosity have been neglected. However, 

any real fluid possesses at least a small amount of viscosity and this can have 

a significant influence on the flow~ Thus, a small amount of viscosity causes 

the flow about a thick body to separate from the surface, forming a flow pat­

tern which is completely different from that predicted by inviscid flow theory. 

In the present problem, the effect of a small viscosity can be accounted for by 

allowing the solution u to be discontinuous along a sheet extending from the 
trailing edge. 

In order to understand the nature of this discontinuity, consider (for 
definiteness) a two-dimensional airfoil impulSively accelerated to a uniform 

velocity from a state of rest. Initially, the action of viscosity will cause a 

very thin boundary layer to form along the surface of the airfoil, with the re­

mainder of the flow being inviscid and irrotational. There will be one stagna­

tion point at the leading edge and one near the sharp trailing edge, as shown in 

figure 3 -7(a) Since the trailing edge is sharp, there will be a high velocity 

and a consequent low pressure at this point. Then since the pressure at the 

rear stagnation point is high, there will be a large adverse pressure gradient 
between these two points which causes the boundary layer to separate and 

form a concentrated vortex, as shown in figure 3-7(b). But the velocity in­

duced by this vortex sets up a circulatory flow about the airfoil which shifts 

the rear stagnation point to the trailing edge and thereby eliminates the large 

pressure gradient. Then, as shown in figure 3 -7( c), the vortex separates 

~ =>r 
::;::.:=.-:---- (a) Sta rt of transient. 

, 

~. 
(b) Formation of vortex. 

(e) Shedding of vortex. 

Figure 3-7. - In itiation of flow about an airfoil starting from rest. 

192 



EFFECT OF SOLID BOUNDARIES 

from the trailing edge and is swept downstream to infinity. (It therefore does 

not need to be included in the calculation of the steady -state flow.) The rear 

stagnation point remains at the trailing edge, and hence there are no large 

changes in pressure in this region. This is known as the Kutta-Joukowski 

condition. 

A similar process takes place in a periodic flow. However, a new trail­

ing vortex is shed every time the lift, and hence the circulation around the 

airfoil, changes. Thus, there is a continuous trail of vorticity forming a 

vortex wake, which must be included in the analysis. The strength of this 

wake is determined by assuming that the Kutta-Joukowski condition is satis­

fied at the trailing edge. 

If the body is sufficiently thin and the amplitude and frequency of the un­

steady flow are not too large, we can assume that the wake is infinitely thin 

and lies in the plane of the airfoil (which we shall take as the y 1 -y 3 plane) 
(see fig. 3-8). It can be shown that the normal velocity and pressure should 

be continuous across this wake but the tangential velocity will, in general, be 

discontinuous. 

Figure 3-8. - Wake on oscillating thin airfoil. 
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Because of the boundary condition (3 -42) we can require that 

V'xu-o as I Yl - 0() 

But taking the curl of equation (3 -45) shows that 

Hence, 

(3 -48) 

everywhere except perhaps in the trailing vortex sheet. This equation shows 

that there exists a velocity potential cp such that 

(3 -49) 

and equation (3 -46) shows that cp satisfies Laplace's equation 

(3-50) 

Equation (3 -42) implies that cp must satisfy the boundary condition 

V'cp - 0 as I Y1 - 0() (3 -51) 

at infinity, and equation (3 -47) implies that cp must satisfy the condition 

... - -V'cp = -n· u = n U + n . UO() 1 0() 

on the surface of the body. 

for y on S (3 -52) 

Hence, ii can be found by solving Laplace's equation (3 -50) subject to the 

boundary conditions (3 -51) and (3 -52). But in order to satisfy the Kutta­

Joukowski condition, the solution cp will, in general, have to be discontinuous 
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across the trailing vortex sheet. In addition, it will be necessary to allow cI> 

to have a singularity at the leading edge (which must be chosen as the weakest 

one consistent with the Kutta condition). 

Since the nonuniform incident flow velocity u is time independent in a 
00 

coordinate system, say 71', moving with the mean flow , it can be represented 

by the three-dimensional Fourier transform 

Or since Y' is related to the fixed coordinate system 71 by 

Y'=71-iu T 
00 

(3 -53) 

this becomes 

Thus , the disturbance can be represented as a superposition of plane waves. 

Equation (3 -43) now implies that 

a· k= 0 (3 -54) 

And since the vector k is in the direction of propagation of the waves, equa­

tion (3 -54) shows that their amplitudes are transverse to their direction of 

propagation. For this reason they are called transverse waves. 

Since iT is determined by linear equations and boundary conditions, the 

solution for any disturbance velocity u can be found simply by superposing 
00 

solutions to the problem for an incident harmonic gust -i(k. y-k1U T) 
- 00 

U oo = ae (3 -55) 

Hence, it is only necessary to consider an incident disturbance of the type 

(3-55). 
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The only coupling between the incident disturbance u and the "scat-
00 

tered" velocity u is through the boundary condition (3-47) on the surface of 

the body. For a single harmonic disturbance this becomes 

for y on S (3 -56) 

For a thin flat body, such as a strut or airfoil at small angle of attack, it 

can be assumed that the body lies nearly in the y 1 -y 3 plane, as shown in fig­

ure 3 -8, and the surface boundary condition (3 -56) can be "transferred" to 

this plane. Thus, the equation for the surface S can be written in the form 

where g(y l' y 3) > 0 on the projection of the body on the y 1 -y 3 plane and g = 0 
corresponds to the edge of the body. For a thin body, E is a small param­

eter. The equation 

determines the "mean surface" of the body, and E Vi is its thickness dis­

tribution. Then the normal vector n is to within first-order terms in E 

~ 
af aY l 
-±-- ,1,-E -E 

aYl 2~ 

where the upper sign refers to the upper side of the body and the lower sign to 

the lower side. Since a is the of the same order as the thickness param­

eter E, the boundary condition (3-56) is to within first-order terms in E 
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for y 2 = 0 and g > 0 (3 -57) 

The trailing wake can also be assumed to be in the Y1-Y3 plane. 
Notice that the first term on the left side of equation (3 -57) - which con­

tains the effects of thickness, angle of attack, and camber - is independent of 
-ik U T 

time . The second term is proportional to e 1 00 • Since the problem is 

linear, its solution (and as a consequence, the force acting on the body) will 

also consist of a time-independent term which involves the effects of thick­

ness, camber , and angle of attack and a time-dependent term which is inde­

pendent of these effects. Thus, in the linearized approximation the effects of 

thickness, camber, and angle of attack contribute only to the steady force 

acting on the body and make no contribution to the unsteady force. Hence, for 

the purpose of calculating the oscillating force, the body can be replaced by a 

flat plate having the same y 1-Y3 projection. The boundary condition (3-57) 

then becomes 

for Y2 = 0; g > 0 (3 -58) 

3.4.2.2 Solution to two-dimensional problem. - Solving equation (3 -50) 

subject to the boundary conditions (3 -51) and (3 -58) is a difficult task, and the 

best that can usually be done is to reduce the problem to an integral equation 7. 

However, an exact closed-form solution can be obtained for a two-dimensional 

disturbance incident on a two-dimensional body (strut or airfoil). 

In this case, equation (3-55) becomes 

7 Fairly efficient collocation techniques have been developed to solve these equa­
tions. 
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(3-59) 

where a is a two -dimensional vector in the y 1 -y 2 plane which satisfies the 

transverse mode condition 

(3 -60) 

And the boundary condition (3 -58) becomes 

c c 
for y 2 = 0; - - < y 1 <-

2 2 
(3-61) 

where as shown in figure 3 -9 the plate lies between -c/ 2 and c/2 on the 

y 1-axis, Since the boundary conditions are two dimensional, the solution 

must also be two dimensional. Hence , the velocity 

(3 -62) 

only has components in the y 1- and y 2 -directions and these are independent of 

of Y3' 
This problem was first solved by Sears (ref. 12), The solution is ob-

tained by a somewhat different approach (based on complex variable theory) in 

Y2 

, ,.-flb " j! ! , 
"QY u2m ""LV -c12 cl2 

Figu re 3-9, - Two -dimensional problem. 
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appendix 3. B. It is shown that the pressure jump across the plate ~p(y 1) 

(i. e., the net force per unit area) is given by 

(c/2) - y 1 

(c/2) + Y1 
(3-63) 

where 

S(CT
1
) = _____ 1 ___ _ 

-iCT1~O( -iCT1) + K1 (-iCT18 
is called Sears' function, KO and K1 are modified Bessel functions, and 

is the reduced frequency. The latter quantity is related to the frequency 

w = k1 U 00 of the fluctuating force by 

wc CT1 = --
2U 

00 

The variation in pressure along the airfoil is determined by the factor 

(c/2) - y 1 

(c/2) + y 1 

which is the same as that on a flat plate at a small angle of attack in a steady 

flow. Since 
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rC

/

2 

J-C/2 

(c/2) - y 1 
----=-dy 
(c/2) + y 1 1 

(c/2) - Y1 
---- dy1 
(c/2) + y 1 

c 
4 

equation (3 -63) implies that the fluctuating force always acts through the 

quarter-chord point. 

For acoustically compact sources (see section 3.3.4.2), only the total 

fluctuating force per unit span is needed to calculate the sound field. This 

force, F 2' is perpendicular to the flow8 and (as shown in appendix 3. B) is 

given by 

(3 -64) 

By using the asymptotic expansions for the modified Bessel functions 

(ref. 13), it can easily be shown that 

Thus, Sears' function approaches zero at very high frequencies, which im­

plies that an airfoil will be unaffected by gusts of sufficiently high reduced 

frequency. 

At low reduced frequencies, the Sears' function approaches unity, and 

equation (3-64) reduces to the quasi-steady approximation (3-37). 

It was shown by von Karman and Sears (ref. 11) that the difference 

8Which is to say it is a lift force. 
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between equation (3 -64) and the quasi -steady approximation is equal to the lift 

resulting from the' 'apparent mass" variations9 plus the lift generated by the 

vorticity in the wake acting back on the body. The former effect occurs when­

ever a body undergoes an unsteady motion in an inviscid fluid even when no 

wake is present. 
Sears' function can be approximated to within a few percent over most of 

its range by 

(3 -65) 

Notice that it approaches the same high-frequency limit as Sears' function. 

The approximation for the amplitude was first suggested by Liepmann 

(ref. 14), and the approximation for the phase was suggested by Geising, 

Stahl, and Rodden (ref. 15). 

At high frequencies (wc/2cO= Uoo a1/cO> 1) the fluid cannot be considered 

incompressible even when Uoo ... 0 since the time for an acoustic disturbance 

to cross the chord is no longer short compared with the period of oscillation. 

Hence, Sears' function cannot be used to calculate the lift at these frequencies. 

But even at low frequencies there has been surprisingly little experimental 

verification of the validity of equation (3 -64). However, low-frequency 

(a1 < 1) oscillating airfoil data collected by Acum (ref. 16) show discrepancies 

of the order of 10 to 20 percent when compared with the Theodorsen function 

(which is the oscillating airfoil counterpart of Sears' function). 

The principal assumptions in the von Karman - Sears theory appear to be 

those related to the wake. Namely, that the wake lies in the plane of the air­

foil and that the Kutta-Joukowski condition holds at the trailing edge. In order 

to check these assumptions (at least for the case of oscillating airfoils), flow 

visualization studies were carried out by Bratt (ref. 17) (using smoke) and by 

Ohashi and Ishikawa (ref. 18) (using schlieren photography). Some of the wake 

9That is, the force required to accelerate the surrounding fluid. 
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(a-I) Reduced frequency. 01. Q 5. 

(a-2) Reduced frequency. 01' 1. 8. 
(a) Region I. 

(b-I) Reduced frequency. 01. 2. 15. 

(b-Z) Reduced frequency. 01' 2. 65. 
(b) Region II. 

(c) Region III; reduced frequency. 01' 8.5. 

Figure 3-lQ - Variation of flow pattern with reduced frequency. (From ref. 17.1 
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profiles observed by Bratt are shown in figure 3 -10. They illustrate the effect 

of varying the reduced frequency while holding the amplitude of the oscillations 

fixed. Three distinct regions of wake behavior can be detected. At low ampli­

tudes and reduced frequencies (region I), the assumption that the wake lies in 

the plane of the airfoil appears justified. At intermediate frequencies (re­

gion II), the wake moves like a whipping string and the linearized approxima­

tion may break down. At higher reduced frequencies, the vorticity in the wake 

becomes concentrated in discrete lumps which are shed alternately from oppo­
site sides of the trailing edge. The approximate ranges of amplitudes and fre­

quencies in which these various types of behavior occur are shown in figure 

3 -11, which is taken from reference 18. Ohashi and Ishikawa found that the 

Kutta-Joukowski condition was satisfied over the entire range of frequencies 

5 
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Figure 3-11. - Wake patterns. (From ref. 18. ) 
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and amplitudes of their experiments. 

There is no guarantee that conclusions based on experiments for oscil­

lating airfoils will be valid for stationary airfoils subject to unsteady flows 

(which is the case of principal interest in aeroacoustics problems). However , 

experiments involving airfoils in unsteady flow s are extremely difficult to per­
form, and good data are almost nonexistent. Arnoldi (ref. 19) produced a 

periodic unsteady flow by placing an airfoil in the Karman vortex street (see 

section 3.5.1. 2) of an upstream cylinder . .£ris results, which are at a high 

reduced frequency (a 1 = 3.9), show that Sears' function does fairly well in pre­

dicting the phase of the fluctuating force but underpredicts the amplitude by 

almost 50 percent. This discrepancy could be due to the occurrence of flow 

separation in his experiment or to the fact that the higher harmonics in the 

vortex street are not accounted for. His results are plotted as phase vectors 

in figure 3-12. The reason for including the short vector is explained in the 

next section. 
We have seen that (in the linear theory) the angle of attack and camber of 

the body have no effect on its fluctuating lift. And equation (3 -64) shows that 

.2 

-~ 
VI -.!:2 .1 
Q) 

~ 
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Experiment 

.1 .2 
i01 Ree 5(01) 

Figure 3-12. - Comparison of theoretical and experimental Sears ' function in high­
frequency limit. (Data from ref. 19.) 
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Y2 

---L. _ ___ L--__ ---=~ ______ Yl 

Figu re 3-13. - Cambered airfoil at angle of attack. 

the fluctuating force depends only on the upwash component of the disturbance 

velocity a 2 and not on the chordwise component a 1. In order to account for 

the dependence of the fluctuating lift on the chordwise velocity, angle of at­

tack, and mean camber (see fig. 3 -13) , the analysis must be carried to sec­
ond order. This was done by Horlock (ref. 20) for an uncambered plate at 

angle of attack QI. His work was later extended by Neumann and Yeh (ref. 21) 

to include a parabolic mean camber (with maximum camber 0). The results 

of these calculations show that the fluctuating lift F 2 is the sum of three 

terms (refs. 20 and 21) 

F - F2 F1 , a F1, f 
2- 2+ 2 + 2 

where F~ is the function (3 -64) obtained by Sears. The two additional terms 

are given by 

where T(cr1) is the Horlock function (ref. 20) which is related to Sears' 

function by 

(3 -66) 
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and the function U(a
1

) given in reference 21 can be put in the form 

3.4.2.3 Three -dimensional effects. - Equations (3 -63) to (3 -66) apply 

only to bodies which are infinite in the y 3 -direction. For real bodies, these 

formulas should be modified to account for "end effects." Bender (see 

ref. 22) has recently shown that the end correction for a flat plate (still for 
two-dimensional disturbances) can be approximated fairly accurately by mul ­

tiplying equation (3-64) by the ratio of deL/dO' (the steady-state lift slope) to 

21T (the lift slope for infinite -span thin airfoils)_ 

The problem of a two-dimensional flat-plate airfoil subject to the full 

three -dimensional disturbance field (3 -55), called an oblique gust, has been 

studied independently by Graham (ref. 23), Filotas (ref. 24), and Mugridge 

(ref. 25)_ 

A simple way of obtaining an approximate solution to this problem is to 

divide the plate into a number of strips (parallel to the flow) and treat each 

strip as if it were a two-dimensional plate subject to a two-dimensional gust. 

The local amplitude of the gust is used to calculate the fluctuating force on 

each strip_ Thus, in the "strip theory" approximation, the fluctuating lift per 

unit span is given by equation (3 -64) with a 2 replaced by the local upwash 
ik3Y3 10 

velocity a 2e to obtain 

(3 -67) 

Graham (ref. 23) arrived at an exact seminumerical solution to the 

problem in the form of a series whose coefficients can be calculated suc-

lOSince the solution is coupled to the disturbance field only through the boundary 
condition (3-58), only the longitudinal and transverse components, kl and k3' of the 
wave number influence the fluctuating lift. 
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cessively. This is an improvement over the collocation procedures, which 

must be used for thin bodies of arbitrary shape. Filotas (ref. 24) , however, 

gives an approximate expression for the lift which reduces to the approxima­

tion (3 -65) of Sears' result for two-dimensional gusts and gives the correct 

high -frequency limit for an arbitrary gust . This approximation can be written 

as 

(3 - 68) 

where 

exp -ia sin 
o _ .0 (1 + ~ cos <v) 

1 + 21Ta (1 + l cos i/I ) 

F(i/I, a) ~ -------------

[ 
2 J 1/2 

1 + 1Ta(1 + sin i/I + 1Ta cos i/I~ 

and 

It is also shown by Filotas that the center of lift is only fixed at the quarter­

chord point (as found by Sears) in a purely two-dimensional flow. In fact, 

whenever three -dimensional effects are present, the center of lift will ap­

proach the leading edges as a approaches infinity. This means that the edge 
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region becomes progressively more important as a source of sound as the 

chord becomes large with respect to the wavelength. 

Mugridge (ref. 25) derived an approximate multiplicative correction 

M(a
1

, a
3

) to the strip theory approximation (3-67) which accounts for the ef­

fects of the streamwise vorticity in the wake resulting from the nonuniform 

loading of the airfoil by the oblique gust. 11 His results, which are onlyac­

curate for 

a 0= yai + a~ < 2 

show that the amplitude of the correction factor is given by 

where 

a. = ~k. 
1 2 1 

2 2 
a1 +-

2 
1T 

2 2 
a +-

i = 1,3 

2 
1T 

3.5 CALCULATION OF SOUND FIELD FROM SPECIAL FLOWS 

(3 -69) 

In the remainder of this chapter the general formulas derived in the 

preceding sections are used to calculate the sound fields emitted by a number 

of specific flows. These flows have been chosen either because they are of 

technological interest or because they illustrate certain fundamental ideas. 

llHe assumes that on the airfoil the streamwise vorticity can be neglected and 
that the spanwise vorticity acts as if the flow were two dimensional. 
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The calculations in this section are all based on equation (3 -23) . 

3.5.1.1 Sound emission from a thin strut in a turbulent flow. - We shall 

first consider a long strut or airfoil fixed in a turbulent (time stationary) flow 

of finite lateral extent (as it is in a jet). This problem is of technological in­

terest because it relates to the broadband sound emission from flap segments 
under the wings of externally blown flap aircraft and from internal support 

struts and splitter s in aircraft engines as well as from propellers and air­

craft engine fans. The configuration is illustrated in figure 3-14. 

We would like to use the simplified equation (3 -29) to calculate the sound 

field. However , equation (3 -33) shows that the former equation will apply at 

reasonable Mach numbers only if the characteristic dimension L of the body 

is smaller than the eddy size. This is frequently the case when L is taken 

as the chord c of the airfoil but not when it is taken as its span b. However, 

equation (3 -29) can still be used to calculate the sound emitted per unit span of 

the airfoil and (since the problem is linear) the results can be summed to ob-

Figure 3-14. - Coordinate system for strut. 
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tain the total sound emission. To this end we write equation (3 -29) in the form 

where 

is the distance between the observation point and the point along the strut from 

which the sound is emitted and p'(xl Y3) is the density fluctuation at x emitted 
from a unit length of strut at Y3. Hence, 

The normalized pressure autocorrelation function r defined by equation 

(1-125) is then given by 

2 Ib/ib/2 x2 r(x, T) = -----
2 3 4 

161T caPOx -b/2 -b/2 

(3-70) 

where 

x 
t' = t + _3_ Y3 

cax 

X3 
t" = t + T + - Y3' 

cax 
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This result could also have been obtained from the dipole term in equation 

(3 -20) by neglecting the chordwise retarded-time varia tion while retaining the 

spanwise variation. It represents the sound which would be emitted by a line 

of dipoles placed along the span of the airfoil - the strength of each point di­

pole being adjusted to account for the total emission over the chord. 

By using the manipulations described in the appendix of chapter 2 and the 

fact that the correlation is independent of translations in time (since the flow 
is time stationary) , we put equation (3-70) in the form 

(3 -71) 

where 

x 
t 3 (y" - y' ) TO= +T+ - 3 3 

xcO 

Upon introducing the separation vector 773 = Y3' - Y3 as a new variable of 

integration, the double integral in this equation becomes 

(3 -72) 

But it is reasonable to assume that the correlation length of 

F 2(tIY3)F 2(TOIY3 + 17 3) is of the same order as the turbulence correlation 
length along the strut , which we shall suppose is much smaller than the 

span b. Hence , the length 773 over which the integrand in equation (3 -72) is 

nonzero is small compared to b. The limits of integration in the inner inte­

gral can therefore be taken as -00 to 00 so that equation (3 -71) becomes 
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(3 -73) 

One might at this point be tempted to neglect the retarded-time variations 

which appear in TO by arguing, as we did in chapter 2, that the decay time of 

the turbulence is large compared with its correlation length . However, we 

must realize that in this formula the time is measured relative to the fixed 

frame so that its characteristic value can be much shorter than the time asso­

ciated with the oscillations of the eddies. 

Since the spectrum Iw of the average intensity is the Fourier transform 
of r, equation (3 -73) shows that 

(3 -74) 

where 

is the power spectral density of the fluctuating lift force on the body. 
We shall again suppose that the turbulence can be assumed to be frozen 

during the time it takes to transverse the strut. Then (as shown in section 

3.4.2.3) the fluctuating lift force acting on the strut due to a single Fourier 

component 

of the turbulence upwash velocity must be of the form 
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(3-75) 

provided the mean flow velocity U can be taken as a constant. And if we 
00 

also assume that the turbulence is homogeneous, the moving-frame turbulence 
correlation 

can depend only on the indicated argument, and as a result it follows from -appendix 1. A that the moving-axis spectral density <P 22(k) of the upwash 

velocity is given by 

(3 -76) 

These equations are used in appendix 3. C to show that the lift power spectral 

density is related to <P22 by 

Hence, equation (3 -74) becomes 
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2 2. 2 2 2 
Uoobw 1TPOC sm e cos cp ~ W w. .) 

= ~ -, - sm e sm cp 
8C~2 UOC) Co 

~ sin e sin cp) dk2 
Co 

(3 -77) 

where we have put ~(k1,k2) = g(k1,k2)/1TPOcUoo and introduced the spherical 

coordinates e and cp defined in figure 3 -14. 

When k3 = 0, equation (3 -75) represents the response of the strut to a 

two-dimensional gust. Hence, 

(3 -78) 

where S is Sears' function. Equation (3 -77) therefore shows that the sound 

intensity in the plane perpendicular to the strut (cp = 0 plane) depends only on 

the two-dimensional response function (i. e., Sears' function). In the general 

case , ~ can be approximated either by using Filotas' equation (3 -68) or by 

using Mugridge's correction factor given by equation (3 -69). Thus, 

(3 -79) 

if Filotas' equation is used; and 

2 2 
(J1 + (2/1T ) 

(3 -80) 
(J2 + (2/ 1T2) 
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if Mugridge's correction is used. 

It remains to determine the spectral density function <1>22' This can be 

accomplished by assuming an idealized model for the turbulence. Thus , if we 

assume that the turbulence is isotropic, the spectral denSity tensor <1>.. takes 
1J 

the form (ref. 26) 

<1> . . = E(k) 
1J 2 

41Tk 

where 

Hence, the upwash spectral density becomes 

And if in addition it is assumed that the moving -frame longitudinal correlation 

function £f22(j~2) is given by 

we find that (ref. 26) 

u28k4 
E(k) = __ 2 __ _ 

1TZ(Z-2+k2? 

and as a result that 
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Substituting this into equation (3 -77) and performing the integration now shows 

that 

2 3.2222 
3bPOu2 (~)2 M sm e cos qJ h aO Iw(x,e, qJ) = 

32 x it -2 2)5/2 f3f + h 

where 

is the reduced frequency, 

is the free -stream Mach number, 

and 

wc aO =--
2U 

00 

{3= ~ 
c 

2 

(2a 2a ) 
~ \ c

O
, c

O
M sin e sin qJ 

Thus, upon introducing the approximation (3 -65) to Sears' function, equation 

(3 -78) shows that 
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2 3 . 24 
3bPOu2 ~)2 M SIn e eJO I (x e 0) = -w ' , 

32 r. 2 2)5/ 2 f3 f- + eJO (1 + 27TeJO) 

(3-81) 

in the plane perpendicular to the strut (1./1 = 0 plane) . And more generally, 

Mugridge's approximation (3 -80) shows that 

Equation (3 -81) can easily be integrated over all frequencies to establish that 

the mean sound intensity in the plane perpendicular to the strut is given by 

(3 -82) 

where 

and 

C7T a = --
l 
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Observation poi nt 

Mixing region 

Figure 3-15. - Configuration of strut experiment. Nozzle diameter, 0, 10 centimeters (4 in.); 
blade chord, c = 9/32 0; blade height, b = V3D; distance to observation point, x, 4.56 meters 
115 Itl. 

Notice that E(O') becomes equal to 2/3 at large values of 0'. In fact, E(O') 

remains within 10 percent of this value whenever 0' is greater than 2. 

In order to verify this analysis , W. A. Olsen of the Lewis Research 

Center measured the sound emission from a long thin symmetrical strut in a 

turbulent jet. The strut was centered in the mixing region 4 diameters down­

stream from the nozzle, as shown in figure 3 -15. The geometric parameters 

which appear in the analysis are indicated on the figure. The acoustic param­

eters can be estimated from the measurements summarized in section 

2. 5. 1. 2. These results show that we should take U = 0; 62 U., where U
J
. 

<Xl ] 

is the jet velocity. It is also reasonable to take l = (l 1 + l 2)/2 and v:r = 1/2 u~ax' Then equations (2-42) and (2-43) show that l ~ 0.3 D and v:r ~ o. 129 U <Xl (where D is the jet diameter). The theoretical directivity 

pattern, obtained by inserting these parameters into equation (3-82) is com-
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-- Theory 

o o 

Angle from nozzle inlet, rr - 9, deg 

Figure 3-16. - Comparison of data and theory for strut experiment. Nozzle diameter, D, 
10 centimeters (4 in. l; ratio of distance to observation point to nozzle diameter, x/D, 4; 
1/1, 00. 

pared with Olsen's experiments12 in figure 3-16. The agreement is seen to be 

quite good. Nevertheless, the restriction c« liM which we imposed on the 

analysis is only moderately well satisfied in the experiment. And the require­

ment that U be constant over the strut is not even approximately satisfied. 
00 

Notice that the former restriction is most closely satisfied at the low veloci-

ties, where the agreement is best. 

3. 5. 1. 2 Aeolian tones. - An interesting application of equation (3 -28) is 

the prediction of Aeolian tones. These tones are heard in the singing of the 

wind through telephone wires and leafless trees and in the whistle of the ten­

sion rods of airplanes and the rigging of ships. They were first studied by 

Strouhal in 1878, who was mainly concerned with their frequency. 

The nature of the flow about a cylinder moving through a fluid with a sub­

sonic velOcity VO is mainly determined by the Reynolds number Po VODI fJ. 

based on the cylinder diameter D. At sufficiently small Reynolds numbers, 

12The first combined analytical-experimental study of sound emiSSion from solid 
bodies in jets was carried out by Sharland (ref. 27) . 
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the flow is steady and its main effect is to cause a drag force on the cylinder. 

However, the flow becomes unstable to small disturbances at a Reynolds num­

ber of about 50, and the wake starts to oscillate beginning at a point some dis­

tance downstream of the cylinder. As the Reynolds number is increased, the 

oscillations in the wake move toward the cylinder until a Reynolds number of 
about 60 is reached. At this point the oscillations appear as the alternate 

shedding of lumps of fluid from the top and bottom of the cylinder. Most of the 

vorticity in the wake is now concentrated in these lumps , which move down­

stream in a regular array called the Karman vortex street. This behavior 

persists to a Reynolds number of about 104. The periodic shedding of vor­

ticity into the wake exerts a periodic tangential force on the cylinder and , as 

was first recognized by von Karman and Ruback , it is this oscillating force 

which is principally responsible for the Aeolian tones. The angular fre­

quency w of the force is equal to the frequency of vortex shedding 

o 
W - S 27TV - t--

D 
(3 -83) 

where the Strouhal number St depends on the Reynolds number but is approx­

imately equal to 0.2. The vortex shedding also induces a periodic drag force 

on the cylinder. However, this force was found to be quite small compared 

with the fluctuating lift force , and we neglect it in the following discussion. 

If the cylinder is not rigidly supported, the fluctuating lift force might 

cause the cylinder to oscillate and (as can be seen from eq. (3 -28)) this oscil­

lation will result in an additional source of sound. However , the Aeolian tones 
usually refer to the sound generated by the oscillating force , and we shall limit 

the discussion to the case where the cylinder is rigidly supported. 
Thus , we consider a circular cylinder of length b and diameter D mov­

ing with a constant velocity VO in the Xl -direction through a fluid at rest at 

infinity. Suppose that the long axis of the cylinder is parallel to the 

x3 -direction. The ~ -coordinate system which is carried with the cylinder is 
shown in figure 3 -17. In this figure the cylinder is shown in its position at the 

time of emission T e. 
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Figure 3-17. - Coordinate systems for sound emission from Aeolian tones. (Cylinder shown in its location 
at emission time te.) 

As in the last section we let F 2(tl ~3) denote the fluctuating lift force per 

unit length acting on the cylinder at the point ~3' Then the total lift force 

F 2(t) is given by 

(3 -84) 

It has been found experimentally (ref. 28) that this force is given approxi­

mately by 

(3 -85) 

where K is a numerical constant which is found to lie between 1/2 and 2. 

This variation probably results from the extreme sensitivity of the force to the 
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amount of turbulence in the oncoming stream and from the dependence of the 

phase <l> on the length of the cylinder and the geometry of the flow system. 

The variation in <l> along the cylinder reflects the fact that the vortex shed­

ding is only in phase over a relatively short length of 3 to 4 diameters. The 

frequency w is given by equation (3-83). Hence, the characteristic time T~ 

of the oscillation is 

The inequality (3 -25) therefore shows that equation (3 -28) can be used to pre­

dict the sound from this flow only if 

M «5D 
1 - M cos e L 

where L is a characteristic dimension of the cylinder 

- Va 
M=-

Co 

and 

- -R M cos e = - . 
R M 

For the very low Mach numbers at which Aeolian tones occur, this in­

equality is certainly satisfied with L = D. In many cases of interest, how­

ever, the cylinder is many diameters in length and the inequality is not satis­

fied with L = b. Hence, as in the previous section, we apply equation (3 -28) 

to calculate the sound emission per unit length of cylinder and sum the results 

to obtain the total sound emission. 

Since the cylinder velocity Va is constant, we can put a~ equal to zero 
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and neglect the derivative of Cb with respect to T e (since it yields higher 
order terms in R -1 when x is in the radiation field). Then inserting equa­

tion (3 -27) into equation (3 -28) shows that 

where 

R 
T = t --

e c o 

(3 -86) 

(3 -87) 

and p'(Xj ~3) is the density fluctuation at x emitted from a unit length of 

cylinder so that 

(3 -88) 

Since equation (3-87) shows R2 = x2, substituting equation (3-85) into (3-86) 

and using equations (3 -83) and (3 -88) implies that 

(3 -89) 

But for large x, 
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where 

is the value of R at the center of the cylinder. Hence, replacing R by 

RO - (x3 ~3/RO) in the exponent of equation (3 -89) (and by RO in all other 

places) and substituting the result into equation (3-88) yield 

where, as shown in figure 3 -17, 
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RO 
cos e = -. i 

RO 

R x . e' 0 A 3 sm sm <p = - . k = -
RO RO 

(3 -90) 
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Since RO and e depend on t, the density fluctuation is not periodic. 

However, as shown in section 1. 8. 4, the observation point can be removed far 

enough from the source so that e and RO(t) are nearly constant over one 

period of osciilation and hence equal to their values, say RO(tO} and 

eO = e(tO)' at some time to during this period. Thus, the results of section 
1. 8. 4 imply that for time intervals of the order of one period 

p''''-

(3 -91) 

Hence, it is possible to define an average intensity over the effective period 

Then since 

T = 21T (1 - M cos eO) 
p w 

3 
-_ Co 1 p' 12 
1-- ll:::.L 

2 Po 

for any simple harmonic density fluctuation, it follows from equation (3 -91) 

that 
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K
2S;PO(vot sin2e cos2 cp 

I ~ ----------

32C~R~(1 - M cos e)4 

(3 -92) 

where we have put 

~ = ~3 - ~3 

and dropped the zero subscript on e since, now that the intensity has been 

calculated, there is no need to distinguish between to and t. 

We shall consider two limiting cases. First, suppose that the cylinder 

length b is smaller than the length lover which the phases of the vortices 
are correlated13 so that the vortex shedding is roughly in phase over the length 

of the cylinder. Then 

But, since equation (3-83) shows that w~/co changes by an amount 

and since the Mach number is fairly low, we also find that 

(iw/coH sin 6J sin cp 
e ~ 1 

13The cylinder would then have to be less than 4 diameters in length, and end 
effects could become important. 
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over the range of integration. Hence, equation (3 -92) becomes 

22-2 (0)6. 2 2 
_ K Stl> PO\Y sm e cos <p 
I", ----------- (3 -93) 

32c~~{1 - M cos e)4 

Now suppose that the cylinder is very long compared with the correlation 
length l. Changing the variables of integration to S3 and ~ in equation 

(3 -92) shows that 

_ K
2S;PO(yO)6 sin2e cos2<p 

I", -----.:...--------

32C~R~(1 - M cos e)4 

(3 -94) 

However, if the correlation length is small compared with the length of the 

cylinder, we can (as in the last section) take the limits of the inner integral 

to be -00 to 00. 

lt is reasonable to assume that the correlation coefficient 

of the fluctuating force acting on the cylinder is Gaussian and therefore equal 
2 2 

to e -( ~ / 2l ). Then since 
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d~ 

equation (3 -94) becomes 

I", 
<II. r;;:. 2 2 (0)6 . 2 2 , 27T K St lbPO V sm 8 cos cp 

32C~R~(1 - M cos 8)4 

1 27TMS l 2 2 

{ [( )
2 jj x exp - "2 D t sin 8 sin cp (3-95) 

If the Mach number is so small that the exponent can be neglected, this for­

mula differs from the short-cylinder formula (3 -93) only in that b2 is re­

placed by ~ lb. 
These formulas (without convection effects) were obtained by O. M. 

Fhillips (ref. 28) in 1956. By using a model for the wake flow , Phillips de­

termined that K should be approximately equal to 1. A comparison of equa­

tion (3 -95) (with the convection factor and the exponent neglected) with 

Phillips,14 measurements is shown in figure 3-18. The close agreement tends 

to verify the formulas derived in this section. 

As the Reynolds number is increased and the wake behind the cylinder be­

comes turbulent, the vortex shedding mechanism appears to persist in a less 

14 p hillips took -0{2; l ~ 17D. 
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300 

300 

Figure 3-18. - Comparison of Aeolian tone measurements 
with eXPBriment. (Data from ref. 28.) Cylinder velocity, 
1300 < V < 200l cm/sec; Reynolds number, 110 < Re < 160; 
nozzle diameter, 0, 0.0123 centimeter (0.0048 in. ). 

organized state with randomly shed, large -scale vorticity causing broadband 

lift fluctuations and hence broadband noise. In fact, even at very high 
Reynolds numbers a surprisingly distinct large-scale eddy structure is found 

to exist in the wakes of cylinders. These eddies appear to contain about one­

half the turbulent energy in the wake (ref. 28). Experiments at these higher 

Reynolds numbers tend to show that the sound intensity still follows the predic­

tion of equation (3 -95). 

The formulas derived in this section are not restricted to circular cylin­
ders and should apply to cylinders with other cross sections. For stream­

lined bodies such as airfoils, random vortex shedding has been assumed to 

occur and be an important source of broadband noise. However, recent ex­

periments conducted by patterson, Vogt, and Fink (ref. 29) on typical two­
dimensional helicopter rotor airfoils in a very quiet tunnel indicate that the 

229 



AEROACOUSTICS 

vortex shedding noise 15 is a pure tone as long as the pressure-surface bound­

ary layer remains laminar. They found that its frequency correlated well with 

a Strouhal number of 0.2 based on the total laminar boundary layer thickness 

at the trailing edge. However, at higher Reynolds numbers, where both 

boundary layers were turbulent, no vortex shedding noise could be detected 

above the tunnel background noise. At these Reynolds numbers, measure­

ments in the wake indicated that there was no correlated vortex shedding. 

It is frequently stated that the vortex shedding mechanism is the principal 

source of broadband noise in propellers. A related broadband noise source is 

the turbulence in blade boundary layers. A simple theoretical model for noise 

generated by this mechanism was developed by Mugridge (ref. 30), and his re­

sults show fair agreement with experiment at low frequencies. Moreover, the 

analysis in section 3. 5. 1. 1 demonstrates that incident atmospheric turbulence 

can also cause broadband propeller noise. 

3.5.1.3 Propeller noise: Gutin's theory. - Up to this point all the exam­

ples have been concerned with noise generated by the fluctuating forces exerted 

on a body. However, as demonstrated in section 3.3.4. 1, a body in accelera­

ti ve motion can generate sound even when the forces are steady. An important 

example of this is the pure-tone noise generated by airplane propellers. Al­

though, as we have just seen, there are other sources of sound from propel­

lers, this mechanism is generally believed to dominate (ref. 31) for propel­

lers with a small number of blades at moderate speeds. In 1937, Gutin 

(ref. 32) recognized the dipole character of this noise source and was able to 

develop the first successful theory of propeller noise. 16 

3.5.1. 3.1 Derivation of basic equation: A propeller rotating with angular -velocity n in the Y1-Y2 plane is shown in figure 3-19. The ~-coordinate 

system is fixed to the blades with its origin at the hub and the ~1- and 

~2 -coordinates in the y 1 -y 2 plane. 
The noise produced by this propeller can be calculated from equation 

(3 -23). We shall again suppose that the quadrupole terms can be neglected in 

this equation. It must be pointed out, however, that this is certainly not 

150ften called ''propeller Singing. " 

16Earlier attempts at formulating theories of propeller noise were made by Lynam 
and Webb in 1919 (ref. 33) and by Bryan (ref. 34) in 1920. 
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Figure 3-19. - Coordinate system for propeller. 

always the case. In fact, it is quite likely that the quadrupole terms will dom­

inate at sufficiently high Mach numbers and blade loadings. Finally, the noise 

generated by the volume displacement effects will also be neglected. With this 

understanding, equation (3 -23) becomes 

d8(~) (3 -96) 

where we take 8(tO) to be the surface of the blades, and the retarded time T e 

and the convection factor C t are defined by equations (3-17) and (3-18) , re­

spectively. The Mach number in equation (3-18) is defined in terms of the -velocity V of a fixed point in the ~ -coordinate system by equation (3 -15). 
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Equation (3-13) and figure 3-19 show that for a stationary propeller 

_ A 

V = nk x ~ (3 -97) 

We shall (for simplicity) limit the discussion to the case where the veloc­

ity V is everywhere subsonic. Then equation (3 -17) has only a single root T e 

for each value of t and the integrand in equation (3 -96) need not be interpreted 

as a sum of terms (see remarks following eq. (3 -17»). 

The analysis is restricted to the case where sources, and hence the sound 

field, is periodic with angular frequency n. This will occur, for example, 

when the oncoming flow to the propeller is steady (even if it is spatially non­

uniform). It, therefore, follows from equations (3-96) and (1-A2) of appen­

dix 1. A that the amplitude Pn of the nth harmonic of the density fluctuation 

is given by 

n 
P "'--

n 2 3 
871" Co 

einnt dt dS(~) (3 -98) 

- -Since the integrand is evaluated at ~ and the retarded time T e(~' t), it is 

convenient to make these the variables of integration. But differentiating 
equation (3-17) and using equations (3-9), (3-15), (3-17), and (3-18) show that 

~= [c t1 
d JT=T 

Te e 
(3-99) 

Then since T e is a single-valued function of t, changing the variable of inte­

gration from t to T e in equation (3 -89) yields 
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1
T (~, 21Tlo) [ 
~ einn 'e+(r/co)] 

Te(~ ' 0) 

(3 -100) 

where we have dropped the notation [ ] with the understanding that all 
T=Te -quantities in the integrand are evaluated at ~ and the retarded time T . e 

Since r is a periodic function of T with period 21Tlo, [r] is a 
T=Te 

periodic function of T e with this same period. Hence, it follows from equa-

tion (3 -17) that increasing T e by 21Tlo increases t by 21Tlo. But since 

the velocity is subsonic, equations (3-18) and (3-99) show that t is a mono­

tonically increasing function of T • Hence, increasing t by 27Tlo must also e 
increase T e by this amount. The limits of integration of the integral with 

respect to T e in equation (3 -100) can therefore be replaced by [T e(~' 0), 

T (~, 0) + 27T 101. But since the integrand is a periodic function of T , the e J e 
value of the integral cannot be changed by a translation of both limits by a 

fixed amount, and equation (3 -100) becomes 

(3 -101) 

where, since y(f, 'r e) is confined to the propeller disk and x is in the radia­

tion field, we have replaced r./r by its asymptotic value x·/x. 
] J 

Integrating equation (3 -101) by parts and using equation (3 -99) show that, 

since Ct > 0, 

p ,..., 
n 
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But since 

-
r=x_ x y+O(x-1) 

x 

-whenever x is in the radiation field and y is confined to the propeller disk , 

this equation becomes 

e 
-inn (x!x) . y! Co 

-x f.(~, T )d8( ~)dT ] e e (3 -102) 

It is convenient to distinguish the front surfaces of the propeller blades , 
say 81 (to) with unit normal n(1) , from their back surfaces, say 82(tO) with 

unit normal n(2), as shown in figure 3 -20. These two sets of surfaces join 

along the trailing edges of the blades and along the lines which pass through 
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Figure 3-20. - Propeller blade surfaces. 
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the fronts of each blade section at the points where the tangents of these sec­

tions are parallel to the ~3-axis. The surface integral in equation (3-102) can 

then be written as the sum of two integrals - one over each of these two sets of 

surfaces. These integrals can be evaluated in the usual way by integrating 

over the projection A of the blade surfaces in the ~ 1 -~2 plane. Then the 

inner integral in equation (3 -102) becomes 

e 
-(inn/ cO)(x/x). y(1) 

(2) f. 
+_J_ e (3-103) 

I n~2) I 

where ~~1) is the value of ~3 on the front blade surface and more generally 

the superscript (1) indicates that the quantity is to be evaluated at ~1' ~2' 

~~1). In order to transform equation (3-102) into a more explicit form, we 

first introduce the spherical coordinates x, e, and cp for the observation 

point x and the cylindrical coordinates ~', cp', and ~3 for the source 

point f, as shown in figure 3-21. Since the vector y denotes the location of 

- -
the source point ~ relative to the fixed y-coordinate system, it follows from 

figure 3 -21 that 

y = {~' cos( cp' + nT e), ~' sin( cp' + nT e), ~3} } 

x = {x sin e cos cp, x sin e sin cp, x cos e } 

---~-----

(3 -104) 
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"'" ,/ 

-----------
fD~I{J'+~h _ e 

~ ' 

~ ' (0 ' + Q-r 
/ r I e 

.. Yl 

x 

I 
I 

I{J I 
\ I 

--- - -t 

Figure 3-21. - Polar coord inates for propel ler. 

When dealing with propellers it is customary to divide the force acting on 

the blades into a thrust component fT in the ~3 -direction and a drag compo­

nent (equal to minus the torque) fD in the <p I -direction. These are related to 

the components fi of f in the fixed y -coordinate system by 

Introducing this into equation (3 -103) , inserting the result into equation 

(3 - 102), and using the polar angles defined in equations (3-104) now show that 

(3 -105) 

where 
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for a = T, D (3 -106) 

The factors 

[
. nn (i) )1 

exp -1 ~ ~3 cos 8

J 
i = 1,2 

account for the variation in retarded time between the blade surfaces and the 

rotational plane of the propeller. However, it is unlikely that any propeller 

blade will be thick enough for the retarded-time variations between its front 

and back surfaces to be important. Upon neglecting this variation, equation 

(3 -106) becomes 

for a = T,D 

where 17 ~~(~" cpT) is the ~3 coordinate of the blade chord and 

for a = T, D 

17The definition of ~ ~ in the r egion between the blades is irrelevant since f QI 

vani shes in this region. 
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is just the net thrust or drag force per unit projected area acting on the blades 

at the point ( ( 1' ~2)' 
Introducing the well- known generating function (ref. 13) 

00 

e - iZ cos {3 = I ( _i)m J m(Z)e -im{3 

m= -oo 

for the Bessel function J (Z) of the first kind and its derivative with respect 
m 

to {3 
00 

-sin {3 e-iZ cos {3 = ~ I (_i)m mJ
m

(z)e -im{3 

m= -oo 

into equation (3 -1 05) now shows that 

«> 

ik ik x [ . [ / j -i(m q>'+k ~ c cos 8)( ) p __ n e n elm '1' - (. 2)] J (k ~ ' sin 8)e n 3 cos 8 FT _ ~ FD C' d{' d q> ' 
n 2 m n n-m k ~ I n-m 
~~ A n 

(3 - 107) 

ffi=-O(I 

where 

(3 -108) 

is the wave number of the nth harmonic of the rotational frequency nand 

for QI = T, D (3 - 109) 

is simply the pth Fourier coefficient of the force f . By shifting the index 
QI 

of summation to p = n - m, equation (3 -107) can be put in the slightly more 

familiar form 
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ei (n-p)[( cp -(7T/ 2)] ! J (k )'" sin e) 
n-p n ' 

A 

(3 -110) 

This equation is quite general and applies even if the flow approaching the pro­

peller is spatially nonuniform and every blade of the propeller is different 

from every other. 
3.5.1. 3. 2 Equation for propellers with identical blades: The case of 

principal interest is when the propeller consists of B identical equally spaced 

blades. Let fO ( ~ ' , cp , T) denote the force per unit projected area acting on a 

particular blate18 individuated by setting an index s equal to 1. Then since 

the force distribution acting on the s = 1 blade at the time T is the same as 

that which acted at the time T - (27T / nB) (s - 1) on the blade which is dis­

placed from it by the angle (27T / B) (s - 1) , the force distribution on the latter 

blade must be 

Hence, 

18We can assume that ~ is equal to zero when (~ ' , cp' ) does not lie in the pro­
jected area of the blade. 
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B 

f = \' fO ~, 
a ~ 0 ' \ ' 

s=1 

cp ' - 2rr (8 _ 1), T + 2rr (8 - 1)\ 
B QB ') 

Inserting this into equation (3 -109) shows that 

B 

for a = T, D 

Fa = \' e-i21T (s-1)p/ B F O (~ " cp ' - 21T (8 - 10 for a = T,D 
P ~ a,p \ B ') 

s=l 

where 

(3-111) 

(3-112) 

(3-113) 

is the pth Fourier coefficient of the force per unit projected area acting on 

the s = 1 blade. Then substituting equation (3-113) into equation (3-112), 

shifting the variable of integration from cp ' to cp' - 21T(S - 1)/B, using the 

identity 

for n = mB 

for n -I mB 
m = 0, ± 1, ±2 , . . . 

and noting that 

~~(~' , cp ') = ~~(~ " cp ' - ~ (s - 1)) 

yields 
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iBk ik x[OO . ' 1 p ~ nB e nB e1(nB -p)[ cp -(7T / 2)] J (k~' sin e) 
nB 2 nB-p nB 

47TCOX A ' 
o IF -00 

x e 3 0 cos e F O _ nB - p F O ~ t d ~ t dcp t 
iP CP t-inB(<p t+n s c cos e/c )~ ) 

T , p k s' D, p 
nB 

(3 -114) 

where AO is the cross-sectional area of the s = 1 blade. In many cases ~~ 
can be approximated fairly closely by 

c 
~3 = ~t cpt cot X 

where the stagger angle X is shown in figure 3 -20. 

3.5.1. 3. 3 Steady blade forces: Gutints theory: Now consider the case 

where the approaching flow is completely uniform in space and hence where 

the blade forces are steady in the rotating reference frame. Then equation 

(3-109) becomes 

for QI = T , D 

Thus, only the p = 0 term contributes to the sum in equation (3-114), and we 

obtain a generalization of Gutint s formula 19 (ref. 32) 

19Unlike Gutint s formula, eq. (3-115) accounts fo r the variation in reta r ded time 
over the blades. 
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for n = 1,2, ... 

(3 -115) 

for the "rotational" noise from propellers. 

In order to gain some insight into the properties of the sound field pre­

dicted by this formula , we notice that over much of the range 0 < Z < m, 

where the argument of the Bessel function J (Z) is less than its order , this 
m 

function can be approximated by the first term in its series expansion 

(3-116) 

But for ~' less than the tip radius Rt of the propeller, 

where Mt is the tip Mach number. For the subsonic tip speeds to which the 

analysis has been restricted, equation (3 -108) shows that the arguments of the 

Bessel functions in equation (3-115) are less than their orders and hence that 

the approximation (3 -116) can be used. In addition , the variation over AO of 

the exponent 
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will be less than 2nB/ AR where AR is the aspect ratio of the blades. We 

shall suppose that the aspect ratio is large enough and that the number of 

blades is small enough so that the exponent is nearly zero . Then with these 

approximations, equation (3-115) becomes 

where 

d~' dep ' 

is the ratio of the nB th drag moment to the nB th thrust moment , or 

roughly the drag-thrust ratio. 

(3 -117) 

Equation (3-117) shows that the phase of the nB th harmonic PnBe-inBnt 

of the density fluctuation is 

nB( ep - nt) + knBx + Constant 

Hence, its phase surface rotates with the rotational speed n of the propeller 

while it propagates in the radial direction with the speed of sound. The sound 

waves are therefore said to be phase locked to the propeller. 
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The nBth harmonic of the average intensity is 

(3-118) 

We have already indicated that this formula does not account for the "thick­

ness noise" generated by the volume displacement effects of the blades. The 

extension of Gutin's theory to include this effect was given by Deming (refs. 

35 and 36) and completed by Gutin (ref. 37) in 1942. However, this noise 

source is generally found to be unimportant until the tip speed approaches the 

speed of sound (ref. 31). 

Equation (3 -118) shows that the intensity is always zero along the propel­

ler axis (8 = 0 and 8 = rr). And since an/ Mt is usually somewhat less than 

unity, it has a strong peak just behind the rotational plane of the propeller. 
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This peak rapidly becomes narrower as the number of blades increases . The 

intensity is also zero at the angle cos -1 (an/ Mt) to the axis in the forward 

direction. This directivity pattern is sketched in figure 3 -22. 

For a given tip speed the fundamental frequency cOkB = DB increases 

with increasing blade number because of a phase cancellation of the lower 

harmonics of the rotational speed D. Increasing the blade number also causes 

the sound intensity to drop rapidly to zero. This is a consequence of the fact 
that the higher order Bessel functions are very nearly equal to zero whenever 

their argument is less than their order, which , as we have seen, is always 

the case for subsonic tip speeds. Thus, we expect that this type of noise will 

not be important for jet engine fans, which usually have larger numbers of 

blades. 

At lower tip speeds the fundamental harmonic tends to be dominant. As 

the tip speed is increased, however , the higher harmonics become progres­
sively more important. 

Hubbard and Lassiter (ref. 38) compared equation (3 -115) with sound 

pressure measurements in the rotational plane of a two -bladed propeller (see 

fig. 3 -23). These and other comparisons indicate that the theory developed in 

this section (extended if necessary to include thickness noise) is able to pre­

dict with reasonable accuracy the lower order harmonics (perhaps the first 

10 or so) for tip Mach numbers ranging from 1/2 to 1. However, it is found 

that the sound radiated by an actual propeller persists at considerably higher 

frequencies than those predicted by the theory. This high -frequency sound is 

now believed to be caused by nonuniform flow entering the propeller. The 

discrepancy between theory and experiment at Mach numbers below 1/ 2 is 

also believed to result from this distortion. 

3.5.1. 3. 4 Flow distortion noise: There are many cases where propel­

lers and fans must operate in much more nonuniform flows than those in which 

an airplane propeller operates. Thus, for example , a ship's propeller oper­

ates in the ship's inhomogeneous wake, a jet engine fan frequently operates in 

the wakes of inlet guide vanes, and helicopter blades frequently must pass 

through their own wakes and operate in ground effect. Moreover, the noise 

due to flow inhomogeneities can dominate over the rotational noise even for 

very small nonuniformities. 
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Figure 3-23. - Propeller noise measurement of Hubbard and 
Lassiter (ref. 381. Circumferential angle, 8, 900; distance 
to observation point, x, 10 meters (30 ttl. 

When the oncoming flow is nonuniform, it can no longer be assumed that 

the forces acting on the blades are steady in a reference frame rotating with 

the propeller. In this case , we must use the complete equation (3-114). In 

order to evaluate the integrals in this equation, it is generally necessary to 

know the distribution of forces on the blades. However, we can obtain a quali­

tative picture of the sound field by assuming that all the blade forces act 

through a single point with radius RO. Thus , upon orienting the ~ 1 -axis to 
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pass through the s = 1 blade, the force distribution f~ acting on this blade 

becomes 

where 70 is the total (thrust or drag) force actin'5 on the blade. Inserting a . 
this into equation (3-113) and using the result in equation (3-114) show that 

00 

ik B ik x I'( )[ / p '" ~ e nB e1 nB -p cp - (TT 2)] J (k R sin e) 
nB 2 nB-p nB 0 

4TT cox p=-oo 

x ~os e T - nB - P D ) 
P k R P 

(3-119) 

nB 0 

where 

for Cl' = T, D 

is simply the Fourier coefficient of the total (thrust or drag) force acting on 

the blade. This formula was obtained by Lowson (ref. 39) by considering the 

sound emission from a circular array of point sources rotating with the same 

angular velocity about the center of the circle . 20 

The p = 0 term corresponds to the mechanism discussed in the previous 

section. The Fourier coefficients TO and DO appearing in this term are the 

time-averaged forces. Hence , we can think of these as the steady part of the 

20 The point forcc approximation can be justified r igorously in the limit where the 
wavelength i s long compared with both the chord and span. Since it is more like ly that 
the wavelength will be long compared with the chord, a better approximation might be 
to conSider the force concent rated along a racli al Ii nco 
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blade forces with the Fourier coefficients T p and Dp for p f 0 correspond­

ing to the fluctuating or unsteady forces . Each of these contributes a term , 

or "mode" , to the nB th harmonic of the sound fi eld, whose phase is 

knBx + (nB - p) cp - nBQt + Constant 

This phase surface rotates with the angular velocity 

nB Q 

nB - P 

Thus, when p and nB are of the same sign , the mode rotates with an angular 

velocity greater than the propeller rotational speed Q. Therefore, subson ­

ically rotating propellers can actually give rise to supersonically rotating 

modes. However , when p and n are of opposite signs, the a ngular velocity 

of the corresponding mode is less than Q. This type of interaction can be 

most easily visualized by considering a simple optical analogue called the 

Moire effect. 21 If the periodic disturbance field is represented by an array of 

(say 48) radial spokes drawn on a stationary background (one spoke for each 

cycle) and if the propeller is represented similarly (by say 46 spokes) on a 

sheet of clear plastic, the interference of dark and light regions will produce 

an interference pattern whenever the two patterns are overlaid. If now the 

plastic sheet is turned slowly about the common center of the two arrays, the 

interference pattern will be observed to spin 46/ ( 48 - 46), or 23, times as fast 

as the plastic sheet but in the opposite direction. 

When p and n are of opposite sign, nB - p will be greater than the 

order nB of the Bessel function which occurs in the steady force term of 

equation (3-119). Hence , the Bessel functions of order nB - p will be 

smaller than the Bessel function in this term . And if , as is usually the case , 

the unsteady forces are small compared with the steady forces , the modes in 

which p and n are of opposite sign will generally be negligible. 

On the other hand , when p and n have the same sign, the order of the 

21Thi s example i s presented in ref. 40. 
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Bessel function can be smaller than nB. In fact, the absolute magnitude of the 

term with p = nB is 

whereas the absolute value of the steady force (p = 0) term is 

where a is the drag-thrust ratio. Now the relative magnitudes of these two 

terms are determined principally by the relative magnitudes of the Bessel 

functions and the ratio of the unsteady force to the steady force T nB/T o. 
This ratio should be roughly equal to the ratio of the magnitude of the 

nB th harmonic of the disturbance field to the mean flow velocity. Hence , the 

larger B is, the greater the importance of the disturbance term. However, 

even when B takes on its smallest possible value of 2, the disturbance term 

can be quite large. Thus, when n = 1, the argument of the Bessel functions is 

2MO sin e, where MO = QRO/ Co is the Mach number at the radius RO. At 
e = 0, J O = 1 and J 2 = 0; and at e = rr/2 (taking MO = O. 7), JO~ 0.57 and 

J 2 ~ 0.207. Hence, even if the magnitude of the first harmonic of the dis­

turbance is 10 percent of the mean velocity, the unsteady force term can be 

one -half as large at e = 00 as the steady force term at e = 900
. 

3. 5. 1. 3. 5 Determination of blade forces: In order to use the results of 

the last section to calculate the sound field, it is necessary to determine the 

fluctuating forces acting on the blades. In this section we show how (when 

certain approximations are made) the results of section 3.4.2 can be applied 

to calculate these forces. Since it is assumed in that section that linearized­

thin-airfoil theory applies , we must require that the propeller blades have 

small camber and are at a small angle of attack to the oncoming flow relative 

to the blade. Of course, the fluctuating velocity must also be small. We 
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I 

/ 

f~'- Parallel to 
y 2 axis 

Uo = QRO 

Figure 3-24. - Coordinate systems for calculating fluctuating blade forces. 

should also require that the blades be separated by large enough distances so 

that the mutual interference effects between their potential fields can be ne­

glected. Then each blade will act like an isolated thin airfoil. Even though 

the Mach number in many applications is fairly high , we shall assume that the 

flow is incompressible. 22 And finally , it will be assumed that the flow can be 

considered to be two dimensional and parallel. With these approximations the 

blade forces can be calculated from the two-dimensional model illustrated in 

figure 3 -24. 

The oncoming steady flow is parallel in the Y 1 -direction and varies only 

22The effects of compressibility are discussed in chapter 5. 
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in the Y 2 -direction. 23 It consists of a uniform part U 00 plus a small spa­

tially variable part. Since (as we shall see) the problem is linear, we again 

need only consider (as explained in section 3.4.2) a single harmonic compo­

nent of the spatially nonuniform flow. Let w denote its amplitude and 
p 

AO cos I) its wavelength. Hence, the oncoming velocity is 

27TiY 2/(AO cos I)) 

U +w e 
00 p (3 -120) 

In order to relate this problem to the one discussed in section 3.4.2, it is 

necessary to express (3-120) in terms of the Y1-Y2 ,;oordinate system fixed 

to the airfoil (fig. 3 -24) with the y 1 -axis in the direction of the oncoming uni­

form flow velocity Ur relative to the blade. 24 

The y 1 -y 2 coordinate system is rotated from the Y 1 -Y 2 system by the 

angle f.L between U and the oncoming velocity U , and in a time T r 00 

translated by a distance (U cos I))T due to the component of the blade motion 

in the Y 2 -direction. Hence, 

(3 -121) 

But it can be seen from the velocity triangle in figure 3 -24 that 

sin f.L cos I) 

Hence, the oncoming flow velocity (3 -120) becomes 

[ 
. uo ~_1 + Y2 cot f.L - 7)J U + w exp 27Tl-

00 P A U o r 

23The mean flow is allowed to make an a ngle /1 with the perpendicular to the rota­
tional plane of the propeller in order to include the case where the oncoming now is 
turned by guide vanes. 

24That is, relative to an observe r fixed on the blade. 
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Let RO denote the radius corresponding to the plane of figure 3 -24. 

Then since the circumference 21TRO must be equal to an integral number of 

wavelengths , 11.0 = 21TRO/ P, Uo = S1RO' and the oncoming velocity now becomes 

This velocity is in the Y 1 -direction: its components in the y 1 - and Y2-

directions are 

[ (

y + Y cot /1 )Il 
U r + W P cos M exp ipn 1 u: - T J 

[ (

y + y cot /1 ~] 
-wp sin /1 exp ipS1 1 U: -T) 

But this clearly constitutes an incident disturbance of the type described by 

equations (3-59) and (3 - 60). The results of section 3.4.2.2 therefore show 

that the fluctuating lift force per unit span is given in terms of Sears' function 

by equation (3 -64). Hence, introducing the present notation into this result 

shows that the amplitude F / b of the fluctuating lift force per unit span, 
(F p/b)e -ipS1T , is given by p 

where the reduced frequency ap is now 

252 

a == pS1c 
p 2U 

r 

(3 -122) 

- 1 

I 

I 
--~ 



EFFECT OF SOLID BOUNDARIES 

This equation shows that the lift force acting on the blade is periodic in time 

with a frequency equal to the blade rotational speed and that its pth harmonic 

is completely determined by the pth spatial harmonic of the incomino' dis­

turbance field, The Fourier components of the thrust T p and torque Dp 

forces which appear in equation (3 -119) are now given by 

T = F sin X 
p P 

D = F cos X 
p P 

where X is the stagger angle (fig. 3 -24), 

3.5.1. 3. 6 Helicopter rotors: Helicopter noise has caused problems in 

both the civilian and military applications of these vehicles. In civilian appU­

cations the excessive noise from helicopters limits the very application for 

which they seem best suited: namely intercity transportation. In military 

applications the noise provides an unnecessary early warning of the vehicle'S 

approach. 
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Figure 3-25, - External noise spectrum for helicopter HU-IA, Tiedown thrust, WO pounds; tip velocity, 720 feet per 
second; microphone distance from source, 200 feet. (From ref, 45,) 
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A typical helicopter noise spectrum is shown in figure 3 -25. The very 

complex nature of this spectrum is a result of a large number of individual 

noise sources, both mechanical and aerodynamic. The principal aerodynamic 

noise sources are indicated in the figure. 

Since a helicopter rotor is a special case of a propeller, its sound field 

should be described reasonably well by equation (3-115). However, it may 

now be necessary to extend the equation to include a "coning force, " which 

acts in the radial direction. This force can be of the same order as the drag 

force, which is typically one-tenth of the thrust. In fact, it was found experi­

mentally (ref. 41) that the lowest order harmonic is predicted fairly well by 

Gutin's theory. However, the sound intensity falls off much more slowly with 

increasing harmonic number than predicted by the theory. The obvious ex­

planation of this is that there exist large fluctuating forces acting on heli­

copter blades which do not act on propellers. This initially caused some diffi­

culty since this high harmonic content was observed under certain conditions 

of hover where it was felt that the helicopter rotor should behave as a propel­

ler. But it was eventually shown by Simons (ref. 42) that significant load var­

iations exist even in hover. It is, therefore, necessary to use the full equa­

tion (3-114) or perhaps the point force approximation (3-119). The principal 

difficulty in applying either of these equations is in the determination of the 

unsteady loading harmonics T p and Dp ' which can vary widely with operating 

conditions. Thus, the blade loading can vary from the impulsive-type force 

associated with "blade slap" to the nearly periodic force caused by the cyclic 

incidence variations of the blades in level flight (which must be used to com­

pensate for the differences in relative blade speed during forward and back­

ward motion). Blade slap is the name given to the sharp banging or slapping 

noise heard under some operating conditions (such as low -power descent). It 

occurs at the blade passing frequency and, because of its impulsive nature, is 

very rich in higher harmonics. It is the result of a particularly severe inter­

action of the blades with the shed tip vortices. 

By using the blade loading harmonics measured by Scheiman (ref. 43) , 

Schlegel, King, and Mull (ref. 44) calculated the sounds produced by a rotor 

during hover and compared them with experiment. Their results are shown 
in figure 3 -26 which is taken from reference 45. Also shown in this figure is 
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I Experimental measurements (ref. 44) 
o Calculated (ref. 44) 
t:. Calculated (ref. 45) 
o Gutin's theory 

I 

o 

o 

o 

034 
Harmonic of blade passing frequency 

Figure 3-26. - Comparison of rotor noise theory with experiment. 
(From ref. 45.) 

a calculation based on Gutin's theory and a calculation carried out by Lowson 

and Oller head (ref. 45) using a larger number of unsteady loading harmonics. 

3.5.1. 3. 7 Fan noise: Since the rotor of an axial-flow fan or compressor 

is simply a propeller in a duct , it can be argued that the theory developed in 

section 3. 5. 1. 3.1 ought to be able to predict the essential features of the noise 

from such fans , at least at sufficiently high frequencies. As a consequence of 

this , this model has been adopted by Morfey (ref. 46), Barry and More 

(ref. 47) , Lowson (ref. 39) and many others to analyze various aspects of 

fan noise . The main conceptual difference appears to be due to the cutoff 

phenomenon , which we discuss in chapter 4. Thus , as we shall see , the 

modes generated by a fan in a very long (i. e. , infinite) duct will simply not 

propagate until the frequency is above a certain" cutoff" frequency for that 

mode. However , the corresponding modes generated by a propeller in free 

space merely have small amplitudes in the radiation field due to almost com­

plete cancellations of the sound emitted from various positions in the propeller 

disk. These cancellations are not quite complete because of slight variations 

in retarded time. This results in a gradual cutoff with frequency instead of 
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the sharp cutoff which occurs in ducts. The effect of the duct on the sound 

field is assessed in section 4. 3. 5. It can be seen from the results of that sec­

tion that the free -space theory developed in this chapter becomes more accur­

ate with increasing frequency. 

3,5,2 Flows With Sound Field Determined by Green's Function Equations 

Tai lored to the Geometry 

In this section, rather than use the free -space Green's function (as was 

done in the last section), we now describe the sound emission from unsteady 

flows in terms of Green's functions specifically tailored to the geometry of the 

solid boundaries. It is therefore necessary to return to equation (3-6), Since 

only stationary boundarie s2 5 are treated in this section, the last term in this 

equation can be omitted to obtain 

i T] iT ,1 a2
G - 1 

p = - --- T ij dy dT + - Is 
2 ay. ay. Co 

Co -T VI] -T S 

aG f . dS(y)dT 
ay. 1 

1 

(3 -123) 

3.5.2.1 Sound generated near an infinite plane surface. - Even though 

most aeroacoustic calculations which involve solid boundaries attribute the 

sound to the dipole surface term, we have seen that the quadrupole term may 

actually dominate in certain cases, This becomes particularly apparent when 

the unsteady flow is bounded by a perfectly rigid infinite plane (shown sche­

matically in fig. 3 -27). In this case , it is reasonable to use the Green's 

function given by equation (1-65) since its normal derivative vanishes on the 

boundary . Thus , inserting equation (1-65) into equation (3-123) and noting that 

r' = r when Y2 = 0 show that 

25The treatment of moving boundarie s by this approach i s taken up in chapter 4. 
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X2_ Y2 

Unsteady flow 

Figure 3-Z/. - Infinite-plane boundary. 

i T lTJ 2 0 20 1 
pI = ~ j 0 G (r) T .. dy dT + ~ 0 G (r ) T .. dy dT 

2 oy.oy. 1] 2 oy. oy. 1] 
Co 1 J c 1 J 

-T y > 0 0 -T y > 0 
2 2 

(3 -124) 

where we have used the notation (1-38) , and the repeated index a can assume 

only the odd values 1 and 3 - corresponding to the coordinates lying in the sur­

face. The second term in this equation can be transformed into an integral 

over the region Y2 < 0 interior to the solid surface by changing the variable 

of integration from Y2 to -Y2' This term then becomes 

wher e 

257 



AEROACOUSTI CS 

is the "mirror image" reflection of T . . in the Y2 = 0 plane. 
1) 

It is convenient to introduce an extended quadrupole distribution T . . 
1) 

which is defined on all space in such a way that it is equal to T . . for Y2 > 0 
t 1) 

and to its mirror image T.. for Y2 < O. Then the fir st two integrals in 
1J 

equation (3 -124) can be combined into a single integral over all space (where 

the omission of the limits indicates that the integration is to be over all space) 

to obtain 

Since GO depends on x and y only through r, the derivatives with respect 

to Y i can be changed to derivatives with respect to xi and the integration 

over the delta function can be carried out to obtain 

1 02 f'" ~- r)l - 1 a 11 ~- r) pI = -- T ij Y, t - - - dy - ---- - faY, t - - dy 1 dy 3 
4· 2 Ox. ox. Co r 2 2 ax r Co 

7TCO 1 J 7TCo a 
Y2=O 

This equation was first derived by Powell (ref. 48). 

Since the normal vector n is now in the y 2 -direction, it follows from 

equations (2-2) and (3-4) that 
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Thus, the strength of the surface dipole is equal to the fluctuating viscous 

stress. Hence, when the flow is inviscid, the equation becomes26 

This shows that for an inviscid flow, the net effect of an infinite-plane rigid 

boundary can be accounted for by introducing an image distribution of volume 

quadrupole sources obtained by reflecting in the plane surface the volume 

quadrupole distribution T... Thus, for a given flow the solid boundary does 
1J 

little more than reflect the sound. Of course, it must be kept in mind that the 

presence of solid boundaries always has a strong effect on the unsteady flow 

which generates the sound. 

In any real flow where viscosity is present, the fluctuating viscous shear 

stress will introduce a tangential surface dipole. However, even though the 

dipole source is a more efficient sound producer at low Mach numbers, the 

fluctuating part of the wall shear stress, being essentially a viscous quantity, 

ought to be quite small compared with the fluctuating Reynolds stress term at 

the high Reynolds number where aerodynamic sound emission usually becomes 

significant (especially when the Mach number is sufficiently high). 

An interesting experiment which tends to verify this conclusion was con­

ducted by Olsen, Miles, and Dorsch (ref. 49). It consisted of measuring the 

sound field which is produced when a turbulent jet impinges on a very large 

plate. It was found that there was a very large increase in the acoustic power 

over that radiated by the jet itself - indicating that most of the sound was 

probably caused by the presence of the plate. However, the emitted sound in­

tensity always varied as the eighth power of the velocity (which is characteris­

tic of a volume quadrupole) and not as the sixth power27 (which is characteris­
tic of a dipole) - indicating that the surface dipole term was small. The noise 

26Compare this with eq. (2-11), obtained for an unsteady flow with no solid bound­
aries present. 

27 See section 3. 3. 4. 2. 2. 
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emitted from the boundary layers on large surfaces is usually found to be 

fairly small unless the velocities are extremely large (which is consistent 

with the relatively low efficiency of the quadrupole source). However, large 

surfaces inserted into jets often exhibit a ratio of turbulent pressure fluctua­

tions to dynamic pressure which is an order of magnitude larger than what it 

would be in a turbulent boundary layer. 

3.5.2.2 Sound generated near finite surfaces. - Up to now we have con­

sidered the sound generated by unsteady flows near surfaces whose dimensions 

are either large or small compared to a typical wavelength. However, prac­

tical surfaces at practical air speeds frequently generate significant sound at 

wavelengths which are neither small nor large compared to their dimensions. 

3.5.2.2.1 General equations: Fortunately (as pointed out by Doak 

(ref. 50)), the ideas developed in the last section can be extended to fixed 

boundaries of arbitrary size and shape simply by using (in eq. (3-123)) the 

Green's function whose normal derivative vanished at the boundary. Then 

since 

aG == n. aG = 0 
an ] ay . 

J 

on the surface S 

Substituting equation (3 -4) into (3 -123) shows that 

p' = 1...-11 a
2
G T .. dy dT + 1...-1T[ aG e .. n. dS(y) 

2 ay.a y. 1J 2 ay. 1J 1 
Co -T v 1 J Co -T S J 

And if , as before , it is assumed that the sound generated by the fluctuating 

viscous stress is negligible at the Reynolds numbers of interest, this equa­

tion becomes 

p' = 1...-11 a
2
G T .. dydT 

2 ay.a y . 1J 
Co 1 J 

-T v 

(3 -125) 
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It is frequently simpler to deal with the Fourier transform of this equa­

tion than with the equation itself. Thus, let Cl. denote the Fourier transform 

of p' and T!. denote the Fourier transform of T... Then since equation 
IJ IJ 

(1-69) shows that G depends on t and T only through the combination t - T, 

the last entry in table 1-1 (appendix 1. A) shows that the Fourier transform of 

equation (3 -125) is 

f a2G 
1 W t -+ 

Cl. == - ":l":l T.. dy 2 uy. uy. 1J 
C 1 J o 

(3 -126) 

where , as shown by equation (1-67), G is an outgoing-wave solution (section 
W 

1. 3. 1. 3) to the Helmholtz equation 

where k == ~ 
Co 

Equation (3 -125) can best be interpreted by considering a specific application. 

3.5.2.2.2 Edge noise: the half -plane problem: Perhaps the simplest 

geometry (after the infinite plane) to which equation (3 -126) can be applied is 

the semi -infinite plane shown in figure 3 -28. The analysis of this problem 

was carried out by Ffowcs Williams and Hall (ref. 51). 

The outgoing-wave Green's function whose normal derivative vanishes on 

the half-plane Y1 > 0, Y2 = 0 is somewhat complex. But (McDonald, 
ref. 52) in the radiation field it assumes the relatively simple form 

G ~ __ e _ F(d) + _e_ F(d') 1 ~ ikr ikr' j 
W 47T r r' 

(3-127) 

where, as usual, 

r = Ix -yl 
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I 

Figure 3-28. - Semi -infinite plane. 

is the distance between the source point and the observation point and 

r' = Ix - y'l 

denotes the distance between the image point (source point reflected in 

Y1-Y3 plane) and the observation point. F(d) denotes what is essentially the 

complex Fresnel integral 

and 

262 

_ _ fad 1 e-i7T/ 4 
F(d) =-+ 

2 r; 

d = (2krO sin e)1/ 2 cos 1:. (cp - CP O) 
2 

d' = (2krO sin e)1/ 2 cos 1:. (cp + CP O) 
2 

(3 -128) 

(3-129) 



where 

-1 Y2 
CPo = tan -

Yl 
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are the cylindrical coordinates of the source point shown in figure 3 -29. It is 

important to point out that this Green's function has a "potential-field singu­

larity" at the edge. This means that the acoustic field behaves like a potential 

flow in the vicinity of the edge. 

Notice the close resemblance be~een equation (3 -127) and the infinite­

plane Green's function (see eqs. (1-65) and (1-69)). The principal difference 

is that each term is now weighted by a Fresnel integral which varies (roughly) 
between 0 and 1. Hence, any enhancement of the sound field over that which 

results from an infinite flat plate must occur through derivatives of the 

Fresnel integral (or more specifically derivatives of d and d'). 

Very little sound will reach an observer if the source is far from the edge 

and on the opposite side of the plate. When the source and observer are on the 

same side and the source is far from the edge, the plate will act like an in­

finite plane. We therefore antiCipate that any substantial amplification of the 

~--------L------~~Yl 

Figure 3-29. - Cylindrical coordinates for source. 
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sound field which results from the presence of the plate will occur when the 

source is near the edge. Thus, we consider only the case where 

2krO « 1 

that is, where the distance between the source point and the leading edge is 

very small compared to a wavelength. Then since 

l
d 

.2
3 -lU o e du = d + O(d ) 

for small d, equation (3 -127) becomes 

G = _e_1:.+ e (2kr
O 

sine)l 2 cos 0 ikr[ -i1T14 1 ( CP - cP )~ 
w 41Tr 2 r; 2 

+ _e_ 1:. + e (2kr
O 

sin e)l 2 cos 0 +0 (krO)'"> ikr'l -i1T14 1 ~CP + cP )] ~ ?I, 
4rrr' 2 Y; 2 

And, since 

kr' '" kr + 2kr 0 sin CPo sin cP sin e 

in the far field, we can neglect the difference between kr and kr' to obtain 

1 ikr[ 2e-
i1T14 

1/ 2 1 1 J G = - e 1 + (2krO sin e) cos -CPo cos - cp + O(krO) 
w 41Tr';; 2 2 

Inserting this into equation (3 -126) shows that for the sound generated near tdC 

edge 
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JC:ot2 cos ~ ~J 
ikr t L J _e_ T _ _ _______ dy 

I·w r 

(3 -130) 

edge where the integral is now evaluated over a region Vo for which 

2kr 0 < < 1, and the repeated Greek indices are used to indicate that the sum is 

only over 1 and 2 (since the term in square brackets is independent of Y3). 

Now suppose that the Reynolds stress approximation (2 -7) can be used 

for T... Then introducing the radial and circumferential velocities v and 
1J r 

v cP by (fig. 3 -29) 

and carrying out the differentiations in terms of the cylindrical coordinates 

r 0 and CP o show that 

2 
2w Po 

t:. ~ - - -
-i7T/ 4 / 2 

e sin1 e cos 1:. cP 
Y;; 2 

J 1 ~( 2 2)t 1 t 1 ~ eikr 
x v - v cos - CP o + 2(v v ) sin - CP o -- dy 

(2kr )3/ 2 cp r 2 r cp 2 r 
Vo 0 

(3-131) 
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where the superscript t denotes the Fourier transform. This formula is the 

basic result obtained in the Ffowcs Williams - Hall paper. It is instructive to 

compare it with the corresponding result for the case where there is no solid 

boundary present, namely, 

] 

ikr 
+ (Similar terms involving the remaining Reynolds stresses) ~ dy 

The most important difference is due to the occurrence of the large factor 

(2kr a) -3/2 in equation (3 -131). This can result in a significant increase in the 

far -field pressure over that which would occur if no edge were present. It 

therefore shows that a solid surface can act to scatter the basically nonpropa­

gating near-field flow fluctuations into a propagating sound field. Thus, the 

inefficiency of a compact quadrupole source is the result of the phase cancella­

tions which occur between its component monopoles. But inserting a surface 

into its near field can reduce this cancellation and thereby increase the effi­

ciency of the source. 

Only the Reynolds stresses PaY;, PaY!' and Pavrvrp produce sound 
fields which are augmented over the unbounded field by the factor (2kr a) -3/2 

The Reynolds stresses POvr v3 and Pav cp v3' which are omitted from equation 
(3-131), are increased over the unbounded flow values by a factor of only 

(2kr 0) -1/2, while the sound field produced by the Reynolds stress PV~ shows 

no increase. 

Consider the case where the sound is generated by a turbulent flow. In 

order to estimate the sound field, we assume (as Lighthill did in his original 

papers on aerodynamic noise) that the flow is divided into a number of regions 
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which are much smaller than an acoustic wavelength. The turbulence within 

each of these regions is regarded as completely correlated, and the turbulence 

in any two different regions as completely uncorrelated. Then the total inten­

sity of the sound field can be found simply by calculating the sound intensity 

from each of these volumes and adding the results. Thus , applying equation 

(3 -131) to a single correlation volume Va and supposing that v and v do 
cP r 

not vary over this region show that 

2 
2w Po eikr e -i1T/ 4 . 1/ 2 

t1 '" --- -- -- SIll e cos..!. cP 
2 r r; 

x 

Upon approximating the integrals in this equation by 

4 

(cp a ) 
cos--

2 

. (cp o ) 
SIll--

2 

where ( CPo ) and ( r 0 ) denote the polar coordinates of the center of "the 

eddy, " we find 
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2 
2w Po e i (kr-n/4) . 1/ 2 1 

---- - sm e cos - cP AVO 

47TC6 r(k ( r 0 » 3/ 2 2 

(3 -132) 

where 

( 
2 2)t 1 t . 1 A == v - v cos - (CP O> + 2(v v ) sm - (CPO> 
cP r 2 rcp 2 

is roughly equal to (v2r Hence, the average far-field intensity from each 

correlation volume is 

4 V2 
wpPOv 0 

IV ~ _-L.---=--__ - sin e 
o 2 3 2( > 3 r2 7T Co rO 

(3 -133) 

where w denotes a peak or characteristic frequency. 28 
p 

Since the total turbulence volume is equal to V 0 times the number of 

correlation volumes, the sound intensity per unit volume of turbulence is 

2 1 cos - cp 
2 

The factor cos2 1. cp causes the sound intensity to go to zero in the plane of 
2 

the edge. The characteristic directivity pattern of this sound field in the 

plane perpendicular to the edge (e = 7T /2) is shown in figure 3 -30. In this 

28In order to obtain eq. (3-133), it was assumed that the frequency could be re­
placed by its peak value in eq. (3-1 32). The results of section 1. 7. 3. 2.1 together with 
eq. (2-6) were then applied to calculate the intenSity, and the results of appendix 1. A 
(section 1. A. 3) were used to relate the product of the Fourier transforms of the 
squared velocities to their time averages. 
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-------+~4-~-+~~~~--~-------1~ 

Figure 3-30. - Directivity pattern of edge noise in plane perpendicular to 
edge. (Zero decibels is peak level at a· n/2 and t/I • 00. ) 

figure the intensity has been normalized, with its maximum value 

(3-134) 

This result can be used to obtain similarity estimates of the sound field. 

Thus, let l denote a typical turbulence correlation length. It is reasonable 

to suppose, at least for the eddies downstream of the edge, that l scales with 

< r 0 ) (i. e., l 0: < r 0 > ). Let U denote the mean -flow velocity and suppose that 

the turbulence velocity u I is related to U by u I ~ O'U. Then since the cor­

relation volume is roughly l3 and wp ~ U/ l, equation (3-134) implies 

5 4 
POU 0' 

I ~ ----
max 3 2 2 

277 cOlr 

(3-135) 
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Thus , in this case , the sound intensity varies as U 5. (Recall that the inten­

sity varies as UB for free turbulence and as U6 for turbulence near a small 

solid object. ) 

It is instructive to compare the sound power output predicted by this equa­

tion with that which would be produced if there were no edge present. Now it 

was shown in section 3. 5. 2. 1 that sound output produced in the vicinity of an 

infinite plate ought to be roughly the same as that produced by free turbulence 

(provided, of course, that the turbulence itself is the same in both cases). 

Thus , the results of section 2. 5. 1 will be used to estimate the power output 

from the turbulence far from the edge. To this end , we notice that equations 

(2 -44) and (2 -42) show 

, 2U2 
~ ~ _0:' __ 

l 

where 0:' ~ u' / U is roughly the proportionality constant between the mean 

ve locity U and the fluctuating velocity u'. Hence , upon neglecting direc­

tional effects, equation (2 -40) shows that the sound intensity from free tur­

bulence is roughly 

We shall use this expression together with equation (3 -135) to estimate the 

size of pla te for which the edge effects will be negligible. Thus, it follows 

from these two equations that the edge regions will have equivalent sound­

generating ability to the remainder of the plate when 

I (2L ) (C )3 L _max edge = 16 ~ edge = 0(1) 

L L 7r U L lat 
lree plate p e 
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where Ledge is the length of the region where the edge amplifies the sound 

and Lplate is the length of the total plate. But the size of the edge region is 
determined by the inequality 

1 i\ 
rO « -=-

2k 47T 

Hence, if the plate is more than (4/7T 2)M-3 wavelengths long (where M is the 
mean-flow Mach number), the edge nOise should be negligible. Of course, 

these estimates are highly approximate and could easily be off by an order of 

magnitude or so. It should also be noted that they are based on the assumption 

that the turbulence in the vicinity of the edge is the same as it is at the center 

of the plate. However, pressure measurements in the vicinity of a trailing 

edge show that the edge has a strong effect on the flow. 

Recall that the Green's function on which this analysis is based has a 

potential-flow singularity at the edge. Hence, the acoustic velocity is not 

finite there. If one wishes to require that the velocity remain finite at the 

edge, there are two points of view which can be adopted. The first of these is 

to extend Lighthill's equation to include the viscous effects in the propagation 

terms. The part of this problem associated with the actual propagation would 

then be similar to certain analyses performed by Abblas (refs. 53 and 54), who 

solved the linearized Navier-Stokes equations with viscous effects included. 

He showed that in the absence of a mean flow, small viscosity removed the 

singularity in the velocity at the edge without appreciably affecting the far­

field pressure. But, whenever there is a nonnegligible mean flow, it may not 

be legitimate to linearize the Navier -Stokes equations since the unsteady flow 

causing the sound field or even the sound field itself can cause a shedding of 

vortices from the edge. 

Another approach which can be taken is to solve the uniformly moving­

medium wave equation subject to a Kutta-Joukowski condition at the edge. 

However, this cannot be done without giving up some property of the sound 

field, such as its continuity or its finiteness. Jones (ref. 55) imposed the 

Kutta condition by discarding the requirement of continuity. He accomplished 
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this by introducing a vortex sheet extending from the edge. Of course , such a 

vortex sheet would only be reasonable for a trailing edge embedded in a mean 

flow. Jones concludes from his analysis that, when the sound field is convec ­

ted by the mean flow, flthe imposition or otherwise of the Kutta-Joukowski 

conditions does not have much influence on the scattered field away from the 

plane of the diffracting plane; when the source is near the edge the field has 

the same directionality and the same order of magnitude. On the other hand, 

near the wake, the Kutta-Joukowski condition produces a much stronger field 

than elsewhere even when the source is not near the edge. " 

Since a vortex sheet cannot occur at a leading edge, it appears that the 

imposition of a potential-flow singularity is most appropriate in this case, 

whereas the imposition of the Kutta condition at a trailing edge leads to nearly 

the same conclusions as the imposition of a potential-flow singularity. 

3.5.2.2.3 Lip noise: the semi-infinite cylinder problem: An analysis 
similar to the one described in the previous section was used by Leppington 

(ref. 56) to estimate the sound emitted from turbulence in the vicinity of the 

exit plane of an open tube (such as shown in fig. 3-31). The analysis proceeds 

in the same manner as that of Ffowcs Vv'illiams and Hall except that the 

Green's function appropriate to an open-ended tube is used. This function is 

obtained by applying the reCiprocity principle to the solution of an appropriate 

scattering problem, which can be solved by the Wiener -Hopf technique 

(ref. 57). Leppington's analysis involves the additional assumption that the 

wavelength of the sound is long compared with the pipe radius. The conclusion 

is then that the sound power emitted by the turbulence now varies as the veloc-

Figure 3-31. - Semi-infinite cylinder. 
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ity to the six th pow er a s found by Curle rather than to the fifth pow er a s found 

by Ffow cs William s and Hall. 

On the basis of these analyses , it might be anticipated that there is an 

additional source of noise in a jet due to the nozzle lip. The r esults indicate 

that this sound should vary with the velocity to the fifth or sixth power and , 

because of the cos2(cp/2) directional dependence found in the last section, 

should be concentrated in the upstream direction. Finally , since this noise 

varies with a lower power of the jet velocity than ordinary jet nOise, it ought 

to be more important at low velocities. In fact , it has been argued (ref . 58) 

that the discrepancies between jet noise measurements upstream of the nozzle 

and the noise predicted by Lighthill's theory can be attributed to lip noise and 

that the double -peaked spectra observed at the upstream angles are further 

verification of this idea. But , the double -peaked spectrum29 can also be 

attributed to the internal noise transmitted through the pipe walls. In fact, 

recent careful experiments by Olsen and Friedman (ref. 59) indicate that there 

is no Significant noise from the nozzle lip down to jet velocities of 400 it/ sec 
(122.5 m/ s ec). In thes e experiments, the internal noise was kept low and the 

pipe wall was well insulated. No double -peaked spectrum seems to have been 

observed. In addition , the radiated power at these upstream angles varied 

with the velocity to the eighth power and not the fifth or sixth . However , it is 

certainly possible that this lip noise will eventually be detected in experiments 

conducted a t lower ve locities. 

29Near the pipe, where the jet noise is lowest. 
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APPENDIX 3.A 

REDUCTION OF VOLUME DISPLACEMENT TERM TO DIPOLE 

AND QUADRUPOLE TERMS 

We wish to show that the last integral in equation (3 -8) can be reduced to 

a dipole term and a quadrupole term whenever 

oV. 
__ 1= 0 
Oy. 

1 

(3 -AI) 

To this end, notice that, for any function f(r , T) of rand T which vanishes 

outside the interval -T < T < T , equations (3 -AI) and (3 -7) imply 

_ 0_ v.[of(r, T) + V. Of(r'TJ + ~ V. of(r, T) 
) 1 1 oy. OT oX. OT oX. 

) 1 1 

o 0 = - a.f(r, T) - V.V.f(r, T) 
oX. ] ox. ox. 1] 

] 1 ] 

(3 -A2) 

where, in view of the chain rule and equation (3 -9/ , 

is the acceleration of a fixed point in the ~ -coordinate system. But applying 

Leibniz's rule (eq. (1-48)) to the region j) c interior to S and using equation 

(3-10) show (upon noting that the direction of the outward-drawn normal 

changes sign) 
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i T! d a -0= - Vi-fdydT 
dT ax. 

-T J) (T) 1 
c 

l Tl lTl a a - af = - V. -f dy dT - V.n.V. - dS dT 
aT 1 ax. J J 1 ax. 

-T II C(T) 1 -T 8(T) 1 

Hence, the divergence theorem implies that 

af n.V. - dS dT 
1 1 aT 

And as a result it follows from equations (3-A2) and (3-10) that 

I Tl S af n.V. - dS dT = 
1 1 aT 

-T S(T) 

- _a_ fT f a.f(r, T)dy dT 
ax. -T J) (T) J 

J c 

(3 -A3) 
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APPENDIX 3. B 

SOLUTION TO TWO-DIMENSIONAL UNSTEADY-AIRFOIL PROBLEM 

Before proceeding with the solution to this problem, it is convenient to 

assume that the wave number k1 (which enters the analysis through the bound­

ary condition (3 -61)) has a small positive imaginary part. It can be shown that 

this is equivalent to assuming that there are small amounts of linear damping 

in the fluid. Once the solution has been obtained, the imaginary part of k1 

will again be put equal to zero. 

Instead of solving equation (3 - 50) for the velocity potential , it is more 

convenient in this case to work directly with the velocity (3 -62) which satisfies 

equations (3-46) and (3-48). In the present case these equations reduce to 

aU1 aU2 -+-=0 
aY 1 aY2 

aU
1 

aU2 - - -= 0 
aY2 aY1 

(3-B1) 

(3 -B2) 

which must be solved for u1 and u2 subject to the boundary conditions (3 -42) 

and (3 -61). Since the time enters the problem only through the multiplica-
-ik U T 

tive factor e 1 00 which appears in the boundary condition (3 -61) , the 

solution must be of the form 

(3 -B3) 

where V 1 and V 2 are two complex functions which , in view of equations 

(3 -B 1) and (3 -B2) , satisfy the relations 
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av 1 aV2 --+--=0 
aY1 aY2 

av 1 av 2 
---=0 
aY2 aY1 

(3 -B4) 

everywhere except possibly along the line Y2 = 0, Y1 > -(c/ 2). But these are 

just the Cauchy-Riemann equations (ref. 60) for the functions V1 and -V2. 

Hence, 

(3-B5) 

is an analytic function of the complex variable Z = Y 1 + iy 2 (except along the 

line Y2 = 0, Y1 > -(c/ 2)). Similarly, taking the complex conjugate of equa­

tions (3 -B4) shows that 

(3 -B6) 

is also an analytic function of Z. 

The boundary condition (3 -42) shows that Wand W vanish as Z - o(). 

And since the Cauchy integral 

is an analytic function of Z everywhere except along the line Y2 = 0, 

Y1 > -(c/ 2) , which vanishes as Z - 0() (refs. 61 and 62), we seek a solution to 

the problem in the form 
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1 iCC n(Y1) w= - dy 
27Ti Y 1 - Z 1 

-( c/ 2) 

(3 -B7) 

~ 1 ICC n(y 1) 
w = - dY1 

27Ti Y1 - Z 
-(c/ 2) 

(3 -B8) 

Then V 1 and V 2 will satisfy equations (3 -B4) and vanish at cc . 

lt remains to choose the functions nand n so that the boundary condi­

tions along the plate are satisfied. But inserting equation (3 -B3) into the 

boundary condition (3 -61) shows that 

c c 
for Y2 = 0; - - < y <-

212 

and, since this condition must hold on both sides of the plate, that 

iky 
V~ + V2 = 2e 1 1 

f cc 
or Y2=0; -- < y <-

2 1 2 

where, for any function f(Z), f±(Y1) denotes the limits 

lim f(y 1 ± if) for f 2: 0 
f-O 

as f approaches the real axis from above/below. 

(3 -B9) 

(3 -B10) 

(3 -Bll) 

Since the normal velocity u2 must be continuous across the trailing 
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vortex sheet (which lies along the line Y2 = 0, Y1 > (c/2)), it follows that con­

dition (3-B10) also holds for Y1 > (c/ 2). Hence, 

c for Y1 > --
2 

(3 -B12) 

But applying the Plemelj formulas (refs. 61 and 62) to equations (3 -B7) and 

(3 -B8) shows that for y 1 > -( c/2) 

(3 -B13) 

(3 -B14) 

1
00 

[2(y' ) 
w+ + W - = ~~ 1 dY1 

TTl y' - Y 
-(c/2) 1 1 

(3 -B15) 

~+ ~ - 9r 100 

n(Yj) w + w = -- dYl 
TTi y' - Y 

-(c/2) 1 1 

(3-B16) 

where 9~ denotes the Cauchy principal value of the integral. It now follows 

from equations (3-B5), (3-B6), (3-B13), and (3-B14) and by adding the complex 

conjugate of equation (3-B16) to equation (3-B15) that 

1 i 00 [2(Y1) 
- - 9r dYi 

TT y' - Y 
-(c/2) 1 1 

(3 -B17) 
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since equations (3-B5), (3-BIO), (3-BI2), and (3-BI3) imply30 

for y > -~ 
I 2 

Then inserting equation (3-BI7) into equation (3-Bll) shows that 

f2(Yi) 
---dy 
y' _ y I 

1 I 

c c 
for -- < YI <-

2 2 

(3-BI8) 

(3-BI9) 

Since the pressure must be continuous across the wake (i. e., p+ - p - = 0), 

the y Ccomponent of the momentum equation (3 -45) shows that 

c 
for YI >-

2 

Inserting equations (3 -B3) and (3 -BI8) into this relation shows that 

c 
for YI > -

2 

But this equation can be integrated from c/2 to Y I to obtain 

where 

no = n (~) 

(3 -B20) 

30 Eq . (3-B18) shows that we can interpret 5t(Yl) as the strength of the vortex 
sheet at Yl. 
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Kelvin's circulation theorem (ref. 63) 

d:f"" .... - v. dl = 0 
dT 

states that the time rate of change of circulation around any closed curve (with 

element of length dl) is zero. Applying this to the contour in figure 3 -32 

shows that 

Hence , it follows from equations (3 -B3) and (3 -BI8) that 

(00 n dYl = 0 

J-(C/ 2) 

Inserting equation (3 -B20) into this relation and carrying out the integration 

yields 

(3 -B21) 

while inserting equation (3 -B20) into equation (3 -B 19) yields 

~~~~~---------------------Yl 

-c/2 d2 

Figure 3-32. - Contour for application of Kelvin's theorem. 
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c/2 

27T 

S"HY1) n 
dy' +~ 

_ y 1 27T 
1 

00 

ikl~i -(C/ 2)] 
ed' 

y' _ y Yl 
1 1 

c/2 

c c 
for - - < Yl < -

2 2 
(3 -B22) 

This is a singular integral equation of a well-known type which can be 

solved for n in closed form . In order to satisfy the Kutta condition, we must 

require that this solution remain bounded at y 1 = c/ 2. The solution to equa­

tion (3 -B22) which satisfies this condition is (see ref. ~2 , p. 428 for a full 

discussion) 

c 

2 
- - Yl 

n(Yl) = -
2 

7T 
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Yi - Yl c , - - Y 
2 1 

c - + y' 
2 1 1 

~ - Yi Yi - Y1 
2 

c c 
for -- < Yl < -

2 2 

-~ -- -- --- --- ---
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In the last integral the order of integration can be inter changed and the inte­

gral with respect to yi written as 

1 

y" - Y 1 1 

c , 
"2 + Yl dYi 

~ - Yi (Yi - Y l)(Yi' - Yi) 
2 

c/ 2 
c , 
- + Yl 

9'''f'' 2 dYi 

TT ~ - Yi Yi - Y 
2 

1 

TT 

But since (see appendix of ref. 65) 

c/ 2 TT for I~I < ~ 
2 

~+ y' dy' 
9'''f'' 

2 1 1 = 
c _ y' y' - ~ 

f1 - 1 1 
2 

-( c/ 2) 
~ --

2 

this becomes 

c/ 2 
c , 
- + Yl dy' 2 1 

C , Yi - Y l' - - Yl 
2 

-( c/2) 

(3 -B24) 

for I~I > ~ 
2 
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c/2 

1T 

-(c/2) 

c , 
- + Yl 
2 dy' 1 

1 

Y" - Y 1 1 

Equation (3 -B23) can therefore be written as 

~ 
--y 

2 2 1 
n(Yl) = -- -- 9''f'' 

1T c 
- + Yl 
2 

c/2 

-( c/2) 

c y' - + 1 
2 

ik1Yi 
e ---dy' 

c y' _ Y 1 
- - y' 1 1 
2 1 

0() 

Yi - Yl 

c/2 

c c for-- < y < -
2 1 2 

(3-B25) 

The constant nO can now be determined by substituting this equation into 

equation (3-B21). Thus , integrating both sides of equation (3-B25) shows after 

changing the orders of integration and using equation (3 -B24) 
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dy' 1 

But by using the formulas given in reference 64, these integrals can be eval­

uated in terms of Bessel functions to obtain 

(3 -B26) 

where J n and H~l) for n = 0, 1 denote the Bessel and Hankel functions of the 

fir st kind and 

is the reduced frequency. 

Substituting equation (3-B26) into equation (3-B21) now shows that 
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(3 -B27) 

With no determined by this equation, equation (3-B25) can be used to calcu­

late n(y 1) along the airfoil. We shall now show that this quantity determines 

the pressure force acting on the airfoil. To this end, notice that the 

y 1 -component of the momentum equation (3 -45) and equations (3 -B3) and 

(3 -B18) show that the pressure jump (p + - p -) across the plate is related to n 

by 

Integrating this equation between y 1 and c/2, recalling that p+ - p­

vanishes31 at c/2, and using equation (3-B21) show that 

(3 -B28) 

Hence, the net force per unit area acting on the plate can be calculated by 

carrying out the integrations in equations (3 -B25) and (3 -B28). But the manip­

ulations involved are extremely laborious. However, for compact sources it 

is only necessary to know the total fluctuating force per unit length acting on 

the airfoil. This force acts in the Y2 -direction and is given by 

31Since the Kutta condition implies that the pressure is continuous at the trailing 
edge and the jump in pressure across the vortex wake is zero. 
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(3 -B29) 

In order to evaluate the last integral in this equation, multiply equation 

(3 -B2 5) by y 1 - (c/ 2) and integrate over y l' Then upon interchanging the 

order of integrations in this result, the inner integrals assume a form 

c/ 2 

-( c/2) 

which can be evaluated from the results given in reference 65 to obtain 
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c/ 2 

VR~ c~ --Yl Y1 --
2 2 

dYl = 
~ + Yl Yl - Y't 

-( c/ 2) 

After performing these operations we find that 

288 

c/2 

-( c/2) 

ik y' 
(c - Yi)e 1 1 

c/ 2 

C I 
- + Yl 
2 d ' -- Yl 
c _ y' 
- 1 
2 

f oo ~ , c) ikl ~i -(C/ 2U , 
+ Yl - - e dYl 

2 
c/ 2 

if I y' I > ~ 
1 2 

I 

! 
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But these integrals can again b e evaluated in terms of Bessel functions 

(ref. 64) to obtain 

c
2

1Tn -iu [) (; ~ () J n + 0 e 1 H(l (u ) + l... + i H 1 (u) +~ 
8i 0 1 u

1 
1 1 k2 

1 

Hence, using this together with equation (3 -B27) in equation (3 -B29) shows that 

(3 -B30) 

where 

is known as Sear Sl function. 

The numerator of equation (3-B31) is the Wronskian of J O and H~l) and 

is therefore equal to -2i/1Tu1 (ref. 13). Hence, 

S(u
1

) = 1 (3 -B32) 

ia1 ~ Hi1)(a1) - i ~ H&I)(a1j 

This function can also be expressed in terms of the modified Bessel functions 

K 1 and KO of the third kind (for u1 > 0) by using the relations (ref. 13) 
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to obtain 

(3 -B33) 

If equation (3 -B25) had been directly substituted into equation (3 -B28) and 

the indicated integrations performed, we would have obtained the relatively 

simple result 

c 
- + Yl 
2 

(3 -B34) 

The laborious integrations needed to obtain this equation are carried out in 

reference 21. 
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APPENDIX 3.C 

LIFT SPECTRA32 

A 

Let us suppose that the frozen upwash velocity u2(y - i U 00 t) is cut off 

outside some large volume element b. V, as explained in appendix 1. A (sec­

tion 1. A. 3). Then the Fourier-transform 

exists and the lift force F 2(y 3' t) produced by u2 can be found by superposing 

the elementary lift forces given by equation (3 -75) to obtain 

elk 

where we have put 

Hence, the cross correlation of the fluctuating lift is given by 

32The material in this appendix follows an analysis used by Filotas (ref. 66) to 
study the response of airfoils to turbulent flows. 
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- y' + k1] - i U T)dY; dY;' 3 co 
(3 -c 1) 

where we have used the fact that the turbulence is assumed to be homogeneous 

so that 

depends only on the indicated argument. Then using equation (3 -76) to intro­

duce the turbulence spectral density <P22 shows that 

We assume that this equation exists in the limit as t:. V grows to fill all 

space . Then taking its inverse transform with respect to k3 and w == k 1U
co 

shows that the function H22 defined through equation (3 -74) is related to 

<P22 by 

292 



EFFECT OF SOLID BOUNDARIES 

REFERENCES 

1. Prandtl, Ludwig; and Tietjens, Oskar G.: Fundamentals of Hydro- and 

Aeromechanics. Translated by L. Rosenhead, 1st ed. , McGraw-Hill , 

Inc. , 1934. 

2. Shames, Irving: Engineering Mechanics, Dynamics . Prentice Hall, Inc., 

1958. 

3. Ffowcs Williams , J. E.; and Hawkings, D. L.: Sound Generation by Tur­

bulence and Surfaces in Arbitrary Motion . Phil. Trans. Roy. Soc. 

(London) , Ser. A, vol. 264, 1969 , pp. 321-342. 

4. Curle , N.: The Influence of Solid Boundaries on Aerodynamic Sound. 

Proc. Roy. Soc. (London) , Ser. A , vol. 231, no. 1187 , Sept. 20 , 1955, 

pp. 505-514. 

5. Uberoi , Mahinder S.: Correlations Involving Pressure Fluctuations in 

Homogeneous Turbulence. NACA TN 3116 , 1954. 

6. Lowson, M. V.: The Sound Field for Singularities in Motion. Proc. 

Roy. Soc. (London) , Ser. A, vol. 286 , 1965, pp. 559-572. 

7. Clark, P. J. F . ; and Ribner , H. S.: Direct Correlation of Fluctuating 

Lift and Radiated Sound for an Airfoil in Turbulent Flow. J. Acoust. 

Soc. Am. , vol. 46 , pt. 2, no. 3, Sept. 1969, pp. 802-805. 

8 . Wagner , H.: Uber die E ntstehung des Dynamischen Auftriebes von 

TragflUgeln. ZAMM , vol. 5, no. 1 , 1925 pp. 17-35. 

9. Theodorsen, Theodore: General Theory of Aerodynamic Instability and 

the Mechanism of Flutter . NACA TR 496, 1935. 

10 . Kussner , H. G.: Summarized Report on the Unstable Lift of Wings. 

Luftfahrtforschung, vol. 13, 1936, pp. 410-424. 

11. von Karman, Th. ~ and Sears, W. R.: Airfoil Theory for Non-Uniform 

Motion. J. Aeron. Sci. , vol. 5, no . 10, Aug . 1938, pp. 379-390 . 

12. Sears , William R.: Some Aspects of Non-Stationary Airfoil Theory and 

its Practical Applications. J. Aeron. Sci. , vol. 8 , no. 3 , Jan. 1941 , 

pp. 104-188. 

293 



AEROACOUSTICS 

13 . Abramowitz, Milton; and Stegun, Irene A.: Handbook of Mathematical 

Functions With Formulas, Graphs and Mathematical Tables. National 

Bureau of Standards Applied Mathematics Series 55, 1964. 

14 . Liepmann , H. W.: On the Application of Statistical Concepts to the 

Buffeting Froblem. J. Aeron. Sci. , vol. 19 , no. 12, Dec. 1952, 

pp. 793 -800. 

15. Giesing , Joseph P.; Rodden , William P.; and Stahl, Bernhard: Sears 

Function and Lifting Surface Theory for Harmonic Gusts . J . Aircraft , 

vol. 7, May-June 1970, pp. 252-255. 

16. Acum, W. E. A. : The Comparison of Theory with Experiment for Oscil­

lating Wings. ARC -CP-681, British Aeronautical Research Council , 

1962. 

17. Bratt, J. B.: Flow Patterns in the Wake of an Oscillating Aerofoil. 

ARC R&M 2773, British Aeronautical Research Council, 1953. 

18 . Ohashi, Hideo; and Ishikawa, Norkatsu: Visualization Study of Flow Near 

the Trailing Edge of an Oscillating Airfoil. JSME Bulletin, vol. 15, 

no. 85, 1972, pp . 840-847. 

19. Arnoldi , Robert A.: Aerodynamic Broadband Noise Mechanisms Appli­

cable to Axial Compressors. NASA CR-1743 , 1971. 

20. Horlock, J. H.: Fluctuating Lift Forces on Airfoils Moving Through 

Transverse and Chordwise Gusts. J. Basic Eng., Ser. D, vol. 90 , 

no. 90, no. 4, Dec. 1968 , pp . 494-500 . 

21. Neumann, H. ; and Yeh , H.: Lift and Pressure Fluctuations of a Cam­

bered Airfoil Under Periodic Gusts and Applications in Turbomachinery. 

Paper 72-GT-30, ASME , Mar. 1972. 

22 . Hayden, Richard E.: Noise From Interaction of Flow With Rigid Sur­

faces: A Review of Current status of Prediction Techniques. NASA 

CR-2126, 1972. 

23. Graham, J. M. R.: Lifting Surface Theory for the Problem of an Arbi­

trarily Yawed Sinusoidal Gust Incident on a Thin Aerofoil in Incompres­

sible Flow . Aeron. Quart. , vol. 21 , 1970, pp. 182-198. 

294 

I 

J 



EFFECT OF SOLID BOUNDARIES 

24 . Filotas, L. T . : Theory of Airfoil Response in a Gusty Atmosphere. 

Part I - Aerodynamic Transfer Function. UTIAS-139 , Toronto Univer­

sity , lS69. 

25. Mugridge, B. D.: Gust Loading on .a Thin Airfoil. Aeron. Quart. , 

vol. 22 , pt. 3, Aug. 1971 , pp. 301-310. 

26 . Batchelor , George Keith: The Theory of Homogeneous Turbulence. 

Cambridge University Press, 1953. 

27. Sharland, I. J.: Sources of Noise in Axial Flow Fans. J. Sound Vibr. , 

vol. 1, no. 3, Mar. 1964, pp. 302-322. 

28. Phillips, O. M.: The Intensity of Aeolian Tones. J. Fluid Mech., 

vol. 1, pt. 6, Dec. 1956, pp. 607-624 . 

29 . Paterson, R. W.; Vogt, P. G.; and Fink, M. R.: Vortex Noise of Iso­

lated Airfoils. Paper 72 -656, AIAA, June 1972. 

30. Mugridge , B. D.: Acoustic Radiation From Airfoils With Turbulent 

Boundary Layers. J. Sound Vibr . , vol. 16, no. 4, Apr. 1971, 

pp. 593-614 

31. Metzger , Frederick B.; Magliozzi, Bernard; Towle, George; and Gray, 

Leroy: A Study of Propeller Noise Research. Aerodynamic Noise , 

H. S. Ribner , ed., University of Toronto Press, 1969, pp. 371-386. 

32. Gutin, L.: On the Sound Field of a Rotating Propeller. NACA TM 1195 , 

1948 . 

33. Lynam, E. J. H.: and Webb , H. A.: The Emission of Sound by Air­

screws. ACA R&M 624, British Advisory Committee for Aeronautics , 

1919. 

34. Bryan, G. H.: The Acoustics of Moving Sources with Application to Air­

screws. ARC R&M 684, British Aeronautical Research Committee, 

1920. 

35. Deming, A . F.: Noise from Propellers with Symmetrical Sections at Zero 

Blade Angle. NACA TN 605, 1937. 

295 

- _ ._- - -



AEROACOUSTI CS 

36. Deming, A. F.: Noise from Fropellers with Symmetrical Sections at 

Zero Blade Angle, II. NACA TN 679, 1938. 

37. Gutin, L.: On the "Rotational Sound" of an Airscrew. Zhurnal Tekhni­

cheskoi Figiki 12, pp. 76-83. (In Russian.) Translated as British 

National Lending Library for Science and Technology RTS 7543, 1942. 

38. Hubbard, Harvey H.; and Lassiter, Leslie W.: Sound From a Two­

Blade Propeller at Supersonic Tip Speeds. NACA TR 1079, 1952. 

39. Lowson, M. V.: Theoretical Analysis of Compressor Noise. J. Acoust. 

Soc., Am., vol. 47, no. 1 (part 2), 1970, pp. 371 -385. 

40. Kramer J. J.; Hartman, M. J.; Leonard, B. R.; Klapproth, J. F.; 

and Sofrin, T. G.: Fan Noise and Performance. Aircraft Engine Noise 

Reduction. NASA SP-311, 1972, pp. 7-61. 

41. Stuckey, T. J.; and Goddard, J. 0.: Investigation and Prediction of 

Helicopter Rotor Noise . Fart 1. Wessex Whirl Tower Results. 

J. Sound Vibr., vol. 5, no. 1, Jan. 1967, pp. 50-80. 

42. Sharland, I. J.; and Leverton, J. W.: Propeller and Helicopter and 

Hovercraft Noise. Noise and Acoustic Fatigue in Aeronautics. E. J. 

Richards and D. J. Mead, eds., John Wiley & Sons, Inc., 1968 (Ref­

erences Simons, I. A.: Oscillatory Aerodynamic Loads on Helicopter 

Rotor Blades in Hover. University of South hampton Internal Rept. 

ISVR, Feb. 1966. 

43. Scheiman, James: A Tabulation of Helicopter Rotor -Blade Differential 

Pressures, Stresses and Motions, as Measured in Flight. NASA TM 

X-952, 1964. 

44. Schlegel, Ronald G.; King, Robert J.; and Mull, Harold R.: Helicopter 

Rotor Noise Generation and Fropagation. United Aircraft Corp. 

(USAAVLABS-TR-66-4; AD-645884), 1966. 

45 . Lowson, M. V.; and Ollerhead, J. B.: A Theoretical Study of Helicopter 

Rotor Noise. Aerodynamic Noise, H. S. Ribner, ed., University of 

Toronto Press, 1969, pp. 351-369. (See also J. Sound Vibr. , vol. 9, 

no. 2, Mar. 1969, pp. 197 -222. ) 

296 



- ---.------------

EFFECT OF SOLID BOUNDARIES 

46. Morfey , C. L.: Sound Generated in Subsonic Turbomachinery. J. Basic 

Eng. , Ser. D, vol. 92, Sept. 1970, pp. 450-458. 

47 . Barry , B.; and Moore, C. J.: Subsonic Fan Noise. J. Sound Vibr. , 

vol. 17 , no. 2, July 22 , 1971 , pp. 207-220. 

48 . Powell, Alan: Aerodynamic Noise and the Plane Boundary . J. Acoust. 

Soc . Am ., vol. 32 , no. 8, Aug. 1960, pp. 982-990. 

49. Olsen, William A.; Miles, Jeffrey H.; and Dorsch, Robert G.: Noise 
Generated by Impingement of a Jet Upon a Large Flat Plate. NASA TN 

D -7075 , 1972. 

50. Doak , P. E.: Acoustic Radiation From a Turbulent Fluid Containing 

Foreign Bodies. Froc. Roy. Soc. (London), Ser . A, vol. 254, 1960, 

pp. 129 -145. 

51. Ffowcs Williams, J. E.; and Hall , L. H.: Aerodynamic Sound Genera­

tion by Turbulent Flow in the Vicinity of a Scattering Half Plane. J . 

Fluid Mech. , vol. 40 , part 4, Mar. 9, 1970, pp. 657-670. 

52. McDonald, H. M.: A Class of Diffraction Problems. Proc . London Math. 

Soc. , vol. 2, no. 14 , 1915, pp. 410-427. 

53. Alblas , J. B. : On the Diffraction of Sound Waves in a Viscous Medium. 

Appl. Sci. Res., Sec. A, vol. 6, 113 57 , pp. 237 -262. 

54. Alblas , J. B.: On the Diffraction of Sound Waves in a Heat-Conducting 

Viscous Medium . Kon. Ned. Akad . Wetensch., Proc. , Ser. B. , 

vol. 64 , no. 3, 1961, pp. 350-367. 

55 . Jones , D. S.: Aerodynamic Sound 'Due to a Source Near a Half-Plane . 

J. lnst . Math. Applics . vol. 9, Feb. 1972, pp. 114-122 . 

56. Leppington, F. G.: Scattering of Quadrupole Sources Near the End of 

a Rigid Semi-Infinite Circular Pipe. Aeronautical Research Council 

Papers on Novel Aerodynamic Noise Source Mechanisms at Low Jet 

Speeds , ARC -CP-1l95 , British Aeronautical Research Council, 1972. 

57. Noble , Benjamin: Methods Based on the Wiener -Hopf Technique . 

Pergamon Press , 1958. 

297 



AEROACOUSTI CS 

58. Papers on Novel Aerodynamic Noise Source Mechanisms at Low Jet 
Speeds. ARC -CP -1195, British Aeronautical Research Council, 1972. 

59. Olsen, W.; and Friedman, R.: Jet Noise From Coaxial Nozzles over a 
Wide Range of Geometric and Flow Parameters. Paper 74-43, AIAA, 
Jan. 1974. 

60. Churchill, Ruel V.: Complex Variables and Applications. 2nd ed. , 
McGraW-Hill, Inc., 1960. 

61. Muskhelishvili, N. I.: Singular Integral Equations. P. Noordhoff, Ltd., 
Holland, 1953. 

62. Gakov, F. D.: Boundary Value Problems. Pergamon Press, 1966. 
63. Serrin, James: Mathematical Principles of Classical Fluid Mechanics. 

Handbuck der Physik, Vol. 8/1, S. Flugge , ed., 1959, pp. 125-262. 
64. Gradshteyn, I. S.: Tables of Integrals, Series and Products. 4th ed. , 

Academic Press, 1965. 

65. Van Dyke, Milton D.: Second-Order Subsonic Airfoil Theory Including 
Edge Effects. NACA TR 1274, 1956. 

66. Filotas, L. T.: Theory of Ai:rfoil Response in a Gusty Atmosphere. 

298 

Part 2: Response to Discrete Gusts or Continuous Turbulence. 
UTIAS-141, Toronto University, 1969. 

--- --- --- ____ J 



CHAPTER 4 

E f fee t 0 fUn if 0 r m F I OW 

4.1 INTRODUCTION 

The formulation of the aerodynamic sound problem developed in the last 

two chapters is useful when the sound propagates through a medium which is , 

for the most part , at rest relative to the observer. However , in certain 

cases it is more appropriate to assume that the medium is in uniform motion. 

Thus, in analyzing the sound produced by fans and compressors, it is com­

mon practice to assume that the fan is embedded in an infinite straight duct 
containing a uniform flow (as shown in fig. 4-1). 

Figure 4-1. - Fan in an infinite duct. 

, , 
'-- Duct 
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4.2 DERIVATION OF BASIC EQUATION 

It is indicated in section 1.3.2 that problems involving sound propagation 
in a uniformly moving medium can frequently be reduced to equivalent 
stationary-medium problems by introducing a coordinate system y' which 
moves with the flow. If the mean flow has a velocity U in the y 1-
direction 

y! = y. - °l· UT 1 1 1 (4-1) 

Then since the sound propagation in this frame is governed by a stationary­
medium wave equation, it ought to be possible to describe the sound emission 
from a localized source region embedded in a uniform flow by applying 
Lighthill's equation in these coordinates. Indeed, since Lighthill's equation 
is an exact consequence of the continuity and momentum equations and since 
the latter equations are invariant under the Galilean transfrom (4-1), it 
follows from equations (2-4) and (2-5) that 

where 

a2p' 2 a2 , a
2

T!. ___ c P - 1J 

aT
2 0 ay! ay! - ay! ay! 

1 1 1 1 

T! . = pv!v! + 0 .. ~p - PO) - c2
0(p - PO)] - e.· D 1 J D~ D 

is Lighthill's stress tensor expressed in terms of the velocity 

v! = v. - 01'U 1 1 1 

(4-2) 

(4-3) 

(4-4) 

measured in the moving frame, is also an exact equation. However, it is 
usually more convenient to work in terms of a stationary coordinate system. 
Hence, introducing the fixed-frame coordinates Yi into equation (4-2) (but 
retaining the mOving-frame velocities) shows that 
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(4- 5) 

where 

(4-6) 

The density fluctuations will therefore satisfy a convected wave equation out­

side the source region. A similar procedure shows that the momentum equa­

tion (2-3) can be written as 

DO , 2 op oTh 
DT

Pvi +cO- = - --
oy. oy. 

1 1 

(4-7) 

Notice that equation (4-5) is in the form of the uniformly moving-medium 

wave equation (1-50). Hence, the integral formula (1-55) can be applied to 

this equation in the same way it was applied 1 to Lighthill's equation in 

section 3.2. In fact, using essentially the same manipulations2 shows that 

in place of equation (3-3) we obtain 

+ ~ jT 1 n.h! d8(y) dT (4-8) 
211 

Co -T 8(T) 

where G now denotes a fundamental solution of the uniformly moving-medium 

lIn its limiting form for a medium at rest. 
2with eq. (4-7) used in place of eq. (2- 3). 

301 

- - - ~ -- -- - - - - .. -- ~- ----
J 



AEROACOUSTlCS 

wave equation (i. e., it satisfies eq . (1-51)) and h! is given by 
1 

(
D ) D G , 0, , a , , 0 n.h. = n. - pv.G + v. - pv.G - n·POv. --

II ID 1 1 :l J IID T vy. T 
J 

rather than by equation (3-5) . 

(4-9) 

Instead of using Liebniz's rule (eq. (1-48)) directly to transform the last 

integral in equation (4- 8) (as is done in section 3. 2), it is convenient to first 

add the divergence theorem to (1- 48) to obtain 

d 1 -1 DO ep - 1 -) - ep dy = -- dy + v~ ep dS(y 
dT DT 

Il(T) Il(T) S(T) 

where V~ is defined by equation (1-54). Then applying this formula to 

apv!G/ay. in the same way as Liebniz's rule was applied to apv.G/ay. in 
1 1 1 1 

section 3.2 shows that the term in parentheses in equation (4-9) makes no 

contribution to the last integral in equation (4-8), and as a consequence 

( 4-10) 

where 

( 4-11 ) 

This equation differs from equation (3- 6) in several respects. First, it 

involves a fundamental solution for the moving-medium wave equation (deter-
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mined by eq. (1-51)) instead of a fundamental solution for the stationary­

medium wave equation. Second, Lighthill's stress tensor is expressed in 

terms of the relative velocity vi = Vi - 0 li U instead of the total velocity 

And finally, the volume displacement term is expressed in terms of 

V' = V - n l U and DO/ DT rather than V and a/ aT. n n n 

4.3 APPLICATION TO FAN NOISE 

4.3.1 Derivation of Basic Equation 

The most important application of equation (4-10) is to the prediction of 

sound from fans and compressors. We shall use it to calculate the sound 

emitted from a single fan located in an infinite circular duct (shown in 

fig. 4-1) in which there is a uniform flow with velocity. U. In this case it is 

natural to use the Green's function derived in section 1. 4.2.2.2. Then sinee 

the normal derivative of this Green's function vanishes on the surface SD of 

the duct and since the pressure component of the surface force fi (given by 

eq. (3-4)) is in the normal direction, the contribution of the surface SD to 

the first surface integral in equation (4-10) is 

1 iT 1 aG - -- e· .n. dS(y) dT 
2 ~ ] 

c -T S aYi o D 

This term represents the generation of sound by the fluctuating viscous 

stresses acting on the duct boundary. At the high Reynolds numbers of inter­

est in fan noise problems the contribution of this term to the sound field 

is almost certainly negligible (see section 3.5.2.1). Moreover, since 

n1 = V n = 0 on SD' this surface cannot contribute to the third integral in 

equation (4-10). Then the surface integrals in this equation need only be car­

ried out over the surface SF(T) of the fan blades to obtain3 

3V ( '1) denotes the region inside the duct, excluding the space occupied by the fan 
blades. 
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p'(x, t) = :21T 1 -- T .. dy dT + - -- f. dS(y) dT a
2

G ,- 1 iT 1 aG -
1] 2 a 1 

o -T V(T) 
ay. ay. y. 

1 J Co -T SF(T) 1 

( 4-12) 

The first term in this equation can be interpreted as a volume quadrupole 
sound source. The second term can be interpreted as a dipole source 

due to the fluctuating forces exerted on the flow by the fan, and the last term 

represents the sound generated by the volume displacement effects of the 

blades. 

We shall follow the procedure used for propeller noise in section 

3.5.1.3. Thus, we again neglect the contributions of the volume quad­

rupole term and the volume displacement effects 4 to obtain 

(4-13) 

As in the case of a propeller, it is usual to express the force f exerted by 

the blades on the flow in terms of the axial thrust component fT and a drag 

component fD in the circumferential direction. Then 

and 

(4-14) 

4It can be shown that the sound produced by the volume displacement effects will 
not propagate in an infinite duct at subsoniC tip speeds (see sect. 4. 3. 2. 2 below) . 
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where 

and Y1 are cylindrical coordinates of the source point. It is also convenient 

to introduce the cylindrical coordinates 

and xl of the observation point. Upon inserting equation (4-14) and the 

Green's function (1-78) with the circular-duct eigenfunctions (1-79) into equa­

tion (4-13), we obtain after carrying out the differentiations 

IT[ "( ± ) -1 m<p -y y " 
x J (K ~ ')e 0 n, m 1 (m f _ y± f )e1WT 

m m,n ~,D n,m T 

-T SF(T) 

X dT dS(y) dw (4-15 ) 
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where 

(4-16) 

Mk k n m(k) 
y ± (k) '= - ± ----','---
n,m 2 2 

(3 (3 
(4-17) 

and the plus (upper) sign holds when the observer is upstream of the fan 

(xl < Y1)' while the minus sign holds when the observer is downstream of the 

fan (xl > Yl) ' 
It is again convenient to express the source in terms of a coordinate sys--tem ~ fixed to the blades. The cylindrical coordinates in this frame are ~ ' , 

Y1 ' and 

(4-18) 

where n is the angular velocity of the fan. Then the limits of integration of 

the surface integral over the fan blades become independent of T , and we can 

interchange the order of this integration with the time integration to obtain 
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00 00 

pI = _1_ 
J (K O eim cp 1~ -i(y~ rnXj+ wt) 

m m,n e ' 

2 r m n k 
47TCO , n,m 

- 00 

m =- oo n=1 

1 .( I ± ) lT~ ~ -lm cp -y y 
x J (K ~ I)e n , m 1 m fn - y± fT 

m m,n ~I n,m 

SF -T 

The procedure developed for propellers in section 3.5.1. 3.1 can be used to 

transform the integration over the front surfaces of the fan blades (fig. 3-

20), denoted by superscript (1), and the back surface, denoted by a super­

script (2) , to an integration over the projected area A of the blades on the 

rotational plane of the fan. Then this becomes 

pI = _1_ 
2 

47TC O 

00 00 

m =- oo 

X~ 'd~ 'd cp' dw 

00 

( 4-19) 
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where 

for QI = T, D 

We again assume that the variation in retarded time between the front and 

back surfaces of the fan blades can be neglected. Then 

. ± c 
,....., 1y Y1 

g± ~ fen, m 
QI Q' 

where Y~ (~', cp') is the axial (Y 1) coordinate of the blade chord (measured in 

the rotating reference frame) and 

for Q' = T, D (4-20) 

is the net thrust or drag force per unit projected area acting on the blades at 

the point ~', cp '. With this approximation, equation (4-19) becomes 

p' =_1_ 
2 

47TCO 

0() 

m=-O() n=l 

-i(y~ m+wt) 
e ' 

x J (K ~ ')e n, m m T _ J i(y± y~-mcp')lT( 
m m,n ~' D 

± T )ei(W-mn)T d 
Yn m T T , 

A -T 

X~ 'd~'d cp 'dw (4-21) 
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4.3.2 Application to Pure Tones 

A typical subsonic fan noise spectrum measured at the Lewis Research 

Center is shown in figure 4-2, Figure 4- 2(a) shows the frequency range 

above 1 kilohertz (1000 cycles/ sec), and figure 4-2(b) shows the range from 

O. 1 to 1 kilohertz (100 to 1000 cycles/ sec) measured with a narrower band­

width filter, As in the case of propeller noise , the spectrum consists of a 

broad component on which pure tones (corresponding to fan whine) are 

imposed at various multiples of the shaft rotational speed n. Now equation 

(4-21) is quite general and can be used equally well to predict the pure tone 
or broadband noise, 

~ 
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(b) Bandwidth , 3. 2 hertz; frequency, 100 hertz to 1 kilohertz. 

Figure 4-2. - Typical sound pressure level spectrum. Azimuth angle, 4QO. 
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The broadband noise must result from essentially random forces acting 

on the blades, whereas the pure-tone noise results from periodic blade forces. 

In this section, equation (4-21) is applied to the prediction of sound generated 

by blade forces which are periOdic at the shaft rotational frequency S'2. Such 

forces can result from a steady but nonuniform flow coming into the fan. 5 

Nonuniformities of this type are caused by inlet flow distortions and by the 

wakes from inlet guide vanes (or stators) or other upstream obstructionS. 6 

For aircraft engine fans, inlet flow distortions can arise from crossflows, 

streamwise vortiCity sucked into the duct from nearby obstacles, and inlet 

turbulence. 

4. 3.2. 1 Derivation of equations. - The blade forces can now be ex­

pressed as a Fourier series 

00 

fa( T) '" L F;e -ipS'2T for a = T, D 
p=-oo 

where the Fourier coefficients are determined by (appendix 1. A. 1) 

Upon inserting equation (4-22) into equation (4-21) using the fact that 

lim IT e i (w-SS'2)T dT = 21TO (w - sS'2) 
T-oo -T 

(4-22) 

(4-23) 

5We saw in chapter 3 that even small nonuniformities can generate substantial 
noise. 

6The first estimates of blade-passing sound due to stator-rotor interaction we r e 
made by Hetherington (ref. 1) in 1963, who combined the unsteady-lift theories of 
Sears and Kemp with a free-space radiation model in which each blade was r egarded a s 
a line force . The effect of the duct on the radiated sound field was first di scussed by 
Tyler and Sofrin (ref. 2). 
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and putting 

s = m + p (4-24) 

we find after summing over sand p instead of m and p that the sound 

field can be expressed as a Fourier series 

00 

p' = 

s=-oo 

p (x)e -isnt 
s 

with the sth harmonic Ps given by 

x fmj)± - y± T± \ 
\: n,m,p n,m,s n,m,p) 

where 

k = k (n~\_ 
n, m, s - n, m \--;;;-

± = ± ~ns)_Mns kn,m,s y - y - --- ±-"---~ n, m, s n, m c 2 2 
o {3 Co {3 

(4-25) 

(4-26) 

(4-27) 

(4-28) 

and the thrust and drag coupling coefficients T and D are de-n,m,p n,m,p 
fined by 
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f i(y± y~-mcp ') 
T± = J (K ~')e n,m,s FT~, d~' dcp' 

n,m,p m m,n p 

'A 

(4-29) 

f i(y± yC_ mcp ') 
5± = J (K ~')e n,m,s 1 FD d~' dcp' 

n,m,p m m,n p 

A 

Each term in the summation (4-26) is called a mode. Equation (4-25) shows 

that the density fluctuation is the sum of an infinite number of tones at mul­

tiples of the shaft rotational frequency n. However, when the tones result 

from a nonuniform flow entering a fan with B identical blades, the blade 

force distribution must satisfy equation (3-111). Hence, its Fourier coeffi­

cients (4-23) are related to the Fourier coefficients (3-113) of individual blade 
forces by equation (3-112). But inserting this into equation (4-26) and trans­

forming the result in the manner described in section 3.5.1. 3. 2 shows that 

only harmonics of the blade passing frequency nB contribute to the sum 

(4-25) and 

0() 0() 

x (mD± - y± T± \ 
'-: n, m, p n, m, sB n, m, p) (4-30) 

where 

m = sB - p (4-31) 

the single blade force coupling coefficients, D± and T± are n, m, p n, m, p' 
given by 
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T± == J (K ~ ')e n,m,sB I FO~, d~' dep' 1 
i(y± yC_ m ep l) 

n,m,p m m,n T,p 

~O 

(4-32) 

1 i(y± yC
I
- mep ') 

D± == J (K ~')e n,m,sB F O d~' dep' 
n,m,p m m,n D,p 

~o 

and AO is the projected area on the rotational plane of a single fan blade. In 

many cases, y~ can be approximated quite closely by 

y~ :=:::! ~ 1 ep ' cot X 

where X is the stagger angle of the blade (defined in chapter 3). 

Equation (4-30) is based on the assumption that all blades are identical, 

and as a result it only predicts tones at harmonics of the blade passing fre­

quency. However, nonuniformities in either blade geometry or spacing can 

cause tones to be generated at multiples of the disk or shaft rotational fre­
quency. It can be seen from the fan spectrum in figure 4-2 that these tones, 

which presumably result from small nonuniformities in the fan geometry, are 

indeed much weaker than those at the blade passing frequency. 

4.3.2.2 Effect of duct on propagation. - Equations (4-27) and (4-28) show 

that JMY~ m sB > 0 and JMy- m sB < 0 whenever , , n, , 

(4-33) 

Hence, any modes in equation (4-30) which satisfy condition (4-33) must de­

cay exponentially fast at large values of I XII. Such modes are said to be 

cut off since they do not propagate along the duct and therefore do not contrib-

ute to the sound field at large distances. Moreover, since (ref. 3) K2 - 00 m,n 
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whenever m or n becomes infinite, it follows that only a finite number of 

modes can contribute to the sound radiated in any given tone. 

The index p in equation (4-30) individuates the harmonic of the unsteady 

force which generates that mode. The p = 0 modes are generated by the 

steady, or time-averaged, force. They correspond to the Gutin mechanism 

for propellers and, since the unsteady blade forces are caused by nonuniform 

inflow (section 3.5.1. 3. 5), they will be the only modes which occur when the 

inflow is spatially uniform. But equation (4-31) shows that P is zero when­

ever 

m = sB 

and equation (1-80) shows that the root K for any mode with p = 0 is sB,n 
determined by 

But since (ref. 3) the smallest root KsB, 1 of this equation is always larger 

than 7 sB/R, the cutoff condition (4-33) shows that this mode will not propa­

gate if 

or equivalently if 

where 

7For large values of sB, KsB, 1 ~ sB/R. 
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Figure 4-3. - Cylindrical duct decay rates. Mach number, M, Q; radial mode, 

n, 1. (From ref. 2.) 

is the Mach number based on tip speed of the blade and hence M; =' ~ + M2 

is the Mach number of the flow relative to the blade tip. Thus, the p = 0 

modes will not propagate whenever the flow is subsonic relative to the blade 

tip. 8 When the blade number B is large, the decay rates of these modes 

(which are determined by the magnitudes of k B) are enormous. These 
n, m) s 

rates are shown in figure 4-3 (taken from ref. 2) tor the case where M = 0 

and n = 1. (The figure also serves to show the precise value of the tip Mach 

number at which cutoff occurs.) Thus, a fan operating at subsonic relative 

tip speeds (as many fans are designed to do) could not generate any sound if 

the inflow were completely uniform. However, any high-speed fan operating 

subsonically in a duct certainly does produce a large amount of sound. It is 

generally believed that this sound results from a nonuniform flow entering 

the fan. Thus, in the more general case where p is not necessarily zero, 

the smallest root K B 1 of equation (1-80) is 
s -p, 

K R;j sB - P 
sB-p,l R 

8The precise value of Mr at which cutoff occurs approaches unity as blade number 

is increased. 
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Hence, the cutoff condition (4-33) becomes approximately 

I
SB - pI > Mt; 

sB ~ 2 1 - M 

(4-34) 

Suppose that the mean-flow Mach number is negligibly small (i. e. , 

M ~ 0). Then equation (4-34) shows there are modes (which can be generated 

by nonuniform inflow) that will propagate even at subsonic tip speeds. The 

index p of these modes must, of course, have the same sign as s. 

It can be seen from equations (4-25), (4-30), and (4-31) that the phase 

surfaces of the modes rotate with angular velocity 

sB n 
sB - p 

Hence, the circumferential velocity at the duct wall is 

sB M 
t sB - P 

Thus, the cutoff condition (4-34) shows that only modes which achieve super­

sonic rotational speeds will propagate through the duct. 

4.3.2.3 Radiated power. - The quantity which is perhaps of most inter­

est is the total acoustic power flJ sB radiated in a given harmonic of the blade 

passing frequency. This can be calculated by integrating the axial component 

ISB of the sBth harmonic of the average intensity over the cross-sectional 

area of the duct. Thus, 9 

(2rr lR 
/1) sB = lim 2 J, ISB~ d~ dp 

x 1-±oo 0 0 
(4-35 ) 

9The factor 2 arises because both IsB and I- sB = IsB contribute to the power 
in the sBth harmonic. 
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Equation (1-118) and equation (1-A5) of appendix 1. A show that 

where 

2 
P sB = coPsB 

( 4-36) 

(4-37) 

is the amplitude of the SBth harmonic of the pressure fluctuation and USB 

is the amplitude of the sBth harmonic of the acoustic (fluctuating) velocity. 

But the axial component of the first equation (1-13) implies that UsB and 

P sB are related by 

aPSB _ PC ~iSBQ_M a)u -- - 0 0 -- -- sB 
aX1 Co aX1 

Hence, using equations (4-30) and (4-37) to eliminate P sB shows that 

00 

U - 1 BL sB -~2 o 0 
p =- oo n=1 

x A ± (mD± - y ± T ± ) 
n, m , sB , n, m,p n, m , sB n,m,p (4-38) 

where 

± 2 
A ± = _ __ y_n--,-,_m--",-s_B_f3 __ 
n, m, sB -

QsB ± Mk 
c n, m , sB 
o 
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Then substituting equations (4-30) and (4-38) into equation (4-36) and inserting 

the result in equation (4-35) show (upon recalling that the duct modes (1-79) 
satisfy the orthogonality condition (1-73)) that 

I 1
2 

mD± - y± T± 
n,m,p n,m,p n, m,p 

2 
r k (nsB ± Mk \ 

m , n n,m,SB\~ n,m,SB) 

(4-39) 

where 

m = sB - P 

And since the cutoff modes do not contribute to equation (4-38), the sum in 

equation (4-39) is only carried out over propagating modes. The equation 
shows that the radiated power is just the sum of the powers radiated in each 
mode. Its properties are discussed further in section 4.3.5. 

4.3.2.4 Calculation of blade forces from flow distortion. - In order to 

use equation (4-30) to predict the sound emitted from a fan, it is necessary to 

determine the unsteady force harmonics F~, P which enter the coupling coef­
ficients (4-32). They can be calculated from the distortion velocity entering 

the fan by using the results obtained for propeller theory. Thus , if we sup­

pose (for purposes of illustration) that the blade forces are concentrated along 

a radial line passing through the blade (which we can take without loss of re­

sults of generality to be the line cp ' = 0), the results of section 3.5.1. 3.5 

can be used directly. To this end we assume that the two-dimensional analy­
sis developed in section 3.5. 1. 3.5 can be applied to predict the force per unit 

length at each radial position ~ ' in terms of the Fourier amplitudes 
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of the circumferential harmonics of the distortion velocity w(~ f, cp 0) which, 

as in section 3. 5. 1. 3. 5, is assumed to be in the direction of the oncoming 

flow. 10 Then it follows from equation (3-122) that the Fourier coefficients 
o 0 F T, P and F D, P of the torque and drag forces are given by 

F~ P = - O(cpf) 7TCPOUrWp(~')S(O" ) sin X sin J..L 
, ~t P 

F
D
O = - 5( cp ') 7TCP

O
U w (~')S(O"p) cos X sin J..L 

, P ~' r P 

where the various quantities appearing in these equations are defined in sec­

tion 3.5.1. 3. 5 (fig. 3-24). These results can now be substituted into equa­

tion (4- 32) to calculate the coupling coefficients. If it is assumed that the 

radial variations in the stagger angle X, angle of attack J..L, relative velocity 

Ur , and chord length c can be neglected, the resulting equations become 

T~ m p == T m p = - ~ POUr sin X sin J..L S(O"p)W~ m p 
" n" 2 ' , 

(4- 40) 

D± P == D m p = - ~ POUr cos X sin J..L S(O"p)Wn
1 

m p n, m , n" 2 ' , 

where 

J

RJ27T . . Ip cp . 
WJ == e OJ (K ~f)W(~f, cp )(~ frJ d~f d cp n,m,p m m,n 0 0 

o 0 (4-41) 

lOIn fact, we suppose that all the assumptions listed in the beginning of that section 
hold. 
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are the distortion harmonics and c, Ur' X, /1, and ap are to be interpreted 

as suitable average values over the duct radius. The coupling coefficients, 

and hence the sound field, can be calculated from these formulas once the 

distribution of the distortion velocity w(p, cp 0) over the face of the fan is 

known. 

It is easy to show from the orthogonality properties (1-73) of the duct 

eigenfunctions that the distortion harmonics Wj m p (with p given by n, , 
eq. (4-31)) are just the coefficients of the Fourier-Bessel expansion 

wj i(m -sB)cp (4- 42) 
n,m,p J (K ~')e 0 

m m,n 
r m n , 

of the distortion velocity in terms of the circular-duct eigenfunctions. This 

equation, together with equations (4-30), (4-40), and (4-41), shows that the 

various radial and circumferential modes in the sound field are each deter­

mined by the corresponding "modes" in the distortion field. Hence, the more 

nonuniform the distortion, the more higher order modes will appear in the 

sound field. An improved treatment of the radial velocity variations (over the 

simple strip theory result) can be obtained by using Filotas' formula (3- 68) 

or Mugridge's result (3- 69) to calculate the blade forces. However, these 

formulas require that the velocity be decomposed in a Fourier series in ~ ' 

which is incompatible with the natural Fourier-Bessel expansion (4-42). Be­

cause of this incompatibility, these formulas lead to somewhat awkward re­

sults. 

4.3.2.5 Sound generated by rotor- stator interactions. - In the last sec­

tion we showed how the sound field can be calculated once the distortion veloc­

ity distribution entering the fan is known. But it is frequently difficult 

to determine this quantity since it can vary from fan to fan in a rather unpre­

dictable manner and in any given fan it can vary widely with operating condi­

tions. However, it is relatively predictable, in the important case of a rotor 

operating behind inlet guide vanes (IGV's) or stators (as shown in fig. 4-4). 

The stator-rotor interaction was studied by Kemp and Sears (refs. 4 and 5). 
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~ 
Stator Stator wakes 

Figure 4-4. - Stator-rotor interaction 

They showed that the stator can affect the rotorll in two ways, namely, 
through its potential-flow field and through its wakes. The incompressible 
potential-flow field due to a two-dimensional object decays inversely with 

distance, whereas the velocity decrement in the wake decreases approximately 

as the square root of the distance from the stator. Thus, when there is a 

large separation between the rotor and stator, it can be anticipated that only 

the wake-viscous interference effects will be important. At closer spacing, 

we might expect the potential-flow interactions to dominate. Kemp and Sears 

found that, under typical conditions, the wake effects were of the same order 

as the potential-flow effects for a rotor-stator separation of about one-tenth 

of a stator chord length. However, in order to reduce noise and vibration, 

the rotor-stator separation in most modern compressors is usually greater 

than a chord length. Hence, it is likely that the wake of the stator is the main 
cause of the flow distur bance. 12 

We shall suppose that the viscous effects in the wake can be neglected and 

that the two-dimensional model developed in section 3.5.1. 3.5 applies 

llThese remarks also apply to rotor wake - stator interactions. 
12At high subsonic and transonic Mach numbers the potential-flow field can extend 

far from the body, and these conclusions could be in error. 
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(fig. 3-24). Then the coupling coefficients are related to the wake velocity 

profiles by equations (4-40) and (4-41). However, if there are V stator 

blades, the distortion pattern seen by the rotor must be periodic with period 

2 rr Iv. Hence, distortion harmonics (4- 41) will be nonzero only when the azi­

muthal index p is an integral multiple of V. It therefore follows from equa­

tion (4-40) that equations (4-30) and (4-31) become 

00 00 

x (mD± - y ± T± ) 
\' n,m , pV n,m,sB n,m,pV (4-43) 

and 

m = sB - pV (4- 44) 

A very similar analysis can be performed to predict the sound field resulting 

from the passage of the rotor wakes over outlet guide vanes (OGV's). In this 

case, however, there is no need to transform the variables of integration into 
a moving-coordinate system. In addition, the forces on the OGV's are 

periodic in time , with period 2rrl nB. The result 

r k m,n n,m,sB 
n=1 

x (mD± - y± T± ) 
n , m,sB n,m,sB n, m , sB (4- 45 ) 

where m is still given by equation (4-44) , is remarkably similar to equa­

tion (4-43). This shows that the essential features of the two sound-radiation 
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processes are similar. The principal difference between these equations is 

that the last argument of the coupling coefficients is changed from pV to the 
harmonic number sB of the radiated sound frequency. It can therefore be 

seen from equations (4-40) for the coupling coefficients that the sound radi­

ated at a given frequency by a stator is determined only by the angular har­

monic of the wake velocity field with the same frequency. On the other hand, 

the sound radiated at a given frequency by a rotor depends upon all angular 

harmonics of the wake velocity field, and any given harmonic of the wake con­

tributes to all harmonics of the sound field. 

Increasing the rotor- stator separation decreases the wake velocity decre­

ment at the downstream blade row. Hence, equations (4-40) and (4-41) show 

that the wake interaction noise from both rotors and stators decreases with 

increaSing separation from the upstream blade row. This effect is indeed 

observed in practice. 

Since (as shown in section 3.4.2.2) Sears' function approaches zero at 

high reduced frequencies, equations (4- 40) imply that the noise generated by 

a fan stage can be reduced by increasing the reduced frequency up. But the 

equation at the bottom of page 252 shows that this can be accomplished for 

a fixed relative velocity by increaSing either the blade chord c or the fre­

quency pQ of the gust. Thus, since equations (4-40) and (4-45) show that 

p 0: B for rotor wake - stator interactions, it may be possible to reduce 

stator noise by increaSing either the number of fan blades or the chord of 

the stator blades. A fan stage with very long stator (OGV) blades is being 

tested at the Lewis Research Center. 

Immediately behind an upstream blade row the wake velocity profiles tend 

to be sharp, and many circumferential harmonics contribute to the wake dis­

turbance velocity. However, they tend to smooth out further downstream, 

and the first few harmonics probably make the dominant contributions to the 

velocity in this region. Hence, we expect that the sound field radiated by a 

stator will contain many harmonics of the blade passing frequency at small 

rotor-stator separations and that increaSing the separation will preferentially 

tend to reduce the higher harmonics of the sound field. Increasing the sepa­

ration between a rotor and an upstream blade row should tend to decrease the 
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sound in all harmonics. 13 

A wake which is highly nonuniform in the radial direction should contain 

a larger number of radial harmonics than one which is uniform. Hence, 

equations (4-40) show that as the wake becomes more nonuniform there is a 

tendency to increase the higher order radial modes in the sound field. How­

ever, these modes are more likely to be cut off by the duct. 

In order to calculate the sound field, it is necessary to determine the 

wake velocity profiles which enter the coupling coefficients (4-40) through 
equation (4- 41). Kemp and Sears (ref. 5) used the Silverstein, Katzoff, and 

Bullivant (ref. 7) single-airfoil wake model in an analysis of the type de­

scribed in section 3.5. 1. 3.5 to calculate the fluctuating blade forces in a cas­

cade. Since then this model has been used by a number of investigators to 

study fan noise. However, it is currently recognized that, due to such effe cts 

as the thickening caused by strong axial pressure gradients, an isolated­

airfoil wake model is wholly inadequate to describe the wakes which occur in 

turbomachinery. In fact, it turns out that the wakes in real turbomachines 

are highly skewed (ref. 8). This results in large variations in the phases of 

the lift fluctuations in the radial direction and a large streamwise vorticity 

component which is not included in Silverstein's two-dimensional model. 

An improved wake model, based on data taken mainly from two­

dimensional cascades, was developed by Lieblein and Roudebush (ref. 9). 

This model was used by Dittmar (ref. 10) to calculate the fluctuating lift 

for ces on stator blades. 

For high-solidity (ratiO of blade chord to interblade spacing) cascades the 

mutual interference effects between the various blades of the cascade could 

have an important effect on the fluctuating lift forces. This effect was ana­

lyzed by Henderson and Daneshyar (ref. 11) for an incompressible flow 

through two-dimensional cascades (still using linearized theory). There have 

been a large number of studies (which we have not mentioned) of the fluctuat­

ing blade forces in cascades. Virtually all of these (except for some recent 
purely numerical studies) use linearized-thin-airfoil theory. This approxi­

mation implies (since the angle of attack and camber must be small) that the 

blades are lightly loaded. The effects of compressibility, which can also be 

13These conclusions appear to have been first obtained by Lowson (ref. 6) using a 
free-space model of the fan. 
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important at the high Mach numbers where jet engine fans and compressors 
operate, are discussed in chapter 5. 

Most current bypass engine designs do not utilize inlet guide vanes for 

the fan. Therefore, the wake interaction mechanism of most technological 

interest is the rotor wake - stator (OGV) interaction governed by equa-

tion (4-45). However, since the same modes appear in both equations (4-43) 

and (4- 45), the cutoff condition (4- 43) applies to both processes. And since 
p is now an integral multiple of V, this condition becomes 

/
SB-PV/ > ~ 

sB ~/ 
l'1 - M2 

Hence, the sound generated at the fundamental harmonic (s = 1) of the blade 

passing frequency will not propagate if 

for every integer p. This formula indicates that a subsonic fan stage 

M~ = ~ + M2 < 1 will radiate no fundamental blade-passing-frequency tones 

if the vane-blade ratio V /B is greater than 2. Many fan stages have been 

designed to take advantage of this cutoff phenomenon. These fans are usually 

still found to produce spectra containing strong fundamental blade-passing­

frequency (BPF) tones when tested on the ground. It is generally believed 

that the tones are being generated by either steady inlet flow distortions or 

inlet turbulence interacting with the fans. 

4.3.2.6 Sound generated by inlet flow distortions. - The effect of steady 
inlet flow distortions on pure-tone fan noise was investigated by POvinelli, 

Dittmar, and Woodward (ref. 12) in a combined theoretical and analytical 

study. They calculated the emitted sound from a free-space rotor model 

(such as that developed in section 3.5.1. 3. 2) by using measured inlet flow 

distortion. It was found that the theory tended to underpredict the absolute 
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level of the measured sound field. 

It is reported in recent studies by Filleul (ref. 13) and by Sofrin and 

McCann (ref. 14) that under certain circumstances where the rotor-stator 

interaction noise is expected to be negligible the pure-tone noise correlates 

with the inlet turbulence. Indeed Sofrin and McCann's (ref. 14) narrow-band 

measurements in the vicinity of the BPF tone resulted in output signals which 

tended to be fluttery instead of steady and piercing as they are for rotor­

stator interactions. Inflow turbulence will produce sound by the dipole mech­

anism described in section 3.5.1.1 for struts in turbulent flows. However, 

if the blade passing frequency is large compared with the frequency U/l 

associated with the convection of an eddy of length l past the fan, the blades 

can cut an essentially stationary eddy several times. This tends to concen­

trate the radiated energy in the blade-passing-frequency harmonics. 14 The 

tones will then appear to have a finite bandwidth as they do in the experimental 

spectrum shown in figure 4-2. (Of course, broadening of tones can also re­

sult from shaft vibration or speed variation as well as from unsteadiness in 

the inlet flow distortion.) Thus, inlet turbulence can be a source of both 

pure-tone and broadband noise. The generation of sound by inlet turbulence 

was analyzed by Mani (ref. 15). He used a model similar to the one described 

in section 3. 5. 1. 1 but applied it to a mOving cascade rather than to a single 

stationary strut. 

Inlet turbulence can also produce sound in an isolated rotor through a 

quadrupole interaction. This mechanism was first proposed by Ffowcs Wil­

liams and Ha wkings (ref. 16). Thus, when a rotor is loaded (i. e., when it 

produces lift), it induces a spinning "rotor-locked" asymmetric pressure 

field in the duct. We have seen that this pressure pattern cannot propagate 

when the rotor is subsonic. But when it interacts with inlet turbulence, it 

produces a fluctuating Reynolds stress15 which can act as a quadrupole sound 

source. In fact , this appears to be the first treatment in the literature of 

quadrupole fan noise. 

This process has been studied in somewhat more detail by Chandrashek­

hara (ref. 17) for low-speed (tip Mach number less than 0.3) fans. A free-

14This feature does not occur in the strut problem in section 3.5. 1. 1. 
15In addition to the one due to the self-interaction of the turbulence (which ought to 

be relatively small). 
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space rotor model of the type described in section 3.5.1. 3.2 was used. He 

found that the dipole noise produced at these speeds dominated the quadrupole 

noise. And, in fact, Mani's dipole theory (ref. 15) agreed fairly well with his 

measurements of the sound field. However, the ratio of the strength of a 

quadrupole source to that of a dipole source varies as a typical Mach number 

squared, and the strength of the quadrupole source increases in direct pro­

portion to the blade loading. Hence, at the much higher Mach numbers and 

high blade loadings at which current fans operate, it is quite possible that the 

quadrupole source will dominate. In addition, the radiated BPF power does 

not always increase with tip Mach number as the dipole model seems to pre­
dict. Thus, 16 recent experiments by Gelder and Soltis (ref. 18) on very 

clean inlet fans show that, at the higher subsonic Mach numbers, the inlet 

BPF power levels increase with increasing blade loading even when the rela­

tive tip Mach number decreases. This type of behavior is exibited by the 

quadrupole source. 
The argument that the quadrupole term in the general equation (4-8) will 

dominate over the dipole terms at the higher Mach numbers encountered in 
fans can of course be applied to other noise mechanisms. At these higher 

Mach numbers we cannot invoke the compactness arguments used in sec-
tion 3.3.4.2. 17 Thus, Morfey (refs. 19 and 20) estimated the importance of 

the quadrupole terms for sound generation due to the nonuniform-steady-flow, 

rotor-blade potential field interaction. His estimates for a typical fan rotor 

indicate that quadrupoles become progressively more important as the Mach 

number increases and can generate more noise than the fluctuating-blade­

force dipoles at Mach numbers as low as 1/2. This might be an alternative 

explanation for the discrepancy (discussed at the beginning of this section) 

between the measured and predicted flow distortion noise found by POvinelli, 

et al. (ref. 12). 

Up to now we have considered inlet flow distortions which are either 

steady or randomly fluctuating in time (turbulence). However, as pointed out 

by Benzakein (ref. 21), a spatially nonuniform distortion pattern entering the 

fan with a uniform angular velocity would produce sidebands to the BPF tones 

16This was pointed out by Mani (personal communication). 
17It is shown in chapter 5 that the quadrupoles represent nonlinear interaction 

terms. 
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which would result in the spectrum at non-engine-ordered frequencies. Such 

tones are detectable in the fan spectrum in figure 4-2. 

4.3.3 Broadband Noise Sources in a Fan 

Aside from inlet turbulence, there are a large number of other possible 

sources of broadband fan noise. For example, the noise produced by vortex 

shedding and turbulence generated in the blade boundary layers (discussed at 

the end of section 3.5.1. 2) may make a significant contribution to the broad­

band spectrum. 

Another source could arise from nonuniform wake ?rofiles. Thus, meas­

urements of the "mean" velocity profiles of wakes show that these profiles 

are not the same from blade to blade but vary in a random manner about some 
mean value. 18 This random component of the nonuniform flow impinging on 

the downstream blade row should certainly generate broadband sound. 

4.3.4 Multiple Pure Tones 

Most of the noise mechanisms discussed up to now can occur at both sub­
sonic and supersonic speeds. However, at supersonic relative tip Mach num­

bers the phase-locked rotating steady pressure field (associated with the 
p = 0 modes in eq. (4-30)) can propagate out of the duct. Since the strength 
of this pressure field is proportional to the steady blade forces, which are 

considerably larger than the unsteady forces, we would expect it to dominate 

at supersonic speeds. But, due to nonlinear effects associated with the for­

mation of shock waves, this analysis does not apply at supersonic speeds. 

Thus, the shock wave structure attached to the leading edges of the blades of 

a perfectly periodic rotor would appear as shown in figure 4-5(a). To the 

right of the figure is a schematic of the pressure-time history which would be 

observed by a probe microphone. However, the small nonuniformities in 

blade geometry and spacing which occur in any real rotor cause perturbations 

in the shock pattern. And, as shown in figure 4-5(b), the dynamics of the 

propagating shock train tends to emphasize these imperfections through the 

18This could, for example, be caused by the transmissions of inflow turbulence 
through, and possible amplification by, a heavily loaded rotor. 
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Figure 4-5. - Multiple-pure-tone noise at supersonic tip speeds. 

mechanisms of shock overtaking and coalescence. 19 The pressure-time his­

tory observed by a probe microphone will then appear as shown at the right of 

figure 4-5 (b). In this case there is no longer any evidence of blade-passing­

frequency periodicity, but the pattern does repeat itself with every turn of the 

rotor. Thus, the sound is produced at the shaft rotational speed. A typical 

supersonic fan spectra is shown in figure 4- 6. It can be seen that this spectra 

(unlike the subsonic fan spectra shown in fig. 4-2) is dominated by tones at 

the shaft rotational speed. These tones are called multiple pure tones (or 

combination tones) and produce a sound described as "raspy" or "buzz saw. " 

Morfeyand Fisher (ref. 22) and Hawkings (ref. 23) have analyzed the 

shock wave coalescence by using one-dimensional saw-toothed shock models. 

Their analyses describe how an initially nonuniform shock train evolves to 

become increasingly irregular with distance. They show that the shock 

strength eventually becomes independent of the initial conditions and decays 

as the inverse power of distance. They also show that the axial-flow Mach 

19Recall, for example, that higher amplitude shocks propagate faster than lower 

amplitude ones. 
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Figu re 4-6. - Typical na rrow-band spectrum from a supersonic fan. 

number has a strong influence on this decay rate. Hence , changes in cross­

sectional area of the flow duct (which result in changes of axial Mach number ) 

can be very significant. However, analyses of this type cannot be directly 

related to the irregularities in fan geometry. This drawback was overcome 

by Kurosaka (ref. 24), who used the method of characteristics and oblique 

shock relations to carry out a two-dimensional analysis. He showed that 

errors in blade stagger (and contour ) are much more important for producing 

multiple pure tones than errors in blade spacing. Indeed spacing errors only 

cause changes in upstream shock spacing, while stagger errors cause changes 

in both position and strength. 

At supersonic speeds there is the possibility of an additional broadband 
noise source associated with the passage of turbulence through the shocks. 

4.3.5 Effects of Finite Duct Length 

The analysis developed in the previous sections cannot be used directly 

to predict the sound in the far field , where it is of principal interest. How­

ever, this limitation can be rem oved by using the semi-infinite-duct Green's 

function20 (fig . 3-29) in equation (4-13 ) instead of the infinite-duct Green's 

function. In addition to being able to calculate the sound in the far field , this 

20 Thi s Green' s function can easily be obtained from the results given in ref. 25. 
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approach has the advantage of including the effects of reflection from the end 

of the duct and refraction by the duct lip. An analysis of this type was car­

ried out by Lansing (refs. 26 to 28). 

A more approximate analysis which uses the infinite - duct solutions was 

given by Tyler and Sofrin (ref. 2) for the case of zero mean flow. Thus, if 

the reflections from the end of the duct are neglected, the sound field at this 

point can be calculated from the infinite-duct model. Tyler and Sofrin as­

sumed that the duct opening can be replaced by a flexible diaphragm in an 

infinite rigid baffle (as shown in fig. 4-7) which vibrates with the acoustic 

velocity predicted by the infinite-duct solution (4-30). Thus, inserting the 

half-space Green's function (1-65) into the Green's formula (1-58) shows, 

upon recalling that 3p/3n is zero on the rigid boundary, that the far-field 

pressure fluctuation is given by 

1R[27T ~ 1 3p -
p"'- - y 

27Tr 0 0 3Y1 ' 

-----------------------..... /' "-
l \ --
\ I ..... ---

~-

/r lnfinite baffle 

Figure 4-7. - Flanged duel 
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where 

y = {-l, ~ cos cP , ~ sin cp} 

with the polar coordinates defined in figure 4-8. And for a single harmonic 
p = P sBe -isBQt of the blade passing frequency, this becomes (upon using 
eq. (4- 37» 

ik rlR127T (-)' . ( ) e sB apsB y -l~ksBsmecos CP - CP l PsB ~ --- ---- e ~ d~ d cp ' 27Tr aYl 

where 

332 

o 0 (4-46) 

k = sBQ sB---
Co 

r Observation point 

/ 
/ 

I 
I 

/ 

.~ r 

R 

Figure 4-8. - Fan in a semi-infinite duct. 



EFFECT OF UNIFORM FLOW 

Then setting M = 0 in equation (4-30) (so that y± sB = ±k sB) n,m, n,m, 
and inserting the result in equation (4- 46) show that21 

00 0() 

x H (k ,8)(mD+ - k T+ ) 
n,m sB \ n,m,p n,m,sB n,m,p (4- 47) 

where the directivity factor Hn, m (ksB' e) is defined by 

k k sin ee - (im1T/ 2) 
H (k, e) = -i n, m, sB sB J' (k R sin e) 

n, m sB 2 2. 2 m sB 
Km n - ksB sm e , (4- 48) 

and the prime on the Bessel function J m denotes differentiation with respect 

to its argument. 

The sum in equation (4-47) must now be carried out over all modes, 

whether or not they correspond to propagating waves in an infinite duct. Be­

cause of the experimental factor exp(ilkn, m, sB)' however, the nonpropagat­
ing modes will only contribute weakly to the sound field when the duct length 

l is larger than the radius. 

When Lansing's more exact solution is used, equation (4-47) remains the 

same but the directivity factor (4- 48) becomes (ref. 27) 

Hn m (ksB' e) = -i tan Ii e - (im1T/2)J~ (RksB sin e) 
, 2 

x (kSB + kn, m, sB)(ksB cos 8 + kn, m, SB)Kim)(kn, m, sB) 

2 (K~ n - k~B sin2 e)Kim)(ksB cos e) , 
210f course, this result cannot be used to calculate the sound field in the region 

behind the duct opening (8 > 90 0 ). 
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wher.e the term K(m\a) is defined to be the limiting value 
+ 

E ? 0 of the Cauchy integral. 22 

lim K(m)(a + iE); 
E-O 

In K (\) = - da 
(m) 1 100 

In [-2K~(Y)I~(Y)J 
27Ti a - \ 

- 00 

and the primes on the Bessel functions J m , Km , and 1m denote differentia­

tion with respect to their arguments. 

In reference 26 Lansing compared the Tyler and Sofrin solution with his 

exact semi-infinite-duct solution. He also compared these results with solu­

tions obtained by Lowson (ref. 6) from a free-space rotor model. The total 

radiated power calculated by these three methods is shown as a function of 

frequency in figure 4-9. At all frequencies shown, Tyler and Sofrin's solu­

tion is in close agreement with Lansing's solution. 

Due to the factor kn, m, sB (which vanishes at resonance) in the denomi­
nator of equation (4-39), the infinite-duct model predicts infinite acoustic 

power as the cutoff frequencies of the various modes are approached from 

above. 23 The sharp peaks exhibited by LanSing's solution in figure 4-9 also 

occur at these cutoff frequencies. However, these peaks remain finite. The 

Tyler-Sofrin solution shows abrupt increases24 as these frequencies are 

approached but does not exhibit the sharp peaks found by LanSing. 

A comparison between the infinite-duct solution (eq. (4-39)) and Lansing's 

solution is shown in figure 4-10. In this figure (taken from ref. 28) the nor-

22In taking this limit, it is necessary to use the Plemelj formulas discussed in 
appendix 3. B (see refs. 62 and 63 of chapter 3). 

23It is shown in chapter 5, however, that the effects of compressibility on the 
blade forces act to keep the power finite. 

24The radiated power predicted by eq. (4-39) can differ from that predicted by the 
Tyler-Sofrin method since the later procedure does not require that continuity be satis­
fied across the duct exit plane. 
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malized sound power radiated in the n = 5, m = 3 mode is plotted against the 

frequency SBRS1/ cO. It shows that the infinite-duct model provides an ex­

cellent method for calculating the total radiated power as long as the fre­

quency is even slightly above cutoff. 

LanSing also compared the directivity patterns predicted by these three 

solutions at the dimensionless frequency sS1BR/ Co = 12. This comparison is 

shown in figure 4-11. In reference 27 , directivity patterns calculated from 

Lowson's and Lansing's solutions are compared with data from a research 

compressor. These results are shown in figure 4-12. 

40 
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CHAPTER 5 

Theories Based on Solution 
of Linearized Vo rticity-
Acoustic Field Equations 
5. 1 INTRODUCTION 

The last three chapters were based entirely on the acoustic analogy ap­

proach, wherein the sound field is calculated by constructing a model for an 

equivalent acoustic source term. Because of the inherent limitations of such 

an approach (which are discussed in detail in chapter 2), we would like to cal­

culate the sound emission by solving the differential equations governing the 

flow. Unfortunately, this is nearly impossible for most real flows. But re­
call that in the dipole analyses the sound field was linearly related to the sur­

face forces, which were in turn calculated by linearized equations from the 

oncoming flows. It, therefore, ought to be possible to obtain solutions to 

these problems (at least under certain conditions) by proceeding directly from 

the linearized momentum and continuity equations. In this chapter we shall, 

by considering a specific example, show how this approach can be carried out. 

Before proceeding with this, however, we shall establish certain general 

properties of these linearized solutions. 
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5.2 DECOMPOSITION OF LINEARIZED SOLUTIONS INTO ACOUSTICAL 

AND VORTICAl MODES: SPLITTING THEOREM 

When the mean velocity U is constant, the linearized continuity and mo­

mentum equations (1-13) become (in the absence of volume sources) 

where 

1 DOp _ 
----= -v· u 

c2 DT Po 0 

DO a a 
-=-+U-
DT aT aY1 

(5-1) 

(5-2) 

(5-3) 

We shall now show that the velocity u can be decomposed into solenoidal 

(zero divergence) and irrotational (zero curl) parts in such a way that the 

pressure fluctuations are determined only by the irrotational part. Thus, we 
- - 1 shall show that there exist vectors u1 and u2 such that 

(5-4) 

(5-5) 

(5-6) 

1 DOp 
-- --= -v . u 1 

c2 DT Po 0 

Lrhis result is called the splitting theorem. 
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(5-7) 

To this end, recall that since every vector field can be decomposed into sole­

noidal and irrotational parts there exist vectors ;1 and ;2 such that 

-1 _, 

U = u 1 + u2 (5-8) 

(5-9) 

Hence, equation (5-1) can be written as 

(5-10) 

Then since the second member of this equation has zero curl and the last -member has zero divergence, the vector A must be both solenoidal and ir-

rotational. It follows that the vector Uo defined by 

- - 1 f '7" -C- ~ J uO(y, '7") = - A Y + i(t - T)U, t dt 
Po 

(5-11) 

has the property that 

( 5-12) 

and satisfies the relation 

(5-13) 

Hence, inserting equation (5-13) into equation (5-10) shows that the vectors 
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} (5-14) 

satisfy the first equation (5-6) and equation (5-7), respectively. It follows 

from equations (5-9) and (5-12) that equation (5-5) holds. And finally, the last 

equation (5-6) is a consequence of equations (5-5) and (5-2). 

Since (as can be seen from eq. (5-6)) the irrotational vector u1 is the 

part of the velocity associated with the pressure fluctuations, it is called the 

acoustical particle velocity. And since the vorticity 

is determined solely by the velocity u2, the latter quantity is called the vorti­
cal velocity. Thus, within the flow the interactions between the acoustic and 

vortical motions must occur through second (or higher) order nonlinear terms. 

We have seen that the sound source in Lighthill's theory can be modeled 

by the fluctuating Reynolds stress POu.u., with u. and u. effectively taken 
1 ) 1 ) 

as the vortical part of the velocity field. Thus (at least for sufficiently small 

motions) the generation of sound by Lighthill's quadrupole mechanism is es­

sentially a second-order nonlinear interaction process. 2 Equation (5-7) shows 

that the vortical modes, aside from being convected by the mean flow, remain 

unchanged. This is consistent with the results of section 2. 5. 1. 2 (Taylor's 

hypothesis), which show that jet flow turbulence3 decays slowly in the moving 

frame. 
Although the acoustic and vortical modes each behave, in the linear ap­

proximation, as if the other were not present, these modes can indeed inter­

act at the surface of a solid boundary. Thus, since the total velocity u must 

satisfy the boundary condition u. Ii = 0 on any solid surface, it follows that 

u 1 and u2 must be related at this ·boundary by 

2The sound field can generate vorticity through a second-order interaction. In 
fact, this problem was studied by Rayleigh nearly 100 years ago. The second-order 
interactions were later studied in detail by Chu and Kovasznay (ref. 1). 

3which is essentially pure vortical motion if the Mach number is not too high. 
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THEORIES BASED ON SOLUTION OF LINEARIZED EQUATIONS 

It is this coupling between the acoustic and vortical modes which generates the 

dipole sound at a solid surface. Since this mechanism is a linear process, it 

is reasonable to asswne that it will dominate over the nonlinear quadrupole 

volume sources wherever the fluctuating velocities are small enough. 

5.3 SOUND GENERATED BY A BLADE ROW 

5.3.1 Formulation 

We shall now show how the sound generated by this process can be calcu­

lated by solving the linearized acoustic-vorticity equations (5-4) to (5-7). To 

this end, we shall reconsider the prublem of a fan rotating with angular veloc­

ity n through a stationary convected disturbance. 
In this section the problem will be formulated, and in the next section it 

will be reduced to solving an integral equation. The various methods which 

have been used to solve this equation are then discussed. We next show how 

the radiation field can be calculated, and in the last section the connection 

with the acoustic analogy approach is made. This allows us to assess the im­

portance of including compressibility effects in the source model. 

In order to simplify the problem, suppose that the hub-tip ratio of the fan 

is close enough to unity so that curvature effects can be neglected and the 

blades can be "unrolled." Thus, we consider an infinite row of blades (as 

shown in fig. 5-1) moving transverse to itself between two infinite parallel 

plates with the linear velocity 

(5-15) 

where RO corresponds to some mean radius of the fan. The spacing b be­

tween the plates is equal to the blade span. We suppose that the vortical ve­

locity field ~oo is specified upstream of the blade row. It is assumed that the 
blades are thin and at a small angle to the oncoming relati ve velocity U 

r 
The amplitude of the vortical flow is also assumed to be small compared to 
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Figure 5-1. -Infinite cascade. 

U . Then the flow will be governed by the linearized equations (5-1) and r 
(5-2). 

It is shown in section 3. 4. 2. 1 that the unsteady part of a linearized in­

compr·essible flow past an airfoil is independent of the camber and angle of at­

tack. It can be shown that this decoupling between the steady and unsteady 

flow also occurs in the compressible flow problem being considered in this 

section. Hence, we can replace the blades of the cascade by flat plates at 

zero angle to the relative flow. -Let the Y -coordinate system be alined with the oncoming flow as shown in 

figure 5-2. Thus, upstream of the blade row the nonuniform velocity consists 

of a vortical part UO() and an acoustic part. We shall suppose that the acous­

tic part represents an outgoing wave far from the blades but is otherwise left 

unspecified. Since the vortical flow is steady, it can depend only4 on Y2 and 

Y 3' However, if the problem is to correspond to an unrolled annulus, tio() 

4Eq. (5-7) shows that the vortical motion depends on Y1 and T only in the combi­

nation YI-UT. 
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b 

K 

Figure 5-2. - Flow into cascade. 

must be periodic in the direction of motion of the blade row with the circum­

ferential distance 27TRO being equal to an integral multiple of its wavelengths. 

Then since the dimension in the Y 3 -direction is finite, Uoo can be represented 

by the double Fourier series 
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_ \'[A A ( rrqY3\ A . ( rrqY3)] (2rripY2)/ (Lo COS V) 
U oo = ~ (I~, q + JBp, q)COS,--b-) + KCp , q SlD,-b- e 

p , q 
(5-16) 

where 

(5-17) 

is theA circumference; ~,q' Bp, q ' and Cp, q are complex constants; I, j , 

and K are unit vectors in the Yc ' Y2- , and Y3-directions , respectively; 

and v is the angle between the oncoming flow direction and the perpendicular 

to the blade row. Notice that the Y3-component (normal component) of each 

term in this series vanishes at the walls, Y? = (0 , b). 
Since equation (5 - 16) represents a purely vortical velocity, U

oo 
must sat­

isfy the solenoidal condition "y. u 00 = 0 (where "V y denotes the divergence 

in the Y -coor,dinate system). But this will occur only if the coefficients 

B and C satisfy the condition p,q p, q 

2ip B + g C = 0 
L cos v p, q b p , q o 

Since the problem is linear, it is only necessary, as explained in section 

3.4.2. 1, to calculate the flow field generated by a single harmonic 

(27TipY 2)/ (LO cos v) 
X e (5-18) 

This disturbance pattern is a generalization of the one considered in sec­

tion 3. 5. 1. 3. 5. As in that section. it is again convenient to express the dis­

turbance velocity in terms of a coordinate system y fixed to the blades. We 

348 



THEORIES BASED ON SOLUTION OF LINEARIZED EQUATIONS 
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Figure 5-3. - Cascade in y-coord inate system. 

choose a typical blade, individuated by means of a subscript 0, and suppose 

that the origin of the coordinate system is centered on the root of this blade 
(as shown in fig. 5-3). Then the coordinate transformation Y - Y is the 

same as that in section 3.5.1. 3. 5, and hence Y2 is r~lated to the y­
coordinates by equation (3-121). Inserting this equation into equation (5-18) 

and using equations (5-15) and (5-17) to simplify the result show that 

U
oo 

= [(fA q + jB q)COS(1Tqy~\ - K 2ipb B q sin(~qy~\l 
p, p, b) LOq cos v p , \ b )J 

ipn[(Y1+Y2 cot J.1)/Ur -T] 
Xe (5-19) 

(where the unit vectors i , J , and K are still oriented in the Y -coordinate 

directions). The orientation of the blade row in the y-coordinate system is 

shown in figure 5-3. In these coordinates the blades are stationary and paral­

lel to the mean relative velocity Ur. They are subjected to an unsteady gust, 

given by equation (5-19). Since the amplitude of this gust is assumed to be 

small compared with Ur ' the flow field in this coordinate system satisfies the 
linearized equations (5-1) and (5-2) (with U replaced by Ur in DoIDT). 
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As in section 3.4.2. 1, it is again convenient to explicitly separate out the 

disturbance velocity by putting 

u = uoo + w (5-20) 

where w is sometimes called the scattered velocity. Then since 1100 is so­

lenoidal and satisfies equation (5-7), the scattered velocity w must itself 

satisfy equations (5-1) and (5-2). Thus , 5 

----= 

C
2 DT 

Po 0 

-"iJ . w 

(5-21) 

(5-22) 

Since the flow is assumed to be inviscid, we impose the boundary condition 

that the normal velocity 

u . f = (uoo + w) . j 

(where f is the unit vector in the y 2 -direction) vanish at the surface of the 

blades. Then inserting equation (5-19) shows that w must satisfy the bound­
ary condition (figs. 5-2 and 5-3) 

m = 0, ±1, ±2, . . . - ~ < Yl - ms t < £ 
2 2 

for 

0 < Y3 < b 

(5-23) 

5Although it might now appear that Vi i s the acoustic velocity defined in section 
5. 2, it will be seen subsequently that it contains a vortical part associated with the 
blade wakes. 
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where 

a == -Ap, q sin fJ. + Bp, q cos fJ. 

and, as illustrated in figure 5- 3, s is the gap distance measured normal to the 

chord, s t is the stagger distance measured parallel to the chord, and c is 

the chord length. 

We must also require that the normal velocity vanish on the walls at 

y 3 = 0, b. But since (by construction) Uoo already satisfies this requirement, 

Vi must satisfy the boundary condition 

at Y3 = 0, b (5-24) 

Thus, the problem has been reduced to finding an outgoing-wave solution 

to equations (5-21) and (5-22) which satisfies the boundary conditions6 (5-23) 

and (5-24). However, as explained in section 3.4.2.1, we must require that 

the solutions satisfy the Kutta-Joukowski condition at the trailing edge of the 

blades. And as a consequence, allowance must be made for a trailing vortex 

wake. The continuity of pressure across these wakes suggests its adoption as 

the dependent variable. Then, since equations (5-21) and (5-22) are special 

cases of the first two equations (1-13), we can follow the procedure used in 

chapter 1 to eliminate the velocity and obtain the wave equation 

2 
1 DOp 2 
----vp=O (5-25) 

2 2 Co DT 

It follows from the Y3-component of equation (5-21) that the boundary condi­
tion (5-24) can be replaced by the condition 

at Y3 = 0, b (5-26) 

6The effects of the vortiCity generated by leakage at the blade tips is being neglec­
ted. The inclusion of this effect would introduce unsteady crossflows (in the Y 3-
direction) with a considerable increase in complication. There is some experimental 
evidence to indicate that the elimination of tip leakage has little effect on the sound pro­
duced by fans. 
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And since the pressure is entirely associated with acoustic motion, we require 

that 

p - Outgoing-wave solution 

The w2-component of the velocity, which enters through the boundary condi­

tion (5-23) , is related to the pressure by the Y2-component of equation (5-21). 

5.3.2 Reduction to Integral Equations 

It can be seen by inspection that the solutions to equation (5-25) and the 

Y2-component of equation (5-21) which satisfy the boundary conditions (5-23) 

and (5-26) must be of the form 

(5-27) 

(5-28) 

where we have put 

(5-29) 

and P and V are determined by the equations 

(5-30) 

(5-31) 
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with the relative Mach number Mr defined by 

(5-32) 

The boundary condition (5-26) is automatically satisfied, and the boundary 

condition (5-23) becomes 

for m = 0, ±1, ±2, ... 

c< t<c - - Y1 - ms -
2 2 

(5-33) 

At this point, it is convenient to assume that w has a small positive im­

aginary part which will be set to zero at the end of the analysis. The effect is 

to replace the usual outgoing-wave requirement at infinity by the requirement 

of boundedness. It corresponds to having a small amount of damping in the 

system. 
It is shown in appendix 5. A that the outgoing-wave solution of equations 

(5-30) and (5-31) which satisfies the boundary condition (5-33) is given in 

terms of the dimensionless Prandtl-Glauert coordinates 

by 

i(3 
V(~, r}) = --.£ 

4 sinh .! t:. 
2 + 

e 

sinh .! t:. 
2 

s (3r 
for O::s r} < -

c 

da 

(5-34) 
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where the function fOe QI) is the solution of the coupled integral equations 

co 

2 

for 1 1 
-- <~< - (5-35) 

2 2 
and 

(5-36) 

which causes the jump [PJ , in the pressure 7 function P across the blades , 

to vanish at the trailing edge ( ~ = 1/ 2) of the m = 0 airfoil. The functions 

~±(QI) and Y(QI) are defined by 

(5-37) 

(5-38) 

where the branch of the square root is chosen so that its real part is always 

positive. The parameters f3r , K, Kq, and r which appear in these equa­

tions are defined by 

7Notice that these e quations s imultaneous ly deter mine the two unknowns fO (O! ) a nd 
[ P(~ ) J. 
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(5-39) 

(5-40) 

(5-41) 

and 

(5-42) 

where 

a = ~ (32(S t + scot fl) = ~ (s t + scot f.L) 
M r c U 

r r 

(5-43) 

is called the interblade phase angle. Finally, outside of the range of 7] for 
which equation (5-34) is defined, the solution can be determined from the 

periodicity condition 

(5-44) 

McCune (ref. 2) carried out a steady-flow analysis for a fan in an annular 

duct. He also treated transonic and supersonic flows. 

5.3.3 Solution of Integral Equations 

In order to complete the solution, it is necessary to solve the coupled in­

tegral equations (5-35) and (5-36) for fO and [pJ subject to the Kutta condi-
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tion 

[pJ = 0 at ~ = 1: 
2 

(5-45) 

This has been done for the two-dimensional case (corresponding to Kq = 0) by 

Lane and Friedman8 (ref. 3) and more recently by D. S. Whitehead (ref. 4). 

The method used by these authors consists of expanding the pressure jump [pJ 
across the blades in the trigonometric series (commonly used in both steady­

and unsteady-thin-airfoil theory). 

co 

[pJ = 1: AO cot(~) + L Am sin me 
2 2 m=l 

where 

cos e = -2~ 

This expansion ensures that the Kutta condition (5-45) is automatically satis­

fied. When it is substituted into equation (5-36), the various integrations can 

be carried out and an expansion of fO(cv) in terms of Bessel functions is ob­

tained. And when this series is in turn substituted into equation (5-35), an 

equation for the expansion coefficients An (which can be solved by collocation 

methods) is obtained. 

The problem can also be solved by combining equations (5-35) and (5-36) 

into a single integral equation for the weighed pressure jump 

-i (Kj32/ M ) ~ 
g(~) = [pJe ~ r r (5-46) 

Thus, substituting equation (5-36) into equation (5-35) shows (assuming the 

order of integration can be interchanged) that 

8In fact, the method used in appendix 5. A to obtain the solution is a generalization 
of the method developed by Lane and Friedman for the two-dimensional problem. 
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/

1/2 
1 = 1(~ - ~')g(~')d~' 

-1 / 2 
(5-47) 

where the kernel function 1(~ - ~I) is given by 

i{3 
1'(~ - ~I) = ~ 

47T 

00 

s{3rY cr, as t) da 
cosh -c- - cos (+ -c-

(5-48) 

Since the integrand in equation (5-48) goes to ±1 for large values of a, 

the integral does not exist in the usual sense and must be treated as the Four­

ier transform of a distribution. 9 

The effect of the various airfoils in the cascade on the airfoil at T] = 0 is 

accounted for by the term 

s{3 Y 
sinh _r_ 

c 

s{3rY ~ as t) 
cosh -c- - cos \' + -c-

Hence, if this term were put equal to unity in equation (5-48), equation (5-47) 

would become the integral equation for the force on an isolated airfoil. In 

order to express equation (5-48) in terms of convergent integrals, it is con­

venient to subtract out the single airfoil contribution to obtain 

9A very clear and concise discussion of the ideas involved can be found in Lighthill 

(ref. 5). 
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i f) 
:X'(~ - ~,) = -.£ 

47T 

~~- --- --- -- - --- -

-i [a(K/Mr)J(~ -~ ') 
e y da 

K - + a 
Mr 

00 

s f) r Y 
-i[a+(K/Mr)J(~-~') sinh--

....:e ________ Y _______ c--, __ --c,- - 1 da 

cosh s:r
Y 

_ cos ~ + a: t) 

The first integral can be computed from equation (5-B1) in appendix 5. B. 

Since the integrand of the second integral goes to zero exponentially fast as 

a-±oo, this integral is absolutely convergent and hence represents a bounded 

function of ~ - ~'. However, the results of appendix 5. B show that the first 

integral is singular at ~ - ~' = O. In fact, it follows from equation (5-B2) that 

:X' can be expressed in the form 

(5-49) 

where .;f' denotes a nonsingular function. Thus , as is usual in thin-airfoil 

theory, the kernel of the integral equation (5-47) has a nonintegrable singular­

ity of the type (~ - ~'r1. This equation is, therefore, said to be singular and 

it can be shown that the integral must be interpreted as the Cauchy principal 

value. Because of this singularity, there is just enough arbitrariness in the 

solutions of equation (5-47) to satisfy the Kutta condition (5-45). However, we 

must then allow g(~) to have a square-root singularity at the leadmg edge 

~ = -1/2. 
By expressing the kernel function in the form (5-49), Fleeter (ref. 6) ob­

tained a numerical solution to equation (5-47) for a two-dimensional disturb­

ance. 
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It should be noted that, since the branch points associated with 'Y cancel 

in the integrand of equation (5-48), this function has only simple poles in the 

complex O'-plane. But because the integrand does not vanish at infinity, we 

cannot use Jordan's lemma directly to evaluate the integral. However , if in­

stead of taking the limit T} - 0 in equation (5-35) before this result is used to 

derive equation (5-47) we keep T} finite , we find that the kernel function can be 

written as 

00 

e 
-i [O'+(K/Mr)J(~ -~') 

-T}'Y (1/2)~+ 
x e e 

sinh .! ~ 
2 + 

(1/2)~ 
eT}'Y e -

dO' 
sinh .! ~ 

2 

Since the integrand is an even function 10 of 'Y, it still possesses no branch 

points even when T} is finite. But now it behaves either like 

1 -i O'(~ -~ ') -e 
2 

0' 

or like 

as I 0' I - 00 and Jordan's lemma can be applied to evaluate the integral in 

terms of its residues. 11 The contour must be closed in the upper half-plane 

10 As can be seen by r eplacing y by -y. 

llThe location of the pole s is discus sed in the next section. 
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when 

(5- 50) 

and in the lower hali-plane when12 

(5-51) 

Two different expressions are obtained depending on whether condition (5-50) 

or condition (5-51) holds. And since there are infinitely many poles in both the 

upper and lower half-planes, these expressions are infinite series. The re­

sulting series expansion of the kernel function turns out to be identical to the 

one obtained by Kaji and Okazaki (refs. 7 and 8) , who used an entirely different 

approach based on an ingenious application of the Poisson summation formula. 

The Kaji-Okazaki series is rapidly convergent whenever ~ - ~I is bounded away 

from zero and provides a convenient method for calculating the kernel function. 

5.3.4 Acoustic Radiation 

From the point of view of acoustics, our main interest is in the pressure 

field at large distances from the blade row. We shall show that the solution in 

this region is determined by the singularities which occur in equation (5-34) 

when the small imaginary part of K is allowed to approach zero. These 

singularities are the simple poles of the integrand which approach the real 

axis when Jffl, K .... O. There is one such pole at the point 

while its remaining poles occur at the points where 

b. ± = i2n7T for n = 0, ±1, ±2, 
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It follows from equations (5-37) and (5-38) that the latter points are given by 

for n = 0, ±1, ±2, . 

(5-52) 

where we have put 

(5-53) 

and 

rn = r - 2mT (5-54) 

The plus sign in equation (5-52) refers to the poles lying in the upper half­

plane and the minus sign refers to those in the lower half-plane. 

These poles will approach the real axis when Jilt K - 0 if 

In this case, equation (5-52) can be written as 

2 2 ern . ± 
K - K - -- = K SIn A 

( )

2 

q d t n 

where in this equation V denotes the positive square root, 

and A ± are always real. Then it follows from equation (5-38) that 
n 

-~-.---~-

(5-55) 

(5-56) 

(5-57) 
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We can simplify the notation somewhat by introducing the angle 

and the stagger angle 

1 cr o = cos- ~ 
n 

Kd t 

t -1 s t 
X = tan -

sf3r 

in the Prandtl-Glauert plane. Then equation (5-56) becomes 

Hence, we can put 

Upon separating out the singularities which occur in its integrand when 

Jilt K - 0, equation (5-34) becomes 

00 

(5-58) 

(5-59) 

(5-60) 

da 

where D(~, TI, a) possesses no real poles as J;n K - 0; A and B~ are the 

residues at the poles at -K/Mr and a~, respectively; and m 1 and m 2 are 

the minimum and maximum values for n for which the inequality (5-55) 

holds. Evaluating the residues and using equations (5-56) to (5-60) to simplify 
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the results show that 

(5-61) 

and 

(5-62) 

Now it follows from the theory of Fourier transforms that D( ~, 7], a) does 

not contribute to the integral in the limit as I ~ I - 00 . The remaining t erms 

can be evaluated by closing the contour in the appropriate half-plane and using 

Jordan's lemma to set the integrals equal to 27Ti times the sum of the resi­

dues. Hence if ~« 0 (corresponding to a position far upstream) , 

v ~ 27Ti r (5-63) 

n=m 1 

and if ~» 0 (corresponding to a position far downstream), 

m2 

V - 27Ti A(~ , 7]) + 27Ti L B~( ~, 7]) (5-64) 

n=m 1 

The term A(~ , ,,,) represents the effects of the wakes and therefore contributes 

only to the vortical part of the solution. In fact , it can be seen from equations 

(5-62) and (5-A6) that this term makes no contribution to 'IT and therefore (in 

view of eq. (5-A2)) no contribution to the pressure P. Equation (5-61) shows 

that the remaining terms in equations (5-63) and (5-64) satisfy the periodicity 

condition (5-44). Hence, these solutions apply for all values of ", and not just 

those in the range 0 < 7] < s f3r/c where equation (5-34) holds. Finally, using 
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these results in equations (5-A6), (5-A2), and (5-27) shows that the asymptotic 
pressure field is given by 

m 2 

P'" L + 
Pn as 

~ __ 00 

n=m 1 
(5-65) 

m 2 

L - ~ _ +00 P'" Pn as 
n=m 1 

where 

± ± Pn 7TC cos An ( . ±) 
POaUr 

fO K sm An 
d t sinOn 

(5-66) 

Thus, at large distances from the blade row the pressure field can be ex­
pressed as the sum of a finite number of the terms defined in equation (5-66). 
And only the . P~ for which the cutoff condition (5- 55) is satisfied will contrib­
ute to this sum. 

In fact, let 

_ -1 s t x= tan -
s 

denote the stagger angle. Then introducing the stationary 

x2 = Y 1 sin X + Y2 cos X - UT 
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Figure 5-4. - Duct-oriented coordinates. 

coordinate system (see fig. 5-4) into equation (5-66) and using the results of 

appendix 5. C show that 

p~ = _ 1:. e -i~nT+(nB-p)(x2/Ro)+xlY~, p, nB] 

POaUr 2 

x COS(1TqX3~ c (nB - p cos X - y± nB sin X~ 21TfO(K sin A~) 
b k d R q, p, 

q, p, nB 0 
(5-69) 

where 

Mk- k ± _ -1) ± q, p, nB 
Y nB---q, p , 2 2 

{3 {3 

k -q, p, nB -
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kO = nBf4 + M(p - nB) tan J) 

Co RO 

f3=P 
and 

is the Mach number of the oncoming flow in the axial (perpendicular to the 

blade row) direction and d = ~s t) 2 
+ s2 is the interblade distance. Thus , p; 

is simply a wave which propagates down the duct in the xl-direction with a 

propagation constant y± B while it moves in the transverse direction (x
2

-q, p , n 
direction) with the phase velocity 

R nBf4 
o nB - p 

It is easy to see from the results of appendix 5. C that the condition (5-55) 

does indeed correspond to the cutoff condition 

for this wave. Thus , for any given spatial harmonic of the disturbance field 

(characterized by the indices p and q) , the sound field consists of all those 

blade-passing-frequency harmonics whose frequency is above the cutoff fre­

quency for the p , qth mode. These results are qualitatively the same as 

those given in section 4.3. 2. 2 for a circular duct. The principal difference is 

that in the present case there is a mean crossflow cOM tan J) in the t rans­

verse direction in addition to the axial velocity cOM. In fact , since equa-
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tion (5-36) shows that13 

[pJd~ (5-70) 

and since a[pJpOUr sin X is the amplitude of the thrust force per unit area 

acting on the blade and a[pJpOUr cos X is the amplitude of the drag force per 
unit area, we see that this equation is indeed similar to equation (4-30). 

5.3.5 Behavior of Blade Forces 

The resemblance between equations (5-69) and (5-70) and equation (4-30) 

is not coincidental since the former equations are precisely the results which 

would be obtained if the acoustic analogy approach used in chapter 4 were ap­

plied to the infinite cascade configuration analyzed in this chapter. The new 

feature which is introduced by the present approach is the integral equation 

for calculating the normal force per unit area [pJ acting on the blades. In the 

last chapter we resorted to using a single-airfoil two-dimensional incompres­

sible flow model to calculate the blade forces. When these forces are ob­

tained by solving equation (5-47), the effects of compressibility and of the mu­

tual interference between the various airfoils in the cascade are accounted for. 

The compressibility effect is particularly important near cutoff, where it 

causes the blade forces to vanish (ref. 4). As a result of this the radiated 

power does not become infinite at cutoff as predicted by the incompressible 

flow analysis in chapter 4. 

The exponent in the integrand of equation (5-70) corresponds to the varia­

tion in retarded time along the blade. If we neglect this variation (as is done 

in chapter 4) , the integral reduces to the response function (see section 
3. 4. 2. 2) 

13For real compressors the flow at large distances from the blade row will be ori­
ented mostly in the xrdirection. A possible way of compensating for this is to set 
lJ = 0 in kO while leaving it unchanged in the integral (5-70). This can be justified by 
arguing that the terms in the integral, being associated with the local unsteady lift, are 
relatively uninfluenced by the turning of the flow in the axial di rection. The net effect 
of this turning is to eliminate the crossflow in the propagation terms of eq . (5-69). 
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The variation of this quantity with the various parameters which appear in the 

kernel function (5-48) should give some indication of their effect on the radi­

ated sound. It can be seen from equations (5-C3) , (5-C4), (5-40), and (5-41) 

that these parameters can be taken as the transverse wave number 7Tq/b, the 

relative Mach number Mr , the interblade phase angle a = 27Tp/b , the stagger 

anglE: X, the solidity c/ d, and the reduced frequency 

The response function was calculated by Fleeter (ref. 6) for various values of 

these parameters in the range of interest for compressors. Typical results 

taken from his paper are shown in figure 5-5. Also included is the corre­

sponding incompressible flow solution. The figure shows that compressibility 

effects can change the response function by more than a factor of 2. We an­

tiCipate that its effect on the acoustic pressure fluctuations will also be of this 

magnitude. 
Notice that, as the Mach number M increases, the magnitude of the r 

fluctuating lift first increases toward a maximum and then decreases rapidly 

to zero. It passes through zero at the Mach number where the blade passing 

frequency is exactly equal to the cutoff frequency for the lowest mode. But it 

is pointed out in section 4. 3. 5 that the expression for the radiated power has a 

zero in its denominator at this frequency. The vanishing of the blade forces 

creates a corresponding zero in its numerator, which serves to keep the acous­

tic power finite. (Of course, this would not occur if an incompressible flow 

analysis were used to predict the blade forces.) This effect is an example of 

how a sound field can exert a powerful back reaction on its source (the fluctu­

ating blade forces). 
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APPENDIX 5.A 

SOLUTION TO CASCADE PROBLEM 

In this appendix we shall obtain an outgoing-wave solution to equations 

(5-30) and (5-31) which satisfies the boundary condition (5-33). 

In order to transform this problem into an equivalent (and somewhat more 

familiar) stationary-medium problem, we introduce the dimensionless 

Prandtl-Glauert coordinates 

and the new dependent variable 

where 

and 

Y1 
~ =-

c 

Y2 
7)= - {3 

c r 

iM K~ 
'IF ::: Pe r 

Then equations (5-30) , (5-31) , and the boundary condition (5-33) become 
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for 

where 

ms 
T/=-{3 

c r 

_ 1.< ~ _ ms t <1. 
2 c 2 

(5-A6) 

m =0, ±l, ... 

(5-A7) 

(5-A8) 

Notice that equation (5-A5) possesses a separation-of-variables solution of the 
form 

-ia~-YT/ e 

where the branch of the square root 

(5-A9) 

is chosen so that its real part is always positive (in the complex a- plane). In 

order to apply this solution to the present problem, it is convenient to intro­

duce a coordinate system 

ms 
T/ =T/-- {3 
m c r 

t 
~ = ~ _ ms 
m c 

(5-AIO) 
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which for each integer m = 0, ±1 , ±2 , . . . has its origin on the m th blade. 

Then superposing the solutions (5-A9) with respect to the separation param­

eter Ci shows that equation (5-A5) possesses the outgoing-wave solution 

(5-All) 

where fm (Ci) is an, as yet, undetermined function and 

1 for x> 0 

sgn x = 

-1 for x < 0 

This solution possesses a jump discontinuity 

(5-A12) 

across the line 7) = (ms/ c) f3r passing through the m th blade. Since the 

boundary conditions can only be satisfied if the pressure function P is dis­

continuous across the blades, we seek a solution in the form 

00 

'l1 = I 'l1m (5-A13) 

m=-oo 

of a superposition of the solutions (5-All). Then the jump ['l1] in 'l1 across 

the mth blade is given by ['l1m] alone. Hence, it follows from equation 

(5-A2) that the jump [p] in the pressure function along the line 7) = (ms/ c) l3r 
is 
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1
00 

-iM K~ -i a~ 
[pJ = e r _00 fm (a)e m da (5-A14) 

The continuity of pressure along the line TJ = (ms/ c)t3r in the region in front 

and behind the blades will be accounted for in the subsequent analysis. 

Since the upwash velocity w2 vanishes at ~ = _00, equation (5-A6) can be 

integrated to obtain 

f
~ -(iK/M )~r 

e r a'l' (~r, TJ) d~ r 
aTJ 

_00 

(5-A15) 

Then substituting equation (5-All) into equation (5A-13), inserting the result 

into equation (5-A15), interchanging the order of integration, and integrating 

with respect to ~ show that14 

t3r i -iMrK~ 
V=-e 

2 

00 

m=-oo 

And, since the boundary condition (5-A7) can be written as 

( 
ms t ms) (iK/Mr){3;~m ima 

V ~m + --, - t3r = e e 
c c 

for m = 0, ±1, ±2, .. 

where 

(5-A16) 

(5-A17) 

14Where we use the fact that the imaginary part of w, and hence of K, is slightly 
positive to show that the integrated term vanishes at minus infinity. 
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a == ~ f3 2(S t + scot f.1) = ~ (s t + scot f.1 ) 
M r c U 

r r 

(5-A18) 

is called the interblade phase angle , we can ensure that satisfying this condi­

tion on the m = 0 blade will also cause it to be satisfied on the remaining 

blades if the functions fm can be related to fO in such a way that 

~ ms ms \ ima ( ) 
V \~ + ~ ' 17 + ~ f3r} = e V ~, 17 (5-A19) 

We shall now show that this occurs when 

(5-A20) 

where 

_ s t K (s t f3; s ~ I' = a + M K - = - - + - cot f.1 
r c Mr c c 

(5-A21) 

To this end, insert equation (5-A20) into equation (5-A16) to obtain 

im[I'+( as t / c)] -117m I y 
e dO' 

(5-A22) 
= if3 r 10() Mryfo{a) 

2 K + MrQl _0() 

0() 

m=-O() 

But the fact that 
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THEORIES BASED ON SOLUTION OF LINEARIZED EQUATIONS 

proves the assertion. 

The remaining condition which must be imposed on the solution is that the 

pressure jump [j?] given by equation (5-A14) goes to zero both in front of and 

behind each blade. But inserting equation (5-A20) into equation (5-A14) shows 

that if this condition holds along the line fJ = 0 through the m = 0 blade, it 

will also prevail for all other blades. Hence, the problem will be solved if 

the function fO(O') in equation (5-A22) can be chosen in such a way that the 

boundary condition (5-A17) holds along the m = 0 blade and the condition 

W] = 0 holds along the remainder of the line fJ = O. However, before showing 

that this is indeed the case, it is convenient to simplify equation (5- A22). 

Thus , it follows from the geometric expansion 

00 

I zm =_1_ 

m=O 1 - z 
for Iz I < 1 

that for O!S fJ < s {3/ c 
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00 

I eim(r+O's t / c)-I7]m I y = e -7]Y 

m=-oo 

where 

-i[r+(O's t/c)J-s,B y/c 
1 - e r 

r.'\I i[r+(O's t/c)J-s,B y/c 
e'lr e r 

+--------------------
i[r+(O'st/cU-s,B y/c 

1 - e r 

-7]y+(1/2)~ + 
= .! _e ______ _ 

2 sinh.! ~ 
2 + 

sinh.! ~ 
2 

~ == i r + as ± _r_ ~ t) s,B y 

± c c 
(5-A23) 

Hence, inserting this result into equation (5-A22) shows that the upwash 

velocity is determined by 

1~ -i(<>+M K), 
i,B MrfO(a)ye r 

V(~, Tj) r 
=-

4 K+ MrO' 
_00 

- 7JY+(1/2)~ 
e + 

7JY+(1/2)~ 
e 

sinh.! ~ + sinh .! ~ 
2 

s(3r 
for 0 ~ 7] <­

c 

2 

dO' 

(5-A24) 

For the remaining values of 7], V(~, 7]) can be determined from the periodicity 

condition (5-A19). 

Inserting equation (5-A24) into the boundary condition (5-A17) with m = 0 

shows, upon using the addition formulas for the hyperbolic functions to sim-

376 

--- -- -------



r 

I 
I 
r 

THEORIES BASED ON SOLUTION OF LINEARIZED EQUATIONS 

plify the results, that 

-i(K/M )(32~ 
1 = err lim V(~, 7]) 

7]-0 

= i{3 

4 

00 
s{3 y 

y sinh _r_ 
fO(a) -i [a+(K/Mr)J~ c 

--=-- e da 

K + s{3 y ~ t) M a cosh _r_ - cos r + as 
r c c 

for - 1: < ~ < 1: 
2 2 

On the other hand, equation (5-A14) (with m = 0) shows that 

100 -i(a+M K)~ 
[pJ = _00 fo(a)e r da 

(5-A25) 

But since [pJ = 0 for I ~ I > (1/2), we can invert this Fourier transform to 

obtain 

1 j1/2 i(a+MrK)~ 
fO(a) = - [pJe d~ 

27T -1/2 
(5-A26) 

Thus, the boundary conditions along the m = 0 blade will be satisfied pro­

vided the function fO(a) in equation (5-A24) is a solution of the coupled inte­

gral equations (5-A25) and (5-A26). In order to ensure that the Kutta condition 

is satisfied at the trailing edge, we must require that [pJ = 0 at ~ = 1/ 2. 
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APPENDIX S.B 

EVALUATION OF SINGLE-AIRFOIL INTEGRAL 

It is shown in tables of Fourier transforms (ref. 9) that 

(1) (~ 2 2) 1 100 

e -iXa-y~ HO K X + Y = - da 
1Ti ~ a2 _ K2 

_00 

where H~1) denotes the Hankel function of the first kind. Hence, 15 

if3r 100 

41T 
_ 00 

-i[a+{K/Mr)J{ ~ - ~ ') 
e y da 

K -+ a 
Mr 

if3 
=~lim 

41T y-O 

But using the identity (ref. 10) 

and integrating twice by parts show that this can be written as 

15 K is defined by eq. (5- 57). 
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e -i [O'+(K/Mr)J( ~ - ~ ') 
-'-------- y dO' 

(5-B1) 

Since the integral remains bounded as ~ - ~ ' -+ 0, using the small-argument 

asymptotic representations for the Hankel functions (ref. 11) shows that 

0() 

i (3 r 
-i(O'+K/Mr)( ~ - ~ ') 

e y dO' 

47T K 
-+0' 

Mr 

= (3r ~_1_ + iK In 1 ~ - ~ ' 1\ + 0(1) 

27T\~ - ~ ' Mr ') 
as ~ - ~ ' -+ ° (5-B2) 
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APPENDIX S.C 

EVALUATION OF TERMS IN DUCT COORDINATES 

Since (figs. 5-2 and 5-3) 

cOMr 
--=--=----

cos(X - /1) 
(5-Cl) 

sin /1 cos v 

and since the number of blades is related to the inter blade distance d by 
(fig. 5-4) 

27TRO 
B=--

d 
(5-C2) 

it follows from using equations (5-29) and (5-67) in the definition (5-43) of the 

interblade phase angle that 

(5-C3) 

And inserting this into equation (5-42) implies 

l' = ~ + M K ~ sin X 
B r c 

(5-C4) 

Then equation (5-54) becomes 

r n = ~ (p - nB) + M K ~ sin X 
R r c o 

(5-C5) 

and equation (5-59) implies 

K cos 0 = ~[~ (p - nB) + M K sin X] 
n t R r 

d 0 

(5-C6) 
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• F. d 
K SIn u =-

n d t 
~dt)2 2 [c J2 \d K - RO (p - nB) + MrK sin X (5-C7) 

It follows from equation (5-53) that 

d t 2 2 ~ )

2 

d = 1 - Mr cos X (5-C8) 

and it can be seen from figure 5-2 that 

(5-C9) 

(5-C 10) 

Hence, it follows from equations (5-40), (5-41), and (5-57) that 

~ f3 K sin 0 = ..£ k B 
t r n 2 q, p, n 

d f3 

(5-C 11) 

where we have put 

k = q , p , nB -
(5-C 12) 

kO = nBn + M(p - nB) tan II 

Co RO 

(5-C 13) 

f3=P (5-C 14) 

and 
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Uoe 
M = M cos X = - cos v r Co 

is the axial-flow Mach number. 

(5-C 15) 

Upon using equation (5-60) and the addition formulas for the sines and co­

sines, the exponent 

which appears in equation (5 - 66) can be written as 

E = -K(~ sin X t + TJ cos X t)cos 0 ± K(~ cos X t - TJ sin X t)sin 0 + KM ~ + WT n n r 

But the blade spacing d and the stagger angle X are related to the Prandtl­

Glauert plane blade spacing d t and stagger angle X t by 

(5-C 16) 

Hence, we can use equation (5-68) to eliminate the dimensionless variables 

L TJ to get 
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And, it follows from equation (5-40) and equations (5-C6) to (5-C 11) that 

( . ± ) ~ ±) x2 ) ± 
WT + K sm An + MrK ~ - K cos An 1i = nB'(h + - (nB - p + x 1Y nB 

R q,p, 
o 

where 

Yq± P nB ~ .l... (MkO ± kp q nB) 
, '2 ' , 

{3 

(5-C 17) 

Equations (5-60) and (5-C 16) and the addition formulas for trigonometric 

functions imply that 

c cos A~ 
= 

d t sin on 
2
Cd ({3r cos X cos on ± sin X sin On) 

(dt) sin on 

But upon using equations (5-C6), (5-C7), and (5-Cll) this becomes 

c cos A~ 
= 1 f{32[~ (p - nB) + M K sin J cos X ± ckq B sin xl 

2 l r R r) , p, n 1 
d{3 kq B 0 ,p,n 

And finally, substituting in equations (5-40), (5-C1), (5-C9), (5-C10), 

(5-C14), (5-C15), and (5-C17) shows that 

_c_c_o_s_A_~ = c ~Y± nB sin X - (nB - p)cos x~ 
t dk q, p, R 

d sin on q, p, nB 0 

(5-C 18) 
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CHAPTER 6 

Effects of Nonuniform Mean Flow 
on Generation of Sound 
6.1 INTRODUCTION 

The last two chapters were concerned with the generation of sound in the 

presence of a uniform mean flow. However, real flows usually have substan­

tial velocity gradients in the vicinity of the source region. These gradients 

can influence the acoustic impedance acting on the sound sources and as a 

result can have a significant effect on the sound emission process. In the 

acoustic analogy approach the sound sources are treated as if they are em­

bedded in either a stationary or uniformly moving medium. Hence, the ef­

fects of nonuniform flow must be "modeled" by adjusting the source term in 

some manner. Since there is no systematic procedure for accomplishing this, 

it might be helpful to develop a moving-medium wave equation to describe the 

sound emission process. 

One possible way of obtaining such an equation is by extending the linear­

ized acoustic analysis developed in section 1. 2. Thus, it is shown in sec­

tion 5.2 that while the generation of sound through surface interactions is 

accounted for by the linear terms, the generation of sound by the volume 

quadrupoles depends upon the second-order nonlinear coupling of the acoustic 

and vortical modes. Hence, if the first-order perturbation equations devel­

oped in section 1.2 were extended to next higher order, all the interactions 

involved in the sound generation processes should be included. This approach 

was developed by Chu and Kovasznay (ref. 1). 
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However , instead of pursuing this course, we shall attempt to extend the 

ideas of Lighthill by putting the full nonlinear equations into the form of a 

moving-medium wave equation. Equations of this type were derived by Phil­

lips (ref. 2) and Lilley, 1 and much of the material in this chapter is based on 

their equations. In developing such equations, in which more of the real fluid 

effects are included in the wave operator part of the equation and less in t he 

source term , we are actually moving away from the acoustic analogy approach 

and toward the direct calculational approach developed in chapter 4. 

6.2 DERIVATION OF PHILLIPS' EQUATION 

The continuity and momentum equations given in section 2.2 can also be 

written as 

where 

1 Dp aVj -- + - = 0 
p DT aYj 

Dv. 1 a 1 ae .. 
_1 = _ _ -.E.+ _~ 

DT P aYi p aYj 

D _ a a 
- = - + v · -
DT aT ] aYj 

(6-1 ) 

(6-2 ) 

(6-3 ) 

denotes the substantive derivative. We shall, for simpliCity, limit the dis­

cussion to the case of an ideal gas. Then 

1 

p = pRe 

de = c de v 

Fourth Monthly Progres s Report on contract F-33615-71- C-1663. Appendix: 

(6- 4) 

(6- 5) 

Generation of Sound in a Mixing Region. Lockheed Aircraft Company, Marietta, Ga. , 
1971. 
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EFFECTS OF NONUNIFORM MEAN FLOW ON GENERATION OF SOUND 

and 

where as before R denotes the gas constant; e denotes the internal energy; 

e the absolute temperature; and c and c the specific heats at constant p v 
pressure and volume, respectively. Hence, the second law of thermodynam-

ics e dS = de + pd(l / p) can be written as 

dp 1 dp dS 
- = ---- (6-6) 
p y p 

where 

(6-7) 

is the specific-heat ratio. 

In order to obtain an equation which has the form of a moving-medium 

wave equation, we generalize the approach used in section 1. 2 to derive the 

wave equation (1-15) from the linearized continuity and momentum equations. 

Thus, substituting equation (6-6) into equation (6-1) shows that 

where 

DIT aVi 1 DS 
-+-=--
Dr aYi cp Dr 

IT == 1. In ~ 
y PO 

(6- 8) 

(6- 9) 

and PO is some convenient (constant) reference pressure. Then upon using 

footnote 6 on page 17 in chapter 1, the momentum equation (6-2) can be writ­

ten as 
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DVi 2 arr 1 aeij 
-=-c-+--- (6-10) 
DT ay. p ay. 

1 ] 

The close resemblance between equations (6- 8) and (6-10) and the first two 

equations (1-13) suggests that we can obtain a moving-medium wave equation 

if (as is done in section 1. 2) we differentiate these equations and subtract the 

results. To this end we take the divergence of equation (6-10) and use the 

identity 

a D _ D a aVj a 
--=--+-- (6-11) 
ay. DT DT ay. ay. ay. 

1 11] 

to obtain 

D aVi a 2 arr aVj aVi a 1 ae ij 
--+-c - = ---+---- (6-12) 
DT aYi aYi aYi aYi aYj aYi p aYj 

But applying the operator D/ DT to equation (6- 8) shows that 

n2 rr D aViD 1 DS 
--+--=----
DT2 DT aYi DT cp DT 

And upon subtracting equation (6-12) from this result, we obtain Phillips' 

equation 

D2rr a 2 arr aVj aVi a 1 aeij D 1 DS 
----c -=-------+---- (6-13 ) 

D 2 ay. ay. ay. ay. ay. p ay. DT c DT 
TIll J 1] P 

The left side of this equation is seen to correspond closely to that of the 

linearized mOving-medium wave equation (1-15). The principal difference is 

that the left side of equation (1-15) contains an additional term which repre­

sents the direct refraction of the sound by the mean flow. The left side of 

equation (6-13) differs from that of Lighthill's equation (2-5) mainly in that the 

time derivative a/aT in Lighthill's equation is replaced by the substantive 
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derivative DI DT in Phillips' equation. Thus, Phillips' equation ought, at 

least partially, to account for the effects of convection and refraction of the 

sound. As in Lighthill's theory the terms on the right side are to be inter­

preted as source terms. 

In fact, Phillips concluded that since "the terms on the left hand side of 

[his] equation are those of a wave equation in a moving medium with variable 

speed of sound, " the first term on the right side represents the generation of 

pressure fluctuations by velocity fluctuations in the fluid, while the remaining 

terms describe the effects of entropy fluctuations and fluid viscosity. How­
ever, as pointed out by Lilley1 and Doak (ref. 3) this interpretation is not 

strictly correct since the left side does not contain all the terms which appear 

in a moving-medium wave equation even for a unidirectional transversely 

sheared mean flow. As a consequence , the first term on the right side must 

contain the remaining terms. For this reason, the latter term is not a pure 

source term. Thus, in the special case of an inviscid, non-heat-conducting, 

transversely sheared mean flow with a mean velocity U and a small fluctuat­

ing velocity U, the left side of equation (6-13) becomes (upon neglecting 

squares of small quantities) 

while the right side becomes 

Comparing this with equation (1-15) shows that (in this limit) the "source 

term" in Phillips' equation actually contains a term associated with the prop­

agation of sound waves. 

6.3 DERIVATION OF LILLEY'S EQUATION 

In order to obtain an equation in which all the "propagation effects" oc­

curring in a transversely sheared mean flow are accounted for by the wave 
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operator part of the equation, Lilley1 derived a third-order equation analogous 

to equation (1-20). Thus, applying the operator D/ DT to both sides of equa­

tion (6-13) shows that 

where 

aVj a 1 aeik D a 1 aeij D2 1 DS 
'IF =2-----------+----

aYi aYj p aYk DT aYi p aYj DT2 cp DT 

represents the effects of entropy fluctuations and fluid viscosity. 

(6-14) 

Notice that when this equation is linearized about a unidirectional trans­

versely sheared mean flow, its left side reduces to that of the moving­

medium wave equation (1-20). Hence, at least in the case of parallel or 

nearly parallel mean flows (such as those which occur in jets and axial-flow 

fans), no inconsistency is obtained when we interpret the right side as a 

source term. 

6.4 INTERPRETATION OF EQUATIONS 

Lilley's, Phillips', and Lighthill's equations , being exact consequences 

of the momentum and continuity equations, are all equivalent to one another. 

The advantage of the former equations over Lighthill's equation lies in the 

interpretation of the source term. Thus, Lighthill's theory of aerodynamic 
noise (ref. 4) is an acoustic analogue theory in which it is necessary to some­

how determine the source distribution T ij so that it accounts not only for the 

generation of sound, but also for such real fluid effects as acoustic propaga­

tion and refraction. However , in the equations of Phillips and Lilley the re-
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fraction effects have, at least to some extent, been moved from the source 

term to the wave operator part of the equation. They can therefore be calcu­

lated as part of the solution and do not have to be modeled as part of the 

source term. For this reason Phillips' and Lilley's theories have been called 

"true source" theories by Doak (ref. 3). It is frequently asserted that all 

real fluid effects will automatically be included when the source term T.. in 
1J 

Lighthill's equation is measured experimentally. However, it is argued by 
Doak (ref. 3 ) that the part of this term corresponding to the convection and 

refraction effects is quite small compared to the part corresponding to the 

actual generation of the sound and therefore any realistic measurement would 

fail to detect the former. However, Doak concludes that even though these 

terms are small they cannot be neglected. The reason he gives is that the 

acoustic equations contain groups of terms of different classes such that 

within each class there is almost complete cancellation of terms. A term can 
therefore be neglected if it is small compared with other terms in its class 

but not necessarily if it is small compared with terms of a different class. 

This situation could result from the cumulative effect of refraction over large 

distances. Of course , we cannot be sure that even Lilley's equation is of the 

correct form to properly model the sound generation process. In fact, the 

first term on the right side certainly contains the acoustic part of the velocity 

(since v. is the total velocity) and therefore represents effects other than 
I 

pure sound generation. 

The price which must be paid for including the convection and refraction 

effects in the wave operator part of the equation is a great increase in the 

complexity of the solutions. In practice, this turns out to be a serious draw­

back, and to date only limited solutions of Lilley's and Phillips' equations 

have been found. 

6.5 SIMPLIFICATION OF PHILLIPS' AND LILLEY'S EQUATIONS 

Another disadvantage associated with equations (6-13) and (6-14) is that 

the left sides of these equations involve the total velOcity v and not (as in the 

case of the linearized equations in section 1. 2) just the mean velocity. Thus, 

these equations are in general nonlinear even if the source terms and the 

mean flow are assumed to be known. However, in many cases of interest 
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(e. g., sound generation in jets and aircraft engine fans and compressors), it 

is reasonable to replace the velocity and the square of the speed of sound by 

their mean values Vi = vi and c2, respectively. In Phillips' equation the 

former approximation amounts to replacing the operator DI DT by the oper­

ator 

(6-15 ) 

Thus, the sound which is generated by the unsteady flow in the vicinity of a 

fan or compressor frequently propagates through a relatively long duct con­

taining a relatively steady shear flow. Hence, it can be argued that the prop­

agation terms appearing on the left sides of equations (6-13) and (6-14) will be 

determined mainly by this large region of steady flow and not by the usually 

much smaller region of unsteady flow in the vicinity of the fan. 

On the other hand, the time-averaged pressure in a turbulent jet varies 

relatively little with pOSition and (upon making a suitable choice for the refer­

ence pressure PO) IT can be thought of as a fluctuating quantity. But the tur­

bulence velocities in a jet are fairly small (usually less than 20 percent) com­

pared to the mean velocity. And since acoustic quantities are almost certainly 

small, it is reasonable to neglect any terms on the left sides of equations 

(6-13) and (6-14) involving products of fluctuating quantities compared to the 

terms involving products of fluctuating quantities with mean quantities. This 

again results in replaCing Vi by Vi and c2 by c2 . PhYSically, this 

amounts to neglecting such effects as the scattering of sound by turbulence. 

The turbulent scattering in a jet is generally regarded as small (ref. 5) be­

cause of the mismatch between the turbulence scales and the acoustic wave­

lengths - the acoustic wavelength being for the most part much larger2 (refs. 6 

and 7). In fact, it has been found (ref. 8) that the introduction of a series of 

vortex generators into the nozzle of a subsonic jet failed to influence the direc­

tivity pattern even though a noticeable increase in the volume of strong turbu­

lence is presumed to have resulted. But since the dominant effect of scatter­

ing should be to change the directivity patterns, we tend to conclude that 

2Except, of course, at high frequencies. 
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scattering is not important over most of the spectrum. 3 

Now consider the terms on the left sides of equations (6-13) and (6-14). 

In the absence of chemical reactions or other heat sources the energy equa­

tion can be written as 

where K is the thermal conductivity and \}j denotes the rate of energy dissi­

pation per unit volume through viscous effects. Thus, the second two terms 

on the right sides of equation (6-13) and the last term on the right side of 

equation (6-14) represent the effects of heat conduction and viscosity. Hence 

(assuming that the Mach number is not too large) the arguments used in con­

nection with Lighthill's equation in section 2.2.3 show that these terms should 

be negligible at the Reynolds numbers which are usually of interest in aerody­

namic sound problems. 
Upon making these approximations in equations (6-13) and (6-14) (i. e. , 

replacing v. by V. and c2 by c2 on the left sides and neglecting viscous 
1 1 

and heat conduction effects on the right sides) we obtain 

D2rr 0 2" orr oVj oVi ----c - =-- (6-16) 

D 
2 oy. oy. oy. oy. 
TIl 1 J 

(6-17) 

where D/ DT is defined by equation (6-15). 

3This may not be true for multi tube nozzles containing large numbers of tubes or 
for the noise generated inside the nozzle. 
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6.6 EQUATION BASED ON SEPARATION OF ACOUSTICAL 

AND VORTICAL MOTIONS 

It is shown in section 5. 2 that it is always possible, in the linearized ap­
proximation, to decompose the velocity of an inviscid, non-heat-conducting, 

flow into the sum of acoustical and vortical parts. Although it is still possible 

to decompose the velocity of a nonlinear flow into solenoidal and irrotational 

parts, it is no longer possible to associate the pressure fluctuations sole ly 

with the irrotational term. As a consequence, there is no part of the velocity 

which can be unambiguously identified with the acoustic motion. However, the 

importance of being able to identify part of the fluid motion as sound becomes 

clear when one realizes the basic question of how sound is generated in an un­

steady flow cannot be answered until it is determined what the sound is. In 

using the acoustic analogy approach we do not attempt to answer this question 

dire cUy but rather to give an "analogue" of the sound generation process. 

We shall, for Simplicity, restrict our attention to a unidirectional trans­

versely sheared mean flow. Thus, 

v - = 01-U (Y2) + v! 
III 

(6-18) 

where vi represents the fluctuating part (i. e., the part with zero mean flow) 

of the ve locity vi. Then 

D DO _ a a 
- = - = -+ u-- (6-19) 
DT DT h aY1 

We suppose that the velocity can in some approximate sense still be de­
composed into acoustical and vortical parts. Thus, we put 

v' = w + U (6-20) 

where u is to be identified with the acoustic particle velocity and w is to be 

identified with the vortical motion. It is reasonable to require that the sole­

noidal condition 
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(6-21) 

still apply. Thus, in the case of a subsonic turbulent jet we would associate 

iN with the fluctuating turbulence velocity. And since the turbulence velocity 

is at most 2 percent of the mean flow velocity, we would certainly want to im­

pose the incompressibility condition (6-21). 

If equation (6- 20) is substituted into equation (6-18) and the result is sub­

stituted into the right side of equation (6-16), a number of terms involving 

various products of acoustic, mean, and fluctuating vortical velocities will be 

obtained. We suppose that the terms involving the squares of acoustic veloc­
ities aTe small and can therefore be neglected. The terms involving products 

of turbulent velocities with acoustic velocities represent the scattering of the 

sound by the vortical motion. Since we have already neglected such effects on 

the left side of equation (6-16), it will be assumed that these terms are also 

negligible. With these approximations, equation (6-16) now becomes 

(6-22) 

where we have replaced c2 by c~ and put 

W. =o l .U+w. 
1 1 1 

(6-23) 

equal to the total vortical velocity. 

Notice that the direct refraction term 

has been removed from the source term in Phillips' equation and that the left 

side of the resulting equation closely corresponds to the linearized equa-

tion (1-15). 

If the same approximations are also made in the momentum equation (6-2) 

(i. e., if viscous effects, terms involving squares of acoustic quantities, and 
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terms involving the interaction of the sound with the vortical motion are all 

neglected), the Y2-component of this equation becomes 

(6- 24) 

We can now proceed as in section 1.2 and eliminate u2 between equa­

tions (6-22) and (6-24) to obtain the third-order wave equation 

Notice that, although the left side of this equation is the same as Lilley's 

equation (6-17), the right side is somewhat different. It is shown in appen­

dix 6. A that this equation can also be written as 

(6-26) 
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where 

6.7 APPLICATION TO MIXING REGION OF A SUBSONIC JET 

In this section equation (6-26) is used to calculate the sound emission 

from the mixing region of a subsonic jet. The fluid mechanics of this region 
is discussed in section 2.5.1. 2. The procedure by which this is accomplished 
is intermediate between Lighthill's free-space Green's function solution and 

more exact approaches based On solving the convected wave equation. 

It is shown in chapter 2 that the directivity pattern of the radiated sound 
predicted by Lighthill's theory is predominantly determined by the convective 

amplification factor (1 - Mc cos er 5 which results from the relative motion 
between the sound sources and the surrounding medium. But for sound whose 
wavelength is very small compared with the dimensions of the jet, there ap­

pears to be nO relative motion between the sound sources and the surrounding 

medium, and the convective amplification should not occur. Thus, in a real 

jet which is intermediate between this case and the One treated by Lighthill, 

the convective factor ought to be considerably reduced for the sound emitted 

at and above the peak frequency. In the present analysis the fact that the 

sound sources are embedded in an actual jet flow is used to modify the source 

term in Lighthill's analysis to account for this partial reduction in the COn­

vective amplification. 

Since the acoustic velocity u should be negligible compared with the 
vortical velocity W in the mixing regiOn of the jet, we can approximate equa­

tion (6-24) in this regiOn by 

(6-27) 

And since the factor dU/ dY2 in the second term On the right side of equa­

tion (6-26) vanishes outside the mixing regiOn, we can use the approximation 
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(6-27) in this term to obtain 

+4-- -+U- w2 a dU (a a ) 
ay 1 dY2 aT ay 1 

(6-28) 

The operator (a/aT) + u(a/aYl) is the time derivative in a coordinate system 

moving with the mean velocity U, which is shown in section 2.5.1. 2 to be of 

the order of the source convection velocity. This operator is therefore 
roughly equivalent to a multiplication by the average angular frequency n of 

the sound in a coordinate system moving with the sound sources. Hence, 

within the jet the first term on the left side of equation (6-28) should be neg­
ligible in comparison with the second whenever the wavelength 27TCO/Q is 

large compared with the jet diameter. Since U vanishes outside the jet, the 

operator (a/aT) + U(a/aYl) reduces to the operator a/aT in this region. 

But the operator a/aT is roughly equivalent to multiplication by the angular 

frequency w of the sound in a fixed frame. Hence, the moving-medium wave 

operator on the left side of equation (6-28) can be approximated by the free­

space wave operator 

whenever the wavelengths 27TCO/ W and 27TCO/ n are both large compared with 

the jet diameter. Since the data of reference 9 show that these wavelengths 

are typically 8 to 10 jet diameters, this approximation should not be too un-
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reasonable. Hence, we replace equation (6-28) by 

(6-29) 

The solenoidal conc!ition (6-21) implies that (e. g., section 5.3 of ref. 10) 

the vector potential 

A(x,t) =~ vxJ ~(y,:: dy 
47T I x - y I 

satisfies the relations 

(6-30) 

and 

Hence, introducing the permutation tensor 4 
Eijk and using equation (6-30) to 

eliminate w2 in the second term on the right side of equation (6-29) show 

(upon recalling that U is a function of Y2 only) that equation (6-29) can be 

written in the more compact form 

4E· ·k = 0 if i, j, and k are not all different; 

E~~k = 1 if i, j, k is a cyclic permutation of 1, 2, 3; 

Eijk = -1 if i, j, k is an anticyclic permutation of 1, 2, 3. 
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(6-31) 

In a jet shear layer the mean velocity gradient dU/dY2 is slowly varying over 

the relatively narrow strip at the center of the mixing region where most of 

the turbulence energy is concentrated (refs. 11 and 12). Thus, we assume 

that dU/dY2 = constant, and equation (6-31) now becomes 

(6-32) 

where 

o dU 
T .. = w.w. + 401oE2·k - Ak 

1] 1] 1] dY2 
(6-33) 

Notice the resemblance between these equations and equations (2- 5) and 

(2-7), on which the theory of jet noise developed in chapter 2 is based. The 

principal difference is that the source term in equation (6-32) is adjusted to 

account for the fact that the sound sources are embedded in the flow field of 

an actual jet. 

The methods developed in sections 2.3 and 2.4 to calculate the sound 

field from Lighthill's equation can also be applied to equation (6-32). This 

was done in reference 13. After introducing the moving-frame correlation 

tensor (2-26) and neglecting variations in retarded time and mean velocity 

across an "eddy, " it was shown that the intensity spectrum I (x I y) of the 
w 

sound emitted by a unit volume of turbulence located at the point y is given 

by 
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,...,4p ~~ 0 x.x.xkxZ If '''''' lw(x l y) = -------- 1 J Re e1~~ TR:. df dT 
2 5 2 6 1Jkl 

327T cO(1 - Mc cos e) x 
(6-34) 

where 

n = w(1 - Me cos e) 

and the remaining quantities are defined in chapter 2. It is also shown in 

reference 13 that the correlations Q kl and 0 can be expressed in m, "'TIl , n 
terms of velocity correlations to obtain 

f + - / - 8 ~dU)2 R. 'kl d~ = R.·kl d~ - - 01· 0 1k(02 0. - 02 0. )(02 0 z - 02 0 z ) -
1J 1J 15 1 P Jq q JP r s s r dY2 
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provided it can be assumed (as is done in section 2. 5 . 1. 1) that the turbulence 

is locally homogeneous and incompressible. Finally, after introducing the 

joint normality hypothesis and assuming that the turbulence is isotropic (sec ­

tion 2. 5. 1. 1) , it is found that the aZimuthally averaged intensity 1(x 1 Y)a v 

(fig. 2-6 ) defined in section 2 . 5.1.1 now becomes 

- - 1- Po (24 j 0 -) I(x y)av = - Rllll d~ 
2 5 3 2 4 

161T cO(1 - Mc cos e) x 27 7=0 

(6 -35 ) 

where 

in the ratio of the maximum shear noise to the self-noise. The principal dif­

ference between this equation and the corresponding equation (2- 39) obtained 

from Lighthill's theory is that the convection factor is changed from 

(1 - Mc cos er 5 to (1 - Mc cos er3 . 
Figures 6- 1 and 6-2 are the same as figures 2-14 and 2-15 with additional 

curves corresponding to the new convection factor (1 - Mc cos er 3 included. 

The value of Mc remains unchanged. It can be seen that the convection fac­

tor obtained in this section is in better agreement with the data. Further 

comparisons 5 were made with jets from circular, plug, and slot nozzles in 

reference 14. 

t 
5In making these comparisons, A was set to zero. 
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Figure 6-1. - Experimental di rectivity data of reference 22 of chapter 2. 
Jet nozzle diameter,S. 08 centimeters (2 in.!. 

By means of a totally different analysis , Jones (ref. 16) obtained a con­

vection factor (1 - Mc cos er3 for the shear-noise term while still retaining 

the convection factor for the self-noise term. But since the shear noise is 

always zero at 900 to the jet axis, his results do not agree particularly well 

with experiment. 
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Figure 6-2. - Experimental directivity data of reference 23 of chapter 2. 
Jet nozzle diameter, 2. 54 centimeters (l in.), 

6.8 SOLUTIONS OF PHILLIPS' AND LILLEY'S EQUATIONS 

6.8.1 General Background 

The best way of ensuring that the effects of the mean flow are properly 

accounted for is to solve equations (6-16) and (6-17 ) with the correct velocity 

profiles inserted into the left sides. This is a very difficult task and has not 

as yet been completely accomplished. However, in attempting to achieve this 

goal a number of studies of the sound emission from various multipole sources 

in idealized flows (chosen to more or less resemble that of a jet) have been 

carried out. Perhaps the earliest work along these lines was done by Gottlieb 

(ref. 16). He considered the sound emission from a monopole source em­

bedded in a uniform cylindrical flow field6 (as illustrated in fi g . 6-3 ). This 
work was extended by Slutsky, Tamagno, and Moretti (refs_ 17 to 19 ) to in-

6Notice that the direct r ef raction term on the left side of eq. (6-17) i s zero for this 
type of flow. Hence, in thi s case, Lilley' s and Phillips! theorie s should lead to the 
same results . 
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x' 
F Observation point 

" 

----.---r---------~/ / '" Jet boundary ~"'''-' 

~ ~~-s-ou-rc-e-po-in-t - Source "-~ point~~ 
U 

Figure 6-3. -Infinite cylindrical jet 

elude quadrupole s ources and distributions of sources. Some implications of 

the infinite cylindrical jet solution are given in a recent paper by Mani 

(ref. 20). The sound emission from a monopole source in a uniformly sheared 

(linear velocity profile ) two-dimensional flow (shown in fig. 6- 4) was analyzed 

by Graham (refs. 21 and 22 ). In fact, Phillips derived equation (6-13 ) to an­

alyze the sound emission from a two-dimensional shear layer. He used it to 

analyze an arbitrary velocity profile but used a perturbation procedure to ob­

tain approximate solutions. Phillips' solutions were extended by Pao 
(ref. 23). 

yz 

~ Source point 

~~~~e_Yl 

Figure 6-4. - Two-dimensional uniformly sheared mean flow. 
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6.8.2 Solutions for Two-Dimensional Planar Mean Flows 

6.8.2.1 Reduction to ordinary differential equations. - The essential 

feature which all these solutions have in common is that they are for unidirec­

tional transversely sheared mean flows which extend to infinity in two direc­

tions. This results in a great simplification, which allows equations (6-16) 

and (6-17) to be reduced to ordinary differential equations. We shall, for 

SimpliCity, restrict our attention to planar flows (i. e. , shear layers ). (Cyl­

indrical flow can be treated by a similar procedure.) The coefficients on the 

left sides will then depend only on a single variable, say Y2' It can also be 

assumed that c2 is a function only of Y2' Then equations (6-16) and (6-17) 

become 

(6-36) 

(6-37 ) 

Before proceeding it is convenient to introduce the dimensionless variables 
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where L denotes the thickness of the mixing layer (see fig. 6- 5), and U 00 

and Co denote the mean velocity and speed of sound above the layer. Equa­
tions (6-36) and (6-37) now become 

(6-38) 

(6-39) 

Y2 

L 
1---+------ Yl 

Figure 6-5. - Shear layer. 
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where 

ow· ow. 
qp=A-] _1 

07) . 07). 
1 ] 

ow. OWk ow. 
- 2A] 1 qL=- ---

07). 07) . 07)k 
1 1 

are the dimensionless Phillips and Lilley source terms, respectively, and the 

primes denote differentiation with respect to 7)2' Since the coefficients of 

these equations depend only on 7)2' it is natural to seek solutions by taking 

Fourier transforms with respect to the remaining variables. Hence, upon 

introducing the Fourier transforms 

for CL = P, L 

where k = (k1, k3) is the wave vector in the plane of the shear layer and the 

integrations are over all values of k and frequency n, equations (6-38) and 

(6-39) reduce to the ordinary differential equations 

(6- 40) 

408 

------ --~-----~ 



EFFECTS OF NONUNIFORM MEAN FLOW ON GENERATION OF SOUND 

·M2 
1 Q 

2 L 
A (n + Vk1) 

(6-41) 

When the speed of sound is constant across the shear layer, A = 1. The prin­

cipal difference between these two equations is the first derivative term which 

appears in Lilley's equation. 

6. 8.2.2 Numerical and exact solutions to Lilley's equation. - When 

A = 1 and the source term is put equal to zero, Lilley's equation becomes 

(6-42) 

This equation was first introduced by Pridmore-Brown (ref. 24) to study the 

sound propagation in a duct containing a sheared flow. He solved the equation 

approximately by using an asymptotic expansion valid for high frequencies. 

Since then this problem has been studied by a large number of investigators 

(refs. 25 to 34), most of whom have obtained numerical solutions. In fact, 

aside from the trivial case where V = constant, there is only one velocity 

distribution for which the solution to equation (6- 42) can be expressed in terms 

of known functions (ref. 35). This is the case of a constant shear (V' = con­

stant). Thus, introducing the new variables 

~ = -- (n + k 1V) ~
M 

iV'k1 
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and 

where 

k2 
b=----

-2ik1MV' 

into equation (6- 42) shows that 

where the primes now denote differentiation with respect to ~. We can easily 

carry out the first integration and without loss of generality set the resulting 

constant of integration to zero. But this shows that r satisfies Weber's 

equation (ref. 36) 

The general solution of this equation is an arbitrary linear combination of the 

two parabolic cylinder functions D -b- (1/2)(±O of Weber which are defined, 
for example, in references 36 to 38. Hence, the solutions to equation (6-42) 

are linear combinations of the functions 
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where the prime On the D now denotes that the differentiation is to be carried 

out with respect to the entire argument ±~. 

6.8.2.3 Application of Phillips' equation to high Mach number flows. -

In the general case, it is impossible to express the solutions to equations 

(6-40) and (6-41) in terms of known functions. However, Phillips obtained 

an approximate solution to equation (6-38) by performing an asymptotic ex­

pansion in inverse powers of the Mach number M. He applied this solution to 

study the Mach wave radiation from a supersonic shear layer. The mean 

velocity was assumed to approach - U 00 (the negative of the velocity above the 

shear layer) at large distances below the shear layer. 

6.8.2.3.1 General properties of Mach waves: Before discussing his 

solution to this problem, we shall consider a few features of Mach wave radia­

tion which can be deduced directly from equation (6-40). Thus, we can sup­

pose that the source term vanishes in the region ~ 2 > > 1, well above the 

shear layer. Then in this region Qp = 0, A = 1, and V = 1. Hence, equa­

tion (6- 40) becomes 

This is a simple linear equation with constant coefficients. It is well 

known that its solution will either be exponentially increasing or decreasing 

or oscillating (sines and cosines) depending on whether the coefficient of P is 

positive or negative. But we must also require that the solutions remain 

bounded as Y2 - 00. Hence, only exponentially decreasing or oscillating solu­

tions can occur. The exponentially decreasing solutions correspond to damped 

waves which do not propagate into the far field, while the oscillatory solutions 

represent propagating waves. Thus, the propagating waves correspond to 
-

those whose frequencies n and wave numbers k are such that 

(6- 43) 

Now consider a turbulent eddy which is mOving along at some level in the 

mixing layer, say ~2 = Y. Its velocity will equal the convection velocity7 Vc 

7Notice that V c is not necessarily equal to V(Y). 
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for this level. It is shown in section 2. 5.2. 1 that the Mach wave radiation de­

pends only on the convection of such eddies by the mean flow and not on the 

turbulent fluctuations. Hence, in order to study this radiation, we can neglect 

the evolution of the eddy pattern in time and assume that it remains frozen. -Thus, the frequency of the component of the turbulence with wave number k 

must be equal to the frequency 

with which it is convected past a fixed observer. Hence, it follows from equa­

tion (6- 43) that an eddy at the level Y can only radiat8 Mach waves if 

(6-44) 

And upon introducing the angle 

between the wave vector8 k and the mean flow direction, equation (6-44) 

becomes 

This shows that Mach waves will be radiated from those levels of the shear 

layer where the difference between the convection velocity and the free-stream 
velocity U<Xl is greater than the speed of sound at infinity. Hence, for any 
given level of the shear layer, the Mach waves can only be generated by tur­

bulence with wave numbers lying in the sector 

I e I < cos- l 1 
M(l - V c) 

8This is the direction in which the sound wave propagates outside the shear layer. 
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of wave number space shown in figure 6-6. 

6.8.2.3.2 Asymptotic solutions to Phillips' equation: Phillips assumed 

that the turbulent eddies would not be much larger than six times the width of 

the mixing region. However, we have seen in section 2.5.2.5 that this is not 

necessarily the case in supersonic jets. In any event he concluded from this 

that the significant values of k would lie in the range k > 1. He then argued 

that for such values of k the variation A Hj A of the speed of sound was neg­

ligible compared with k2 in equation (6-40). Although his assumption about 

the eddy size may not be justified, we shall still follow Phillips and assume 

that the term A Hj A can be neglected. Equation (6-40) can then be written as 

(6- 45) 

I -1 1 I 
cos M(l - v c) 

-------+-+-+-+-+-+-+~_1--+__r_,r_+_--
--~------k1 

Figure 6-6. - Region of wave number space where Mach wave radiation is possible. 
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where 

a == n + Vkl (6- 46) 

Phillips considered the case where M2 is large and k = 0(1). In this limit, 
the methods outlined in appendix 6. B can be used to obtain asymptotic expan­

sions of the solutions to equation (6-45). Whenever Inl < Ikli, a/A will 
pass through zero at some value of 'T), say 'T)O. Then the coefficient of the 
large parameter M2 has a double zero at the turning point 'T) 0 and the prob­

lem is covered by case 2b in appendix 6. B. We therefore introduce the 

change of variable 

~ J1/2 

, " L .fa 0(1) dJ 
r J- 1

/
4 

X" 0
1
/

2 L ~: 0(1) dJ P 

into equation (6- 45) to obtain 

(6-47) 

where 

g (0 = ~2 + L - ~ (L)~(~ 'r 2 

1 L 2~' 4 ~' J 
M2Q 

h(~) = - P 
(~,)3/2 A2 
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and 

~ I == d~ = a(YJ) 

dYJ ~ 

Since a(YJ) is very nearly constant outside the shear layer, it follows that 

where 

!l = 

as ~ - 00 

a(YJ) for YJ on the upper branch 

a = lim a(YJ) 
17-- 00 

for YJ on the lower branch 

For this reason, Phillips changed the expansion variable slightly from M to 

with the upper sign holding for the upper branch. Inserting this into equa­

tion (6-47) shows that 

(6- 48) 

where 
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Treating the terms on the right as known and solving the remaining differen­

tial equations yield the Voltera integral equation (see ref. 2 for derivation) 

(6-49) 

where 

± ±(1 2)1/ 4 (1 2) ± (1 2)1/ 4 (1 2) H (0 = c1 2: J..L~ J 1/ 4 2: J..L~ + c2 2: J..L~ J -1/ 4 2" J..L~ 

and 

TT ~(2)1/4 (1 2) f. 2)1/ 4 (1 2) K(L t) = ~J..L~ J 1/ 4 - J..L~ ft J -1/ 4 - J..Lt 
2-../2 J..L1 / 2 2 2 

(, 2)1/ 4 (1 2) ( 2)1/ 4 (1 2)~ 
- J..L~ J- 1/ 4 2" J..L~ ~J..Lt J 1/ 4 2" J..Lt ~ 

As explained in appendix 6. B the asymptotic expansions of equation (6-47) are 

given by the iterated solutions of equation (6-48). The first iteration is 

The four arbitrary constants c:t=(i ::: 1,2) are determined by matching the up-
1 

per and lower branches of the solution at 7] = 7]0 and by satisfying the radia-

tion conditions at 7] = ±oo. The details are quite tedious and can be found in 

reference 2. After determining these constants it is shown that the asymptotic 

expansion of the solution for large distances above the shear layer is given by 

416 



EFFECTS OF NONUNIFORM MEAN FLOW ON GENERATION OF SOUND 

(6- 50) 

where 

As anticipated in section 6.8.2.3.1, this solution has the form of an 

outward-propagating wave (since a(y) is constant outside the shear zone). It 

also shows that for a given frequency n and wave vector k the pressure in 

the radiation field depends only on the turbulent source at the critical layer, 

where 

The procedure outlined in this section depends on the assumption that 

k = 0(1) and therefore that 

For the case where 

equation (6-45) is of the form (6-Bl) with r = 0 and 

--~ - - ~- - - - - - - -- -- - - ~-
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It therefore has two turning points separated by the dimensionless distance 

k i M. These pOints cannot be treated independently. But it is necessary to 

first obtain a solution within the "critical layer" between the two turning 

points and then match this solution to the two asymptotic solutions outside the 

critical layer. The procedure involved is quite complicated. The interested 

reader can find a discussion of this type of problem on page 1103 of refer­

ence 39. 

The remaining possibility is that k i M > > 1. In this case the transition 

points are said to be well separated. Separate WKBJ approximations of the 

type described under case 2a of appendix 6. B can now be constructed in the 

neighborhood of each turning point, and the boundary conditions can be applied 

independently. Thus, the solution about the upper turning point must certainly 

satisfy a radiation condition at 1)2 = + 00 . However, it has been shown by Pao 

(ref. 40) that the remaining boundary condition is that the solution vanishes at 

1)2 = - 00 . The three cases k/ M « 1, k i M = 0(1 ), and ki M > > 1 are dis­

cussed in more detail by Pao in reference 23. 

Notice that the peak Strouhal number fdl u for jet noise is approximately 

0.2. Hence, KI M ~ 1 and as a result the intermediate approximation 

k i M = 0(1) should be more applicable to jet noise than the low-frequency ap­

proximation k i M < < 1 used by Phillips. 

6.S.3 Flows of Finite Extent 

All the solutions of the convected wave equations (6-16) and (6-17) dis­

cussed up to now have been for transversely sheared unidirectional flows 

(either shear layers or infinite cylindrical jets). In such flows the jet must 

extend from - 00 to + 00 . It has been argued by Schubert (refs. 41 and 42) 

that the results of references 17 to 19 imply that the infinite cylindrical jet 

model tends to considerably overpredict the observed directivity patterns of 
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actual jets. Ribner 9 has attributed this to the fact that the nonuniform mean 

flow refracts the sound field only slowly and requires distances of many wave­

lengths to cause significant refraction. Hence, the slow decay with axial dis­

tance of the velocity field in an actual jet can have a significant effect on the 

amount of refraction observed in the far field. In order to s tudy the effects 

of a mean flow on the radiated sound field, a number of experimental (refs. 8, 

and 43 to 45) and analytical (refs. 41, 42, and 46) studies have been carried 

out by Ribner and his coworkers at the University of Toronto. 
The experiments consisted of measuring the far-field directivity pattern 

of a harmonic point source placed within the potential core 10 of an air jet. 

The source was the orifice of a tube ('" 1/ 16 in. inside diam) driven through a 

conical coupling by a horn-type loudspeaker driver. With the jet turned off 
the source radiates essentially omnidirectionally. Hence, the directivity pat­

terns observed with the jet turned on must be due to the effects of the mean 

flow. 11 Typical results obtained with the source frequency equal to the peak 

Strouhal number of the sound field emitted by the jet are shown in figure 6-7. 

These investigations suggest that the observed dropoff, or cleft, in the noise 

directivity pattern near the axis is due mainly to refraction. 
The analytical studies were carried out (ref. 44) "to verify the refraction 

interpretation analytically and at the same time extend the available data. " 

Although these studies were purely numerical, they used mean velocity pro­

files corresponding closely to those observed in an actual jet (instead of the 
highly idealized mean velocity profiles used in previous studies). Two types 

of analyses were carried out, the first consisted of a study of the high­

frequency limit by using ray traCing methods, and the second consisted of a 

finite difference solution of a convected wave equation. There have been some 

objections raised (ref. 3) concerning the type of wave equation used by Schu­

bert since the direct refraction term is accounted for by formulating the prob­

lem in terms of Obukhov's quasipotential (ref. 47), which is based on the as­

sumption that the mean-flow Mach number is very small. An improvement of 

9personal communication. 

lOIn some experiments the source was moved to the side of the core to determine 
the effect of this displacement. 

llThe effects of the turbulence on the emitted sound can probably be neglected for 
the reasons given in section 6. 5. 
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Mach 
00 number, 

M~_ .. I_~ 

10 

Figure 6-7. - Effect of jet velocity on directivity. Jet temperature, ambient; average effective source fre­
quency, 3<XXl hertz (lDlc = 0. 168); source position, on jet axis 2 nozzle diameters dCM'nstream of nozzle. 
(From ref. 45.) 

Schubert's analysis could therefore be obtained by using the convected wave 

equation (1-20) with the mean velocity allowed to vary both in the transverse 

and axial directions. Where comparisons of the analysis with experiments 

were made, the agreement was generally good although the numerical results 

did seem to exhibit somewhat more refraction. 
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APPENDIX 6.A 

DERIVATION OF EQUATION (6-26) 

It follows , from equation (6-24) and the fact that U is a function of Y2 

only, that the right side of equation (6-25) can be written as 

But since it follows from equation (6-21) that 

oW2 o(wi w2 ) 
wi -- =---

oYi oYi 

and that 

2 ow. ow. 0 w.w. 
_1_J = 1 J 
oy. oy. oy. oy. 

J 1 1 J 

equation (6-25) becomes 
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And since 

and 

this equation can also be written as 

where 
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APPENDIX 6.B 

ASYMPTOTIC SOLUTIONS TO STURM-LIOUVILLE EQUATION 

In this appendix we shall discuss the asymptotic expansions as M - 00 

of the solutions to the general Sturm- Liouville equation 

where q and r are arbitrary functions of T]. 

6. B. 1 Case 1: q (11) > 0 

First, consider the case where q(T]) is strictly positive. Liouville car­

ried out the asymptotic solutions for this case by introducing the new variables 

~ = f ~q(T]) dT] 

X = [q(T])J1/ 4p 

which transform equation (6-B1) into the equation 

where 

_ 1 q" 5 q,2 r 
B -- -------

4 q2 16 q3 q 

(6-B2) 

and the primes denote differentiation with respect to T]. By treating the terms 

on the right side as known, we can solve the remaining linear inhomogeneous 

equation with constant coefficients in the usual way to obtain the ' Voltera in­

tegral equation 
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x = c1 cos M~ + c2 sin M~ + ~ l~ [sin M(~ - t~(t)x(t) dt 
M a 

where cl' c2 ' and a are arbitrary constants. The method of successive 

approximations yields a solution to this equation of the form (ref. 39) 

where 

Xo = c 1 cos M~ + c2 sin M~ 

and 

This series converges and also represents an asymptotic expansion of the 

solution in the limit as M - 00. However, the iterated solution becomes ex­
tremely complicated if one attempts to carry it much beyond the first itera­
tion. 

by 
Thus, the first approximation to the solution of equation (6-Bl) is given 

p = cl[q(7J~-1/4 cos [M f Vq(7J) d7J] + c2[q(7J)ll/4 sin [Mf vq(7J) d7J] 

(6-B3) 

6.B.2 Case 2: q(TjO) = 0 for Some PointTjO 

If q(7J O) = 0 for any point 7J = 7J0' the asymptotic solution (6-B3) will have 
a singularity at this point. But since 7J 0 is not a singular point of equa-
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tion (6-Bl), the solution to this equation must also not be singular there. 

Hence, equation (6-B3) cannot be an asymptotic representation of the solution 

to equation (6- B1) in the neighborhood of any point where q(TJ) = O. The point 

TJ 0 is called a turning point. 

6. B. 2.1 Case 2a: q(TJ) has a simple zero at the turning point 1)0. -

First, consider the case where q(TJ) has a simple zero at TJO. Thus, 

as TJ - TJO 

Then for 1) near TJO equation (6-Bl) can be approximated by the equation 

(6-B4) 

The solutions to this equation can be expressed in terms of either Bessel 

functions of order 1/ 3 or Airy functions. 

Since the solution for case 1 was obtained by transforming equation (6-Bl) 

into one with approximately constant coeffiCients, it is natural, in the present 

case, to attempt to find a solution to this equation in the neighborhood of -1)0 

by transforming it approximately into the form (6-B4). Assume for definite­

ness that 

Then upon introducing the new variables 

for TJ > TJO 

for TJ < TlO 
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and 

X= ~fdip 
,,~ 

equation (6-Bl) becomes 

where 

The procedure used to obtain the asymptotic solutions of equation (6-B2) can 

also be applied to this equation. And if q(T)) has no other zeros, the resulting 

expansions will represent the solution over all space. This approach is re­

ferred to as the WKBJ approximation. 

6. B. 2. 2 Case 2b: q(T)) has a double zero at T)O' - Now suppose that q(T)) 

has a double zero at T)O' Thus, 

as T) - T)O 

Then for T) near T)O equation (6-Bl) can be approximated by the equation 

2 2 
P" + M a(T) - T)O) P = 0 (6-B5) 

The solutions to this equation can be expressed as (l/4)th-order Bessel func­

tions. We suppose for definiteness that q(T)) ~ O. Then in order to transform 
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equation (6-B1) approximately into the form (6-B5), we introduce the new 

variables 

1/ 2 

, = (2 ~: yq(t) dt) (6-B6) 

and 

J1/4 
X = q1/

4 ~ ~: v'q(t) dt p (6-B7) 

where 

~ 2: 0 

to obtain 

d2 2 2 -----X + M ~ X = B(UX (6-B8) 
d~2 

where 

B(,) ~ r + i'" - ~ f)2] (, ,,-2 (6-B9) 
2~ I 4 ~ I 

and the primes denote differentiation with respect to 7). Then the procedure 

used to obtain the asymptotic solutions of equation (6- B2) can be applied to 

this equation. 

Notice that the inverse transform 
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of equation (6- B6) is double valued with one branch, which we shall call the 

upper branch, corresponding to the region TlO :5 TI < 00 and the other, which 

we call the lower branch, to the region - 00 < TI :5 TlO' 
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