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Page 281 should read

Expanding equation (3-B7) for large Z shows that

w=_1 /wszdqu-o(z'z)

2riZ J-c/2

as Z -, Hence, it follows from equations (3-45), (3-B3), and (3-B5) that

as Z -, The pressure fluctuation can therefore remain bounded as Z -« only if

/w Q dy1 =0
(c/2)

Inserting equation (3-B20) into this relation and carrying out the integration yield

c/2
Qg = ik [ o Q(y,)dy, (3-B21)

while inserting equation (3-B20) into equation (3-B19) yields
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PREFACE

Aeroacoustics is concerned with sound generated by aerodynamic forces
or motions originating in a flow rather than by the externally applied forces or
motions of classical acoustics. Thus, the sounds generated by vibrating violin
strings and loudspeakers fall into the category of classical acoustics, whereas
sounds generated by the unsteady aerodynamic forces on propellers or by tur-
bulent flows fall into the domain of aeroacoustics. The term aerodynamic
sound introduced by Lighthill (who developed the foundations of this field) is
also frequently used.

Because most of the dominant noise sources in aircraft are aeroacoustic
in nature, the literature in this field is often closely connected with aeronau-
tical applications. Up to this time, no systematic text devoted specifically to
aeroacoustics has been written - probably because the field is still in a fairly
early stage of development. But, after teaching this subject to a group of en-
gineers and scientists working on aircraft noise at the Lewis Research Center,
I concluded that such a text could serve a useful purpose. I felt that the book
should be moderately advanced and aimed at the reader with a knowledge of
fluid mechanics and applied mathematics at the master's degree level.

There is sometimes a tendency in the literature to try to separate aero-
acoustic problems into an acoustic part and an aerodynamic part and to treat
each one separately. In this book, I have not attempted to make this distinc-
tion and have combined all the acoustics and aerodynamics needed to relate
the sound field to the basic parameters of the problem.

The first chapter is concerned with certain aspects of the acoustics of
moving media which are required in the remaining chapters. It also serves to
familiarize the reader with some basic concepts of classical acoustics. Its
main function, however, is to develop the mathematical techniques needed in
the remaining chapters. The second chapter introduces Lighthill's acoustic




analogy and applies it to the case where the solid boundaries do not directly
influence the sound field. This is the situation in jet noise. A detailed anal -
ysis of subsonic jet noise and a qualitative discussion of supersonic jet noise
are given. The third chapter develops the acoustic analogy to include the ef -
fect of solid boundaries. The results are applied to the discussion of the sound
generated by struts, splitters, propellers, helicopter rotors, and so forth.
The effects of a uniform mean flow are included in the fourth chapter, and the
concepts are used to obtain detailed analyses of the various fan noise mech-
anisms. In chapter 5 the acoustic analogy approach is abandoned, and a direct
calculational procedure is developed. It is applied to the prediction of com-
pressibility effects on the sound generated by a blade row. Finally, in the last
chapter the effects of a nonuniform mean flow are included, and equations are
developed which are intermediate between Lighthill's acoustic analogy and the
direct calculational approach. These results are used to predict the effects of

the mean flow field on jet noise.
Credit is given to the original source of an idea whenever possible. Al-

though some of the analyses and formulations developed are somewhat original
or extensions of analyses in the literature, the omission of a reference is not
meant to imply originality on my part. In fact, I wish to apologize in advance
if T have inadvertently not given credit to the originators of any of the ideas
which appear in this text.

viii




CHAPTER 1

Review of Acoustics of
Moving Media

1.1 INTRODUCTION

In order to make the material in this book available to as broad an audi-
ence as possible, portions of the first chapter are devoted to a review of those
aspects of classical acoustics and the acoustics of moving media which are
necessary for understanding the theory of aerodynamic sound. In addition, a
number of the mathematical techniques needed in the succeeding chapters on
aerodynamic sound theory are developed. It is assumed that the reader is
familiar with basic fluid mechanics.

A vector quantity is denoted by an arrow (K) and the magnitude of the vec-
tor by the same letter (A). The components of the vector K are denoted by
Ai with i equal to 1, 2, or 3. An asterisk (*) denotes complex conjugates.
Whenever possible, the capital and lower case of the same letter are used to
denote Fourier transform pairs with respect to the time variable. Overbars
(7) denote time averages, and brackets () denote space averages. The letter
T (without subscripts) denotes a large time interval. Other commonly used
symbols are defined in appendix 1. C.

1.2 DERIVATION OF BASIC EQUATIONS

We shall now consider an inviscid non-heat-conducting flow whose motion
is governed by Euler's equation (i. e., the momentum equation for inviscid
flow)
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the continuity equation

2Q+V-Vp+pV-;;=pq
oT

and the energy equation (which we write in the form)

-a-S-+V-VS=O

o7

where V is the vector operator

(1-1)

(1-2)

(1-3)

V= {v{,v9,Vs} is the velocity of the fluid, p is its density, p is its pres-
sure, and S is its entropy. The time is denoted by T, {yl, y2,y3} are

Cartesian spatial coordinates, q denotes the volume flow being emitted per
unit volume by any source of fluid within the flow, and ‘Z denotes an exter -

nally applied volume force.

Now, in general, any thermodynamic property can be expressed as a

function of any two others. Thus, in particular,

p=pp,S)

Hence,

2 oS

dp = L dp +<3_P> ds
c P

(1-4)
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where
ot 1 (1-5)
9
ap S
Consequently,
®+vvp=L(&ivvp (1-6)
0T c2 0T

For a steady flow with velocity ‘-;O’ pressure p, density Po» entropy
Sy = S(po,po), and cg = c(po,po), equations (1-1) to (1-3) and (1-6) become

. = - 2)
pOVO VVO Vpo
Vi po\_/"o =¥}
> (1-7)
VO' v SO = {0

provided there are no external forces or mass addition.

Consider an unsteady disturbance with characteristic length A traveling
at a propagation speed whose typical value is 5 through a fluid in which the
velocity, pressure, and density are otherwise determined by equations (1-7).
This disturbance introduces changes in velocity, pressure, density, entropy,
and 02(557-—\;0, p'=p-Py p =p-pg S =85-8y ¢ =c” -cg, respec-
tively) as it passes by a fixed observer.” These changes all occur on the time
scale Tp = 1/f, where f = E/)\ is the characteristic frequency of the disturb-
ance. The propagating disturbance is shown schematically in figure 1-1.

IThe flow velocity u induced by the passage of the disturbance is called the
acoustic particle velocity. It is entirely distinct from the propagation speed C of the
disturbance.
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[6l,p',p', 5", or ¢

<4

el e

Figure 1-1. - Propagating disturbance.

The amplitude of the disturbance is measured by the magnitude of the

fluctuations 1_1., p, p', s', and 2’ we shall consider only those flows for

which this amplitude is so small that not only is
[u] <<C = \/T, (1-8)
but also? p' << (pg), p' <<(pg), §' << (S, and ¢’ <<(cZy. Then the

amplitude of the disturbance can be characterized by a dimensionless variable
€ such that

e s 1 (1-9)

and

2The first inequality requires that the velocity induced by the disturbance be small
compared with its propagation speed. The remaining inequalities ensure that the fluc-
tuations in thermodynamic properties are small relative to their mean background
values,

B
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[€]/C =0(e) )
p'/<p0> = 0(6)

(1-10)

N

P'/<Po> = O(e)

$'/(Sg) = O(e)

cz'/(cg) =0(e)

Inequality (1-8) involves the assumption (to be verified subsequently for spe-
cific cases) that for sufficiently small disturbances the propagation speed C
is independent of the amplitude of the disturbance.

We allow ﬁf'ol to be of the same order as C. Then since the changes of
time and length associated with the disturbance occur on the scale of Tp and
X, respectively, it is reasonable to introduce the nondimensional variablesS

T= /T, =17 Po = Po/{Po
¥; = v/ 85 = 85/(S¢
o =7,/C ¢2 = c2/(coy
50 = (pg - (Pg) )/((p()}(vg)) T=1/Ce

P =p'/(ppe § =s'/(Spe

2 =0/{pye £l =czv/<c(2,>e

3Recall that the pressure variations in a steady inviscid flow are of order

(py) (V)-
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When these quantities are substituted into equations (1-1) to (1-3) and (1-6),
we obtain after subtracting out equations (1-7)

12

(oo + ep') [Z—E,+ '70- Vu+uV (vg + ea):l+ p';O- VVO

——

5 <p0> e /

g A
~2 i
c{py Hpp

~ (o +€S')q
11— O
—%+V I:(N0+ep)u+pvo] oo

A

0 -VS +

0

R
R’

%Y,
<R

+ -VSO+€-V

[
[t

0

32

(,5(2) + €62 >[§%+ VO-Vp' + UV ( ot ep'):|+Ach VO-V Po

(Pg) - X A e R RN

e aLN+V0-Vp +u'V(O+€p')
2 oT

(e2) (py)

But since the nondimensionalization has been specifically chosen to make the
dimensionless variables of order 1, the inequality (1-9) shows that the terms

multiplied by € in these equations can be neglected to obtain, upon reverting
to dimensional quantities,
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- =5
oJu — - - — 1 ol -
p0<-a;+vo-Vu+u-VvO>+va VVO—— Vp+;
6p' =5 e
a—-+V (p0u+pvo)—p0q
e L (1-11)
a8 = y s
— WV S uVES =0
oT 0 0
R g Y A R v e B v TR
i (s e P Po g e gt 0
T oT i

These equations are frequently referred to as linearized gas-dynamic equa-
tions. We have shown that they govern the propagation of small disturbances
through a steady flow.

Perhaps the simplest nontrivial solution to equations (1-7) is provided by
a unidirectional, transversely sheared mean flow wherein

—

X ;U(yz) Py = Constant  p, = Constant (1-12)

and I denotes the unit vector in the uy direction. This velocity field is il -
lustrated in figure 1-2. For several reasons the main emphasis will be on
cases where the background flows are of this type. - The first is the relative
simplicity of this flow. Since the equations governing the propagation of sound
in a moving medium are, in general, quite complex, it is helpful to consider
one of the simplest cases. The second reason results from the fact that in the
following chapters only the effects of velocity gradients on aerodynamic sound
generation are considered and not the effects of gradients in thermodynamic
variables. Since the flow field given by equations (1-12) has only velocity gra-
dients and no pressure or density gradient, it is particularly suitable for il-
lustrating the effect of the former. Finally, it turns out that in many of the

4A more complete treatment of the acoustics of moving media from a different
point of view can be found in Blokhintsev (ref. 1).
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y
; uty,)

Y1

Figure 1-2. - Unidirectional, transversely sheared, mean

flow.

cases for which the study of aerodynamic sound is important the mean flow

field is, to a first approximation, of the type given by equation (1-12).
Inserting equations (1-12) into equations (1-11) and eliminating p'

between the first and last equation shows that

—

Dgu » 4u

Po —+i£i-—u2 =-Vp+;.W

D7t dy2

D

. _0-p+V-1_f=q
c2D*r

Po%0

where

(1-13)
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and we have dropped the prime on p so that it now denotes the fluctuating
pressure. This will be done whenever no confusion is likely to result.

The operator DO/D'r represents the time rate of change as seen by an
observer moving along with the mean flow. The third equation (1-13) there-
fore states that the entropy does not change with time for such an observer.
Thus, if the entropy were uniform and steady far upstream, it would have to
be constant everywhere. But equation (1-4) shows that, whenever the entropy

is constant,

dp=—1—dp

Cc

and the fourth equation (1-10) shows that for small e,

2 - c(z) + O(€)

Then, since 0(2) is constant, integrating the previous equation from the back-
ground state implies that

=P' for S = Constant (1-14)

The quantity on the right is called the condensation.
Since

Path . Baos, i du
0 bl e Rl e |
IB)gr v D)o Y 8y1

taking the divergence of the first equation (1-13), operating with DO/D'r on
the second, and subtracting the result give
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2

D ou D.q

2 5.0 2 = 7 0
Vinp it e S S o SN s = s
Po ; it DTt

c(z) D2 Yy dyy

(1-15)

Because this equation has two dependent variables, it cannot by itself be
solved to determine the disturbance field. However, in the special case where
the mean velocity U is constant, the last term on the left side drops out and
we obtain the equation

2

D e D.q
Vzp-._l__opzv' ; ..poi (1-16)
c(z)D'r2 S

which (together with suitable boundary conditions) can be solved to unambig-
uously determine the fluctuating pressure p. Once this pressure is found,
the acoustic particle velocity U can be determined from the first equa-
tion (1-13). Equation (1-16) is an inhomogeneous wave equation for a uni-
formly moving medium. The reason for this terminology will be clear
subsequently.

Equations (1-14) and (1-16) show that, if the entropy is everywhere con-
stant, the density fluctuation also satisfies an inhomogeneous wave equation

2
D - Dpa
Vzp i 0 s 1lv. % - Py —0") for S=Constant (1-17)
2 D72 2 DT
‘0 ‘0

Finally, when U =0, equation (1-16) reduces to the inhomogeneous wave equa-
tion for a stationary medium or simply the inhomogeneous wave equation

2 ) 3
_=v.;_p03_q (1-18)
72 0T

which forms the basis of the field of classical acoustics.

10
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We now return to the general equation (1-15). This equation closely re-
sembles the wave equation (1-18) for a nonmoving medium with 9/97 replaced
by DO/D'r. However, the additional term on the left side involves the velocity
and must be eliminated in order to obtain a single differential equation for the
pressure. To this end, we differentiate the y, -component of the momentum

equation in (1-13) with respect to y, to obtain

D, du 2 9
e 2 (1-19)
Bl 8y1 ay2 ayl ay1

Then operating on equation (1-15) with DO/D’T and substituting equation (1-19)

into the result yield

2

2
D D 2 D 14 0 D
L AR Ui e T Y 2, 20 g 120
7F cOD'rz dy2 ayzayl DT dyz ayl DTZ

Thus, in the general case of a transversely sheared unidirectional mean flow
the wave equation is of higher order (in two of the variables) than it is for a

uniformly moving medium.

1.3 ELEMENTARY SOLUTIONS OF ACOUSTIC EQUATIONS

In principle, all acoustic phenomena which occur in a transversely
sheared flow can be analyzed simply by solving the wave equations derived in
section 1.2. In this section we shall obtain a number of simple solutions to
these equations which either illustrate certain physical principles or serve as
tools to synthesize more complicated solutions. We shall first consider the

case of a stationary medium.

1.3.1 Solutions of Stationary-Medium Wave Equation

The basic properties of the Fourier series and transforms which are used
in this text are listed in appendix 1.A. The notation and sign conventions
adopted therein are adhered to whenever possible.

11
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Multiplying both sides of the stationary-medium wave equation

2 o
Vzp__.l_a_pzv./_poa_qz_y (1-21)
2 0T
o oT
by ein and integrating by parts over the appropriate time interval reduce

this equation to the inhomogeneous Helmholtz equation

2
ve o CX P - o (1-22)
0

where P and T are the Fourier coefficients or Fourier transforms (depend-
ing on whether the process is periodic, stationary, or vanishing at «) of p
and y, respectively. (We shall henceforth refer to quantities such as P and
I' simply as Fourier components. )

Solutions to equation (1-21) can be obtained by inserting the solutions to
equation (1-22) into the appropriate Fourier inversion formula. If the source
terms and boundary conditions are simple harmonic functions of time, the so-
lution p of equation (1-21) is also a simple harmonic function. That is,

o= Pe-in
1.3.1.1 Plane wave solutions. - The simplest case occurs when the re-

gion under consideration is all of space and there are no sources present.
Then equation (1-22) becomes

2
v2 [« P =50 (1-23)
o

The three-dimensional Fourier transform of this equation is

2




REVIEW OF ACOUSTICS OF MOVING MEDIA

2
K2 2Y | 2=k + LY -k\2=0
o €0/ \ 0
where
p :/ P@)eX Y dk (1-24)

But since x§(x) = 0, this equation has the solution

9:A®56_2>
‘o

where A is an arbitrary function of the unit vector ¥ =k/k in the k-
direction. Hence, the solution to equation (1-23) is

0

18] = A(K)elk.y o <k - 2)1{2 dk dg'= (ﬁ) A(K)e 0 dk (1-25)

CO CO

-

0

where dx denotes the element of solid angle.
When

6(6 - 6)0(¢ - cpo)

sin @

A(x) = A

where g and ¢ are polar coordinates determined by
k = {sin ¢ cos ¢, sin ¢ sin ¢, cos 6} (1-26)

and ¢, ¢, bear a similar relation to the fixed unit vector ;0, equation (1-25)

becomes

i
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— -

A\ ik,ey

P :<i°_> Ae Y (1-27)
0

where ki, = w/c0 and I;O/ko e ;0. Equation (1-25) shows that the general so-

lution of equation (1-23) is simply a linear superposition of solutions of this
type. Hence, the general solution of the homogeneous wave equation

2
vip = L 2D _g (1-28)
2
o 0 72
can be expressed as a superposition of solutions of the type
i(l?o-g;-w 7)
p = Ae where ko = w/c0 (1-29)

called plane waves. 5 The constant A is called the complex amplitude of the

wave, &, = arg A = tan~1 I A/Re A is called the phase constant, and

cI>=kO- y-w'r+4>0 (1-30)

is called the instantaneous phase or simply the phase.
When the solution to equation (1-28) is given by equation (1-29), the pres-

sure at each fixed point 7}’ executes a simple harmonic variation in time
whose amplitude is ,A ] The angular frequency of the motion is w; its
frequency f is f = w/2r and its period Tp is Tp = 1/f. The vector EO is
called the wave number.

The pressure oscillations at every point have the same frequency and the
same amplitude ,A ’ However, the pressure oscillations at different points
will, in general, not be in phase. The difference in phase between any two

points, say 371 and §7’2, is given by EO . (37'1 & 37'2) and hence remains constant
in time. This also shows that the phase is constant on any plane perpendicular
to the ko-direction. Since the trigonometric functions are periodic, with

>When complex solutions to the wave equation are given, generally the solution to
the physical problem is understood to be the real part.

14
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period 2w, the pressure fluctuation at any two points will be in phase when-
ever the distance (I—{O/ko) . (57.1 - 37.2) between the two points measured along the

EO -direction is

This distance, which we denote by 2, is called the wavelength. Thus, at any
time t = to, the pressure will vary along the l?o-direction in the manner
shown by the solid curve in figure 1-3 and will remain constant along any plane
perpendicular to this direction. At a time 1/4 period later, the wave will ap-
pear as the dotted curve. Hence, the individual pressure oscillations at each
point are phased in such a way that they result in a wave of unchanged shape
moving through the medium in the Eo-direction. In other words, the pressure
oscillations at each point are passed on to adjacent points with a phase relation
that causes them to propagate as a wave with unchanging shape. Every sur-
face of constant phase & (given by eq. (1-30)), called a phase surface, must
be perpendicular to the Eodirection and move along with the wave, as shown
schematically in figure 1-4.

— Position of wave at time t
& - Position of wave 1/4 period later
\

N
N
~
-
-
-
~
~
~
<}
IS

Figure 1-3. - Plane wave propagation 1/4 period after time t.
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Figure 1-4. - Motion of phase surfaces for plane wave.

It can be seen from equation (1-30) that the common velocity of the phase
surface and the disturbance is o This velocity is called the speed of
sound. 2 We have therefore shown that, at least in this special case, the ini-
tial assumption used in deriving the basic wave equations (i.e., that the prop-
agation speed of a small disturbance is independent of the amplitude of that
disturbance) is justified.

1.3.1.2 Solutions in arbitrary regions. - When the region in which the
wave equation is to be solved is not all of space, the solution is usually not ex-

6For an ideal gas, this propagation speed o is given in terms of the absolute

temperature © 0 of the background state by

P
L= Y _O = yR@O
Po
which is equal to about 335 m/sec (1100 ft/sec) in air at standard conditions.
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pressed as a superposition of plane waves but rather as the superposition of a
number of eigenfunctions Poz of Helmholtz's equation, called modes, which
are appropriate to the region under consideration. Thus, the solution to the
wave equation will appear as the sum or integral (or perhaps both) of a number

-iwT

of simple harmonic solutions Pa(gf’)r Or upon expressing Poz in com-

plex polar form, this becomes

A@elESE-wT|

where k = cv/c0 and S and A are real;

We may regard the quantity & = k[S(y) - CO’T] as being the analogue of the
instantaneous phase which appeared in the plane wave solutions discussed in
section 1.3.1.1. At any given instant of time, & will be constant on any sur -
face S(§) = Constant. The surfaces of constant phase are called wave fronts
or wave surfaces, and the function S(§) is called the eikonal. However, the
amplitude of the wave A(;) is not necessarily constant on the wave front as it

is for plane waves:
Now the wave surface

k[S(y) - cy7] = ® = Constant = C,

will, in general, move with time. Thus, the point 3;’ O bl = C1 at time 7

will move to the point §+ 63; attime 7+ 67 and
K[S(Y) - ¢y 7] = K[S(y + 8Y) - co(7+ 7]
= k[S(g;) LR cO('r+ 87 ] + O[((Sg’.)d]
This shows that, to first order in 67,

VS- Ay = Ca 0T

0

Hence, 1n the limit as 670,

17
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=¢y (1-31)

vs . (W
dr

><I> =Constant

But since VS is always perpendicular to the wave fronts, VS/ IVS’ is the
unit normal to these surfaces (see fig. 1-5). And since (dy/d ’T)q) sl opiey 8
the time rate of change of position of a point which moves with the wave front
® =C,,

is the velocity of the wave front & = C 1 normal to itself. It is called the
phase velocity, and equation (1-31) shows that

c
0
= — i
Vp ’ S’ (1-32)

$=C; attime T+t

®=Cy attime t

Figure 1-5. - Wave fronts.
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1.3.1.3 Point source solutions. - Returning to the general solution (1-25),
we now take A to be independent of k. Then upon introducing the polar co-
ordinates given by equation (1-26) with the polar axis now taken along the y-
direction, we obtain a solution

2T g
3 2 i(w/co)y cos ¢
P:<_> A e sin g dg do
o
0 0

i(w/c,) =il /cr)
:2niée(/°y-2ni‘iée (w/cq)y
coiy coiy

to Helmholtz's equation (1-23) which depends only on the magnitude y of lﬂ

In fact, it is easy to see that, if y # 0, each of the terms

% ﬁéeﬂ(w/co)y
) iy

in this solution is itself a solution to equation (1-23). Hence, any superposi-
tion of solutions of the type

T, iw(zy/ca=-7) :
b - 0 (1-33)
4y

satisfies the wave equation (1-28). The wave fronts are given by
® = +ky - w7 and the eikonal is equal to +y so that

[vs| =1
But in view of equation (1-32), this shows that the phase velocity is again

equal to the speed of sound Co- Since the phase surfaces of the solution with
the upper sign move in the direction of increasing y, this solution must rep-
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resent an outward-propagating wave. The solution with the lower sign repre-
sents an inward-propagating wave.
In any region including the origin y = 0, however, the equation

: _Fi eﬂ:i(w/co)y

4y

P:t

does not provide a solution to the Helmholtz equation (1-23) but rather satis -
fies the inhomogeneous Helmholtz equation

2 .
v2pt <£> PE = _A5(Y) (1-34)
c
0
with a delta function source term at the origin. In order to show this, we
shall need to use the divergence theorem

/V-Kd§=/ﬁ.KdS (1-35)
v S

where A is any vector and v is an arbitrary volume bounded by the surface
S with outward-drawn normal n. Thus, if v is taken to be a sphere of ra-
dius r, centered about the origin 37 =0 and if dQ denotes an element of
solid angle, this shows that

7It will be seen subsequently that this type of behavior is quite typical of solutions
for any bounded source region. Hence, solutions which behave like (1/y)elKY for large
y are called outgoing wave solutions, and solutions which behave like (1/y)e'lky are
called ingoing wave solutions,
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2 N +
B o <§ra_> dm _ 2 ay g
o ay s
47
: H(w/ey)r
= T~ [ b aBSE ) b
0 0 o
0
2 i i(w/cy)
H(w/cn)y
iy e 0™ gy
CO Jw
0
- _FO
But since

/ 5(y)dy = 1
vV

and 6(y) = 0 in any region where P¥ satisfies the homogeneous Helmholtz
equation, we conclude that P* satisfies equation (1-34). By shifting the loca-
tion of the origin, we find that

N :_1:9_ il(w/co)r
47r

with
- [£-7]

satisfies the Helmholtz equation
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2
VZPi PR P Toﬁ(x -y)
o

with a delta function source term at the arbitrary point X.
Taking the inverse Fourier transforms shows that

-iw(1¥r/cy)
pi:_l_ e 0 FO dw:i-yo i T (1-36)
471r 47r o

(where Ty is the Fourier transform of yo) satisfies the inhomogeneous wave
equation

2
L& Jp*- (066 - B (1-37)
2 2

) 0T

V2-

with a point source of strength y0(7) located at the po1nt X.
In order to interpret this result, notice that rp is constant everywhere
along each line CyT-T = Constant in the r-7 plane shown in figure 1-6.

Figure 1-6. - Propagation of spherical waves.
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It therefore represents an arbitrary pulse propagating outward in the radial
direction with unchanged shape. The propagation speed is again equal to the
speed of sound o Henee, p+ represents a pressure pulse which propagates
outward with unchanged shape in the radial direction with its amplitude dimin-
ished by the factor 1/r.

Upon choosing y, to be the delta function 6t - 7), it follows from equa-
tions (1-36) and (1-37) that

Gl=1 s5l;-t+ L (1-38)
4rr o

is an incoming wave which satisfies the inhomogeneous wave equation

2
8_2 G? = _5(7-1)6(F - %) (1-39)

G

2

o
2
o
with an impulsive point source acting at the time t and located at the point X.

Since r is always positive, this solution together with all its derivatives
must certainly vanish whenever t < 7.

1.3.2 Solutions to Acoustic Equation for a Uniformly Moving Medium

Now suppose that the velocity U of the medium is constant so that the
wave motion is governed by equation (1-16). The equation closely resembles
the stationary-medium wave equation (1-18). This resemblance is not acci-
dental, for suppose we carry out the analysis in a coordinate system moving
at the constant velocity U. Then the medium ought to appear at rest, and
therefore the equation for sound propagation in this coordinate system ought
to be the stationary-medium wave equation. In fact, introducing the change

in variable

y = ;_'{U'r for 7 =17 (1-40)
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into equation (1-16) results in the stationary-medium wave equation

2
it S S, p:V'-;_pOa_q' (1-41)
2 12 oT
Co 8T

where V' denotes the operator

EL LT

oy} ay'z ayé

Solutions to the moving -medium wave equation (1-17) can therefore frequently
be obtained simply by transforming solutions to the stationary-medium wave
equation (1-41) back to the laboratory frame. Thus, transforming the plane
wave solution

&' g k- £
o

p=¢

to the wave equation (1-41) (with the source term omitted) back to the fixed
frame by equation (1-40) shows that

o eil_{- y-(w'+k- U) 7

where U = UE. This solution represents a plane wave in the fixed laboratory
frame with a frequency

w=w'+k-U=w'(l+Mcos g)
where M = U/c0 is the mean-flow Mach number and ¢ is the angle between

the direction k/k of propagation and the mean flow direction (see fig. 1-T).
The phase speed of the wave is

vp:1°_::(1+Mcos9)co=cO+Ucos9

)
>
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=4

\

6
ity
Figure 1-7. - Plane wave propa-

gation in a constant-velocity
medium.

This shows that the wave is traveling with a speed equal to o the prop-
agation speed relative to the medium, plus U cos ¢, the component of the
velocity of the medium in the direction of wave propagation. The frequency in
the laboratory frame is increased if the medium has a component of its veloc-
ity in the direction of wave motion and is decreased if it has a component in
the direction opposite to the wave motion. However, the wave has the same
wavelength, X = 27/k, in both reference frames. This is simply a conse-
quence of the fact that the moving wave pattern must appear the same to both a
stationary and moving observer and only the frequency and apparent velocity
of the wave can differ.

1.3.3 Solutions to Acoustic Equation with Velocity Gradients:

Geometric Acoustics

Returning now to the general moving -medium wave equation (1-20), with
source terms neglected, we find that the Fourier components of the pressure
satisfy the transformed equation

2 2
seliciig 2 MoPbod i 2. pl codM 8P 4y (1-42)
94 3y dyy 3Y90Y4

where M = U/c0 is the mean-flow Mach number and k = w/co. Then the so-

lution to equation (1-20) will be the sum or integral of terms of the form
-iwT
Pe i
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As in the case where the mean velocity is zero, we write P in the com-
plex polar form

P = A[F)eXSH) (1-43)
so that the general term in the solution is of the form

i ik S(y)-caT
A(y)e [ o™}

(1-44)
Thus, the wave fronts (surfaces of constant phase) are given by & = k[S(S;) -
¢o 7] = Constant; and the phase velocity is given by Vp = co/]VS l.

In order to simplify the situation, we shall consider the case where the
velocity varies slowly with Vo Tl’éus, we require that the length L over
which U changes by a unit amount® be so large that

e
kL

€= <<

This means that L/A >> 1/27 or 1 << L. Hence, the velocity changes occur
over a distance of many wavelencoths.

We are interested in obtaining solutions to equation (1-42) which are ana-
logous to the plane wave solutions discussed in the preceding sections. Since
the mean velocity varies slowly on the scale of a wavelength, we anticipate
that equation (1-42) will have solutions which behave locally as plane waves.
Thus, suppose there exists a solution of equation (1-42) such that

kS(¥) = KLS ()
(1-45)
A = Aym

8This is the length L for which

=lis
o,
&

]

o
<
)

o(1)
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where 7 = V/L. S,(0) = 0 and the derivatives of S, and A, with respect to
n; are offender 1%(1%fel™; SO and AO change on the scale of n). Then expand-

ing SO and AO in a Taylor series about ﬁ = 0 shows that for ky = O(1) or
y #O(\)

A = A(0) + 7. (VAgi=_g + Ole %
KS = kL\:ﬁ- (eso)?,’:o + 0(62):|

where

It follows that

A=~ AO(O)

~

kS ~ KL 7- (VS )

RO ALY

where we have put
i = k(VSO)ﬁ:O

Hence, for changes in 7 of the order of a wavelength, the solution (1-44) re-
duces approximately to the plane wave solution

ik-y-w7)
. AO(O)e
in order to find an expression for this solution which is valid for all
values of y (and not just for y = O(1)), we nondimensionalize the length scales

in equation (1-42) with respect to L, introduce equation (1-43) for P with A
and S given by equation (1-45), and neglect terms of order € = (kL) ~ in the
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resulting equation. Then upon reverting to dimensional quantities, we obtain
for the real and imaginary parts of this equation, respectively,

2

1-M B \lova . vs s AvZs - 3m2a 28, (1 - m 8 \3m 2A
1 oy’ Vi) W

hia (vl can B0 85
9y 1 Yy 0¥y 0¥g

and
=T

2
&) sl S A~ 6
91 9y

Since A # 0, the latter equation has two families of solutions. The interesting
solution is

—

lvs| =41 -Mm 38 )= 11 .Y .vs (1-46)

ayl cO

where U =iU is the velocity vector. Since the unit normal to the phase sur-
face n is given by

vS

PN
e

VS|

—

and Ucos 9=0U - n is the component of mean velocity normal to the wave
fronts (see fig. 1-8), equation (1-36) can be written as

8= sf 1~ HE0R0 ol
0

or
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=}
L

N\ :
= —— ——yj-axis

& =Constant, S = Constant

Figure 1-8. - Velocity of phase surface.

o
o BRI TP
Ucosé):tc0

Now suppose the flow is subsonic. Then since IVSI > 0, only the plus sign
can hold and

o

o) TR < 00 SO
Ucos(9+c0

The phase velocity Vp is therefore given by

= = Ukeos 0 +-¢

0

This is identical to the expression for the phase speed in a uniformly moving
medium given in section 1.3.2. In order to interpret this result, consider an
initially plane wave moving to the right in a velocity field which is increasing
in the upward direction, as shown in figure 1-9. The phase velocity will be
larger on the upper part of the wave surface than on the bottom. Hence, the
velocity of the wave surface normal to itself will be larger on the top than on
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L Y2
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Figure 1-9. - Bending of phase surface by mean flow.

the bottom. As a consequence, the wave front will bend in toward the lower
velocity region as it moves. Similarly, if the wave is traveling to the left, it
will bend upward toward the higher velocity region.

1.4 INTEGRAL FORMULAS FOR SOLUTIONS TO THE WAVE EQUATION

1.4.1 General Formulas

Before proceeding with the material of this section, it is helpful to recall
three well -known integral formulas from vector analysis. Thus, let 7 de-
note an arbitrary region of space bounded (internally or externally) by the sur-
face S(7) (which is generally moving), and let A be an arbitrary vector de-
fined on (7). Then the divergence theorem (1-35) states that

/ o ﬁds@):/ V- Ady (1-417)
S(7) U7

provided the integrals exist. If v S(Sf’, 7) denotes the velocity at any point y of
the surface S(7), the three-dimensional Leibniz's rule shows that

18 ¥ dy = ¥ a5+ V_ - Av ds@) (1-48)
} dr T »
v(7) UuT) S(7
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for any function ¥(y, 7) defined on 1f7). Finally, it is a direct consequence
of the divergence theorem that Green's theorem

Qp Wy P_‘I’> ds(y) = Wv2y - uv2ndy (1-49)
s(7 \ on ! U7

holds for any two functions ¥ and ¢ defined on v. In this equation we have
written 2% /dn in place of n - V.

In this section these formulas will be used to derive an integral formula
which expresses the solution to the inhomogeneous, uniformly moving medium,

wave equation

D2
Vzp = 1_2__0_p = -y, D (1-50)

2
o D7

in terms of a solution G(g;, T’;,t) of the equation

D

o N

v2G - G=-5t - D6E - ) (1-51)

[AV]

(8
cg Dy

9 This result is used extensively in subsequent

for an impulsive point source.
chapters to deduce the effects of solid boundaries on aerodynamic sound
generation.

It was shown in section 1. 3. 1. 3 for the special case of a stationary me-
dium, that, equation (1-51) possesses a solution (given by eq. (1-38)) at all
points of space which together with all its derivatives vanishes for t < 7. In
any region v which does not include all of space, equation (1-51) possesses
many such solutions. Hence, let G denote any solution of equation (1-51)

satisfying the condition

O8N : . :
G is called a fundamental solution of the wave equation.
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= = for ti<' 7 (1-52)

Then applying Green's formula to p and G and integrating the result with

respect to 7 from -T to +T (where T is some large interval of time) show
that
1% T
<Ga—p— p@> dSdr= (GVzp - pv2G)dy dr
—T ('T) an 8n -T V('T)
1 D,
— G _—-p p —G|dy dr
2 2
) (7 B
T £l L £
s [Gy(y, D -8t - DNdy -x)p]dy d7
£ (7
(1-53)
But since
D3 e S D DG (B, BEG
G—p-p—G)|=—|G -p +U G -p
DTZ D72 QT Dq DTt ¥4 BT D

it follows from applying Leibniz's rule to the first term and the divergence
theorem to the second that

p? DEGE - o D D,G\ -
e L s T D)
7 T 7
147) DT DT (’_)
S A DOp DOG
2 =V njg=—=" -p ds(y)
S
S(T) Dir 1B
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Hence,
T =
D2 DIEy. D DG o b
G p-p 2 dyidigi= e lihe dy
2 D’T D7
—T U(T) DT DT V(T) T:-T
DOG
= V G——p_—- ds(y)dr
DT D
S(7)
where
- ({r’s - fU)- n (1-54)

is the velocity of the surface normal to itself relative to a reference frame
moving with the velocity iU. The causality condition (1-52) implies that the
integrated (first) term vanishes at the upper limit (1=T). At the lower limit
this term represents the effects of initial conditions in the remote past (ref. 2,
p. 837). Since in most aerodynamic sound problems only the time-
stationarylo (and not the transient) sound field is of interest, this term will be

omitted. 11 Hence,

DgG DG
G_——p__dydfr— p_D_—dSﬂd’r
T
(T) D’T D’I' (T)

10

See appendix 1. A, section 1. A, 3.

i L1 i
It is assumed that the boundary condition is such that the effect of any initial
state will decay with time. In any event, itis always possible to require that

D
p Lp:o at = -T
DTt

Jd
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Substituting this result into equation (1-45) and carrying out the integrals
over the delta functions show that

T b e T
/ d'r/ 7y, DG, 7|x,t)dy
L i U7

1
=, Yv.D
+ dr G(y, 7|x,t) et B p(y, 7
on 2 D7
o
Ly S(7)

L B oo B A) GE T ds in ult)
2, T — + — =L {G(Y; fo,t) dS(y) = 5

on 2 D7

if x is notin u(t)
o

(1-55)

This equation provides an expression for the acoustic pressure at an arbitrary
point X within a volume p in terms of the distribution v of sources within

v and the distribution of the pressure and its derivatives on the boundary of .
We make extensive use of it in chapters 3 and 4 to predict the emission of
aerodynamic sound in the presence of solid boundaries.

The region 1(7) in equation (1-55) can be either exterior or interior to the
closed surface (or surfaces) S(7). However, for exterior regions the solution
P(?, 7) of equation (1-50) must be such that the surface integral in equa-
tion (1-45) vanishes when carried out over any region enclosing S(7) whose
boundaries move out to infinity. This will usually occur whenever p(y, 7) be-
haves like an outgoing wave at large distances from the source. When applying
equation (1-55), it is necessary to be sure that the direction of the outward-
drawn normal n to S is always taken to be from the region v to the region
on the other side of S.

The preceding argument applies just as well to the case where the sur-
face S(7) is absent. Hence, equation (1-55), with the surface integral
omitted, holds even when the region v is all of space. However, in this
case, there is only one possible solution to equation (1-51) which satisfies con-
dition (1-52) and vanishes at infinity. When U = 0, this is the function Go
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given by equation (1-38). Then, in this case, equation (1-55) becomes

i
p(x,t) = /:r /y(&’, 7)G°(§,7J§,t)d§7dfr (1-56)

This equation can be used to compute the pressure at any point from the known
source distribution y whenever the region of interest is all of space.

More generally, if the surface S is stationary and the velocity U of the
medium is zero or tangent to the surface (so that n - 1=0), the normal rel-
ative surface velocity V;l becomes the normal surface velocity

-~

L VS (1-57)

and equation (1-55) reduces to the usual integral formula for the wave equation
p(x,t) if X isin v
yG dy + ap e aG ds = L
0 ifif x isinot infp
(1-58)

Of course, when U =0, p and G satisfy the inhomogeneous stationary-

medium wave equations

2 23
Vzp =: 98 ~-y(y, 7 (1-59)
c(z) 07
P - -
WO A DR ) (1-60)
cg 872
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1.4.2 Boundary Conditions: Green's Function

1.4.2. 1 Definition and properties. - Up to this point we have not explic -
itly taken into account the effects of solid boundaries on the sound field. The

presence of such boundaries imposes certain restrictions (that is boundary
conditions) on the allowable solutions to the wave equation.

For the small-amplitude motions consistent with the acoustic approxima-
tion the boundary conditions are usually linear; that is, they consist of linear
relations between p and its derivatives (and perhaps integrals) specified on
the boundary of the region in which the solution is being sought. For example,
in the case of a stationary rigid surface the boundary condition arises from the
requirement that the normal acoustic velocity u - i vanish at the surface.
But in this case (since the mean flow, if it exists, must be tangent to the sur-
face), it follows from the first equation (1-13) (with ;i 0) that

P _q.v p=0 for ; on a fixed surface
on
This provides a condition which the solution p to the wave equation must sat-
isfy on the boundary.

Now whenever solid boundaries are present, equation (1-55) cannot, in
general, be used directly to compute the solutions to the inhomogeneous wave
equation (1-50) because the pressure and its derivatives which appear in the
surface integrals cannot be specified independently and the relation between
them is a priori unknown. However, whenever the solutions of equation (1-50)
satisfy linear boundary conditions, this difficulty can, in principle, be elim-
inated by imposing additional restrictions on the fundamental solution G. The
resulting function is then called a Green's function. We shall restrict our at-
tention to the case where the boundary surfaces are stationarylz

and the mean
flow, if it exists, is tangent to the surface. In this case, equation (1-55) re-
duces to equation (1-58).

12[f the motion of the surface has a small amplitude, we can treat the surface as
stationary at its mean position and take account of its motion through boundary condi-
tions at the mean position of the surface.
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A Green's function for a region v is defined to be a solution G(gz., 'rl;f, t)
to the inhomogeneous, uniformly moving medium, wave equation (1-51) which
satisfies linear homogeneous boundary conditions on the surface of S as well
as the causality condition (1-52). If the region v extends to infinity, we re-
quire, in addition, that G vanish as y'1 when y =, Then the function &
defined by equation (1-38) is the Green's function for the case where the region
v is all of space and the mean flow is zero. It is called the free-space
Green's function.

When the mean flow is zero, the Green's function satisfies the reciprocity
relation13

G, 7/X,t) = G, -t |7, -1

Inserting this relation into equation (1-59) shows that

d L TR g i ey o

V?.G(y, 7|%,t) - L R -6(t - Da(x - y)
- 2 2
o ot

where

2
0xX 1 ax2 ax3

Thus, G(§, 7f§,t) also satisfies the wave equation in the variables x and t.
But since condition (1-52) shows that G vanishes for t < 7, we can interpret
G as the pressure field at the point X and the time t caused by an impulsive
source located at the point 57 at the time 7. The causality condition (1-52)
then ensures that events will propagate forward in time. The moving-medium
Green's function can be interpreted in a similar fashion.

Suppose that it is desired to find a solution to the inhomogeneous wave
equation (1-50) subject to either of the linear boundary conditions

13We omit the proof of this important result. The interested reader is referred to
ref, 2, section 7, 3.
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Case A: % 4 v(y, Mp = a(F, 7

on
or for y on S (1-61)
Case B: p=a(y, 7

where b and a can be any function of ; and 7. And suppose that a Green's
function can be found which satisfies the homogeneous boundary conditions

Case A: 8G(y, 7|%,t) +b(y, NGy, 'r’}_f, t)=0
on
for y on S (1-62)
Case B: G{y, 7|x,t) = 0

Then inserting the corresponding pairs of boundary conditions from equa-
tions (1-61) and (1-62) into the surface integral in equation (1-58) shows that

for X in v

1k
Case A: p(x,t) = / dr / G(y, 7|X, (¥, Ddy
-T v

T S0 e B "
+ / dT/G(y,T,X,t)a(Y,T)dS(Y)
By S

kS g PR M e g
Case B: p(x,t) = / dT/G(Y,T]X,t)')’(Y,T)dY
-T v

1 s —
J / dT/a_G(Y_,TB,_Qa@,T)dS@)
P S on >

Thus, once the appropriate Green's function has been found, the solution to
the wave equation (1-50) subject to the linear boundary conditions (1-61) can
be expressed in terms of the volume source distribution y and the prescribed

T (1-63)
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boundary values a by using equation (1-63). When no solid boundaries are
present, this can be accomplished by using equation (1-56).

Since a Green's function is a solution for the sound field emitted from an
impulsive point source located at the point y at the time 7, equation (1-63)
shows that in the general case the acoustic pressure is just the superposition
of the pressures due to the volume sources y(j;;, 7) and the boundary sources
a(y, 7.

1.4.2. 2 Calculation of Green's functions. - There are two fairly general
methods for finding Green's functions. These may be referred to as the
method of images and the method of eigenfunctions. We shall first consider
the method of images.

1.4.2.2.1 Method of images: Since the only singularity of the Green's
function G(v, 'r!;, t) occurs at the source point at the time the impulse is ini-
tiated, it must be of the form

G, 7[%,t) = GOF, 7[%,t) + h(F, 7]X, (1-64)
where GO is the free-space Green's function (eq. (1-28)) and h is a solution
of the homogeneous wave equation with no singularities in ». The details of
the method are best illustrated by considering a particular example.

Thus, suppose that the mean flow is zero and let v be the region Vg = 0
(shown in fig. 1-10). We shall construct a Green's function whose normal
derivative vanishes on the solid boundary Vg = 0 of this region. The function
h must be chosen so that this boundary condition is satisfied. Since

Go(iz', 7|%, t) phita e T
4dmr o

is a solution to the inhomogeneous wave equation, and since this equation is
invariant under the transformation Vo = -yz, it follows that (1/4nr")6(7 - t +
r'/co), with r' ]x -y l and ' = 1y1 - ]y2 - ky3, is also a solution to this
equation. But because y is never in v, this function is nonsingular in this
region and therefore satisfies the conditions imposed on the function h.
Hence,
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ﬂ D~
Observation
point, X

\

1 D Y’Z
NI \\VN

Figure 1-10. - Coordinate system for half-space Green's function.

G(S;,Tl;(.,t)=L6 Y 1v6 il s (1-65)
47r o 47r o

satisfies the wave equation (1-59) in the region v. It is now easy to verify
that it also satisfies the boundary condition

ECT—=O aty2=0

6y2

and is therefore the required Green's function.

1.4.2.2.2 Method of eigenfunctions: We now turn to the method of eigen-
functions. Suppose that the function b in the boundary conditions (1-62) is in-
dependent of 7. Then it can be seen from equation (1-51) that G depends on
7 and t only in the combination 7-t. Hence, upon taking the 7-Fourier
transform of this equation and the boundary conditions (1-62) and introducing
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the function G (¥ ), which is related to the Fourier transform 9,6 X, t)
of G by

el [0 iwt 4*
Gl |x) = 2me gw (1-66)
we find (after taking complex conjugates) that 14
5 it gl L L i
VoS B ik £k G (Fx) = ~8(x 1Y) (1-67)
oy oYy
and that
aGw
Case A: e wa =10,
i for y on S (1-68)
Case B: Gw =0

where as usual k = w/c0 and M = U/cO is the mean-flow Mach number.
Then it follows from equation (1-66) that the time-dependent Green's function
G can be determined from the solution G - to this boundary-value problem

by

L e t0(t-7 g7 [Ddw (1-69)
2T J=c0

It is frequently possible to solve the problem posed by equations (1-67)
and (1-68) by expanding the solutions in terms of appropriate ""eigenfunctions''
of equation (1-68). However, caution must be used in carrying out the inver -
sion integral in equation (1-69) since Gw will generally have singularities
along the w-axis. It will then be necessary to deform the contour of integra-
tion around these singularities in a manner dictated by the causality condition

(1-52).

14w
It is easy to show that causality condition (1-52) will be satisfied if the solution to
this equation represents an outgoing wave at infinity.
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Figure 1-11. - Duct geometry for Green's function.

These ideas are again best illustrated by considering an example. Thus,
suppose the region v is the interior of an infinite, straight, hard-walled duct
(shown in fig. 1-11) whose cross-sectional area is A and whose axis is in the

yl-direction. In order to construct the Green's function G » Which satisfies
the boundary condition

%G, E
——=0 for y on S (1-170)

on

it is convenient to first consider the functions ¥ satisfying the two -
dimensional Helmholtz equation

2 2
a_+a_2 ¥+ %r =0 (1-71)
ayg ay3

in the region A and the boundary condition

[ g 0 on the boundary D of A (1-72)

on
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It can be shown15 that such solutions exist only for a discrete set of real
values, say k, for n=0,1,2,..., of the constant g, called eigenvalues.

The corresponding solutions, ¥ , are called eigenfunctions. The eigenfunc-

tions satisfy the orthogonality condition

/ g 0, HmiEn ( )
v Yo dyq = 1-73
e 28 I“n TR =N
where
I z/ lv._|? dy, dy (1-74)
n A n 253

We attempt to expand the solution to equation (1-67) in terms of eigen-

functions \Ifn to obtain
G, = ; fn(yl)‘l’n(YZ’y3)

Then the boundary condition (1-70) on the surface of the cylinder is automati-
cally satisfied. Substituting this expansion into equation (1-67), multiplying

the result by \If;“n, and integrating over the cross-sectional area A show, in
view of equations (1-72) to (1-74), that the expansion coefficients fm satisfy

the equation

2 sl W
A Lonm Vx4 2 fm:__m_z_3 8(xq - ¥,)
2 dy 1k
dy1 1 m
where
g=y1-M2

15See, e.g., xref. 2, ch. 11,
43




AEROACOUSTICS

But the solution to this equation is

< .
% 1\Ifm(x2,x3) 34 1[:Mk(y1 ~ %)k lxl s []
2kml"m 2

m

where

k= Y2 - g2 (1-75)
And in order to ensure that this solution remains bounded for large values of
le =74 I for all k and Km» W€ must choose the branch of the square root in

equation (1-75) so that it is equal to i times the absolute value of the radical
when k2 < Bzxrzn. Hence,

e W (o, YOO S, X0 i[Mk(y; -x,) +k_|y, -x
Gw(ylx)zl L e i exp [ 1 1 n’l 1]
2§

knrn 32
n

(1-76)

Finally, substituting this into the inversion formula (1-69) shows that the
Green's function is

Ao : ¥ (Y, (%o, %q)
47 Fn

s : g 8

k
n

k
i[u)(r-t)+Mk(y1—x1)+—;1 ‘ yl-xll]

-0

The contour of integration in the complex w-plane which ensures that the
causality condition (1-52) is satisfied is shown in figure 1-12.
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Imw

~Path of integration

Lo Rew

)
-coBKp

)
CoPkn

“-Branch cut for square root

Figure 1-12. - Contour of integration for inversion of Green's function.

In a number of important catses16 it is convenient to express the index n
in terms of a doubly infinite set of indices, say m and n. Then the eigen-
values are denoted by « , the eigenfunctions by ¥ , and equation (1-77)

m,n m,n

becomes

I3

*
g e
4T et m,n

0 k
i[w(’r-t)+¥£(y1-x D+ B0 ]yl-x1 ﬂ
2 2
. B B
% dw (1-18)

-00

For example, in the case of a circular duct of radius R, it is easy to see

by introducing the polar coordinates
‘/ 2
C' = yz +¥g

16\when the surface D is a coordinate surface in a coordinate system where equa-
tion (1-71) is separable.
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y
@ = tan~1 23
Yo
into equation (1-71) that the eigenfunctions o e given by
, —im %
‘I'm,n :Jm("m,nc Ye (1-79)
where Jm is the Bessel function of order m and Kb is the nth root of
b
Jm("m,nm =0 (1-80)
T R ) (1-81)
m,n Y 5 2 m Km,n
Km,n
snd =0, 10 2. 00 m=1,2,. ..

1.5 SOURCE DISTRIBUTION IN FREE SPACE: MULTIPOLE EXPANSION

1.5.1 Interpretation of Solution

The simplest case discussed in section 1.4 occurs when the mean flow is
zero and there are no solid boundaries present. The sound field due to a local -
ized source distribution y is then given by equation (1-56). But inserting the
expression (1-38) for the free-space Green's function into this equation and
carrying out the integration with respect to 7 show that

Y g;yt T _r"
pladhe L o) S W (1-82)

47 r
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where as usual
6 rasd

The integration is over all of space, but only those points where y(s_f, 7) is non-
zero contribute to the integral. We, of course, assume that y vanishes fast
enough as ]g;f ~ o so that the integral converges.

Comparing equation (1-82) with equation (1-36) shows that the volume el-
ement dy emits an elementary wave

')/(S;,t = r_>
1 o

47 T

which is exactly the same as that emitted from an acoustic point source of
strength y and that the resultant acoustic pressure field is just the super -
position of these solutions.

Since the time it takes a sound wave to travel a distance r is r/co, the
time t - (r/c ) which appears in equation (1-82) is just the time at which the
sound wave had to be emitted from the point y in order to reach the observa-
tion point x at the time t. It is called the retarded time.

1.5.2 Multipole Expansion

Expamdinglr7 the integrand in equation (1-82) in a Taylor series (with re-
spect to the variable T =X - y) about the point T =x while treating the var-
iable y as constant shows that

17The expansion procedure used in this section follows the treatment of Doak
(ret. 3).
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TR : v[¥,t -
< CO> (rl -x1>] <r2 -x2>k <r3 -x3>z ik (

14

€0

)

41r 4 kA Brjl arl; aré
i,k,2=0 !
0 <—- ;
: il s MEL L R 2 o
L et vy () () €
ale axg axg jilllc B2 47x
1, E7T=9
Substituting this into equation (1-82) shows that
o0
p(x,t) = b (-1)j+k+l m: v 1 <t /
2 ; )
ax]1 axlz( axf3 4mx B
ke
where
Pl o o
m. (t) = y(v, t)dy
I,k jIkIL!

is called the instantaneous multipole moment and the j, k!

pansion (1-83) is called a multipole of order gl+k+l

)

th

47r

(1-83)

term of the ex-
Of course, it is as-

sumed that the source distribution vanishes at infinity rapidly enough to en-

sure convergence,
Since, as shown in section 1.3. 1.3, each term
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is a solution to the wave equation and since, as can be easily verified, the
derivative of a solution to the homogeneous wave equation is also a solution,
each term in the multipole expansion (1-83) must be a solution of this equation.

If there exist 3N functions wi (y,t) which vanish together

1rlgslgs - oly
with their first N derivatives sufficiently fast as y — ¢ such that

N
8y A e
ayil ay12 ayi3 ayiN

y&,t) =

T CRL AT

it can be shown18 that

m].’k,z(t)so forall j+k+¢ <N

Thus, the first term in the multipole expansion will be a pole of order 2N
and, aside from this, only higher order poles will occur in the expansion.
For example, we have seen that an applied force Z results in a source term

in the wave equation of the form
= 0f +
v. 7 i s
oy;
=il

Hence, the lowest order poles appearing in the multipole expansion of a solu-
tion to this equation will be poles of order 2 called dipoles.

18 ! J
An example of how this assertion can be proved for the case where N =2 is
given in section 2. 4.

49




AEROACOUSTICS

1.5.3 Behavior at Large Distances From Source

Since

and

gz <t x>_ Pl s < x)
ek | T i ) Ly P
axi ’ o cox ot Y o

It follows that for large x, equation (1-83) becomes

ClEIS
h - Ser B ey j+k+2
p(x,t) ~ il <i-a—>l+ 3 m; z(‘i- 1) (1-85)

4Tx o

ik, 2=0

Now suppose that the source distribution y is essentially confined to a
region whose size is of order L. Then the multipole moments are of order

i j+k+1+43
mj,k,l = O(L (7))
where (v) denotes the average value of y over the source region. And if
Tp is a typical period of oscillation of the sound source (so that X = cOTp is
a typical wavelength of the sound), it follows that the j,k, Zth

tion (1-85) is of order

j+k+1 i j+k+1
1= Ly =2(2]
X Tpc0 X \A

term in equa-
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Hence, if the source region is very small compared to a typical wave-
length, only the lowest order poles which occur in the multipole expansion
will contribute to the pressure field at large distances from the source. A
source distribution satisfying this condition is said to be compact. Thus, for
a compact source, all the poles which contribute to the sound field at large
distances will be of the same order and this order will be equal to the largest
integer N for which the source distribution y can be expressed in the form
(1-84). For this reason, a source distribution which can be expressed in the
form (1-84) is called a multipole source of order 2N. Clearly, higher order
poles will be much less efficient emitters of sound than lower order poles
whenever the source region is compact. If N =0 (i.e., if y cannot be
expressed as a derivative which vanishes at infinity or on the boundary of the
source region), the source is called a monopole, or a simple source. We
have already indicated that when N = 1 the source is called a dipole source,
and if N = 2 the source is called a quadrupole.

It can be shown that any dipole source can be constructed by bringing to-
gether two equal -strength monopole sources in such a way that the product of
their strength times their distance remains constant. Similarly, any quad-
rupole source can be constructed by bringing together two dipoles, and so on

with higher order sources.

1.6 RADIATION FIELD

Again suppose that the mean flow is zero. An important special case of
equation (1-58) occurs when G is taken to be the free-space Green's function
GO. Thus, if there are no volume sources present in v (i.e., y =0 in

v), inserting the free-space Green's function into equation (1-58) shows that

i 0 p(x,t) X in v
dr | [P _p 3G \gs - (1-86)
T S o o 0 X outside v

(The formula obtained by substituting equation (1-38) into this formula and
performing the integration with respect to 7 is known as Kirchhoff's theorem.)
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~-P=Pp

Figure 1-13. - Interior and exterior regions.

This equation applies to any solution p of the homogeneous stationary -

medium wave equation

2

V - ,a_ p:O (1-87)
2

ol
A
BG/°

within any region » bounded externally or internally (or both) by the surface
S (as shown in fig. 1-13).

Let us apply equation (1-86) to a solution p of equation (1-87) in the re-
gion v exterior to a closed surface S and also to a solution Py of this equa-
tion in the region Y interior to S. Suppose, in addition, that the solution
Py takes on the same boundary values on S as does the exterior solution p.
Then for any point x in v

0
GY ap p 3G \4s - p(E.t)
8n
T
op 0
& e bl JSIERTC € i) TS
/T S on on
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We must realize that the direction of the normal in the first formula is oppo-
site to that in the second formula; hence, 3/dn in the first formula is -9/dn
in the second. Then subtracting these two equations shows that

= T ot
p(%,t) = / dr / G2, NdS®) (1-88)
-T S

where we have put

e op =
.a(y,T)Ea—p-__O for y on S

on on

Upon inserting equation (1-38) into (1-88) and carrying out the integration
with respect to 7 we obtain

p(§,t)=_1_/la<§,t-i>d3(§) (1-89)
47 S T o

Equation (1-89) shows that the pressure at any point X of an exterior region
v (which is devoid of any volume sources) is just the sum of the pressure
fields resulting from a distribution of simple sources over its bounding sur -
face S.

Now consider that case where all the sources producing the sound field
and all solid boundaries which reflect or interact with the sound are confined
to a finite region of space, and let S be an imaginary surface enclosing these
sources and reflecting surfaces as shown in figure 1-14. Then equation (1-89)
describes the sound pressure in the region exterior to S.

For a source-free region with zero mean flow the first equation (1-13),
expressed in terms of the variables X and t, becomes

—

B — = =P
Oat X
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>}

—Sources, reflecting surfaces, etc.

Figure 1-14. - Emission from bounded source
region.

But inserting equation (1-89) into this equation shows that

o 1 . la(?,t—i>+ 1 aa(y t———> ds(y)
ot 47Tp0 A 2T co/ co ot 0

Hence, there exists a function h(y, 7 such that

o

aF, 1 = oh(y, 7
oT
il be lh<§’,t = L>+_1_@<§7,t - _> ds(y) (1-90)
4mpy . AT cg/ Co ot o
and
it Lty o o T Vs (1-91)
4m T gt o
S

If T_ is a typical period of oscillation of the sound source and hence if

X = c0 p is a typical wavelength of the sound, the ratio of the first to second
terms in the integrand in equation (1-90) is of the order A/r. Thus, suppose
that the observation point is many wavelengths distant from the surface S;
that is, r >> X (for any point y on S). Then the first term in equation (1-90)
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can be neglected compared with the second to obtain

AP LE’E(;,t 2 L)ds&) (1-92)
477p000 . p2 ot o

Now suppose that [;{) is much larger than the largest dimension of S.
Then for 37 en S

X X

‘/ RS e el = | =2
r= x2—2X'Y+[Y,zzx‘/l-ax_'_y-pﬂ'_:x—x'y+O<Jy!>
2 X
%

Upon inserting this result into equations (1-91) and (1-92) we find that

px,t) ~ L 2 h<§,t-.£+§- l)ds(g;)
47x ot # ¢y X ¢
PoCo

where n = ;{/x is the unit vector in the x-direction. The integral depends on
the magnitude x of the vector X only in the combination t - (x/co) and other-
wise depends only on its orientation. The latter quantity can be characterized
by the two polar coordinates ¢ and ¢ shown in figure 1-15. Thus, the time
derivative of the integral in the first equation (1-93) depends only on the var -
iables t - (x/co), 6, and ¢ and therefore

pE,t) ~ L gft-X 0,0 (1-94)
41x c0

The radiation field, or far field, is defined to be that region of space
which is far enough away from the sources and reflecting object, in terms of
both the wavelength and the size of the source region, for the pressure and
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>}

X9

Figure 1-15. - Polar coordinates of observation point.

velocity to have the behavior given by equations (1-93) and (1-94). Ideally, a
source system can have a radiation field only when it is embedded in a uniform
medium of infinite extent. In practice, especially in aeronautical applications,
there is usually a region at some distance from the source system into which
no appreciable scattered sound comes from reflecting objects lying even fur -
ther from the source system and hence in which radiation field behavior is ap-
proximately achieved.

Equation (1-93) shows that the velocity u = ﬁur is purely radial, and its

magnitude u. is related to the pressure by

il P (1-95)
Po%o

The ratio PoCo between the pressure and velocity in the radiation field is
called the characteristic acoustic impedance of the medium. It is equal to 429

newton-seconds per cubic meter for air at 0° C and 1-atmosphere pressure.
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1.7 ENERGY RELATIONS

1.7.1 Basic Definitions

In this section we shall define acoustic energy density E and an acoustic
energy flux vector 1 for any flow governed by the linearized gas-dynamic
equations (1-11). Perhaps the most obvious procedure which comes to mind
when attempting to introduce a suitable definition of these quantities is to sim-
ply neglect higher order terms in the expressions for the ordinary energy den-
sity and energy flux vectors of an inviscid fluid. However, this approach in-
troduces certain difficulties. Thus, when the energy density and energy flux
associated with the mean background flow are separated out, the remaining
terms are of second order. ) But some of these terms are not simply prod-
ucts of two first-order terms and can therefore not be calculated from the so-
lution to the linear gas-dynamic equations (1-11). In order to obtain a useful
definition of E and _f, we must require that they can be calculated entirely
from solutions to equations (1-11).

If v is any volume which is free from external sources and enclosed by
a surface S, the net flux of acoustic energy through S must certainly equal
the time rate of change of energy within v. Thus,

87 pdy=" /1 nds
dT
% S

But since this must hold for an arbitrary volume v, it follows from the diver-
gence theorem that E and I must satisfy the conservation law or energy

equation

19 The process used in the derivation of the acroustic equations can be thought of
as the first step in obtaining an asymptotic expansion of the flow variables in powers of
the (small) amplitude e of the acoustic disturbance. Since the variables which satisfy
the acoustic equations are of the same order as this amplitude, they can be termed
first-order quantities. The next smallest terms in the expansion will be of the order
of the amplitude squared and can be called second-order terms. Clearly, the product
of two first-order terms is also a second-order term.
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- 121 (1-96)

in any source-free region.

It was shown by Mohring (ref. 4) that it is possible to define an E and —f
entirely in terms of first-order quantities which satisfy the conservation law
(1-96) by using the Clebsch potentials 1, ¢, @, and B introduced in appen-
dix B by the relation520

Mol (1-97)
D7
V=Vep+ S+ avp (1-98)

where O is the absolute temperature and

1}

2 i + \—;. v
D7 .07
is the derivative following the motion of a fluid particle. It is also shown in

this appendix that these potentials can always be chosen (provided the external
force is conservative) to satisfy the equations

\
De_+2 03 H
D~
Da_ L (1-99)
DT
DB _
Dt 5,

= The development given by Mahring is followed fairly closely in this section.
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th+lv2+QE-§_¢-S.aﬂ-a% (1—100)
2 el Gl 0T
DH _19p , 0@ (1-101)

DG s pid T 0T
=H-K -SK - oK 1-102
% % n B i

where h is the specific enthalpy, @ is defined by

= 2 VO

D s

and K | Kn, and K 8 are constants.
Now consider a flow governed by the linearized gas-dynamic equa-
tions (1-11). Corresponding to this linearization the Clebsch potentials can

be written as
n=ng® -K, T+ 0
9= g -K 7+ ¢
a = ao(;) +a'
B = 60(373 -Kp7+ g
where the primes denote a small fluctuating part (whose squares can be neg-

lected). Upon inserting these results into equations (1-97) to (1-102) the

zeroth-order equations become

217he zeroth-order time-dependent terms give maximal generality while still
leaving the zeroth-order physical variables such as Vo Po and Po independent of

time.
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VO-Vnoan -@O

Vg = Vg + SOVnO + VB,

= Ll
VO-Vng =¥ F eOSO +K¢ —HO

VO- Vozo ==()

) VBO = KB

x = 10
XO_HO-KQD_SOKT]-aOKB_hO+—VO+QO_KQO-SK - aK

9 0™

and the first-order equations become
u = qu' B S'Vno - SOVT;' i onVB' + oz'VBO

1

877 = ' = ' \

=tV VN B Vg, = <0

oT 0 0

aai+vo Vo +u Vgpozvol—l.-Q'-g'
i
}

‘ a—a'+\70Va+uVozo—O

0T

@i+ﬂfvﬂ+iv30=o J

0T

where
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T, Sl U e b T R N T
0 4 8 o Oa'r 067

1 1 A
a_f;+-70.v -1 0 (1-108)
0T Po O O

Before using these potentials to derive an energy equation, we shall first
prove that the following two identities hold:

v .<B_S_vn'+i‘lv3' -@_vs'-ﬁvd):-ﬁ’- (a_“+ vf')@'ﬁ (1-109)

b
oT 0T oT oT oT T
2 42
' i ' CAp 20 .
B_aap L Ea_s__a_% ol BE 'é_o gi= (1-110)
pg o7 T 0.7 Po Gl OpO

If the third equation (1-11) and equations (1-105) are used to eliminate VO on
the left side of equation (1-109), we obtain

1 1 ' ' 1
{;'- alVSO.;._a_B_VaO_.a_S_VnO_a_a_VBO _6'.8_8_
g oT 0T 0.7

But equations (1-104) and (1-107) show that this expression is equal to the
right side of equation (1-109).

Since
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Py apo
ojs, \Pojs,
and
00 00
Ov 2 0 p' R __O Sv
ap aS
0 SO 0/’)0

equation (1-110) is a consequence of equation (1-5) and the Maxwell relation
(see, e.g., ref. 5, ch. XIX)

b0
ap 2 \oS
08y . g\ Dby
It can now be shown that the intensity
& o' 28"
1 Ee o 1 1 e
sz(p0u+pv0) -pO<S L1/ —>VO (1-111)
0T oT

satisfies a conservation equation. Thus, it follows from the second equation
(1-11) and equation (1-108) that
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v-1=#'V- (pou + p'vo) + (pou + p'vo) 4

P * Sy, oy 3B, M gg + 38 g4
oT 87 0T 0T

—fpoq f +p0u-V f'+8_.§.p_.-p'i.‘£+?&
pg °T T L eT

3 a_i_[poifo- (s'vn' + a'v8")]

' 1
+ Vg 3 gy L2 gt M gy ﬁvd)
0T 0T oT oT
Hence, upon using equations (1-109) and (1-110), we obtain the conservation
equation

1+__p0,('q (1-112)

Ezp' '+_1_p0u2_&_c(2)+p0;;0 s'vn +aVB)+-2-p0<aSe> S'2 (1-113)
S 0/p,

Thus, with the acoustic energy flux defined by equation (1-111) and the acous-
tic energy defined by equation (1-113), the conservatlon law (1-96) holds in
any source-free region. The energy flux vector 1 is called the acoustic
intensity. These definitions, however, are certainly not unique for, if A is
any vector formed from the Clebsch potentials and the physical variables,
E-V.A and 1+ aK/aT will also satisfy the energy equation (1-112).
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1.7.2 Time-Averaged Intensity and Power

Taking the time average over the time interval T2 - T1 of the energy
equation (1-112) shows that

E(Tz) - E(T

7 = ;
el ipyd

s =R

2 1

If the flow is periodic or stationary and if T2 - T1 is taken to be the period
in the first case and equal to infinity in the second case, the left side of this
equation will vanish. Hence, for any region which is free from acoustic
sources

vig-'o (1-114)

/'f- nds =0 (1-115)
S

for any surface S enclosing a source-free region.

and this implies that

The acoustic power crossing a surface S (closed or opened) is defined as

Henece, if S1 and 82 are any two surfaces enclosing a source-free region,
equation (1-115) shows that the total acoustic power crossing S1 is equal to
that crossing SZ' It is this property, which is clearly a direct consequence
of the solenoidal property (1-115) of the acoustic intensity, from which the
concepts of acoustic power and mean acoustic intensity derive their utility.
One slight inconvenience associated with the definition (1-111) for the
acoustic intensity is that it does not determine this quantity in terms of the
basic flow variables p', h', u, and so forth, but requires the use of the
Clebsch potentials. Moreover, these potentials must be found by solving
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additional equations (although these equations are readily solved whenever the
governing acoustic equations can be solved). We shall see in the next section,
however, that in certain important. cases the Clebsch potentials do not occur

in the expressions for T and E.

1.7.3 Isentropic Flows

1.7.3.1 Interpretation of energy. - The case which is perhaps of most
interest is when the entropy is constant so that S = S0 =S =@, Eaquationt(l-
B6) then shows that

Pq+P’ :
h = e dp = P_ . Second-order terms

p p
P, 0

Hence, it follows from equations (1-14) and (1-107) that equations (1-111) and
(1-113) become, respectively,

— g — — ] — — a ' -— - =
I :<I;—+ =T Q >(p0u + p'VO) - o EBT Po¥Vo * KB(pOu 7 P'VO)] (1-116)
0 )

pv2 pOu Sy 2t ] ; g :
E = 2+ - tpu- Vyl+p'Q +CM(VB-pOV0—KBp) (1-117)
2p0%0

In order to interpret the first term in equation (1-117), notice that for a
constant-entropy process the work done per unit mass by the acoustic pres-

1 . . .
sure p against the surroundings is

; 1 vd T '2
Bods = P A ___P ., Third-order terms
20 2
i i p7cy  2pg%
Po 0
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Hence, the work done per unit volume by this pressure is

12
el + Third-order terms

5
2poCo

We can, therefore, interpret the first term, p'2/2p0c3, in E as the potential
energy per unit volume associated with the acoustic field.

The kinetic energy per unit volume is one-half the absolute value of the
momentum density squared divided by the density. The momentum density in
the acoustic wave is

ov - pO‘-;O = pol_f o p'x_;o + Second-order terms
Hence, the kinetic energy per unit volume is

= S 2
lpou + P'V()’ P4 - = :
= +pu- VO + Third-order terms
2p 2

The second term in equation (1-117) can therefore be interpreted as the kinetic
energy per unit volume in the wave. The third term is clearly the potential
energy per unit volume associated with the external forces.

In order to interpret the last term in equation (1-117), it is convenient to
introduce the vorticity vector, @=Vxv. Itisa measure of the average
angular velocity of the flow. Taking the curl of equation (1-98) shows that

—

W=VXV=VSXVn+VaXxXVp

The first term in this equation accounts for the vorticity introduced by entropy
gradients, while the second term represents the vorticity introduced external
to the flow. A flow with zero vorticity is said to be irrotational. In such
flows the entropy must be constant. If the curl of a vector is zero, it can be
expressed as the gradient of a scalar. Thus, in the case of an isentropic ir-
rotational flow, no generality is lost if we assume that the scalar potential for
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the velocity is ¢ (see eq. (1-98)) and that @ and j are zero. The last

| term in equation (1-116) is then a measure of additional energy in the wave
associated with the angular momentum of the flow.

1.7.3.2 Irrotational flows. - For irrotational flows, equations (1-116)

and (1-117) therefore reduce to

I:<p_+1_1’- ‘:;0 +Q'> (p01_1.+ p"-f.o) (1-118)
Po
12 p0u2 ol
E=DP &t +p'T - T+ p'0 (1-119)
2
2poco

These relations were first obtained for isentropic irrotational flows by
Chernov (ref. 6). However, Blokhintzev (ref. 1) had previously shown that
the definition (1-118) for the acoustic energy flux leads to a proper energy
equation for the case where the wavelength of the sound is very short com-
pared with the scale on which the mean velocity changes. B

For regions of the fluid where the mean velocity \70 and the potential 0
are negligible, equations (1-118) and (1-119) reduce to the definitions of I
and E used in classical acoustics

I=p'u (1-120)
2
v2 p u
AR Sl (1-121)
2" 2
2p0c0

‘ 1.7.3.2.1 Relations for radiation field: One important region where it is
usually possible to assume that \70 = Q' =0 and therefore that equations (1-

‘ 120) and (1-121) hold is the radiation field. In this region the velocity is re-
lated to the pressure by equation (1-93). Hence, it follows from equation (1-

‘ 120) that the intensity is in the radial direction n and is given by

‘ 22which is the case treated in section 1. 3. 3.
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—
1}
=
-

where

o (1-122)
PoCo

Taking the appropriate time average of equation (1-122) shows that

T <l (1-123)

Thus, in the radiation field the mean acoustic intensity is proportional to the
mean square acoustic pressure. Now most microphones in most cases meas-
ure root-mean-square (rms) sound pressure, and the rms fluctuating pres-
sure at the ear is believed to be most closely related to the sensation of loud-
ness. Since equation (1-123) only holds under special circumstances, the
acoustic intensity does not always provide a measure of the signal which would
be sensed by the ear or a microphone.

An ear, and usually a microphone, is basically a diaphragm encased in a
reflecting object (head or microphone housing). If the microphone housing is
not small compared with the wavelength, the pressure it senses is not the
same as would exist if the microphone were not present. This difference is
the result of the pressure increase caused by the sound radiated from the
housing.

Equations (1-94) and (1-123) show that

I:_l__g2<t -i,(},(/))
1627T2X2p000 o

But it is shown in appendix 1. A that the time average is independent of trans-

lations in time for any periodic or time-stationary process. Hence,
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et ol 6, ¢)

16712pocox2

Thus, the average intensity in the radiation field is proportional to x'z.

If the sound field is periodic so that

0

B Z Pne -iwnt
N= =00
it follows from equation (1-123) and equation (1-A7) that

Paad ji |2

Po€0 n=-w

This equation shows that we can interpret the quantity

. o e

PoCo

as the average acoustic energy flux being carried by the nth

harmonic. It
can therefore be called the intensity spectrum. It follows from equation
(1-A6) that it is related to the normalized pressure autocorrelation function

E(g)thy

r(n = PRt + 7 _ i Tne'i“’m (1-124)
Po%o n=-

If the sound field is time stationary, it follows from equation (1-123) and

equation (1-A22) that
— 1 23
Te= / S, (wdw
161
Po% Lo
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where Sll(w) is the Fourier transform of the pressure Eutocorrelation func -
tion p(t)p(t + 7). Hence, we can interpret the quantity I = Sll(w)/poco as
the average acoustic energy flux per unit frequency and it can therefore be
called the intensity spectrum. It follows from equation (1-A21) that it is re-
lated to the normalized pressure autocorrelation function I'(7) by

(7 =R®pE + 7 =/ fwe‘i‘”dw (1-125)
) il

These relations have only been shown to hold in the radiation field and do not,
in general, hold at points near the source region.

1.7.3.2.2 Unidirectional transversely sheared mean flow: When the
mean flow is given by equation (1-12), we can take

K17 = 60 K(p: -®OSO +h0 KB =1

St

1

2
flg's O ager 2 1y

1

o B:..__
0 OU

by

2
and equations (1-103) will be automatically satisfied. When these relations
are substituted into equations (1-105) (with \70 = EU), we obtain a set of first-
order equations in the variables 7 and Y1 which can easily be solved for the
perturbation potentials. However, these solutions are best left to specific
cases. A solution is carried out for a duct flow in reference 4.

1.8 MOVING SOUND SOURCES

The sound emission from any real moving source is generally complicated
by such effects as the interaction of the sound field with the (usually turbulent)
flow about the body or even a back reaction of the flow on the sound source.
However, in order to illustrate the essential features of the process, we shall
consider the sound emitted from an ideal point source where no such flow re-
actions are present. We shall also limit the discussion to the case where the
source is moving uniformly (no acceleration). As will be shown in chapter 2
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the acceleration of the source can result in sound emission even if the source
has no oscillations of its own.

1.8.1 Solution to Equations

Consider a source moving with a constant velocity —‘;O through an infinite
medium otherwise at rest. The volume source density is then given by

¥y, D = ay(N8y - V1)

Such a source could result, for example, from the heating and subsequent ex-
pansion caused by a modulated beam of radiation focused on a point moving
through the fluid.

The wave equation (1-18) for the sound pressure now becomes

2 .
vip-L1ap__, 2 [qo(,r)a(y i Vo'f)]
a2 oT
o 0T

p =¥ (1-126)
oT
so that
gl s 1 fofy - =
o e & -podo( N8 - VoD
o 872

Upon comparing this with equation (1-59), we find that equations (1-38) and
(1-56) show its solution to be
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5 p 5 an(n e B =
UE.t) =9 0 5ft-7-L)oF - Vyndy dr
47 e c0

£ anla) ;—{; i
:59 __._0_:——5 t—'r-.,__o__l dr (1-127)
4 }+ [x-V07[ o

In order to evaluate the integral, we use the identity (which holds for any

functions f and g of 7

£ 1

Jes )

f(76[g(n]dr =

=
m .
(e N

dg(T
I oo i dTe
where ’Tie is the ith root of
g(7g)= 0 (1-129)

Then upon putting

x - V7]
g = 0 + 7-t
o
it follows that
2 — —
d_g:VOT"VO'X+1
dr - g [x - V7]
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and therefore that equation (1-127) can be written as

5. qu
UE, L) =2 0 (1-130)
4m LV2,_i T
gle = YO & Sk g
- ) —VOT (
e
o
i
where 'r; is the ith solution of
x-Vor|
1____911_+'% Sl (1-131)
i)

This equation, being quadratic in Ta>
+

we shall denote by (8 There will then be two terms in the solution given by

will, in general, have two roots which

equation (1-130), which we shall denote by d/i. Hence, if we introduce the
source Mach number

5 \70
M, = — (1-132)
“
and the vector
=
Rex.-Va (1-133)
the two terms which appear in equation (1-130) can be written as
poto 7e)
viE, ) = L il (1-134)

= Rifl - M, cos Qi[
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where
M. =i
cog o= 9 : B (1-135)
M0 R:t

is the cosine of the angle between the vectors R* and MO' And equation

(1-131), which determines the retarded time, can be written as

4
= At (1-136)

1.8.2 Interpretation of Solution

Equation (1-133) shows that R is simply the vector between the observa-
tion point x and the position of the source at the time (see fig. 1-16).
But equation (1-136) shows that the length R of this vector is exactly equal to
the distance co(t - 7,) which the sound wave, arriving at X at the time t
has traveled in the time interval t - T, The sound wave emitted by the
source at time Ty will therefore just reach the observer at X at the time t.
Hence, R is the distance between the observation point and the source point at
the time of emission of the sound wave, and To 1s the time at which the sound

wave arriving at X at the time t was emitted (or the retarded time).

Vot

Figure 1-16. - Orientation of source and observer.
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Inserting equation (1-136) into equation (1-133) and squaring the result

gives
= 12 = 2
[x - Vt| At el \%
SRR o DR B - L | aE (t-76>2:0
2 2 2
o o o

This equation can be solved to obtain

—

My - & - V) + ‘/[MO & -V (M) - Tt

2
1-M0

R* = co(t - T:) =

(1-137)

If MO is less than 1 (i. e., subsonic source motion), the radical will al-
ways be larger than the first term in the numerator. But since R must be
positive, only the plus sign in equation (1-137) can hold. Thus, for subsonic
source motion, there can only be one source location from which the sound
arriving at x at time t can be emitted.

When the source motion is supersonic, both positive and negative roots
can occur. But then the radical will be imaginary (i.e., no solutions for R

will exist) unless

(M2 -1) K-Vt

gl -
SoenlD G e
M
0
" Upon defining the Mach angle a by
2
M4 -1
o = cos” 0 = sin'1—1—<71
M, M, 2
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and putting

(as shown in fig. 1-17) we see that this condition requires that the observation
point lie within a cone having its vertex at the source and a semivertex angle
equal to the Mach angle. It is called the Mach cone. Thus, if the observation
point is outside the Mach cone, no solutions will exist. In order to interpret
these results, consider the circles shown in figures 1-18 and 1-19. They cor-
respond to the surfaces which ''contain'' the sound emitted by the source at
certain fixed instants of time, say t =0, tl’ tz, and so forth.

Figure 1-18 is drawn for the case where source speed is less than the
speed of sound. It shows that only one of these surfaces can pass through any
given observation point O. The sound on the surface passing through the
point O in the figure was emitted by the source at the time t = t2 when it
was located at s Vst2'

Observation
point ~_
i ;(“ Vot 7 o
I / V§-cht
X [
Cot =
| b
l ? ~
o / / _,~ Source location
Vit ~ attime t
0o -~ -
t——— ——— . (x-V t)————‘
My 0

Figure 1-17. - Orientation of observation point relative to Mach cone.
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X Source position at time of
emission of wave front

Observation
point O

Sound emitted
at t- tl b

Figure 1-18. - Subsonic source motion (at time t). Source Mach
number, Mg, 23.

Notice that the surfaces are closer together in the forward direction (and
farther apart in the backward direction) than they would be if the source were
stationary. Thus, more of these surfaces will pass an observer in front of
the source in a fixed interval of time than if the observer were behind the
source. Since the total amount of energy emitted by the source in this time
interval is carried between the first and last surfaces enclosing this interval,
we anticipate that the intensity of the sound (energy flow per unit time) re-
ceived by an observer in front of the source will be larger than the intensity
received at a point behind the source.

When the source is moving faster than the speed of sound (i.e., super-
sonic source motion), the situation is quite different. Inthis case the source
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X Source position at time of
emission of wave front

-— Mach cone

— Mach
) angle, a

- Sound emitted
at t- t3

- Sound emitted
at t= tz

Observation

.: point O

- Sound emitted at t = tl

“Sound emitted at t = 0

Figure 1-19. - Supersonic source motion (at time t).

overtakes the sound it emits, and the surfaces ''containing' the sound take on
the configuration shown in figure 1-19. They are now all tangent to the Mach
cone and there will be at any time t two such surfaces passing any fixed ob-
servation point O located within the Mach cone. The sound reaching these
surfaces will have been emitted in the past by the source when it-was at two
different positions. (In this figure the sound was emitted at the times t1 and
t, when the source was at the positions 32’; =Vyt; and X = Votz, respec-
tively.) An observer located outside the Mach cone will hear no sound at the
time t. Thus, an observer located at a fixed point will hear no sound until
the Mach cone passes. After that he will hear, at any instant of time, sound
coming from two different points. When the Mach cone passes the observer,
the sound field will be particularly intense since all the surfaces coalesce
along this line.

1.8.3 Explicit Expression for Pressure Field

In order to obtain an explicit expression for the pressure fluctuations,
notice that equations (1-131) to (1-136) show
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R¥(1 - Mg cos 6) = & - Vt) - Mg - fai M2)R* (1-138)

Differentiating this equation and using equation (1-137) therefore shows that

MO(MO - COS 9i>

14d R*-(1 - M, cos ei’) - (1-139)
<o dt 1k M0 cos p*
and hence that
Es M, cos 9i
I SRo e (1-140)
¢y dt 1 - M, cos ot
Thus, equation (1-134) can be inserted into equation ( 1-126) to obtain
L i ¢
gl iy & o %6
P = ——=ip, = ks = : (1-141)
ot + 5 + +
47R (1 = M0 cos 6 > 47R (1 - MO cos 6§ )
where

<dq0) o ( R:i:>
. =qp(t - —
dt t=t-(Ri/co) 0

For supersonic source motion, equation (1-141) becomes singular whenever
the angle % equals cos™1 (I/MO). It can be shown®S that this occurs only
when the observer is on the Mach cone.

If the source motion is subsonic, the first term in equation (1-141) will
always dominate at large distances from the source. The equation then re-
sembles the solution for a stationary point source. The principal difference

23By substituting equation (1~137) into equation (1~138) and recalling that the ob-
server is on the Mach cone only when the radical in equation (1-137) vanishes.
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is the convection factor (1 - M0 cos ei)'z, which appears in equation (1-141)
and causes the pressure to be higher in the forward direction and lower in the

backward direction.

1.8.4 Simple Harmonic Source

For a simple harmonic source, qo(t) = Ae -lot and equation (1-141)
becomes
+ - +
+0~ChA M,(cos 6~ - M -iw[t-(R¥/c,) ]
p:t 2 070 -ik + iO( 02: e 0 (1_142)
41rRi(1 - M, cos 9*)2 5 (1 g COeiE )

This formula is clearly nonperiodic since ¥ and R* depend on the time.
However, if the observer is far enough away from both the source and the
Mach cone, these terms will only change by small amounts during a period
and can therefore be treated as constants. Hence, the pressure will be ap-
proximately periodic with slowly changing amplitude and phase. In this case
it still makes sense to talk about the frequency of the sound field.

In order to show this, we expand R* and R = Ri(l - MO cos ei> in
Taylor series about some fixed time tO to obtain

25+
dR*(t,) d“R*(t,)
RY(t) = RE@t,.) + TR AN TR SO
0 0 0
; 2 2
0 dtg
dR(t,)
RE(t) = RY(ty) + di L T s
0
Then substituting the relation
1 a?RE_ Mg sin® g%
2 2 fe o 3
o dt R(I-Mocose)
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together with equations (1-139) and (1-140) into these expansions shows that

RE(t.) Ehst

B a4 g« 0
CO 0 (‘O 1 - MO cos 96
D
ik l-l Mosm fo co(t-to)+
=
2 (1 - MO cos 96)2 R (tO)

g MO<MO - CcOS 93)

Rf@):Ria

1 co(t-t0)+...

)
0
+ +\2
R (t0)<1 = M0 cos 90>
where we have put 03 = Qi(to). But since t - t0 will change by the amount
27 /w during one period, the second terms in the square brackets will be neg-

ligible during this time interval whenever

2
0

o (1 - M0 cos 93)2

cho M

I{*(to) i

Thus, when the observer is many wavelengths distant from the source position
at the time of emission (and not too close to the Mach cone if the source veloc-
ity is supersonic), equation (1-142) becomes approximately

o Ri(t ) M, cos 6F
iprA exp (— it i) expqiw i tO L L -
piz_ 1—M0cos90 ) l-MocosQO

- +\2
4TR ao)(1 - M, cos 90)
(1-143)

which shows that the pressure is approximately periodic. However, its fre-
quency is equal to
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1 @
W =

El T
1 -MO cos 90

and not the frequency w of the source. This is the well-known Doppler shift
in frequency. As 93 varies from 0 to 7, the frequency w' varies from
W/l = MO) to w/(1 + MO). Hence, the frequency is increased when the source
is moving toward the observer at the time of emission and reduced when it
moves away from the observer.

For subsonic motion, only the plus sign can hold in equation (1-143). As
the source approaches the observer the frequency will appear higher than the
source frequency. It will then progressively deepen in pitch as the source
moves past the observer.

When the source velocity is supersonic, the observer will hear the sound
only after the source has passed him. In this case, there are two locations of
the source from which the sound reaching the observer at any instant of time
is emitted. At the location corresponding to the plus sign in equation (1-143)
the source is moving away from the observer at the time of emission, while at
the location corresponding to the minus sign it is moving toward the observer
at the time of emission. An interesting feature of the supersonic source
velocity is that the sound fields from the two different emission points which
arrive simultaneously at a given observation point can have different phases
and therefore interfere with one another.

1.8.5 Multipole Sources

The results obtained in this section can be extended to multipole sources.
Thus, by putting

. :

2 1idg, e, iy

_ay. OV e, e s O
11 12’ 2 IN

in the equation
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Nm

2 i1’12”"’iN
B
i

(D 6(y - VO 7)

Vzp -

(¢)
(=) Ol
o =Y)

ayil Byiz, iy, ayiN

for the sound pressure from a point multipole source of order N and strength
in uniform motion, we see from the results obtained for a

11,12, ceesly
monopole source in section 1.8.1 that

M s )
N POL CNREI T
<M 9 il B N 5 (1-144)
dm ox; 0%y ..., 0% R ll'-Mocose l
1 2 N
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APPENDIX 1.A
FOURIER REPRESENTATION OF FUNCTIONS
1.A.1 Periodic Functions

Any sufficiently smooth periodic function of time f(t) with period Tp can
be represented as a superposition of simple harmonic functions by the Fourier

series

f(t) = 2 cne‘i““’t (1-A1)

n=-c0

where w = 27/T._ is called the fundamental angular frequency, f = w/27 is
the fundamental frequency, and the terms with n #+ 0 are called harmonics.
Each Fourier coefficient C % is determined by

I =

Che

—

T
p =
/ f(te ™t at (1-A2)
p "0

The absolute value of this coefficient |C_| is called the amplitude of the n'"

harmonic, and the argument of Crl is called its phase. Sometimes Cn itself
is called the (complex) amplitude of the nth harmonic. When the function

f(t) is real, the Fourier coefficients satisfy the relation

Gledth oot =120, (1-A3)
Motion which can be represented by such a series is the basis of all mu-
sical sound. In particular, the vibrations of wind and string instruments can
be approximately represented in this way, and the ''tone quality'' of the sounds
produced is determined to a great extent by the relative amplitudes of the var-
ious harmonics present. Thus, representing a periodic function by a Fourier
series is more than just a means of representing complex functions in terms
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of simpler functions. It somehow corresponds to the way we hear and distin-
guish sounds.
The periodic cross-correlation function

T
L il B
fl (t)fz(t T = / f1 (t)fz(t + 7dt (1-A4)
Tp 0

of any two periodic functions

0O

-inwt
fl(t)z Z Ane
N=-=c0
0
-inwt
fo(t) = B el
2( Elo D
satisfies the relation
PO el Ve SRR e 2R P Q0 5
eyt « = ), Alp elonT (1-A5)
N==c0

which shows that A:;Brl is the Fourier coefficient of the cross-correlation
function. Hence, in particular, the autocorrelation function f’{ (t)f 1(t +7)
satisfies the relation

0

F1 O+ D = Z {An[2 e b, (1-A6)

N==0

and the mean square value !fl(t) l2 of f,(t) satisfies the relation

0

8,0 |2 = > A, |2 (1-AT)

Nn=-c0
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The cross-correlation is independent of translations in time, which means
that

fI (t + tgfy(t + tg + 7 = £ Oyt + 7 (1-A8)

for any tO.

1.A.2 Aperiodic Functions Which Vanish at Infinity

Of course, periodic sounds represent an idealization since they must be
defined so that their form repeats continuously throughout all time while all
real sounds must certainly be of finite duration. A periodic sound could, of
course, be represented by a periodic function which is equal to the sound with-
in the interval where it is nonzero, but it would not represent the sound out-
side this interval. However, it can be shown that any sufficiently smooth func-
tion f(t) which vanishes sufficiently rapidly at t = +~ can be represented by
the Fourier integral

[>] o
f(t) = / F(w)e Tt do (1-A9)
where the Fourier transform F(w) of f(t) is determined by

i) == / f(t)et?t at (1-A10)
2T J-©

The integral shows that any function which vanishes sufficiently rapidly at in-
finity can be represented as the superposition of harmonic functions of all pos-
sible frequencies w/27.

The quantity |F(w) [2 is called the spectral density of f(t) at the fre-
quency w/27. For small Aw, an electronic filter which cuts out all fre-
quencies except those between /27 and (w + Aw)/(27) would deliver a meas-
urable power proportional to IF(w) !2 times Aw/27, the width of the fre-
quency band passed by the filter.
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A sufficient condition for the Fourier transform of a function f(t) to exist
is that it be a square integrable function. This means that

/ 5 |2 at < (1-A11)

The cross-correlation function
* & %
£F (Ot + 7 = [O £ (Df(t + Dat (1-A12)

of any two square integrable functions

exists and satisfies the relation
= S i i
£] Ot + 1 = / F, (w)Fz(w)e'de (1-A13)
-0

which shows that the cross-power spectrum F;‘(w)Fz(w) is the Fourier trans-
form of the cross-correlation function. Hence, the power spectrum ,Fl(w) ]2
is the Fourier transform of the autocorrelation function f*{(t)fl(t + 7). Some
useful properties of the Fourier transform are listed in table 1-1.

It is also convenient to consider Fourier transforms with respect to spa-
tial variables. In this case, however, the previous results need to be ex-
tended to three dimensions. Thus, equation (1-A9) can be generalized to show
that the function f(y) can be represented by the Fourier integral

(
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TABLE 1-1. - SOME PROPERTIES OF

FOURIER TRANSFORMS

Function, Fourier transform,
f(t) F(w)
n
d () (i)™ F(w)
at"
f<£ 4 b) |a ’e-iabw F(aw)
a
5(t) L
21
/ f(t)g(T - tidt F(w)G(w)

£(y) = / F(l?)eii;'ydg (1-A14)

where the integration is now carried out over the three-dimensional (kl’kz’k3)
space and the Fourier transform F(I_E) of f(gf.) is determined by

fl) = 1 / f(;)e'ﬂ—{'y dy (1-A15)
(2m)®

Notice that we have reversed the sign convention from that used for the
Fourier transforms with respect to time.

1.A.3 Aperiodic Stationary Functions

We shall frequently have to deal with functions which are not periodic and
do not possess a Fourier transform. Rather than satisfy the condition (1-A11)
(which would ensure the existence of the Fourier transform), these functions,
called stationary functions, merely satisfy the requirement that the average

value24

24According to this definition, periodic functions are always stationary.
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[f(t)[z = Jim /T ]f(t)]z dt (1-A16)
= Jim =~ 3
2T J-T

remain finite.

For such functions the Fourier transform Tlim F(w,T) where
- 00

1 T it
F(w,T)E__/ £(t)et®t dt (1-A17)
2 J-T

will not, in general, exist. However, for any two such functions f 1(t) and
f2(t) the cross-power spectral density function

Fi‘ (w, T)Fq (w0, T)

= lhim
Slz(w) Povoo T z (1-A18)
where
1 ’
F.(w,T) = L / f.meltat for j=1,2
) or JT I
does exist and in fact is equal to the Fourier transform of the cross-
correlation function
B o 1 B
£y (t)fz(t ¥ ) = ri‘im it fl(t)f2(t + 7dt (1-A19)
—o 2T J-T
Hence,
fi‘(t)fz(t P L slz(w)e’mdw (1-A20)
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The autocorrelation function fI (t)fl(t + 7) satisfies the relation

e e 0 Z
f{(t)f1<t+7):/ $;1(@e T dw (1-A21)
and the average value lfl(t) lz satisfies
2 0
It | =/ S;1(w)dw (1-A22)
=00

where Sll(w) is called the power spectral density function. Equations (1-A18)
and (1-A20) should be compared with equation (1-A13).

Equation (1-A19) shows that f](t + tpfg(t +ty+ D = f] (Dt + .
Hence, the cross correlation of a stationary function is independent of time
translations. :

Since the integral (1-A17) exists for finite T, we can use the theory of
Fourier transforms to treat stationary functions by introducing the ''shutoff!'
function

0 Ehr
it T) =
fit) [t|]<T

Then F(t,T) and f(t,T) are Fourier transform pairs and can be treated by
using the theory of Fourier transforms. At the end of the analysis the power
spectral density function can be calculated by taking the limit as T — « indi-
cated in equation (1-A18).

This trick of only analyzing f(t) during the interval 2T is related to the
actual measuring process. Thus, the length of time required for the filter to
separate out the components within a band Aw/27r is longer the narrower the
bandwidth. However, we cannot afford to wait forever, although the only way
we can obtain a minutely detailed representation of the spectral density is to
average over an infinite time.

The stationary functions encountered in practice are usually random var -
iables. Because of the complexity of these functions the information lost by
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dealing only with the autocorrelation functions and power spectra is usually of

little interest.
These ideas can be extended to stationary functions of a three-dimensional

spatial variable §. The cross-correlation function of two functions f1(§7) and

f2(§) is defined by

(T +m) = Lim L // £] (N + ndy
AV—o AV AV

where AV —« indicates that the volume element AV grows to fill all space.

It is related to the cross-power spectral density

e —_
5 F1(k, AV)Fy(k, AV)

slz(f{): lim (27) (1-A23)
AV—~w AV
where
F;f,AV) = 1 ///fj(y)e'ik'y s R T (1-A24)
@mn? ~ AV

by the Fourier integral

<f1‘(§)f2(§+71)>5// /slz('ﬁ)eik'”df{ (1-A25)

We have again reversed the sign convention in the Fourier transform.
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APPENDIX 1.B
CLEBSCH POTENTIAL

In this appendix the Clebsch potentials @, 8, ¢, and 7 introduced by
Seliger and Whitham (ref. 7) are developed. Let 7 be any solution of the
equation

Dn_ o (1-B1)
D~
where
e P m Y (1-B2)
D7 igT

is the derivative following a fluid particle. Then it is an immediate conse -
quence of Pfaff's theorem (ref. 8) that at any instant of time 7 there exist
functions ¢(y, 7, a(y, 7, and B(¥, 7 such that

(V-Svn) - dy=do+ adp (1-B3)
or equivalently
V=Ve+SVn+ avp (1-B4)
We shall now show that the potentials « and B satisfy certain very simple
equations. In order to do this, however, we must first establish an important
theorem of fluid mechanics. Thus, let ?p(‘;?o, 7) denote the position vector at

the time 7 of the fluid particle which passed through the point _370 at the time
7=0. Then if the external force per unit mass ;/p is conservative so that

i: -VQ (1-B5)
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the momentum equation (1-1) can be written in Lagrangian variables as

bk T P T o o Vp - VQ
d72 p
where
b sty
y=ak
2

is the fluid velocity. Hence,

— 2—.

TR RN
AR

oy; dr Pay? ay?

But the second law of thermodynamics (ref. 5) shows that

©ds =dh - Lap (1-B6)
p
where
h=e+2 (1-B7)
p

is the specific enthalpy and e is the specific internal energy. Then

— 2—'
0y Ay
prLE D . glir @) Hgeas (1-B8)
0
ay? d72 oy oy0
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Upon introducing Lagrangian variables, equations (1-3) and (1-B1)
become

‘i‘s-@p@, M, =0

dr

and

d—n(§ (g;) T)s T) = -0
dr P

Then equation (1-B8) can be written as

— 2—
oy dy
g AR (h+g)-_d_n_a§_=-_a_<h+sz+9”l_s>+isai
d d
ay? d72 ayio % By? ay? sl 4 ay?
(1-B9)
But since
T 2 i
a’y. oy a5 o7 T a7, , dy,
I O P 8 "Dy
d72 ayO dr ayp 5 dr ayo dr
0 ¥ 0 !
& T T
=v _p_v?-li/ v2d'r
0 ()0
ayi ayi
where -\;0 = \7(_370,0), integrating equation (1-B9) by parts shows that
Vo 2 2 2
ve oy =K g (g0 (1-B10)
0 0 0 0
¥y ofy = By i/ =0
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where

x
XE/ (h+Q-—1-v2>d7+nS
0 2

This result is known as Weber's transformation. We shall use it to determine

the governing equations for « and g.
Thus, inserting equation (1-B4) into Weber's transformation shows that

W0 = v.7,0 =2 [, D+ x]+ G, 0) 2L, 0) + o, 7 -5,
0 0 g
ay; ¥4 ay;

Comparing this with equation (1-B4) shows that functions ¢, @, and B can
always be chosen so that

90(-3.’0,0) E <P(§’.p, 7 + xj

a3°,0) = oy, D (1-B11)

8G°,0) = BF,, 7

But since ; and 7 are arbitrary points on the path of the fluid particle, it
follows that

Da_, (1-B12)
Dt
Dp _ (1-B13)
D7

In order to obtain another relation connecting these potentials, notice that

the vector identity
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- — V2 - -
YTV = Vo = NN X Y

2
can be used to write equation (1-1) as

— 2 oy -5
@-+VL-VX(VXV)+VQ=_—1VP (1-B14)
oT 2 o

Then inserting equation (1-B4) into this relation shows that

2
_I_sz-V 210+S-aﬂ+a%+ﬂ+v—+VSP—TZ-V17D_S_+V01%-VB%
o} oT 5 0T 2 D DTt 1D B

Hence, it follows from equations (1-3), (1-B1), (1-B6), (1-B12), and (1-B13)
that

v H+.a_¢+Sa_n+a_% =0
oT oT 0T

where

fhie g 2 (1-B15)

2

is the stagnation enthalpy. We can therefore suppose without loss of gen-
erality (since adding a function of time to ¢ does not change V) that

H-_ 0@ gor- . 98 (1-B16)
oT oT g

In order to obtain an equation for the potential ¢, notice that taking the
dot product of equation (1-B4) with v and subtracting the result from equa-
tion (1-B15) show that

H-VZ:—%-S@—QP.—'B
Dz D~ D~
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Hence, it follows from equations (1-B1) and (1-B13) that

Do_+2,05-H (1-B17)
1D)75

Finally, taking the dot product of equation (1-B14) with respect to v
shows that

2
P_ Y__+Q +lPB:l.a_B+§S_2
1D

Hence, it follows from equations (1-3), (1-B6), (1-B12), and (1-B15) that

D p lop 00 (1-B18)
DT gidT AT

where we have put
=H-K -SK -aK
2 @ n B

and ch’ KTI’ and KB are constants.
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APPENDIX 1.C

COMMONLY USED SYMBOLS

B

s (O B R < 5 | 1 e R

=i =y

= PR S R LR N s ) SR

98

number of propeller or fan blades
convective amplification factor, 1 - M cos 6
chord length; local speed of sound

speed of sound at steady background state
viscous stress tensor

total force exerted by solid boundaries
frequency; or ||

force per unit area exerted by solid boundaries on fluid
force per unit volume of fluid

fundamental solution of wave equation
free-space Green's function

fundamental solution of Fourier transformed wave equation
Fourier transform of T

magnitude of _IT

intensity vector

time-averaged intensity vector

unit vector in X4- or yl—direction

unit vector in Xg- Or yo-direction

wave number

wave number vector

unit vector in Xg- O yg- direction

Mach number, U/c0
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unit normal vector to solid surface (drawn outward from surface into
fluid)

acoustic power
pressure
pressure of steady background flow; or constant reference pressure

vector between observation point and center of moving source point
or region

% - ¥

X -y vector between observation point and source point
entropy; Sears' function; fixed surface

moving surface

large time interval (eventually put equal to infinity)
Lighthill's stress tensor

period, 1

Lighthill's stress based on relative velocity v'

time associated with the arrival of sound wave at observation point
mean flow velocity

number of stator vanes

surface velocity

complete fluid velocity

velocity of fluid in moving frame, v{ =V; - éliU
coordinates associated with observation point
coordinates associated with source point

normalized pressure autocorrelation function, p(t)p(t + 'r)/poco;
Fourier transform of vy

source term

Dirac delta function
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Gij Kronecker delta (1if i =j; 0if i#j)

E moving coordinates attached to source

C) temperature

6 polar coordinate (polar angle) or direction between line connecting
source and observation points and direction of motion of source

Km, & eigenvalue

A wavelength

v(7) volume of fluid exterior to solid surfaces

p density

Py density of steady background flow; or constant reference density

ol fluctuating density, p - Py

(o) reduced frequency; interblade phase angle in chapter 5

i time associated with emission of sound wave

P phase or velocity potential

(@ polar coordinate (azimuthal angle)

Q angular velocity

Q ]5‘, or w(l-MCcos 9)

w angular frequency, 27f

Subscripts:

D drag component

i thrust component

0 constant reference value; or value of quantity in steady background

flow

Experimental data are presented as pressure or power levels in decibels,
dB. This means that the ordinate of the plot is either 20 10g10®/pr)’ where
p,. is some reference pressure (usually 2><10'4t dynes/cm), or 10 log;,
(@/@r), where @r is some reference power (usually 10 ~° W). The unit of

frequency is the hertz (1 Hz = 1 cycle/sec).
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CHAPTER 2

Aerodynamic Sound

2.1 INTRODUCTION

In an unsteady flow, pressure fluctuations must occur in order to balance
the fluctuations in momentum. But since all real fluids possess elasticity
(i. e., they are compressible), the pressure fluctuations can be communicated
to the surrounding fluid and propagate outward from the flow. It is these
pressure waves in the surrounding fluid which we recognize as sound.

At fairly low Mach numbers the pressure fluctuations in the vicinity of the
flow are substantially uninfluenced by compressibility and can be determined
from the velocity field by solving a Poisson's equation1

Vp =7y

in which the source term 7y is a known function of the flow velocity. However,
the Biot-Savat law shows that we can consider the velocity field to be in turn
driven by a prescribed vorticity field. And since Kelvin's theorem of conser-
vation of circulation shows that the vorticity in an inviscid fluid is simply car-
ried along with the flow, an initially localized region of vorticity will remain
that way for sometime to come. Thus, many flows can be envisioned as rel-
atively localized regions of vorticity which drive not only the pressure fluctua-
tions in their immediate vicinity but also those which occur at large distances.

The pressure fluctuations at large distances are weak and satisfy the
acoustic wave equation. Thus, in this region, which we shall often call the

1These pressure fluctuations are sometimes called pseudosound.

103



AEROACOUSTICS

acoustic field, the effects of compressibility and the finite propagation speed
of acoustic waves are important.

Although the localized pressure fluctuations have been extensively studied,
the theory of aerodynamic sound is principally concerned with the study of the
pressure fluctuations in the acoustic field. 3 This subject probably began with
Gutin's theory (ref. 1) of the noise produced by the rotating pressure field of
propellers, developed in 1937. However, it was not until 1952, when Lighthill
(refs. 2 and 3) introduced his acoustic analogy to deal with the problem of jet
noise, that a general theory began to emerge. Lighthill's ideas were extended
by Curle (ref. 4), Powell (ref. 5), and Ffowcs Williams and Hall (ref. 6) to
include the effects of solid boundaries. These extensions include the theory
developed by Gutin and, in fact, provide a complete theory of aerodynamically
generated sound which can be used to predict blading noise as well as jet
noise.

The fundamental equation which forms the basis of the acoustic analogy
approach is derived in the next section. The methods of classical acoustics
given in chapter 1 are then used to obtain solutions to this equation for the
case where no solid boundaries are present. (The treatment of solid bound-
aries is deferred to chapters 3 and 4.) These solutions are applied to high-
speed subsonic jets, and fairly detailed results are obtained. Supersonic and
low-speed subsonic jets are treated in a somewhat more qualitative fashion.

In Lighthill's acoustic analogy, certain terms associated with the propa-
gation of sound are treated as source terms. In practice, this places certain
limitations on the accuracy of the theory. Alternative approaches developed
to overcome these limitations are presented in chapter 6.

2If the Mach number is sufficiently low, there will be an intermediate region where
the pressure fluctuations have some of the properties of both the localized pressure
fluctuations and those in the sound field. Thus, in this intermediate region the pres-
sure fluctuations are as weak as in the sound field, but the distances involved are small
enough so that the effects of finite propagation speed, and hence of compressibility, can
be neglected.

3The difference in character between the pressure fluctuations in the acoustic field
and those in the vicinity of the flow is evidenced by their relation to the flow velocity.
Thus, the localized pressure fluctuations are of the order pu! 2, where u' is a char-
acteristic velocity. But it was shown in chapter 1 that the pressure fluctuations in the
sound field are of the order pcju'.
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2.2 LIGHTHILL'S ACOUSTIC ANALOGY

In this section we develop the acoustic analogy approach introduced by
Lighthill in two classical papers published in 1952 and 1954 (refs. 2 and 3).
This approach was initially evolved to calculate acoustic radiation from rela-
tively small regions of turbulent flow embedded in an infinite homogeneous
fluid in which the speed of sound ) and the density p, are constants.

In this case the density fluctuations, p' =p - pgy» at large distances from
the turbulent region ought to behave like acoustic waves and hence satisfy the

homogeneous wave equation

1h5e o

i
0

p'=0
oT

Lighthill arranged the exact equations of continuity and momentum in such a
way that they reduce to this equation outside the region of flow.

2.2.1 Derivation of Lighthill's Equation

In order to derive Lighthill's result, notice that upon using the summation
convention the continuity and momentum equations can be written as

_E_).Q o _g—-pv = (2—1)
0T 0dY: )
]
av. oe..
/o——1+v.——a—vi 2589 %)
oT ] ayj ayi ay].

where e;; is the (i, j)th component of the viscous stress tensor. For a
Stokesian gas it can be expressed in terms of the velocity gradients by

47he notation introduced at the beginning of section 1. 2 will be used in this sec-

tion.
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OV w0V ov
e #(__1 P BN 55 _k> (2-2)
ayj ayi 3 ayk

where u is the viscosity of the fluid.

Multiplying the continuity equation (2-1) by v;, adding the result to the
momentum equation, and combining terms show that

_a__pv. T 8 (ov.v. + 6..p - e..)
3 1 7% i3 ij ij
]

But after adding and subtracting the 1:erm5 cg op/ ayi, this equation can be
written as

opV. G B
a0 o o B (2-3)
oT i ay].
where
A 2
Tij = PViVj + 61j [(p T po) 5 co(p o Po)] = eij (2-4)

is Lighthill's turbulence stress tensor. Finally, differentiating equation (2-1)
with respect to 7, taking the divergence of equation (2-3), and then subtract-
ing the results yield Lighthill's equation

Wop o gy h
(s cgVp' = v - (2-5)
ar? 9; %;

2.2.2 Interpretation of Lighthill's Equation

Equation (2-5) clearly has the same form as the wave equation governing

5The subscript 0 is used here to denote constant reference values, which will
usually be taken to be the corresponding properties at large distances from the flow.
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the propagation of sound emitted by a quadrupole source® azTi]./ ayi ay]. ina
nonmoving medium (see section 1.5.2). It therefore shows that there is an
exact analogy between the density fluctuations in any real flow in arbitrary
motion and those in an ideal acoustic medium at rest (with sound speed cO)
due to a distribution of quadrupoles of strength Ti"

The crucial step in Lighthill's analysis is to regard this source term as
known a priori. (Notice that the nonlinear terms are all contained in the
source term). However, we never have complete prior knowledge of this term
since it involves the fluctuating density, which is precisely the variable for
which equation (2-5) is to be solved. In fact, since Lighthill's equation is an
exact consequence of the laws of conservation of mass and momentum, it must
be satisfied by all real flows: most of which are certainly not sound like.
Thus, in most cases, a knowledge of Ti' is equivalent to solving the complete
nonlinear equations governing the flow problem, which is virtually impossible
for most flows of interest.

Even for those flows which are sound like, the source term
(82 /ay dy.), aside from representing the sound emission, includes such
real f1u1d effects as the convection and refraction of the sound by the mean
flow, the scattering of the sound by turbulence and entropy spottiness, the
back reaction of the sound field on the flow itself, and the viscous dissipation
of the sound by the flow. The prediction of any of these effects requires that
the sound field (which is not known until eq. (2-5) is already solved) be in-
cluded in the source term.

In spite of these drawbacks the acoustic analogy approach serves as a
foundation for most aerodynamic sound analyses. This is probably due to the
fact that this approach allows us to use the powerful methods of classical
acoustics to treat aerodynamic sound problems. In chapter 6 we discuss pro-
cedures which have been developed to alleviate the difficulties associated with
this approach.

By incorporating suitable boundary conditions, we can apply Lighthill's
acoustic analogy to flow in the presence of solid boundaries. As a first step,

61t is shown in the next section that this source term should vanish outside the
region of turbulent flow and hence (as indicated in the beginning of this section) eq.
(2-5) does indeed reduce to a homogeneous wave equation in this region.
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however, we shall consider the case where the effect of solid boundaries on
the sound field is negligible. Then the only important applications of the re-
sults will be to jet noise. (In fact, Lighthill actually developed his theory
specifically to deal with this problem.) In chapter 3 we show how solid bound-

aries can be included in the analysis and apply the theory to a number of spe-
cial cases.

2.2.3 Approximation of Lighthill's Stress Tensor

Lighthill's equation can only serve as the starting point for the solution of
aerodynamic sound problems if it is possible to regard its right side as a
known source term. We shall now show that there are at least some flows for
which this is a reasonable assumption.

To this end, consider a subsonic turbulent airflow (or for that matter any
unsteady high-Reynolds-number subsonic flow) of relatively small spatial ex-
tent (such as the flow in a jet) embedded in a uniform stationary atmosphere.
The subscript 0 will now be used to denote the constant values of the thermo-
dynamic properties in this atmosphere. Within the flow we anticipate that the
viscous stress eij’ which appears in Tij’ will always be negligible compared
with the far larger Reynolds stress term pv;vs. Infact, it is well known from
the study of turbulence that the ratio of these terms is of the order of magni-
tude of the Reynolds number pUL/p, which in virtually all applications of
aerodynamic noise theory is quite large.

In the region outside the flow (or at least at sufficiently large distances
from this flow) the acoustic approximation should apply, and hence the veloc-
ity vy should be small. Then the quadratic Reynolds stress term PV;Vs will
be negligible. In addition, the effects of viscosity and heat conduction can be
expected to act in this region in the same way as they do for any sound field.
This means (as shown by Kirchoff, see ref. 8) that they only cause a slow
damping due to the conversion of acoustic energy into heat and have a signifi-
cant effect only over very large distances. Thus, it should be possible to ne-
glect eij entirely.

Now assuming that the flow emanates from a region of uniform tempera-
ture, the effects of heat conduction ought to be of the same order of magnitude
as the viscous effects (provided the Prandtl number is of order 1 as it is for
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most fluids). Hence, heat conduction should also be negligible within the flow.
Then the entropy changes will be governed by the inviscid energy equa-

tion (1-3). And, since it is assumed that the flow emanates from a region of
uniform temperature, this equation shows that the entropy should be relatively
constant. But it is shown in section 1. 2 that

P-Pg= c(z)(p 2, (2-6)

in any isentropic flow in which (as is usuaily the case in subsonic flows)
(p - po)/po and (p - pO)/pO are sufficiently small.

We have therefore shown that Tij is approximately equal to pv.lvj inside
the flow and approximately equal to zero outside this region. Hence, upon
assuming that the density fluctuations are negligible within the flow, we can
approximate Lighthill's stress tensor by7

I ™ 0% (2-7)

But within the flow it is reasonable to suppose that the Reynolds stress pOViVj
can be determined, say from measurements or estimates of the turbulence,
without any prior knowledge of the sound field. Then the right side of Light-
hill's equation (2-5) can indeed be treated as a source term.

2.3 SOLUTION TO LIGHTHILL'S EQUATION WHEN NO SOLID
BOUNDARIES ARE PRESENT

It is shown in section 2. 2 that the problem of predicting the sound emis-
sion from a region of unsteady flow embedded in a uniform atmosphere can be
reduced to the classical problem of predicting the sound field from a known
quadrupole source of limited spatial extent. If any solid boundaries which
may be present do not influence the sound field to any appreciable extent, the
solution to this problem can be expressed in terms of the free-space Green's
function. Indeed after comparing equation (2-5) with equation (1-59), we see

T0f course, it is being assumed that no combustion occurs in the flow. This could
result in large fluctuations in entropy and hence in (p - pO) - cg (p - pO). This term
would then have to be included in Tij'
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from equation (1-82) that this solution is given by8

2

oI I
o 1 - "
p(E 1) - pg = 12 A - dy (2-8)
r | dy. 9y.
47TCO L] T=t-(r/co)
where
r=|x-7y]

In order to transform this equation into a more suitable form, it is convenient
to introduce the differential operator 6/ 0Y;; which denotes partial differentia-
tion with respect to VA with not only t but also r held fixed to obtain

1 62 Tl] 6;) Lo I'/CO) P

p(X, ) - py = y (2-9)

47rc(2) 0;07; 5

Then since the operator 3/ ayi denotes partial differentiation with respect to
VA with X and t held fixed and 9/ 0x; denotes partial differentiation with
respect to X with ¥ and t held fixed, the chain rule for partial differenti-
ation shows that for any function F(y,T,t)

OF _dF _ aF

il

Gyi ayi axi

and hence that

8As indicated in chapter 1, the omission of the limits on a volume integral denotes
an integration over all space,
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2 2 2
O T = oy B . 0 F i i :
Gyiéyj ayi ay]. A oxj ayj ox; 0%y oxj

Using this result in equation (2-9) shows that

p S TEaa|l L
p(% 1) - py = — | dlgy. L2 f 21 lay
4nc(2) E)yi ayj r 4ncz ax 8y.1 T
T 2 2
Pl P e L0 ey (2-10)
47rc(2) axi ayj T T C(Z) ax 8x] Ty

provided the integrals exist. In this equation the notation [Tij/r] is used to
denote Tij(37,t - r/cO)/r. Notice that the integrand in each of the first three
integrals is the divergence of a vector. But if SR denotes a sphere of radius
R, the divergence theorem shows that

/V-Kd§'= lim z A-dS

R~ “°R

for any vector A for which the integrals exist. Hence, upon assuming9 that

Tij is smooth and decays faster than y-1 for large y, we can conclude that

9We show in section 2. 2 that outside a localized region of turbulent flow where the
viscous and heat conduction effects are negligible, T;; behaves like pv;vi. But in this
outer region, v; will not decay any slower than the rate y-1 at which the acoustic
particle velocity decays (egs. (1-93) and (1-94)). Hence, T;; must decay at least as
fast as y~2. But we cannot be sure that the last integral in eq. (2-10) will converge
unless Tjj is known to decay faster than y~ 2, However, the incompressible flow
Velocities, which dominate (at sufficiently low Mach numbers) in the region of a local-
ized flow, decay as y’3 for large values of y. Thus, if we could begin by completely
neglecting the contribution of the acoustic velocities, T;; would decay as y‘6 and the
last integral in eq. (2-10) would certainly converge. By using the method of matched
asymptotic expansion, it can be shown (ref, 9) that this approximation is valid when-
cver the wavelength of the sound is large compared with the size of the source region,
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these integrals vanish and that equation (2-10) becomes

by 2 fies 5 ,
P, 1) - pg = —1——2 —Jl(?,t—-li>dy (2-11)
4ncg 0x; axj iy

In aerodynamic sound problems we are usually interested in the sound
at large distances from the source where, as we have seen, the expression
for the sound field becomes particularly simple. Thus, first consider the
case where the observation point X is many wavelengths away from any point
in the source region. (This distance need not be large relative to the dimen-
sions of the source region.) Then upon using the manipulations described in
section 1. 5. 2 the second partial derivative of the integrand in equation (2-11)
becomes

02 Ty(Ft - x/cy T azTij(Sr',t - r/cg)

1] % O(r-z)
axi axj i c(2)1,3 at2
where
T=%-7
Hence, for large r,
2
T o]
o(E ) - pg ~ L ¥ ”<§z’,t-i>d37
47103 r3c(2) at2 o

If the distance between any source point and the observation point is also large
compared with the dimensions of the source region (i. e., if the observation
point is in the radiation field), we can (upon assuming that the origin of the
coordinate system is in the source region) replace rirj/r3 by xixj/x3 to ob-
tain
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2
XX Qiselian
PEY Sy~ = — (?,t —L>d§ (2-12)
(&
47rcO X ) ot 0
10

provided the integral converges. This equation allows us to calculate the

density fluctuations in the radiation field once the source term is known.

2.4 APPLICATION OF LIGHTHILL'S THEORY TO TURBULENT FLOWS
2.4.1 Derivation of Basic Equations

The most important application of the solution (2-12) is the prediction of
sound from turbulent jets. 2 But for turbulent flows it is reasonable to as-
sume that the stress tensor Ti' is a stationary random function of time.
Then equation (2-12) shows that the density fluctuation in the radiation field
must also be a function of this type. For such sound fields (see section
1.7.3.2.1) both the average intensity and its spectrum can readily be deter-
mined from the normalized pressure autocorrelation function

o e P&t +7) - pJp& b - p)

Poo

And since equation (2-6) must certainly hold in the radiation field, it follows
from equation (2-12) that this function is related to the source term by

2 2
o XX XX i O 1 2 Th
e T S L€ ~ 8§, 1) —KE G, trayt ag

161220y x° at2 at2

(2-13)

1
OThe convergence of this integral now requires that Tij decay faster than y~ 3
for large y.

1154 can also be used to predict the sound from periodic jets. See section 2. 5. 3.
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where
="t - i i ?‘ W
o
$ (2-14)
t=t+7 wlz-70
€0
5

It is shown in the appendix that the integrand in equation (2-13) can be put

in the form

B 5] 5 -
— B, — G ) = TE T @ ) (2-15)

But since (as shown in appendix 1. A. 3) the cross correlation of a stationary
function is independent of time translations, it follows from equation (2-14)
that

= = B = ol N et SR 1
Ty, 1) Ty G, 1) = Ty, Oy (?',tw et |> (2-16)
Cc
0

And since |X - ¥'| behaves like

1l

£-5F]=x-%. §+0xh
X

for large x it follows that

1Z-9|- -7 .X. G - (2-17)
X
Finally, inserting equations (2-15) to (2-17) into equation (2-13) shows that
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5T XXX %) ot [/T (¥, )Ty, (7", Tg)dy" dy*'  (2-18)

2.5
167 0P x

where

—
—

705t+r+—x (-
xc

It is now convenient to introduce the separation vector —T;E gl .7 aga
new variable of integration in equation (2-18) and to define a two-point time-
delayed fourth-order correlation tensor by

LT Tij(y" t)Tkl (y”:t h 7) a (’Dijkl (Y',ﬁ)

2
Po

(2-19)

where Pijki is an arbitrary time-independent tensor which will eventually be
chosen to simplify the equations. Then, since the Jacobian of the transform
§', 37" — 37', 77 is unity, inserting these quantities into equation (2-19) shows

that

< Po% % ¥ -4 X Ycnr s
e S y n,r+ﬂ—- Xldy' an  (2-20)
16256 1]kl 0 X
T C
Tip

This equation relates the pressure autocorrelation in the sound field to the
source correlation tensor gijkl‘ Taking its Fourier transform and using
equation (1-125) and table 1-1 in appendix 1. A show that the intensity spec-
trum in the radiation field is given by

4
. W Pl ZRX le(X/X)n/c oY ol e
Iw(;?) = W J ) [ 0] R; kl(y',n,T) dy' dn dr
3 5 J
32w o

(2-21)
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This equation can, in principle, be used to calculate the spectrum of the sound
field emitted from a turbulent flow whenever solid boundaries do not play a
direct role in the process. However, most turbulent flows which are not in
the immediate vicinity of solid boundaries (e.g., jets, wakes, etc.) have
nearly parallel mean flows. In the next section we deduce certain properties
of the correlation tensor which will be helpful in understanding the sound

fields produced by such flows.

2.4.2 Parallel or Nearly Parallel Mean Flows

Whenever the mean flow is nearly parallel, it is of interest to consider
the case where the velocity V(¥,t) is the sum of a parallel mean flow iU(yy)
as shown in figure 2-1 and a fluctuating part u(y, t) with zero mean so that12

v = 6,0 + (2-22)

2.4.2.1 Special form of Reynolds stress approximation to correlation
tensor. - Before turning to more general considerations, we shall attempt to

2

)

==

Figure 2-1. - Unidirectional transversely sheared
mean flow.

12This type of model for the turbulence correlation tensor appears to have been
introduced by Ribner (refs. 10 and 11).
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gain some insight into the connection between the turbulence velocity correla-
tions and the correlation tensor gijkl by approximating Tij by the Reynolds
stress. Thus, substituting equation (2-22) into the Reynolds stress approxi-
mation (2-7) and choosing (Pijkl in equation <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>