General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



FOM L)

. oty
1!]!"\!’1 L ANE ) ar I I l
"nnu«fnuiun oA 1r

-
-

S

f

electrlcal
engineering

(NASA-CR=-140521) THEORETICAL N74=-35144

INVESTIGATIONS ON PLASMA PROCESSES IN THE

KAUFMAN THRUSTER Annual Report {(Colorado

State Univ.) 73 p HC $6.75 CSCL 207 Unclas
G3/25 51635

ANNUAL REPORT

THEORETICAL INVESTIGATIONS ON PLASMA PROCESSES
{i IN THE KAUFMAN THRUSTER

by

H. E. Wilhelm

Prepared for
LEWIS RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Grant NGR-06~-002-~147

September 1974



ANNUAL REPORT

THEORET LCAL INVESTIGATIONS ON PLASMA FROCFSSES

IN THE KAUFMAN THRUSTER

by

H. E. wWilheln

Prepared for
LEWIS RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Grant NGR-06-002-147

September 1974
Department of Electrical Engineering
Colerado State University

Fort Collins, Colorado



FOREWORD

he theoretical vork on plasma processes in
the Kaufman ion propulsion system contained in
this report has been supported Ly the NATIONAL
AERONAUTICS AND SPACE ADMINISTRATION under Grant
NGR - 06 - 002 - 147. This research has been
monitored by Dr. John Servafini, NASA LEWIS RESEARCH

CENTER.,



1T,

III.

1v.

CONTENTS

INTRODUGTION + . v v w4 v ¢ v s

CONTRIBUTTIONS TO VOLUME SPUTTERING .

1.
2,
3.
4.
5.

Problem and Voundations. . . . .
Parabolic Thermal Waves, . . . .
Hypaerbolic ‘Thermal Waves . . . .
Applicaticn to Velume Sputteving
Application to Volume Sputterinr
Micrometuors . .+ .+ . e

CONTRLBUTLONS TO SURFACE SPUTTERING,

Bl e b
- % s

TRANSFORT AND DEPOSITION OF

1.
2.
3.

KINETIC THEORY OF LOW PRESSURE GAS DISCHARGE .

Statistical Analysls . . . . . .
Perturbation Theory. . . . . .
Surface Sputtering Rate. . .

Application to Electrical Discharge

Sputtering . . . . . . o+ .

Uniform Emission Source. . . . .
Parabolic Emission Scource. . . .

by Tons
by

) LI .
LI} .

]
L) -

) . .

SPUTTERING PRODUCTS

N

v .

Arbitrary Nonuniform Emission Source . .

27
3l
33
38
41

43

36
57
58



0. INTRODUCTION

The Grant NGR-06-002-147, "Theoretical Investigations on Plasma
Processes in the Kaufman Thruster," 1is concerned with I) the sputtering
of the accelerating grid, II) the sputtering of the cathodes of the
hollow cathode and neutralizer dischaxrges, IIL) the deposition of the
sputtered atoms on system components such as the solar energy collectors,
and the 1V) hollow cathode and neutralizer discharge characteristics.
The progress made on these subjects in the period from 6.1.73 to 6.15.74
1s communicated herein.

In Part I, an analysis of the sputtering of metal surfaces and grids
by dons of medium energles (e ~ 103 eV) 1is given. The sputtering is
explained by discontinuous, nonlinear thermal waves (generated by the
impinging 1lon) which produce a spatially concentrated emission of metal
atoms under strong nonequilibrium conditions. It is shown that the con-
ventional parabolic (approximation) heat conduction equation can not
describe the transient transport of heat in metals at high temperatures
(t z 300°K) and has to be replaced by an exact, nonlinear, hyperbolic
wave equation for the temperature field. This approach leads to a
theoretical prediction of the threshold energy for sputtering and to a
quantitative theory of the sputtering rate. As concrete applications,
i) the number of atoms sputtered from the accelerating grid by a charpge
exchange ion beam and 1i) the sputtering of system components by micro-
meteorites are discussed briefly..

In Part II, a quiantum statdstical and a perturbation theoretical
analysis of surface sputteriﬁg by ions of low energy (& < 102 eV) is

presented. Both approaches lead essentially to the same expression for



sputtering rate, 1.e¢. dependence on the ion energy, atom density of the
solid, the atom and ion masses, und scattering cross section., The
theoretical sputtering rate formula agrees well with experimental data,
in particular as to the threshold energy and the energy dependence. As
an application, the number of atoms sputtered from the cathode of low
pressure discharges is calculated. The underlying model assumes that

a quasi~thermal fon beam is formed in the potential drop of the cathode
sheath,

In Part III, the deposition of sputtered atoms on system compounents
is treated. The transport model assumes that the sputtered atoms do
not interact with themselves or any of the plasma particles (transport
by free atomic flow). Analytical formulae for the deposition rate
are given in the case of uniform, nonuniform parabolic, and arbitrary
nonuniform emission sources. Only such system surfaces are considered
which can be seen along straight lines from the emitter.

In Part IV, the theoretical efforts in determining the potential
distribution and the particle velocity distributions in low pressure
discharges, such as the hollow céthode and neutralizer discharges,
are briefly discussed. Although two additional months were invested
in the resolution of these problems, it was not pessible to complete
1t because of mathematical difficulties. It is shown tﬁat the
description of a collisionless electrical discharge leads to a

noulinear boundary-value problem for the coupled Vlasov equations



and the Poisson equation for the electron and ion components, which

has Functional boundary conditions. 1In spite of a significant effort,
it was not possible to determine the specific discontinuous functional
solutions which satisfy the nonlinear functional boundary-value probiem.
The purpose of the investigation is to calculate the potential distri-
bution, in particular the cathode and anode falls, and the electron and
ion velocity distributioni:. The veloecity distribution of the ions is
of interest in connection wikh the sputtering at the cathode. It i8

hoped that this investigation can be completed at a later date.

The investigations reported herein represent preliminary
communications, An extended version of this work will be communicated
in form of publications. In the past research period, the following
investigations were published:

1. H. E. Wilhelm, Transient Ion Neutralization by Electrons,
J. Appl. Phys. 44, 4562 (1973).

2. H. E. Wilhelm, Intercomponent Momentum Transport and
Electrical Conductivity of Collisionless Plasma, Can. J.
Phys. 51, 2468 (1973).

3., H. E. Wilhelm, Nonlinear Theory of Electron Neutralization
Waves in Ion Beams with Dissipation, Phys. Fluids 17 (1974).



I. CONTRIBUTIONS TO VOLUME SPUTTERING

1,  PROBLEM AND FOUNDATIONS

In the evaluation of the sputtering of metal surfaces (cathodes,
grids), two classical problems are encountered, i) the determination
of the energy distribution of the sputtering ions at the metal surface
(kinetic problem) and ii) the calculation of the number of atoms ejected
by an ion of given energy based on a physical model for the sputtering
mechanism, The phenomenologlcal approach to the sputtering process by

1-2)

von Hippel-Townes= — assumes a Gaussilan temperature distriburion T(r,t)

around the point of impact of the ion at the metal surface which reaches
to infinity (infinite speed of heat propagation) and flattens out as

time increases, T(r,t)} = 0 for t + =, The vapor pressure P(r,t) of

1-2)

the metal 1is assumed= " to adjust itself instantaneously to this

transient temperature distribution in accordance with statistical
equilibrium mechanics,

2.3/2

P(T) = (leMmD)

/k'r)‘l/2 exp (-E_/kT)

where Es is the sublimation energy and wy = kBD/Zﬁ a frequency

3
"t

in the treatment or the thermal dissipation of the dion energy and

related to the Debye-temperature 9 This approach is unrealistic

assumes a physically unrealizable transilent metal vapor equilibrium,
As one sees from the above formula, the von Hippel-Townes model does

not give a threshold energy for sputtering (since P > 0 for any T > 0)
5)

as obzerved in experiments.ﬁ:—

The other theoretical approaches are based on considerations of

~8)

momentum ceonservation ("focusing collision sequeuees").é-— They



, predict a threshold energy for sputtering which depends strongly on the

6-8)

masses of the ion and the metal atom.~ —" This result is in direct
disagreement with the experimentally determined threshold energles
which are of the order of the dislocation energy of an atom in the

metal lattice.ﬁfé)
The theoretical models used in these attemptsﬁz&ﬂg:g) at

explaining the sputtering process contain phenomenologilcal parameters.
Their success in explaining experimental observatlons appears to be
due mainly to a proper adjustment of the phenomenoclogical constants
in each case, In the following, we try to develop a volume sputtering
theory (e > 102eV) which 18 free from phenomenological parameters., We
show that the impinging ion, which penetrates through a certain number
of atomle layers in the metal, generates a non-linear, discontinuous
- thermal wave. As a result of the high concentration of energy behind
the wave front, the thermal wave produces a mechanism which breaks the
atoms out of theiy bound places in the lattice. The metal atoms in the
volume overrun by the thermal wave are emitted until the energy behind
the wave front has decreased down to the dislocation energy of an atom.
This concept leads directly to the correect threshold energy for
sputtering, A theory of surface sputtering (e < 102eV) is presented
in Section II.
In the slowing down process of an ion penetrating into a metal,
1ts kinetic energy ¢ dis dissipated nearly homogeneously along its
. )]

path of length L.~ Accordingly, the energy expended per unit path

length is in this approximation




€ = ¢/L [erg cmfl]

where e 15 the knowm ilon energy, while L can be calculated from

9)

slowing down theuswy for charged particles in seolids.—" The energy €

of the lon appears quasi-instantaneously in form of thermal energy due

to the high density of the metal (relaxation time . 10"19

sec)., Thus,
a cylindrical thermal wave is generated by the lon with the path L
as symmetry axis. (In case of low lon energles, when only one or a few
atomic layers are penetrated by the ilen, an essentilally semil-spherical
thermal wave 1s generated around the point of impact.)

The transport of heat in a metal is described by the relaxation
equation for the heat flux 3 and the conservation equation for the
thermal energy density peT (p = mass density, ¢ = specific heat,

T = absolute temperature). These equations are derived as moments of

the Boltzmann equation, and are:

He-tiodw W

pe 3L = 9.9 ;@)
where

t = 7(T) = Ton, [Tol = gec deg_m , (3)

L
H

A(T)

AoTn, [AO] = erg cm"lsec-ldeg“n—l , (4)

are the relaxation time of the heat flux and the thermal conductivity of

the metal, respectively. The temperature dependence of. T and A can be

modelled in wide temperature ranges by simple power relations (m, n : 0).
+1

Theory and measurements indicate that A ~ T at low temperatures,



A~ 'I."'2 at Intermediate tempeiatures; snd A ~ T0 at high

10)

temperatures,~— Since the electrical conductivity of the metal,

o= (neezlme)r*, is preportional to the momentum relaxation time,

T 1ia given in terms of A by the Wiedemann-Franz relution&ép
3 M
= 5530 9
™ k- e

where the electron density n, is to be considered a constant
(pe = RS, for a quasi-incompressible metal). Consideration will be

given exclusively to cylindrical thermal waves.



R B

2. PARABOLIC THERMAL WAVES
11)

In contemporary heat transport theory,~’ it 1s standard to

issume that a temperature gradient VvT produces instantaneously a heat
flux E, i.e. Bq. (1) is replaced by q = ~AVT. Combining this relation
with Eq. (2) gives the usual parabolic heat conducti~n equation.lé)
The initial-value problem for eylindrical thermal waves becomes in

this approximation:

3T 1.3 .0 3T
e~ 8o (TF g (6)
where
-] .
24 T(r,t) rdr = Q ("
0

expresses the conservation of energy deposited per unit length by

the fon, and

1

A /pe [en® sec™t deg™ ,  (8)

=}
[E1}

e/pe [deg cm2] . (9)

1t

Q

Eq. (7) is mathematisally equivalent to the initial condition,
T(r,t = 0) = Q 6(r)/2mr. The parameters a,Q and x,t permit the

formation of a single nendimensional combination,

1
£ = z/(aQ ) D) . (10)

which has the meaning of the similarity varilable of Eqs. (6) - (7).

For dimensional reasons, one makes for the temperature field the ansatz

1

n+l

T = (Q/at) £(E) . (11)



Eq. (11) reduces Eqs. (5} - (7) to an ordinary nonlinear problem for

the nondimensional function £(g),

n, df 2 df

2 (ntl) dz (L g +& g+ =0 »  (12)
where
2nf E(E) £ dE n 1 L Q3)
0

Eq. (13) has a closed form solution which 1s discontinuous [H(x) = 1,

x >+ 0; H(x) = 0, x < - 0]:

1
£6) = [y (2 - 6917 H(E0) (14
where
-2(n+1) iy 1
5 gyl é(l-n)n dn
i.e
1
= (4 / )n-i-l n+l (15)

by Eq. (13). It i8 physically more illustrative to rewrite the

temperature distribution of the thermal wave as

1

. 2
T(r,t) = T(E)[1 - -%—-]“ H[R(L) - x] (16)
rE(t)
where
1
T(t) = Tr[n/4(n+l)]n 2(ntl)/n gy Coan
T(e) = o/mR%(e) ,  (18)

and



10

1

Z(n+L) (19)

R{t) = £_(aQ"t) .

Eq. (16) indicates that the temperature in the wave drops
discontinuously to zero at r = R(t), the position of the wave front.
A nearly homogeneous concentration of thermal energy exists behind

vne thermal wave front, 0 < r < R(t), which advances with the speed

1
E R
drR(E) %0 -1, n  Z(nfl)
dt Ty b B ) . (20)

It should be noted that the parabolic solution in Eq. {16)
diverges for n < 0 at r = R(t), and reduces to an unrealistic
Gaussian distribution which extends to infinity at any time 0 < t < o
in the linear caese, n = 0. Accordingly, for media with A decreaning
with inereasing T or ccastant A(n < ()), Eq. (16) does not represent
a useful approximation. As will be shown, these difficulties are
removable by means of Eq. {1) which takes into consideration the
physically required relaxatlon in any transient heat flow.

The propagation of a parabolic thermal wave in barium oxyde (BaO)

is shown in Fig. 1 {n = 3),
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3.  HYPERBOLIC THERMAL WAVES3

In a transient heat transport process, a temperature gradient
produces a heat flow after a finite relaxation period. In accordance
with Eqs. (1) - (3}, the cylindrical thermal wave generated by an fon
of energy € around its path L 1in a metal is described by the

hyperbolic initial~value problem:

T e

peit = - =& (rq) , (22)
where

2mpe Z T(r,t) rdr = ¢ . (23)

Sputtering is produced in metals exclusively at temperatures T > 273%K.

In this so-called high temperature repgion, A is constant whereas T

is inversely proportional to T [Eq. (5)], i.e.lo
t o= T [t ] = deg se (24)
o ’ o ‘ '
A= koTO , [A,] = erg em  see deg_l . (25)

Since [EYROTO] = 0 and [Aolpc] = cmzsec—l, a (nondimensional)

similarity variable results from the dimensional parameters e, Ao’

Tos pe and r,t in the form

£ = /[ foe)e] . (26)
/2

For dimensional reasons ([ro] = deg sec, [(Aopc)l To] = erg cm o cm

sec—l 5ec3/2), the temperature and heat flux fields are subject to
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the selfsimilar transformations,
-1
T(r,t) = 1.t £(E) , @D
ate,t) = G pe)t? ¢ 72 ge) @)

These equations reduce Egqs. (21} - (23) to a problem for ordinary

nonlinear differential equations:

dg = 2F df
§gF + e =205 +3; y o (29)
1d - 1,4f
gag B8 =E+3 8 . (30)
where
2n [ E(E) £ d€ = e, e = e/At . (31)
0 o0

and f£(£) and g(E) are nondimensional. Eq. (30) is readily |

integrated,
d 2 . 2 _
aE (E°Ff - 2Eg) = O, 1.e.: E"f-2Eg = Co ,
whence
g =5 &f , o (a2)

since Co =0 by‘the condition g =0 for £ = O[q(x=0,t) = 0 for
reasons of symmetry]. Elimination of g £rom Eq. (29) by Eq. (32)

yields
&" - ) §E = 26£(6-2) . (63

or

df

de?

£ - 45y S 2 e - 2y | (34)
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By multiplication with the iIntegrating factor,

1/2 (¢ _py=3/2

w(E) = £ , (35)

Eq. (34) is tranaformed into the complete differential,

2 1/2
4E-E £
77 Of +

2
dS(E",£) =
112 payt

2
— 7746 = 0. (36)

Accordingly, the solution £(£)} is given impliecitly, by the integral

SCE%,E) = G of Eq. (36):

2

g% = 8 + [(£-2)/£] 1/2

1/2{ 1/2

C = 8fn{f ™ “+(£-2)"""7) . (37)

This result yields directly £ = £(f) and by inversion the solution
f = £(£), which 1s symmetrical, £(+£) = £(-£). In particular, Eq. (37)

indicates that a real solution f(E) > 0 exists only in the interval

£ SE(E) <E  for 8 >e2 50 . (38)
where

g=f 6, =2 for E=4+2/2 , (39)

g=f =f for E=0 , (40)
whereas

£ =0 for lEl > 2 Y2 , (41)

by'Eq. (34), 1.e. £(£) is discontinuous at & = + 2 ¥2 ., The value

fo = £(£=0) is related through Eq. (37) to the integration constant ¢,

/8 = ﬂn[filz (E - 212y _ £ /(£ - 2)11/2 S 42)

The energy conservatlon relation in Eq. (31), which determines C and
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thus fo’ becomes

2 dEz
J £ 55 df = e/m , (43)
£

by change of the integration varieble. Substitution of dEzldf and
C 1n accordance with Eqs, (37) and (42) leads to the transcendental

equation,

talet + (e,- M) (/T # 12 /(- 921 - & ale2 4 s - 2y Py

+de - 2) - (e /(e - 212 4 L /T ) o = efror L (44)

which gives f = as the first real root £_> 2. The left side L(fo)

of Eq. (44) assumes the value L = 0 for f0 2 and increases
monotonically with increasing f0 >2 so that L+« for fo + @,
Hence, a real root 2 < fo < o gxists for any glven 0 < e ¢ » ,

It should be noted that the function £(£) loses its uniqueness

at sufficiently large e v & . According to Eq. (37)

1/2
[dE/dE?] _ _ 22" ,0<e<<1 . (45)
£=2+¢ (8 tnvZ
Hence
2 > >
(d£/dE"}; _ 5 . <0 for C< 8 fn/2 . (46)

This means that £(§) is 1) a unique function of 52 for C < 8 £nv2
put i1) a multivalued function of E> for C > 8 fn/Z. Since C = a(s,)
[by Eq. (42)] and fo =:fo(e) = fo(E]Aoro) iby Eq. (44)] increase with

increasing f_  and e v €, respectively, multivalued thermal flow
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appears for e > & where

G[fo(é)] = 8 fnv2 . (47)

Accordingly, for an energy release ¢ > él where the critical wvalue
é.= é AOTO is determined by Eqs. (42), (44), and (47), the energy e
is no longer propagated through an ordinary nonlinear thermal wave but
through a thermal shock wave. As expected, thermal shock waves
occur at energies e above a critical value é:

By combining the analytical solution £ = £(E) din Eq. (37) with
Egs. (27) - (28) and (32), one obtains the fields T(r,t) ~ t—lf(s)

and qf{r,t) ~ t—3/25f(£) vhere £ ~ rt:“l/2

by Eq. (26). T(r,t) and
q(r,t) are decreasing with increasing t at any fixed point
0 <r < r(t) within the thermal wave. These fields are discontinuous

at the wave front,
R(E) = 272 (4 Jpe) /2 )

by Eqs. (20) and (39). The speed of the wave front is

R - /7 afpey /2 . (49)
Accordingly, the wave spreads out radially with time aﬁ a speed
decreasing with time. It is interesting that R(t) and dR(t)/dt are
indépendent of E-.and Ty for the particular T - dependence of A
and 1 in Eqs. (24) and (25). 1In this case, € and Tt affect only
the height of the distribution £(£), i.e. fD increases with increasing

g and decreasing T, [Eq. (44)7.
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The propagation of a hyperbelic thermal wave in wolfram (W) is
shown in Fig, 2 (m = -1, n = 0). It is seen that tha hyperbolic wave
exhibits an extremely steep wave front in comparison to the parabolic

wave (Fig. 1).
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4.  APPLICATION TO VOLUME SPUTTERING BY TONS

For materials which have a thermal conductivity A v T“, n>0,
such as metal oxides (e.g. Ba0), glasses, graphite, ete., at high
temperatures, the parabolic aquation gives an approximate description
of thermal waves. The parabolic solution [(Eq. 116)] does not indicate
the occurrence of shock waves at high ion energies € and its approxi-
mate validity is, therefore, questionable in this energy region. 1In
the case of pure metals, which have a thermal conductivity X n TO and
a thermal relaxation time  n T_l, only the hyperbolic system in
Eqs. (21) - (22) provides a physically acceptable description of
thermal waves., The hyperbolic solution [Eq. (37)] is applicable for
ion energles & < f:' [Eq. (47)], since it becomes multivalued for
€ > ; (shock waves).

A thermal wave of cylindrical symmetry represents a fivst
approximation to the actual thermal waves produced by sputtering ions
in materials. Deviations from the cylinder symmetry are due to end-
effects at the point of impact and the end of the ion path (in particu-
lar at low lon energiles E), nonunlform slowing down, anisotropies in
the directions of the most dense atom arrangement:. In these directions,
the probability for momentum transfer 1s largest so Ehat the resulting
crater in the material resembles more a cone than a cylinder.

The number of atoms emitted by an ion of given energy € is
mainly determined by the energy conservation equation (whereas the

calculation of the spatial distribution of the expelled atoms would

require in addition consideration of many-body momentum conservation
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in the solid). For this reason, the number of atoms .puttered by an
ion may be evaluated macroscoplcally by means of the thermal wave
concept. 1In this approach, the collective many~body interactions which
produce microscopically the thermal encrgy transfer are contained in
the thermal conductivity A and the relaxation time 7. The crystal
bonds of the atoms behind the wave front R are broken so that the
atoms are emitted as long as the average particle energy MeT(t) in
the thermal wave is larger than the effective threshold energy EO

for sputtering,

(t)

- R ~ -
MCT(e) = 2nMe | T(r,t) r de/mRP(t) 2 B, B = aB. (50)
0

where M = p/N is the mass of an atom in the solid. The corxrection

factor o takes into consideration that on the average a fractlon of

the energy € goes into kinetic energy of the expelled atoms, i{.e. in
general 1 <o g 2. According to experiments, the true sputtering

threshold E0 is a material constant which is independent of the mass

4=5)

ratio of the atom apd ion.~ =" The sublimation energy E, 1is the

energy required on the average for the removal of an atom from the

g 1k
8

surface of a polycrystalline solid, Es =< > 1jk (ijk designates

the orientation of the surface). If the atom is expelled from within

- the solid, then Eo is equal to the dislocation energy Ed of an-

aton. Ed is the energy required for i) the removal of an atom from
its position in the lattice (~2E5) and ii) 1ts stable transfer to an
interstitial lattice position (~2EB), i.e. the threshold energy E0

for sputtering is proportional to ES;
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E, = hEB, h =4 . (51)

In Table I, the experimentally observed threshold encrgiles Eo for
2)

some technically interesting metaIS&:" are compared with the theoreti~
cal values following from Eq. (51) for h = 4 [note that Eo (experi~
mental) was obtained by independent logarithmiec extrapolation of the
data in references § - 5], The discrepancies between the experimental

and theoretical values of Eo lie well within the experimental

uncertaintias.

TABLE L. Experimental and Theoretical Threshold Energies.

Metal Eo(experimental) Eg Eo(theoreticnlj, h=4
eV eV _ eV
Al 16 3.3 13.2
Cu 20 3.5 14.0
Mo 26 6.2 24.8
Tt KE] 8.0 32,0
W 36 8.8 15,2

Equation (50) defines a maximum wave front radius within which the
cerystal bonds of the solid are broken. These atoms are expelled with a
relaxation time of the order tg = ﬂ/Eo. At this phase of the expansion,

the thermal wave collapses as 1ts energy € has been consumed in

expelling the atoms. According to Eq. (50), R(t) is plven by

R(E) = [e/nE_ (p/M)]* (52)

for both the parabolic and hyperbolic thermal waves, The number 2 of



i
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atoms sputtered by an lon of energy t 1is on the average (o)

A nRZ('E)L(o/M)H(a - i'ao) = (e/.fzo)u(e - ﬁo) , (53)

e - ﬁo} “ 1, £ > Eo ,

= 0, e < ﬁo .

Equation (53) 1s based on a discontinuous propagation of the ion energy
¢ which 1s provided by the discontinuous thermal wave in the continuum
picture (e >> ﬁo, Z »> 1), Substitution of Eq. (52) into Eqs., (19)

and (48) yields the time it takes the parabolic (p) and hyperbolic (h)

waves to propagate to the critical radius R(t),

- _ 1 n, otl Me.ntl & L % ntl

tp bn (n+1) (E ) Ay & /Aono ' (54)
T = -L- EIE -E-—- - oy .q

ty ™ By . % EIAOEO . (55)

In applicacions to ion sputtering, it 1s to be noted that Eq. (53)
is valid for not too large ion energies., At high ion energiles, the
ion penetrates so far into the solid that only relatively few volume
atoms are emitted.

Sputtering by ions with energies significantly larger than the
threshold energy (e >> Eo) occurs at the accelerating prid of ion
propulsion devices.lé:lz) The velocity distribution of these lons
at the surface of the accelerating grid (z = 0, 0 < r £ R) may be

simulated by a Gaussian of the form

3/2 e—m('x? - <§'r'>)2/2<s>

£(9) = n(m/2m<e>) (56)
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where

n=n(r) = ion density at z=0, 0<r <R

<g> m <g(r)> = average random energy at z = 0, 0 < r < R

<3> " <¢(r)> = directed beam veloecity at z = 0, 0 s r <R

3 » individual ion velccities relative to grid
If che beam is in thermal equilibrium in its center of mass system then
one has <e> = kT(r), The number of grid atoms sputtered per incident

ion of cnergy e w k4 mv2 is by Eq. (53).

2 (% mvz) = [l mvzlflo] Hs mv? - ﬁo) . (57)

Let 6 designate the angle between the vectors v and V> The
number of atoms expelled per unit area of the metal surface and unit

time is at the radial location 0 < r <R

dN m_\3/2 _m_
at = "R .
2E
[8]
27 w/2 @ g 2
[ [ y2emv=v>) /2<£>(v co80)v? gind ddody
0 ¢ Vo , (58)
s 0F /m)3
v, *# (2E°/m) .

After the trivial ¢~integration and the substitutions,
cos8 = T, dt = -sinfdo

n

» (59)
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B L m/2<e>, ¥y = fB- |<;;>|

X, = VB CZEOIm)%, Vo = %o =Y

Eq. (58) becomes

where

whence

dn n(m/2n<a>)3/

Tt 2 (wm/ﬁo)B_BJ

1 2 2
J=[{ G YT = 2T 5 ax
0 X,
2 o 2
J—’f.n'ze'ffx:jexdx
x

2 2
Y2+ xi) & )

[
1
ol

LA

|3y

Y5+ 2v9) [i - #(y)]

-2 2 4 ,
Y21 - sy - ey -2y’ g

ool

2
2. 2 3 -
+ (1 - 8Y")y, - 2yy] e 70

(60)

(61)

(62)

(63)

(64)
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Since

4

> 2 - ]
Y = (s mev>"/<e>)”, x, » (E /<e>) ,
. )
yg= (B /<e>)® = (g m<l/een)” o (65)

one obtains for the number of atoms sputtered per unit area and unit

time [Eq. (61)] explicitly:

> 2y . ;
I o @ ABVZ % (R, <o, <e0) (66)
where
~ ~o b m<'\).r'>2 3/2 i-::c.v ~(E + % m<¢>2)/<5>
H(E ,<v>,<e2) 4 () () = At+)e o
5 2 3/2 > 2 Eo I ] m<¢>2 b
+ VT (s mev> [<e>) {5+ 2% m<v> /<E>)]{l—¢[(<g>) - ¢ <g> 13

5 2 1 > 2 2 5 2 3/2
w {1 = 50 nmev> [<e»)” ~ 8(% mev> [f<e>) - 12(% me<v> [<e>)

2 ~
LD f<en)® = Grmes f<en) i 4 (1 - 80 nds [<e2) 1(Ey/cer)h

G% w2 /<) 12 - 205 nevs /<) [(Ec,/cs»)!‘(l - (4 m<vP/eer) %)

L@ o) - (s s [<e2) 1 . (6D

+

This result indicates that dN/dt varies in a rather complicated
way with increasing <e>, and <> for fixed E_. In Fig. 3,

H(ﬁ°,<¢>,<a>) 1is shown quantitatively in dependence of the energy

ratios Y2 and xi [Eq. (65)]. With exception of the region of low

+
beam velocities <v> [compared to the average random velocity

1 . -1
(2 <g>/m)4], i.e. 72 < 10, H(Y-Xo) increases with increasing

72 ~ <3>2/8 and decreasing xg ~ EO/E.
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5. APPLICATION TO VOLUME SPUTTERING BY MICROMETLEORS

The nonlinear thermal wave theory prasented explains also the
sputtering produced by micrometecors impacting on system components of
ion rockets and space ships in general. The above conslderations on
ion sputtering are transferable to sputtering by micrometeors. In the
case of an implnging micrometeor, the energy € = el [Eqs. (7) and

(23)] has to be intevpreted as
LopeL2
g = % Nmv ' (68)

->
where v 1is thie veloclty of the center of mass of the micrometeor, N

the number of atoms it is made up of and m the average mass,

- 1
m =5 Z Nsms . (69)
s=1

NS is the number of atoms of mass m contained in the micrometeor,

The main chemical components of micrometeors are iron (Fe) or stone

(8102).£§) Their speeds v range from 10 km sect to 107 km sec™t.28)

The radii of micrometeors range from r = 10_6 em to t
min max

-1

I

and theilr mass per volume of space greatly exceeds that of all other
meteurslg) {r » 10—1 em). TFor this reason, micrometeors are most likely
to hit ion rockets and space ships outside of the atmosphere of the
planets. For micrometeors, the effective sputtering threshold is

about [Eqs. (50) - (51)]

Eo = an'= adES =-8ES ' , (70)

i.e. eight times the sublimation energy ES. The sublimation energy is

ES/ﬁj= 7 x 100 erg/gr for Fe and ES/H 14 x 1010 erg/gr (including

10 © cm,
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dissociation energy) for 8102. According to Eq. (70), the critical

minimum speed for a micrometeor to vaporize itself on impact is

v . = (2 EO/E)* . O

min

1 - -
llence, v, % (2% 8 x 7 x 10%9)% & 108 em sec™t = 10 km see™F for a

mi
pure Fe-micrometeor, and Vitn a8 (2 x 8x 14 x ]_010)!E = 1.5 % 106 em Sec’l
= 15 km secﬁl for a pure Sioznmicrometeor. In oerder that the thermal
wave vaporizes also a significant volume of the material of the system
on which the micrometeor impacted, the speed of the latter must

satisfy the basic 1nequality

v 5> vmin . (72)

As the above examples indicate, this condition is satisfied for a
significant percentage of micrometeors which have speeds v = 102 lem sec-l
and larger (note that the sublimation energies Es of all solid
materials are of the same magnltude-of-order, 1.e. a few electron volts).
The number of atoms Z sputtered by a micrometeor with a speed

vo>>v oo out of the target material is [BEq. (53))

z = e/b_ = Ny 2 /& _ D)

Tor a Fe-micrometeor of radius r = 10_4 cm and speed v = lOB cm sec-l,

1 5

one has € =H(4wr3/3);b2/A =2 % 10 2 9.3 x.10-23 1016/10"23 %2 x 10

erg {(atomic volume A & 10h23 cm3). On a wolfram target (E0 = 35 eV,

12 & 3 x 10_10 erg), this micrometeor would

sputter Z = e/E0 = 2 x 105/3 x 10—10 & 1015 atoms. The corresponding

/3 _

Eo =8x35x 1.6 x 107

sputtering crater has an extension of the order R & (ZA)l

(1015 x 10—23)1/3 = 2 x 10“3 cm.
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1 . The formulas derived for thermal waves and volume sputtering

in sections I, 3-5 are similarly applicable to the unleading and

sputtering by micrometeors. The necessary modifications are defined

in Eqs. (68) - (73).

i
}
i
i
:
;
i
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IT. CONTRIBUTIONS TQ SURFACE SPUTTERING

At sufficlently low enargles of the incldent lons, exclusively
surface atoms of the selid are sputtered. The experimental data on
sputtering of metal surfaces indicate that the average number §(E) of

atoms sputtered per incident lon of energy E lies in the intcrvalég

0 < S(E) <1, EQiE<102eV ,

where Eo is the threshold energy for sputtering of surface atoms.
The measured S(E) - curves can be fitted by analytical expressions

2)

of the forr—
S(E) = a(E - Eo)n, a =const, n =2 ,

at low energies, E ) SE< 102 eV, It is shown that this simple

sputtering formula can be explained theoretically by means of a 3~body
sputtering mechanism involving the ion and two surface atoms of the
solid. By means of a statistical analysis and a quantum mechanical
perturbation theory one finds independently that n=2 and that "a"

is a weak function of energy E which can be taken to be a coustant
fox E 2 E, f.e. a(E) = a(g,).

An ordinary binary collision between a surface atom of the solid
and an ion incident normal to the surface can evidently not lead to
sputtering since the atom does not acquire a momentum component in
the direction of the external normal of the surface. Similarly,

sputtering is not likely to occur for smaller angles of don incidence if

its energy 1s not large compared to the threshold energy for sputtering.
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Tt is evident cthat sputtering, at ion energies of the order of the
threshold energy, is a 3-body process involving one ion and two
surface atoms of the solid. At higher ion energles, however, sputtering
will result mainly from higher order many-body interactions.

By restricting the theoretical congiderations to ion energles I
of the order of the threshold energy Eo’ E, SE< 102 eV, sputtering
is regarded as the result of an ion-atom-atom interaction. Turthermore,
it is assumed that the solid is polycrystalline and has a sublimination

ik > where the average is

energy which is on the average EB = < Es
taken over the randomly distributed surfaces (ijk) of the crystallites.
In this case, the sublimation energy EB represents the average binding
energy of a surface atom. In the 3-body sputtering process, the fon
transfers 1) the energy ES to the atom which 1s expelled and

ii) the energy ZES or 4Es to the oﬁher atom depending on whether

the latter is pushed to an unstable or stable interstitial lattice

position, as well as iii) kinetic energy. Accordingly, the average

sputtering threshold should be

n = 1 ; T . D D = it
E, =5 (B, + 2E_; + E + 4E)) = 4E . (1)

In experiments which cannot detect individual but only a large number
of sputtering events (e.g. sputtering of glow discharge cathodes and
accelerating grids), the threshold E0 represents always an average
value, i.e. not the absolute smallest possible binding energy of a
surface atom which can be as.smali as Esijk/S where 1'j'k'

designates that surface which has the smallest sublimation energy. It

is interesting that the (average) threshold for surface sputtering is
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equal to the threshold for volume sputtering since the energy for
stable displacement of an atom within the solid is also AEB.

When an ion of low energy as defined above hits the surface of
a solid, one of the following processes may occur: 1) the lon is
reflected without energy loss by the bound surface atom it encounters;
2) the ion collides with a surface atom and quasi-simultaneously with
a second atom so that 3-~body sputtering results., (More precisely,
the designation "atom" should be used for the incident '"ion'" since the
latter certainly recombines with an electron as it approaches the sur-
face of the solid.) The total probability for the fon to interact in
elther of the two ways with tlie solid is

By = w2/ 35¢E) (2)

where N 1s the number density of atoms in the solid and o(E) 1is
the (energy dependent) cross section for lon-atom scattering. Let
wl(E) and WZ(E) be the probabilities for the processes 1) and 2),
respectively. The velative probablility with which sputtering occurs

is then
W, (E) L@
W (E) + Wy () ~ Wy (B * Wy (E) << Wi (B),  (3)

Wy (E) =

Combining of Eqs. (2) and (3) yields for the sputtering rate, 1i.e.
the number of atoms expelled on the average by one ion of energy &

from the solid,

s@ = oV u (@ e

Tor the evaluation of WE(E), two methods, which are based on

different approximations, will be used. The total cross section
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g(E) 1s assumed to be known either theoretically or experimentnlly.g:ﬁ)
One of the methods holds in the case that the interaction by the ion
can be treated as a perturbation, whereas the other method holds for
arbitrary strong interactions but assumes quantum-statistical equilib-
rium among the Einal sputtering states. The latter assumption appears
to be questionable at £ivst sight since the small energy region under
conglderation permits only a relative small number of final states.
As a justification it 1s noted that these different approaches lead

essentially to the same result,
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1.  STATISTICAL ANALYSIS

The basic assumption 18 made that the final sputtering states
correspond to a quantum statistical equilibrium brought about by the
strong interaction between the lon and the surface atcms. In the
processes 1) or 2), the ion interacts with the surface of the solid
within an area of the extension of the de Broglie wavelength,

A = 1/YZmE. For thls reason, the spatial part of the phase space is
5)

taken to be™

vadlgd rE £/ (2mE) ! . (5)

In quantum-statistical equilibrium, the probability for transition
into a final state 1s proportional to 1) the probabillity that the
interacting particles are simultaneously within V and ii) the
density of final states dp/dE per unlt energy. TFor a state con-
taining n independent particles with momenta 31, ;2, very 35, W

and dp/dE are given by

Vin dp Q .n de(E)
= (3) == [ ] , . (6)
Q dE 3 dE

Q designates the normalization volume, & > V, and ®(E) d1s the
volume of momentum space corresponding to the total energy E.
Accordingly, the probability for tramsition into the final state n
under consilderation is

n d¢(E)

w(e) = [v/(2m)>" 4ECE .

This equation represents the basis for the determination of the pro-

cess probabilities Wl(E) and W2(E). Because of the conservation
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lawe, the n particles in the interactions 1) and 2) axe not
independent. This requires certain modifications of Eq. (7) which
are explained in the applications below.

wlcn) is defined as the probability for the ilon to be reflected
at the surface of the solid without energy less. In the center of mass
system (solid), the ion momentum is p = YZmE in the final state and
the momentum space volume is ¢ (E) = 4np3/3. According to Eq. (7),

the probability for reflection is (n=1)

Wy (E) = [V/ iy 31 4uvEn/? g2 . ®)

WZ(E) is defined as the probability for the 3~body sputtering
gtate., 1In the center of mass system, the momenta of the jon (1),
the sputtered atom (s), and the second atom (a) can be chosen as

- o -+ -+ - "
Py =Py Pg=~F P-4 P =-FP*d ()

wli—*
NIH

so that momentum 1s conserved 2j35 = 0. Since the energy Ej [Eq. (1)]
is expended in the sputtering interaction, the total kinetilc energy

of the three particles is

o (g IapZ L 192
B¥ = E - B = G-+ +yd S ¢ )

Equation (10) represents an ellipsoid with the axes sections

1/2

{{mM/ (m + 2M)]E*}l/2 and (ME*) in the six-dimensional space of the

-+ >
vectors p and q. Hence, the volume of the momentum space is

2
- E_ 4mM
*® = TG

32 g . (11)
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Owing to conservation of momentum, only two of the particle momenta are
independent, i.e. n=2, Substitution of Eq, (11) into Eq. (7) glves
for the probabllity of the sputtering state

2
Hpm) = (v/(2mi) 12 4 B 32

m + 2M : (12)

With the assumption Wl(E) s> WZ(E), one obtains from Eqs. (5)
(8), and (12) for the relative sputtering probability the approximate

expression

2
a/m? 372 E - B

~ 1

where V has been eliminated in accordance with Eq. (5).
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2, PERTURBATION THEORY

If the interactlon energy between the lon and the surface atoms
is sufficientiy small, 1) the reflection of the lon by a surface atom
without energy loss, and 2) the 3-body lon-atom-atom sputtering with
an enezgy loss E > Eo may be treated by perturbation theory. The
probability rates for these processes are most conveniently determined
by means of Fermi's Golden Rule.é)

Tn the case of the lon reflection, the magnitude of the momentum

after the collision is p = v2mE in the center of mass system. The

probability per unit time of the reflection transitlon is

wy (B) = 2L (D)2 g2 (14)
where

gt = Iy bt By @
and

40 o 1o/ 2em)3] 20/En>! % B2 (16)

dE
are the matrix element of the perturbation ﬁl (operator) in the
Hamiltonian of the ilon-atom system which causes the traﬁsition i-f
and the density of final states per unit energy, respectively.
wi and wf are the wave functions of the total sysﬁem before and
after the transition which are normalized for th. volume £.
According to Eqa. (14) - (16), the probability for the ion reflections

1s per unit time

w (0 = 3 [9/(2m)3]1lm‘1)| a2 an
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The final state of the sputtering interaction consists of an ilon

-+ -+ -+ 1+ -
of momentum P; =P, a sputtered atom of momentum Pg="3 P~ s

2
-+ 1 + -F
and a2 displaced surface atom of momentum P, =3P + g 1in the center
of mass system. Since Ej 35 = 3, only two particle momenta are
independent which determine the statistics. The probability per unit

time of the sputtering transition is

ACEE SN 18)

vhere

u2) o T v By py & (19)

and

2
dp _ 3,2, 3, mM 3/2
55 = [o/ @)1 4 )

-5 . Qo

¢1 and g are the wave functions of the system consisting of the

ion and the two surface atoms before and after sputtering, respectively.
ﬁz is the perturbation (operator) in the Hamiltonian of the 3~body
system which causes the transition i+f. Equation (20) gives the
density of final states per unit energy for the normalization volume $.
From Eqs. (18) - (20) results the probability for the sputtering

transition per unit time,

392 1y (z)lz 3, mMZ 3 2

wy(8) = 2L [0/ (2v) D E -t e

With the assumption wz(E) << wl(E), one obtains from Eqs. (3), (17)
and (21) for the relative.sputtering probability the approximate

expression
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Since sputtering 1s a 3-body while reflection 1s a 2-body interaction,

the ratio,

2 2 -
e, 2057 g BT 5w, dre ., (@3)

is essentially the probability w = 8/e for finding one surface atom

within the iInteraction volume

n

g e "T“ @& /2oy 32 @b

the rudius of which is of the order of the de Broglie wave length of
the inecident ion. Accordingly, the relative sputtering probability

in Eq. (22) can be written as

02 2 (& ~ E)°
. 21 M/m) 3/2 V27 Ho
Vs (E) 2 o T2 oum) ) (25)

The determination of the factor H2l ~ 1, which may be weakly energy
dependent, requires introduction of an appropriate interaction

potential and a detailed evaluation of the matrix elements.
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3. SURFACE SPUTTERING RATE

In 1) and 2) it has been demonstrated that the statistical method
{Eq. (13)] and the perturbation approach [Eq. (25)] lead to practically
the same relative probability for sputtering WS(E). Combining this

result with Eq. (4) yields for the sputtering rate the formula:

2 2
H 2 (E-E)
= _21 2/3 (M/m) 3/2 (W)
S(E) 2% o (E)N [——7~1 + 2N m)] --—~—-—E2 . (26)
Since Eo = 4EB # 12 - 35 eV for various metals and E > Eo for low

energy sputtering, Eq. (26} can be simplified to

2 2
H, 2 (E - E))
sy 5 Zh e 2

Eo

In the considerations under 1), 2), and 3), the effect of the particle
spin I on the various probabilities has not been included explicitly
for reasons of a simple notation. In cases where the ion and surface
atoms have no spin, Ii = Is = 0, or the same spin, Ii

corrections arise in the expression for WS(E) and S(E). In case

= IB # 0, no

of different spins, Ii # I WS(E) and S(E) are increased by the

factor (statistical spin weight)

gg = 21  + 1 . (28)

Equation (27) is exactly of the form of the phenomenological
expression found by amalytically fitting the experimental data.l:g)
According to the more general Eq. (25), S(E) reachee with increasing
E a plateau-like maximum and decreases then since o{(E) decreases at

sufficiently.high energies E. Thus, Eq. (26) appears to be correct
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not only in the low energy region [ 2> Eo' but seems to agree also at
high energies E >> E° qualitatively with the experimental sputtering
curves. X2

It is noted that the particular eneigy dependence ~(E - Eo)z_/E2
in Eq. (26) is due to the 3~body interaction which has been assumed to
be tF essentlal mechanism In low energy surface sputtering. At
higher ion energies, higher~order many body interactions are energeti-~

cally possible so that not only surface but also an increasing number

of volume atoms are sputtered (S(E) > 1),
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4,  APPLICATION TO ELECTRICAL DISCHARGE SPUTTERING

In low pressure discharges, such as glow discharges, practically
the entire external voltage U0 drops across the cathode sheath A,
In this region, the diacharge ions, which have a thermal velocity
distribution at the temperature T & Te if the sheath is stable,
are accelerated to a mear -7 itrty <>, The resulting quasi-thermal
ion beam bombards the : < =1a, shich emits atoms in accordance with
Eq. (26). Since the cirhede (rop is of the order AU = 20 -~ 30 volt,
the unidirectional ‘on beam energy 1s frequently smaller than the
sputtering threshold, eAU < Eo' For this reason, it is essential to
take into consideration the thermal velocity distribution of the
ions, Mainly the ions of the tail of the velocity distribution cause
sputtering of the cathode in this case.

The cathode sputtering in low pressure discharges is a process
caused by lons of low energy, E > Eo' Accordingly, the number of atoms
2

sputtered on the average by an ion incident with the energy E = % mv

is piven by Eq. (26),

s m?) = alk m® - Eo)z - L 29)
2/3 H212 M/m? .3/2 -2
a 2 c@ N - G 7agm! B . G0

The velocity distribution of the ions, which arrive with the mean
velocity <¢> at the cathode, is assumed to be a Maxwellian in the

beam system, l.e.

3/2 @ - &5y /2K

£(3) = n(m/21kT) (31)
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where 3 designates the individual velocities of the ions in the
system of the discharge, and n and T are the density and temperature
of the ilons, respectively.

The ion beam veloclty <v> 1s determined by the electric field
D

T in the cathode sheath which is, according to probe measurements,

a linear function of the axial discharge coordinate =z,

> Z 2 ;
F(z) = F(1 - XD, F=2 Uofl , (32)

where A 1s the extension of the sheath and U0 is the external

voltage. The potential difference across the sheath is

AU = FAJ2 = U . (33

Since collisions involving ions represent a small effect, the magnitude
of the ion beam velocity at the cathode is in good approximation given
by

112

Y2 2 (2eu_fmy .G

|<v>| = (2eAU/m)

The ions within t¢he cone 0 < 6 < n/2 {8 & (3, <$>)} which are at
a distance Az = v cosf At from the cathode, strike the latter within
unit time At = 1. Accordingly, the number of atoms sputtered per

unit surface area and unit time out of the cathode is

AN _ o m y3/2 ?" 1};/2 [ @ - <¥»)2 f2xr
“dt 21nkT
0 0 v
o]
" - Eo)z(vcose)vz sind dé dB dv ,

Vo =4 (ZEO/m) ’ (35)
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by Eqs. (29) ~ (31). By means of the substitutions,

cog 0 = T, dtr = - sin 0 46 R

/EQ = X, dx = /Eav ’ (36)
and

B = m/2kT, y = VB |<¢>| ,

x, = VBee /mY2, y =x -y , (37

Eq. (35) 1is transformed to

W = oran R 267 (1 @, F,m B2 - 1 (@, 5,1 me e
+ 3,8 <0, 1) @ g2 (38)
where
Jn(E0,<3>,T) = z z xFen e_(xz + Yz - 2YXT) e dx, (39)

with n = 0,1,2, The t-integration reduces this double integral to

2
e _ 2
I (5 ,<¢>,T} - e__ I xl+2n X dx
n [a] 2
AT =x:
1% 2(14n) -y*
ol G eV dy
Y
1 1+2n —yz

-== [ y+T dy . (40)
y
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*)

Upott a binomial expansion and evaluatlon of the resulting integrals

in Eq. (40), there follows:

. ~2 2 2
JO(E°,<3>,T) = Ig“ oy F YD, %? (1 - ¢y )]

2
=2 -y
- lg— [ - 4y - 2yy 1 e ° y (A1)
. x_{ 2 —(x2 + Yz) Vi 2
Iy (B ,<v>,T) = = (L4 x) e 0 + g (5 2y 1 - oy )]

~? 2
- X 1@ - 5y - eyt - arhy 2wyl @0

(42)
-2
J2(E0,<35,T) IE_ 2 + 2x2 + X ) e (x oy )
% y (35 + 28'1'2 + 474)[1 - (b(yo)]
-2

+ I (2 + 1497 + 35y

+ 127 )
+ (35'\(2 + 30y5)y6 + (-2 + 1472 + 4074)y§

2
+20% + (4 aavhyt 4y 21 0oL )

" .
)In accordance with
2r~l
f e dy = - X Z (n—él._;--2;m)2“(:".Hu)xn"zm_1
m=0

+(l—s)(1;2;r)2"(l+r)fE'¢(x) + const

where (njdim) = n(n_+ Id)(n + 2d)...[n + (m~1)d] and n = 2r-s

with s8=0 or s = 1,
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where

2 w .
e ¥ gy = & X -1)" y2m+1/(2m+l)ml

¢(y) = &
Y1 m=0

o

2

Yr
(44)

is the error function. Substitution of Eqs. (41) - (43) into Eq. (38)

leads to the final expression for the number of atoms sputtered per

unit surface area and unit time Erom the cathode:

2
dN _ <y>® 1/2 .2 S
?i? = an(—ﬂ ) EO A(Eo,<v>,T) (45)
where
N 2, -2 2 by by —(xPy%)
A(E0,<v>,T) = [L -2( + xo) X, * 2 + 2xo + xo) X, ] e o

. 2

&3 '”rih

2, -2 1 4 y-b _
[1 - (5 + 2vy") % o 4(35 + 28y 4+ 4y ) % i1 @(yo)]

-3
+ L (=1 + by 29y

3 2

; 2, 2 -
+200 - 5v% - 8y") - i2y ¥, - 8)y, - Zngl X,

4

+ [(-2 + 1472 + 35y + 1276)

3

(357 + 30¥)y, + (2 + 1y’ 4 soyhyy?

2
+ 3073y2 + (-1 + 1272)y2 + Zng] xo4} e Yo
146)

and

vy E (m<$;§2kT)1/2, x (Eo/kT)l/Z,

v, & @ k02 - @/t LN
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In Fig, 1, A(y,xo) is shown quantitatively in dependence of the
energy ratios 72 and xg. In general, A(w,xo) increages with in-
creasing 72 and decreasing xg. except in the reglon 72 5_10-1.
The formula for dN/dt in Eq., (66) holds only at the durface of the
cathode or within a mean free path from the cathode. In comparing
this result witch experiments, it should be noted that the background

gas reduces the number of sputtered atoms observed as its pressure

increases.
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III. ‘TRANSPORT AND DEPOSITION OF SPUTTERING PRODUCTS

As long as the mean frec path £ of the sputtered particlee is
very large compared to the distante d between the emlcting plane
and the surrounding system surfaces, the particles travel undeflected
along straight lines determined by their initial veloeity at the point
of emission., Within this free particle f£low, only those system
surfaces {a) are reached which can be connected with the emitter
plane through straight lines (Fig, 1), Particles interact, however,
always more or less weakly independent of how low their concentration
185 since the interaction forces (polarization forces, electric and
magnetic dipole forces, coulomb forces) have infinite range. Tor
this reason, always a few particles will be sufficilently deflected out
of thelr initial path so that they can reach system surfaces (b) which
are not "seen" along a straight line by the emitter (Fig. 2). TFor
sputtered particles with a mean free path £ »> d, the deposition on
surfaces of type (a) can be calculated in filrst approximation by free
particle flow, whereas the deposition on surfaces of type (b) has to
be evaluated by means of a weak interaction diffusion theory. The
determination of the diffusion coefficient for the sputtered particles
requires the solution of kinetic equations describing the weak but
many-particle interactions at on the average large distances. The
analysis of deposition by diffusion on system surfaces of the type
shown in Fig. 2 leads to a multi-region boundary-value problem with
mixed boundary conditions. For these reasons, deposition by diffusion

will not be treated.
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Within a cylindrical coordinate system (R, B, z), consider an
emitting surface of radlus R = R, in the plane z = 0, Let the
system surfaces, for which the depositlon is to be determined, be
located in an arbitrary plane z =d > 0 (Fig. 1). This general
deposition problem is solved by calculating the deposition j(r, o)
in an arbitrary point (r, ¢, z = d) of the infinite "econtrol plane"
z=d, 0sr<> 0<aczg2r, The total deposition on a system surface

Ty ST STy 8y Sasa,, 2= d i1s then obtailned by integrating

n?
j{r,a) over all points (r,a) lying within its boundariles. For ideal
free particle flow, the depositions on different finite system
surfaces in the plane 2z = d do not affect each other or the emitting
surface, The geometry of Fig. 1 is representative, e.g., for the
accelerating grid on an ion thruster from which sputtered atoms are
deposited downstream on system surfaces somewhere in the conmtrol plane
z = d.

In the plan 2z = 0, the emitter surface 0 <R SR, 028 < 2w,

may emit

® = (R, B) [cm_z.sec_l] (L)

particles per unit surface and unit time. The rate of deposition at
the peint (r, o) of the control plane 2z = d due to a differential

source area do 1s

cos 92
dj = ¢(R,B) €(8;, R,B) ——5— do (2)

|
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where e(al, R, B) 1s the normalized distribution describing the
emission of the partieles in the direction 8, (Fig. 1) at the point
(R,8), It is usually assumed that e(el. R,B) is independent of

position (R,B) and given by Lambert's cosine law,ég

E(BI;R:B) = Coﬁel/ﬂ' . (3)

In referring to Fig, 1, it is seen that the following relations hold

for geometrical reasons,

61 @ 92 £ 8, cas 8 = d/r::L ,
52 = r2 + R2 - 2rR cos ¢ ,
rl2 = 52 + d2, d =B~ ’

do = RdAR dp . (4)

Accordingly, the impingement rate J{r,¢) in the point (r,a) of the

control plane z = d from the entire surface (ﬂRoz) of the emitter is

1

2w o
J(r,e) =d f e(8,R,B8)8(R,8) RARdR

0 0 [r2+R2+d2—2rR cos(B—a)]3

The total deposgition per unit time on a system surface bounded by the

radii ry and ) and the rays ay and ¢y ig

%2 T2
Y= [ [ 3(r,e) dr de . (6)

%1 T

D(rl,Z’ al
Eq. (5) contains as a speclal case the depositilon equation originaliy
derivaed by von Hippel:l) Equation (5) can be integrated in closed

form for cases of practical interest as will be demonstrated next.
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1) Uniform Emission Source
In case of a unlform source of sputtered particles which are

emitted in accordance with Lambert's law, one has [Egs. (1) and (3)]:

¢(R,B) = 00’ e(0) = cos8 /w . (1)

Hence,

2 270 Ro
d R dR d¢
Irw) =50 [ 57 2 )
—-a 0 [r"4+R"4d" - 2rR cos 4]

(8)

by Eq. (5) where ¢ = f - a. The ¢~ integral is transformed by means

of the substitution z = exp(i$), d¢ = dz/iz, cos ¢ = (z + z—l)/2 as

27=q,
d d
L= f ¢ 2 = -1 Sﬁ £ .“‘l 9 7
=& [p - q cos §] lz|<1 2[P = fa(ztz )]
p E r2+R2+d2, g = 2rR . ()

where the point 2z describes the unit circle as ¢ moves from ~o
to 2n-o. The integrand in the complex z-plane has poles of second

order at each of the points

2y 5 = -l & (67-a")/a . a0

Since p » q » 0, the pole 2y  lies outside the unit circle. The

residue of the pole =z, 1is

1
2
z{z=2,) z. +z
R =1im -—{i_—t-i-— l = - —l—'--—..].;_g_. . (ll)
z+z 2 dz (z-z ')2(2-z )2 2 (z,~2 )3
119 1 2 a {217z,

After replacing z; and z, in accordance with Eq. (10), Cauchy's

integral theorem yields
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2.3/2

I==12mR = 21p/(p>=q

) . (12)

Hence,
2 ?" (r24r44%) dr®

J{r,a} = d°0
4 0 [(r2+R2+d2)2—4r2R2]3/2

This is an integral of standard typez)

(13)

which 18 readily evaluated.

The resulting impingement rate is

R 2 _ d2 - r2

J(r,a) =30 <1+ 2 g (14)
0 (0.2 s % - D7 4 4laly

The impingement rate at the point (r,a) of the control plane z =4d
is independent of the azimuthal position a since & and ¢ are
independent of £ [Eqs. (7) and (9)].

2} Parabolic Emission Source.

For a parabolic source of sputtered particles which are emitted

in acecordance with Lambert's law, the Egs. (1) and (3) become
R2
3(R,B) = ¢°(1 - ~3), e(8) = cosé/w . (15)
R
()

Hence
2 25-o (1-(R/R,D] R R dp

d .
J{r;a) =— ¢ f (16)
T O lu rrZar%4a® - 2R cos 412

by Eq. (5) where ¢ = 8 ~ o. Upon substitution of the ¢-integral

evaluated in Eq. (12), Eq. (16) is reduced to

‘ R 2 cl2 - r2

I(r,) =X & {1+ 2 .
@ I [(RO2 + cl2 - rz)2 + 4r2d2]ﬂ

R
a? °  (®% 44

2¢o"‘ 2 2
R 0 [(R” +d

2 + rZ) Rz'dRz . .
- rz)2 + 4r2d2]3/2

(17)
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The latter integral is evaluated by standard methodsa). The resulting

impingement rate at the point (r,a) of the eontrel plane z = d is

{ Rﬁ‘el + 2 Roz(dz - t?) + @+ rhH?
J(r,a) =% (1 +
; 0 R02 [Roz v a2 - L ¢ arlaye
o L.
;2 2 I e [ I L LN T S AV
(8] 0
-——i[l-l-—i'i'Zln 5 ’
R d 2d

0

(18)

J(r,a) 1s the same for any azimuth 0 < o < 2r since e and & are
independent of B. The parabolic source distribution [Eq. (15)] is a
first approximation to the nonuniform emissilon of atoms from the
accelerating grid of an ion thruster (presumed th.t ih- density of
the sputtering charpge exchange lons decreases parabolicuily with
increasing R).

3) Arbitrary Nonuniform Emission Source.

In many experimental situations, the source ¢ = ¢(R,B) is a
complicated function of both R and # with symmetry and boundary

properties of the form

?(R,,B) =0, ¢ (R,~B) = ®(R,+B) )

d9(0,B)/dR = 0 . (19)

The emission coefficient is again assumed to be given by Lambert's

law,
¢(8) = cosd/m . (20)

In this case, it is mathematically suitable to expand ¢(R,8) in a
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Fourler series,

2ntl R

o =0 + ). Z $  cos MB CO§ ~~mi — (21)
m=0 n=0g ™M 2 "Ry
where
R
21 o
2 20+l R
¢ === [ [ @(R,B)cos mB cos “F— dR dB,
mn ﬂRO 0 0 2 Ro
1 ?n ?o
¢ B #(R,8) dR dp . (22)
o] 21rR0 0 0 ?

(21) is a complete expansion for an arbitrary function &(R,B8)
subject to the conditions in Eq. (19). Insertion of Eqs. (20) - (21)

into Eq. (15) yields, under consideration of Eq. (14),

1 { R02 - d2 - r2 .
J{r,a) == ¢ <1 + + J(r,a)
2 "o [(R 2+d2 r2) + 4 2 1/2 ’
(23}
where
' ' +1 R
- d2 © @ 2n5-a Ro cos m(¢+a) cos 21321 ﬁ; RdR d¢
Jee) = § Joe [ 55
m=0 n=0 - 0 [r™+R™Hd -2ch05¢]
(24)

By means of substitutions similar to those under a), z = exp(ilf),...,

cosm(d + )= Re[z" exp(ima)], the é-integral in Eq. (24) is transformed

as
: = 2}"“ cos m(d+a) do
" <a [p-q cos $1°
ima m+1
d
q lz|=l [z + 2pq ~ z + 1]

where the integration path is the unit cirecle in the complex z-plane.
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The integrand has poles of the second order at each of the points

22

20,2 % " (~p (P -q") . (26)

Since p > q » 0O, Z, lies outside of the unit cirele, the residue

at the point =z, 18

1
m+l 2
Lo lim 4 (z-2y)
z2rz. dz 2
1 (z—zl) (z-zz)
2.4z J
-z m{# 172 + m i
LY a2 tagez)?
217% Z17%2
2 1/2
L9 p=(p -q) ..

by Eq. (26)., According to Eqs. (25) and (27) and the residue theorem

2
p-<p -q 1/2

"

I = 2mcosmnaf
2 2.3
" d (p“~q )

73+ 550 (28)
p“-q

Thus, one finds, upon substitution of Eq. (28) into Eq. (24), that

R
~ <o o 2 2 1/2
J(r,a) = 2d2 Z Z ¢, coS ma / )p(R)_[p (R)-q_ (R)] ¥*

m=0 n=0 0 a(R)
" P(R) . m ‘ cos 2l R pop
2 R)-2 @12 pZ®)-a*(R) 2 R,
(29)
where
b(R) = pR,r,d) = r+d4R%, q(R) = q(R,rd) = 2rR . (30)

The impingement rate J(r,c¢) depends both on r and a since

®(R,B) varies with azimuthal position B. It is seen that the m-th
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Fourler component in Eq, (29) contributes an a- dependence in the
simple form cos mo, A two-dimensional emission ¢(R,B) satisfying

the conditions in Eq., (19) is, e.g., cbserved at the accelerating

grid of ion thrusters if the grid holes are arranged at equal azimuthal
spacings A¢(r) along concentric circles r = comst < R . The
remaining R-integrals in Eq. (29), in particular those with large m,

are most conveniently evaluated numerically.
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IV, KINETIC THEORY OF LOW PRESSURE GAS DISCHARGE

The theoretical evaluation of electrical discharges by means of
macroscoplc or Kinetic equations is one of the classical, unsolved
problems of plasma physiecs. To date, no progress has been made in
calculating the potential distribution in electrical discharges from
first principles., Although a rigorous theory of the eloctron diode
with explicit boundary conditions in vacuum based on the Vlasov equation

1)

is known,~ a treatment of the corresponding electron-ion diode in
vacuum (no lonization) is missing in the literature. In the following,
a kinetilc theory for a low pressure discharge will be formulated. The
mathematical difficulties resulting from the production of the ions by
volume ionization (electron-neutral collisions) and the complex funce
tional boundary conditions for the electron and ion velocity distribu-
tions are discussed within the frame of the Vlasov theory.i)

In ap electrieal discharge, the current carrilers are generated
both within the volume of the plasma and at the elentrodes. As the
pressure decreases, the electrons are produced mainly at the cathode
by secondary processes and thermal emission, whereas the main source for
lons is still volume ionization since emission and production of ione
at the electrodes 1s negligible. Tor this type of low pressure discharge,
the velocity distributions of the electrons and ions are determined by
Vlasov equations which are coupled by the Polsson equations for the
self-consistent electric field and th sources due to volume ionization.,

The corresponding uonlinear boundary-value problem has functional

boundary conditions which result from the various electrode processes.



64

In order to reduce the mathematical formalism, o one-dimensional discharge

geometry with parallel plate electrodes of infipite extension 1s assumed.
Consider a low pressure dischavge plasma [Debye radius D =

(X‘-’rnr!ﬂeaz/kTﬂ)";i <<a} between a plane cathode (x=0) and a plane anode

(¥=a), The mean frue paths of the electrons, ilons, and neutral atoms

are assumed to be large compared to the electrecde distance, £B >> o

(so-called "collision-free" plasma), In the one-dimensional case,

the velocity distribution functions of the electrons, £ = f(v,x), and

the ions, F = F(V,x), in the self-consistent field E = -dd(x)/dx

i)

are described by the Vliasov equatlons~

9f , e d¢ af _
iy o d% Bv A o(v,x) R (1)
8F e d¢ oF
Var "Haxav - » IV (2
where
% oo oo
i bwe [ £(v,x) dv - 4me [ F(V,x)aV (3)
® -0 -(0

is the field-source equation. The electron and lon sources due to

volume ionization can be reduced to the expressions,

o(v,x) = vi(v,x) H[v - (21/m)1/2] , (4)
,G-Qn
E(V,x) = vg (V) [ £(v,x) dv , (5)
where,
veN <o) v?> ,  (6)
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£ = /2 “k,rq)sfz anve ke W
sl
H{v - vo) = 1, vav, ? 0 R
= 0, vev, >0 ' (8)

is the Heavyside step function. In Eqs. (1) - (6), e = -e, and

e, = te, are the charges, m and M are the masses, and v and V are

the individual velocities of the electrons and ions, respectively, No and
T0 are the density and temperature of the neutrals, and o(v) 1s thelr
ionization cross section in dependence of the electron velocity which

is assumed to be largze compared to thg heavy particle velocity,

lvj »> |v{. T dis the innization energy.

Within the self-consistent fileld model for long range Coulomb
interactions, usually (elastic and inelastic) short-range binary
interactions are not regarded [ = O in Egs. (1) - (2)]. The
Boltzmann collision integral destroys the "simple" iitegral-functional
structure of the original Vlasov equation. For this reason, the
Boltzmann collsion integral for ionizatlon has been approximated in
Eq., (1) by the discontinuous relaxation expression in Eq. (4). The
associated ion source in Eq. (2) is then given by Eq. (5) with go(V)
being the Maxwellian in Eq. (7). (The latter presumes that the neutral
atoms are in thermal equilibrium.) It should be noted that volume
ionization must be included in the physical model for the discharge
since otherwise only a trivial solution F =0 of Eq. (2) would exist.

On the other hand, the elastic binary interactions of the electrons or
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ions with the neutrals can be neglected compared to the self-consisteut
long range Interactions.

The boundary conditions for the potential ¢(x) are given by the
fixed potentlals at the cathode (@o) and anode (¢a). In contrast to
@0 and @a, the boundary conditions for the distributions £(v x) and
F(V,x) are not known explicitly. 7he latter boundary conditions are
given implicitly by the surface processes at the cathode and anode of
the Low pressure discharge, i.e.:

1) Reflecticn of electrons at the cathode £x=0) and anode (x=a)
[reflection coefficient: Rg @ R§ (s mve)].

j) Tharmal emission of electrons at the cathode [thermal emission dis-
tribution: fT = ET(% mv2)].

k) Secondary emisslon of electrons at the cathode by incident ions
Iprobability of emission of an electron of energy % mv2 by an ion
of energy % MV2: § = S(%.mv2|%MV2)].

£) Neutraliza.ion and absorption of the ions at the electrodes [effective

reflection coefficient: Ri = R% (s MV2)],

Accordingly, the boundary conditions for the filelds £(v,x), F(V,x),
and ¢(x) are:

f({x=0, v > 0)

fT(% mvz) + Ri(& mvz) flx=0, v ¢ 0)

+ 50 mv2 |5Mv2)  F(x=0, V < 0) . (@

Ex=a, v < 0) = RSy mv2) £(x=a, v > 0) . (10)
- i 2 .

Flx=0, V > 0) = R_(5 MV°) F(x=0, V < 0) 0 .
1 2 N

F(x=a, V < 0) ='Ra(k MV} F(x=a, V> 0) &0 . (12)
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and

¢ (x=0) = ¢o’ b (x=a) = ¢a . (13)

Thus, one finds that a low pressure discharge is described by a
boundary-value problem for nonlinear intepro-differential equations
[Eas. (1) - (3)] with regular [Eq. (13)] and functional [Eqs. (9) -

(12)] boundary conditions. For statistical equilibrium and negligible

field emissilon, fT is given byg)
£, = m_E% g~Cemv + e~ O)/RTy RE(s mv)] HEv)  (14)

27h

where T 1s the cathode temperature, sm is the barier energy of the

metal and £ A is the Fermi energy. Neglecting quantum mechanical

c

tunneling, the reflection coefficient of the electrodes isé)
v e L/2 b mve 1/2.4
RIS

4
m m

R® = [(1 + (15)

On the other hand, nearly all the lons are neutralized as they approach
a metal surface so that their effective reflection coefficient is

R = o . 1e)

The secondary electron emission probability S(% mv2|% MVZ) has to be
determined from experimental data since no convineing theory is available.
The Egqs. (14) - (16) glve essentially the correct magnitude of the
surface effects. A more sophisticated description is not attempted

since this would render the boundary conditions too complicated. The

Eqs. (1) - (16) represent probably the most simple thecretical

formulation of the physical problem under consideration.
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In splte of the physical simpl<.. ations, the above nonlinear
boundary-value problem turns out to be e.tremely difficult. This is
mainly due to the source terms o(v,x) and EI(V,x) iIn Eqs. (1) - (2).
If one treats volume ifonization as a small perturbation, then Eqs. (1) -
(2) reduce to the ideal Vlasov equations in first approximatiom (A =+ 0):

9

=1}
ju N

o Bf 3F e db aF
xov o 07 Vo " Maxaw -0 » Q7N

Sle
&l

v +

=
E

which have generalized functional similarity solutions of the form

£ = {3y’ - eb(x)], F=Qi3 e+ en(x)] . (18)

P and Q are arbitrary discontinuous functions [because of the
hyperbolic nature of Eq. (17)] of the functional argument indicated
which have to be determined in such a way that the boundary conditions
in Egs. (9) ~ (12) are satisfied., This perturbation approach does,
however, not work in absence of ;olume ionization (A=0) since

F(v,x) = Q 2 0 because of the homogeneity of the houndary conditions
for F({v,x) [Eq. (12)]. TFor this reason, a more general functional
similarity solution has to be derived for the complete Eqs. (1) -~ (2)
with volume ioniz:tion (A=1). This could not be accomplished, however,

in spite of a considerable effort in time. It is hoped that the

solution of this gas discharge problem can be reported at a later date.
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