FRACTURE CONTROL METHODS
FOR
SPACE VEHICLES

Volume III

Space Shuttle Configurations

By
A.F. Liu and E.J. Mulcahy

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS 3-16765
FRACTURE CONTROL METHODS
FOR
SPACE VEHICLES

Volume III
Space Shuttle Configurations

by
A. F. Liu and E. J. Mulcahy

Contract NAS3-16765
NASA Lewis Research Center
Cleveland, Ohio

August 1974
This volume contains Space Shuttle configuration drawings supplementary to the Space Shuttle structure described in Volume I.
FOREWORD

The work described in this report was performed by the Space Division of Rockwell International Corporation under Contract NAS3-16765, Fracture Control Methods for Space Shuttle Vehicles, for the Lewis Research Center of the National Aeronautics and Space Administration. The investigation was conducted under the technical direction of Mr. Gordon T. Smith of NASA/LeRC. The project study manager at the Space Division of Rockwell International Corporation was Mr. A.F. Liu, with Dr. Paul C. Paris of Del Research Corporation and Dr. Matthew Creager of Del West Associates, Inc., acting as primary technical consultants.

This report consists of three volumes:

Volume I. Fracture Control Design Methods (prepared by A.F. Liu)

Volume II. Assessment of Fracture Mechanics Technology for Space Shuttle Applications (prepared by R.M. Eh'et)

Volume III. Space Shuttle Configurations (prepared by A.F. Liu and E.J. Mulcahy)

Mr. James E. Collipriest, Jr., provided overall technical guidance in the preparation of Volume II. Mr. Edward J. Mulcahy and Mr. A.S. Musicman contributed significantly to the preparation of Section 1.1 (Space Shuttle Vehicle Structural Description) of Volume I. Mr. John Mamon and Mr. F. Stuckenber aid substantially in the preparation of the nondestructive evaluation sections in Volumes I and II. Mr. R.E. O'Brien and Mr. R.M. Ehret contributed, respectively, Section 2.2 (Prevention of Cracks and Crack-Like Defects in Shuttle Vehicle Structure) and Section 2.3.8 (Required Material Properties Data for Space Shuttle Fracture Mechanics Analysis) of Volume I. Dr. Matthew Creager contributed Section 2.3.6 (Failure Under Complex Loading Conditions) and Section 2.3.7.4 (Damage Tolerance Analysis for Pressure Vessels of Volume I and Section 2.2 (Thin Sheet Behavior) and a discussion of fracture behavior under combined in-plane loading in Section 1.2 (Linear Elastic Concepts of Fracture Behavior) of Volume II.

Mr. R.W. Westrup prepared the original proposal response to the RFP and established the basic framework for the study program. The managerial guidance provided by Mr. R.P. Olsen, Engineering Manager, Materials and Processes, Space Division, is acknowledged by the authors.
This volume consists of the preliminary design drawings for the Space Shuttle vehicle structural components. The drawings represent the preliminary design configurations as of (on or before) June 1973.

Figures 1.1.1 to 1.1.4 present the general configuration and locations for major structural components. Figures 1.2.1 to 1.2.3 illustrate the structural parts for the solid rocket booster, and Figure 1.3.1 represents the external tank.

The Space Shuttle orbiter is conveniently divided into six component assemblies:

1. Mid fuselage (Figures 1.4.1 to 1.4.12)
2. Wing (Figures 1.5.1 to 1.5.4)
3. Forward fuselage and crew compartment (Figures 1.6.1 and 1.6.2)
4. Aft fuselage (Figures 1.7.1 to 1.7.5)
5. Vertical stabilizer (Figures 1.8.1 to 1.8.4)
6. Landing gear (Figures 1.9.1 and 1.9.2)

The maintenance accesses are shown in Figures 1.10.1 to 1.10.5.
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Space Shuttle System</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Space Shuttle System</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Space Shuttle System</td>
<td>3</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Space Shuttle System</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Solid Rocket Motor Assembly</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Solid Rocket Motor Forward Skirt</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Solid Rocket Motor Case</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1</td>
<td>External Tank Structural Assembly</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Mid Fuselage Structure</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Mid Fuselage Side Panels</td>
<td>10</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Mid Fuselage Side Panels</td>
<td>11</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Mid Fuselage Lower Aft Longeron</td>
<td>12</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Mid Fuselage Lower Aft Longeron</td>
<td>13</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Mid Fuselage Lower Aft Skin Panels</td>
<td>14</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Mid Fuselage Wing Carry-Through Torque Box</td>
<td>15</td>
</tr>
<tr>
<td>1.4.8</td>
<td>Mid Fuselage Lower Skin Panels</td>
<td>16</td>
</tr>
<tr>
<td>1.4.9</td>
<td>Mid Fuselage Lower Skin Panels</td>
<td>17</td>
</tr>
<tr>
<td>1.4.10</td>
<td>Mid Fuselage Main Landing Gear Support Structure</td>
<td>18</td>
</tr>
<tr>
<td>1.4.11</td>
<td>Mid Fuselage Main Landing Gear Support Structure</td>
<td>19</td>
</tr>
<tr>
<td>1.4.12</td>
<td>Mid Fuselage Payload Bay Doors</td>
<td>20</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Wing Structure Subsystem Structural Arrangement</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Wing Assembly Rib Construction</td>
<td>22</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Wing Assembly Spar Construction</td>
<td>23</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Elevon Assembly Construction</td>
<td>24</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Forward Fuselage Structure</td>
<td>25</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Cabin Structure</td>
<td>26</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Aft Fuselage Structural Arrangement</td>
<td>27</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Main Engine Thrust Support Structure</td>
<td>28</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Main Engine Thrust Support Structure</td>
<td>29</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Main Engine Thrust Support Structure</td>
<td>30</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Main Engine Thrust Support Structure</td>
<td>31</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Vertical Stabilizer Fin Assembly</td>
<td>32</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Vertical Stabilizer Leading Edge Assembly</td>
<td>33</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Vertical Stabilizer Rudder Assembly</td>
<td>34</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Vertical Stabilizer Tip Assembly</td>
<td>35</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Main Landing Gear</td>
<td>36</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Nose Landing Gear</td>
<td>37</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Shuttle Area Zone Breakdown</td>
<td>38</td>
</tr>
<tr>
<td>1.10.2</td>
<td>Shuttle Maintenance Access</td>
<td>39</td>
</tr>
<tr>
<td>1.10.3</td>
<td>Shuttle Maintenance Access</td>
<td>40</td>
</tr>
<tr>
<td>1.10.4</td>
<td>Shuttle Maintenance Access</td>
<td>41</td>
</tr>
<tr>
<td>1.10.5</td>
<td>Shuttle Maintenance Access</td>
<td>42</td>
</tr>
</tbody>
</table>
America's Space Shuttle transportation system is paramount in furthering this country's knowledge—bringing our tremendous advancements in space sciences back to Earth as direct benefits.

The Shuttle orbiter—the delta-winged flying machine about the size of a medium-range jet—reusable, cargo-carrying, space airplane with workhorse capabilities. Each Shuttle orbiter can fly...
of 100 missions and can carry to orbit as much as 85,000 pounds of payload and up to four crew members and six passengers. It can return 25,000 pounds of payload to Earth.

Rockwell International Corporation's Space Division is integrating the system and developing the Shuttle's payload-carrying orbiter stage under contract to the National Aeronautics and Space Administration.

Figure 1.1.1. Space Shuttle System

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>NOMENCLATURE</th>
<th>REF Dwg</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>SRB NOSE CONE</td>
<td>V767-000035</td>
</tr>
<tr>
<td>902</td>
<td>SRB NOSE CONE CORK ABLATOR</td>
<td></td>
</tr>
<tr>
<td>903</td>
<td>MORTAR SHROUD PILOT chute RISER</td>
<td></td>
</tr>
<tr>
<td>904</td>
<td>MAIN PARACHUTE (96 FT Dia) & REQ'D</td>
<td></td>
</tr>
<tr>
<td>905</td>
<td>DROGUE CHUTE (62 FT Dia) & REQ'D</td>
<td></td>
</tr>
<tr>
<td>906</td>
<td>DROGUE CHUTE RISER ATTACH & DISC</td>
<td></td>
</tr>
<tr>
<td>907</td>
<td>NOSE CONE SEP RELEASE</td>
<td></td>
</tr>
<tr>
<td>908</td>
<td>AVIONICS EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>910</td>
<td>RECOVERY EQUIP-SEQUENCE, BATTERY/RECEIVER</td>
<td></td>
</tr>
<tr>
<td>911</td>
<td>FND SEP ROCKET ENG (2 REQ'D PER SRB)</td>
<td></td>
</tr>
<tr>
<td>912</td>
<td>THRUST TERMINATION PORT (2 REQ'D PER SRB)</td>
<td></td>
</tr>
<tr>
<td>913</td>
<td>SRB AFT SKIRT</td>
<td></td>
</tr>
<tr>
<td>914</td>
<td>SRB NOZZLE</td>
<td></td>
</tr>
<tr>
<td>915</td>
<td>GIABAL HYD ACT (2 REQ'D PER SRB)</td>
<td></td>
</tr>
<tr>
<td>916</td>
<td>GIABAL ACT HYD RESERVOIR (914 DA) & REQ'D SRB</td>
<td></td>
</tr>
<tr>
<td>917</td>
<td>GIABAL ACT PRESS TANK (811 KA) & REQ'D SRB</td>
<td></td>
</tr>
<tr>
<td>918</td>
<td>AFT SEP ROCKET ENG (2 REQ'D PER SRB)</td>
<td></td>
</tr>
<tr>
<td>919</td>
<td>NOSE CONE ATTACH BOLTS</td>
<td>V777-000035</td>
</tr>
</tbody>
</table>

ZONE | NUMBER | NOMENCLATURE |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>705</td>
<td>DECELERATION C.</td>
</tr>
<tr>
<td></td>
<td>708</td>
<td>DECELERATION C.</td>
</tr>
<tr>
<td></td>
<td>710</td>
<td>DECELERATION C.</td>
</tr>
<tr>
<td></td>
<td>711</td>
<td>Rudder/spread</td>
</tr>
<tr>
<td></td>
<td>713</td>
<td>Rudder/spread</td>
</tr>
<tr>
<td></td>
<td>715</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>716</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>717</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>718</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>719</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>721</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>722</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>724</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>725</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>726</td>
<td>VERT. FAIL-SAFE</td>
</tr>
<tr>
<td></td>
<td>727</td>
<td>VERT. FAIL-SAFE</td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
<table>
<thead>
<tr>
<th>NOMENCLATURE</th>
<th>REF DWG</th>
<th>NOMENCLATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERTICAL STABILIZER</td>
<td>VLT0-00707</td>
<td>ORBITER-HFT FUSELAGE</td>
</tr>
<tr>
<td>PARACHUTE STORAGE COMP</td>
<td>VLT0-00707</td>
<td>BCESS AMMONIA BOILER UNIT</td>
</tr>
<tr>
<td>PARACHUTE</td>
<td>VLT0-00707</td>
<td>OPTIONS COOLING SYS</td>
</tr>
<tr>
<td>RACHUTE MORTAR</td>
<td>VLT0-00707</td>
<td>ONS FILL/Drain/Vent Recept</td>
</tr>
<tr>
<td>BRAKE HINGE</td>
<td>VLT0-00707</td>
<td>RCS FILL/Drain/Vent Recept</td>
</tr>
<tr>
<td>4SP BAR ELECT HARNESS/DISC</td>
<td>VLT0-00707</td>
<td>ORBITER-WING</td>
</tr>
<tr>
<td>DURANT DUCT</td>
<td>VLT0-00707</td>
<td>NON-DESTRUCTIVE EQUIP PORTS</td>
</tr>
<tr>
<td>EXHAUST DUCT</td>
<td>VLT0-00707</td>
<td>ELEVON SEAL</td>
</tr>
<tr>
<td>FORWARD VENT LINE&FLAME HOLDER</td>
<td>VLT0-00707</td>
<td>WING TO FUS ATTACH FITTING</td>
</tr>
<tr>
<td>FA ACTUATOR</td>
<td>VLT0-00707</td>
<td>MAIN LANDING GEAR ASSY (2 REQ)</td>
</tr>
<tr>
<td>MAIN PROPSYS-EXTERNAL TANK SYS</td>
<td>VLT0-00707</td>
<td>WING LEADING EDGE ATTACH ATTACH</td>
</tr>
<tr>
<td>5Z SEURGE LINE</td>
<td>VLT0-00707</td>
<td>ILS ANTENNA NO. 2 (RT ON RH)</td>
</tr>
<tr>
<td>OVERBOARD VENT</td>
<td>VLT0-00707</td>
<td>ILS ANTENNA NO. 3 (RT ON LH)</td>
</tr>
<tr>
<td>NK GAS DIFFUSER</td>
<td>VLT0-00707</td>
<td>WING ACT ELECT HARNESS/DISC</td>
</tr>
<tr>
<td>NK DROP LOADING PT SENSORS.</td>
<td>VLT0-00707</td>
<td>ELEVON HINGES 2H 1NM</td>
</tr>
<tr>
<td>ON BAFFLE</td>
<td>VLT0-00707</td>
<td>ELEVON ACT ASSY (2 PER WING)</td>
</tr>
<tr>
<td>NK DROP LOADING PT SENSORS.</td>
<td>VLT0-00707</td>
<td>ELEVON HYD LINE</td>
</tr>
<tr>
<td>ON BAFFLE</td>
<td>VLT0-00707</td>
<td>MAIN SERVO ASSY</td>
</tr>
<tr>
<td>4LINE OUTLET CONICAL SCREEN</td>
<td>VLT0-00707</td>
<td>MAIN LGD GR ELECT HARNESS/DISC</td>
</tr>
<tr>
<td>T TANK LOADING SENSORS</td>
<td>VLT0-00707</td>
<td>MAIN LGD GR HYD LINES/DISC</td>
</tr>
<tr>
<td>SEQUENCER (2 REQ'D)</td>
<td>VLT0-00707</td>
<td>SERVO VALVE</td>
</tr>
<tr>
<td>4B ATTACH FITTING (2 REQ'D)</td>
<td>VLT0-00707</td>
<td>INSTR TERMINAL BOARD</td>
</tr>
<tr>
<td>A ELECT UMBIL HARRNESS NO. 1</td>
<td>VLT0-00707</td>
<td>WING FRONT SPAR</td>
</tr>
<tr>
<td>B ELECT UMBIL HARRNESS NO. 2</td>
<td>VLT0-00707</td>
<td>ORBITER-VERTICAL STABILIZER</td>
</tr>
<tr>
<td>N ELECT UMBIL HARRNESS NO. 2</td>
<td>VLT0-00707</td>
<td>VHF ANTENNA</td>
</tr>
<tr>
<td>DIES-LOGIC/DWR (2 REQ'D)</td>
<td>VLT0-00707</td>
<td>MECH ROTARY SPEED BRAKE A</td>
</tr>
<tr>
<td>NK GAS DIFFUSER</td>
<td>VLT0-00707</td>
<td>DIFFERENTIAL GEAR BOX</td>
</tr>
<tr>
<td>NK DROP LOADING PT SENSORS</td>
<td>VLT0-00707</td>
<td>4 CHANNEL SERVO</td>
</tr>
<tr>
<td>SEURGE LINE</td>
<td>VLT0-00707</td>
<td>FLT RECORDER</td>
</tr>
<tr>
<td>OVERBOARD VENT 4NM</td>
<td>VLT0-00707</td>
<td>RIGHT ANGLE DRIVE</td>
</tr>
<tr>
<td>ORBITER-VERTICAL STABILIZER</td>
<td>VLT0-00707</td>
<td>RUBBER SPEED BPK ACT HYD LINES</td>
</tr>
<tr>
<td>ZONE</td>
<td>NUMBER</td>
<td>SYSTEMS & EQUIPMENT</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5</td>
<td>550</td>
<td>ORBITER-AFT FUSELAGE</td>
</tr>
<tr>
<td></td>
<td>551</td>
<td></td>
</tr>
<tr>
<td></td>
<td>552</td>
<td></td>
</tr>
<tr>
<td></td>
<td>553</td>
<td></td>
</tr>
<tr>
<td></td>
<td>554</td>
<td></td>
</tr>
<tr>
<td></td>
<td>555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>556</td>
<td></td>
</tr>
<tr>
<td></td>
<td>557</td>
<td></td>
</tr>
<tr>
<td></td>
<td>559</td>
<td></td>
</tr>
<tr>
<td></td>
<td>560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>562</td>
<td></td>
</tr>
<tr>
<td></td>
<td>563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>564</td>
<td></td>
</tr>
<tr>
<td></td>
<td>565</td>
<td></td>
</tr>
<tr>
<td></td>
<td>566</td>
<td></td>
</tr>
<tr>
<td></td>
<td>567</td>
<td></td>
</tr>
<tr>
<td></td>
<td>568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>569</td>
<td></td>
</tr>
<tr>
<td></td>
<td>570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>571</td>
<td></td>
</tr>
<tr>
<td></td>
<td>572</td>
<td></td>
</tr>
<tr>
<td></td>
<td>573</td>
<td></td>
</tr>
<tr>
<td></td>
<td>574</td>
<td></td>
</tr>
<tr>
<td></td>
<td>575</td>
<td></td>
</tr>
<tr>
<td></td>
<td>576</td>
<td></td>
</tr>
<tr>
<td></td>
<td>577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>580</td>
<td></td>
</tr>
<tr>
<td></td>
<td>581</td>
<td></td>
</tr>
<tr>
<td></td>
<td>582</td>
<td></td>
</tr>
<tr>
<td></td>
<td>583</td>
<td></td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
<table>
<thead>
<tr>
<th>ZONE</th>
<th>NOMENCLATURE</th>
<th>REF DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ORBITER-AFT FUSELAGE</td>
<td>VL70-005080</td>
</tr>
<tr>
<td>506</td>
<td>AVIONICS BAY NO. 4 (34x44.5x36)</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>507</td>
<td>AVIONICS BAY NO. 5 (34x44.5x36)</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>508</td>
<td>AVIONICS BAY NO. 6 (34x44.5x36)</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>519</td>
<td>PAYLOAD FUEL INTERFACE PNL</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>520</td>
<td>MPS LH2 RECIRC. PUMP</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>521</td>
<td>MPS LH2 UMBILICAL PNL</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>522</td>
<td>MPS LH2 FILL & DRAIN DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>523</td>
<td>MPS LH2 TANK HELIUM PRE-PRESS DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>524</td>
<td>MPS LH2 TANK VENT DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>525</td>
<td>MPS STATIC GAD JAC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>526</td>
<td>CH4 GAD PURGE VEHICLE CAVITIES DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>527</td>
<td>GAD ELECT PWR DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>528</td>
<td>SE FLYWAY UMBIL COMM INSTR GMSC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>529</td>
<td>MPS LH2 DUMP LINE</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>531</td>
<td>MPS LOX UMBILICAL PNL</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>532</td>
<td>MPS LOX FILL & DRAIN DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>533</td>
<td>MPS LOX TANK HELIUM PRE-PRESS DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>534</td>
<td>MPS LOX DUMP LINE</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>535</td>
<td>MPS LOX OVERBOARD BLEED DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>536</td>
<td>MPS. HELIUM SUPPLY DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>537</td>
<td>MPS CH4 ENGINE PURGE DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>538</td>
<td>GAD ELECT PWR DISC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>539</td>
<td>SE FLYWAY COMM INSTR GMSC</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>540</td>
<td>ETS-ORBITER AFT ATTACH MECH NO. 1</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>541</td>
<td>ETS-ORBITER AFT ATTACH MECH NO. 2</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>542</td>
<td>LH2 FEEDLINE EMERG VENT LINE</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>543</td>
<td>LOX PRESS LINE & DISC (2 IN. DIA)</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>544</td>
<td>PNEUMATIC SUBSYS HELIUM TANK(S) MBDS</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>545</td>
<td>APU FUEL TANK MODULE NO. 1</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>546</td>
<td>APU FUEL TANK MODULE NO. 2</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>547</td>
<td>WING ELECT INTERFACE PNL NO. 1</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>548</td>
<td>WING ELECT INTERFACE PNL NO. 2</td>
<td>VL70-005030</td>
</tr>
<tr>
<td>549</td>
<td>WING HYDRA INTERFACE PNL NO. 1</td>
<td>VL70-005030</td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
<table>
<thead>
<tr>
<th>ZONE NUMBER</th>
<th>NOMENCLATURE</th>
<th>REF OMS</th>
<th>ZONE NUMBER</th>
<th>NOMENCLATURE</th>
<th>REF OMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ORBITER MID FUSELAGE</td>
<td>V70-004012</td>
<td>4</td>
<td>ORBITE</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>ECLSS SQ-SUPPLY DISC</td>
<td></td>
<td>417</td>
<td>C-BAA</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>ECLSS COOLANT INLET NO. 1</td>
<td></td>
<td>418</td>
<td>C-BAA</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>ECLSS COOLANT INLET NO. 2</td>
<td></td>
<td>419</td>
<td>GARSA</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>ECLSS COOLANT RETURN NO. 1</td>
<td></td>
<td>420</td>
<td>MANGR</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>ECLSS COOLANT RETURN NO. 2</td>
<td></td>
<td>421</td>
<td>MSA</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>ECLSS FUEL CELL LOX FILL NO. 1</td>
<td></td>
<td>422</td>
<td>DODC</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>ECLSS FUEL CELL LOX FILL NO. 2</td>
<td></td>
<td>423</td>
<td>CARGC</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>ECLSS FUEL CELL LOX VENT NO. 1</td>
<td></td>
<td>424</td>
<td>CARGC</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>ECLSS FUEL CELL LOX VENT NO. 2</td>
<td></td>
<td>425</td>
<td>CARGC</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>FLOOD LIGHT (2 REQ'D)</td>
<td></td>
<td>426</td>
<td>CARGC</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>TV CAMERA (2 REQ'D)</td>
<td></td>
<td>427</td>
<td>CARGC</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>PURGE/VENT LINES</td>
<td></td>
<td>428</td>
<td>CARGC</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>ECLSS N/A ELECT PKG SYS LINES (LH2/LOX)</td>
<td></td>
<td>429</td>
<td>PAYLC</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>AFT FUSEL-RING ATTACH FITTING</td>
<td>V70-004052</td>
<td>430</td>
<td>PAYLC</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>ORBITER-AFT FUSELAGE</td>
<td>V70-005080</td>
<td>431</td>
<td>RADIA</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>MPS LH2 FEEDLINE</td>
<td></td>
<td>432</td>
<td>RADIA</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>MPS LOX FEEDLINE</td>
<td></td>
<td>433</td>
<td>RADIA</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>MPS ENG NO.1 LH2 FEED MANIFOLD</td>
<td></td>
<td>434</td>
<td>RADIA</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>MPS ENG NO.1 LOX FEED MANIFOLD</td>
<td></td>
<td>435</td>
<td>RADIA</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>MPS ENG NO.2 LH2 FEED MANIFOLD</td>
<td></td>
<td>436</td>
<td>HT SI</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>MPS ENG NO.2 LOX FEED MANIFOLD</td>
<td></td>
<td>437</td>
<td>TR1</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>MPS ENG NO.3 LH2 FEED MANIFOLD</td>
<td></td>
<td>438</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>MPS ENG NO.3 LOX FEED MANIFOLD</td>
<td></td>
<td>439</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>WING PURGE DUCT (LH2/LOX REG)</td>
<td></td>
<td>440</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>FWD CARGO BAY PURGE DUCT (LH2/LOX)</td>
<td></td>
<td>441</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>MPS LH2 RECIRC LINE</td>
<td></td>
<td>442</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>MPS LH2 VENT/PRESS LINE & DISC</td>
<td></td>
<td>443</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>MPS ORBITER-ETS ELECT HARNESS</td>
<td></td>
<td>444</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>MPS ETS-OBB LOX DUCT SEL INTERFACE (BB1)</td>
<td>V70-005030</td>
<td>445</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>MPS ETS-OBB LH2 DUCT SEL INTERFACE (BB1)</td>
<td></td>
<td>446</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>MPS ETS-OBB LH2 DUCT SEL INTERFACE (BB1)</td>
<td></td>
<td>447</td>
<td>ECLS</td>
<td></td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>REF. DWG</td>
<td>ZONE</td>
<td>NUMBER</td>
<td>NOMENCLATURE</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ORBITER AND FUSELAGE</td>
<td>V70-004819</td>
<td>4</td>
<td>4.41</td>
<td>ECLSS BREM VLV MODULE</td>
<td></td>
</tr>
<tr>
<td>BAND ANTENNA NO.5</td>
<td></td>
<td></td>
<td>4.42</td>
<td>$^2\text{H}_2$ MANIFOLD VLV MODULE</td>
<td></td>
</tr>
<tr>
<td>BAND ANTENNA NO.6</td>
<td></td>
<td></td>
<td>4.43</td>
<td>$^2\text{O}_2$ MANIFOLD VLV MODULE</td>
<td></td>
</tr>
<tr>
<td>CARGO SERVICING PN5 NO.2</td>
<td></td>
<td></td>
<td>4.44</td>
<td>$^2\text{H}_3$ MANIFOLD VLV MODULE</td>
<td></td>
</tr>
<tr>
<td>MANIPULATOR</td>
<td></td>
<td></td>
<td>4.45</td>
<td>$^2\text{O}_3$ MANIFOLD VLV MODULE</td>
<td></td>
</tr>
<tr>
<td>MANIPULATOR LATCHES</td>
<td></td>
<td></td>
<td>4.46</td>
<td>BLIND LINES FEED THROUGH UI</td>
<td></td>
</tr>
<tr>
<td>DOCKING MODULE</td>
<td></td>
<td></td>
<td>4.47</td>
<td>BLIND LINES FEED THROUGH UI</td>
<td></td>
</tr>
<tr>
<td>CARGO BAY DOOR LATCHES (16 REQD)</td>
<td></td>
<td></td>
<td>4.48</td>
<td>BLIND LINES FEED THROUGH UI</td>
<td></td>
</tr>
<tr>
<td>CARGO BAY DOOR HINGE ACF</td>
<td></td>
<td></td>
<td>4.49</td>
<td>ECLSS UMBILICAL PN5</td>
<td></td>
</tr>
<tr>
<td>CARGO BAY DOOR HINGE DRIVE UNIT</td>
<td></td>
<td></td>
<td>4.50</td>
<td>ECLSS UMBILICAL PN5 NO.2</td>
<td></td>
</tr>
<tr>
<td>CARGO BAY DOOR HINGE</td>
<td></td>
<td></td>
<td>4.51</td>
<td>CARGO SERVICING PN5</td>
<td></td>
</tr>
<tr>
<td>CARGO BAY TURBO TUBE</td>
<td></td>
<td></td>
<td>4.52</td>
<td>L-BAND ANTENNA</td>
<td></td>
</tr>
<tr>
<td>PAYLOAD RESTRAINT ATTACH MECH.</td>
<td></td>
<td></td>
<td>4.53</td>
<td>VAF ANTENNA</td>
<td></td>
</tr>
<tr>
<td>PAYLOAD RETENTION DRIVE UNIT</td>
<td></td>
<td></td>
<td>4.54</td>
<td>WASTE MGT VACUUM VENT</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 1</td>
<td></td>
<td></td>
<td>4.55</td>
<td>AVIONICS BA:5 PRESS RELIEF</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 2</td>
<td></td>
<td></td>
<td>4.56</td>
<td>NITROGEN PRESS RELIEF</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 3</td>
<td></td>
<td></td>
<td>4.57</td>
<td>WATER PRESS RELIEF</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 4</td>
<td></td>
<td></td>
<td>4.58</td>
<td>URINE DUMP NO. 1</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 5</td>
<td></td>
<td></td>
<td>4.59</td>
<td>URINE DUMP NO. 2</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 6</td>
<td></td>
<td></td>
<td>4.60</td>
<td>PGS SUPERCRITICAL LOX T</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 7</td>
<td></td>
<td></td>
<td>4.61</td>
<td>PGS SUPERCRITICAL $^2\text{H}_2$ T</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PANEL NO. 8</td>
<td></td>
<td></td>
<td>4.62</td>
<td>PGS SUPERCRITICAL LOX T</td>
<td></td>
</tr>
<tr>
<td>RADIATOR PN5 HINGES</td>
<td></td>
<td></td>
<td>4.63</td>
<td>PGS SUPERCRITICAL $^2\text{H}_2$ T</td>
<td></td>
</tr>
<tr>
<td>VT SINK INTAKE/OIL TRAP (10 PLACES)</td>
<td></td>
<td></td>
<td>4.64</td>
<td>CARGO BAY LINER</td>
<td></td>
</tr>
<tr>
<td>TF TUNNEL - CARGO MODULE</td>
<td></td>
<td></td>
<td>4.65</td>
<td>DFI AVIONICS EQUIP RACK NO.</td>
<td></td>
</tr>
<tr>
<td>CARGO MODULE (ACF)</td>
<td></td>
<td></td>
<td>4.66</td>
<td>DFI AVIONICS EQUIP RACK NO.</td>
<td></td>
</tr>
<tr>
<td>ECLSS GROUND COOLANT CNTN</td>
<td></td>
<td></td>
<td>4.67</td>
<td>DFI AVIONICS EQUIP RACK NO.</td>
<td></td>
</tr>
<tr>
<td>ECLSS $^2\text{H}_2$ SUPPLY DISC</td>
<td></td>
<td></td>
<td>4.68</td>
<td>DFI AVIONICS EQUIP RACK NO.</td>
<td></td>
</tr>
<tr>
<td>ECLSS FUEL CELL LH2 VENT NO. 1</td>
<td>V70-004820</td>
<td></td>
<td>4.69</td>
<td>C-BAND ANTENNA NO. 1</td>
<td></td>
</tr>
<tr>
<td>ECLSS FUEL CELL LH2 VENT NO. 2</td>
<td></td>
<td></td>
<td>4.70</td>
<td>C-BAND ANTENNA NO. 2</td>
<td></td>
</tr>
<tr>
<td>ECLSS HYDROGEN RELIEF</td>
<td></td>
<td></td>
<td>4.71</td>
<td>C-BAND ANTENNA NO. 3</td>
<td></td>
</tr>
<tr>
<td>ECLSS FUEL CELL LH2 FILL NO. 1</td>
<td></td>
<td></td>
<td>4.72</td>
<td>C-BAND ANTENNA NO. 4</td>
<td></td>
</tr>
<tr>
<td>ECLSS FUEL CELL LH2 FILL NO. 2</td>
<td></td>
<td></td>
<td>4.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
<table>
<thead>
<tr>
<th>ZONE NUMBER</th>
<th>NOMENCLATURE</th>
<th>REF DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>CREW CABIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>367 WASTE COLLECTOR</td>
<td>J-70-004032</td>
</tr>
<tr>
<td></td>
<td>368 POTABLE WATER TANK NO. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>369 POTABLE WATER TANK NO. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>370 WASTE LIQUID SEP SYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>371 ECLSS COOLANT PUMP SYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>372 WASTE WATER TANKS (3800g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>373 CABIN AIR RETURN DUCT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>374 CABIN AIR SUPPLY DUCT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>375 ELECT WIRING HARNESS CONN</td>
<td></td>
</tr>
</tbody>
</table>

Orbiter Mid Fuselage

<table>
<thead>
<tr>
<th>REF DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-70-004032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE NUMBER</th>
<th>NOMENCLATURE</th>
<th>REF DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECLSS FUEL CELL PWR PLANT NO.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS FUEL CELL PWR PLANT NO.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS FUEL CELL PWR PLANT NO.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS PAYLOAD HT EXCHANGER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS FREON PUMPS & ACCUM MODULE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS SUBLIMATOR NO. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS SUBLIMATOR NO. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS FREON HLS MANIFOLD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS INTERCHANGER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS FUEL CELL HT EXCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS FUEL CELL SERVICE PH2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS GSE HT EXCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS HIGH PRESS O2 TANK NO.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS HIGH PRESS N2 TANK NO.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS HIGH PRESS N2 TANK NO.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECLSS HIGH PRESS N2 TANK NO.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPS VKV MODULE (4)</td>
<td></td>
</tr>
</tbody>
</table>

Orbiter Mid Fuselage

<table>
<thead>
<tr>
<th>REF DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-70-004032</td>
</tr>
<tr>
<td>ZONE NUMBER</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Reproducibility of the original page is poor.
<table>
<thead>
<tr>
<th>SYSTEMS & EQUIPMENT</th>
<th>NOMENCLATURE</th>
<th>REF. DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREW CABIN</td>
<td></td>
<td>V120-001B</td>
</tr>
<tr>
<td>CUPOLA LEFT OBSERVATION WINDOW</td>
<td></td>
<td>V120-002A</td>
</tr>
<tr>
<td>CUPOLA RIGHT OBSERVATION WINDOW</td>
<td></td>
<td>V120-002B</td>
</tr>
<tr>
<td>CUPOLA SIDE WINDOWS (LEFT-RH)</td>
<td></td>
<td>V120-003A</td>
</tr>
<tr>
<td>CRT DISPLAY HOUSING (E REG'D)</td>
<td></td>
<td>V120-004A</td>
</tr>
<tr>
<td>OVERHEAD AFT CONSOLE</td>
<td></td>
<td>V120-005A</td>
</tr>
<tr>
<td>OVERHEAD FWD CONSOLE</td>
<td></td>
<td>V120-006A</td>
</tr>
<tr>
<td>OVERHEAD EYEBROW CONSOLE</td>
<td></td>
<td>V120-007A</td>
</tr>
<tr>
<td>MAIN DISPLAY PANEL</td>
<td></td>
<td>V120-008A</td>
</tr>
<tr>
<td>CAUTION WARNING PANEL</td>
<td></td>
<td>V120-009A</td>
</tr>
<tr>
<td>CENTER CONSOLE</td>
<td></td>
<td>V120-010A</td>
</tr>
<tr>
<td>LH SIDE CONSOLE</td>
<td></td>
<td>V120-011A</td>
</tr>
<tr>
<td>RH SIDE CONSOLE</td>
<td></td>
<td>V120-012A</td>
</tr>
<tr>
<td>DISPLAY PROCESSOR (S REG'D)</td>
<td></td>
<td>V120-013A</td>
</tr>
<tr>
<td>PILOT'S RUDDER PEDALS</td>
<td></td>
<td>V120-014A</td>
</tr>
<tr>
<td>CMDR'S RUDDER PEDALS</td>
<td></td>
<td>V120-015A</td>
</tr>
<tr>
<td>PILOT'S SEAT</td>
<td></td>
<td>V120-016A</td>
</tr>
<tr>
<td>CMDR'S SEAT</td>
<td></td>
<td>V120-017A</td>
</tr>
<tr>
<td>TRANSVERSE AIR DUCTING</td>
<td></td>
<td>V120-018A</td>
</tr>
<tr>
<td>LH VERTICAL PANEL</td>
<td></td>
<td>V120-019A</td>
</tr>
<tr>
<td>RH VERTICAL PANEL</td>
<td></td>
<td>V120-020A</td>
</tr>
<tr>
<td>FLT CONTROL</td>
<td></td>
<td>V120-021A</td>
</tr>
<tr>
<td>DISPLAY/COUPLER DRIVER UNIT (RH.Inst)</td>
<td></td>
<td>V120-022A</td>
</tr>
<tr>
<td>DISPLAY/COUPLER DRIVER UNIT (LN Inst)</td>
<td></td>
<td>V120-023A</td>
</tr>
<tr>
<td>CTRL ENCODER/COUPLER UNIT (RH.Inst)</td>
<td></td>
<td>V120-024A</td>
</tr>
<tr>
<td>CTRL ENCODER/COUPLER UNIT (LN Inst)</td>
<td></td>
<td>V120-025A</td>
</tr>
<tr>
<td>RN CIRCUIT BREAKER SWITCH PNL</td>
<td></td>
<td>V120-026A</td>
</tr>
<tr>
<td>LH CIRCUIT BREAKER SWITCHES.CONTROL</td>
<td></td>
<td>V120-027A</td>
</tr>
<tr>
<td>RH. SIDE CONSOLE SWITCHES/CONTROLS</td>
<td></td>
<td>V120-028A</td>
</tr>
<tr>
<td>LH SIDE CONSOLE SWITCHES/CONTROLS</td>
<td></td>
<td>V120-029A</td>
</tr>
<tr>
<td>OVERHEAD CONSOLE SWITCHES/CONTROLS</td>
<td></td>
<td>V120-030A</td>
</tr>
<tr>
<td>CABIN INTERNAL WINDOWS</td>
<td></td>
<td>V120-031A</td>
</tr>
<tr>
<td>FUSELAGE FWD THERMAL WINDOWS</td>
<td></td>
<td>V120-032A</td>
</tr>
<tr>
<td>LH SIDE PANEL</td>
<td></td>
<td>V120-033A</td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure 1.1.2: Space St
VIEW D-D

VIEW C-C

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
VIEW CREW MODULE LOOKING AFT

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure 1.1.3.
Figure 1.1.3. Space Shuttle System.
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

VIEW: SRM CASE TO FWD. STRUCT. JOINT
SCALE = 1/2
END VIEW
LOOKING AFT W/O NOSE CONE

DOME ET. LG

DROGUE PARACHUTE RISER
ATTACHMENT
DISCONNECT, 2 REDUNDANT

MAIN PARACHUTE RISER
ATTACHMENT
DISCONNECT, 2 REDUNDANT
TOW LINE ATTACHMENT
(SWIMMER ATTACH)

AVIONICS
- ANTENNA (2)
- MALFUNCTION DETECT SENSORS (2)
- FLASHING LIGHT (2)
- BEACON (2)
- BEACON/FLASHING LIGHT (2)
- BATTERIES (2)

SCALE: NUMERICALLY 1" = 100 INCHES

MAIN PARACHUTE INSTR.
- PARACHUTE PACK, 6 CHUTES
70 FT. DIA., RIBBON TYPE
- RECOVERY CUTTERS
- 2 F. 1St. STAGE, 2 F. 2Nd. STAGE
- FLOATATION BAG
- BATTERY, FLASHLIGHT (4WB/2)
- BASED ON A WT. 160 LBS., 80 MPH

RECOVERY RISER (HOSE LONE RISER ATTACH)
RECOVERY CONTINGENCY

- DROGUE CHUTE INSTR.
- LANDING & PENETRATION BAG, RIBBON TYPE
- RECOVERY CUTTERS, 2 RECOVERY, 2 PENETRATION
- EJECTION BAG, BATTERY
- FLASHLIGHT, (4WB/2)

BOOSTER RECOVERY INSTR.
- SEQUENCER
- BATTERY
- FLASHLIGHT (4WB/2)

FLIGHT RECORDER
(SWIMMER HOLDS)

SEPARATION RETRIEVE
(NOSE CONE)

EJECTION BAG
(DROGUE CHUTE)

FLOATATION BAG
(SWIMMER HOLDS)

DOME CASE

410 SRM CASE (L/TYP.)
VIEW, SCALE 1:40

VI CASE

1358.5 (DOME TO DOME, SRM)

300 300

CENTER GRAIN SEGMENT NO. 2 CENTER GRAIN SEGMENT NO. 3

AFT

142.3 DIA.

ID ROCKET BOOSTER

SIDE VIEW, SCALE 1:40

REPRODUCIBILITY OF THIS ORIGINAL PAGE IS POOR
Figure 1.2.1. Solid Rocket Motor Assembly
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
Figure 1.2.2. Solid Rocket Motor Forward Skirt
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
MANUFACTURING SPICE

150 REF.
TYPE PLACES

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

1358.5 REF.
(DOME TO DOME)
0° NULL POSITION

±8° GIMBAL (SQUARE PATTERN)
(8° INCLUDES 0.4° OVERTRAVE AND 0.5° ALIGNMENT)
DETAIL A
SCALE 1/8
TYP FWD END

OUT FRAME
REQUIREMENTS
1. WEIGHT MARGIN INCLUDED IN CONTROL WEIGHT 2% ON SRM INERT WEIGHT
2. NOZZLE CANT ANGLE = ZERO
3. NOZZLE EXPANSION RATIO 7:1 CONTOURED; T/W AT LIFTOFF = 1.5
4. IS VAC = 266.3 SEC INITIAL NOZZLE EROSION EFFECT TO BE INCLUDED
5. NOZZLE PL = 737 PSI; 360° F. GRAIN TEMPERATURE AND MEOP = 900 PSI
6. MACHINED SURFACES:
 CASE 425
 CLEVIS 63
 O-RING SURFACES & GROOVES 32

Figure 1.2.3, Solid Rocket Motor Case
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

SKIN THICKNESS DIAGRAM
THREE DOTS SHOWN IS TOLERANCE 2.005

SECTION L-L
SCALE: 1/40
AFT DOME - LO2 TANK

AMF
SECTION J-J SCALE: 1/10

DETAIL A
SCALE: 1/4

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

VL78-000024 A
Figure 1.3.1. External Tank Structural Assembly
Figure 1.4.1. Mid Fuselage Structure
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
NOTES

1. MACHINED LANDS WILL EXIST AT EACH FRAME.

2. SKIN THICKNESSES VARY ON EACH INDIVIDUAL SKIN PANEL

3. ALL DOORS ARE INTEGRALLY STIFFENED DETAILS.

4. ALL SKINS ARE FLAT PANELS

5. ALL STRINGERS ARE TEES AND SPACED AT APPROX 3.25 INCHES

6. ACCESS DOOR AT L. 050 X 1.230 WILL NOT REQUIRE MACHINED RECESSES ON OUTSIDE OF SKIN.
Figure 1.4.3. Mid Fuselage Side Panels
Figure 1.4.4. Mid Fuselage Lower Aft Longeron
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

DIVER C

SECTION 11-11
SCALE 1:10

DOWT FRAME
Figure 1.4.5. Mid Fuselage Lower Aft Longeron
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
1.4.6. Mid Fuselage Lower Aft Skin Panels

NOTES:

1. MACHINED LINES ARE SILL 81 FT AFTER HINGE 31SQ. IN. CIRC. ON OLD
 TAILBLACK
2. SKIN THICKNESSES VARY ON EACH INDIVIDUAL SKIN PANEL
3. ALL SKINS ARE 120 CONTROLED
 COUNTERS
4. ALL OGS ARE 700-1000-700-1000
 SIRED FOR INCLINED SKP

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
Figure 1.4.7. Mid Fuselage Wing Carry-Through
Mid Fuselage Wing Carry-Through Torque Box
PLAN VIEW
SCALE 1:20

OUT FRAME
NOTES:

1. MACHINED LANDS WILL EXIST AT EACH FRAME, SKIN STIFFENER AND BULKHEAD.
2. SKIN THICKNESSES VARY ON EACH INDIVIDUAL SKIN PANEL.
3. ALL SKINS ARE COMPOUND CONTOURED.
4. ALL STIFFENERS ARE TEE AND ARE SPACED 3.25 INCHES APART.

Figure 1.4.8. Mid Fuselage Lower Skin Panels
SECTION C - C
SCALE 1/4

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
Figure 1.4.9. Mid Fuselage Lower Skin Panels
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
Figure 1.4.12. Mid Fuselage Payload Bay Doors
Figure 1.5.1. Wing Structure Subsystem Structural Arrangement
Figure 1.5.2. Wing Assembly Rib Construction
Figure 1.5.3. Wing Assembly Spar Construction
Figure 1.5.4. Elevon Assembly Construction
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

SECTION G - G
STA. 2800

UPPER FUSELAGE STRUCTURE

VIEW K
SCALE 1/1
"Typ for all frames except bounds."
SECTION E - E
STA 4420

SECTION C - C
STA 372.0
SECTION B - B
STA 5040
Notes:

- Crew compartment is floating and is supported at STA 372 and loads are carried on Z axis only. Loads at STA 576 are carried on X and Z axis only. Loads at spread tie X and Y axis only.

- Outer shell is supported by links at STA's 4020, 4420, 4760, 5040 and 5420.

- All flight loads are carried through outer shell only, except loads on Y axis are carried jointly by both structures (cabin and fuselage structure - outer shell).

Figure 1.6.1. Forward Fuselage Structure

Reproducibility of the original page is poor.
REQUIREMENTS & ASSUMPTIONS
1. LINES PER VLT 70-000-4645
2. INTERIOR ARRANGEMENT PER VLT 70-000-4651

OUTFRAME

INERTIAL

PAYERLOAD

HATCH

PAYLOAD

CABIN AFT BULKHEAD

TYPICAL CABIN FRAME

Figure 1.6.2. Cabin Structure
Figure 1.7.1. Aft Fuselage Structural Arrangement
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
VIEW A-A

SECT D-D

TITANIUM-BORON EPOXY

SECT E-E

TITANIUM-BORON EPOXY

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

T FRAME
Figure 1.7.3. Main Engine Thrust Support Structure

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
TYPICAL TRUSS MEMBER
BAL. 4V DIFFUSION BOUND-
STAINLESS BORON/EPoxy
TAPES APPLIED TO 4 VR
SURFACES. ONE POLY-
MECHANICALLY FASTENED.

REPRODUCIBILITY OF THIS
ORIGINAL PAGE IS POOR

SECTION C-C

VL70-0.5593 SH.3
Figure 1.7.5. Main Engine Thrust Support Structure
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
Figure 1.8.1 Vertical Stabilizer Fin Assembly
Figure 1.8.2. Vertical Stabilizer Leading Edge Assembly
Figure 1.8.3. Vertical Stabilizer Rudder Assembly
REPENRUCIBILITY OF THE ORIGINAL PAGE IS POOR
Figure 1.9.1. Main Landing Gear
PRESS PORT

ELECTRICAL SUPPORT BOSS
RING PIN NER

HYD & ELECT BRKT SUPPORT BOSS

OUTER CYLINDER

POWER STEERING WITH 5' MAX OVER TRAVEL

5.5' MAX TRAVEL FOR UNLOCKING

LOCK PIN

STEERING COLLAR
- OUTER CYLINDER

MOUNTING SLOTS FOR SENSOR MECH

PISTON PEG SENSOR
MECH REF

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

EXTENDED POS

SECTION F-F
Figure 1.9.2. Nose Landing
Figure 1.9.2. Nose Landing Gear
Figure 1.10.1. Shuttle Area Zone Breakdown
Figure 1.10.2. Shuttle Maintenance Access
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

VIEW LOOKING FWD AT BLKHD STA X, 1307

FOLDOUT FRAME
Figure 1.10.4. Shuttle Maintenance Access
Figure 1, 10.5. Shuttle Maintenance
10.5. Shuttle Maintenance Access