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ABSTRACT

Several techniques for modeling the disturbances to a space-
craft's attitude caused by moving crew members are presented. These
disturbances can be tne largest moments acting on a manned space-~
craft, and knowledge of their effect is important in the sizing,
design, and analysis/sisulation of spacecraft attitude control
systens.

The modeling techniques are identified as two principal types:
deterministic and atochastic. Three techniques of each type are
presente.. The deterministic models include point-mass motion
derivatives and a discussion on dynamic models of moving crew members.
The stochastic t ‘chniques are highlighted by a Fourier transform
method and the representation of long-term crew disturbance activities
as outputs from approvriately designed filters. A z-transform technique
is developed to obtain a difference-equation form of stochastic models
for use on digital computers.

An appendix derives spacecraft equations of motion which can be

used with many of the models discussed,
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INTRODUCTION

Advances in manned space flight have led to the participation
of man as a useful part of missions involving the carrying out of
sophisticated experiment programs. He can now contribute to the
success of missions requiring maximum use of his cepabilities as an
observer, operator, repairman, or subject. His presence in space,
however, is not without its penalties (which should be more then
offset by its advantages). Life support systems must be provided,
at significant costs in weight and spacecraft complexity. Other
spacecraft systems must be made highly reliable, and redundancy
provided, in order to insure that man will return from his missions.
Again, cost in weight and complexity are incurred. Finally, man by
his presence imposes a disturbance environment on the spacecraft
which could hinder the carrying out of certain exreriment tasks.

The expected dynamic enviroizent is of primary importence in the de-
sign and analysis of any spacecraft stabilizaion and rcntrol system.
For an orbital spacecraft, external disturbances can ba ceaused by

aerodynamic forces, gravity gradient torques, or meteoroid impacts,

for example. The internally-generated disturbances are due to, ‘or
example, rotating component imbalance, mass (cargo or equipment) shifts
or transfers, or as mentioned above, by motions and actions of the crew

members.,

Crew motions can produce some of the largest disturbances act-

ing on a manned spacecraft. These motions can include restrained



activities (where an astronaut is performing tasks at a console, for
example), or translation, where the astronaut may be moviry ... -
point to another within the spacecraft. As motion occurs wnile

a crew member is in contact with the spacecraft, disturbance mcments
are generated. This dynamic interaction of men with his spacecraft
requires that the attitude control system be designed to taske into
account the disturbance torques arising from the man's motion within
the vehicle.

Early work on modeling crew motion disturbances was, in general,
confined to simple representations of motions within a spacecraft
(see refs 1-5) as instantaneous or (usually) constant velocity
translations. This type of modeling is best suited to rigid-body
spacecraft considerations, as there is no discrete frequency content
expressed in the movements. Also, no treatment of the restrained
crew activities is afforded.

Subsequent investigations have resulted in th2: modeling of crew
disturbance forces and moments as stochastic processes (see refs 6-8)
with finite band-width, so that frequency domain control system res-
ponse problems can be explored.

More recently, determininstic modeling of astronaut body motions,
and the resultant disturbanc¢e forces and moments, has been carried
out by Kurzhals and Reynolds (ref. 9, Appendix B) using models of the
human body developed by Hanavan (ref. 10) and modified by Woolley

(ref. 9, Appendix A).



This thesis focuses on some of the modeling tuchniques devel-

oped to date, and indicates some logical extensions to some of
these. In particular, since much analysis and simulation work is
carried out by high-speed digital computers, the modeling of sto-
chastic processes in this domain is deemed important; development
of difference-equation descriptions of & stochastic crew motion
model is presented as a potentially powerful technique for computer
applications.
TYPES OF CREW MOTION DISTURBANCE MODELS

Two types of astronaut crew disturbance models will be considered
herein: deterministic and stochastic. The deterministic models are
completely specified eas functions of time, and mey range from
representations of simple point-mass motions to sophisticated dynemic
human body models. The stochastic models will generally be rer. “ed
by their statistics (e.g. statistical moments) and frequency canteat
or bandwidth.

Deterministic models will be considered first.

DETERMINISTIC MODELS

Crew Motions Represented by Moving Point Masses

As pointed out in tlre Introduction, one method of representing
crew motion disturbances i1s to treat one or more crew members ag
point masses, and allow this mass (masses) to transl.te within the
spacecraft, The simplest means of implementing this method in a

dynemic analysis is to consider only a single mass (which could



represent any number of crew) and examine the effects of its

motion ebout the spacecraft. Appendix A describes the derivation of
this approach. To include the effects of separate messes in motion
(either simultaneously or in series), modification of ihe basic
equations given in the Appe.dix must be made. For 1 messes, i=1,...

total number of moving masses to be considered (n), define

Qi . (ms - mi)

(i =1,2,...n) ()

m
S

Equations (A36) of the Appendix would then be written as

n
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For these equations, the position time histories for the n separate

masses must be specified.



Crew Motions Represented by a Dynamic Model of Man

In the previous section, vhere a crewman was treated simply as a
point mass, no condideration was given to the fact that man possesses
local moments of inertia, and articulated body segments which, by
their motion, result in the generation of local forces and moments.

A more sophisticated means of modeling crew motions is through

the use of mathematical equations describing the motion of these
articulated body members. A simple example will be used to

demonstrate this concept.

If it is assumed that an astronaut is in contact with the spacecraft
at his feet (see figure 1), then any forces and moments he generates
by moving various parts of his body will be transmitted to the
spacecraft through this point of contact. Assume that the man depic-
ted in figure 1 is rigid, witl the capability of moving his right
arm in the yz-plane. Considering the right arm to be rigid, and
alloving it to move through the angle 6, force and moment components

required to produce the movement are given by

ym = “a'cm (5)
Fzm = ByZem (6)
M -1 6

xm = as (7)



SPACECRAFT //-

Figure 1 - Schematic of dynamic model of man in
contact with spacecraft.



vhere

ch = £ sin 6 (8

Zcm ==L(1 - cos 6) (9)

The quantities ch and Zcm can be expressed as functions of ©
and its derivatives as

X} " 3

- 2
Y. =% (6 cosB - 6%sind) (10)

Zem = - £(0 sin 6+ B%cos 6) (11)

It can be seen that expressing the engle 6 as a function of
time allows the computation of the forces and moments required to
produce this pendulum-like motion, and hence (since the astronaut is
in contact with the spacecraft) the reaction forces and moments

acting on the spacecraft.

. 2. 06 @
Fys =n L (6%sin® - 8 cos 8) (12?
F, =m 2% (8%cos + 6 sinb) (13)
5
M = I 8
X a (1)

Similaer expressions can be obtained for movements of other body

members. For move complex motions ("double-pendulum" arm movements,



for exarple), transformations to & single reference axis system are
required. Appendices A and B of reference 9 present the development
of equations for describing the notion of a nine-segment model of

man. Inputs required for the use of this model are time histories

of Euler angles describing the orientations of the nine body segments;
from these inputs applied forces and moments are obtained.

The dynamic model developed in reference 9 may also be used for
an astronaut moving with respect to a spacecraft (as in the perform-
ance of translational "soaring" maneuvers, for example). For this
type of application, equations describing the motion of his center-
of -mass with respect to the spacecraft are required, in addition to
the Euler angle histories for the body segments.

One method of defining the motions of the model segments is to
record the segment mctions of an actual subject performing typical
activities. This can be done by taking motion pictures and
extracting the required information from the resulting film
data (see, for example, reference 11.) More directly, use of
an exoskeletal device such as described in references 12 and 13.
cen be made. Potentiometers at the joints between principal body
segments permit the recording of relative segment motions on magnetic
tape or punched cards. These motion histories, with appropriate
transformations to reference co-ordination systems, can then be used
to generate applied force and moment histories for input to space-

craft control system analyses.

10



Crew Motions Represented by Their
Force and Moment Histories

For control systems analyses and simulations, it is generally
most convenient to represent crew disturbance inputs as forces and
moments along or about the spacecrafts axes. This can be accomplished
(for restrained activities) by attaching a subject to force and moment
measuring transducers, and recording the outputs of the transducers
as the subject performs typical tasks. Load cells or a strain gage
balance are devices which can be used to obtain the force and moment
histories. A load cell arrangement which has been used successfully
in both laboratory and flight experiments is shown in Figure 2, This
array features essentially equal sensitivity for both forces and
moments with respect to all axes. The resolved forces and moments
are given by the following equations (taking load cell compression

as a positive force):

F_ = sin b5° [F) ~ F + sin 30° (F2 - B+ Fy - Fs) ]
Fy = gin 45° sin 60° (- F2 + F3 + Fy - Fs)
F =sin b5S° (F; + F2+F + Fy + Fs + Fg )

2 (15)
= gin 45° (k;) [-F1 - Fe] + sin 45° (k) [F2 + F3 + Fy + Fsl

M
X
M, = sin 45° (ks) (-Fz - F; + Fy + Fs)
M

= gin 45° (ky) (F1-F, +T™ - Fy +Fs - Fe)

11



60°
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600 »

centroid

Sensing Platform

TR

Figure 2 - Load cell array for experimental force
and moment measurenent.
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In simulating (on earth) the forces and moments caused by a
moving crew member, the introduction of certain moment contributions
from a subject's center of gravity shift may occur. Consider figure
3 representing a subject whose disturbance forces and moments (from

typical limb movements) are being measured.

The applied forces and moments are measured with respect to the
point O, which is on the 2' axis. When the subject moves a particular
body member so as to cause his total ¢.g. to shift, a moment about the
point O will be produced by any motion of the c.g. other than along the
z axis. This moment will be equal to the static weight of the subject
times the distance through which .ne c.g. travels in the x-y plane. For
example, if the subject raises his arm over his head, his total c.g. will
move along the (-x) axis, creating a gravity moment about the y-axis equal
to the -x °~ W. Similarly, if he holds his arm at a 135° angle with re-
spect to his torso (in the x-y plane of figure 3), moments about the y-
and x-axes will be produced.

There are several methods by which these gravity moments can
be mechanically eliminated from the data. These methods consist of
supporting various body members to exactly balance out the gravity
force. Such arrangements as suspension slings and underwater neutral
buoyancy weighting are two examples. However, it is not always prac-
tical to provide these mechanical supports (for reasons of available
space or cost, for example). It would thus be desirable to analy~-

tically remove these gravity-produced moments from resultant

13



Note: Origin of X' Yy' 2!

system at man's c.g,

| Y (nominal)
z'/

"0
GRAVITY
\

Figure 3 - Schematic of subject force and
moment measurement.
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disturbance data, keeping in mind, of course, that the presence of
gravity cannot be eliminated and will therefore inherently affect
the way in which simulated motions are performed. One method of
mathematically subtracting out gravity moments consists of
instrumenting a subject with an exoskeletal device which measures
all limb rotations (as described in a previous section)., These
rotations can be used, along with mass and center of gravity data
for each limb, to compute the smount of overall c.g. travel due
to the articulation of one or more limbs. This method has been
used (ref. 13) with results ranging from fair to good. In no
cases were perfect fits obtained, however, since the limb motion
measuring device could not be fitted to measure every conceivable
body member motion.

Another method of reducing applied moment and force date to
eliminate gravity contributions is described in the following
analysis. For this derivation it is necessary to assume an axis
gystem orientation; the orientation shown in figure 3 will be select-
ed, that is, gravity forces are exerted in the +z direction.

As the subject performs various motions, forces and moments are
produced at the point 0 in the force measuring unit (which could
consist of load cells or a strain-gage belance). These forces and

moments are measured, and are as follows:

15



Fx = Fx
measured actual

F =F

Y Ya
F = F + W

2 Z

m a
M =M +Y . W
X X, “c.8 (16)
M =M -X W
m Yo c-g
M =M

z z

m a

Since the subject is in contact with the force measureing unit,
there is exerted on the subject equal and opposite reaction forces

which produce accelerations of the body c.g.

xsubJect Xy 88
F =«F = m;
Yg Y, s c.g. (17}
F =<F = m.z.
2z z s C.g.
8 m

The mass of the subject is simply equal to his weight divided

by the acceleration of gravity constant:

m =" (18)

g

16



To compute the c.g. travel then, a double integration of the forces

may be used.

xc.g.[/F dt dt = g_jF dtdt+x° t+x W
c.gl c.gl
n

y y(19)

_ & [fF, atat+y Sy

yc.g. ws[/ Vg . oc.g.

20,g.% B ffF, 4t 6t + z, )
Ws 8 Cofe 2.g.

Since the subJect will normally begin all simulation sequences

from some calibrated rest position, the initial velocities and

desplacements of the c.g. can be taken as 9. Thus

x t) = F dt dat = = F_dt dt
c'g'(u) Wa—ff *s Wa_ff *n
8 8
(t) = _g F adt dt = - g F_ at dt s (20)
W ff ys W ym
s s
z t) = F dt dt = - F dt dt
c.g.( ) 'ﬁs_ff Zg ﬁs— f Zn
S
The correction for c¢.g. shift would then be written as follows
M =M +y W=M -gW F at it
*a  *measured ©'& *n W f f Ym

M =M -x _W=M +gi T dtdt
Yactual Ym € Vi wf m

M

> (21)

[
=

zuctue.l m

17



Remember that these corrections are for the parti« sar axis system
orientations assumed. It is seen that the math. i« ..cal correction

is independent of subject weight (which appears implicitly in the

Fm variables) and dependent on the -;/iective gravity acceleration
constant at the location of the simulsation., The correction equations
could be used at any level or apparent gravity by proper adjusuvment
of g. Thus, in a zerc-g ortital environment, wiere gravity
acceleration is exactly counterbslanced by centrifugel force, the
effective g would be zero, and measured moments would be those

actually produced by the crewv motion.

18



STOCHASTIC CREW MOTION MODELS

In many areas of spacecraft control system analysis, there
is either no requirement for deterministic representations of crew
disturbance forces and moments, or their use might be unwieldy.
Instead, the disturbance forces and moments can be represented by
other characteristics, such as freguency content or statistical
moments. The so-called stochastic crew motion disturbance models
can be used in the time domain for control and pointing system
simulation analyses, or in the frequency domain for system sizing

or structural analysis problems.

Fourier Series Representation of Force and Mcment Histories

If time histories of simulated crew motion disturbance forces
and moments are available (for selected activities), then a Fourier
series representation of each force and moment history can sometimes
conveniently be obtained.

For a force (or moment) history, F(t) over a time interval t = 0 to

t =t there can be derived Fourier coefficients An and Bn

4
(n=0,1, 2, ...) to obtain the Fourier series

A @
£(t) = ‘29' N E [A, cos nwyt + B sin nw t] (for 0 <t < tp)
n=1

(22)



vhere

A=—2—/ (t) cos nw t dt for n
n t []

0,1, 2, . . .= (23)

and

f
F (t) sin nw t dt forn =0,1,2, .. .o (2k)

- 2
B, = te

The quantity w, is the fundamental frequency of the series and

n is the harmonic of this fundemental frequency. In actual practice,
n would have scme finite limit, which would depend, in part, on the
error limits desired between the Fourier series and the original data.
The fundamental frequency w, is taken to be

w = 27
t

; (25)

A set of six Fourier series can thus be obtained for the force
and moment “ime histories representative of a given period of crew

activity. A constra.nt which should be noted is

te te te
£ (t) adat= [f(t) at=.,..=[p(t) dat=0 (26)
X Y z
[o] (o]

¢]

A non-zero integral would tend to produce a net change in momentum
of the man-spacecraft system, if the force and moment models were

applied to an attitude contrcl system simulation for example.

20



In addition, it should be assumed that the activity would be
initiated from (and return to) some condition of rest, i.e. net forces

and moments equal to zero. This condition requires the additional

A N
o 2

n=1 for whatever N chosen.

constraint that

In practice, the number of Fourier coefficients required (i.e. the
value of X) may be quite large to give a good approximation to
measured data, unless the measured wave form is periodic with a
relatively small bandwidth. For those activities whose force and
moment histories are such that the foregoing Fourier series models

are not readily derivable, more formal Fourier transform techniques

may be employed.

Use of Fourier Transforms in Crew Motion Modeling

A time history (of, say, a force or moment component of a crew

motion disturbance), F(t) has a Fourier transform

flw) = /F(v)e’imdt (27)

and since F(t) can be assumed to be zero for all time except 0 < t < tf.
te
flw) = / Flt)e 1%a¢ (28)

0

21



This equation is essentially equivalent to the twe equrtinns

used to compute the An's and Bn's in the preceeding section, sin-e

e = cos wt - i sin wt \29)

It is used when the force or moment component possesses a conticuous
frequency spectrum, rather than a few discrete frequencies as is the
case in the preceeding Fourier series discussion. In practical
situations involving crew motion disturbance forces and moments,

frequency content is limited to a range, say

lw] < lwgl + where w. may be arbitrary.

Thus f(w) would be essentially zero for all |w] > 'Wflr and the time

functions, F(t), can be expressed as (from ref.6).

We
F(t) == £lw)el¥qy (30)
-wf :

These relations, f(w) and F(t), constitute a Fourier transfoim pair,
and apply to continuous wave f~rms, and thus have somewhat limited
use (e.g., in analog computer simulations or analyses).

For most applications involving control system analyses (at
least in recent years), the high-speed digital computer is utilized.

This in turn requires tnat discrete versions of the Fourier treansform

22



be used, and, of course, all wvave forms or functions must be sampled
and not continuous.
The discrete Fourier transform pair associated with f{w) and F(t)

respectively are

N
1 - [2mi (k1) (j-°))
(1) - }E: F(k)e = J

=) R

\J = 1‘2,-.-F‘ (31)
and N
P = Y r(pe (2miGcl) Qo))

J= . (32)

(k =1, 2, ...N)

where N is the number of samples in the waveform. F(k) and £(J)
are generally complex sequences defining functions in the time and
frequency domains respectively, The index k referz to a sample
period number from the time history, and the index J represents

a harmonic of the basic frequency in the frequency function. The
time and frequency corresponding to these jindices can be found from

the relations

t
LA (k-1) At (where At = -—N—fé)
. - - Aw en
tJ = (J-1) Aaf = (3-1) v (where Mo = t—f-)

A note of caution is required. The sequences £(j) and F(k) are
periodic over N because of the exponential in equations (31) and

(32). 1In obtaining the response of & control system, for example,

23



this periodicity becomes of concern when the force or moment input
is convolved with the transfer function of the system under study.
Consider the following application of crew disturbance modeling.

A time history representing disturbance forces and moments will
be a real function; hence, the sequence F(k) will be real, and
the sequence f(j) of the discrete Fourier transform will be complex

and exhibit the properties that

(1) Re £(Jj) = Re £(N+2-3) (J=2, 3, ...g-)
and
(2) Im £(3) = -Im £(N+2-3) (3j=2, 3, g)

That is, the real part of f(J) is symmetric about the frequency

wy = g-wo, vwhich is referred to as the "folding frequency," and the

imaginary part of f(J) is antisymmetric sbout w Since the

*
sequence f(J) is periodic, Re f(J) can be considered an even
function, and Im £(j) an odd function. The Fourier coefficients
f(g'+ 2)...f(N) can be thought of as the negative frequency harmonics
for frequencies between - (wf - mo) and —w .
For the time history being used, enough samples, N, must be available

to insure that all expected frequency content of the input is at
frequencies lower than the folding frequency We = %;! . Also, the
transfer function of the control system being studied, H(s), (s = iw),
must be adequately described between w = w and w = W If the input,
F(t) is not periodic over the interval t = o tot =t,, then an

incorrect system response r(t) will be obtained from convolution
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of the input with the transfer function. To obtain the correct
response an additional N terms of zero magnitude should be added to
the input sequence to obtain a sequence of 2N terms. The discrete
Feurier transform, the inverse transform, and hence the convolution
involving this 2N - term sequence will then be periocdic over 2N
points, and an N-point convolution of F(k) and H(s) will yield
the aperiodic convolution of two N-point sequences. The transfer

function, H(m), is defined as
H(m) = H (i w, (m-1)] m=1, 2,...N¢1
over the first (N+1l) points, and
H(N+1+j)=con] HN+1-J) j=1, 2,...K1

over the remaining (N-1) points, for a total of 2N points in the
sequence. Convolving H(m) and f(m) over m= 2N points gives the

frequency response array

R(m) = H(m) f(m) m=1, 2,...2N

The inverse discrete Fourier transform given by equation32 can be
spplied to R(m) and the sampled output response, f(t), can be

obtained from
r (m) = Re R(m) m=1, 2,...N

by noting that

t -(m-l)At=(m-l)_t_'_1:
N

The system response to the crew motion disturbance input over the

interval O <t < *t'.f has then been obtained.
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Crew Motion Disturbance Approximstion by Filtered Random Noise

A great majority of astronaut crew motions have been, and

undoubtedly will continue to be, associated wich long-term,
essentially continuous, activities such as experiment console monito-
ring, EVA preparations, meal preparations, or exercising. These
activities, or combinations of activities, are ccomposed of more or
less random body movements. The regultant forces and moments thus
appear somewhatrandom in nature, and resemble stochastic processes.
This section will discuss the modeling of crew motion disturbance
forces and moments (for continuous activities) by treating them

as stochastic processes.

A stochastic process can be defined as a family of functions of
time, yi(t), the realizacvion of which depends on an "outcome" (which
can occur with some probability p) of some "experiment" (ref. 1bL).

A relevant example might be the force applied along the y-axis by an
astronaut performing a task such as prepsration of a meal or taking
a shower. The first time the task is performed (taking some length
of time, T) the applied force history could be represented as F;l(t).
The second performance would probably involve slightly different
movements, and the force history Fye(t) would be different, in a
deterministic sense, from Fyl(t). Similarly, F&B(t), F}h(t), ete.
would be expected to be different from each other. For a single

performance then (a given i) Fy(t) denotes a single time function.

For a specific time tj for any berformance Fy is & random variable,
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dependent upon the performance i. Finally, for a given performance

at a given time, F_ (t,) is a single number.

y; d

Since a stochasiic process can be thought of as a time series
of random variablesthen the statistics of the random variable (such
as mean, variance, autocorrelation, etc) can be used to characterige
the process.

If the random process under consideration is stationary (i.e.,
its statistics, such as mean, variance,etc.,are not affected by
a shift in the time axis), the statistics will not be affected by a
shift in the origin of the time axis.

Further, if the statistics of a random process can be determined
from a single function (in the present example Fyi(t) ) of the
process, then the process is said to be ergodic, and the various
statistical parameters are expressible as time averages. For a

stationary random process (again use Fy(t) ) the power spectrum

is the Fourier transform of its autocorrelation R(T) given as

S(w) =fe'im R (1) at (33)
where (from ref. 15)
T/2
R (1) = lim% F(t) . F_ (t+71)adt
Y Yy
T+ = T/2 (34)

and T is a time "lag" between two samples of the time function

Fy(t). It should be noted that the equation defining R(T) assumes
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that the mean of the function Fy(t) is zero, or

T
‘/rry(t) dt = 0

o]

=]

a constraint which is essentially the same as that discussed in a
previous section (see eqn 26).

Once the power spectrum has been obtained for a given force or
moment history, appropriate mathematical filters can be developed
so that a filter output, when excited by some standard input (random
or "white" noise is convenient to use), possesses the same power
spectrum characteristics as the force or moment history being modeled.
In equation form

Sp (w)

3 St12ter * Sinput (35)

using the example of the force F&.

The next section presents a developme..., using z-transform

techniques, of an extension of this model.
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A z-TRANSFORM TECHNIQUE FOR CREW MOTION MCOELING

As previcusly noted, many crew motion disturbance modeling techniques
will find use in digital computer simulations and analyses of svacecraft
stabilization and control systems. Digital computer representations of
real-world differential equations used to describe physical systems makes
use of difference equations, in contrast to the use of integrator ele-
ments in an analog computer. Formulation of these difference equations
for use on the digital computer can, in many cases, be most easily accom-
plished by employing z-transform methods. The purpose of this section is
to develop the methodology for generation of difference-equation repre-
sentations of crew motion disturbance models, thrcugh use of z-transform
techniques.

If f£(t) 4is a continuous function (in the time domain), then the
z-transform of the sequence f(n At), obtaiused by sampling f(t) every

At seconds is defined es

Z2(f(n 8t)] = F(z) = I f(n At)z™" (36)
n=0

vhere 2z 1is a complex variable and

1l
z| > =
|2 >3 (371)
vhere p 1is the radius of convergence of the series f(n at)z™®  (ref. 16)).
It is noted that the z~-transform can be related to the Laplace transform
by
29



, = es At (38)

vhere s is the Laplace variable.

Reconsider the filtered random noise representetion of crew
motion disturbances which was outlined in an earlier section of this
paper. It is recalled that Fourier transforms were utilized to repre-
sent the filter structure, with power spectra computed in the frequency
domain. It has beern noted (refs. 17, 18, 19) that Laplace (or Fourier)
transforms of sempled functions result in infinite series, which are

s At), making handling

noralgebraic (containing factors of the form e
of sampled-data, or discrete, systems more involved and often unwieldy.
Use of the z-*ransform in describing the transfer function of the model
filters enables the derivation of difference equations which are readily
programable on the digital computer. The following discussion develops
the applicable theory for obtaining the requisite difference equations.
It should be noted that this development is most amenable for use with
activities of an essentially random nature, whose force and moment time
histories would be expected to possess relatively smooth power specira.
Short-term, discrete, activities would be more suited to modeling by
other, dete-~ainistic techniques.

Assume a set of N data points as a result of obtaining a force or
moment time history (M) from some laboratory or experimental crew motion

disturbance measurement activity. The sampling period, which will be

assumed to be constant, is wut. A third assumption which will be made is
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that the data, represented by the N data points, has zero mean. Fol-
lowing Blackmen and Tukey (refs. 15 and 2u), the correlation function is
first determined as

T/2

S MtIM(t + 1)at (39)
-T/2

R(1) = 1im;1,1-

T + o

which, for the discrete case, can be written o

1
R(T) = lim N+ 1

N+ k

m(k)M(k + T) (L0)
0

n e

where T is commonly referred to as the "lag" and is an integer multi-
ple of At (1T = n A1).
The one-sided power spectral density (PSD) is given as the discrete

Fourier transform of the autocorrelation
S(w) = 2 &% I Rlaan)e ™7 g<cycew (41)

The PSD, S(w), is a real, pcsitive function of w. This is the
function to be modeled.
The next step is to assume a transfer function, H(s), which will

be excited by a random, or "white,"

noise input to yield an output with
the power spectrum characteristics of the time history, m. H(8) is
an "open-loop" transfer function, and the output PSD as & function of w

can be determined in a conventional manner as
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s = H(iw) H(- iw) * S (k2)

output input
where H(iw) = H(s)Is = 1w
It is now necessary to define a form for H(s) which will give *he
appropriate output PSD. In the frequency doma.r, this filter mu<+ yield
a zero output at zero frequency, in order that a resultant force or
moment history not exhibit a bias (which would result in addition of net
mementum to the spacecraft dynamic system). Accordingly, an arbitrary
transfer function is assumed; following Hendricks and Johnson (ref. 7)

this function might be specified as

H(s) = —a(s) (43)

[(8)? - 2b(s) + ¢,%] [(8)° - 20, (8) + c,°)

If it is assumed that a random (Gau -..' : .. re input with an rms --ilue

of unity, the model PSD as a function of w is {from equations (42) and (43))

2

S(w) = > A

4
output 1 + Bl w + 82 w + 33

° 1 (uk)
wsg; Bh AB ’

where A and Bi(i =1 - L) are functions of the filter parameters

a, b, b A method of curve-fitting must be used to fit the

1* Pa» ©p0 Cpe
model PSD (equation (Lk)) t; the measured PS" (equation (41)). A form
of least-sguares curve=-fit algorithm could be utilized to determine the
factors A and Bi’ and hence the filter parameters.
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Once the transfer function has been defined in the frequency domain,
derivation of an equivalent digital filter is pursured. It should be
noted that the filter being develcped (for use on digital computers) will
ecsentially receive input from a digital sampler, whose output can be
considered a series of impulses. In order to more accurately represent
the continuous input to tie continuvus filter being modeled, th- :sero-
order hold is commonly used (ref. 21). The mathematical formulation for
this "element" is given by

-sit

l-e
Hzoh(s) = — (4s5)

The factor i‘ in Hzoh( s) must be included with the filter transfer fun.-

tion H(s), and use is made of equation (38) to cbtain the digital filter:
z - 1
H(z) = = z[ul(s)] (46)

where

Hl(s) = L{j-s_)

S

For the present problem, Hl(s) becomes

g (s) = 2 (47)
1 (s2 - 2bls + clg)(s2 - 2b25 + c22)

The transfer function Hl(s) given in equatio. (4T) posses poles

{which will be complex for most cases) at
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To obtain the digital filter, H(z), corresponding to the model filter
(with zero-order hold) Hl(s), Cauchy's residue theorem (and eqn. 38) can

be used (ref. 19)

_z-1, 1 ‘ H, (p)
filz) = (== )'ﬁﬁh_e-m(s-ﬁp ®

Np .
r (p- Pk)ﬂl(P) i

-1
(3-;—-) >
k=1 zZ-€ p--pk

where Np = pumber of poles of Hl(s) (in this case Np = U4) and P, is the
value of the kth pole. The path of integration in the z-plane must in-
clude all poles Py From equation (48), a ratio of polynomials in (z—l)

can be obtained:l

1It would have been as easy to obtain a ratio of polynomials in 2;
hovever, as will be seen, the givén ratio has certain advantages in
subsequent developments.
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~1 2 -1
Pa) Gt T ST totop
H(z) = olz) . -1 ~ -2 - (49)
304»31 z +82 T ...t an

vhere the a’s and B's are functions of a, bl, b2, € Syt

The transfer function input-ocutput relation can now be applied to
determine the difference equations to be used on the digital computer.
It is first noted from z-transform theory (refs. 16 and 18) that en

inverse transform may be expressed as

7t [z- G(z)] = I g(n At + m At)6(t - n At) {s0)
n=0

for the sample sequence where t > 0, g(n At + m At) is a discrete

sample from some time history g(t) whose z-transform is G(z), and

8(t - n At) is an impulse function. Equation (49) is rewritten as

1

.t u.zz-")G(z)

(B, + 8, 270 +oov 8 2 IF(2) = (o + o 2

(51)

The inverse z-transform of equation {51) 1is taken term by term to yield

80 L f£(n At)S(t - n At) + Bl T r [(n - l)At] 8{t - n At)
n=0 n=0

4.4 Bm T r [(n - m)At] §(t -~ n At)
0

n=
[ -] o
= I gln At)s(t - n At) + o L g[(n - l)At]é(t - n At)
n=0 n=0
.}
oot ay Zo g[(n - !.)At] 5(t - n At) {52)
n=
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The coefficients (B, f{(n - 1)At] and @, gl(n - 1)At] of the

impulses &(t - n At) at the same sampling instant, n At, can be
equated to get

30 f(n At) + Bl £l(n - 1)At] +...+ Bm f{(n - m)at]

= a, glr. ot) + o gl{n - 1)at] +...+ ay gl(n - 2)at]

(53)

which is the difference-equation description of the process obteained by
passing the "white" noise signal through the filter H. Rewriting

equation {53) as

% %
f(n At) = -é—e(n At) + E—s[(n - 1)at) +. . .

0 0
% 8

“B';G[(n - £)At] - B—o- f{(n - 1)At]
B2 Bm

- fl(n - 2)at)] - . .. - i fl(n - a)ot] (54)
0 0

it 1s seen that the output £(t), t = nAt, is a function of the backward
differences of input and output or, in other words, the output at a given
sample instant is dependent on both output and input at earlier sample
instants. The quantities g(pAt) will be values from the "white" noise
sequence, and as such, will be merely a set of normally distributed random
numdbers with a mean of zero and a variance of unity.

Implementation of equation (54) on a digital computer is straightfor-
ward. Since the difference equation was developed for t > 0, the values of
input and output prior t» t = 0 (i.e., g(-At), g(-24t),...,f(-At), f(-2At),

ete.) can be taken as zero,
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Example

As an illustrative example of the utility of the difference-equation
description of a filter output, cousider 2 relatively simple filter

structure to be given by

S
Hs) = waitem (53)

Following equations (45) and (46), to include the requisite zero-order

hold, and equation (L48), H(z) can be obtained as

H(z) =

z2-1 ‘l z z
z 15'[ o-20t T z_e-hAJ= (56)

A

Assuming At = .005 sec., H(z) becomes (after simplification)

. 00492558025 z-l - 00492558025 2-2

H(z) = 3 =
1-1.9702L8507 z ~ + .970LLS55927 2z

(57)

The difference-equation relation between input, X and output, xo, with

x, being given as a sampled input, can be written

x (nAt) = .00492558025 x,[(n-1)At]-.00492558025 x_[(n-2)at]

° i : (58)
+ 1.970248507 xo[(n-l)At] - .970L455927 xo[(n-2)At]

To ascertain the accuracy of equation (58) in describing & system,

output response to a unit step functionl through the filter was

determined using a small desk-top computer system. Figure 4 shows

a plot of the equivalent analog response (solid curve) with the

lrhe unit step function is defined (ref. 17) as having the value 1 for
positive time, t, O for negative t, and 1/2 for t = O.
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difference equation output for comparison. As can be noted from
figure 4, the difference-equation result is essentially equal to the
analog curve after 0.4 seconds. Figure 5 gives the difference (analog
minus difference-equation) between the two results for the same 2.5
second period shown in figure L. Agreement of the difference-equation
description with the analog result is within two percent from 0.k

seconds on.

Next, response of the filter (equation (57) ) tc a random noise input
will be examined for its implementation characteristics.

The technique used to digitally generate pseudo-random numbers for
input to this problem consisted of first obtaining pseudo-random numbers

uniformly distributed on the interval (0, 1) through the relation

8

7] (59)

u = Fractional part of [(w + u

Normally-distributed pseudo-random numbers, Ni’ with mean 0 and unity

variance are then generated from (see ref. 22)

N, = (-2 1n ui)ll‘? cos (2 u,,,)
(60)

N 1" (<2 1n ui)l/2 sin (27 u, ..)

i+ i+l
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where ui and ui+l

condition necessitates the use of two sequences of the form given by

must be independent uniform variables. This

equation (59), with separate initializing uniform random numbers.

The Ni generated are used as step inputs to the difference-
equation filter description (equation (58)). A sample result of apply-
ing a pseudo-random noise sequence to the present filter is given as
figure 6. This figure indicates the types of "random" time histories

that can be developed from filters of the form (or similar form) used.
CONCLUDING REMARKS

The obJective of this thesis has been to present an outline of the
methods or techniques which have become available to represent crew
motion disturbances in a manned spacecraft. The wide varieties of
payloads, crew sizes, and control systems contemplated for future space
missions require that updated methods of control system sizing, design,
and analysis be utilized. The techniques included herein highlight both
analytical and experimental approaches. Of perhaps greatest utility of
these techniques is the z-transform application, developed here specifi-
cally for time-domain digital computer applications requiring a variety
of possible crew motion disturbance inputs. An example illustrates the
ease of implementetion of this method, which ease should enhance its
utility in any future studies.

Several other crew motion disturbance modeling techniques have been
presented. The three deterministic methods discussed have been applied

to ground-based simulations by a few investigators; in addition, the
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dynamic model of man has been investigated in a flight experiment. Of
the thre. so-called stochastic methods presented, the filtered random
noise technique has been perhaps the most useful, in frequency domain
studies of the Skylab experiment pointing control system. Some time
domain applications of this technique, in conjunction with pure Fourier
transform methods have also been utilized.

An appendix is included in this thesis; it derives a set of basic
equations of motion for a spacecraft with epplied disturbance which,
although requiring numerical solutions, can be used with many of the
crew motion disturbance models (as well as with other types of defined
disturbances).

It is anticipated that results of the research efforts reported
herein would be most useful in initial sizing studies of attitude con-
trol systems; of almost equal utility would be their incorporation into
existing simulation programs (both all computer and computer/hardware
hybrid). Finally, it should be noted that the results contained in
this thesis are not intended to be all-inclusive; no tables of para-
meters to use with various models are given, nor are specific inplemen-
tation schemes suggested. It is felt that a more diverse treatment of
the subject of crew motion disturbance modeling has resulted, with
enough detail to facilitate #pplications to a veriety of control system

analyses,
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Appendix

Development of Spacecraft Dynamics Ecuations

In an investigation of astronaut crew motion disturbance effects,
relations between disturbance force and moment inputs and spacecraft
response outputs are needed. Spacecraft attitude cnn be expressed
in terms of Euler angles or direction cosines which in turn are
expressible as integral functions of angular velocities about space-
craft body-fixed axes. In order to obtain attitude response
informa%zion, then, it is first necessary to determine these angular
velocities, or body rates. This appendix presents a derivation of
the spacecreft dynamic equations, with one arbitrary moving mass,
based on momentum considerations (refs.23 and 24). A vector approach
will be used for its economy in notation. Figure 7 illustrates the

vector relationship between the spacecraft body-fixed axis X, Iy Z,

and ..aertial axes XI YI ZI'

The angular momentum of a spacecraft, defined in coordinates
of the body-fixed axis system (origin at 0 in figure 7) is the
sum of the angular momenta of all of its mass elements, or

H = T x m, R
) Z nJ J mj (A1)
and the momentum of its mass center is

Hcm ® rms 8 mB Rms (A2)

where m 32 m
8 J
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Figure T - Relationship between body-fixed and inertial
8xes. ’
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The total .ngular momentum about the spacecraft mass center is then

B, = B, - Hg (a3)

or

. . . . (Ak)
— - > = -~ T LT x 2 R - -
Hcm'E rmme(R°+rmJ+wxrmJ) T ms(R0+rms+erms)
where W is the angular velocity of the )LbeZb axis system,

The coor- inates of the spacecraft mass center, ;ms’ are given by

; = Zml ; 1 = Zml ; I
ms (A5)
zm‘j n

Equation (AlL) can be rewritten usint the relation (AS5) as

icmsz;mjnj*io- Em.] mj % m §°+ ;mj mJ'- -;msx

E

m, T o) g%y (B3T,) - xm @xT,) ()

or
Ten "Z;ma" By Tog - Tag® By Tog "Z gy Xy (ExTyy) - Tpx

m (Gwr s (A7)

For convenience, first consider the spacecraft as a rigid body; T mJg
?ms = 0, and a rigid-body angular momentum can be expressed using
equation (A7) as
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B, =E rmdx m, (wxrmj) -rpxom (mxrms) (a8)
or by using elementary vector analysis

H =E m, [(r . rmj)m - (rmj . u)rm]— m [(rms . rms)m - (rns .m)rmJ
(a9)
Equ:*ion (A9) can be expanded into Cartesian coordinates, by

r ‘cognizing certain quantities cdefined as moments of inertia, the

rigid-body momentum can be written in matrix form as

4 1 ¢
I I -1 w )
x Xy Xz x
H o = -IW Iy -Iyz o (A10)

It should be noted that the moments of inertia are about axes
through the center of mass of the spacecraft.

Consider the corigin 0 to Ve at the center of mass
of the spacecraft (taken without any moving masses); then the
consideration of some number of moving masses, k, permits the

expression of (say) the x centroidal axis moment of inertia as

n-k n
D I RO ML RN
J=1 Jen-k+1

(A11)
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Here the first term on the right-~hand side of equation (Ali)
represents the spacecraft moment of inertia, exclusive of any moving
masses, and can be assumed constant for many analyses. The second
term is the moment of inertia due to K moving masses, referred to the
origin 0. The third term is the inertia shift to the overall
mass center of the spacecraft and moving masses (crew, for example).

For convenience in subsequent develcpment, assume only one
moving mass m located at a distance r from the origin 0. The
moment of inertia about the x-axis (centroidal) can now be written
as

= 2, .2y_ 2 2
I Ix’0 +m (y+ z°) m (ys + zs) (A12)

vhere Ix o is the first term on the right side of equation (All).
1 ]
The distance from the origin 0 to the mass center, rs, is now

s n (A13)

and

+ 2%) (A1b)

q= olmg-m (A15)

the x-axis moment of inertia can be written

L =14 * (y? + 2?) (A16)
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All moments and products of inertia can be expressed in a

similar manner:

Le = Ipo* Ay® + 2%)

Iy = Iy. ot Qx? + 2?)

I, = I, +Qx*+ y?)

Ixy = Ixy’o + Qlxy) (a17)
xz Ixz‘o + Qlxz)

Iyz = Iyz’o + Qlyz)

Again considering all mass elements, from equation (al) is obtained

d H - =

o = _d4 Z r . xm R (A18)
at at mo

- dr = - =
TR0 DRI IR ERE S
dt

e E—'ﬂ"”‘ (ﬁo"irﬁl)*z;ma”‘sﬁma (a20)

: Ho m dr, x:io + T .%m §
& =) g = my Ty mg (a21)
a m dr .ﬁ. -'-'
= +
dto s d:s X o m,jxmj my (a22)
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Similarly, from equation (A2)

dH, _ m ars X By o ?msxms Ros
dat dt
From equation (A3)
d H dH - dH
cm = o s
dt dat dt

d H - = - 3
= X -
d:m E rmj mJ ij rmsx ms Rms

Newton's force equation, through the mass center is

Equation (A25) can now be written

PRS-} = - X
at 2 rmJ mj Rnu rms Fs

Further, the total moment &bout the origin 0 is
M { : T, X oR
o nJ J m)

Equations (A27) and (A28) can be combined to yield

= < =
MO dHcm+ rms FB

50
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For most problems involving spacecraft rotations (of principal
concern in this development) the external force applications linked
with mass center -hifts can be neglected. Thus, the applied moment
about 0 will equal the derivative of the angular momentum about the

overall mass center:

It (a30)
Combining and rearranging equations (A7) and (AB) yields
H = r T, -r X r + H
Hcm Zrmjx m'j rm‘j rms ms rms Hrb (A31)

and (considering only one moving mass m at distance r from 0)

equation (A30) can be expanded as

Mo = d Hcm = d (rxmr-~ roXm Tt Hrb) (A32)
—dt dt

Using equation (Al3) to substitute for r_ _ and FES, equaticn (A32)

ms
becomes
M = . r . BE m =
M TR [rxmr-msxmsmsr'rﬂrJ (A33)
Also .
- ) d - - -
Mo = at [Q(r xr) + Hrb ] (A3L)
by making use of equation (AlS).
Expanding equation (A3k) results in
Mo SQ[rXr-—wx(rXr)]+ Hrb +w X Hrb (A35)
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Now, by substituting for irb (and H rb) by making use of equation

(A12), equation (A35) can be expanded to yield the components of

I -, ¥ o - :
M° about the xb o 1y o and Zb axes:

b L1 . . » » 1 ) . \
Mx =Q [(yz ~ zy) + wy (xy - yx) - w, (zx - xz)] + (Ixmx + mx'Ix -

. : ¥ . - I w -1 _w)d
Ixy W, - w Ixy -I,w szxz) + w, (Izwx Xz X yZ'y

w (Iw - I w - I w)
z Yy ¥z z Xy X
= ) - P + . - . . _ . + - + hd -
M, = Q [(zx - xz) w, (yz - zy) - (xy ¥x)] (Iymy w I,
I w -0l -1 & ~wl J+uw(lw -I w -I w)-
¥z 2 2 yz Xy x X xy 2 Tx x Xy y Xz 2
w, (Izmz - Ixzwx - Iyzwy)

M, =Q [(xy - yx) + wx(zx - Xz) - wy (yz - zy)] + (Izuuz +szz -

. . .

I.w ~wl - I w -nyyz) +mx(Iw 'Iyz“’z -Ixywx) -j

Xz X X Xz yZ y yy
WllTw -I w ~-I w)
Yy o oxx 'y Xz z

If the moments Mx’ My, and Mz and coordinates for the moving mass
X, ¥, 2 are expressed as functions of time, then equations (A36)

can be numerically integrated to find the body rates w, ,wy,and w, .
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