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ABSTRACT

This study examines the possibility of modeling and control of
flexible manipulator arms. A modal approach is used throughout the work
for obtaining the mathematical model and control techniques applied. The
arm model is represented mathematically by a state space description de-
fined in terms of joint angles and mode amplitudes obtained from trunc-
ation on the distributed systems, and includes the motion of a two link
two joint arm.

The problem of controlling the system is examined via the linearized
model and using a regulator type of control. Three basic techniques are
used for this purpose: pole allocation with gains obtained from the rigid
system with interjoint feedbacks, Simon-Mitter algorithm for pole allo-
cation and sensitivity analysis with respect to parameter variations.

An improvement in arm bandwidth is obtained that could replace more con-
servative designs currently in use.

Optimization of some geometric parameters is undertaken in order to
maximize bandwidth for various payload sizes and programmed tasks.

The controlled system is examined under constant gains and using the
nonlinear model for simulations following a time varying state trajectory.
The procedure presented in this work is general and can be implemented to
be used in more specific designs.
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NOMENCLATURE

A,B,... matrices

a,b,... vectors

A,B,... a,b,. geommetri.. vectors

A.B,... a,b,... nondimensional:zad parameters

() cossine of °

E Young's modulus

El stiffness

GRG General control with gains pbtained from
rigid model with interjoint feedbacks

I bending moment of inertia

I Identity matrix

kﬂ.kr2 ratio of radii

" mass

mp payload mass

"5 joint mass

g gravity acceleration

J(') moment of irertia with respect to axis -

Jxxp moment of inertia gf nayload with respect
to center of gravity

1 lenght

qij time dependent mode component

Qr generalized force or torque

s(*) sine of .

SMA Simon-Mitter algorithm
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time

kinetic energy

nondimensionalized settiing time
nondimensionalized time

flexible displacement Of beam (-) at end
control law

potgntial energy
angular frequency

time derivative of A,a...
transpose of a matrix or a vector
inverse of a matrix
angles

spatial mode component

torques
damping ratio

finite variation of -

density per unit lenght

density per unity volume

complex unity
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CHAPTCP 1
INTRNCUCTION

1.1 Scope of the Work

Many recent studies deal with the design and control of mechanical
manipulators that perform tasks similar to those of human ams. The
possibility of using small computers located in the vicinity of the mani-
pulator originated the so-called supervisory controlled devices, es-
-ecially important when the distance between the arm and the operator
introduces a time lag in the information process [!2}, [T1]. tllowever,
the am dimensions or the velocity of performing a task can increase the
effects of nonlinear factors that will complicate cven more the control
process. Such control procedures would require nonlinear techniques that
may not be at hand. In the case of flexible mechanical arms, the vib-
rations originated by the clasticity of the links would affect the ef-
fectiveness of the system and even cause instability. In the interest
of reducing these vibrations, this study deals with the control of the
nonlinear system with results obtained from the linear control theory.

" suitable mathematical model is developed to represent the plane motion
of two flexible beams by considering the rigid and flexitle motions. The
hypothesis of controlling the dynamic motion of the nonlinear model is

examined by means of modal control applied to the linearized model.

1.2 The System llathematical Description

The approaci assumed in this work is to derive the equations of

motion of a system of two flexible beans pinned at one end and at the
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joint. Lagrange's equation applied to a distributed system are used

for this purpose. Basically the model is obtained by superposing the
flexible motion over 2 hypothetical rigid body motion. For the purpose
of this study? the elastic motion of the beams is truncated in the second
mode and a six degree of freedom, nonlinear model is obtained. A good
approximation for the dyngmﬁc shapes of the beams during the motion is
achieved by using the appropriate boundary conditions. Some experimentel
results have shown good approximations for the values of natural frequen-
cies of the uncontrolled system when compared with those obtained from
the linearized mathematical model. Details of these procedures can be

found in Chapter II.

1.3 Control from the Perspective of Hanipulator Design

The basic idea for contrclling the system is to find the forces of
torques that must be exerted on the manipulator joints in order to move
the system from its present configuration to the desired position. If
fast motions have to be performed, the dynamic forces will become signi-
ficant and a reasonable control must be achieved for the nonlinear sys-
tem. On the other hand, slow motion with large payload might give rise
to undesired large deflections of the links.

A broad analysis of manipulator design would depend upon geometric
and elastic parameters, according to the tasks to be performed. In
this work one considers the implications of applying modal control tech-
niques to either short and rigid manipulators such as automation devices

or long and flexible oncs 1ike the space shuttle boom. In both rases,
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the control performance would depend upon physically available measure-
ments. However, only a limited number of these quantities might be ob-
tained for a given arm configuration, This suggests the comparison of
control performance for cases vhere all of the variables could supposed-
1y be measured and those when only some of them are vailable. Three
different techniques are used in the present work resulting in a linear
regulator type of control. The first technique works with the gains
obtained in the allocation of poles in the rigid equivalent system and
uses those gains in the control of the flexible mdel. The convenience
of this method is accentuated by the fact that simple measurements are
sufficient for controlling the system. The second procedure is the use
of Simon-Mitter algorithrm [S1], [S2] for independent positioning of poles.
This procedure requires the measurement and/or estimation of some state
variables that might require very sophisticated ins. ments. Finally,
the third metiiod makes use of the poles sensitivites with respect to
parameters variations in order to find the elements of the feecdback law.
These procedures are described in Chapter III and a conmparison of results
is presented in Chanter IV, Estimates of maximum arm bandwidth are pre-
sented for the case of controlline the flexible system with a control law
obtained from the rigid model.

Some simulations of the nonlinear system using the riqid control
law and Simon-"titter algorithm are presented in Chapter V for analyzing

the system performance in tracking a time varying state trajectory.
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1.4 Remarks

The study of controlling flexible manipulators was first under-
taken by Mirro [M2] in which a single beam is analyzed from the point of
view of optimal requlator theory. Before that, Townsend [T1], Kahn [X1]
and many others vere concerned with controlling essentially riqid mani-
pulator arms. The most recent work on flexible systems is presented
by Book [B2] and Whitney, Book, Lynch .[H2] where the pertinent litera-

ture can be found. . - -
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CHAPTER I1
SYSTEM DESCRIPTION
2.1 The Physical Model

The schematic of the general physical system is shown in Figure 2.1,
Tne system is composed of two flexible bodies connected by a friction-
less pinned joint. uUne end of the system is attached to the origin of
a reference frame. The system is assumed to have planar motior and the
relative motion of the two bodies results from torques applied at each
joint of the system. In order to facilitate the description, the joints
are nunbered by 1 and 2 and tihe bodies will be represented by two flex-
ible beams. At the end of beam 1, a concentrated mass representing the
servo-motor at joint 2 and tne joint itself; at the end of beam 2, a
discrete mass can also appear, representing a payload to be moved be-
tween two points in the plane.

In order to describe the motions, three reference frames can be
defined:

[0,X,Y] - an inertial reference frame with origin at joint 1

[0.x1). a reference frame witn origin at 0 and the axis
Xy tangent to beam 1 at point 0

[Oz,xz,yzl - a reference frame with origin at joint 2 and with
axis x, tangent to beam 2 at point U,

Also two angles can be defined:

81(t) is the angle between the axes xj and X

82(t) is the angle between the axes x; and x;
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If now a new system is defined as being formed by two segments 00]
and 0]03. having the angle 8, at 0]. the overall motion can be understood
as a motion of a nypothetical rigid system 00]03 and a flexible motion
of the beams 1 and 2 with respect to this movirg system. In order to
simplify the notations a matrix representation form of the reference

frames can be introduced.

Let
(U} =4 | be the unit vector of reference frame OXY
Yy
- -ukl-
Yy} = the unit vector of reference frame Ox]%,
2l
Uy} = _f | the unit vector of reference frame Ozxzy2
|y2
then
Wy} = [6) W) (2.1.1)
{U,} = [6] (D) (2.1.2)

[C]] and [C,] are the rotational-transformation matrices. (Neference [C2]).
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Figure 2.1
Schematic of the General Physical System
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Then

- co; s6; =
M@} = )
503 €O,

- c(oy+02) s(e,+e3)]
{UZ} =
-s(6; + 82) c(01+ 62

€o; s6)
[,
131 ce,

clor + 02) s(oy + 62)
[czl = )

-s(e; + 92) c(e; + -7

where
co; = cos 6)

s6, = sin e,

1

c{e; + 62) = cos(e; + 83)

s(e1 + 02) = sin(e) + 9,)

(U}

(2.

(2.1

(2.1

(2.1

(2.1.

(2.1

(2.1

(2.

.4)

.5)

.6)

7)

.8)

.9)

.10)
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Vector Position of One Element in Beam 1
Figure 2.2
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2.2 Kinematic Uescription

The position of any point in the system can be described by a con-
venient definition of a set of coordinates. As indicated in Figure 2.2,
any point P1 can be specified if a new variable “i(xi't) is defined as
being the coordinate of the flexible motion witn respect to the refer-

ence frame [Uixiyi]- The vector position of point P; would be

R {v;)t ekt +y.0
di = Y g f it T ity (2.2)
i

2.2.1 Beam 1

The vector position of any point in beam 1 is

X X

—g_.t]’at t]= -

Rd] U} u]} (U} [C]] ) } (x]ce]-u]se])ux
1

+ (X]sel + U'lcel)-u.y (2.3)

2.2.2 Beam 2

In order to define the vector position of any point on beam 2, it
will be necessary to assume that the displacements of the fiexible bod-
ies with respect to reference frames [Ox]yl] and [°2x2y2] be small

enough to consider the paths of points 02 and 0 as straight 1ines nor-

Y
mal to the respective reference frames. Then, as shown in Figure 2.3,
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the vector pusition of any point P, on beam 2 will be

Vector Position of one Element in Beam 2

Figure 2.3
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Ry = 00 + 00, + TPy + PP, (2.4)
If now
e * flexible linear displacement at end of besm "
l] = length of beam 1
12 = length of beam 2
then
=+ | 1168 _
W, = (Ut 11810, + 1,567 (2.5.1)
1 |t e SRS bl i
55 " ‘U]Ese] = -
172 {U} oo = -u]ESO.lux UIECG'IU:{ (2.5.2)
1EX71

o . gt )l et 2 T T
°2P2 = {U]} 0 ={U} [C]] 0 = xzc(e] +ez)ux +x2 s(e] +92)gy
(2.5.3)

Py P2 = {Uz} . = (U} [CZ] = -uzs(e] +8,)0, + u. c(e] + az)qy

2 "2 (2.5.4)
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and
4
- - 14co -U,.50 A JO
Ry = (Dt | TTHe LI e gt ‘L [c,1*
llse] Uy €Oy \OJ- luz
(£.6.1)
T{dz = [llce] -u]ESO-' + XZC(OI + 62) - UZS(OI + 92)]ux

+ [Yyse, + upgeoy + xps(6 + 6p) + uyc(oy + 92)]§; (2.6.2)

The respective velocities are

(2.7)

—R.dz : [-l]é]se] - ﬁu:_se] - u]Eé]ce] - xz(é, + éz)s(e] + 0.
-isz(e] + 92) -Uz(év‘ + éz)C(G-I + Bz)la.x [l]é]ce] + l'h'ECO] -
u,Eé]se] + xy(68) + Bp)c(6y + 8y) + Upc(6y + 8y) - up(dy + 8p)

s(eg + o) ]0, (2.9)
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where the dot means tne derivative with respect to time.
For any mass nj concentrated at joint 2 the velocity will be the

same as for the end of beawm 1 and for any payload, the velocity will be
the one at the end of beam 2.

2.3 Kinetic Energy

The kinetic energy of beams 1 and 2 can be expressed as

Tb=T]+T2 l/Z[d]R dm +l/2[&kah (2.9)

where dn is the element of mass at point Pj(i = 1,2) and m, and m,
are themasses of beams 1 and 2 respectively.

If now (2.7) and (2.8) are substituted into (2.9) the result is:

- -2 2 02 . .
= l/Zo] [x] dm + 1/2 [u] dm + 9] [u]x]m+
™

Ill'l m]

1725, [ulzm + 172m 1,282 + 1/2mgin? + 12mpu 26,2 + myly 8y
Jm]

+1/2(6, + 6)? fxzz' +1/2 f&22m+ 1/2(8; +6,)2 fuzz dm
" M2

M~
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+ (e] + ez)f XpU,dm + 1191(91 + ez)cezf x,dm +
ma m2

lle]cezf uzdm + u!E(e‘ + (-)2)c62 f xzdm + u]Ecezf uzdm
™ ' M2 My

"IE(el + ez)s(-ez)f u,dm + u]Ee](e] + ez)sezf X dm +
My M2

lle](e, + 92)5('92)j,; “zd'" + u,Ee](e] + ez)cezj; uzdm +
2 2

ulEelSOZL uzdm (2.10)
2

The same procedure can be applied to a mass concentrated at joint
2 and to a payload with moment of inertia pr with respect to an axis
normal to the plane of motion and through the center of gravity. In

fact, for the mass at joint 2 expression (2.7) can be modified to

R; = [-6,1;56, = Uppse, - &yuycco, ] U+ [8,1,co, + uycco,

- upgfyseyl Uy (2.11)



29

and from expression (2.8)
i; = [-1,650)-ujpsey-u gbycey-1p/6y + dy)s(ey + 0,)-uyes(ey + o,)
'UZE(é] + 62)C(0] + 62)]ﬁi[1]5166] + ﬁlecel‘u]Eé'lSO] + 12(6] + 62)

C(Ol + 92) + I.IZEC(OI + 02) -I.le(é] + 62)5(0] + 82)]I-I.y (2.12.1)

vhere
uZE and GZE are flexible displacement and velocity of the end of
beam 2. If the moment of inertia of the payload with respect to an axis

through point 02 is defined by Jp and the angular displacement

CBY ) = u
[ax2 ] 2 (2.12.2)

is taken into account, the total kinetic energy of the system can be

finally expressed as:

P (o - o =
T= 1/2[Rd]-Rd]m + 1/2 j Rdz'Rdzdm + l/2ijj.Rj +
m m

1 2
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1.7 °y 2
Y g RP‘§9+ %JP“Z’E (2.13)

2.4 Potential Energy

The potential energy of the system will be assumed as composed of
the energy associated to the rigid motion plus the elastic potential
energy of the links. Then, assuming Ox as the reference position, the
first approximation of the total potential of the system is (assuming
uy and u, sufficiently small)

"
Ve mg 7 (1-0y) + mygly(1-08q) + mpgll,(1-coq) +

%3.(l-c(0] +6,))] + mbg[l](l-cel) + 1p(1-c(6] + 87))] -

b2 e 12
1/2[ EI,/a_i]_ dx - 172 f EIZ( 32u2) o (2.18)

ax]

where
g is the component of gravity acceleration in the Ox direction,

i.e.,
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&= {Ut {g} (2.15)

0

EI], EIZ are stiffnesses of links 1 and 2 respectively, assumed constant
for the purpose of this model.

2.5 Equations of Motion

In order to write the equations of motion of the proposed system, it
is possible to make use of the so called assume-modes method [M1].
Based upon this method, a solution of the flexible motions could be as-
sumed as being composed of a linear combination of admissible functions
multiplied by time-dependent generalized coordinates. Here, by admiss-
ible functions is meant any arbitrary function satisfying all the geo-
metric or essential boundary conditions [Cl1]. Then, in case of the flex-

ible displacements of beams 1 and 2, it is possible to assume
n
u * i£]¢]i(x])q]i(t) (2.16.1)
n
UZ = i§]¢21(X2)q21(t) (2.]5.2)
where the admissible functions ¢ji(x) must satisfy the geometric bound-
ary conditions with respect to the representation of the links in the

reference frames [le]y]] and [02x2y2].

It is clear that the system is now represented by a (2n + 2) de-
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grees of freedom system where [al(t),ez(t)] and [q]i(t). qu(t), i=1,

. .,n] are the generalized coordinates. !lioreover, assuming that
the amplitude of the higher modes of the flexible links is very small
compared with the first one, the system can be truncated with n equal
2, resulting in a 6-degree of freedom problem.

The (2.16) assumes the form

uy = On(x])q]](t) + 42(x7)aq5(t) (2.17.1)

up = ¢21(x2)q72(t) + 022(x5)a,(t) (2.17.2)

if now, ¢ij(i,j = 1,2) are assumed to be the eigenfunctions of a
clamped-free beam, the geometric boundary conditions will be satisfied

and because the orthogonality of these functions

1 1 0 (=s)
v/’ ]¢r(x)¢s(x)dx ijf lor]](x)os‘](s)dx =
0 0 1 (2.18;

(r=s)
where
¢r(x) = (coshxrx - cosxrx) - or(sinhhrx - sinipx) (2.19)

as in reference [B1], where r is the mode of vibrations and A.,0, are

given by Table 2.1,
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r Ar'l o,
1 1.875 0.73480
2 4.694 1.0184

Table 2.1 Characteristic Values for Clamped-free Beam
Now the integrals in equations (2.10) and (2.14) can be evaluated.
I xy8dm = 9 (2.18.1)

™

. 2 . [ .
i) ulzdm = J Qz] qllzdm +/ o]zzq]zzdm = q]]2f ¢1]2dm +

41220 0122dm = m(aq32 + §322) (2.18.2)

f u.'X"d“ = f (O]]Q]] + o-lzq]z)X"dm = &'I'lf ¢”X]dn -
™ ™ ™

932 I d1px9dm = w1l gy + w2 9, (2.18.3)

m
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1]
wil = f ¢]]x]dm = é u]xoll(x)dx
™
l]
wl2 =/ ¢]2X]¢ﬂ =J leolz(X)dx
m] 0

s u %dn - neglected in the model
my

! xzzdm =J
My

ol

I gdn = mp(az? + 4z72)
m2

/ uzzdm = neglected in the model
m2

I Xpudm = nw21q,q + w229,

m2
where

l2

w2l = J ¢y xodm = 6 upXe21 (x)dx
12

W22 = f dppXadm = ST uoxep2(x)dx

mz 0
[ xpdm = mp 2

mz 2

(2.18.4)

(2.18.5)

(2.18.6)

(2.18.7)

(2.18.8)

(2.18.9)

(2.18.10)

(2.18.11)
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M2

nq21 9, + nq22 qy;

where

1
2

nq21 =/ ¢dm = s u2¢2](x)dx
my 0
l2

nq22 =/ ¢,,dm = J u2¢22(x)dx
m2 0

m,

J u,dm = ;2(¢2]q2] + ¢22q22)dm = nq21 Ay * nq22 Py

[ updm = T (951857 * #,505,)d0 = 9z £2°21dm * Ggp Sappdm =

(2.18.12)

(2.18.13)

(2.13.14)

(2.18.15)

For the potential energy, assuming EI constant for each beam and

neylecting tne effect of shear forces one can write

/ El4 dx = EI, f (¢
V] ax]2 0

kwllla 2 + kwl22 q32°

wihere the generalized springs are

y 2
191 4y 9y2) " =

(2.19)
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!

kwill = EI, J] (¢. "¢ ")dx (2.20.1)

0o

1l
kwl22 = tI] é (¢]2"¢]2")dx (2.20.2)
12 2, 2
[FEL, 22 dx = k2l gp? * kw222 gy (2.21)
0 s 2

X2
where
g 12 ] 11
kw2ll = £ IZ 6 (¢2] ¢2] )dx (2.22.1)
12

kw222 = E 1, é (622"955" )dx (2.22.2)

The total kinetic energy can then be written as

T = 1/2(J + “31]2)522 + 12m (3,8 + 4,0 amg(oy0q,° +
069128 * 1ggtize q3912) * SplnT + milyeyp)agy ¢ (w12 ¢
myLe126)a1] + 1/2(my + m) 1426, + 1/2(my + m)(oq1gyy + 08007
+ 1/2(my *+ M) (476977 + a126912)° + (my + mp) by (oqqely *

¢12Ed12) +1/2(dg + Jp)(éz + 53)2 + 1/2m2(6212 + 6222) +



37

R R 2 e . .
W2my (41921 * #pe9,)" * (0 * 03) L2} + m L0005, *

L l [ ] L] [ ]
(22 + W1 5c)ipp] + (my + 2%)_]_1_2_ 8,8, + B3)co, +
2
1182003l{mytaqe + M21)ayy *+ (mpéypp + Ma22)a)] * (4y3gam *
» [ ) L ] 12 [ [ J
M2e012) (8 + 83)(my + 2my)_ —~ cO3 + (413¢ayy + ¢1269,,) [(mpé2e
2
+ nq21)dg) + (mpey,e + 1422)dpJc03 = (93360, + 450, )
(mp + 2m) (9170, + #1260,,)85(82 + 63)s6 B2+ (oyppm +
2

9126972)020M057E + 1921)35) + (moogoE + na22)3p, 1503 -

1,8,(8, + 63)[(mye

N 2]E+nq21)qZ1+(mp¢225 + nq22)qy,]s03 +

(0316977 + 126972)02(8; + 3 [(myep1e + 1Q21)qyy + (myepsp +
LY 1 0 L L] 2
N922)agpJceg + 1/2, (451 dz) * 4226952) (2.23)
For the potential energy

I 1
V= {(m] + 2mj + 2mp + 2m2);- (1 - cel) + (m2 + 2mp).2.g..
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[1~ clog + 0,)]fg + kw1l qp,2 + knl22 91,2 + kn211 qpy2 +
kw222 gp5% + k (2.24)

where:
k is the reference potential energy for the flexible components
$11€» $1z¢ are end deflections of beam 1
$21E»> ¢ypp are end deflections of beam 2
¢21¢'s $ppp' are the angles at end of beam 2

g is the acceleration of gravity in X direction

If now 61, 62, 911, 972, G21» Q22 are assumed to be a set of generalized
coordinates and ty and T, are nonconservative torques acting at the joints
of the system, it is possible to write the equations of motion using

Lagrange's equations for a nonconservative system. These equations have

tne form
dfaT\ - aT +3aVv =Q r=1,2...6 (2.25)
Eft(aq,.) Q. A, r

where Qr are time-dependent nonconservative generalized forces (or

torques). In this particular case, the torques L and Tt are going to

2
realize work only for variations of 8 and 0,. Then, if a variation 50,
occurs at joint 1, with all other variables kept constant, the virtual

work done is:
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M = Ty & (2.26)
and
_g_b_l
Q] = ’e] = T] (2.27)
Similarly
Q, = T, (2.28)

Also, from the definition of the angle 8, given at the beginning of
tnis chapter it is possib:c to show that the remaining generalized
forces are equal to zero.

Then, the equations of motion become

i1118) + 82 + M3dy; + Mgdiz + Mslzl *+ Mel2z =

- 1B11 - F1 + 7 (2.29.1)

p18q * iiggBa * 1Ay + Moty + Ma5izl + Mogdz2 =
- MB1Z - F2 + (2.29.2)

M318] + M328 + M3zd1] + MagQ12 + M3gaz) + Maglpp *
- KW111 qqy - F3 (2.29.3)
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Mgq8y + MgBz + Mazaq; + Magdi2 + Masa2) + Maglzz =
- KW122 qqp - F4 (2.29.4)

H518) + M5By + Mgad11 + Mgqdqp *+ Mssa2) + Msed22 =
-KW211 g7 - F5 (2.29.5;

MG181 + Me262 + Hg3a13 + MGad1z + Nggdpy *+ Mgz =
-KN222 qpp - F6 12.29.6)

where the coefficients are given by

2
My = (Jg *+ myy2) + (m + mp) " + {mp + my)(e196a3y + ¢126072)
+ (dyy + dp) + (mg +2my)1ylacez + 2(mp + 2my)( $eq17 + $em2)

12
2 8 - 2(m21 apy + 22 922058, + 2(4q a7y * ¢426912)

(mp21 921 + mp22 q22)C62 (2.30.])

g+ 01 + 3g) + (mp + 28)L2 oy ¢ (mp + 2mg) (8111 +
912Eq72)s82 - (mp21gp) + mp22 qp2) 11587 + (mp21 qpy + mp22 qp5)
(ov1Eam1 + $126912) €82 (2.30.2)
12
Mz = (w11 4 myLyeqqp) + (mp + mp)lyegqe + (mp +2mp) ¢4 5 O
- (mp21 qpy + mp22 q22)%11£58, (2.30.3)
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|7
Myg = (wl2 + ‘jll’lZE) + ('2 + ‘p)ll’lzﬁ + (wy + 2m)5 F:3 co,
- (wp21 qpy + wp22 qzz)ﬁzgsoz (2.30.4)

Mis = (w21 + mladyg) + Licommzy + mp2] sop( 400y + 02e%7)
(2.3 .)

M = (w22 + mplaepze) + w2216y + mp22 s0(M1EAY) + H26E912)

(2.30.6)
K21 = M2 (2.30.7)
M2 = Jg1 *+ Jp (2.30.8)

M3 = #e(mz + 2""p);-"',“z -91e("W21 q2) + wp22q,,) s, (2.30.9)

12
Moq = #12E(my + 2my}77CE, - 415(Wp210y; + mP22922) 56, (2.30.10)

Mg = (m21 + mplo #27) (2.30.1)
Mg = (22 + mply2ze) (2.30.12)

M3z = My3 (2.30.18)
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"33 = ..I + (.2 + 'j *.p”‘lEz

M3q = (Iz tmpt lj)ﬂIE’lZE
M35 = #1021 c6,

My = #11E W22 co

Mgy = Mg

M2 = My,

Ma3 = M3

Mg = m) +(m + mj + "P)’IZEZ
Mys = h1zem21 8

Mag = #126m22 Cop

M5y = M5

Mgy = Mg

(2.30.15)

(2.30.16)

(2.30.17)

(2.30.18)

(2.30.19)

(2.30.20)

(2.30.21)

(2.30.22)

(2.30.23)

(2.30.24)

(2.30.25)

(2.30.26)
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cac.oc 163 = M35

Msq = Mgs

2 )
Mg = m2 + mp o1 + Jp ¢'5y

L3

Ms6 = mp #2192¢ + Jp ¢'21E¢°22E

+ rgP fsarg + (32 N
M3 = M36
¢y TP Torrd oz

- N RS

A 4 ' . TTT,
Meg = m2 % modoop + Jpé 226°

o1 . + c
rrhgfasrs Y oprPar

SR ¢ & K1)

+ r(: ;.C —5 5 o "m,'
» - .

(2.30.28)
sy& easiloney vesntlinon suT Los

2 (2.30.29)

! - L% - R Y -
TEATTT T I T T g
(2.30.30)
(. Qa ?) -~ _ag i I:_HS - aj}
3 > g N
(2.30.31)
ES \.'.1), - (Q"f‘ NS";"' + ,:-1") ;'::‘.-.‘1.
- -
(2.30.32)
—— Ay
TG e T
(2.30.33)
S U S & SN [ Ve B &
% G N s -

3 YT (2.30.38)

;<

‘,' +
(2.30.35)

(WX

> 552,30, 36)

- T .,»,.‘v R -" : !.:'.‘-"“'<A :’ S "‘-“ -¥;
MATS Tl & 2n3L sy + (np + 20p) 2507+ 00+ Ty + w0)

v M ~ .
7..~r') :‘..oC"?l - r -

S

N .
4 P H
E T P BN e i ey
* v N -l . . \
. N rly
[N

21 (2.30.37)



mm=(%+z%ggmh,+%) (2.30.38)

and the nonlinear functions are

F1 = 2(my + m ) (o197 * #126%2) (0116917 * 09269208, -

(my + 2001 Lo 50, - (my +2m) Ml2 8.7 se, - 14,50,
2

. . _ . . 1
(mp21 qpq + mp22 . Gyp) - (my + 2m)(9q1g0yq + ’125“12)—352sez
2

- (’"E q]] + ‘125 qlz)[wﬂ 02] + mp22 qzz)sez + (mp21 qz‘ +

- 1 L ] - -
mp22 Gpy)6,C0,] + 2(my + 2m) il [(eyqg Gy * #2p 94)0¢58,

+ (019 I+ 0yp N)0y0p00) * (my + 2m ) (0g4¢ 9y +
$1oc G19)8,50, + (6590 Gyq + ¢ q)ézce]12+
12e N121%2%92 * g iy * iz %p)8 c0p] 2

(641 17 * 128 992 (mP21 Gy + MP22 Gyp)s0, + (6976 3¢ +

e )y 2 2 it )

S Reaa 25 I e R L < o SO N

s8,1y(26, + 6,) - (mp21 g,y + MP22 q,,)6,14C0,(28) + 8,) + (941¢47¢*
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$126072) (P210,, + mP22a7,)(26) + 8)) + (93997 + #126%y)

[(mp214,, + mp22d,,)(26, + 8,)co, - (mp2lay, + mp22q,,),
(26, +6,)s0,] (2.31.1)

o , s ;
F2 = ~(p79g0y7 *+ #126872) (y + 2mp) 12 8,50, + (my + 2mp) (64,4},
2

- . 'l . . . . .
' "ZEQ‘Z)B‘SQZZQ - (mp21q,; + mp22d;5)118156, + (897£9y1%0726012)
é](mp21q2] + mp22q22)ce2 + (m2 + 2mp)1112 élzse2 + 1161592
(mp21g,, + mp22qy,) + (897681q + 61¢67,) (él+éz)(m2+2mp)1§-5°2 +
- - . _ 1
(0778977 * $128912)81 (MP21a,y + mp22a,,)ce, ~ (m) + zmp’§§1¢1lsq11 +
)6.2co, + ( + )62 (mp21q,. + Mp22q.,,)s8, +
9126912787 ©Op * WyqpGyy T ¢y2e902/8 IMPCiGyy T MPLLqy,)se,
1]5]2 (mp21q2] + mp22q22)c92 (2.31.2)
F3 = ¢1]E;gjé] + 62)(m2 + 2mp)ézse2 - ¢]]E(mp2162] + mp22&22)

62562 - °11E(él + éz)[(mp2162] + mp22&22)se1 + (mp21g,, + mp224,,)

] L4 2 »
82c0p] - (my + mp)ey” (09£a7q + 09580064 = (M + 2mpley b,
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() + 6)s0 ,;_2_ - #1e 6 (MP21az) + mp223,,)s67 - ¢y 1eé1(8) + 62)
(wp21q,, + up22q22)c02 (2.31.3)
F& =-4158 8p(8) + 62)(my + 2mp) ;2_ s82 - #12£(MP2142) + mp22)
82 s§2 -012e(8; + 62)[(mp21Gpy + mp22q,,)s07 + (mp2lqz) + mp22qz2)
62 €01 - (my + mo)éy2ey6 (47411 + #126072) - (mp + 2mp)ey ey
~ (5] +8 2) s6, ;_2_ - ¢]255] (mp21g21 + mp22q27) €2 - #12€8,
(67 + 62)(mp2lgyy + MP22g37) c6y (2.31.4)
F5 = -mp21 176765507 + 2(4y7£a17 * ¢1269712)m0216156, + 116,
(6] + 62)np21592 - (o11eam + ”ZEq]g)é]zanl c8y (2.31.5)
F6 = -mp22 176182 s82 + 2(¢11EG171 + $10pQ12)mp22 658, + 196,
(b7 + 6,)mp22 s6, ~ (9116977 + #1pp912)8, 2 mp22 co;  (2.31.6)

where

mp2l = mp ¢ *+ nq2l (2.32.1)
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Equations {2.29) can be written in matrix form

M(E=KEg+Fh+Cu

where

M (t) = [M55]

o O O O o o
o o O O O o

b

(41 - 11
+F2 - MB12
-F3
-F4
-F5
-F6

iy = 1y00s 6
.
0 0 0 0
0 0 0 n
-kwlll 0 0 n
n -kwl22 0 0
0 0 kw1 N
0 0 0 -kw222

(2.32.2)

(2.33)

(2.34.1)

(2.34.2)

(2.34.3)
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m
42
921

922
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o O o o

(2.34.8)

|2 | (2.34.5)

(2.34.6)

(2.34.7)
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A new set of variables can now be defined in order to write the equa-

tions of motfon (2.33) in state space form.

In fact, {if
;] ‘e‘l (2.35.]) 54 = qlz (2.35.4)
Tp =6p (2.35.2) Zg = q21 (2.35.5)
&3 = q17 (2.35.3) T = qpp (2.35.6)
equation (2.33) will be
E=A L+ F +Cy (2.36)
where
4= [t] (2.37.1)
T = [Ci]
i=1, ...,6 (2.32.2)
0! 1
A = v
A=l
M-tk 0 (2.37.3)
, ]
0
= ..
m-lE (2.37.4)
~ g -
AL BRI
M8 (2.37.5)
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where X, x and F' are (12x1) vectors, A' is (12x12) and C' is (12x2)

matrix.

2.6 Linearized Equations

Equation (2.36) is used to study the motions of the proposed system
under some designed control component u. For the purpose of design a
linearized form of (2.36) is obtained. In doing so, all sines ‘and co-
sines are first replaced by their series representation and then a)l'
terms of second- or higher degree in x;, i = 1,...,6 are dropped from the

- equations. The resulting linearized system of equations can then be

written as
x=Ax+Bu (2.38)
where
]
g 1
A= X
S T
wlgt o (2.39.1)
Q
g (2.39.2)
and

ﬂ"-‘ [Mij] "Qj = 1, ceoy 6 (2.39.3)
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_;MBlll -M8112 0 0 0 0
-M8121 -M8122 9 0 0 0
0 0 -kwlll O 0 0
L= 0 0 0 -kwi22 0 0
0 0 0 0 -kw211 0
i 0 0 0 0 0 -kw222J (2.39.4)
where now

M = (JO + Mjhz) +(m2 + mp)l]Z + (JO] + Jp) + (mz + Zmp)lllzcsz
(2.40.1)

ty = (g1 + p) + (my + nLL2 ey (2.40.2)

iz = (11 + mylyeqe) + (mp + mp)Lyene + (m2 + 2mpléye gf’;caz

(2.40.3)

Mg = (12 + mlyeqie) *+ (mp * mo)lyeze + (mp * 2mp)lp #yppch
(2.40.4)

M5 = (2] + mylaepqe) + mp21 1¢B2 (2.40.5)
Mg = (w22 + molaepop) + mp22 11c82 (2.10.6)

Mz] = M"z (2.40.7)



M22

M23

Moy

Has

M35

M36

M4

Mgz

52

og(m + a“p).lg c8,
2

¢12e(mg + 2mp) _I_E cty
2

w21 + mpla921E

M3

Mg

m* 2 tmy+ "b»%‘IE
(mp + mp + mj)e11e ¢12€
$11emP21 by

$17gMP22 cBp

e

24

(2.40.8)
(2.40.9)
(2.40.10)
(2.40.11)
(2.40.12)
(2.46.13)

(2.40.18)

(2.40.15)
(2.40.16)
(2.40.17)
(2.49.18)

(2.40.19)

(2.40.20)



M43 = M34

53

2
Mag = m + (m2 + m5 + my)eye

Mgs = ¢12emp21 chy

Mgg = ¢y2pmp22 Caz

M5y = Mg

M52 M2s

M53 M35

M54 = M45

M55

2
m2 + mpooyp + Jp¢g1g

Msg = mye21E 920 + Jp921E 922E

MS] = M6

Me2 = Mg

(2.40.21)

(2.40 22)

(2.40.23)

(2.40.24)

(2.40.25)

(2.40.26)

(2.40.27)

{2.40.28)

(2.40.29)

(2.40.30)

(2.40.31)

(2.40.32)

(2.40.33)
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Msq = Mgg
Mes = Mse
2 2

Mes = m2 + mpooop + JP¥3pe
MBIIY = [(m + 2n; + 2mp + 2mp) ;l_cﬂ + (mp + 2mp) ;_2
c(® + 8,)]1g
MBI12 = [(mp + 2m) 2 g c(B +

) = mo m&?‘gC(e] + 92)]
mul=[m2+mN;qu§+5y]

18122 = [(m2 + 2my) ;2_ g c(8) + B)]

X1 % & - §
xp= & -9,
X3 = 43

N2

(2.

(2.

(2

(2

(2.

(2.

(2.

(2.

(2.

40,

.40,

.40.

.40,

.40.

40.

4

a.

4]

4.

.34)

35)

36)

37)

38)

39)

20)

d)

2)

.3)

4)
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Xg = Q2 (2.41.5)

6 = 922 (2.41.6)
wiv , and 8 being constant angles at some instant t.

2.7 Exper.sental Verification

To know how well the model represents a real system an experiment
was designed and built. It consisted of two carbon steel beams pinned
together by a joint that allows motion only in the plane of the beams.

One of the ends was connected to a torque motor for excitation and at

the other extreme a payload was clamped as indicated in Figure 2.4. The
joint w.as represented in the model by a lumped mass at the end of the
first beam. The experiment was performed in the vertical plane in order
to have the effects of the gravitational field. The frequency spectrum
shown in Figure 2.5 wac obtained by automatic frequency sweeping and
measurement of the acceleration of the end point via an accelerometer
mounted on the payload. As the model only takes into account two nodes
for each beam, the overall system presents two rigid and four flexible
natural frequencies. Table 2.2 surmarizes the flexible resonant fre-
quencies and the error relative to the experiment. As one can verify, the
results are quite good if one takes into account all the possible measure-
ment ervors that might have been introduced by the automatic sweeping
without allowing the system to reach tne steady state. Another source of errors

could well be introduced by the value o7 moment of inertia of the torque



Units: slug-ft-sec (kg-m-sec)

Torque Joint Payload
Motor
/ g
¢ o) e
4
0.919 0.625 0882 .l.0325
(0.280) (.01) (0.269) (.099)
2

Torque Motor Rotor Inertia = 3.98x10°% ft-1bf-sec

(5.75x10~% nt-m-sec?)

Beams: diameter = 0.25 in (0.00635 m)

material: carbon-steel

Joint

mass

Payload nacs = 4.875x1073 slugs ( 0.0711 kg)
sTug-ft2 ( 0.669x10”

ch = (0.395x10

4

material: Alwdinum

1.23x10°3 slugs (0.0179 kg)

4

kg-m

2)

Figure 2.4 - Experimental Verification - System Parameters
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motor, which was obtained from a motor catalogue. As has been observed
by W.J. Book [B2], a reduction of 30% in this value would lower the
first three natural frequencies about 3.7%.

Another comparison of results was performed between the proposed mod-
2l and the transfer-matrix procedure used in [B2]. For this purpose the
chosen system was the correspondent model of a 53.4 ft. long manipulator.
The dimensions are summarized in Figure 2.6 and the results in Table 2.3.
In this case no gravity was taken into account and Table 2.3 presents
the first four flexible natural frequencies.

From the results presented in these two comparisons, one might as-
sume that the model gives a good representation of the proposed physical
system with probably loss of significance only in the highest frequency
due to truncation error. This kind of error was also observed when
the proposed modeling procedure was applied to a single pinned-free beam.
Table 2.4 presentes some results comparing the proposed model applied
to a single pinned-free beam in two situations: forced by the same torque
motor and analytical values with dimensions shown in Figure 2,7, both

cases assuming truncation at the second flexible mode.

2.8 lumerical Evaluations

As the number of modes introduced in the model increases, the sys-
tem becomes more and more numerically stiff [L1]. Thic fact is reflect-
ed in the numerical calculations of the eigenvalues of the mathematical
model. The previous results in this work were obtained by using a mini-

computer Interdata /lodel 70, with 40K 16 bit words of core storagc ail-
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Units: slug-ft-sec ( kg-m-sec)

§§Tﬁ o —L.
26.7 267 3.0
-

(813) (813) {0.91)

Beams:

External diameter = 0.75 ft (0.228 m)
Internal diameter = 0.734 ft (0.223 m)
mass = 5.278 slugs (77.021 kg)

Joint 4. moed mass = 1 slug (14.592 kg)

Payload
mass = 15.54 slugs (226.76 kg)

Je.g. = 12.62 slug-ft? ( 21.37 kg-n?)

diameter = 1.0 ft (0.304 m)

Figure 2.6 - Characteristics of system used for comparison
with transfer-matrix method
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Torque motor rotor inertia: 3.98x10'4(1bf-ft-sec
(5.75x10'4 mt-m-secz)

9

diameter = 0.25 in (0.0635 m)

material: carbon steel

0.979 1t

a) laboratory experiment

F?ééééﬁ‘ material: carbon steel

diameter = 0.01 ft (0.00304m)

1t

b) analytical example

Figure 2.7 - Characteristics of a single pinned-free beam
for model verification

2
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Experiment Model Error (%)
80.76 79.34 1.7
136.6 130.68 4.3
244 .6 282.56 15.5
401.6 21.4
417.0 487.56 16.9
i

Table 2,2 Flexible Resonant Frequencies and

Relative Error

Hodel Trans fer-Matrix
39.7 38.1
57.9 53.2
144.5 143.6
189.1 | 279.5
L

unit: rd/sec

Table 2.3 Comparison betueen the proposed model

and transfer-matrix procedure
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Analytical
lodel Exact Error
313.2 308.3 1.5%
1016.16 1191.58 17.2%

Experimental

Model Lab. Exper. Error
I
! 615.7 |  606.46 1.5%
‘i
. 25133 2112.16 15.9%

units: rd/sec

Table 2.4 Analytical and Experimental Results from a Single Pinned-

Free Beam
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able at M.I.T. Joint Civil-Mechanical Engineering Computer Facility.
The general programs are listed in Appendix A. As the storage capacity
of the computer used was small compared with the size of the program,

the operations were performed utilizing disk storage.
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CHAPTER II1
CONTROL TECHNIQUES

3.1 Introduction

This chapter gives a general description of the techniques that
were applied to the analysis of controlling flexible manipulatcrs.
These techniques, with one exception, were applied to the models pre-
sented in Chapter IV and the results are discussed in the next chapter.
In order to introduce these control procedures one can start with

equation (2.36) which represents the nonlinear model of the physical

system
T=AT+F' +Cu (2.36)

The objective is to find a control law u(t,7,t) such that the sys-
tem response follows the desired specifications. This task is compli-
cated by the presence of the ronlinear terms in the system representation.

Even in the case for which the control law can be exactly specified,
it would in principle be useful only in very specific cases. To avoid
this type of design of the control one can always design the compensation
for the linearized model and verify how good the approach is when applied
to the nonlinear system.

From the linearized equations of motion

x=Ax+Bu (2.38)
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the structure of a linear regulator can be represented as in the block

diagr.m of Figure 3.1

X9 4 u
:D@Z———_D&:D —>
A
Figure 3.1 Block Diagram of the Compensated System,
where the control has been replaced by the linear equation
u=Kx (3.1)

and xp is the desired trajectory.
The purpose of this chapter is to present several techniques that
were used to compute the set of gains K for different feedback alter-

natives.

3.2 Modal Analysis

It is well known that in the case of linear time invariant systems

described by state equations of the fom

x=Ax+Bu (3.2)
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where A and B are (n x n) and (n x r) matrices respectively, a model
representation can be obtained by using a nonsingular transformation of

state [C3], [S1].
x=Uz (3.3)
In the case of distinct eigenvalues of matrix A, matrix U is the

modal matrix of A and its columns are the eigenvectors of A [G1] [C3].

Then equation (3.1) becowes

=249y (3.4.1)
where A is the diagonal matrix of the eigenvalues of A
Fh ]
.. A O
@) A
n .4,
i i (3.4.2)
and
Pl=ulg=yTe (3.4.3)
is the mode controllability matrix with
uvi=1 (3.4.4)

where 1 is the identity matrix.
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It is clear from equations (3.4) that the . :ansformation (3.3)
uncouples the n-th order system into n uncoupled subsystems. Also it
is evident from equations (3.4) that the 1th mode of the uncoupled sys-
tem is controllable by the jth control input if and only if

Thyto (3.5)

Pig = Y

The controllability of the system is iwmediately verified by exam-
ining the components of the mode controllability matrix 3?.

Equations (3.3) represent an uncoupled system giving rise to one
important question: is it possible to find a ~ontrol law u such that the
eigenvalues can be spacified a priori? The answer to th- - question was
initially given by Rosenbrock [R1] and his uresentation of modal control.
Several extensions and improvements have been made since then [E1], [P1],
(P2] and a very useful algoritihm was presented in the work of Simon and
Hitter [S1], TS2] for the case of distinct eigenvalues. A more recent
work by Gould, Murphy and Berkman [G3] extends this algorithm for repeated
eigenvalues. The constraints in the n.umber of inputs in the present work
make the Simon-ilitter algorithm the most suitable for applications. For
this reason a brief presentation of this method wiil follow in a simpli-
fied way as it was applied. A rigorous and general formulation can be

found in reference [32].

3.3 Simon-ilitter Algorithm (SMA)

This algoritam is capable of shifting all the eigenvalues to desired
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location with only one application. However, this procedure may
cause numerical difficulties in the solition of a ]arge nunber of il1-
conditioned equations. On the other hand, the shifting technique is
recursive, that is, a small number of poles can he shifted in each ap-
plication of the algorithm and this procedure may be applied as many times
as is necessary. If a number p of poles is to be shifted the solution
involves an inversion of a (p x p) matrix. For this reason a recursive
design shifting two poles each time was used, whi_.h means that the pro-
cedure would invoive a small amount of computr~ core for each change of
poles. When two poles are moved, the gains to form the control law u
are such that two poles go to a new specified position while all the
others remain fixed. If a new pair of poles is modified, the gains are
all addad to tnhe old ones in order to maintain the former shifting of
poles. This procedure has a disadvantage with respect to numerical er-
rors accumulation but it is useful when few poles have to be shifted.
Again, the only restriction is that the system has .0 repeated poles.
In order to illustrate the two pole shift procedure one can recall

the cenonicsl form (3.4.1)

1=22+P'y (3.2.1)

u=Gz=Kx (k=6 (3.6)
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wrich moves the two selected poles to specified location while the
other poles remain constant. If one chooses to change the polesiy and
A2 toY) and Y, and assume that the system has r inputs the feedback

law becomes
K a1,
urqBtehs |B yixs o2 vk (3.7)
91, 92

Substitution of (3.6) into (3.4.1) yields the new system

z= 82z (3.8.1)
where
§= A+ _T__ (3.8.2)
_ | ' -
1
).' + 6]] 5]2 |
O
[ 5' 1 —_—
21 b+ %22,
i
el R L N
2 3N 32 | 3 ')
. \ X,
) | |
. , | O .
£ 8
3 n2 : A, (3.9.1)
L ' B
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where

Sik = By 9 fori=1,...,n k=1,...,r (3.9.2)

To determine the new eigenvalues it is sufficient [S1] to examine the

eigenvalues of

12
"

Sa N+ 85 (3.19.1)

In fact, from the mode decomposition property (Appendix B)

T

det(sI - &) = s (s- ;) - det (sI- Zp) (3.10.2)

j=3

If now the new pair of eigenvalues is vy and Yo it is sufficient to

equate the coefficients of like powers of the identity

{s - v9)(s - vp) = det[s] - 2y;] (3.11)

and consequently find the conditions that must be satisfied by gy and g,.
However, gjand gp are vectors whose dimension depends upon the number of
inputs to the system. If the system has a single input it is clear that
(Z 10) will give a unique solution for tne control law u. 9n the other
hand, if r # 1 there exist an infinite number of components for gy and g

that satisfy (3.10). Several alternatives exist to produce a unique sol-
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ution for the control. Among these techniques are those based on power
requirements of the system, sensitivities, proportionality between con-
trol elements, etc. For the purpose of this application the criterion

used is the fixed ratio of feedback gains, that is, the vectors gy and

92 were replaced by njgp and 29, respectively. The vector gp is usually
chosen on the sense of satisfying some desired condition. In particular,

the selection of the elements of gy by the rule [S1]

940 = SiOM (ri1) i=1,...,r (3.8

maximizes the measure of controllability and hence requires the least
absolute value of feedback gains. This rule was used throughout the ap-
plications. Since g, is specified the algorithm gives a unique solution
for a shift of a pair of poles. This solution can be presented for two
cases: pair of real poles and a complex conjugate pair. In particular,
the numerical implementation becomes easier when these two cases are

taken into account.

3.3.1 Real Pair of Poles » and %, (X ¢ %)

In this cese, (3.11) yields

M %0 %20 & |
" 22 %0 A %9 €2 (3.13.1)
L L j X ]

where
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e] =y +v - A] - Xz (3.]3.2)
€ = Yy Y, - X]Xz (3.]3.3)
(!ko = EkT % k = ]’-.. ’n (3']3‘4)

and the control law

u=go [Mmy +n,v17 x (3.13.5)

3.3.2 Complex Conjugated Poles

For this case, in order to assure that u is real let

SIS P (3.14.1)

= N*= -GN (3.14.2)
and from the mode controllability matrix let

=D+ i (3.14.3)

=R -Jn (3.14.4)

P
"

Ip
»
|

M= +iNn (3.14.5)
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A7 2B i TR 1A (3.14.6)

Then, the solution of

[ 7 ] -1 B -
[] Tl "
n (—BJ % 'EJT 90 €1/2
“"J EJT'So EJT'Qo | (e2 - ' e1)/20"
(3.14.7)
leads to the control law
u = 2gyln'vy - w17 x (3.15)

The transformation of a real pair of poles into a complex pair and vice
versa can be easily obtained by successive numerical applications.
Appendix A presents the computer program used for the applications of

modal control using this algorithm in a recursive way.

3.4 General Rigid Gains - Cross Joint Feedback (GRG)

The preceding algorithm when applied to system (2.38) can move any
pole to the desired position. However, the control law u used for this
pole shifting will involve the measurements and/or estimation of all
state variables associated with the physical system. Although the pos-
sibility of using measurements of all of the variables is not impossible,

another technique was used in order to compire the results Essentially,
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this other procedure {s to compute the gains ror the control of a two
link v‘gid manipulator and apply them to the flexible model. The con-
trol for the rigid system would use only position and velocity feedback
gains involving the joint state variables. Several methods exist to
compute this kind of gains butone particular procedure suggested by
Professor D.E. Whitney [W1] seems appealing because of its similarity
to a modal approach. A brief description of this method is presented
below.

Cons der a pure rigid two link system with no damping and no joint
compliance represented by the equations

da=1 (3.15)

where J is the (2x2) inertia matrix of the system, T is the (2x1) vector
of control torques and Q is a vector with components & and 92, shoulder

and elbow angles in the rigid system respectively. In temsof state

variables (3.16) can be written

I
le=]
jr—
FS

o

31 (3.17)

| o
—
o
1o
1o

where 1 is the identity matrix.
The torques are obtained via a control law
=8y (3.18)

with B a (2x2) matrix and
u= kpe + kypd (3.19)
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where ky is a (2x2) angular position feedback matrix and Kyp is a (2x2)
angular velocity feedback matrix. The elements of Kt and Krp can be ob-
tained for some desired specifications with respect to the positfon of
the poles in the complex plane. The system (3.16) with (3.17) and (3.18)

becomes
[ ] i ) A
2 9 1 rg
3 Ik, gk | | & (3.20)
L - d L .
If now ky and kyp are chosen so that (*)
2
-W 0
sl |
0 ~wy2 (3.21.1)
-25yWy 0
3~ ek = ,
0 ~28my (3.21.2)

it is clear that the system (3.16) will become a set of two uncoupled

di fferential equations with natural frequencies wy and wp and damping
ratios &y and %, respectively. This choice of KT and Kyp is not unique
but it is convenient because it allows one to place the poles by inspec~
tion. Then, this procedure enables one to specify the desired charac-
teristic of the system and as a consequence find the corresponding angular
position and velocity feedbacks.

Since for a real system the inertia matrix is always non-singular,
(*) w and w are used interchangebly to represent angular frequency
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the only restriction to the technique is that the control matrix B is
non-singular. Tnis fact makes impossible the application of this pro-
cedure to the flexible model itself but some variations of the control
derived from a corresponding rigid mndel can be applied to the flexible
system. Also it is important to notice that the matrices Ky and Ky

are not necessarily diagonal which means that the control can take into
account feedback between the joints. Finally this procedure can be applied
to a rigid arm with any number of joints. A trivial generalization allows
the procedure to be applied to any controllable and observable lumped

passive dynamic system although an observer may be needed.

3.5 Rigid Gains - No Cross Joint Feedback

This case is a particular way to find the Ky and Krp  “rices in
the preceding method. As was mentioned before, the effect of cross joint
feedback disappears when Kr and Kyp are chosen diagonal matrices. Using
this procedure W.J. Book [B2] achieved interesting results for the design
of control for flexible manipulators. This method was not applied in the

present work except as a means of comparison of different control techniques.

3.6 Sensitivity Analysis

Another procedure used to find the components of the control law
u dealt sith the sensitivities of the poles with respect to variations in
the gains. If one assumes only angular position and velocity feedbacks,
the number of control elements would be considerably reduced and by

inspection the gains could be changed based on their corresponding sensi-
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tivities.
Consider the system represented by

-

=Ax+Bu (2.37)
and assume that
usKx (3.22)

where A is (nxn) matrix, B is (nxr) control matrix and K is (rxn) gain

matrix. For example, equation (2.38) could represent the linearized model of a
flexible manipulator. The eigenvector Yj associated with the jth eigen-

value Aj is defined by the equation

A ug = Mg (3.23)

If v; is the corresponding element in the reciprocal basis, from the
orthogonality of the modes
51j =0 forit¢

v Ty = 5
i {515 =1 for 1 = ] (3.24)

From (3.23) and (3.24)

| <

(3.25.1)

(b
s
]
<>
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It is easy to verify that the only left hand side term involving

the element LI
. + VjiaikUkj +...% Xj (3.25.2)

Then, from (3.24) and (3.25) the sensitivity of the efgenvalue }j
with respect to variations in the element aji of the A matrix 1s given by
vl

m =z V 3.26
a1k (3.26)

If now the control law (3.22) is taken into account, equation (2.38) re-

decues to

(3.27.1)

>

]
==
>

where

(3.27.2)

=1
[}
1>
+
-]
I>=

with components

r
33 = a4y * I ik (3.27.3)
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Now, the sensitivity of a pole A, with respect to gain 9k is

n r n
8da = L T da , 23Fj = I
a-g—k? i=1 k=1 3513 3gkj

But

2a44 =

Then 1t follows from (3.28) and (3.29) that

RN P G TR CED

3aqy k=1 3Gy

(3.29)

(3.30)

From /3.30) and (3.26) one can see that if the eigenvectors corresponding

to a certain configuration are known, it is possible to analyze the effects

of local pole variations for each component of the gain matrix. This pro-

cedure will be explained numerically in the next chapter,

3.7 Summary

This chapter presented a bLrief description of the control techniques

used in this work. The next chapter presents the application of these

techniques to some nondimensionalized examples and general results ob-

tained,
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CHAPTER 1V
APPLICATIONS AND RESULTS

4.1 Introduction

The purpose of this chapter is to introduce the example systems used
in the applications of the mathematical techniques and the general results
obtained from the several control methods. Two examples have been chosen,
both with circular ring cross sections. The first one (example 1) s a
very long and flexible beam of two equal segments carrying a payload that
might vary in size and weight. The overall dimensions are shown in Figure

4.1 and were obtained from reference [N1].

shoulder elbow payload
g joint joint

26.7 ft 26.7 ft | variable
(8.13 m) (8.13 m) ™

Beams: o tarnal diameter = 0.75 ft (0.228 m)
internal diameter = 0.734 ft (0.223 m)
material: Aluminum
E =10 psi (7.0x10'7 Pa)

Figure 4.1 Example 1 Characteristics
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The second example (example 2) is a more rigid system with fixed payload.
The most important difference is that the beams have different radii and
were chosen such that the stiffness EI for the first beam is approximately
equal to six times the value for the second beam. The main geometric
characteristics are prasented in Figure 4.2 and were obtained from re-

ference [R2].

shoulder elbow payload
N Joint joint
N
N g | ar—
N °
N
N J
\
N |
18 in (0.457 m) 18 in (0.457 m)
Beam 1:

external diameter = 3.74 in (0.095 m)
internal diameter = 3.15 in (0.080 m)

Beam 2:exter‘nal diameter = 2.36 in (0.060 m)
internal diameter = 2.00 in (0.051 m)
Material: Aluminum E = 107 pst (7.0x10]0 Pa)

Joint lumped mass = 0.932 slugs (13.6 kg)

Assumed payload:

n,623 slugs 0.623 slugs
(9.1 kg) (9.1 kg)

Y = j{P

' 2,99 in |

.{0.076 m)

i 5.98 in

I (0.152 m)

Figure 4.2 Example 2 Characteristics
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With respect to all the applications of the described models, the

motions were assumed to be in the plane of the heams, no structural

damping was considered and graviiy was neglected. However, the computer

programs presented in Appendix A can accommodate damping and gravity.

4.2 Nondimensionalization

In order to have a better idea about the effect of the system para-

meters and also to obtain more general results, a system nondimensional-

ization was performed using the quantities given in Table 4.1.

where

Physical Quantity Symbo1 Dimension
Stiftuess constant of 2
Total length 1 L

Average Mass/unit
length u FL-272

Table 4.1 Parameters for Mondimensionalization

1=11+1 (4.1.7)
uily + w2l
S B (4.1.2)

Two important quantities can be derived from Table 4.1

ul3
Ty = JETY (4.2.1)



&I
- frequency Y4 = 13 (a.2.2)

It is important to observe that frequency wq hds no associated physical
system but can be easily related to any systam natural frequency. For
exampie, if une considers a beam with stiffness EI}, length 1 and density
per unit length u, the clamped-free natural frequency is given by

138

we = 3.52 ;1_3. (4.3)

Then it follows that the relationship between frequencies wqy and w¢ is

simply given by

we = 3.52 wy (4.8
Any results with respect to wq can then be extended to compare with wc.
If now one introduces:
- ratio of the radii of beam 1

il

k=12

AL (4.5)

- ratio of the radii of beam 2

= bz (4.6)

Kre re2

it is possible to establish a constraint among the stiffness constant,
the radius and the density of the beams. In fact, if one assumes the
ratio ot -2 radii for each Leam anc also the nondimensionalized stiff-

ness constant of bear _, the following relationships are useful for the



nondimensionalization of the remaining parameters.

In fact, if

5. . b2 - (B Okgh
e el (1-kp®) (4.7.1)

then

(4.7.2)
Also, from (4.1.1)
u= 31}1—%2212— =U1f] + uéié (4.8.1)
or
Nl + el = 1 (4.8.2)
On the other hand, for cylindrical be..
u = ox[{1re12(1-kpy2) + Tore;2(1-kp2?)] (4.9)

and

M enre1f\1-kpy?)
M1% oy = on[lire2(1-kpm2) + izrezz(l-krgz)]

(4.19)
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or, using (4.7) into (4.10)

- 1
ulz

G+ L [EL (14 kq2) Q0 - kpp2)

(1 + k22)(1 - kp?) (4.11)

and from (4.6)

72-=]-u'|1]‘

L (4.12)

Then, assuming the value of ETp, the ratio kpy and k.,, the lenqths
Ty and Ty and one of the external radii, exnressions (4.7), (2.11) and
(4.12) define the nther characteristics of the system.

Using EIy,pand 1 the nondimensionalized groups are shown in Table

4.2.



Nondimen:fonalized Quantity

Equations

stiffaess constant of beam 1
stiffness constant of beam 2
length of beam 1

length of beam 2

length of payload

internal diameter of beam 1
internal diameter of beam 2
external diameter of beam 1
external diameter of beam 2
density per unity length: beam 1
density per unity length: beam 2
payload mass

elbow joint lumped mass

mass moment of inertia

time

frequency

angular position feedback gain
Tinear position feedback gain
angular velocity feedback gain

linear velocity feedback gain

EL} = EIy/EN
El = EI/EN

i] = /1

12 = 1211

=

diq = d§1/1
di2 = di2/

de1 = del/l

de2 = de2/1

¥l = wfu

u2 = u2/u

mp = mp/ul

mj = mj/ul

J = /13

T=t/Tq

W = wiwg

Kap = kap/ (EI/1)
k1p - kyp/EI/12)
kav = kaw/(EI1/wql)
kiy = k1y(E11/wdl2)

Table 4.2 iiondivensionalized groups
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4.3 The Control Application and Arm Bandwidth Definitions

In order to apply the control techniques described in Chapter III
it is helpful to know some details of the gain matrix K that appears
in equation (3.1). The model described in Chapter Il was assumed to have
two inputs, namely the torques Ty and 1, applied at shoulder and elbow
joints, respectively. As the model is described by 12 state variables,
K 1is a (2x12) matrix. The general form of this matrix is

_ -
k11 k12 ki3 kg ks kg Ky kig kg kyg ki ke

=
"

ko1 ko2 ko3 kog k2g k2g k27 k2g k29 k210 kom kmJ

(4.13)

where

k11, k12, k21, k2o are angulai position feedback gains; ki3, k14, K15,
k16: k17 k23, koqs k2g. kog, k27 are linear position feedback gains;
k17, k18, k27, k;g are angular velocity feedback gains; kig, k119, k117,
k112> k29, k210, k211, k212 are linear velocity feedback gains.

It is cbvious that the linear feedbacks will necessarily require
measurements and/or estimation of flexible displacements and velocities
while the angular feedbacks are based essentially on the measurements of
angles. This is an important fact in comparing the results from the
anplication of general rigid gains design method and Simon-Mitter algo-

rithm. tlodal control will involve the set of 24 gains while in the



other case 8 at most are necessary. In the special case where no cross
joint feedback is taken into account, only four gains are used [B2].

Due to the large number of gains, the analysis via a mot locus for gains
variations is impractical.

The remaining parts of this work will frequently mention arm band-
width when comparisons or simulations are presented. There is a certain
arbitrariness in defining the bandwidth of a manipulator arm. For this
reason this work defines am bandwidth as the maximum undamped frequency
for which the two first dominant poles are as close as possible to 0.707
damping rati>. The following results are concerned with the am band-
width obtained by using the control techniques presented in the previous

chapter.

4.4 General Rigid Gains Method Applications

For the implementation of this method one nondimensionalized example

was chosen with the following parameters:

kel = kpp = 0.9 Jp = 0.0
E—I] = 1. Tp = 0.0
El2 = 1.0 1 =0.5
W = 1.0 T2=10.5
2 = 1.0 Tel = 0.05
W = 0.0 Fap = 0.05
8y = 0°
fij = 0.0 oy = 0°

Tabe 4.3 Nondimensionalized Parameters of txample 3
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Similar tables for examples 1 and 2 can be found in Appendix C.

In order to obtain some results using this method one has to use an
equivalent rigid model that in the case of present work is represented
by a double pendulum with inputs at both pinned joints. It is evident
that only angular position and velocity feedback gains will be present
in such a model. 1f equ-“ions (3.2.1) are recalled, one will notice
that to find the matrices Ky and Kyn, it is necessary to specify four
parameters of the desired system, namely, w}, ws, L1, C2. Once these
values are specified, one can obtain Ky and Kyp such that the poles of the
closed loop system will be exactly at the desired location. These gains
can now replace the angular position and velocity feedbacks on the gain
matrix (4.13), corresponding to the flexible case. In this way it is
possible to analyze how effective the method is for several variations in
the parameters. The following steps i2present the application procedure:

a) choose the desired values of the first two dominant modes,

that is, wy, w2, &1, %2;
b) using (3.21) applizd to the rigid equivalent model obtain the
gain matrices Kr» Kyps

c) construct the gain matrix X expression (4.13) using Ky and Kyp3

d) examine the closed-loop poles of the flexible system.

The limiting range of this method will be determined by the deviation
of the dominant poles of the flexible model from the desired specifications.

This sequence was applied to the example of Table 4.3 with the

frequencies nondimensionalized by (4.2) and the assumption
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=W (4.142)

Ty=¢%2=1¢ (4.14b)
where

W = wivg

It is important to mention that assumption (4.14) was used because it
yields symmetric matrices Ky and Krp. This fact will make the control of
the flexible model analogous to spring and dashpots actuating among the
joints and consequently assuring stability for the system. Some results
were obtained for w) # w2 as can be seen in Figure 4.3 Hcwever to as-
sure stability (4.14) assumption was used throughout the work with damping
ratio £= 0.7 as a constant parameter.

For this damping ratio g the frequency w was specifiec and gains
_.'Z_T and KTD were obtained via the rigid model; these gains when applied
to the flexible model returned a pair of dominant poles which were plot-
ted as a root-locus of the first two dominant flexible poles. The locus
is shown in Figure 4.4 for damping ratios of 0.5, 0.7 and 0.8. A reas-
onable understanding of the results can be obtzined by plotting both
pola on i-. .ame graph. One can see that for w = 1.0 the resulting be-
havior of the flexible system is essentially the same as the rigid one;
the dominant poles are close together with damping ratio 0.7. As the
value of w is irncreased, the poles of the flexible system start separating

and for w over 3.0 there is a shift with respect to the distance to origin
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Im( jw)

w=3.0

Re(jw)

Figure 4.4a - Detail root loci of dominant poles
GRG Control varying ¢

)

Im(jw

z =0.8

g =0.8

Re(jw)
Figure 4.4b - Detail root loci of dominant poles
GRG Control varying w
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and the dominant pole becomes the one that has . smaller damping ratio.
On the other hand, if one recalls expression (4.4) it is easy to see

that this relationship holds for the present example. Consequently

A R (4.15)
is useful to compare the preceding explanation with respect to the
natural frequency of a clamped-free beam associated with ti 2 system. U-
sing (4.15) one might say that the method of general rigid gains yields
very reasonable results for manipulator bandwidth up to the natural
frequency of the clamped-free equivalent system. Faster response can
be obtained only with a considerable reduction in the damping ratio of
the dominant mode. For constant specified damping ratio ofg = 0.7
Figure 4.5 shows the dominant flexible poles for variations in w. This
plot presents a better view of the limitations cotar.ed from the ge:eral

rigid gains method.

4.5 Effect of Payload

In order to analyze the effect of the payload in the design of the
control, a comparison was made between thiyee different payloads for
the example presented in Table 4.3. The payicvads were assumed to be
lumped masses at the end of the second beam with values indicated in

Table 4.4
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Figure 4.5 - Root loci of dominant poles - GRG Control varying w
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case my n
1 n.8 1.63
2 1.0 1.44
3 5.0 0.75

Table 4.4 Lumped Payloads Assumed for Example 3
The natural frequency of the clamped-free equivalent :ystem is w; =aq /EI/u14
with «obtained using the method presented in refei«ace [B11. The ie-
sults can be seen in Figure 4.6 As the payload is increased, the arm
Sandwidth is reduced as a consequency of the lowe, -ystem natural fre-
quencies. If one assumes the hest design situation to be as close as
possible to a damping ratio of 0.7 cne sees that the general rigid
gains method can stil1 be applied with good results up to close to tne
clamped-free equivalent natural frequency. The situaticn weuld be con-

siderab? . different if ro*ary inertia of the payload were considered.

4.6 Variations in Svstem Crometry

In the preceding discussion only the case of equal cross section was
verified from the point of view of control application. Howcver, it
would be 'seful to know how the system geometry ..as to be taken into
account in order to irprove the am bandwi.*h. 1In order to implemert
this idea it is necessary to meniion some important aspects. First,
the system is going to be assumed. as in the previous cases, with two
beams of equal length. Then, in order to keep a good eference for
comparisons, tihe sum ot the masses of the beams is assumed to be ccastant

and the only variations must occur 1n the radii of the bearm:. In doing
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Figure 4.6 - Root loci of dominant poles - GRG Control
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so let one assume

m) + m2 = m = consiant (4.16)

+ 12 = 1 = constant (8.17;
If o is the dens1ty of the material, equation (4.16) can be written

LRS! f de12(1-kpd) =2 17 i deg?(1-kp2”) = m (3.18)

or, using the nondimensionalization from Table 4.1, (4.12) can be re-

duced to

2 r . 2 m
1,0y )+(ref) L xh s — g
e Plr g (4.19)

If now one uses equation (4.7) Lhere results

dor? = (-0 ) ¢ 1 —)
el T3 010 * LO* 2 Tm. o
pl 1 n vl ) ¥ 2( r2 iﬁz (] "r] ) (4.20)
Vo k)
However, by definition
=7 (4.21)

wnere V is the total volume of the system.

Then. with (4.21) one can define a system coefficient
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c.s. = 4e12(1-kn )y + de22(1-k,2)12
e (4.22)

This coefficient can be calculated for any initial system configuration
and -~emains constant as long as the mass is kept invariant. Then, for
a -given physical system it is possible to find the nondimensionalized
diameters by using

C.s.

2 _ = = — .
de1 = 13 {1-kp1?) + 1200-kp22)  [EI, {1-kr1€) (4.23)
(1-x 22}

tdgether with relationship (4.7)

Another useful parameter to analyze tiie effect of variations of
the system geometry is the natural frequency of the corresponding clamped-
free system. For the purpose of comparison, Y.J. Book (personal comaun-
ication) based on the nondimensionalization described before and using
a transfer matrix model, determined those natural frequencies for
different ratios cf the stiffness EI and several payloads. The results

are shown ir Figure 4.7 where

W= wclamged
Wd (4.28)

and the factor (2/(1 *-JEIZ/EI1» corresponds tc a correction factor
which takes into account the definition of wgq based upon EI;. With
these elements it is possible to analyze the benavier of a stepped

beam under the generai rigid gains type of control.
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In order to get same instght into the effect of Cross section
variations, the control method was appiied to the system described in
Table 4.3 assuming constant length and constant total mass. Two
cases were chosen: no payload at all and lumped payload mass of the

sae order of magnitude as the mass of the total am.

4.7 lio Payload - 12 variations

In this case the procedure was applied as before for each chosen
EI2 ratio. The results can be seen in Figure 4.8 for EI» varying
from 0.2 to 0.8. As one can notice, if no payload is present, the am
bandwidth becomes better as one decreases the ETZ ratio. However, if
one uses the results presented in Figure 4.7 it is expected that the
best bandwidth for the system would be obtained for ffz ratio equal to
0.045, which corresponds to the maximun clamped-free trequency of the
equivalent system. This has not been verified and is included in the

suggestions for further work.

1.8 lith Payload-ffé Variations

The effect of payload seems to be very important in the search for
the best gemetry of the system While an accentuated stepped-beam ap-
peaws to be the best design for no nayload situation, a uniform system
looks the best indicated for carrying payloads. This can be seen in
Figqure 4.9 vhere the methed of general rigid gains was applied in the
same way as without payload, for the case of Eb = 1.0, A close look

reveals that the system seems to converge for the best bandwidth when
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Eiz approaches 1.0, that is, when the two beams have the same di-
mensions.

Comparing the maximum reasonable bandwidth with the results from
Figure 4.7 it appears that the bLest results are those for Efg =1.9, where
the system bandwidth is about the natural frequency of the equivalent
clamped free system. Also, as was expecied for lumped payload, the
bandwidth is considerably lower than in the case of no payload. These
two sets of results show that the designer snould be very careful in
specifying the system geometry with respect to the kind of work the am
has to performi. Alsc it is very important the analysis of the system based
upon the payload geametry because of natural frequency reduction caused by
the increasing rotary inertia. This fact was not considered in the

present work.

1.9 Simon-ilitter Algorithm Applications

At the beginning of the present work, the idea was tc apply modal
control in order to place the poles of the system at any desired position.
However, after a number of applications it was verified that the parti-
cular algorithm (SHA) used for the modal control design would not solve
the problem due to the ract that poles were moved to positions that did
not corresp. to mininum sensitivity. As a consequency any small varia-
tion that appeared in the process would shift the poles to cther locations
and even to undesired unstable situations. Once reasonable results ware
obtained using the general rigid gain method, the idea of applying modal

control changed to simply trying to improve the system bandwidth obtained
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from rigid gains. Even in this case, if some improvement was obtained
it should really be significant in ¢rder to compensate for the required
measurements and/or estimation of the remaining state variables of the
system.

Finally, assuming that a good bandwidth was achieved with the (SMA;,
the final decision should be made by comparing the required torque with
the ones gbtained from the application of the other design procedures.

In order to present some rcsults from (SMA) applications the
example of Table 4.3 was used with equal beams. Initially the system
was assumed with no feedback at all. In tems of pole locations, all
poles lay on the imaginary axis with four poles at the origin. As the
modal control algorithm was not implemented in this work for applications
to cases with repeated eigenvalues, very small gains were assumed in or-
der to disturb numerically the poles at origin. The initial configura-
tion is indicated in Table 4.5 where &7 £&5 # 0,

It was shown before that when the general rigic gain method was
applied to this system, the best control situation was achieved for the
two dominant poles close to the natural frequencies of the clamped-free
equivalent system. As this frequency has the value w = 3.52, the first
movement using the Simon - Mitter algorithm was to shift the two first
dominant poles of Table 4.5 to the point(-3 # 3j)' that is, trying an
improvement of about 207 with respect to the rigid method. For com-
parison, the rigid gain procedure was used in an attempt to obtain si-
milar dominant pole lccations., All the eigenvalues are shown in Tahle

4.6.
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Eigenvalue Real Part Imaginary Part

1 0.0 €,

2 0.0 -£1

3 0.0 +,

4 0.9 -¢5

5 0.9 44,3

6 2.9 -44.3
7 0.9 63.6

8 n.0 -68.6
s 2.0 151.9
10 1.0 -151.0
1 0.0 161.0
12 2.0 -161.0

Table 4.5 Initial Configuration for Application of
Modal Control Algorithm
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Eigenvalue Real Part Imaginary Part i

1 -2.8 2.9

2 -2.8 -2.9

3 -1.5 3.7

4 -1.5 -3.7

5 -6.1 0.0

6 -§.4 53.9

7 -8.4 -53.9
8 -15.4 103.8
9 -16.4 -103.8
i9 -44.9 129.0
11 -44.9 -129.9
12 -1361.5 0.0

Table 4.6 Configuration From General Piqid Gains For
Comparison ¥ith (SMA)
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One important distinction between the two contru! procedures is
that in the case of rigid gains the high frequency poles ave free to
move during gains variations {(Table 4.6) and in case of (S'1A) all poles
were specified to remain at the same position (Table 4.5) except the
ones chosen for relocation. The contrel is not only acting to move
a pair of poles but also to keep the other poles at a fixed position.
This fact is Jisplayed very well in Table 4.7 where the rains using both
methods for obtaining the same dominant eigenvalues (of Table 4.€) ap-
pear in the same order as in expression (1.13). One notices that for
the first input to the system the gains corresponding to angular position
and velocity feedbacks are smaller in case of {SMA) while for the second
input (SMA) appears with bigger gains probably hecause of the specifica-
tion of the sccond dominant pole to a better position than rigid cains
gave. 0On the other hand, due to the fact that the high frequencv poles
remain constant, (S''A) presents reasonably laroe 1inear fa2edhack aains.
Again this fact requires high accuracy in the measurements or estimation
that nust be made to apply tre Simon-"itter technique because of observed
high sensitivity of the poles with respect to gawn variations.

A second shift using the Simon-'iitter algorithm was performed moving
the first dorinant poles to (-5 t 5j). In this case the modal control
gains incrcased up to 1N times rore tnan those presented in Table 4.7.
The rigid gain method cannot yield boih dominant poles near this position,
so no direct conparison i, possiule.

Another important efiect of the 1odal control feedbacks, especially
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the positive ones, is with respect to system stability. For small mo-
tions around the equilibrium position used for control design /shoulder
and elbow joints with zero degrees) the linearized model presented sta-
ble eigenvalues. However, due to high sensitivity of the poles to para-
meter variations, the achieved arm bandwidth is rapidiy lost as the joint
angles change. For gross motion of the elbow joint from 7° to 90° using
constant gains obtained by the application of (>, .: 0°, some high fre-
quercy polas change rapidly to the right half complex plane, making the
system unstable. This fact was one of the bad characteristics of (S'A)
appiication because for different equilibrium position designs, the

gross motion always presented unstable high frequency poles. 7This fact
was not observed using constant gains obtained at the same position using
seneral rigid gains method. As a result, the Simon-fitter algorithm
could not be applied using constant gains for a given gross motion but
would only give some improvement for small motions around equilibrium
position. This implies that the use of (SMA) for this kind of system
would bring some reasonable results only if one has a kind of adaptive

modal control. Finally, depending upon the tasks to be nerformed there

is a possibility of controlling the gress 1iotion with the rigid cain
method and the fine rotion using modal controil techniques, using dif-

ferent sets of constant gains.

4,10 Systenm Analysis Using Sensitivities

Another procedure to achieve desired pole allocations for the pre-
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sented system was the use of eigenvalues sensitivites using the analyti-

cal expressions described in Chapter III.

To understand the procedure

let one consider the sane example presented in Tables 4.3 and 4.6 with

the two pafrs of dominant poies described with greater precision in Table

4.8

Eigenvalue Real Part Imaginary Part Hagnitude | Namping Ratio
1 ~-2.792 +2.957 4,066 J.696
2 -1.540) +3.775 4.077 0,377

Table 4.8 Initial Conficuration for Sernsitivities Apolication

Let one assume that only anqular feedbacks are available for controlling
tha system. Then, only sensitivities corresponding to eight gains are
necessary for analyzing the system despite thc fact that all poles must
be checked for stahility. In order to illustrate th> procedure let one
cosider cnly the sensitivities of the two poles indicated in Table 4.8,
The values of the sensitivities are presented in Table 4.9 and they rep-
resent the real and imaginary part of the rig"t hand side of expression
(3.30).

Let one assuac that a small isprovement should Le obtained in both
poles in the sense of shifting them as close as possible to a damping
ratio of ¢ = 3.737 vhile keeping about the same nagritude. From Table
4.7 it is possible to sec tnat pole 1 is mucih more sensitive toc gain
iiowaver, as it would e wore desirable to move

variaticns than pole 2.

pole 2 rather than pole 1, it is obvious that one siould Lase tie cal-
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Sensttivity

Galn ;
" Real Part Imaginary Part
kyy -0.12372 -1.6777
Ko -9.25930 +3,9537
p 1
ky7 45,5041 +2,2614
o 7 :
‘ L ki -12.2008 - -5.2314
. k21 -11,7945 " -0.69046
i ,
' kg -13.1803 -19.5332
: Ly -3.901 -34.52¢ :
P kan 48,8538 +12.2415
K -3.395¢4 1.7
ky2 -3.29279 -N.03051
P .
. - ky7 1.9579 -1.3176 5
L kig 0.44946 -n.72977 |
I 0. 53836 -9.54502 %
koo n.£4721 -0,60752 :
, kp7 -3.35970 —r.n905
kog 1.23mM9 -n, 33123

Table 4.9 Sensitivities nf Poles fron Tahle 4.9
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culations q)on sensitivities of pole Z. Frum expression (3.7) nd for
small variations of the gains, one can write
_%:i— = sl (4.25)
where sﬁ(" is the sensitivity of the real (inaginary) part cf poles
with respect to variations in the gain kkj- Afso, if the sensitivity
is positive (negative) and the eigenvelue is negative (positive) an
improvesent in the poles would be obtained by decreasing the correspon-
ding gain and vice versa. If now one turns io Table 4.9 it is verified
that the oaximuu shift of pole two would be obtained for small variations
in the gain ky7. However, for this same gain variations, pole 1 has five
times more sensitivity vhich means it would undergo a bigger shift. It
must be kept in mind that this amalysis is true only for su [ variations
of the gains since expression (4.25) nolds only for linear deviations
from the dynamic equilibriun point. Let one assume for example that it
was cecided to vary gain k7 from its original value of -1.873 to a new
value -1.9 while the other gains were maintained constant. Ms one sees,
the variaticn on the gain was about 1.447. The new pole location is

shown in Tables 4.10a and 4.13b.

'Cigenvalue real Part Imaginary Part ‘agni tude UDamping Ratio

! -2.342 2.733 4.718 0.732
2 -1.563 3.310 §.120 9.380

Table 4.7Cs ileu Poles Using Expression (4.25) for Sensitivities
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Rezl Part Imaginary 7Parlf ' ’lignﬁude Damping Rati;
248 | 28m0 ] 400 0.7
-1.571 3.806 .17 0.381

 Table 4.10 Hew Poles Using Computer Prograes from Appendix A.

i' - As ome sees, the predicted values from Table 4.19a are very close to the

i au hers cbtained from the gain variation using the model in a digital com-

suwr The discrepanqy observed in the imaginary part of pole 1 might be
e.;pmned by the fact that the corresponding sensitivity is not constant
.fér the assumed gain varfation. The new location is better than the one
,in Table 4.8 but still is not enough since pole 2 still nas a small damping
‘ratio. Further modi fications can he obtained by regeating the procedure
\-itfl the sensitivities calculated for the positions represented in Table 4.19.
In apiﬂying * : sensitivities procedure for some of the noles, it is also
' r;eces:sau to know what happens with the high frequency eigenvalves since
th'ey!mght go unstable for a desired gain variation to shift @ specified
poie. 7
-'!his proce ** re was applied to several cases in order to improve a
few of the v les, especially the doninant ones. However, fair results
wer2 a: .ained only for a large nurber of trials since the gains variations

wue . be relatively small. For this reason no general results from sensfiti-

«aties are preserted for comparison ani tne procedure is left only for fine

adjustrents in a final phase of the desian. A more systematic procedure
might i o designed for computer implerntation.
Finally, it should he noticed that sensitivity played & very important

role in thc present work in the sense of analyzing the aumerical resu ts
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obtained. Each time a given set of gains s ohtained the semsitivities

helped to judge how accurate the gains had tn be in order to have only
small deviation in the poles cnrresponding to truncation error. Also in

applying the modal control algoritim, scasitivity of tie high frequency
poles was always analyzed for the purpose of stability because the pole
sensitivity may increase considerably vhen thc gains are specified to
keep the pole at constant pﬁsition.

4.11 Coaparison of Results with Rigqid Cains - 'lo Cross Joiat Feedhack

In order to show the effect of the cross joing feedback some re-
sults obtcired in the present work were compared with those obtained by
¥.J. Book using indegendent joint fecdback and 2 transfer matrix model »f
the physical system, as described in [82]. The values of the gains were
obtained from a rigid design technique which yielded a desirable relative

position of the four nost dominant noles. These gains were presented for
the case of equal beams in [B62] and slightly modified to allow for the
changes in inertia where the beams are not equal. AVl results are pre-
sented for the non-dirensionalized case of TaLle 4.3 with changes in the
parxeters payload and cross section of the comporent beams. In the
case of equal beams (ﬁz = 1.9) and no vayload Figure 4.10 shows the re-
sults obtatned from no cross joint feedback. Although only one dominant
pole is shown, one can see that the maximum armm bandwidth is about 57
of the clamped-free equivalent natural frequency. Variation of the mass
distribution of the system from equal beans to a stepped configuration
with no payload shows a slight increase in the ratio of arm ba.dwidth

to clamped natural frequency as can be seen front Figure 4.11 (ﬁz = .05)
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and the corresponding plot in Figure 4.7. The effect of payload results
in a reduction in this ratio as can be seen in Figure 4.12, These results
indicate the importance of the information between the joints. However,
as the control has more dynamics the feedback between the joints may cause
system instability in case of failure. (The examples of rigid gains are
stable even when the cross joint feedback gains are set to zero individ-
ually or together).

4.12 The /leasurement of Feedback Anqloc

One observes from the definition of coordinates in the proposed
model for the physical system that the angle correspanding to shculder
position (07) can be measured by a simple potentiometer or other type
readout. However, for the elbow angle the definition of coordinates re-
quires that not only the rigid angle must be measured but also the slope
at the end of the first beam. Here, by rigid angle (8,) is meant the
angle between the tangent at the end of the first beam and the tangent
at ihe beginning of the second beam tnat also can be measured by a pot-
entiometer. *leasurcrent uf the slope at the end of the first beam is
more difficult. In order to present some results comparing the feedbacks
measuring the flexible or rigid angle, a brief transformation of coordinates
has to be presented. The rigid angle can be defined as

o = 62 - Uyl (4.26)
with

U T ENE It e 912 (4.27)
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vhere the signs of the components ¢y and °;2E have been described
with respect to the reference frames in Chapter I1. Then, in order to
use the rigid angle in the feedback law from the general rigid method
onc must have

[r]] ; [Kn Kn] [0‘] ) [ . , 3] [ﬂ]
” K: K K ¥ ) )
{F2 T2 T4 or TD2 TD4 op (4.29)

with the relation of coordinates given by

o 0 1 -Mme M 0 |ar

(2.20.1)

é] 1 0 0 0 0 3&]]
O L T T | T

21
422 (4.29.2)

e -

Using relacions (4.29.1) and (4.29.2) in the proposed model, some results
vere obtained in order to analvze the effect of the measured argle in the

design of the control. In Fiours 4.13 one can ser the offoct of using
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12.0
= flexible
== rigid
r10.0
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/
— “~
| b
- i3
Q) = 0.0 N
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Values of w for each case
100.200’3.0.4n0'500|610’
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-8.0 0 -40 20  C.0
Re(2je/ ( 1+ETé))

Figure 4.13 - Root loci of dominant poles - Rigid and flexible angle

definition - variations in payload
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the rigid angle in comparisoh with flexible feedback for the s).ten of
Table 4.3 with Ei ratio equal to unity. The greph - . ws the results for
no payload and for EL = 5.3. It is clear that feedina back infsrmation
abou*. the flexible wotion allows the design of a bett:r control. ilowever,
the improvement in the arm bandwidth may not justify the consicerabie com-
plications of measuring the deflection at the end cf the first beam. For
che case of stepped like system with EI, = 0.045 Figure 4.14 shows es-

sentially the same behavior.

4.13 Summary
This chapter presented the giueral results obtained from the ap-

plications of the control techriques presented in Chapter III. A general
comparison of the results was presenied. Some digital computer simula-

tions avpiying these results are presented in Chapter VY.



124

CHAPTER ¥
SIMMAATION OF SPECIAL CASES

5.1 General Results
This chapter presents some results from digital simulation of the

examples praented in the previous chapter. The results are non-dimen- -
stonalized as indic: - 2d in Table 4.2 and the main physical characteris-
t?s were presented in Figures 4.1 a»4 4.2. The values of the paruetevs
for sondimensionalization are presected fa Table 5.1 for ‘the case of no
payload and no joint mess. -

Physical Quantity | Sywbol | Exarple 1 Example 2 ° |
Systex Coefficient ! c.s. 1.6:03 x 105 { 1.93 x 03
Stiffaess Constant | I3 | 1.868 x 10° | 1.39 x 105 ne-u?
Hf -l -

Total Length 1 | s3.4ft 1.914m
Average Hass per

tnit Length B 0.19769 lbm/ft| 3.955 kg/m
Dimensionalization

Frequency wd 1.072 rd/sec | 224.5 rd/sec
Dinensionalization

Time Td 5.86 sec 0.028 sec

Table 5.1 Paramecers for lion-Dimensionalization of the
Simulated Examples

The simulations are divided into torque impulse responses and para-
bola tracking performance. T.c flexible ar itudes are the amplitudes of
each mode component, that is, qyy. q32, Q21 922. ~ vt dis-
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plimt means the linear deviation of the end of second beam with
respect to the rigid systea (B0;3lin Figure 2.1).

In ovder to amalyze the behavior of the system under the (St#)
modal control algorithm, Example 2 was chosen for the physical case of
zero reference state variables. Following the procedure and results pre-
sented in the previous chapters, a onntrol was designed using the gen-
" eral rigid gains method, specifying the dominant poles at 607 of the
corresponding clamped-free matural frequency (w = 1.6 W, #here W is (;bta'inev.
from Figure 4.7). Mce the control la: uas obtained the eiqenvalues cor-
responding to the closed-loop situation were calculated. Then one returned
to the original uncontrolled system and applied (SMA) to obtain the closed-
Toop system with exactly the same eigenvalues as thase obtained wsina the
general rigid sethad. The purpose of this procedure was to compare the
response under modal control {S™A) to the response under &0 and to
study the effect of pole sensitivity under hoth. Tie results presented
in Figures 5.1 and 5.2 correspond to the eltw tomue irpulse response of
the same macnitude. As one can see from Fiqures §.%a and 5,22 modal con-
trol allows 2 smaller total angle variation for the elbow but varies the
shoulder more. Both systems settle down at about the same time. The
oscillatory behavior of rodal control at the beginning might be caused by
the large n.mber of fcedbacks nccessary for controlling the sysien, es-
pecially those from the flexible components. Fror the tomue point of
view the (S!A) presents a more oscillatory behavior as can be seen fron
Figures 5.2a and 5.20.

Tae maximum tomue is bigoer in case of modal control, espacially
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at the starting poini. Finally, the end point displacement and flexible
amplitudes are about twice as large when modal control is cpplied, as can
be seen in Figures 5.1c, 5.1d, 5.2¢c, 5.2d. llere it is important to notfce
that the différent behavior presented by the systen when using modal con-
trol algorithm with poles cquivalent to the general rigid gains application
can be justified by the fact that the eigenvectors are not the same. That
is, with the modal control algorithm it is possiblc to bring the p~les to
some desired location but it is not necessarily true that the eigenvectors
will be the same.

Following the previous results an attempt was made to improve the
system response by applyiny mcdal control {S''2) to the general rigid gain
(Figure 5.2) case and rnove the two dominant poles to a value of W about
2.5 times larger than the case of Figure 5.2 (v equals 1.5 of ¥ the dim-
ensionless clamped-free ratural frequ:ncy). The remaining poles in this
application were not moved. The results for the same imnulse responsc can
be seen in Figure 5.3. The angles variations arc snaller than the previous
case (Figure 5.2) with relatively hicher oscillation. DNespite the fact
that the poles were moved to a position . f £ = 1.797 damping, the sensi-
tivities are so high that as soon as the system starts moving the new pole
locations indicate 2 considerabln locs in system damning. The tarque
history presents about the same maximum as the previous case but acting
for a longer period of time. The end point dicnlacoment and flexihle
amplitudes represent a consideratl2 increase from th2 nrevious case as can
be seen in Figures 5.3c and 5.3d.

Annther control v:as then desimad far avarnle 2 using the qeneral
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rigid gain method. F&r this situation the gains were obtained by speci-

fylng the dominant poles of the rigfd system at 0.9 (w = 0.9%;) of the dimension-
Tess natural frequency of the clamped-free associated system. Tae re-

sults are shown in Figure 5.4a which correspond to a response to torgque

impulse at the shoulder. The response presents a smooth behavior that is
similar to the stmulation of a rigid system.

fgain for example 2 some gross motion simulations were performed.

In all cases the system was supposed to move the elbow angle from -15°

to +15° according to a double parabola specified as reference input. In
Figure 5.4 {t is shown the pole variations when the control remains con-
stant and the elbow angle is changed from N* to ¢ 90°. Sihce the control
ws designed for 0° elbow angle (the sare as in Fiqure 5.1 ui!:h GRG) the
arm bandwidth {s decreased for working at elbow zngle of 90°.

If one recalls Figures 5.1 it is seen that the nondimensionalized
settling time is of the order of ?s = 3.5. The system was simulated
tracking double parabolas of joint angle 8, of durations 9.5Ts, 1.07¢
and 2.9 fs respectively. This set of results can be seen in Figures 5.5,
5.6 and 5.7 and one couid say that the recommended time to perform the
motion should be set equal to the settling tine of the system at zero
angle position. WKith this in mind all the conclusions «ere applied to
the example 2 with w = 0.9, that is, maximum bandwidth for the general
rigid method and settling time from the parabola tracking. The results
can be seen in Figure 5.8. It is important to notice that figure 5.8
represents the fiexible components appearing in the system as described

in equation (2.3f), representing an additinnal torque generated hy the
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nonlinearities which in this simulation amounts to only about 10X of
the total torque acting in the system.

Finally, Figures :.9 presents the elbow impulse response of example
1 for v = 0.3 Wc. This case is a more flexible system and this can be
noticed by the oscillatory benavior of the response in Figure 5.9b that
indicates the system ‘orques have ty act in a vibrating way in order to
keep decreasing the effect of a higier flexibility.

5.2 Summary

This chapter presented sone special simulations using results ob-
tained from the previous chapter. The systems were simulated for the -
condition of no payload because of large computer time necessary tc
simulate other configurations. Tha computer programs are p.resented in

Appendix A and are capabla of si:wulations for any configurations.



164

%0 6°0 = @ J0j (043U0) 9YY
MOy (3 3@ 3 ndw] 403 | djdwex3] jo 3suodsay 3a|buy - e G aunbyy
1 Suit
£°Q *°0 S0 ¥°0 €0 e°o %0 g0

T T 1 -T: r T 1 E~35-

atbue aa3p|noys

(paj 3yBuy

a|bue moqia




165

a-a

m 60 = M 4oy [043U0) YD
Mmoq(3 3@ as{ndu] J4oj | spdwex3 jo Isuodsdy anbAO] 4 q6"G dunb}4
PR3
£°0 s°Q s°0 v°0 €°0 asq 0 o-C

R

T 1 T T T Y | T0 "o~
- 3°Q
30 °C
J

-4 8070

anbuoj moq|a

- d0°Q

- 80°0Q
onbJdo3 4dpLnoys .. 800
~ £8°Q

anbuo] poz,|RUOLSUBWLPUCH



166

m 6°0 = M 40j 1043U0D OYD
MIQL3 30 Icindw] 40) | d{dwex3 JO JURWIV|dSLQ JULOd PUI - I6°G unby 4
4 L
s'0 80 4°0 2°0 €0 v°Q €°0 &°0 $°0 0°g
! ! L L 7 T T T — -~

e\

juawdde|dstg Jutod pul DIZ)|euo)Sudwlpuoy




167

_ O 6°0 = M 40j [04IU0) YD
W0q(3 38 OS(NAU] 40 | #|duEX3 4O S9pNYjduy BIGIXBLS - D6’ 94NB}
1 sl
80 @0 <0 90 E0 90 €0 83 30 00
L v T ! | G —— | T I T _ﬂtgoﬂl

o > . b W‘ — INN" g°0g
b

sapmy|duy (qixalJ Pazy|PuO}SUWLPUON

€-3%°%



168

QIPTER VI
CONCLUSIQHS AMD SUGGESTIOQHNS FOR FURTHER HOPK

6.1 Introduction

In this chapter, the principal resulls of the analysis in this
dissertation are susmarized. Some conclusions about the proposed mcdel
for manipulator arms are presented and the overall results concerning
control zpplications and discussed. Suggestions for future work ave
giver in the final section of this chapter.

6.2 Summary of the Conclusions on the Hodel

This study has presented a nevt model of a two-link flexible mani-
pulator amn. The fact that the model introduces the flexible behavior
with respect to a hypothetical rigid motion is important in studying
overall task performance. The experim:ntal resuits from an uncontrelled
situation have shown that the truncatior at the second mode of each
flexible componenc is a good approximacion. The generalized coordinates
used in this model, regardless of the number of modes chosen, are suitable
for obtaining the system configuration at any time t, which would be very
helpful from a design point of view.

The fact that the model is presented in a pseudo-standard form
x = Ax+F(x, x,t) + L u sinplifies the linearization proced:re that
can be used for application of linear control theory as well as allowing
simulations oy the controlled nonlinear system. ‘owever, if the control

law requires nore than the simple measuring of joing angles, the use
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of such a model may need more sophisticated techniques for measuring
the flexible components.

A more detailed study of the planar motion is also nossible by in-
troducing compliance and damping associated with the actuators, for
example.

6.3 Control via (SiA)

From the point of view of controlling a flexible manipulator the
basic idea of the present work was to desigr a tontrol technique that
could allow high speed without extreme deviaticas from rigid behavior.
This means that the desired flexible position anc velocity during the
motion should be considered as b:ing zerc. Hith this in mind, this
work was started considering the pessibility of using om: articular
modal control algorithm as a means to assign desired clased-loop eigen-
values configuration. !llowever, despite the efforts *» obtain des!ravie
results from this technique, the attermts did not pre . 3 good control
design because specifying the eigeavalues does not necessarily mean
that the controlled syster has reached a desire:! situation with respect
to the eigenvectors. This fact, related to th: non-uniqueness of control
law for a multisle-input system, makes the system very sensitive to gains
variations which essentially eliminates the possidbility of using con-
stant gains for controiling gross mctions of manipulators. Even in case
of obtaining desirable results from the appi.cation of (S™A) in manipu-
lator control there exists the probl-  of mezsurcrent and/or estimation

of sonc state variables present i the system rodeling.
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6.4 Control Using General Ricid Gains “fethod

With 2spect to the rigid Tike control technique, the addition of
cross joint feedback seems to work very well in controlling the flexible
system. The application of this method in the present work improved the
speed of response by about a factor of two when compared with the control
without feedhack between the joinits. In other words, the arm bandwidth
is increased up to the value of the corresponding clamped-free natural
frequency. This procedure also eliminates the necassity of flexible
measureni.its and the use of an estimator. Finally, the most impcrtant
feature of this nethod is the possibility of working under constant gains
since the poles are less sensitive than using (SIQ).

This method was applied to controlling the system under different
geor=tric configurations. .lea a lanped payload iass is pr"esent. the
results have shown that the arm bandwidth with control decreases compared
to the no-payload case. As the payload becomes bigger, the effect of
its rotary inertia becomes more and more important. With the increasing
of the rotary inertia the associated clamped-free system will have its
first natural frequency decreaszd, consequently reducing the arm band-
width under control design via ricid gains method.

However, as a wide range of payloads must eventually be considered
this work did not deal with all possible alternatives with respect to
payload geometry.

It has aiso veen -hown in this work that decreasing the relaiive
ratic of stiffness E_Iz in case of no-payload increases the arn band-
width. The existence >f an optimum stiffness ratio with respect to the

clamped-free natural frequency imay indicate a limit for improvement in
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the closed-loop system performance when this ratio is varied and the
system carries no payload or if the payload range is small. On the other
hand, it has been shown that for handling large payloads the best in-
dicated ratio is of the order of unity.

6.9 The Use of Pole Sensitivities to Gains Variations

The use of pole sensitivity analyses has shown that in most cases
it is a matter of finding a set of convenmient numbers in crder to move
the poles to some desirable locaticn. The fact that this process in-
volves a Targe amount of triais makes it not very useful for the over-

all design but only for fine adjustments.

6.6 General Remarks

In measuring the state of the system it has been shcwn that the
variables includec in the proposed mode! take into account the flexible
displacement of the end of the first beam. The improvement in the control
when this measurement is used may not justify the complications and ac-
curacy of measuring devices. This means that potentiometer and tacho-
meter measurerents ::av te enough to achieve the desired results using
the general rigid gains method.

With respect to system stability, the rigid gains method with
cross joint feedbacks and symmetric matrices Ky and Xyp presented very
good results since the system is always stavle. fiowever, if some of the
interjoint feedbacks fail, the results have shown that the system remains

stable at least for arm bandwidth of order of the clamped-free natural
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frequency of the equivalent system. However, despite the loss of de-
sirable response a good safety policy would be to cut all cross feed-
backs in case of failure in one of them.

In this work a linearized control technique was applied to a sys-
tem that in some cases may present severe nonlinear effects. This fact
is strongly dependent upon the system itself and this work did not
analyze all possible cases of gross motion. In the cases where linear
control vas applied the results obtained were satisfactory if one con-
side-e- that the control was Jdesigned to keep the system as close as
possible to rig®*d motions. The nonlinear components, as appearing
in the equations of the proposed model, act like additional torques and
forces to the system during task motions. In the simulat{ions of several
cases it was observed that the nonlinear torques amounts to about ten
percent of the total torque. However, in cases where tic nonlinear ef-
fects are significant this effect has to ve carefully analyzed.

Finally Table 6.1 summarizes the major results obtained in thic

work when conpared with rigid method cross joint feedback.

6.7 Suggestions for Further Work

The work presented in this dissertation suggests several problems
for fut:re investigators:

1. Compare the results obtained with the proposed model with
these from a model with on'y one comnonent mode for each beam;

2. Extend the prop.sed model to represent spatia! motions con-

sidering also torsional compliances;
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APPENDIX A

COMPUTER PROGRAMS
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APPENDIX B

B.1 Modal Decomposition Property [S2]

This property is better introduced through an example. Suppose the
representation (3.4.1) with n=4 and assume poles 1 and 3 have to be

changed. Then the control law u becomes:

U=gy2 +3932, (1.8)

M ten 0 S13 0
=, 21 A, $23 0
-— L ] 1
$33 0 Ayg+éy; 0
5 0 8 A
4] 43 4 (2 B)
i _ .

Jsing properties for interchanging rows and columns of determinants

(2.B) yields to

r 1 4 T
S-)L]-(S.I.| -6]3 0 0
-5 S-A,-6" 0 0
det(sI-A) = det ?] 34 33
'62] ‘623 S‘Az 0
-8 -5 0 s=A

On the other hand, if A,, and A,, are square matrices



- .
Ay Ap
det
0 A
i =22

det(sI-a) = (s-AZ)(s-A4) - det
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= det (Ay,) - det (A),)

S-X3-63

(4.8)

(5.8)

B.2 Useful Indentity for Inverson of a Complex Matrix with Complex

Conjugated Columns

Let

"311 * byl

A= ) * byyd

a3 * byl

If one finds

Mn b1y N
a1 by oy
L a1 by ey

*12
B12

12

"3
B13

13

(6.8)

(7.8)



Then

- fnj
2 2

LI
2 2
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M2 - P12
2 2
M2 - P12 j
2 2
M2

M3 - P13

2 2

3 - B3 5
Y13
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APPENDIX C

NONDIMENSIONALIZED PARAMETERS OF EXAMPLES 1 AND 2

Procedure for nondimensionalization

1 - Determine parameters for nondimensionalization described in

Table 4.1

2 - Determine ratios k., and kr2 using equations (4.5) and (4.6)
3-1If EI, # EIZ determine system coefficient c.s from equation

(4.22) and find the diameters using kr]’ k'.2 and equations

(4.23) and (4.7.2)

4 - Equations (4.11) and (4.12) determine the nondimensionalized

parameters E} and Eé

Tables C.]1 and C.2 present the nondimensionalized

parameters for Examples 1 and 2.

kr]=kr2=0.978
FT}= 1.0
ET,= 1.0
Wy = 1.0
by = 1.0
mp = 0.0
ms = 0.0

Jxxp
lp =

T'|=
Té

el

Q.

o

el

= 0.0
0.0

0.5

0.5
= 0.0136

0.0136

Table C.1 - Nondimensionalized parameters of Example 1
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ke = 0.842 ﬁj = 0.0
kpp = 0.850 Tp = 0.0
ET; = 1.0 T, = 0.5
ET, = 0.166 T, =05

uy = 1.448 d,; =0.1039
uy = 0.551 dg, = 0.0656
'n?p = 0.0 Jxxp = 0.0

Table C.2 - Nondimensionalized parameters for Example 2
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(82]

[c1]

[c2]

[c3]

[E1]

[G1]

[62]

(G3]

(k1]

L]

(Ml

[M2]
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