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A METHOD FOR DETERMINING LOCAL ELASTOPLASTIC STRESS
AND STRAIN IN METALLURGICALLY BONDED NOTCHED
LAMINATES SUBJECTED TO A LOADING CYCLE

By J. A. Sova* and John H. Crews, Jr,
Langley Research Center

SUMMARY

A semianalytical method was developed for determining elastoplastic cyclic
stresses and strains at notch roots in metallurgically bonded metal laminates. The
method is based on the Neuber eauation, which was used with an "effective” stress-
strain curve for the laminate. It was applied to laminates containing a circular hole
which were subjected to one cycle of reversed loading. The laminates consisted of two
elasto-perfectly-plastic materials with different yield strengths and with either equal
or different Young's moduli. A laminate of high-strength titanium alloy with alternate
layers of commercially pure titanium wars also analyzed.

The accuracy of the n.ethod was evaluated by comparing the stresses and strains
with those calculated from a finite-element analysis. The results estimated by the sim-
ple method based on the Neuber equation agreed closely with the results computed from
the more elaborate finite-element analysis.

INTRODUCTION

Metallurgically bonded laminates of different metals provide a combination of
properties not oftfered by a single metal. For example, high-strength aluminum alloys
are sometimes clad to improve corrosion resistance. Also, advanced laminated mate-
rials, svch as strong titanium alloys interleaved with weaker materials, can combine
high strength with high toughness (refs. 1 and 2),

Fatigue processes in laminates are not adequately understood, however. Cladding
frequently reduces the fatigue strength of a strong aluminum alloy by as much as 50 per-
cent (refs. 3, 4, and 5). Although some qualitative explanations have been offered in ref-
erence 3, the de*rimental effect of the cladding is not understood quantitatively. Also,
fatigue in lam.nates must be predictable before the new titanium laminates can be effi-
ciently used in struciures.

*NRC-NASA Resident Research Associate,



Because fatigue cracks normally start at stress concentrations, the local cyclic
stress and strain must be analyzed accurately to estimate fatigue damage. The objective
of this investigation was to develop a simple method to determine local stresses and
strains in the individual layers of metallurgicaily bonded metal laminates. The case
studied was a laminated sheet containing a circular hole and subjected to one cycle of
reversed uniaxial load. The method is based on an equation proposed by Neuber (ref. 6)
and an "effective' stress-strain curve. Two of the laminates studied were composed of
two elasto-perfectly-plastic layers with different yield strengths and with either equal or
different Young's moduli; a third, two-layer laminate, which simulated several alternate
layers of high-strength titanium alloy and commercially pure titanium, was also studied.
The local stresses and strains determined by the present method were compared with
values independently computed by a more elaborate finite-element analysis.

SYMBOLS
At total net-section area, m2
E Young's modulus, N/ m?2
E effective Young's modulus, N/m2
e nominal net-section strain
ae; excursion of nominal net-section strain corresponding to A§i
KT theoretical elastic stress-concentration factor
K < strain-concentration factor
K(7 stress-concentration factor
P lead, N
r radius of hole, m
S nominal net-section stress, N/ m2
S effective nominal net-section stress, N/ m2



Subscripts:

A

B

excursion of effective nominal net-section stress for ith load excursion, N/m2
thickness, m

total thickness, m

width, m

local strain

excursion of 1ocal strain corresponding to A§i

local stress, N/m2

effective local stress, N/m2

excursion of &tfoctive locnl stress corresponding to Agi, N/m?2

layer A
layer B

PROCEDURES

Figure 1 shows the configuration analyzed in this investigation: a uniaxially loaded
laminate composed of two metallurgically bonded materials, A and B, and containing
a circular hole, The strains at the interface of the metallurgically bonded layers are
equal. To simplify the analysis, the strains were also assumed to be unifcrm throughout
the laminate thickness. A value of 10 for the ratio (w/Z)/r was chosen because, for this
value, the edges of the sheet do not significantly influence the stress distribution at the
hole. The fatigue-critical points are on the X-axis at the edge of the hole. At these
points, the stresses and strains, called "local" stresses and strains, were determined
by the method based on the Neuber equation and by the finite-element procedure,



Method Based on the Neuber Equation

This section first reviews the procedure for estimating local stresses and strains
in monotonically loaded single sheets, then extends the method to monoctonically loaded
laminates, and finally, describes a procedure applicable to cyclically loaded laminates.

Monotonically loaded single sheets.~ ¥For a monotonically loaded sheet, the Neuber
equation relaies the elastic stress-corcentration factor K’I’ to the stress- and strain-
concentration factors KCr and Ke. The equation, in the notation of th> present paper,
is

K1’ = KKe

which can be rewritten in terms of local stress and strain ¢ and € and nominal net-
section stress and strain S and e to give

o€ = KTzse 1)

This form of the Neuber equation is valid even when the nominal net-section stress S
extends into the plastic range. To use equation (1), the nominal strain e is obtained
from the uniaxial stress-strain curve so that e corresponds to the stress S, For
elastic nominal net-section loading, e = S/E and the Neuber equation becomes

2
o€ = (K——I’:ﬂ (2)

The procedure to determine local stress and strain in a single sheet (ref. 7) is
explained with the aid of figure 2(a). In thin sheets containing a circular hole, a state of
nearly uniaxial stress exists at two fatigue-critical points at the edges of the holes,
Therefore. the stress-strain behavior at the hole can be represented by the uniaxial
stress-strain curve for the material, for example, curve 01 in figure 2(a). For a net-
section stress S in a notched sheet, the intersection (point 1) of the stress~strain curve
with the Neuber curve provides values of local stress and strain 0y and € which
satisfy the Neuber equation and are also consistent with the uniaxial stress-strain behav-
ior of the material,

Monotonically loaded laminates.- An approach like that for single sheets was used
to determine local stresses and sirains in laminates, but the Neuber equation was used
with an "effective' stress-strain curve for the laminate. The effective stress-strain
curve is that which would be obtained experimentally from a tensile test of an unnotched
laminate. The effective stresses corresponding to measured strains could be derived by




dividing the applied load P by the total area of the laminate At The uniaxial effective
curve can be used to represent the effective stress-strain behavior at a notch. Alterna-
tively, the same effective stress-strain curve could be constructed from the uniaxial
stress-strain curves for the individual layers of a laminate, This graphic method was
used in the present study. In figure 2(b), the dash-dot curve is the uniaxial effective
stress-strain curve for the metallurgically bonded laminate composed of layers A and B.
The effective stress ¢ corresponding to a given strain € is

5 oAtA+ oBtB 3)
= _—_tt_——

where t A and tB are the thicknesses of layers A and B, and tt is the total thickness
of the laminate.

The Neuber curve for the notched laminate is also shown in figure 2(b). To con-
struct the Neuber curve, equations (1) and (2) were rewritten in terms of effective values
G, S, and E. For elastic nominal loading of a laminate (e = §/ ﬁ), equation (2) becomes

\2
Ge = L‘fﬁﬁ). @)

where o is the effective local stress, ¢ is the local strain, S is the effective net-
section stress (5 = P/ At)' and E is the effective Young's modulus for the laminate.
The modulus of the effective stress-strain curve E can be derived ana' tically as
-~ E,t, + Ent
Y

For net-section yielding in either of the layers, equation (1) can be rewritten as
e = Kp2S (6)
T =€

where the nominal strain e corresponds to stress S on the effective stress-strain
curve,

The intersection of the effective stress-strain curve with the Neuber curve (point 1
in fig. 2(b)) determines the local strain €,. The corresponding local stresses in mate-
rials A and B can be read from the individual stress-strain curves at the strain €1

Cyclically loaded laminates.- For cyclically loaded laminates, the Neuber equation
was rewritten in terms of excursions of local stress and strain in a form similar to that
in reference 8 for single sheets. Equations (4) and (6) are used in the following forms:




For elastic excursions of Si’

< \2
85, ¢ = (kpa8;)” 1
E

and, for plastic excursions of §;,
- 2 -
AG,Ae, = Kp“ASjAe; (8)

The values of A&i and Aei are the excursions of effective local stress and local strain
corresponding to the ith excurs.on of effective nominal .iress ASi.

Figure 3 illustrates how these equations are used tc analyze the effects of cyclic
loads. The typical cycle of effective nominal stress in figure 3(a) has been segmented
into excursions of effective nominal stress A§1 and A§2. For the first excursion
ASy, the Neuber equation (7) or (8) is evaluated and plotted, together with the effective
stress-strain curve, in the first quadrant of the sketch in figure 3(b). The intersection
of the curves (point 1) determines A€y, The corresponding local stresses in materials A
and B are found on the individual stress-strain curves at the strain Ael. For the second
excursion of nominal effective stx_'_ess ASz, point 1 is taken as the initial state. Equa-
tion (7) or (8) is evaluated for A82 and plotted relative to point 1. The effective stress-
strain curve is constructed from the appropriate stress-strain curves for unloading and
subsequent compressive loading of materials A and B, The intersection point 2
establishes A€2 for which the corresponding local stresses in materials A and B are
found on the individual stress-strain curves.

The residual local stresses and strains are found by a procedure also illus:rated
in figure 3. To obtain the half-cycle residual strain and stresses, equation (7) o. (8) is
evaluated for the unloading excursion A§1 and plotted relative to point 1. The inter-
section of the Neuber and effective stress-strain curves, point Ry in figure 3(b), estab-
lishes the residual strain, and the corresponding residual stresses are found on the
stress-strain curves for the materials A and B, The full-cycle residual strain and
stresses at point Rg are found in a similar manner to complete the first cycle of local
behavior,

The Neuber equation was used in a cycle-by-cycle manner to estimate local stresses
and strains in single sheets in references 7 and 8, Similarly, the Neuber equation could
be repeatedly applied to estimate local stresses and strains in laminates for succeeding
cycles.



Finite-Element Analysis

The accuracy of the method based on the Neuber equation was estimated by com-
paring the results with similar results from a finite-element analysis. The laminate
shown in figure .l was analyzed by the finite-element program described in reference 9.
The ability of the program to determine accurately the elastoplastic cyclic stresses and
strains in single sheets subjected to uniaxial load has been verified in reference 10,

The finite-element model is shown ia figure 4. Because of symmetry, only one
quadrant of the laminate was modeled. Element nodes along the X- and Y-axes were
constrained against y- and x-displacements, respectively. The two layers of the finite-
element model were created by first specifying triangular elements in terms of nodes at
their vertices, in the conventional manner, and by then specifying "overlaid" elements by
the same sets of nodes. The two layers were assigned properties to represent selected
materials discussed in the next section. Small elements with linearly varying strain
were used for regions near the hole, where strain gradients are high; larger elements
with uniform strain were used for the remainder of the model,

For this finite-element model, an elastic stress-concentration factor of 2.64 was
determined from reference 11, Although this value is slightly lower than the theoretical
value of 2,72 in reference 12, 2,64 was used in the Neuber equations herein to eliminate
errors due to finite-element approximations when comparing results obtained from the
Neuber and finite-element methods.

METHOD APPLICATION AND DISCUSSION

Three laminates of materials with different mechanical properties were selected
as test cases, These laminates were analyzed by both the method based on the Neuber
equation and the finite-element procedure.

Selection of Laminates

The laminates analyzed in this study are shown in figure 5. Elasto-perfectly-plastic
materials (F, G, and H) of different yield strengths are represented by the stress-strain
curves in figure 5(a). Two laminates composed of layers of equal thickness were analyzed:
a laminate composed of materials F and G having equal Young's moduli, and a laminate
composed of materials F and H having different moduli,

A third lan - ite, shown in figure 5(b), was also analyzed; it is composed of five
layers of annealed Ti-6A1-4V alloy with interface layers of annealed, commercially
pure titanium. The thicknesses (from ref. 1) were 1.02 mm for the titanium alloy and
0.25 mm for the pure titanium, The stress-strain curves for these materials, obtained
from references 13 and 14, are shown in figure 5(b).



Local Stresses and Strains in Laminates

The laminate composed of materials F and G (equal moduli) was analyzed for two
values of effective nominal stress S. Figure 6 shows the results for S =100 MN/mz.
For this relatively low value of §, all local stresses in the material F are in the elastic
range; the corresponding local stresses in the material G extend into the pl..stic range.
The results based on the Neuber equation correlate well with the finite~element results,
The stresses from the finite-element method lie slightly off the stress-strain curves
because of small errors inherent in the numerical analysis. A good correlation was also
obtained for this laminate at § = 200 MN/mz, as shown in figure 7. For this relatively
high stress, maximum and minimum local stresses in both materials F and G are in the
plastic range. Equation (8) was used for the Neuber curve in this case because of net-
section yielding in the weaker material, G.

Figure 8 shows the results for the second laminate, composed of materials F and H
(different moduli), for S = 400 MN/mz. The results from the present method correlate
well with those computed by the finite-element analysis,

The results for the third laminate, composed of Ti-6Al1-4V alloy with interface
layers of commercially pure titanium, are presented in figure 9 for S = 400 MN/m2,
The nine-layer laminate was represented by an equivalent two-layer laminate. The
thickness of each layer in the two-layer laminate was aqual to the total thickness of the
material in the nine-layer laminate that it represented. The parts of the stress-strain
curves corresponding to unloading from tension and subsequent compressive loading were
not available from the literature. These parts of the stress-strain curves, therefore,
were constructed by a procedure siimilar to that used for cyclic stress-strain curves in
reference 15, That is, values of stresses and strains from the monotonic tensile curves
were doubled and plotted from the points of maximum stress and strain to approximate
the curves for unloading and compressive loading. The maximum and minimum local
stresses determined for both the Ti-6Al-4V alloy and the pure titanium are in the plastic
range. Again, good correlation exists between the results from the Neuber method and
those from the finite-element analysis,

The results obtained for the laminates analyzed in this study are summarized in
table 1, For all cases, local stresses and strains determired by the method based on
the Neuber equation were very near those computed by the finite-element analysis, The
estimates obtained by the method are, therefore, good approximations of local elasto-
plastic stresses and strains in laminates during one loading cycle., The application of
this method to determine local cyclic stresses and strains during fatigue loading may
provide a rational basis for estimating fatigue life of metallurgically bonded notched
laminates,



CONCLUDING REMARKS

A simple, semianalytical method was developed to determine elastoplastic cyclic
stresses and strains at stress concentrations in metallurgically bonded metal laminates.
It was based on the Neuber equation and an effective stress-strain curve for the laminate.

The method was applied to laminated sheets with a circular hole which were sub-
jected to one reversed-loading cycle. The laminated materials had different combinations
of yield strengths and Young's moduli. The results agreed well with those computed by a
finite-element analysis. Thus, the method .ed on the Neuber equation yielded good
approximations of local elastoplastic stresses and strains in the laminates during a
loading cycle.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., August 26, 1974,
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SECTION Z-Z A ty

Figure 1.~ Notched laminate subjected to uniaxial load.
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Figure 2.- Local stress-strain curves for monotonic loading,.
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(b) Local stress-strain curves.

Figure 3.- Local stress-strain curves for cyclically loaded laminate.
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Figure 4.- Finite-element model for notched laminate.
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Figure 5.- Selected laminates and stress-strain curves for
individual materials,

117



400
300 |
200
NE I00 ~
=
=
o
3‘ 0
el
E
— -0 F
w0k ® Present method
© Finite-element analysis
—-— Effective stress-strain curve
-300 | ——— Neuber curves
-400 L
-6 -4 -2 0 .2 .4 .6

Local strain, €, percent

Figure 6.- Local stress-strain curves for laminate of materials with different
yield strengths and equal moduli. § = 100 MN/m2,
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Figure 8.- Local stress-strain curves for laminate of materials with different yield
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Figure 9.- Local stress-strain curves for laminate of Ti-6A1-4V and Ti. S = 400 MN/m?2,
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