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LAMINATES SUBJECTED TO A LOADING CYCLE 

By J. A. Sova* and John H. Crews, Jr. 
Langley Research Center 

SUMMARY 

A semianalytical method was developed for determining elastoplastic cyclic 
stresses and strains at notch roots in metallurgically bonded metal laminates. The 
method is based on the Neuber equation, which was  used with an "effective" stress- 
strain curve for the laminate. It was applied to laminates containing a circular hole 
which were subjected to one cycle of r e v e r s 4  loading. The laminates consisted of two 
elasto-perfectly-plastic materials with different yield strengths and with either equal 
o r  different Young's moduli. A laminate of high-strength titanium alloy with alternate 
layers of commercially pure titanium wa.r also analyzed. 

The accuracy of the n.ethod was evaluated by comparing the s t resses  and strains 
with those calculated from a finite-element analysis. The results estimated by the sim- 
ple method based on the Neuber equation agreed closely with the results computed from 
thc more elaborate finite-element analysis. 

INTRODUCTION 

Metallurgically bonded laminates of different metals provide a combination of 
properties not offered by a single metal. For example, high-strength aluminum alloys 
a re  sometimes clzd to improve corrosion resistance. Also, advanced laminated mate- 
rials, svch as strong titanium alloys interleaved with weaker materials, can combine 
high strength with high toughness (refs. 1 and 2). 

Fatigue processes in laminates a re  not adequately understood, however. Cladding 
frpquently reduces the fatigue strength of a strong aluminum alloy by as much as 50 per- 
cent (refs. 3, 4,  and 5). c51though some qualitative explanations have been offered in ref- 
erence 3, the dc+-imental efr'ect of the cladding is not understood quantitatively. Also, 
fatigue in l a m u t e s  must be predictable before the new titanium laminates can be effi- 
ciently used in structures. 
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Because fatigue cracks normally start at stress concentrations, the local cycli, 
s t ress  and strain must be analyzed accurately to estimate fatigue damage. The objective 
of this investigation was to develop a simple method to determine local s t resses  and 
strains in the individual layers of metallurgicaily bonded metal laminates. The case 
studied was a laminated sheet containing a circular hole and subjected to one cycle of 
reversed uniaxial load. The method is based on an equation proposed by Neuber (ref. 6) 
and an "effective" stress-strain curve. Two of the laminates studied were composed of 
two elasto-perfectly-plastic layers with different yield strengths and with either equal or 
different Young's moduli: a third, two-layer laminate, which simulated several alternate 
layers of high-strength titanium alloy and commercially pure titanium, was also studied. 
The local s t resses  and strains determintxi by the present method were compared with 
values independently cornputtxi by a more elaborate finite-element analysis. 
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total net-section area, m2 

Young's modulus, N/m2 

effective young's modulus, N/m2 

nominal net-section strain 

excursion of nominal net-section strain corresponding to A i i  

theoretical elastic stress-concentration factor 

s t  rain- concent rat ion fact o r  

stress-concentration factor 

load, N 

radius of hole, m 

nominal net-section s t ress ,  N/m2 

effective nominal net-section s t ress ,  !J/ m2 
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excursion of effective nominal net-section s t ress  for ith load excursion, N/m2 

thickness, m 

total thicknt-ss, m 

width, m 

local strain 
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local strejs, N/m2 

effective local stress, N/m2 

excursion of etkctiva l\ical s t ress  corresponding to ASi, N/m2 
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Subscripts : 

A layer A 

B layer B 

PROCEDURES 

Figure 1 shows the configuration analyzed in this investigation: a uniaxially loaded 
laminate composed of two metallurgically bonded materials, A and B, and containing 
a circular hole, The strains at the interface of the metallurgically bonded layers are 
equal. To simplify the analysis, the strains were also assumed to be uniform throughout 
the laminate thickness. A value of 10 for the ratio (w/2)/r was chosen because, for  this 
value, the edges of the sheet do not significantly influence the s t ress  distribution at the 
hole, The fatigue-critical points a r e  on the X-axis at the edge of the hole. At these 
points, the stresses and strains, called "localff stresses and strains, were determined 
by the method based on the Neuber equation and by the finite-element procedure, 
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Method Based on the Neuber Equation 

This section first reviews the procedure for estimating local stresses a d  strains 
in monotonically loaded single sheets, then extends the method to monotonically loaded 
laminates, and finally, describes a procedure applicable to cyclically loaded laminates. 

Monotonically loaded single sheets.- For a monotonically loaded sheet, the Neuber 
equation relates the elastic stress-corcentration factor KT to  the stress- and strain- 
concentration factors KO and KE. The equation, in the notation of t h  present paper, 
is 

which can be rewritten in 
section s t ress  and strain 

2 uc = KT Se 

terms of local s t r e s s  and strain u and c and nominal net- 
S and e to give 

This form of the Neuber equation is valid even when the nominal net-section stress S 
extends into the plastic range. To use equation (l), the nominal strain e is obtained 
from the uniaxial stress-strain curve so that e corresponds to the stress S. For 
elastic nominal net-section loading, e = S/E and the Neuber equation becomes 

The 

(2) (KTSl2 
E U€ = 

procedure to determine local s t r e s s  and strain in a single sheet (ref. 7) is 
explained with the aid of figure 2(a). In thin sheets containing a circular hole, a state of 
nearly uniaxial st ress  exists at two fatigue-critical points at the edges of the holes. 
Therefore. the stress-strain behavior at the hole can be represented by the uniaxial 
stress-strain curve for the material, for example, curve 01 in figure 2(a). For a net- 
section stress S in a notched sheet, the intersection (point 1) of the stress-strain curve 
with the Neuber curve provides values of local stress and strain al and cl which 
satisfy the Neuber equation and are also consistent with the uniaxial stress-strain behav- 
ior of the material. 

Monotonically loaded laminates.- An approach like that for single sheets was used 
to  determine local stresses and strains in laminates, but the Neuber equation was  used 
with an "effective" stress-strain curve for the laminate, The effective stress-strain 
curve is that which would be obtaineg experimentally from a tensile test of an unnotched 
laminate, The effective s t resses  corresponding to measured strains could be derived by 
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dividing the applied load P by the tdal  area of the laminate At. The uniaxial effective 
curve can be used to  represent the effective stress-strain behavior at a notch. Alterna- 
tively, the same effective stress-strain curve could be constructed from the uniaxial 
stress-strain curves for the individual layers of a laminate. This graphic method was  
used in the present study. In figure 2(b), the dash-dot curve is the uniaxial effective 
stress-strain curve for the metallurgically bonded laminate composed of layers A and 0. 
The effective s t ress  e corresponding to a given strain E is 

where tA and tg are the thicknesses of layers A and B, and 
of the laminate. 

tt is the total thickness 

The Neuber curve for the notched laminate is also shown in figure 2(b). To con- 
struct the Neuber curve, equatiom (1) and (2) were rewritten in te rms  of effective values 
0,  8, and E. For elastic nominal loading of a laminate (e = g/E), equation (2) becomes - 

where 5 is the effective local s t ress ,  E is the local strain,  s' is the effective net- 
section stress (g = P/$), and E is the effective Young's modulus for the laminate. 
The modulus of the effective stress-strain curve can be derived anal .tically as 

For net-section yielding in either of the layers, equation (1) can be rewritten as 

where the nominal strain e corresponds to s t ress  s on the effective stress-strain 
curve. 

The intersection of the effective stress-strain curve with the Neuber curve (point 1 
in fig. 2(b)) determines the local strain E*. The corresponding local s t resses  in mate- 
rials A and B can be read from the individual stress-strain curves at the strain el. 

Cyclically loaded laminates. - For cyclically loaded laminates, the Neuber equation 
was  rewritten in terms of excursions of local s t ress  and strain in a form similar to that 
in reference 8 for single sheets. Equations (4) and (6) a r e  used in the following forms: 
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For elastic excursions of si, 

( KTASi)2 AG.AE. = - 
E 1 1  

and, for plastic excursions of Si, 

The values of A 4  and 
corresponding to the ith excurs;on of effective nominal dress ASi. 

Aei are the excursions of effective local s t ress  and local strain - 

Figure 3 illustrates how these equations are used to analyze the effects of cyclic 
loads. The typical cycle of effective nominal s t ress  in figure 3(a) has been segmented 
into excursions of effective nominal s t ress  AS, and AS2. For the first  excursion 
ASl,  the Neuber equation (7) o r  (8) is evaluated and plotted, together with the effective 
stress-strain curve, in the first quadrant of the sketch in figure 3(b). The intersection 
of the curves (point 1 )  determines A€,. The corresponding local s t resses  in materials A 
and B are found on the individual stress-straiil curves at the strain Ac1. For the second 
excursion of nominal effective stress As2,  point 1 is taken as the initial state. Equa- 
tion (7) or  (8) is evaluated for AS2 and plotted relative to point l. The effective s t ress-  
strain curve is constructed from the appropriate stress-strain curves for unloading and 
subsequent compressive loading of materials A and B. The intersection point 2 
establishes 
found on the individual stress-strain curves. 

Ac2 for which the corresponding local s t resses  in materials A and B are 

The residual local s t resses  and strains are found by  a procedure also illusxated 
in figure 3. To obtain the half-cycle residual strain and stresses,  equation (?) oA* (8) is 
evaluated for the unloading excursion A s ,  and plotted relative to point 1. The inter- 
section of the Neuber and effective stress-strain curves, point R1 in figure 3(b), estab- 
lishes the residual strain, and the corresponding residual s t resses  are found on the 
stress-strain curves for the materials A and B. The full-cycle residual strain and 
s t resses  at point R2 are found in a similar manner to complete the f i rs t  cycle of local 
behavior . 

The Neuber equation was used in a cycle-by-cycle manner to estimate local s t resses  
and strains in single sheets in references 7 and 8. Similarly, the Neuber equation could 
be repeatedly applied to estimate local s t resses  and strains i n  laminates for succeeding 
cycles. 
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Finite-Element Analysis 

The accuracy of the method based on the Neuber equation was estimated by com- 
paring the results with similar results from a finite-element analysis. The laminate 
shown in figure .1 w a s  arlalyzed by the finite-element program described in reference 9. 
The ability of the program to  determine accurately the elastoplastic cyclic s t resses  and 
strains in single sheets subjected to uniaxial load has been verified in reference 10. 

The finite-element model is shown iil figure 4. Because of symmetry, only one 
quadrant of the laminate was  modeled. Element nodes along the X- and Y-axes were 
constrained against y- and x-displacements, respectively. The two layers of the finite- 
element model were created by first  specifying triangular elements in terms of nodes at 
their vertices, in the conventional manner, and by then specifying "overlaid" elements by 
the same sets of nodes. The two layers were assigned properties to represent selected 
materials discussed in the next section. Small elements with linearly varying strain 
were used for regions near the hole, where strain gradients are high: larger elements 
with uniform strain were used for the remainder of the model. 

For this finite-element model, an elastic stress-concentration factor of 2.64 was 
determined from reference 11. Although this value is slightly lower than the theoretical 
value of 2.72 in reference 12, 2.64 was used in the Neuber equations herein to eliminate 
e r rors  due to finite-element approximations when comparing results obtained from the 
Neuber and finite-element methods. 

METHOD APPLICATION AND DISCUSSION 

Three laminates of materials with different mechanical properties were selected 
as test cases. These laminates were analyzed by both the method based on the Neuber 
equation and the finite-element procedure. 

Selection of Laminates 

The laminates analyzed in this study are shown in figure 5. Elasto-perfectly-plastic 
materials (F, G, and H) of different yield strengths are represented by the stress-strain 
curves in figure 5(a). Two laminates composed of layers of equal thickness were analyzed: 
a laminate composed of materials F and G having equal Young's moduli, and a laminate 
composed of materials F and H having different moduli. 

A third laA .# xte, shown in figure 5(b), was also analyzed; it is composed of five 
layers of annealed Ti-6A1-IV alloy with interface layers of annealed, commercially 
pure titanium. The thicknesses (from ref. 1) were 1.02 mm for the titanium alloy and 
0.25 mm for the pure titanium. The stress-strain curves for these materials, obtained 
from references 13 and 14: are  shown in figure 5b).  
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Local Stresses and Strains in Laminates 

The laminate composed of materials F and G (equal moduli) was  analyzed for two 
values of etfective nominal s t ress  s. Figure 6 shows the results for = 100 MN/m2. 
For this relatively low value of s', all local stresses in the material F a re  in the elastic 
range: the corresponding local s t resses  in the material G extend into the pl.,stic range. 
The results based on the Neuber equation correlate well with the finite-element results. 
The stresses from the finite-element method lie slightly off the stress-strain curves 
because of small e r rors  inherent in the numerical analysis. A good correlation was also 
obtained for this laminate at = 200 MN/m2, as shown in figure 7. For this relatively 
high s t ress ,  maximum and minimum local s t resses  in both materials F and G are in the 
plastic range. Equation (8) was used for the Neuber curve in this case because of net- 
section yielding in the weaker material, G. 

Figure 8 shows the results for the second laminate, composed of materials F and H 
(different moduli), for s = 400 MN/m2. The results from the present method correlate 
well with those coniputed by the finite-element analysis. 

The results for the third laminate, cornposed of Ti-6A1-4V alloy with interface 
layers of commercially pure titanium, are presented in figure 9 for 
The nine-layer laminate was represented by an equivalent two-layer laminate. The 
thickness of each lager in the two-layer laminate was ,qual to the total thickness of the 
material in the nine-layer laminate that it represented. The parts of the stress-strain 
curves corresponding to unloading from tension and subsequent compressive loading were 
not available from the literature. These parts of the stress-strain curves: therefore, 
were constructed by a procedure similar to that used for cyclic stress-strain curves in 
reference 15. That is, values of stresses and strains from the monotonic tensile curves 
were doubled and plotted from the points of maximum s t ress  and strain to dpproximate 
the curves for unloading and compressive loading. The maximum and minimum local 
stresses determined for both the Ti-6Al-4V alloy and the pure titanium are  in the plastic 
range. Again, good correlation exists between the results from the Neuber method and 
those from the finite-element analysis. 

= 400 MN/m2. 

The results obtained for the laminates analyzed in this study a r e  summarized in 
table 1. For all cases, local s t resses  and strains derermimd by the method based on 
the Neuber equation were very near those computed by the finite-element analysis. The 
estimates obtained by the method are, therefore, good approximations of local elasto- 
plastic stresses and strains i n  laminates during one loading cycle. The application of 
this method to determine local cyclic s t resses  and strains during fatigue loading may 
provide a rational basis for estimating fatigue life of metallurgically bonded notched 
laminates, 
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CONCLUDING REMARKS 

A simple, semianalytical method was  developed to determine elastoplastic cyclic 
s t resses  and strains at stress concentrations in metallurgically bonded metal laminates. 
It was based on the Neuber equation and an effective stress-strain curve for the laminate. 

The method was applied to laminated sheets with a circular hole which were sub- 
jected to one reversed-loading cycle. The laminated materials had different combinations 
of yield strengths and Young's moduli. ThP results agreed well with those computed by a 
finite-element analysis. Thus, the method 
approximations of local elastoplastic s t resses  and strains in the laminates during a 
loading cycle. 

ed on the Neuber equation yielded good 

Langley Research Center, 
National Aeronaut;cs and Space Administration, 

Hampton, Va., August 26, 1974. 
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Figure 1.- Notched laminate subjected to uniaxial load. 
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Figure 2.- Local stress-strain curves for monotonic loading. 
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Figure 3.- Local stress-strain curves for cyclically loaded laminate. 
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Figure 4.- Finite-element model for notched laminate. 
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(b) Laminate of Ti and Ti-6AMV. 

Figure 5.- Selected laminates and stress-strain curves for 
individual materials, 
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Figure 6.- Local stress-strain curves for laminate of materials with different 
yield strengths and equal moduli. 5 = 100 MN/m2. 
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Figure 8.- Local stress-strain curves for laminate of materials with different yield 
strengths and moduli. 8 = 400 MN/nlZ. 
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