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INVESTIGATION OF RANK 2 AND HIGHER OUTPUT
ZEEDBACK FOR POLE PLACEMENT
Banavar Sridhar*

Ames Research Center
ABSTRACT

One common feature of several pole placement techniques is the use of
a dyadic (Rank 1) feedback matrix. 7The limitation of this design is exam-
ined and a design involving output feedback matrices of Rank greater than
on.- is developed as a logical extension of the dyadic feedback design. An
¢ .ample is presented to illustrate the design procedure.

INTRODUCTION

Modal control has been suggested as a design tool in an effort to
circumvent some of the problems in the design of multivariable systems using
optimal control (Rosenbrock, 1962). In modal control the eigenvalues of the
system matrix are changed to achieve the desired control objective. Much of
the work which relates to the concept of modal control has been termed '"pole
placement." The design of linear m:ltivariable control systems, with nole
placement as a specification, has attracted the attention of several authors
{Davison, 1970; Retallack and McPFarlane, 1970; Fallside and Seraji, 1971;
Sridhar and Lindorff, 1973). One common feature of these design methods is
a dyadic feedback matrix. This paper discusses some of the disadvantages
of this approach and extends the design procedure to feedback matrices of
rank greater than one.

STATEMENT OF THE PROBLEM

Consider a controllable and observable linear time invariant m:ltivariable

system
k= hAx+ By
, (1)
y = Cx

where x 1s an n vector of states, u is an m vector .f inputs and y is
a p vector of mutputs. Let (A;,As,. . .,Ap) and {py,p,,. . .,pp) be the
poles of the open loon and closed loop system, respectively. The problem of
pole placement is to flnu the feedback matrix X such that the closed loop
system matrix (A- BXC) has the eigenvalues (P1+P2s. « v4pPp).

*NRC Research Associate.



CHARACTERISTIC POLYNOMIALS

Let T be the n=xn non-singular matrix of eigenvectors.

L]

open loop characteristic polynomial

[}

and
closed loop characteristic polynomial
Further,
[sT-A] = [T |si-A| |T| =
where
A = diag (Xy,2s,
Also,

We have
{s1 - Al

(s - X3)(s = X2). . .(5 ~ Ap)

H

|st - A + BKC|

(s-py}(5-p3). . .(5-0p)

|s1 - T-1AT| = |sI - 4]

(3)

(4)

|s1 - A+ BKE[ = [v=1| |s1-A+BKE] || =1 3(s1-A+BKE)T| = |s1-A+BKC| (8)

where C = CT and B = T™!B.
appendix that

n
|sT-A+BKC| = [M] + 20 (s-A;)M;
=1

n-1
+ i (5“:\1](5-3

Define M4 BKC. Then, it is shown in the

LMy 5
=1 5ih 7
ji-2 Nn-1 I
£ 2 2 X (s-A(s - A (s - MMk
i=1 j=i+l k=j+1
n-j n Mi: - A n omi: A
S > l}%( A.)+z ;1-A.+A
i=] j=i+1 (s-4i)(s-45) {3 1

(6)



where Mj, Mjj, Mij) . . . are the determinant of the matrices obtained by

deleting the "ith "row and jth column, j.j rows and columns, i,j,kh Tows
and columns, . . ., respectively. In addition, mj j is the ijth element

of M,

and Az (s-Ap}(s-2a). . (5= 2y)

For c¢larity, further development is carrieu out “n terms of a system with
distinct open loop eigenvalues. The open loop and closed loop character-
istic polynomials are related by the equation

> pogi n R
|sl -A-*BKC| !
- =1+ Z: - (7)
|s1 Al o] 5 M
The value of aj depends on the closed loop eigenvalues (py,. . .,pp).
From equations (6] and (7), we have
Tl T J___l_ T
i M i 2
I vl D IR TP S OL P
T Bt S o
R
+KE 2 [s-Ai'](s-J\i}Mij
1=1 j=i+l .
1n~2 n=1 n
+ 7z 2 X (s-x(s-Ap (s - \OMijg
i=1 j=i+l ksj+1
n-1 11 ﬁﬁ‘ n m: s
- ij 2: ii ,
R X T -+ - (8)
#1j=h1{b'A”(S"h) j=1 S Aj
Note that |M] = 0 except for m = p = n.
DYADIC K MATRIX
Results for this ¢2s+ van be obtained easily as a special case of
equation (8). When K h:z¢ rark one, that is,
K = fd (9)
myj = biKCj = bifdTej = dTesbyf (10)



where £ = [f),f5,. . .,fp]T, dT = [d),d;,. . .,dp], by is the ith row of
B and ¢; is the ith column of C. With this choice of K

[M] M5, Mi5. M55, - . Mj5 =0 (11)

Now equation (8) reduces to

n a‘ TI m.-
1 2 11
2 = - (12)
s M s M
Then,
j = my; = dleibif (13)

Equation (13) is the same as equation (9) in Sridhar and Lindorff (1973)
and K can be found following the procedure outlined by them.

It is important to recall that the simplicity of the above pole-
shifting algorithm is a consequence of K being a dyadic. However, this
results in a loss of design freedom available in multivariable design prob-
lems. 1In other words, K = ng maps any output vector Yy into a vector
proportional to f. As y varies the range of possible controls varies
along the line f instead of the range of y. This is illustrated for
m=p=21in figure 1. The effect of this is that the feedback will couple
all the modes of the system although some of the modes of the system may be
open loop decoupled and it may be difficult to satisfy performance criteria
other than a simple allocation of the closec loop poles. In an effort to
overcome some of these difficulties the design is extended to feedback
matrices of higher rank in the next section.

FEEDBACK MATRIX OF RANK 2

In this case the determinants of all & x £ matrices formed from M
with 2 > 2 are equal to zero and equation (8) reduces to

—

1 ; n-1"n M. . noom..
E “1 Jﬁ.‘. 1] 11

L PPN ; —+ 2 —— (14)
i=1 -4 4 i=1 j=i+1 (S'A;[) (S”AJ) i=1 S -A;

Next,

M| _ 1 oM
1. 3 Ju

n
=1 0 (A - A5)
#




We have

n=1 1} n-1 n 1/(A. -4, ¢ - A

] M; 5 2 Wy, [ /(A -25) RAS 111]

{21 jege (5-M) -4y ] £ 555 YL os-M $ - A
n- Tl P
3> i (Fr-2) (16)
5504 li-Aj S-X S5-2j

By expanding the summation on the R.H.S. of (16) and regrouping the terms,

-1 -‘.
L - Mij -1 sz +'Hliw+ ‘+H1.n-1 jWln]
= j=i+1(5-li)(5-Xj) s-ky |A1-Ap  Ap-Aj Ap-Apoy A=A
C M,, M M. M.
. 1 12 , 723 +220-1 =n
S-AZ L Al-lﬁ lz-kg lz-ln-l lz-ln
o1 | M3 Mo M3y, , Man
5-13 i Xl-lg 12-X3 As-lu A3-An
+ L]
oot [ Mny My My My, n]
5-An.y A1-An-1 A2-Ap An-2-tp-1 ln-l An
oL | Mn M Mi2n-1 Mhaan an
s-An | A1-Ap Az-Ap An-2-An  An-1-3q
observing the fact that
- - mjj mjj
LTl
' mii  Mjj

equation (17) becomes



n- n M: - . "o,
Z:l Mij . 1t i”11+1 f:"‘:u
=1 jeir1 (5*‘]‘,)(5-AJ‘) $-M Pyt Ay -k s-2y je1 Ao =24
i#2
n-1 Mo
. o1 Mni
‘l i=1 An‘*’\l
NS R L
=1 87M 53 Moy
j#i

Combining equations (14), (15), and (18) we have

ﬁ sui)\-=i : ) IML.""& ll. i A.Mi{‘*'ﬁ mii.
=1 5°M {8 7 (- 3] s-Ai {S)s-M R rM-A ) s- M
j=1 J#
j#i

Equating .oefficients of (s - Ai)"l,

[M] & Mij .
aj = n +E li-?\*+mii 3 1=1,2,. e i
T (=25 J=l )
j=1 j#
j#i

For n > 2, equation (19) rTeduces to

n ‘s
i .
aj = z: —7——1—7 + Miji, i=1,2,. . .,n

K can be decomposed as the product of two matrices C and H, that is,

(18)

(19)

(20}

K=GH where G is a {m x 2) matrix and H is a (2 x p) matrix. Further,

£ _

hi
G=1. 1, H=[h hy...hpl, gi=l[gir 8i2ls “h"'."‘
.=2'




Bmb1  Bmh2 . . . gmh

and m;; = bjKcj = byjGHcy. Now, we have to solve the n nonlinear
equations (20} in 2(m + p) varisbles for pole placement using output
feedback matrices of Rank 2.

Example

This simple example illustrates the differences between the dyadic and
Rank 2 method of pole placement. Consider the system

1 0 0 1 0
X = -1 0lx+fj0 1]u
0 0 -3 1
x=[1 0 o]zs
0 1 1
The system transfer function is
1
s-1 0
Y= u
1 25 + 4

s+ 3 (s+1)(s+3)

The system is observable and controllable with m = 2, p= 2, and n = 3. The
output y, depends only on the input u;. The open loop poles are at 1,

-1, and -3. It is desired to stdbilize the system while maintaining that vy,
depends only on wu;.

Max (m,p) = 2 poles can be placed using the output feedback. Let the

closed loop poles be at -p; = -0.5, -p, = -1.5 while the location of the
third pole -p; depends on (-p;,-p,). For this choice of closed loop poles,

15
0‘1=3-2'(1*‘D3)



s =

t
m"‘"
o~
'
+
£

L
——

a3y = 35 (-3 + 93.)

For a dyadic feedback

Since

We have

dify =-3/2(1 + p3)

dafy = 12/5(2 + p3)

it

dy(fy + £3) = 1/10(p4 - 3)
Solving these equations with d; = 1 and d; = -2, we get

f, = 0.6104 and f, = 0.0218

0.6104 ~-1.2208
K =
0.0218 -0.0436

two poles can be placed at (-0.5, -1.5) and the third pole is located at
-0.3023. Howevar, it is not possible to satisfy the second criterion that
y, depend only on u; as can bé seen from the closed loop system matrix

For this choice of

1-fyd, -f,d; -f1dz
A - BKC = -fzdl -1- f2d2 -fzdz
-(f1+f)d)  -(f1+fa)dy -3~ (fy+£f2)d2



Next consider K with Rank 2 which can be written as

11 fi2 ][y dyp £1
K= = [h1  hy]
fa1 fapltidy;  dy £

where g1 = [f1)  f12), g2 = [f21  f22], by = [diy  d )T and
hy = [d12 d22]T. The closed loop system matris with the new feedback is
given by

1-gihy -g1ho -g1hy
A - BKC = -g2hn -1 - goho -g2h
(g1 +g2)hy -(g1+g23hy -3-(g1+ghy

If y; should depend only on u; then

-gihy = 0

From (20), for pole placement we have to satisfy the equations

These equations with the condition -gijhs = 0 reduce to

= o

it

(-]
—

-
—
5

5
+
Ly

|=
—
1l

1
- 7 g1 ¢ gohy v gohy = o

= a3

N
ko
Ex‘
9
&
5
&

As in tne dyadic case, the choice of closed loop poles at (-0.5, -1.5)

require that aj; = (15/32)(1 + p3), a2 = (2/32)(2 + n») and a3 = (15/32)(-3 + 03).
Noticing the fact that gihy = kj1, g2hp = kg2 2nd g1hy = kyp, the feedback
matrix has to be chosen subject to



3 15
kyp + 7k v ka2 =35 (o3 + 1)
1 2
k22 ~ 5 k11 * kzz = g5 (p3 - 1)
22 -7k k2o =35 (03 - 3}
Solving these equations
3
T 0
K=
3
kay 7

and the third pole is located at -4. With kzy = -3/2, the closed loop
system transfer function is

i e 0

s + D.5

s2+1,55-5,5 25+ 7
 (s+0.5)(s+1.5)(s+4) T(s+1.5)(s+4d)

and the closed loop system meets the design requirements.
OTHER METHODS

Feedback matrices of higher rank can be easily computed for the pole
placement of multivariable systems using state feedback by Kalman's (1971)
method. The given system is transformed to the Luenberger canonical form
(Jordan and Sridhar, 1973). Let Oy Tpp o o 4 Op be the controllability
indices of the system. Then the transformed system is given by

Peagem

where -



- — P~ —
Al A AMm Byy
* : Bl Al
A= und 8 =
-Am_. 1 i\m;_.l PR Am. “lJ -B 1m—‘

The dimensions of Agj and By and (oj = ojl and {op > ml, respectively,
Further,

—
0 1 0. . .0
0 0 0 0 0 . (4]
At = SR LGS Tl IESRE ;
i 0 W 0. 1 * * P *
L* * * . *_

and

0. .. 1% *
+ ith column

The * denotes a nonzero element. From a study of the Luenberger's canonical
form it is evident that the feedback affects only the op,(0p+02),. . .,
(07 + 02 + . . ., op) rows of the system matrix. Let Ap, Bm, and Ay consist
of the oay,(01 + 02),. . .,{0p + 03 + . . .,op) Tows of A, B, and (A + BK),
respectively, Then,

Ad = Ay + ByK (21

and
K = B (Ag - Ap) (22)

B! exists since det By = 1, In particular, if we choose

— o

0. . .1 ‘e NN
a...0...1
Ag =
0 . 0 1 0
l-30 - a3 R

11



where the last row correspuinds to the coefficient of the closed loop
characteristic polynomial

($-p1)(s~p2) . . . (8 ~vn)'=5n + ﬂn-lsnbl oo ays 4

and the 1's appear in the oy,(o;+93),. . ., (o1+92+. . .,0p.1) Columns.
With this, A4,

i 0 1 . 0
A+ BK = . + .
0 L] L] - * 1
_"‘ﬂo - al PO -ﬂn_L
has eigenvalues at (p1,p2,. . .,oq) and K is given by (22).

The above constructive procedure reduces to
= g} - A =
KC = B, "(Ag - Am) (23)

ter pole placement by output feedback., Munro (1973) has given conditions
under which equation (23) can be solved to obtain arbitrary assignment of all
the poles using constant output feedback,

Sankaran (1974) has suggested an iterative procedurr for determining the
constant gain output feedback matrix that will stabilize a system. 1If the
system matrix A varies to A + SA, then the correspending variation in the
eigenvalue is given by (Rosenbrock, 1965)

trace{Q - 8A]

6Ar = trace(Q]} (24)
where
n
Q= T (A- A1)
i=1
i#r

Assuming that &A results due to output feedback and denoting the gain mairix
by 6K, then

A =B+ &K C

12



and a linear equatioa can be written for the clements of the gain matrix.
Since the equation (24) is valid only for small perturbations, variations

in the eigenvalues should be applied in small steps in the desired direction
to vompute K,

The relative merits of the Jurdan canonical form approuch to pole
placement outlined in this paper and the Kalman approach to pole placement
are discussed in the next few paragraphs. Godbout (1974) has made an
extensive comparison of the two methods.

The Kalman method of pole placement uses the Luenberger Canonical Form
of a system to shift the modes of that system. However, a system must be
completely controllable in order to be transformed to Luenberger form. This
restriction implies that the Kalman algorithm cannot be applied to any system
that has at least one uncontrol)able mode. This is not the case with the
Joraan Canonical Form approach to pole placement, This algorithm allows the
shifting of any or ull of the controllable modes of a system that may also
contain uncontrollable modes, This is & significunt advantage for the
Jordan Canonical Form approach over the Kalman approach.

The control over pole motion is probably the most desirable feature of
the Jordan Canonical Form scheme. The method allows the designer to choose
the closed-loop value to which a specified open-luop mode will be shifted.
The Kalman algorithm does not have this feature. The pole motion cannot be
chosen or even determined when using this method.

The Kalman pole placement scheme does have one desirable characteristic
in that it is very straightforward. Furthermore, the Kalman method does not
require knowledge of the eigenvalues of the system, whereas the Jordan
Canonical Form approach needs an accurate estimate of the eigenvalues i
order to construct the Jordan form of the system properly. These eigenvalue
estimates are generated by Francis' QR method which sometimes has difficulty
converg:.n, when a system has repeated roots.

CONCLUSTONS

This paper considers the problem of pole placement in multivariable
systems using output feedback matrices of Rank greater than one with partic-
ular reference to matrices of Rank 2. The results have been developed for a
syvstem with distinct eigenvalues. However, they can be easily extended to
systems with multiple eigenvalues. The feedback matrices of higher rank
provide considerable design freedom. But, the resulting equations for the
feedback matrix are more complex than in the dyadic case.

13



APPENDIX

Theorem: Let N te a diagonal matvix with elements (2;,%2,. . .,8y)
and let M be a n xn matrix. Then
Lo n-1 n
la+ml=ini+ 20 0iMp+ 20 0505M;;
1=1 izl j=i+1
n-2 n-1 1
+ 2 z: RiR;MMi - -
i=1 j=i+1 k=j+1
n-1 n ni.- A D omyycA
+ E —J—-—-+2 + A
. 4 Qi 925 & 1]
i=1l J=1+1 i=1
where Mj, Mjj, Mjjx - . . are the determinant of the matrices obtained by
deleting the ith row and column, i,j rows and columms, i,j,k rows and
columns, . . ., respectively. 1In addition,
mij mi j
Mjy =
mpo My

and A= ﬂlnz . e s Qn.

Proof: The proof depends on the repeated application of the following
Lemma.,

Lemma (Stiab, 1969)
Let P, Q, and R be three n x n matrices identical except for their pth
rows. Further, Let the pth row of R be the vector sum of the pth vrows
of P and Q. Then,

.IRI = |p| + |q] (A1)

Define



Q +my,y M2 .. Mg ..
mi2 s tmas o . mayg . .
Mt 8 : : .
Mpq my o «oe o fptimge ..
| My Mn2 Mg,
and M 81
12+ + .n = 1. From the lemna,
Hy+my myz - « . My 13} 0
m21 m22 . - Myn m21 M2
Ml = . L= M+
My Mz - « .« Opp fny M2
that is,
ML = IMI + M
Again from equations (Al) and (A2)
Qy+myy mi2 . . . Mp (hl+mu
Mm21 Q2+mpz . . . Myp
M2 = . . = M+
Mn1 Mn2  « « + Mop Mn 1
that is,
MZ = Ml 4 §iy [MZ + 91M12]

2
M| + iz_',; QiM; + 2,0,M,,

15
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Next, '

-a:l +m11 ml._\ ml} PR m]n
Mxy Ry + Mas Mag . . . M~
M3 = MY+ 0 0 2 ... 0
SR Mz My« « v Mpp
3 2 1
= M} + QM5 + 3 E R19jM§ + 5803M) 04 (Ad)

131 i=1

-

Applying the lemma successively to MY, M5, ., ., ., M0

n-r n-l 1]

MM = M|+ z 2iM; + E E YRR MU z E z Riﬂjﬂkmij]\

i=1 j=i+1 i=1 jei+l ke=j+1

3 Ly
+ z 2 .. 2 E hlﬂ . ﬂphthmuk Py

=1 j=in pooy=pl
g 3 n-1 n
v, z o E E ”‘iﬂj' . -“p"q“rMijk CLpgr o+ A
1=1 J=i+] q rsq+l

Mijk- - .pa is the matrix with (n - 1) rows and columns deleted, that is,
it is one of the diagenal elements of M. Also,

A
ﬂlﬂ-_-_. s s e s}i_]sli.,.l . e ﬂn = h—i‘
Hence,
2 3 N om:: *+ A
- - - L S
i=1 j=1+1 q r=y+l i=1 1

Recalling the definition of MIJ’

1o



Now we can rewrite

-

n n-1
|2+ M| = MY = M|+ 30 03M; +
i=1 i=1

LICR n

3
> SRS D M TR K TR D)
i=1 J 3 i=1 J=1+1 1

n
z R2392;M
J=i+l

ij

o
i pn
P
=
4, :]

.

n- n- n
+ ﬁ 2:1 z ﬂi“j“k“ijk*° .

i21 jeiel k=j+1

n'l N it ‘A n
—-L——-‘O-

T .Z: 285 z:

i=1 j=i+1 ] =]

This proves the theorem.

Cloged Loop Characteriatice Polynomial:
|s1 - A + BKC]

This is a special case of the theorem with

Q; = (s - ), i=1,2,..

17

L. A
ii . A
8

.,n  and

M= BKC



10,

11.

12.

REFERENCES

Davison, &.J.: [.E.E.E. Trans. Auto. Control, vol. 15, 1970, p. 348.

Fallside, F.; and Seraji, H.: Proc. Inst. Elec. Engrs., vol. 118, 1971,
p. 1648,

Godbout, L. F.: M.S. Thesis, Univ. of Connecticut, 1974.

Jordan, D.; and Sridhar, B.: I.E.C.E. Trans. Auto. Control, vol. 18,
1973, p. 292.

Kalman, R. E.: Ordinary Differential Equations, Ed., L. Weiss
{(Academic Press), 1971, p. 348,

Munro, N.; and Vardulakis: Univ., of Manchester Control Systems Center,
Report no, 205, 1973.

Retallack, D. G.; and McFarlare, A. G. J.: Proc. Inst. Elec. Engrs.,
vol. 117, 1970, p. 1037.

Rosenbrock, H. H.: Chem., Eng. Prog., vol. 58, 1962, p. 1962.

Rosenbrock, H, H,: Electronic Letter, vol. 1, 1965, p. 278,

Sankaran, V,: NASA TM X-71,980, 1974,

Sridhar, B.; and Lindorff, D. P.; Int. J. Control, vol. 18, 1973, p. 993.

Staib, J. H.: An Introduction to Matrices and Linear Transformations.
(Addison-Wesley Pub. Co., Inc.) Chap. 4, 1969.

18



Figure 1.- Range of dyadic contrel (m = p = 2).
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