
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NASA TECHNICAL
MEMORANDUM

NASA TM X 332,385

Rr?	 (NASA-M-X-62385) INVESTIGATION OF RANK
2 AND HIGHER OUTPUT YEEDDACK FOR POLE

X	 PLACEMENI (NASA)	 19 p HC $3.25 CSCL 12A

zZ

INVESTIGATION OF RANK 2 AND HIGHER OUTPUT

FEEDBACK FOR POLE PLACEMENT
b

BanavarSridhar

N75-10741

Uticlas
63/67 53138

Ames Research Center
Moffett Field, Calif. 94035

r b ^yo

^ Lc
^rY' v 9 Fl

September 1974

i



INVESTIGATION OF RANK 2 AND HIGHER OUTPUT

EEDBACK FOR POLE PLACEMENT

Banavar Sridhar*

Ames Research Center

ABSTRACT

One common feature of several pole placement techniques is the use of
a dyadic (Rank 1) feedback matrix. The limitation of this design is exam-
ined and a design involving output feedback matrices of Rank greater than
on is developed as a logical extension of the dyadic feedback design. An
.ample is presented to illustrate the design procedure.

INTRODUCTION

Modal control has been suggested as a design tool in an effort to
circumvent some of the problems in the design of multivariable systems using
optimal control (Rosenbrock, 1962). In modal control the eigenvalues of the
system matrix are changed to achieve the desired control objective. Much of
the work which relates to the concept of modal control has been termed "pole
placement." The design of linear multivariable control systems, with pole
placement as a specification, has attracted the attention of several authors
(Davison, 1970; Retallack and McFarlane, 1970; Fallside and Seraji, 1971;
Sridhar and Lindorff, 1973). One common feature of these design methods is
a dyadic feedback matrix. This paper discusses some of the disadvantages
of this approach and extends the design procedure to feedback matrices of
rank greater than one.

STATEMENT OF THE PROBLEM

Consider a controllable and observable linear time invariant mt=.ltivariable
system

I

x=Ax+ Bu^

y_ = Cx
(1)

where x is an n vector of states, u is an m vector Lf inputs and y is
a p vector of nt:t,uts. Let ( a 1, a 2,.	 -, A n) and (P11P21.	 .,Pn) be the

poles of the open loon and closed loop system, respectively. The problem of
pole placement is to find the feedback matrix K such that the closed loop
system matrix (A-W) has the eigenvalues (P l ,P 2 1• • •-Pn)•

*NRC Research Associate.
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CHARAC1111isTIC POLYNOMIALS

Let T be the n x n non-singular matrix of eigenvectors. We have

open loop characteristic polynomial = Isl - Al

	

= (s - A O (s - a 2) . . . ( s - An)	 (^)

and

closed loop characteristic polynomial = IsI - A + BKCI

	

= ( s - v 1 ) (s - 0 2 ) . . . (s - on)	 (3)

Further,

	

IsI - AI = IT -1 I Isl - Al ITI = Isl-T- 1 ATI = Is I - A I 	 (4)

where

i

A = diag (a1,a2,.	 .,An)

Also,

IsI - A+ BA KE I=JT-'I IsI - A+BKCI ITI= IT-1 (s I - A + BKC)TI = Is I - A+BKCI	 (5)

where C = CT and B = T -1 6. Defi,:e M0 BKC. Then, it is shown in the
appendix that

n
IsI-A+BKCI = I Nil +

	

	 (s - ai)Mi
i=1

+E	 (s - a i) (s - aj)Mij
I	 i=1 j 	 1
^ i 	J

'rr-2 n-1	 n

+ G. E	 1; ( s - A i) ( s - aj) (s - ak) M ijk	 )
i= 1 j=i+1 k=j +i 	f

i

n^-- ++i	 n	 M. • A	 n m.. A	 V

+	 . + E E	
1J	

+
i=1	 i+1 (s - a i) (s - aj	 i=1 s - Ai

J =	 1

2

1

F_



''1

where M i , Mi j , Mi j k . . . are the determinant of the. matrices obtained by
deloting the I h row and jth column, i,j rows and columns, i,j,k rows
and columns, ., respectively. In addition, mij is the ijth element
of M,

mii	 mij
M ij	 and A= (s- X1)(s-X2). . .is - An)

mij	 mjj

Fur clarity, further development is carrieL out 'n terms of a system with
distinct open loop eigenvalues. The open loop and closed loop character-
istic polynomials are related by the equation

Isl -A+BKC^	 n	 of
Isl 

-nl	 i +	 s _ Xi	
(7)

The value of ai depends on the closed loop eigenvalues (v l ,. • -,on)-
From equations (G) and (7), we have

F, s ^ X . = M +	 is Xi)Mi
M	 1	 i =1

i n
c
-
mi
i 

fin+
+ p E Lr Is - A i)( s - AOMij

i =1 j=i +1

n-2 n-1	 n
1

+ ^ E E	 E (s-Xi)(s-Xj)(s-Xk)Mijk
i=1 j=i+1 k=j +1

+ . . . E F	
Mij	 + n mii

i = 1 	 i+1 ( s -XI)(s-Xj)	 i=1 s - Xi	 (8)
j=

Note that IMI = 0 except for m = p = n.

^YADIC K MATRIX

Results for this .e=^ 1.10 a,^ obtained easily as a special case of
equation (8). When K hr:^ rark one, that is,

K = fdT	(9)

m ij = biKCj -- b i fdTcj = dTcjb i f	 (10)

3
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where f = [f 1 ,f2 ,1 . .,fm] T , dT = [d l ,d2 ,. . .,dp], Ili is the ith row of
B and c i is the ith column of C. With this choice of K

IMI,Mi,Mij,Mij k ,. . .,Mi j = 0	 (11)

Now equation (8) reduces to

n ai = n 'ii	
(12)

iL=•1 s- i	 iL=•1 s- X i

Then,

ai = mii = dTc,bif	 (13)

Equation (13) is the same as equation (9) in Sridhar and Lindorff (1973)
and K can be found following the procedure outlined by them.

It is important to recall that the simplicity of the above pole-
shifting algorithm is a consequence of K being a dyadic. However, this
results in a loss of design freedom available in multivariable design prob-
lems. In other words, K = fdT maps any output vector Y into a vector
proportional to f. As y varies the range of possible controls varies
along the line C instead of the range of y. This is illustrated for
m = p = 2 in figure 1. The effect of this is that the feedback will couple
all the modes of the sys-em although some of the modes of the system may be
open loop decoupled and it may be difficult to satisfy performance criteria
other than a simple allocation of the closet loop poles. In an effort to
overcome some of these difficulties the design is extended to feedback
matrices of higher rank in the next section.

FEEDBACK MATRIX OF RANK 2

In this case the determinants of all k x k matrices formed from M
with k > 2 are equal to zero and equation (8) reduces to

I

Next,

e. 	 r 1:
•	

Mij

+	

[^ mii

ii=•1 j=ii+1 (s - X1) (s - ^ 	+J) 	 1L=•1 s - ^1

L''L= ^	 1	 IMI
A	 1=1 n	 s - ai

II ( a i - aj)
j=1

j#i

4
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(15)
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We have

M^1	 - -n'`	 r1
/(Ai - a j ) 1 /[a j - ai)l

	

i=1 j=i+1 ( s - A i) ( s - a j) 1=1 j=i+1 M11 L s - X i 	 +	 s - Xj J

n-1	 n	 9i' ( 1	 1 lrd E1 X i - Aj G
j=

By expanding the summation on the R.H.S. of (16) and regrouping the terms,

n -1	 n	 Mij	 _ 1	 Fr12Ffl3	 Ffl,n-1	 Nfln

	

s - a 1 [X 1z + a1-a3 `	
+ ^1-

Xn-1 + a 1- Xn-a 
j=

+	 1	 M12+ M23 +...+1(2,n -1 + M2n 
11s-a2 [ a l -ah a 2- a 3	 a2-an-1 X2-anl

1	 M 13	 M23	 M34	 Man 1
+ s - a 3 	a l- a3 T2- a 3 + a3-a4 + .

	
+ ^3-an J

+	 1	 r Trl,n-1	 M2, n- 1 _ . . 	 Mn -2, n-1 + %-1, n 1
s - an -1 L a l -In-1 a2- an-1	 an-2-Tn-1 

l

an-1 -fin J

+ 1	 Mln	 Men 	
Mn

- 2'n-1 - Mn-l 'n J	 (17)s - an 	A l- An a2- an	 an-2-An	 an-l-an

observing the fact that

mii	 mij

Mi j = Mj i =
Imj 

i	 mij

equation ( 17) becomes

(16)

S

A



^- - - ,A

n-1	 n	 Ml-	 _	 1	 n	 M li	 1	 n	 Mzi

EjE (s-ai)(s-aj)	 s'X1 E Al-11+
s 

a 2 1 . 1
 

a z I

1	 nj-1	 Mni+	 .+5_ an i-1 an-ai

_ n 	 1	
n
	 MiZ

7 1 s - Ai -1 al "JJ-
j#i

Combining equations (14), (15), and (18) we have

	

a i =fin-.	 1	 IMI	 fin-•	 1	 fi	

i

n.	Mi]	 mii

	

n	 s_X
l
 L. s - a. E a. a. + 	s_a

i=1	 l i=1 R 	 A ,	 i=1	 l j =1 1	 J i=1

j=1 (
Xi - J)	 j#i

yi

Equating oefficients of (s - Xi)-l'

	

EMI	
n M

—

	

a i = n	 + F,a. _ a +mii	 i = 1,2,.	 .,n
R (Xi - aj) J=1 1	 J

	

j= 1 	 j#i

j#i

For n > 2, equation (19) reduces to

n	 M..
a i =	 ai j + mii	 i =1,2,. . .,n	 (20)

j#i

K can be decomposed as the product of two matrices C and H, that is,
K = GH where G is a (m x 2) matrix and H is a (2 x p) matrix. Further,

^.1

YL2	 rhli
1d = 	H= [h1	 h2 ... hp],	 ki = I g i1	 gi2l,	

1 Lh2^

Bm

6

(18)

(19)
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Btht	 IIhz	 $thp

K=

&ahlLyb . .	 h

and mid = biKci = b iGI 
j

. Now, we have to solve the n nonlinear
equations (20) in 2(m + p) variables for pole placement using output
feedback matrices of Rank 2.

Example

This simple example illustrates the differences between the dyadic and
Rank 2 method of pole placement. Consider the system

1	 0	 0	 1	 0

x= 0	 '0	 0 x+ 0	 1 u

0	 0	 -3	 1

Y 
_ 1 0 0 x
 

0	 1	 1 
_

The system transfer function is

r-5+3	

0

^ =	 u

 2s+4
 (s+1)(s+3)

The system is observable and controllable with m = 2, p = 2, and n = 3. The
output y depends only on the input u l . The open loop poles are at 1,
-1, and -	 It is desired to stabilize the system while maintaining that yt
depends only on ul.

Max (m,p) = 2 poles can be placed using the output feedback. Let the
closed loop poles be at - p l = -0.5, -P 2 = -1.5 while the location of the
third pole -P 3 depends on (-p l ,-p 2 ). For this choice of closed loop poles,

a l = 32 ( 1 + P3)

7



U2 = 32 (2 + P3)

C93 = 32 ( - 3 + P3)

For a dyadic feedback rI][djd21

[f1d,	
llK = 	

= f2d1	 f2d2)

Since

dTcibif = ai,	 i = 1,2,3

We have

dlfi = -3/ 2 ( 1 + P3)

d2 f2 = 12/5(2 + P3)

d2 (f l + f2 ) = 1/1003 - 3)

Solving these equations with d l = 1 and d2 = -2, we get

fl = 0.6104 and f2 = 0.0218

For this choice of

	

0.6104	 -1.22081

	

K =
10.0218	 J -0.0436

two poles can be placed at (-0.5, -1.5) and the third pole is located at
-0.3023. Howevsr, it is not possible to satisfy the second criterion that

y l depend only on ul as can b2 seen from the closed loop system matrix

1 - f l d l	-fld2	 -f1d2

A - BKC =	 -f2di	 -1 -f2d2	-f2d2

-(fl + f2) d l	 - ( fl + f2) d2	 - 3 - ( f 1 + f2)d2

Fr

8



Next consider K with Rank 2 which can be written as

[fll
	 f12 [ ,ill	 d12 

K	
[11

[l	 h2l
f21	 f22	 321	 d22^ - V]

where 11 = [f l ,	 fl21, 1,2 = [ f21	 f221, 111 = [d ll	 d2 IT and

h2 = [d12	 d22 IT. The closed loop system matrix with the new feedback is

given by

1-1,1tl	 -1,1h2	 -Zlh2
A - BKC=	 -$2111	 ' 1 

&^h2	

'&2112

' (1,1 + $2) h l	 -(1,1.+Bz)h2	 -3 - (1,1 +$1 )112

If y l should depend only on u l then

'1,1h2 = 0

From (20), for pole placement we have to satisf y the equations

E Mme_ + m.. = ai, ij=1 Ai _ a j	 1i	 1

j#i

These equations with the condition -1,1h2 = 0 reduce to

q 8 1hl - 12h2 + Dlhl = al

glhl - 12h2 + 12h2 = a2

q1,1h1 $2hz + $2h2 = a3

As in the dyadic case, the choice of closed loop poles at (-0.5, -1.5)
require that al = (15/32)(1 + p 3 ), a2 = (2/32)(2 + n>) and a 3 = (15/32)(-3 + p3)'
Noticing the fact that 1,1 11 1 = kll, jj2h2 = k 22 an 1,1h2 = k 12 , the feedback

matrix has to be chosen subject to

9
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k12.0

k ll + g k ll ' k22 = 35 (P3+11

k22 - 2 k ll ' k22 = 3 (P3 - 11

c
k22 - 4 kll . k22 -	 (03 - 3)

Solving these equations

3

K = r

k21

and the third pole is located at -4
	

With k21 = - 3/2, the closed loop
system transfer function is

0

3
4

1
s+0.5

Y=
s2 + 1 .55-5.5

(s + 0.5) (s + 1.5) (s + 4)

0

u

2s+7
(s + 1 .5) (s + 4)

and the closed loop system meets the design requirements.

OTHER METHODS

Feedback matrices of higher rank can be easily computed for the pole
placement of multivariable systems using state feedback by Kalman's (1971)
method. The given system is transformed to the Luenberger canonical form
(Jordan and Sridhar, 1973). Let a 1 , 0 21	 ., am be the controllability
indices of the system. Then the transformed system is given by

t=A&+Bu

where

10



	

A ll	 A l2 • • • Alm	 B11

812
A =	 and B =

	

Arrr,l	 Am-,	 Am,m	 Bim

-rho dimensions of 
AiJ 

and B li and (o i = aj) and (am x m), respectively.
I=urther,

	

0	 1	 0 . . . 0

	

0	 0	 1	 0

Aii -

	

0	 0	 0 . . . 1

	

L *	 *	 *...*

0	 0	 0 . . . 0

Ai J -
*	 *	 *	 *

and

00 . . . 0

B li =

0 . . . 1

t ith column

The * denotes a nonzero element. From a study of the Luenberger's canonical
farm it is evident that the feedback affects only the ol,(ol + o ),. . •,
(al + 0 2 + . . ., am) rows of the system matrix. Let Am, Bm, and Ad consist
of the 0 1,( a l + 02),• . -, ( a l + a 2 +	 . , om) rows of A, B, and (A + BK),
respectively. Then,

	

Ad = Am + BmK	 (21)

and

K = Bml (Ad - Am)	 (22)

Bm l exists since det Bm = 1. In particular, if we choose

0	 1	 . . .	 . . .	 0

0	 0 . . . 1	 0

Ad =

0 . . . 0	 . . .	 1	 0

L-ap - al	 . . .	 -an -1

11



where the last row corresp.tids to the coefficient of the closed loup
characteristic polynomial

(s- 01)(s-p2) . . . ( s- on) 
=sn + I'll-i sn- 1 + . . . as + a

and the 1's appear in the o l ,(o l +o 2 ),.	 .,(o 1 +o2+.	 .,om- 1 ) columns.
With this, Ad,

0	 1	 0

A+ BK =	
:

0	 . . .	 .	 1

-ao - a 1	. . . - an-

has eigenvalues at ( 0 1, 02,. . . , pnl and K is given by (22).

The above constructive procedure reduces to

KC = Bm I (Ad - Am)
	

(23)

ter pole placement by output feedback. Munro (1973) has given conditions
under which equation (23) can be solved to obtain arbitrary assignment of all
the poles using constant output feedback.

Sankaran (1974) has suggested an iterative procedur , for determining the
constant gain output feedback matrix that will stabilize a system. If the
system matrix A varies to A + 6A, then the corresponding variation in the
eigenvalue is liven by (Rosenbrock, 1965)

6a _ trace	 • 6A	 (24)
Or -  trace Q

where

n

Q = R (A	 aiI)
i=1
i$r

Assuming that 6A results due to output feedback and denoting the gain matrix

by 6K, then

6A = B • 6K • C

12
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and a linear equation can be written for the elements of the gain matrix.
Since the equation (24) is valid only for small perturbations, variations
in the eigenvalue:, should be applied in small steps in the desired direction
to compute 6K.

The relative merits of the Jordan canonical form approach to pole
placement outlined in this paper and the Kalman approach to pole placement
are discussed in the next few paragraphs. Godbout (1974) has made an
extensive comparison of the two methods.

The Kalman method of pole placement uses the Luenberger Canonical Form
of a system to shift the modes of that system. However, a system must be
completely controllable in order to be transformed to Luenberger form. This
restriction implies that the Kalman algorithm cannot be applied to any system
that has at least one uncontrollable mode. This is not the case with the
Jordan Canonical Form approach to pole placement. This algorithm allows the
shifting of any or all of the controllable modes of a system that may alsn
contain uncontrollable modes. This is a significant advantage for the
Jordan Canonical Form approach over the Kalman approach.

The control over pole motion is probably the most desirable feature of
the Jordan Canonical Form scheme. The method allows the designer to choose
the closed-loop value to which a specified open-loop mode will be shifted.
The Kalman algorithm does not have this feature. The pole motion cannot be
chosen or even determined when using this method.

The Kalman pole placement scheme does have one desirable charac^eric:ric
in that it is very straightforward. Furthermore, the Kalman method does not
require knowledge of the eigenvalues of the system, whereas the Jordan
Canonical Form approach needs an accurate estimate of the eigenvalues in
order to construct the Jordan form of the system properly. These eigenvalue
estimates are generated by Francis' pR method which sometimas has difficulty
converg.n , when a system has repeated roots.

CONCLUSIONS

This paper considers the problem of pole placement in multivariable
systems using output feedback matrices of Rank greater than one with partic-
ular reference to matrices of Rank 2. The results have been developed for a
system with distinct eigenvalues. However, they can be easily extended to
systems with multiple eigenvalues. The feedback matrices of higher rank
provide considerable design freedom. But, the resulting equations for the
feedback matrix are more comp lex than in the dyadic case.

13
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APPENDIX

Theorem:	 Let	 R	 le a diagonal mat?is with elements	 ( 11 1, R2, •	 •,Rn)
and lot	 M	 be a	 n x n	 matrix. Then

n	 n-1	 n

I R+M I ' I M I + ^. R iM i +	 RiRjMij
=1	 i=1	 j=i+1

^+i
+ L. E	 E	 R i S1 j RkMijk+ .

i=1 j = i +1	 k=j+1

+

S Q	 tn•^ mli	 A+	 + 0

Ei =1 Ri - Rj	 i=1	
Ri

j

where Mi, M i j, Mijk . . . are the determinant of the matrices obtained by

deleting the ith row and column, i,j rows and columns, i,j,k rows and
columns,	 ., respectively. In addition,

Imi l	mill

'k

I mji	 mjjI

and A = 0102	 Rn.

Proof: The proof depends on the repeated application of the following

Lemma.

Lemma (Stiab, 1969)

Let P, Q, and R be three n x n matrices identical except for their pth
rows. Further, Lec the pth row of R be the vector sum of the pth rows
of P and Q. Then,

IRI = I P I + IQI	 (Al)

Define

I

y



O l +m ll	 m12	 . . .	 ml â.	 . . . sn ln	 I

M12	 1),2 + m22 . . .	 m21	 . . . m2n	 l!

Mk b

MZ1	 MZ2	 . . . nR + mzz . . . mzn

mnl	 mn2	 mnz	 mnn

i
and M12 • . .n = 1. From the lemna,

"l + m l l	 m12 . . . min	 nl	 0 . . . 0Ml=

	 m21	 m22 .	 m2n_ IMI + m21	 m22 . . . m2n

	

mnl	 mn2 .	 mnn	 mnl	 mn2 • . . mnn

3

t0at is,

Ml = I M I + slim,	 (A2)

Again from equations (Al) and (A2)
ii

	

Q 1 + Mil	 m12	 min	 O1 +M11 	 mil	 min	
3M21	 02 +M22 . . . m2n	 0	 02 . . . 0

M2	 - 
M1 +
	 II

mnl	 mn2	 . . . mnn	 mnl	 mn2 . . . mnn

that is,

j

M2 = Ml + G21M2 ' S11M121	 1
1

! ,I	 2	 1

= I M I +	 niMi + n 1 0 2M 12	 (A3)

is

{

I



Next,

321 +m 11 ml m13	 .	 . .	 min
M, 1 n2 + m2 .2 m73	 .	 . .	 m2n

M 3 = W + 0 0 123 0

mnl mn2 mn3 mnn

[
3 2	 A

I M l + L, 41iMi+ slill^j+S11S12S23M12A 	 (Ail
i=I 1=1	 1=i+1

Applying the lemma successively to M°, M 5 , .,	 Mn

Mn= [ M i +
n

F, S1iM i

n-1

+
n

AiS2jMij +
n^--t^
	 n-1	 n

L	 E	 F,	 s is'plOok
i=1 i=1 j = i+1 i=1	 j=i+i	 k=j+1

+ '	 + q
-1	 nn+

^	 L. Szis2i...szpszgs'rMi ik"	 •pq
i=1 j = i+t p	 q=p+l

2 ;1 tt' 1 n

s2 i Sl j ...11p$lgs2 rM
ilk .	

.	 .pqr	 +	 A

i=1 j = i+1 q r=q+1

Mijk. . .pq is the matrix with (n - 1) rows and columns deleted, that is,

it is one of the diagonal elements of M. Also,

31 1 522 	 Ili- 1S2i+1 . . . Sln = 
S
^.

S

Hence,

F, F, .	 r	 n 
qS

i i AS2 i s1js2k .	 .S2pS2gRrMi jk..pgr =

i=1 i = i+1	 q	 r=q+1	 i=1	
S2i

Recalling the definition of Mij,

16



^r_.._	
-I

Fi Fi...E
n-1 n

E

tl^
^
-1

Pi`'..j...wj)RilMijk...ptl= E
n

E

M..
ti-^—.^

j=	 +
1

p
` 

1=p+
1

j=i +1

Now we can rewrite

n	 n-1	 n

jS1+Mj = Mn= IMI + r s)iMi 
+ E	 E SIiltjMij

i=1	 i =1 i=i+l

+ n
	

nG.	 E SIiSIjs.kM i jk + .

i = 1 j=i +1 k=j +1

n-i nn

E ;p M^	
mi i 0

+ i= 1 j=1+1 SZ
1 R 1 + 1=1	 f2i	

+

"this proves the theorem.

Closed Loop Characteristic Folynomi-al:

Isl - A + BKCI

This is a special case of the theorem with

^i = (s - xi),	 i = 1,2,. . .,n and M= BKC
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