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1. Selecting the Sampling Period of the LST System

The objective of this invéstigation is to determine the effect of
varying the sampling period on the dynamic response of the sampled-
data LSf system. |

A range of sampling periods is recommended based on the criterion
that self-sustained oscillations are to be avoided in the LST system.
The step responses of the LST system are then investigated when various
sampling periods afe used. |

Detailed description of the LST system with the CMG nonlinearity
is available in the Final Report, CONTINUQUS AND DISC#ETE DESCRIBING
FUNCTION ANALYSIS OF THE LST SYSTEM, January 1, 1974, prepa?ed by the
authors for NASA, Huntsville, under contract NAS8-29853. In that report
describing function analyses are applied to the continuous-data and the
sampled-data models of the LST system with the CMG nonlinéarity. It is
shown that the'9th—ordef LST system can be closely approximated by a
-:4th-ordervsystem, '

| Two sets of system barameteré (System 1 and System 2) were considered

in the anal Repdrt} iThe"study included in this report is concerned only :
with System 1. |

It has been established that for System 1, and with y = 1.38 x 10°

for fhe CMG nonlinearity, seélf-sustained oscillations will occur if the

l>samp1ihg period.T:exceéds 0.25 sec apbroximatély.
| Ih brdér tofcarry out the discrete describing function analysis for
‘ the'samplgd-data'éystéh, a sampler is inserted in the nonlinear loop, and

A thys'a‘twoFsamplékvsystem_re5u1t$, Computer simulation results show that



2
the two-sampler model gives very good predictiphs on the pecurance of'self-

sustained oscillations in the pneasampIer sysfem'by'thefdiseieﬁe'deserfbing.
funct1on ana]ys1s |

Figures 1- 1 and 1-2 show the zero- lnput'responses of the LST system
with two samplers; Figures 1-3 and 1-4 show the responses when ‘there is
only one sampler in'the system. In both cases, the_fnifiql_vaiuelofpevf-
(vehicle positioni is 5 x 1078 rad whiie a]i pfher initieT'cphditions arei :
zero. The samp]ing period is 0'25 see With this large samp]1ng per1od
the system actua]]y sett]es 1nto a self-sustained osc1]1at1on w1th a

peak value of ev approx1mate1y equa] to 10° ]O

rad, although this amp11tude

is not visible from the curves of Flgures l-l through . 1-4, As mentioned
earlier, the sampling perfod of T = 0.25 sec cen be considered as a

boundary case between stability and instebility.

It is of ipterest to dinvestigate the step response of.fhe LST system

"with and without sampling. A step input of amp]ftude 5 x 10'8K0 is applied
which yields a final value of 5 x 10™° rad for 6,. Figures 1-5and 1-6
il]ustrate.the step responses of the continuoqs-data LST system. As

expected, the continuous-data LST system with the designated coptro11ev
parameter ko and.K] has a fairly good sfep response, since it was dempnstrated
that the system has a relative damping ratio of 70% approximately.
Figures 1-7 through 1~lé show the step responses of the sampTed-data.
system with one sampler when T = 0.05, 0.1, and 0.25 sec, respectively.
Figures 1-13 and 1-14 show the step responses of the two-sampler system

with T = 0.25 sec.

When T = 0.25 sec, the step responses again have small oscillations in



the steady state 4
The step responses in F1gures 1-5 throuqh 1-14 show that the LST
system w1th a step 1nput behaves very s1m11ar (except for a shift in
“the reference of ® ) to the system w1th zero 1nput and nonzero 1n1t1a1
vaTue for ev '
_ The stab1T1ty characterlst1cs of the system w1th step input are
aTso very s1m11ar to those of the system w1th zero 1nput

5 the cont1nuous data

The conc]usxon 1s that w1th y = 1.38'x 107,
system 1s aTways stable wh1Te the sampled- data system 1s stabTe for T
less than 0 25 sec. ) v 4 |
For smaTT samp11ng per1ods, the dynam1c behav1or of the samp]ed—
data system is very similar to that of the continuous- data system When
T 1s Targe (but Tess than 0 25 sec) the -overshoot of the step response
of the sampTed data system becomes greater However the dynam1c behavior
of the samp]ed data system may be 1mproved by redes1gn1ng the contro]]er
From this study it appears that a samp11ng per1od as high as 0.1
second is feas1b1e for the LST system However, it shoqu be noted that
the concTus1ons are obta1ned w1th the ex1st1ng system modeT Other

pract1ca] cons1derat1ons such as noise, coupling effects and quantization

errors, may restrict the sampling period to a lower value.
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System 1, y = 1.38x10°
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System 1, y = 1.38x10° T = 0.25 sec
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2. Design of the Continuous-Data LST System

The purpose of this section is to carry out an optiﬁa1 design of
the .continuous-data LST system. The strategy is. that the cont1nuous-~ -
_ data controller may be used as a basis for a digital redes1gn, and at

the same t1me, a digital contro] can be des1gned us1ng a completely

— —_—

independent approach.

~ The system model of the LST was adoﬁtéa‘from—reference [1], and
was later simplified from a 9th-order system to a 4th—order system 1nf\-§f‘f—_f“““‘-——
reference [2]. This simplification was justified from the?standpoint of -
the system parameters, with no resu]ting_]oss of rea]ity. .

The block diagram of the 4th-order LSf system is shown in Figuret?-l.

Since K0 and K1 rebresent the parameters of the controller which are reported
in reference [1], it is of interest to consider a complete redesign of
the system. It was pointed out in [2] that with Ky = 5758}35 and K, =
1371.02, the dominant CMG and vehicle modes are all with a damping ratic

of approximately 0.707. However, in this report an attempt is made to

arrive at a different control using the optimal control technique.

2-1. Decomposition of the LST System

Figure 2-2 shows a state diagram of the system of tigure 2-1. It
is important to note that the nonlinear loop of the CMG dynamics is valid
only from a symbolic viewpoint. In other words, the diagram of Figure 2-2
is obtained by treating N as a linear gain. For design'purposes, the non-

linear loop is deleted, and for computer simulation, the system diagram of
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Figure.2=1 should be used.
Figure 2-2 also indicates that the control technique of state feed-
back is used. In reality, the system of Figure 2-1 feedS back.t&o states
in ev and eV only. |
The purpose of constructing the state diagram is so that we can represent

the system in state variable form. The state equations of the system in

Figure 2-2 with the nonlinear loop open are -

x(t) = Ax(t) + Bu(t) = | o (2-1)
where
[ 0 . 1 0 0 3
'
0" 0 LU 0
A= - 1 . (2-2)
Q 0 Q :]— < .
G
=K
000 -k P
\ GJ
rd ‘\
1o
B = (2-3)
0
KI'J

The control is given By
u(t) = Kox(t):- KoXq (t) = Kyxp(t) - K2x3(t) - K3x4(t):‘ (2-4)

2-2. - Linear Regulator Design




22

One of the advantages of ‘using ‘the state variéblé-feedback is that
the system can be des1gned in the sense of an opt1ma1 11near regu]ator

The performance index used for the opt1m12at1on is
i r[y(t)ox(t-) + u'(t)Ru(t)1dt (28
0 : o : o ‘ , .

-where Q 1s a symmetr1c semi- pos1t1ve defin1te matr1x and R 1s symmetr1c
and pos1t1ve definite. The design obJect1ve is to determ1ne the opt1ma1
- control u(t) so that J in Equation (2-5) is a minimum, subJect to the -
equaTity coﬁstraint of Equation (2-1). h

It is well known that the solution tb this optimal control problem

is
u(t) = -R71B'Kx(t) A - (2-6)
where K ﬁs the so]utibn of the algebraic Riccati equation.

KA - A'K + KBR™IB'K - Q = 0 | C o (2-7):
The solutions of the Riccati equation and the optimal control have

been programmed on a digitél computer. Table 2-1 gives the solutions of

Ko’ K],

system when various weighting matrices Q are used, where

, and K3, and the corresponding eigenva]ues of. the closed-1loop
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Since the states X and Xo are of primary interest, a3 and q, are kept
constant at 1.0 while q, and q, are varied. Also, R = 1.
Several facts become clear from the results of Table 2-1. |
(1) With large values of qy and a5 that is, more weights on
the §tates X1 and Xy the feedback gains K2 and K3 become
negligible. ' ' -

(2) The eigenvalue at -9700 is relatively inseﬁsit%ve%io;the

various weighting matrices.

2-3. Design by Eigenvalue Assignment and the Inverse Problem

The development in the last section shows that it is difficult
to have complete control of the eigenvalues of the cldsed-]odp systém
by changing the elements of the weighting matrix Q. Since the original

system from [1] with Ko = 5758.35 and K, = 1371.02 resulted in a rather

good step response, it is interesting to find out if it corresponds to an

optimal linear regulator solution. This question'is;known.as the inverse

regulator problem [3].

The state equation of'Equation (2-1) shou]d»first by transfokmed‘into e

the phase-variable canonical form. Substituting the.sysfém;baréheters.intg

Equation: (2-2) yields

r

0

1

o

0 0 )
6 x 107 0.
0 '0.4762

9700  -102.86 )

(29
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9700 |
The transformation which transforms Equation (2-1) into the phase-

variable canonical form is

(1 0 0 0 )
-0 1 -0 -0 e o
x: ix (2']])
' 0..0 0.006 -0
{0 o -0 0.00286 |
The.transformed.stafe.equation_becomesl
3(t) = Ay(t) + Byv(t) - - o (2-13)
where
(o 0 0 )
P N 1 0
0 0 0 1 '
0 0  -4623.7  -102.86 |
(0]
0|
B] = . (2-15)
o 0- ,
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The state feedback of the origina] system is described by
u=-Gx = -k K K Kdx ST (2-16). .

For the transformed system,
v =-Hy= -[Ho H, H, _H3]x_ : o | B : , (2-17);

Thus, using Equations (2-11), (2-16) and (2-17), G and H are related |

through
(10 0 VR
6. M 0o 1 0 0
21.782 1 5 o 0.006 0
0 0 0 . 0.00286 |
( 0.036 0 0 0 Y
0 0.036 0 0 ~
= H . (2-18)
0 0 0.000216 0 S o
| 0 0 0 0.000103 |
Thus,
K, = 0.036H_
Ky = 0.036H,
(2-19)
K, = 0.000216H, .
K3 = 0.000103H,

The inverse problem is that given the matrices A and B; and the
feedback matrix G, is there a positive definite R and nonnegative Q such

that Equation (2-16) is the optimal control for the system of Equation

7
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(2-1) with the performance index in Equation (2-5)?
We form the charactérisitic equati6n:of the c]oSed¥1oop system in
the \phase-variable canonical form.
: - IR S 3. (4e 2 -
p(s) = |sI -'A] + B]HI = s + (102.86 + H3)s + (4623.7 + H2)5~
tHis +Ho | | . . (2-20)
'The‘éharactéristic equation of the open-]oop system is

Culs) = |sT- 5] = s+ 102.865% + 4623.75° . (2-21)

It is shown in.[3] that the feédback>matrix H is indeed optimal
for the choice of

Q=00 | - )
and R = 1, where

D = [d, d; 4] (2-23)

The elements of D are the coefficients of the polynomial

_ 3 2 .
m(s} = d45 + d35 + dzs + d] ‘ (2-24)

where m(s) satisfies

p(s)p(-s) = v(s)p(-s) *+ m(s)m(-s) g (2-25)

Substitution of Equations (2-20), (2-21), and (2-24) into Equation (2-25),

we have the following relationships after simplification:.
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~1332.78 - di = 2(H, + 4623.7) - (102.86 + H3)2 (2-26)

2 2 i ' 2
(4623.7)% + &5 - 24,d, = 20 - 24,(102.86 + Hy) + (4, + 4623.1)% (2-27)

2

2 _ ' _
2d]d3 - d2 = 2HO(H2 + 4623.7) - H] (2-28)
2 _ 2 i
d.l = Ho (2-29)
‘ For
Ko = 5758.35,
K1 = 1371.02,
KZ = K3 = 0,
we have
H0 = 159954,
. H] = 38083.9, .
Hy = H3 =0
Thus, the last four equatiohs lead to
dy = H, = 159954 o (2-30)
dg =0 o S - (2-31)
=2 20! =-7.51 x 10 . o o (2-32)
3= oM - 205.72H, =-7.51 x 10° ’, |

1 .



Since dg is negative, we do not have a real solution for d3. Thus, the
system with the prescribed feedback gains does not correspond to an
optimal linear regulator solution.

a linear regulator solution, the following conditions must be satisfied

(with K, . K3 = 0):

=
A\

o > 102.86H,
) or

K, > 102.86K

Eigenvalue Assignment

An alternative to the linear state regulator method for designing

- linear feedback systems is the method of pole placement or eigenvalue

Equation (2-32) shows that to have

29

(2-33)

(2-34)

assignment. In this method, the approach is to place the eigenvalues of

“the closed-loop System at certain desired locations by appropriate choice -

of fhe feedback gains. If the system is in the phase-variable canonical

form, this method is directly applicable [3].

Consider the linear systém‘represented by Equations (2-14), (2-15),

and (2-17), the characteristic polynomial of this closed-loop system is

as in thation‘(2+20),

CIsI - Ay + B[ = st 4 (102,86 + Hy)sD + (4623.7 + Hy)s?

Let the desired‘ldcatiqn of the closed-loop eigenva1ues'be -Gy =0y,

+ H]s + Ho

(2-35)

-Ggs -q4.' The,characteristic.polynomial which yields these eigenvalues is
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- (e : 3
(s +:ap)(s + ap)(s + ag)ls + o) = 4 (o + o +agtag)s
+ (00 % a0, + o0, oo a‘ + a.a- + a'a )sz
(oqay * agag +oqay *apag +ayug b agag)s
+ (a]a2a3 + a1a2a4,+'d]a3a4 f a2a3a4)s + aid2d3a4f : ' (2736)
The desired feedback gains are obtained by equating -the coefficients

of the polynomials of Equations (2-35) and (2-36). Thus -

H0 = 040,050,
H] = 00,04 + 000, + 0040, +-a2a3a4 |
H2 = oy, + ajag + aqay oy, + a2a4-+'a3d4~- 4623;7.:: : N |
CHy oy 4 aé +og tay - 102.86 . - ._ i 7"‘.4 ’(2?37)f

In addition, it is desired that all elements of H be positive so that
negative feedback is maintained.  Once H is determined ﬁhe féedb&tk matrix
G' can be obtained from Equation (2-18).

Table 2-2 shows the feedback gains G and H, obtained for several

choices of eigenvalues.
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3. Computer Simultation of the Simplified LST System w1th the L1near
State Regulator and Eigenvalue Assignment Designs

A computer simulation is presented here to show the response ot
the continuous-data LST -system with the feedback gains designed by the
Tinear state regulator method and the eigenvalue assignment method.
Although the design was performed in Section 2 without the nonlinearity,
the simulation is of the nonlinear system. As mentioned earlier, the
system of Figure 2-1 is used for this purpose.

The numerical.data for the~system and nonlinearity are

_1pD
Jv =10
Jg = 2.1

= 2 o
Kp 16 |
KI f 9700
H = SOQ

-1 "5
y = 1.38 x 10°

TGFO = 0.1

For the computer s1mu1at1on, the 1nput to- the LST- system X is set to
5 x 10 8K0 so that the final value of ev 5 x 10 8" AT 1n1t1a1 cond1t10ns B

are zero. The following quantities are plotted - .. SR 1

D
[}

v vehicle position (radians)

vehicle Velocity (radians/second)

<D
@
it

Gimbal position (radians)
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Gimbal velocity (radians/second)

TGF = Torque output of the nonlinearity (ft.1b.)

Error = Error input to the CMG.

X - erV - Kle

In all the 'simulations, only the states 8, and w, are:-fed back:
Although the designs yielded féedback'from all four states, the gains .
-K2’ K3 are ignored as they are Qery small and are also not accessible’
in the system'which is simulated. .

Figures 3-1 and 3-2 show the results with'a design using the eigen-
value assignment method. - The feedback gains are Ky = 5773, K] =
2032. The corresponding eigenvalue locations are -500, -40, -4 * j4,.

Figures 3-3 and 3-4 show the results with a state regulatok design.
Tﬁe feedback gains are K0 = 10000, K] = 6579.5. The system eigenvalues
are -9700, -3.08, -1.545 + j2.626. The weighting matrices used for this ..
design are Q = diagonal [10® 10° 1 11, R =1

Figures 3-5 énq 3-6 show the results with another state regu]atpr
design. Here K6~= 7071; K1 = 5220, the eiQenva]ues areA-9700, -2.75, |
21.375 £ §2.33 and the weighting matrices are Q = diagonal [5 x 107 5000
1AL R=T. S | -

The resu]ﬁs'of<Fi§ures_3-1 through 3-6 show thaf the linear design
methbds;of Seétioﬁ 2 can yield closed-loop systems with very acceptable
,respoﬁse chéracteriétiéﬁ} In comparison with, the system.used in reference.

[2], the new desigﬁéiresu1t with no overshoot in the response of . The
;tatévregulator,deSigns are, "however, s16we} in tompakiébn'to.tﬁé éggeh-'

value aééignment désign and the system in reference [2].
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4. Digital Redesign of the Large Space Telescope (LST) System

In this chapter, the simplified digital LST system is designed
by use of the point-by-point method of digital redesign [6]. Three

different continuous-data control laws are considered.

Control Law A

This is the original control law of the LST system, obtained by
classical techniques for a damping ratio of 0.707. The gain matrices

for this case are

6(0)

(5758 1371 0 0]

E(0) = [5758]

This control has been used extenSive1y in analyzing the stability

of the LST system with the nonlinear CMG gimbal friction [2].

Control Law B

This control law is obtained by the eigenValué.aSSﬁgnment metHodf[7];

G(0)

[5773 2032 0.97 0.04]

E(0) = [5773]

Control Law C .

| R
This control law is obtained by the linear regulator-design method [7]..

G(0)

[7071 5220 10.6 0.99]

E(0) = [7071]
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The simplified model of the continuous-data LST system is used

in its decomposed form [7].

x(t) = Ax(t) + Bu(t) (4-1)
Where e . H ‘ . . . . M [
(0 1 0 0 )
H
0 0 = o
A= . ] ‘ ' ‘ , (4'2)
. 0 0.0 3 o : o .
G
-K
0o 0 -k
| G )
r.o Y
0
B=| (4-3)
0
L5

The éontrq] is given by (with zero input)
u(t) = -G(0)x(t)

The numerical values used are

H=600 3
Oy = x.ibsﬁ |
) =21

Ky = 216 )
Ky = 9700



It shou]d'be noted that the.system model df»Eduétiohs (4-1),-1,
(84-2).-and (4- 3) is obtawned by neg]ect1ng ‘the- nonlrnear1ty of the CMG.
This is necessary in order to obta1n a. state var1able representat1on
pf the system. 1In reality, however on]y the f1rst two states of the
/system, ev and_ev, will be fed back. Thus, the 1ast two ga1ns of contro]
‘laws B and C are for redesfgn purpdses on]y,-they-w111 ot be’ used jn :
the simulations. | A ‘

The closed-1oop eigenvalues of the LST systen, wjth‘the three‘

continuous-data control laws are: .-

.Control law A: s, = -46.86 + j39.04
s, = ~46.86 - j39.04
Sy = - 4.57 + j4.70
Sq = - 4.57 - j4.70
Control law B: Sl = <471
52 = -1
sy = -3.97 + j3.85
.54 = -3.97 - j3.85 .
Control law C: s] = -9700
s, = -2.77
s3 = -1.37 + j2.32
s4 = -1.37 - j2.32

Lo
The point-by-point method of state matching is used to digitally - .

redesign the LST system for each of the continuous-data control laws.
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With each contro] Taw, ‘a weighting matrix H-is chosen-and the redesign
is performed for~ a range of samp11ng per1ods T.. Nith'the feedback gain

matrix G (T) the d1g1ta1 system is represented by

,x(k+1) o(Mxh) + emu(k) | - (a-0)
ulk) = aew(f)éjk) _.__f' : - S _;‘ - o (a-s)

where
Cam =T (4-6)
8(M) = J:eATdTB | | | _ ©(4-7)

The z-p1aee characteristic roots of the samp1ed;data system are given
by the eigenveTues of (¢(T) - e(T)Gw(T)). " These roots are calcﬁ]ated for
each value of T with some very interesting results.

The results with control law A are shown iﬁ Taeie 4-1 for H =
[ 1 0 0], Table 4-2 for H =[1 1 | 1 1], and Table 4-3 for

=[1 0 0 0]. The results with confrol law B for H=[1 1
0 0] are shown in Table 4-4, and the reéu]ts with control law C B
forH=[1 1 0 0landH=[1 0 0 0]are shown in Tables
4-5 and 4-6, respectively.

The z-plane characteristic roots of the redesigned systems in
Tables 4-1 through 4-6 are shoWn in Figures 4-1 through 4-6, respectively.

These results show that a large variety of sampled-data systems
are available to control the digital LST. It is apparent that the
choice of H plays a very dominant role in the resulting gain Gw(T).

In fact, with control law A, while one choice of H (Table 4-1 and

Figure 4-1) provides a stable sampled-data system for a wide range
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of sampling périods‘T, another choice of H (Table 4-2 and Figure 4-2)
yields a system which is unstable at higher sampling periods (T greater
than 0.5 sec). Still a third choice of H (Table 4-3 and Figure 4-3)
yields a system which is stable only at very low sampling periods
(T = 0.06 sec or less). With control law C, and H=[1 1 0 0]
orH=[1 0 0 0], the redesigned system is unstabTe for very small.
sampling periods (T less than 0.018 sec and 0.02 sec, respectively).

fn general, it apbeérs that control laws A and B are more effective
when digitally redesigned.

Some computer simulations are now presented to show the effects
of digital redesign with the various control 1aws. As'before,.on1y the
first two feedback gains are utilized, and the simp]ified LST system is
simulated on a digital computer with the CMG nonlinearity inciuded; The

parameters of the nonlinearity are y = 1.38 x 105, TGFO = 0.1T. In all

the simulations, the input x = 0 and the initial value of 6,(0) =1 x 1078
with all other initial states equal to zero.

The following simulations have been performed:

Figure No. COCEZO] " H i j ,'Samp}j?gezsriod

4-7, 4-8 'A - 1_'.:.Cdntinuou§;data System
4~9, 4-10 A “[1 1 o 0] o ,-o.Ozv |

4-11, 4-12 A 01 o 0] o ,i o1

413, 414 | B - | continuois-data System.
4-15, 4-16 B o1 0 0] oo
4-17, 4-18 B 1 1 0 0] 0.1
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. Control Sampling Period
Figure No. . Law H T (sec)
4-19, 4-20 - C ‘ ST Continuous-data System
4-21, 2-22 c (v 1.0 0] 0.02
4-23, 4-24 C (v 1 o o] 0.1

In each simulation, the following quantities are plotted:

D
i

v vehicle position (radians)

vehicle velocity (radians/sec)

D
i

e Gimbal position (radians)

i

Gimbal velocity (radians/sec)

TGF = Nonlinearity Torque (ft-1b)

i

Error X.= Koy = Kle

Error input to CMG controller.

" The simulation results show that adequate digital control schemes
' can be obtained for wide ranges of sampling periods by appropriate re-
- design of the feedback gains. Again, it appears that the method of

rqusign is more effective in the case of control laws A and B.
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y = 1.38, T = 0.02 sec
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y =1.38, T = 0.1 sec
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vy =1.38, T = 0.1 sec

Control Law A

T

v

TIME

3.00

TIME

¥0°0 S00
..Amu

J Ll
o-
0Lx)d0Hy3

9.40

50

7

4.50 6.00

3.00

TIME

Figure 4-12



64 y = 1.38, No Sampler

Contfol Law B

6 (x1077)

4.50 6.00 7.s0 ~  9.00

iy
(945

300  u4.s0 5.00 ‘7,58 9.00

m— _|.> ) l - T ' ’l l B ll-‘;;.; ] lIA ‘. 1
0.00 -0 1.50 ' ° 3.00 4,50 6.00 © " 7.50 9.00
» TIME - | |

Figure 4-13




65.

Y:

1. 38', No Sampier

Control Law B

[
S00°0

1
20°0-
Am-oﬁxvaa

——

8 8
o o
IR ]
B
8 '8
~.0 —©
‘R a
.luu lu“.
ol
=
o —t -
: T .
8 8
m o
N i
B R’
> ”ﬁu. [ T T 7 ) o
S¥0°0- = 80°0 che- éb qTq .
(._o1x)39)

h ‘Q

n

o

r”...

=]

0

N

n

=
(FH}
=

— o

T

=]

=]

~

-

n

(=)

, 8

I 1 o

Z0°0 '20°0 - 9p°0-
Am-o_xvmoxmu

Figure 4-14



Cbntrol‘Law-B ;

Cy=1.38, T =0.02 sec

66

v

L]

- TIME

S

6.00 . -

- 9.00

. 7.50

§.50

A

T

t

1
800°0-
ova>3

- 810°0-

(o

 4.50

TIME

9.00

7.5

5.00

Figure 4-15



67

1.38, T = O.QZ sec

Control Law B

e

-

9.00

-y i

.7.50

v

6.00.. .

{
910°0

v

: 1
200°0-
(¢

T

oLx)om

20'0-

T

v

9.00

0o

(

a
10°0-

W-o_xvmomxm

0 6-

Figure 4416



68

Y =‘1.38, T =0.1 sec

(=]
(=]
i [ o
- ‘.x.. ... n ..L
5 T
-
o -
D .
- o
- I
= o
" wn
- By
m m
g L 5
© —
U .
=3
- o
[
o -
&
o
[
— T o
60°0 1h0°0 10°0-"
AN-o_xV>®

9.00

L

- 4.50

o
1n
.
[
.a..
(=)
+
o
uJd
-
r—t
-
o
o
™

Ml

.50,

3,00

9.00 .

‘ _siug*;

4.50

TIME

ngure 4-171



69

1.38, T = 0.1 sec

Y =

Control Law B

9.00

7.50

P

6.00

. 4.50
TIME

3.00

f
910°0

—r—

T T
¢00°0-

(g01)%

0.00

¢0°0-

9.00

6.00

N

L

L

ﬂ
2Loo

-t

L
- 900°0-  2o°0-

(¢.01x) 403

6.00 7.50 9.00

4.S0

TIME

0.00

Figure 4-18



K

Y= ].38, No $amp'|_er:

Control Law C

8.00

7.30

BT gt IR, e e T

1

T

f T
S00°0 10°0-

L

§20°0-

?-vaws .

Figure 4-19



'y = 1.38, No Sampler

71

~Control Law C

L

Lg

I |
E0°0- L0'0-

~ (-0tx)uowy3

7.50 9.00

00

3.00 4.50 6.

1.50

0.a00

TIME

Figu}e 4-20



y =.1.38, T.= 0.02 sec
c. Control Law C
o

<0.03

<010

T sme . wso | e | ~—
e

© Flgure 42177



mG(x10‘4)
-0.01

vy = 1.38, T = 0.02 sec S,
.- Control Law C

|

 ERROR(x107%)
0.00

. '3n 00 Con u.so ' i ‘ s.ua DU '7. su‘ ML 9- OO
TIME. .- '

| . ‘Figuf'e 4-22. -



o |
£l . m
- e
1
oo
R -
=] :
s
) [
5.
] >
v [7,]
o
W )
) o
Lol (=]
- o
«
,__4
- .
o)
.S.
o
,0..
i v o
EV'0 S0°0 A e0‘0-
<« AN-Sx.V 8
= .

9.00

‘Figure 4-23




75

Control L‘aw C
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5. Stability Considerations and Constraints on the Selection of the
Weighting Matrix of the Digital Redes1gn Techn1que : ‘

.It has been reported (6] thét given a continuous-data system
X(t) = [A - B8(0)x(t) (s

the solution of the feedback matrix G(T) of an equivalent digital
system, designed with the point-by-point state comparison methbd,

must satisfy the following equation:

B(T)G(T) = e - o[A-BG(O)IT | o (5-2)

Since 6(T) is usually not square, we cannot solve for G(T) directly from
the last equation. One remedy to the problem is to intkoduce a weighting

matrix H, such that the inverse of H8(T) exists. Then,

6,(T) = [Ho(T)] ThelT - [A-BGEONITy = (5-3)

However, the weighting matrix H cannot be chosen arbitrabﬁ]y. The‘
solution in Eq. (5-3) is significant on]y'ff thévdigitali;'rédesfghéd : ng'
system is stable.

In chapter 4, it has been démonstrated in thé‘digitéi'redesign;-
of the LST system that for some samp1ing period T and some H, the -
resultant Gw(T) gives rise to an unstable closedf1on.digita] éystemL
This means that g{ven.the continuous-dataﬂcontrol=syétem;'tﬁé”weight{ng‘
matrix ﬁ cahnot by chosen arbitrarily The conc]uéion i§ that if the
closed-loop digital system is unstable, the solution’ to G, (T), correspond1ng:

to the selected H, will be- mean1nq1ess
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The problem now is to find the condition under which an H can

be found such that the digital system is stable.

Stability of the Closed-Loop Digital System

The state equations of the digital system are written

x[(k + DT] = $(N)x(KT) + o(T)u(KT) 5
.Qhere

o(1) = T - (5-5)

| T " | 6)’

o(T) = J e "dAB : (5-6)

' The feedback control is
e S o s

Then, Ea. (5-4) becomes’
x[(k + 1)) = [o(T) - eme(r)']g(m T (58)

The digital system is.stable if all the eigénvalues of [¢(T) - o(T)G(T)]
~are located inside the unit circie |z| = 1. Since ¢(T) and 6(T) are
known once. the sampling period T is specified, the conditions on G(T)
for stabiTity can be established using well-established techniques.
Let '
- ABSOIT - gy S (5-9)
‘and premultiplying both sides of Eq. (5-2) by the 1 x n matrix H,

we have Vi



4
*
v,

_we get,

where G(f) has been replaced'Ey Gw(T7"tdffﬁdiEaféxthé We§ghédfmatéhﬁdg :
of states. . o o - _ RS

Taking' the matrix transposeronboth-sidesiof the Tastiequation,

Gyy(T)e' (T)H' = D'(T)H’ o . o '.(5“'].”'

Rearranging, Eq} (5-11) becomes

MM <o MM =0 T sy

-\§\§\;~u ~;T\§ ‘
This equation represents a set of n linear homogeneous ‘equations which
have nontrival solutions if and only if the %;TTBwing.coﬁditiOn is
satisfied: - e

/

/ 16 (T)e'(T) - D(T)| = 0 B - | (5-13)

which is also equivalent to

16(T)G, (T) .- D(T)| = 0 R R P

'
'

Thus, if Eq. (5-14) is satisfied, there i§/a1wa;;'amabnzero H which
. . - - / . . . R

will satisfy: /

; //

,.Gw{T‘)‘=_[_He(‘T)J,“H0(T‘)!’ | / o (5415)

‘INlustrative Example . v J
—_t
Consider ‘the cohtinuousfdata*syétem Y el 0T
P , BRI
) ] :/ y
\ e

T~
~ HB(T)G,,(T) = HD(T) N '. "..:(5-1-0). /

|

/



3(_(t); = Ax(t) # Bu(t)
ule) = =60
where | A
A= -
0 0
i_'fc(o) 3

T

"~ 79

. (5-1§i'

(517,

It is desired to design a digital system which will match the response

of'the'contihuousfdata system at the sampling instants. The sampling

period is 1 second.

The following.matrices .are computed:

[.A

1
0

(1T
o(T) = ' =
0o 1
(0.5
g(T) =
: L1
B (0.767  1.233
D(T) =
| 0.465  1.097

The characteristic equation of the c]osed-Toop system is

F(z) = |21 - o(T) + 06, (T)] = 2% + [-2 + 0.56,(T) + 6,(T)]z

where G](T) and GZ(T) are the elements of Gw(F)

|

1

1

I

+[1 - 0.56,(T) - 6,(T) + TG](T)j =0
. (5-18)



80

GO Gm e

Using the Schur-Cohen -stability criterion; ‘the roots of qu (5-18)" o

afe all inside the unit circle if S
s e D
F0) =1+ 0.56,(T) - 6TV <1 . (520
R =G] (1) > 0 sur sl '5:(.5'-2])
F(-1) = 4.- 2G2(T)\;‘6} - - i ‘1»"* (5-22)

These conditions on:G](T) andvGZ(T) are plotted in the paramétér
plane of GZ(T)-versus G1(T),_as shown in Fig: 5-1. ..
| Having established the conditions.on the eIementsxof'Gw(T)°for the
stability of the digital system, we turn to the«condition'undéf'whiéh"
an H exists.which also satisfies Eq. (5-15).

Equation (5-14) leads to

- [ 0.56,(T) - 0.767  0.5G,() = 1.233 |
(TG (T) - D(T)] = | . - 0.

' 6 (T) - 0.465 = G,(T) - 1.097 |

(5:23)

or

| -0.5356,(T) + 0.6846,(T) + 0.268=0 . (5-24)

,thation.(5-24) represents a straight:Tihe'1n_the~62<])iversus-
G](T) parameter plahe._ The intersect bétwéen:;hg liné]répfesént5
by Eq. (5-24).and the;stable'region'givés.the stableftfajecfory'for
6,(T) and.6,(T), as shown in Fig. §-1.
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_ If the intersectjbetween Eq. (5-24) and the stability region of
.1G](T) and GZ(T) is convex. jn general,  the vertices of fhe'intersect,
can be_used to find the bounds on the weighting matrix Hﬁj
In the present tase, the"Verticesiof'G](T)‘and G,(T) are at
(0, 0.5023) and (1.171, 2). _
" substituting the vertices of Gy (T) énd.Gz(T) in £q. (5-12),
, vv.we have the two boﬁndary'equations for the'element; of H =_[h1' _hz].

0, h]'

6, (1)

-0.606h, (5-25)

6,(T) =1 h, 3.37sh2 o ' (5-26)

Figure 5-2 shows thé region in which-h,‘and h, shoild 1ie so that"
Eq;ﬂ(5-3);will a]ways,yield'a-sta;egfeedbackicontrol'such;that.thei

“digital system is stab1e;'.'
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6. RealiZation“ofiState Feedback by -Bynamic ‘Controllers .

One of'the qnidﬁé ¢characteristics of ‘modern control ‘theory is that
optimal controi.is*often realized by statéffeedback. For fﬁstance, ft ié
-we11 known that if a system is completely controllable, its eigenyalués
can be arbitrari]yAassfgned‘throggh §tafe feedback,'éndsthe optﬁmal
Tinear regu]ator design always leads to‘a state féedback'sdlﬁiién. Un-
fortunately, in practice, not all tHe state variables of’alﬁhysical

system are accessible. Considerable amount of results have been reported

in the past on the design of 6ptima1 systems with. partial state feedback.

The basis of the classical control System‘de§i§n§i§fgﬁét the
configuration of the controller is selected a priOri.:>The cont}ollef
used iﬁ practical systems ﬁsua]ly assume the form of qaﬁcédé or féed-
back controllers, or a_combination of these. In these caées, only the"'
outputs of the éygtemvére fed back. One advantage of the classical
controllers i§ that théy can be implemented often by‘bassivé'fiiters or
electronic circuits.

‘In this, chapter wefsha11 present'a methbd whereby:a'system with
state feedback is approximated by a system with a caSéadelqohtFoiiefQ‘
How the state feedback is determined is imﬁateria] for the presént‘
.ana1ysis; jt!can bé'obtaiwed from the polé;locatidhiso1U;jon.or the
‘Riccati equation solution, or some other:optfma1 ;oﬁtro1:desi§n.méth0ds.

ContinuouS-Data Systems

Consideﬁ'the system
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i(m) = Aﬁ(t) + Bu(t) - - .. N '.’ ST (6-1)
W eamen® .
éki) - n:% 1 state vector
g(t)'=.r‘x 1 inputlveétor

'ﬁj(t) = % 1 ‘6utput:véctor S
A, B, C, and D are coefficient matrices of approphiate dimensions.

Assume that state feedback is given such that

U u(t) Seex(t) o e ©(6-3)
where G is an r x n feedback gain matrix.
. S , -
"\ .  The design objectiVe_is to approximate the‘system‘qf Fig. 6-1a .

»thich is described by Egs. (6-]), (6-2), and (6-3), pyAthe system of
.F}g. 6flb.which has a feedback controller with feedback'fran:the out-
put?Vgriables._ Let the transfer relation of the contrq]]er be repre-
senteJ\Qy o

U RHSGS) o (e
where‘H(S) ﬁsthgicOntro]]er‘transfer function matrix:
( Hii(é& CUHp(s) . Hy(s)

l‘-”21(§)‘ Hypls) . 7,."2m(§)

H(s) = _ : (6-5)

llﬁf](é). Hpls) . Hrm(s) ]
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Let Hij(s) (i =1, 2,-...,'r; i=1,2, ... m)vbe a pth order

transfer function,

[ RN SR
O AL

2

. “F oolLis # .8 SUREY 3 TR Py Sl T e
K”ﬂ+ajﬁ+aﬁf +”'*%m$)f | T

H,.(s) = —d L LI - — -
Wil 1+ Bij st 8{3252 + ;..¢¥.Bijp$p)x T

The transfer function Hij(s) is expanded into a‘TayTor series .

;about s = 0,

g

_ k
1J(s) = Kij kZoduks ‘ oo
R o
where

k .

3 H..(s)

_ i
. dwak - asE 0

. * S = i {

| dijo =1
455 T o4 T By
andifor k >1,
) k-1

D%k T %5k T Bigk T VZ,Bij(k-v)dijv

-

3

o
i

SR L

Ry

—

6-7)

(6-9)

Since the sfaté feedback répFééents the feedback'of the sysfem

output and its higher-order derivatives, a truncated series expansion

of Hij(s) may be used as a dynamic implementation of state feedback by
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ffeedIng back only the output variables. :
If the 1nf1n1te ser1es of (6- 7) converges, we may approx1mate it
"‘truncat1ng 1t after P terms where p is not yet spec1f1ed Let us
1ntroducg the,notatyon,‘ ijp(s)’ for the truncated version of Hij(s);
“then | » | o :

(S)'kma Zduk ‘< o - - (890)

k
where d1 k 1s as def1ned in ‘Eqs. (6- 9)
Subst1tut1ng Eq (6-10) in Eq (6 4) for the elements of H(s),

'we have - '

o . . 4
X, .04 [ T ..
nlue S o ) Kldig dg e oyl Kty dm oo dnep-1)] } Wis)

i sY‘(s)

o ldyn Gy e ' e
allao Gn o daay] Kaltan G o dpppan] o Kaldag G oo Ion(p-1)] 3
p~
s7 Y (s)
1 .

I Y,is) i
Ufs) = - .
- . . L sYpls)

K_,0d ' :
r1ldrg. 4 -] Kaldew G o O] e Kftg e dyd (T

‘(‘é-n)



88

The elements of the last equation are rearranged to give,‘

Mo fi2tz0 o ¥ndimedndim M2 o Mefm) o Tndneay B2z o Mtimgeeryd T M)
: T s¥{s)

. 4 : - o IR | B
Madaie *afz0 -+ Yadmollndon 2% v Kafam] 4 afarge-ny - Kefaa(pny ot Kendamtp-n) i} ST

uls) ¥~

;o

LK

dﬂo ‘Kerrﬁé

K
A5

. L, [
. . (- ]
1 R el s . - p-t
mOm0i 89y Keodepy o Kpdimd -t fxr,dr,(p.,),}xrzdrz(p_,) . K d '(9_1)§/§/ sPYls)

...... , (6-12)
4 : A . . . ~ . , 1“"];‘,’,1‘.._1' .
' The time-domain equivalepce: of the last equation is

([ ¥(t) ‘
¥(t)
we)=-F g | (6-13)
, * ;

“where F denotes the r x mp.coeffiéient matrix.in Eq.-(5;T2).ﬂ_'

From Eq. (6-2), ' o

= (C - DB)x(t) o - (6-14)

Then,
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§(t) = (€ 206 (A - BO)R(t) )
W ST toe : .
yP ) = (c - 0e)(a - Ba)Px(t) . (6-16) -

Substituting the last three equations in Eq. (6-13), we have

v (€ DG) Y
(C - DG)(A - BG)

n

u(t) = -F . | x() L (e

(c - D6)(A - BG)P™" |
Comparing Eq. (6-17) with Eq.. (6-2), we have

[ (c - D6) )
(C - DG)(A - BG)
el e (R 198

TR

L (e - oa)(a - B6)"T )
L (exm) exn) (exn)

~ In order to solve for F from the last equation, we write
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fe-m )T
{ (C’f’DG)(A - BG)j
F=0G6 : - - ’ . ‘ : ; T (6-]9)
:(C‘-'DG)(A__- BG)P~! |

if mp = 1, or p = n/m, This means that if n/m is an” integer, we may -
truncate the Taylor series expansions of Giaﬂs), i=21, 2, ;.g, ry.
i=1,2,...,m at p=n/m terms. 'If n/m_is not,ahgintegerz'we;méy_

choose p to be an integer which satiSfies_

n n S S - O
ﬁ<p<ﬁ+] | . (5"‘20)

Since F is r x mp, thereﬁwi]] be (r)(m)(p)_unknowns. However, there
are only rn equations in Eq. (6-18). 7Thﬁs,'r(mp - n) of the elements
~ of F may be assigned arbitrarily. o

The solution of F from Eq. (6-19) also depends onvthé existence of
the inverse in Ehe equation. | |
| It should be nbted’that solution of the elements of F gives only
the values of the-cqefficfents in Ea. (6-7). The cdefficients of.the
fran%fer function of (6-6) still have to be determined using Eq. (6-9)?M;
In generaT, there are more unknowns than equations in Eq. (6-9). This

“simply means that in the ideal situation we simply set

“and all Bis = 0» for k = 1, 2, ..., m. However, for a physically
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realizable transfer.function, H.. (s) must not have more zeros than
boles;”-Therefdre, the values of Bijk shou]d be assignéd such that

the dynamic behaVior of the overall system is nbt apprétiably affected
by the bresenée of B;s,» k=1, 2, ..., m. This is similar to the

ijk’

- classical design practice of designing the zeros of H{j (s) to control
_ _ : . ' _ |

(s)

p

~ the dynamic béhavior of the system, while placing the poles of Hijp
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so that, they do_not have appreciable effects on the system performance.

'Sing]eAVariabTe Continuous-Data Systems -
whén'théﬂcantrbi4ﬁ(t),i§ a scalar, u(t) = -Gx(t), where
6=l 9 - 9l //
Eq. (6-6) becomes

2

n
H(s) i K(1 + a]s_+ azsz + ...+ ans')-
' n
—— 1+ B]s tBysT L. T B,S )
/
. /
Then, :
u ' . 2 . n-1
H(s) = K(1 + d1s + dzs + 0.4+ dn_1s )
where
/,//k-l
dy = o -8 "VZ1Bk-vdv

. /7
for k=1, 2, ..., n-1.

Equation (6-19) becomes

| - (6-21)

" (6-22)

(6-23)

(6-24)
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(C - DG )
(C - DG)(A - BG)

1=6 : - (6-25)

(C - DG)(A - 8G)™!

Singlg-Variéb]e Continuous-Data Systems in Phase-Variable Canonical Form

- If the system to be controlled is in the phase—variab]e canonical

form, then
(0 1 0 0 ) .
o o 1 0 -
L ‘  (6-26)
0 0 0 1 '
S 2
(0
o i . | o |
B = , : o (e2ry
and the output equation if characterized by D = 0, andh
c=[1 0 0 ... 0} S (e-28)

the formulation giVen in the preceding section is fUrthén simp]iffed.

Since D = 0, ‘and CBG = 0,



(C - DG ) ([ C )
(C - DG)(A - BG) CA
= . = 1 (identity matrix)
(C - 06)(A - BG)" ™!

Then, Eq. (6-25) becomes

F=k1 d; 4, d _41=6
=lg; 9, g,]
and
981+ 9
o = 2117 %2
1 9
g k-1
o = k1

k™ oy * Bk t Z Fevdv

ko= 1,2, wouy .

EQuivaTent Cascade Controller

The deve]opment carr1ed out in the preced1ng sections is based on

S a contro]]er be1ng p]aced in the feedback path of the system as shown

93

(6-29)

(6-30)

(6-31)

in Fig. 5 1b. When the reference input r(t) is zero, that is, when the

system is a regu]ator, 1t does not matter whether ‘the controller H(s)

is in the forward'path}or_the ‘feedback path.v However,;when the input
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is not zero, it may be desirah1e to determine_an equivaléht system which
has the controiTer ifi ‘the forward' path of the system §§ﬂshoWn‘fthig.45-2;
In the following, sifgle-variable notation is used for simplicity.” The
problem i§“f5'ffnd”thé*than$fer‘fUhctién df‘thé éaétédé'tbhtrbilér”Gv(s)‘47
so that the closed- loop transfer funct1ons of the two ‘systems with feed-

back controller and the forward: path contro]ler are 1dent1ca1 The‘

solut1on of G (s) is

Ge(s) =13 G(s)[H(s) ) o RS (6-32)
wheré
G(s) = C(sI - A)f_},s . . b=0 . L .(6-33)‘

In génerél,‘given G(s), and'havingvdetehmined H(s);_the order of
GC(S) will usually be higher than that of H(s).
The following example will illustrate the design method outlined

in the preceding sections.

Examg]e 6-1

Cons1der that the dynam1c equat1ons of a 11near time- 1nvar1ant

system are g1ven by

ﬁt)=Aﬁt)+BMt) Do
(6-34)
y(t) = Cx(t)
where
0 1 0 0
A=1]0 0 1 B=|0
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c=0 0. 0]

Since_;he‘syétem'is;éomp1éte1y controllable, we'may assign the
eigenvalues of the s}stém_arbitrari]y. Furthermore, the state equations
are a]reédy‘{h'phasefvariéble1canonica1'form. With state feedback,

'uf=~-G5}.the:CTOsgd-loop'transfer funCtiqn of the,sy;tem-is

IR0 D N

N : (6-35)
. B §,_f.s3‘+;(g3 fﬂ])s? +'gzs t9,
Tﬁé;chérécfetfstié equation is
s + (951+ 1)s? + 9,5+ 9, =0 , - (6-36)

Let us assdmé that we wish to place the eigenvalues of the closed-

Toop system at s = -10, -1 + jl, and -1 - j1. Then, Eq. (5-36) gives

g, = 20, ' = 22, =N

92 93

or
6=[20 22 M] . (6-37)

~ Now consider that the states Xo and X4 are not directly accessible,
and it is desired to approximate the state-feedback solution by a
feedback controller and output feedback. Since the system is of the

third order, n = 3, the dynamic controller may be of the second ordér;

- that is,

1+ a]s + azs2

H(s) = K 5
1+ B]s + 825

(6-38)
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In the present éé§e, the results of Eq. (6-30) may be used. .

: Th_us;

K=g)=20
9.8, + g, i |
= V1 P2 44 )
o g] ; 1?1 + a]
g " g
X =2 _
a2 = g] + 82 +.8] : 0.55 + ]-]B] t,BZ

,g]:

Assuming that/physical circuit elements allow the se]éctibh of
By and 82 to be relatively small as compared with the resulting values

of o) and a,, we Tet B, = 0.15 and B, = 0.005. Then, -

1.25

*

0.72

n

%2

The transfer function of the feedback controller is -

s  + 30s + 200
The c]osedsloob transfer function of the system with the cascade

controller is

Y(s) _ ' 2880(s% + 1.736s + 1.389)

RUs) 5 4 315% + 23053 + 308052 + 5000s + 4600

(6-40)

A compa?ison of the step responses -of the}system:with state
feedback and the System with the feedback control]efgfsjshown,in'

Fig. 6-3.
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u(t) T x(t)

A r,_.
-G -
Figure 6-1a. Block diagram of system with state feedback..
> D
u(t)
| B 1 () c

'S

-H(s)

Figuré 6-1b. B]ock d1agram of system with cascade contro]]er
- from output feedback. . o R
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"2-9 2unby 4

(3)¥

r—ltﬂ

(3)x

(3)n




99

Distrefe-Data~S¥stem5'
The nynamicfcontro11er’design technique described in the last
section:;an be dpplied to discrete-data systems. -COnSidey the dynamic

. equations,

x(k + 1) = Ax(k) + Bu(k) - o S - (6-81)"

y(k) = cx(k) * Du(k) | L (6-42)
where

x(k) = nx 1 state vector

u(k) = r x 1 input vector

y(k) = mx 1 output vector

A, B, C, and D are coefficient matrices of apprépriate dimensions.

Assume that the state feedback is used such that

u(k) = -Gx(k) _ , | (6-43)

where G is an r x n feedback gain:matrix.'
Let the controller be modeled as a feedback controller with the

transfer function felation,
U(z) = -H(z)Y(z) . (6-44)

where H(z) is given by

Hz) = | . | L (6-45)

(2 H () H ()
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Let Hij(z)’be'a'pth-order transfer function,

b p-1 P2,
ol - LT gt T T (g
ij p p- 2P
z" + Bijlz + By j22 + ..+ Bijp

.Let us expand Hij(z) into a Laurent's series about.z = 0,

o

-k

K

Hs(2) (6-47)

i kzodijkz
" where

di50 =

4551 T %5 7 By . (6-48)

dijk -

n
Q

Truncating Hij(z) at p terms, we have

-k

H, (z) z Kij Z d1Jk

(6-49)
k=0 ' .
Similar to the development in Egs. (6-11) and_(6412);vtﬁe tﬁme;'ﬂ

domain correspondence of Eq. (6;44) is

[ y(k) ]
ylk - 1) , : ‘ S
u(k) = -F | - ... . (6-50)

lL y(k - p +*1)J‘
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where F is identical to the r x mp coefficient matrix defined in
Eqs. (6-12) and (6-13), except with its e1emghts correspond to the
coefficients of Eq. (6-46).

From Eqs. (6-42) and (6-43),

(k) = (C - D6)x(k) o B " (6-51)
Thu;, '. |

y(k - 1) = (C - DG)x(k - 1) | | | - (6-52)
Also,

Ax(k = 1) = x(k) - Bu(k - 1)

= x(k) - BGx(k - 1) " o (6-53)

Therefore,

xtk = 1) = (A - B6) Tx(K) | R L  ,. o “.(6—54.)"

Substitution of Eq. (6-54) in'Eq. (6-52), we have

gk - 1) = (€ - D6)(A - 86)'x(K) (6-55)
Similgr]y,..‘

Koo w@-K  (656)

y(k - p+ 1Y = (C - D6)(A - 86) P Tx(k) : o (6-s7)

»,Thus; Eq.,(6756)5become5‘



102

{

(C - DG )

(C - DG)(A - BG)™! .
x(k)

J

(c - DG)(A - B&)P*

Comparing Eq. (6-58) with Eq. (6-42), we have

(¢ - DG 17!
(C - DG)(A - BG)™!
F=g
| (¢ - pG)(A - 86) "

if mp =n, orp

For a single-input, single-output system, r =m =1,

"

n/m, and the indicated inverse exists.

if D = 0, Eq. (6-59) is simplified to

F = Kld,

- Example 6-2

d

1

dy

n+]

o

(6-58)

(6-59)

Furthermore, .

. (6-60)

Consider the sampled-data process shown in Fig. 6-4. The z-transfer

function of the process is
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G(z) = %%%% - 0.3682 + 0.264 o .
2° - 1.368z + 0.368 : RN

The state equations of the system can be written in the form of Eq. (6-41)

with

o 1 . 0
A= S B =- N
-0.368 1.368 1

The output equation, Eq. (6-42), is
" y(k) =cx(k) = [0.264  0.368]x(k) ' (6-62)
Let the state feedback be denoted by
(k) = -6x(k) = -L9l~.;921§(k1:.-'9 5 , ~ o ;_ L (6-63)
The chaf&tfé?fétic eduéfibﬁ of the cléséd-loop‘systénﬂis.ﬁritfen
|(z1 - A +B6)| = 2% + (9, - 1.368)z + (g + 0.368)

Let us select the feedback ga1ns as g] = 0.132 and g2 0.368 so that

‘the eigenvalues are at

A] = 0.5 + jO.5, A2<= 0.5 - jo.5

To dbtain_an,eqdiva]ent'cascade controller to replace the state

feedback, we let

_ Sz g
H(z) = K 55— gy = KOz s
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Thus, Eq. (6-60)-gives

c -1
F= K1 d]] =6 1
CA
' 0.264 0'.368 -1
= [0.132 0.368]
1.35 -0.717

= 0.86[1 -0.0708] . (6-65)

Then, K = 0.86, d, = -0.0708. From Eq. (6-48),

Selecting B, = 0.0005, we have o = -0.0703. The transfer function of

the feedback controller is

_ 2 - 0.0703 _
H(z) = 0,86 T——5=os | (6-66)

The overall system is shown in Fig. 6-5.



u(t)

u*(t)
T=1 sec

y(t)
1 p—————————

ZOh S—(;-—.D-

G(z)
Figure 6-4. A ‘sampied-data.pkocess.~
\ y(t)
z.0.h —— 1
s(s + 1
z-0.07(8 y(k)

0.86 >-5 00
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Figure 6-5. Closed-loop sampled-data system.
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7. A Numerical Technique for Predicting Self-Sustained Os¢illations
{
in the Nonlinear LST System With the Continuous and Discrete

Describing Function Methods '

7.1 Introduction AR

! J—

It has been demonstrated [2] that the cont1nuous and. d1screte

describing function methods are usefu1 too]s for pred1ct1ng the
existence of self susta1ned osc111at1ons due to the non11near CMG

friction in a s1ng1e ax1s mode] offthe LST The correspond1ng stab111ty

equations which have to be solved are ’Mﬂ;:i:;>~'~~’;
‘ .o o .\\ i ‘2' . .
1+ N(A)G(jw) = O (continuous case) . _ (7-1)
: ':f\\\ . )
and .
1 + N(A, n)G(T;,n) =0 .(discrete case) ‘ o (7-2)

i
I

In Reference [2], these equation# were solved graphically, and the

conditions for existence of se]flsustained oscillations were established.
{
f

In each case the intersection of .the -1/N curves with the G curves of

the system was used as a critehﬁon for the solution of the stability .
- i ———————

[ i

equat1ons, (7-1) and (7-2).
Although this approach is conven1ent in the case of a s1ng1e
nonlinearity, it becomes very/cumbersome, if not impossible to use,
when more than one non]inearity exists, except in a few special
:cases [8]. For example, w1th two coupled LST axes, the stab111ty
equations in the cont1nuous case may be of the form,
“(

1+ 6 GNA) + 6,(ER) = 0 [ (X )

i

Clearly, a graphical solution for Eq. (7-3) is impractical, and
. ! .._’-’/

| S -



the situation very quickly deteriorates if more axes are added, or
if the amp]itﬁdés of osciiiations in the different axes are not the.
same.

In view of this situation, it appears worthwhile to consider an
alternate method for solving the stability equations of the type of
(7-1) through (7-3). In this chapter the results obtained by soiving
Egs. (7-1) aﬁd (7-2) for the single-axis LST.system by means of an
jterative numericél method are presented. This method has been
successful and providés numerical solutions to Eqs; (741) and (&-2),
thése solutions being identical to those obtained by the earlier
graphical method. The method is promising and can be dfrect]y extended

to the more complicated cases, as in Eq. (7-3).

7-2 The Numerical Method

Consider the set of two nonlinear equations

f](x1, x2) =0

107

f,(xq5 X,) = 0 | (7-8)

or in more compact notation

Fx) = 0 (-5
where
E = o2 l(. = ) . (7'6\ '
fa Xy

An algorithm for an iterative solution of Eqs. (7-4) or (7-5) is

Xk+'|

Al 2 —X'=

K TR | | (7-7)
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where_ik is the value of x at the kth'step, and F is the Jacobian

Y

[ of of

_1 1
Xy 3x2 | _ .
E. = (7-8)
ax] X
\ )

The algorithm in Eq. (7-7) is the well-known Newton's method for
the multivariable case, and can be shown to locally converge to the

solution x* of Eq. (7-5) if
i) F(x*) =0
and

ii) Ex(lf) exists. ' -

Recently, a numerical method has been proposed by'Brown [9, 10]
which is similar but computationally more efficient than Newton's
method and still posesses the same convergence properties. This

method is now used to solve Eqs. (7-1) and (7-2).

7.3 The Continuous Case

The stability equation in the continuous case is as in.Eq. (?—f),

1+ N(A)G(juw) = 0 ‘ (7-1)_IE
where |

w is the frequency in rads/sec

A is-the amplitude of the input sinusoid to the nonlinearity

N is the describing function » | , | N _,N,;ﬁii

and G is the system transfer function seen by the noniinearity. ijff
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Since N and G arewboth comp1equuantities, they may be written as

N(A) = Ng(R) + 3N (A)
6(ju) = Ggliw) + 36,(3w) - )

where NR, NI’ GR, and G lare all real quantities..

Subst1tut1ng Eq (7 9) into Eq (7 1) y1e1ds

1 + (NR+ i) (G + JG ) - - . (7m0

Collect1ng the real and 1mag1nary terms in Eq. (7- 10) and equatwng

: them to zero glves
R NR(A)t;k(_jw) - N (A)G (jw) = 0
NG () + N ()Gg(de) =0 SRR €A1

‘Using the notation of Eq. (7-5), Eq. (7-11) becomes

e X)) |0
where L
R TR
a7 Mt MG
.x]-'_‘: w
% ;ﬂAf"'7:_' B o | N 13)

Thus, Eq (7 11) represents a system of two s1mu1taneous nonllnear

{

r:.equat1qns 1netwoiunknowns Th1s system is solved by the proposed numer1ca1
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method with the'f0j1OWin9,Eystemqﬁarametepg .

—
1}

gro = 0-1 f-1b -

VIS

H =600 ft-lb-sec | .. .
T T
1 e = 2.1 ft-lb-sec? | -
B AN ‘\. S
K, = 5758.35 | o
Ky = 1371.02 \ R o
. ’ : \
Kp = 216 ft-]b/rad/sec\ .
K; = 9700 -ft-1b/rad \ B '-‘g;\;\\ :
S \\ | : S
Jy = 10° ft-]b-sec2 ' \ . LT

S
With y = 1.38 x 107; it is known from the graphical results [2]

that two solutions to Eq. (7-11) exist. Figure§47~1 and 7-2 show_the

numerical iterations for several initial solutions. The two solutions’

are
1. w=14.,27 rad/sec
A=5.57x 10 rad
2. w=1.748 rad/sec
A=4.45 x 107 rad

Although solution 2 is an-unstable:equilibrium and solution 1 is
a stable equi]ibfium; the numerical methqd does not differentiate between
them. It converges on the solution in whose doméin of attraction the
inital solution is chosen. Figure 7-3 shows a graphical interpretation

of the domains of attractien‘of the two solutions}'hlf the jnitia]
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Figure 7-2.

Numerical iterations in the continuous case;

Y =1.38 x 107.
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vy =1.38 x 10,
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conditions are chosen outside of the domain of attraction, the method
does not converge. . .
With changes in v, the solution point$ shift, and Fig. 7-4 shows

the stable solutions with Yy = 0f69 x 108 and‘1.38 xV108'respéctivé]y.

7.4 The Discrete Case

In this case the input to the nonlinearity is assumed to be

e(t) = Acos(ut + ¢) : , '. . ;A (7-18)

and the stability equation is
1+ N(A, ¢, n)6(T, n, 2) =0
where .

T is the sémp]ing period of the system

n is the order of oscillation, i.e., the period of oscillation is

A is the amp]ifude of:thé sinusoidal input to the nonlinearity

¢ is the phase of'this input relation to the sampling process
"z = exp(jen/nT)

G is the z-domain transfer function seen by the nonlinearity

N is the discrete describing function of -the nonlinearity.

To maintain consistency, Eq. (7-15) can have two and only two
variables; thus, n and ¢ are assumed to be fixed parametérs, and A and
T are the two variableé. With each value of n‘and.¢: d'solut{oh of
Eq. (7-15) is desired. | |

As in the continuous case, define

[op)
——
—
S
]

- G (T) + 3G (1)

=
—
>
~—
L}

Ng(A) + 3N, (A)

(7-15)

Tn.

(7-16)



LST SYSTEM-NUMERICAL SOLUTION OF 1+NCAXGCWI=0.

GAMMA= 6.90000D 07

ND=

ITERATION

I TR TP,

FREQUENCY
0.7000000000D
0.5323793060D
0.5203573337°D
0.5220917925D
0.5221777385D

'0.5221778880D

01
01
01

01

01
01

AMPL I TUDE.
¢.1000000000D~04
0.1064495497D-04"
0.8113476180D-0%5
0.35%6741622D-03
0.3580953432D-05
0.8580997113D-05"
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1 FREQUEHCY= 5.22178D O0ORAD-SEC  AMPLITUDE= 2.58100D-06

LST SYSTEM-NUMERICAL SOLUTION OF 1+NCRIGCW)I=0.

GAMMA= 6.30000D 07

ND=

ITERATION

L0 o

FREQUENCY
0.5000000000D
0.5204808310D
0.5221270619D
D.5221778574D
0.S221778879D

01
01
01

01

01

RAMPL I TUDE
0.1000000000D~-04
0.8217060863D-09
0.8566684031D-05
0.3580987573D- 05
0.3580%%7080D-05

1 FREQUENCY= 5.22178D 00RRD-3EC

AMPLITUDE=

2.52100D-06

LT SYSTEM-NUMERICAL SULUTIﬁH OF 1+NCRXSCWI=0.

GRAMMA= 1.32000D 08"

ND=

ITERATION

L B S PV (VL ]

~ FREQUENCY
N.7000000000D
0.5463694124D
0.5412668486D
0.5413316590D
0.54134938774D
N.54194937190

o1
01
01
o1
ot

o

AMPLITUDE
0.1000000000D~04
0.1074650663D-04
0.3894201414D-05
0.91559%58622D~05
0.3163437173D-03
0.9163495937D~-05

1  FREQUENCY= S.41950D O0ORRD.-SEC

AMPLITUDE= 9.1635%0D-06

L3

T E¥YSTEM-NUMERICAL

3AMMA= 1.38000D 03

MD=

ITERATION
0 '

WY —

FREQUENCY
n.S000000000D
0.53968363460
0.5419441243D
J.54134937630D
0.5419433719D

at
01
01
(1
01

AMPL I TUDE
N.1000000000D-04
0.3392653820D-05
0.3161502119D-05."
(0.31653497435D-05
(0.31634959326D-05

1 FREQUENCY= 5.41950D O00RRD-SEC

Figure 7-4.

Numerical iterations in the continuous case;
v = 0.69 x 105 and 1.38 x 10

e ™

8

SOLUTION OF 1+NCAXGIWI=D.

RMPLITUDE=

QA 1RISA0-08
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Substituting Eq. (7-16) into Eq. (7-15) and separating thé,real.and

“imaginary parts yields

frlxys x5) 0
F(x) = _ = A A ~ (7-17)
where
£, =1+ NGy - NGy
fp = Npbp + NiGp
x] =T
oA BNCUN

Equation.(7-17) now répresgnts'two equationslin‘two gnknowﬁs and

can be.solved'by'the proposed numerical method. with‘thé:saﬁeAsygtem'
parameters as in the continuous case, and y = 1,33'x3167,1a s@iutfont.

for n = 20, ¢ = 0 is thainéd. The inifia]'sdiuﬁiohfjnfthis'case {ﬁf
vobtained from a knowledge of the;continuéus system,éb]ptioh;: This |
_solutidn,.n =20 and ¢ = 0, is now dsed‘as_énZinjt{éTWgueSS to;detehmine:.A
the solution for_h_=»18,:¢_='0;_Whichvi§ theh;usedgas{gn'ihitiaT'sorution ’
~ to- obtain the solution for n ='16,.$.£ q,,aﬁdﬂsd;qn{f.Fﬁgﬁfeé°755; 7-6
“and 7-7 show'fhe-iterations'fbr:n = Zb'tﬁrqugh'h;égd;,:Dug;tpfthé‘dfffeteni
_'chargctgristibs'of the'bdd-n éhd eﬁéhfhgéoTutqué,ﬂﬁhé;he¢rement"of
~increment of,n'is;made in_hUItipleS'of:ZE_'Thistax:'ihé-501utidn;f6r[

all n-canﬁbe~obtafhéd. | , |

Once'a'édiﬁtjoh is'&véi]ab]e.fof:a”pahticdlar?qlét'Q;=,Q,»ihé

¢-spéce'cahabe-sp&hhed'byfélok]y,vatjing~¢:and:using tﬁéfprerqus
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LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION
GAMMA= 1.38000D 07 N= 20 PMI= 0.0
ITERATION SAMPLING PERIQOD AMPL ITUDE.

0.6000000000D-01 0.1000000000D-04
0.6635022384D-01. 0.7168351284D-05
0.6684849597D-01 0.7391591411D-05
0.6684184809D-01 0.7402030884D-03
0.6684185386D~01 0. ?402032?39D-05

L wWwheo

ND= 1 SAMPLING PER1IOD= 6.68419D-028EC " AMPLITUDE= 7.40203D-06

LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING. FUNCTIDN
GAMMA= 1.33000D 07 - N= 18 PHI= 0.0
AMPL I TUDE

HWH = O

ITERATION SAMPLING PERIOD

0.6684185385D~01
0.7258981714D-01
0.7332495463D-01

- 0.7333309288D~01

0.7333308321D-01

- 0.7402032738D~03

0.7831800820D-05
0.7741965186D-03
0.7740553676D-03
0.7740556323D-035

ND= 1 SAMPLING PERIOD= 7.33331D-02SEC AMPLITUDE= 7.74056D-06

LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION
"GAMMA= 1.38000D 07 N= 16 PHI= 0.0
ITERATION SAMPLING PERIDD AMPL I TUDE

]

1
pd
‘3
4

0.7333308323D~-01

0.8035141927D-01

'0;8136810323n-01

0.8138185695D-01

-0 81381842290 01

0.77403556318D-03
0.3308808703D~05
0.8182471046D-03
0.8180174756D-05
0.8180178901D-05

'njé;g: SRMPLIHG PERIOD=" 8. 13818D-02SEC  AMPLITUDE= 8.18018D-06

LSY °YSTEH—NUHERICHL SDLUTIDH OF DISCRETE DESCR!BING FUNCTION
GHHHR= ‘1..38000D 07 N= 14 PHI= 0.0
ITERRTIDN SAMPL ING PERIDD HHPLITUDE~

‘#*ﬂlu~9d

0 ,5138184231D-01

-0.9022050932D-01
0.9175128977D~01 -

0.3177880263D-01

0. 91??8??850D-01

0.8180178895D-03
0.8961126589D-05

' 0.8758961044D-05

0.8754660548D-05
0.8734667872D-0S .

‘ND= 1. SAMPLING PERIOD=.9.17788D-02SEC  AMPLITUDE= 8.75467D-06

Numerica] 1terat1ons 1n the d1screte case,

‘Ff§0r9:735
o ' = 1. 38 x 10 . ¢ = 0, var1ab1e n.
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L3T SYSTEM-NUMERICAL SOLUTION OF
GAMMA= 1 .38000D 07 N= 12 FH
ITERATION SAMPLING PERIOD
0.3177377353D-01
0.1033226304D 00
0.1058887009D 00
0.1059569620D 00
0.1059569299D 00

LV (V)

HMDh= "1 SAMPLING PERIOD= 1.035957D-

DISCRETE DESLRIBIHG FUNCTION

I= 0.0

AMPL I TUDE
0.3754667861D-03
0.9391276675D-03
0.3522086634D-03
0.9512652996D-05
0.9512665872D-035

L3T SYSTEM-NUMERICAL SOLUTION OF
GRAMMA= 1.38000D0 07 N= 10 PH
ITERATION SAMPLING PERIOD
0.1059569300D 00
0.1216012311D. 00
0.1264908711D 00
0.1267133357D 00
0.12671353528D 00

H why = o

ND= 1 SAMPLING PERIOD= 1.26714D-01SEC

DISCRETE DESCRIBING FUNCTION

I= 0.0
AMPLITUDE
0.9512665855D- 05
0.1131703575D-04
0.1056350696D- 04
0.1053796573D-04
0.10%3796318D-04

LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIRING FUNCTION

GAMMA= 1.33000D 07 N= 8 PHI= 0.0

ITERATION SAMPLING PERIOD
0.1267135526D 00
0.1434753967D Q0
0.1593391474D 00
0.1504043798D 00
0.1€04109954D 00

H Wy = o

ND= 1 SAMPLING PERIOD= 1.60411D-01SEC

RAMPLITUDE .
D.1053796320D-04
(.1378146933D-04
0.1210637147D-04
0.1200135682D-04
0.1200077001D-04

LST SYSTEM-NUMERICRL SDLUTIbH OF DISCRETE DESCRIBING FUNCTION

GAMMA= 1.38000D 07 N= 5 . PHI= 0.0

ITERATION SAMPLING PERIOD
0.1604109885D 00
0.1897914063D N0
0.2182241830D 00
0.2272750301D 00
0.22773712235D 00
0.2277376514D 00

N & Wh » o

ND= 1 SAMPLING PERIOD= 2.27738D-01SEC

Figure 7-6. Numerical iterations in the discrete case;

RAMPL I TUDE
0.1200077106D-04
0.1878650442D-04
0.1497205004D-04
0.14102726382D-04
0.1408970958D-04
0.1408969070D-04

= 1.38 x 107, ¢ = 0, variable n.

.51267D-

01SEC AMPL I TUDE=

AMPLITUDE= 1.05380D-0%5

AMPLITUDE= 1.20003D-0%

AMPLITUDE= 1.40897D-05



LST SYSTEM- HUHERICﬂL SDLUTIDN oF DISCRET£ DESCR!BING FUNCTION

GRHHﬂ= 1.38000D 07 - N=
!TERHTIUN SRHPLING PERIQD

3HD$_1

AV'Q.I'ON(,!I‘_LAQI"U»'.Q

. 0.2277376508D
0.2545144363D
0:3119051493D
0.4186570592D
-0.5071624020D
0.5354877655D

- 0.5371503035D

_SAMPLING -PERIOD= 5.37150D~01SEC

0.5371469161D

4 .

00
00

00

00

00

00
00

00 -

PHI- 0.0 :
AMPLITUDE
0.1408969073D~04
0. 2?92562588D-04
0.2584222751D~04
0.1482763201D~04
10.1337192198D~ 04
0.1584931294D~04

0. 1587070593004
0. 158?0?6013D-04»

"'F'igur'e 7-7. Numerical iterations in the discrete case;

=1.38 x 10’, ¢ = 0, variable n.

ne’

AMPLITUDE= 1 .58708D~03
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solution as the initial guess for the next solution. The range of ¢ .
is 2n/n for n even and n/n for n odd. Figures 7-8 through 7-11 show -
the jterations for n = 3 and variable ¢. A plot of all solutions of
T and A for n = 3 and various ¢'s is shown in Fig. 7-12.- Here the
plots for n = 4, 6, 8 and 10 are also shown. As n increases the range
of ¢ decreases and the plots of T and A with ¢ as a parameter shrink
to single points. -Figure 7-13 shows the plot of T and A with ¢ = 0 -~
for n = 10-through n = 100.

The plots of Figs. 7-12 and 7-13 can be used to determine the
frequency (2n/nT) and amplitude (A) of self-sustained oscillations when’
the sampling period T is given. They provide very concise information

on the conditions under which self-sustained oscillations can occur in

the discrete-data system. The corresponding solutions by the graphical

method require overlapping the -1/N and G curves for each n and checking
for intersection or containment.
As n increases beyond 100, the discrete solution asymptotes

towards the continuous solution.

7.5 -Conclusions and Extensions

The resuits of the previous sections have demonstrated the ease
and effectiveness of the proposéd numerical method. It provides the
exact frequency and amplitude of oscillation in comparison to the
approximate values obtained by the graphical technidue. In the discrete

case particularly, the numerical approach provides the information in
| a more éonvenient form. The frequency and amplitude combinations whfch
can exist for each value of sampling period are available from a single

curve.

R
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The major limitation of the numerical method is the convergence
characteristics of the solutions. Unless an adequate initial solution
is available, no useful information can be obtained. The initial
solution must be near to or within the domain of attraction of the
exagt solution. Once a solution is obtained, it is simple to slowly
vary the parameters and obtain all the desired solutions.

The method is unrestricted to the form of the stability equation _
or the number of nonlinearities present. If adequate initia) solutions
"can be selected, this approach can yiefd useful results with the more

complicated multiple-axis models of the LST.
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LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION
GAMMA= 1.38000D 07 N= 3 PHI= 6,00000D 01 ‘

ITERRTIUH SAMPLING PERIDD AMPLITUDE
0 0.1000000000D 01 ©0.,2000000000D-04
1 0.1206736268D 01 0.2130807968D-04
2 0.1246507645D 01 0.2200966570D-04
3 0.1247557%74D 01 0.2201127396D-04
4 -0.1247557444D 01 0.2201127250D-04

“ND= 1~ SAMPLING PERIOD= 1.24756D 00SEC AMPL ITUDE= 2.20113D-05

LST SYSTEM-NUMERICAL SDLUTION OF DISCRETE DESCRIBING FUHCTIDH
GAMMA= 1.38000D 07 N= 3 PHI= 5.00000D 01
ITERATION SAMPLING PERIOD AMPLITUDE .
"0.12473557444D 01 0.2201127250D-04
0.7576140716D 00 0.2210012199D-04
'0.8593652656D 00 0.2212015179D-04
-0.8710667172D 00 0.2219934845D-04 .
0.8711804237D 00 0.2220037576D-04
0. 8?11803498D 00 0 2220037467D-04

WhWN -

ND= 1 V~bHMPLING PERIOD= 8.71180D- OISEC AMPLITUDE= 2.22004D-05

L3T SYSTEM-HUHE?ICRL SDLUTIDH OF DISCRETE DESCRIBING FUNCTION
.GAMMA= 1.38000D 07  N= 3 ~ PHI= 4.00000D 01
ITERATION. SAMPLING PERIOD AMPLITUDE

0.8711803498D 00

.. 0.6048096982D 00
. 0.6500626463D 00
0.6527787250D 00
0.6527844416D 00

BWN o

0.2220037468D-04
0.2299103460D- 04
0.2334330100D- 04
0.2342663401D~04

. 0.2342710075D-04

ND=-1  SAMPLING PERIOD= 6.52784D-01SEC  AMPLITUDE= 2.34271D-05 -~

Figure 7-8. Numerical iterations in the discrete case;

y = 1.38 x 107, n = 3, variable o.



LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION

GAMMA= 1.33000D 07 N= 3
ITERﬂTIUN SAMPLING PERIOD

S Wwhyreo

0.5527844384D 00
0.4972491700D 00
0.5185445957D 00
0.5191962437D 00
0.5191954834D 00

PHI= 3.00000D 0%

AMPLITUDE
0.2342710022D-04
0.2522586 042D- 04
0.2594052161D-04
0.2604025247D-04
0.2604065065D-04

ND= 1 SAMPLING PERIOD= 5.19195D-01SEC AMPL ITUDE= 2.60407D-03

LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION
GAMMA= 1.38000D0 07 - N= 3 . PHI= 2.00000D 01
ITERATION ~ SAMPLING PERIOD AMPLITUDE

- 0.5191954849D 00 0.2604065029D~-04

0.44798872335D 00 0.2776194476D-04

0.4542599663D 00 . 0.2831780647D-04
' 0.4542548541D 00 0.2835057365D-04
'0.4542548401D 00 0.28335037996D-04

LWy o

ND= 1 SAMPLING PERIDD=.4.54255D-OISEC HHPLXTUDE= 8.83506D—b5

LaT SY°TEH-NUHER!CRL SOLUTION OF DISCRETE DESCRIBXHG FUHCTIGN ‘
GAMMA= 1.38000D 07 N= 3 PHI= 1.00000D 0%
ITERATION SAMPLING PERIOD © AMPLITUDE

0.4542548402D 00 0.2835057996D~04

0.66535150491D 00 0.1157357946D-04

0.7303889506D 00 0.1642213821D-04

0.6664793457D 00 0.1959748765D-04

0.6559819499D 00 0.204543?953D704

0.6553780327D 00 '0.2049946525D-04

0.65353777502D 00 0 2049953882D 04

NP WO

SAMPLING PERIOD= 6.553?8D—01SEC HHPLITUDE= 2. 04995D 05 ;

Figure 7-9. Numerical iterations in-the d'iscre'te ‘case;

y = 1.38 x 107, n = 3, variable ¢.
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¢ =0, 60°

S

'
1
!
i

i )
System 1 -
Y =1.38 X100 T =0.1 !

e s vm s 2.

0.6 A

T(sec)

0.4

0.2} -

ﬁé_“’ |
0 | \ L A
1

2 3 4 5
Amplitude (x107°)

Figure 7-12. Amplitude and frequency (2m/nT) of self sustained
oscillations for various sampling periods in the
discrete case; y = 1.38 x 107, n = 3 through n = 10,
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3T SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION

GAMMAR= 1 .,33000D 07 N= 3 PHI= 4.00000D 0O
ITERATION SAMPLING PERIOD . AMPLITUDE
0 0.3443321729D 00 0.2000431369D-0N4
1 0.1092499702D 01 0.2069887736D-04
2 0.1120422983D 01 0.2075227731D-04
3 0.1120755444D 01 0.20735252072D~04
4 0.1120755263D 01 .2075252039D-04

ND= 1 SAMPLING PERIOD= 1.1207€éD 00SEC AMPLITUDE= 2.07525D-0%

LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION
GAMMA= 1.38000D 07 N= 3 PHI= 2.00000D 0C ‘

ITERATION SAMPLING FERIOD AMPL I TUDE
0 0.1120755263D 01 0.2075252039D-04
1 1.1243920308D 01 N.2159514112D-04
2 0.1255495749D 01 0.2162959060D-04
3

0.1255574083D 01 0.2162960044D-04

ND= 1 SAMPLING PERIOD= 1.25557D 00SEC AMPLITUDE= 2.16276D-0%

Figure 7-11. Numerical iterations in the discrete case;

y =1.38 x 10/, n = 3, variable ¢.
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LST 3YSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION
SAMMAR= 1.38000D 07 N= 3 PHI= 1..00000D 01 .

ITERATION 3SAMPLING PERIOD AMPLITUDE
0 0.6000000000D° 00 .2000000000D-04
1 0.6530111015D 00 0.20383544865D-04
c 0.6553839033D 00 0.2049873663D—-04
3 0.65353777320D 00 0.20499539353D-04

ND= 1 SAMPLING PERIOD= 6.55378D-01SEC AMPL I TUDE= 2.04995D-05

L3T SYSTEM—HUHERICHL~SDLUTIDNAUF DISCRETE DESCRIBING FUNCTION
" GAMMA="-1.33000D 07 N= 3 PHI= 3.00000D 00
ITERATION SAMPLING PERIOD N, . \AMPLITUDE

0.6553777518D 00 .0.2049933373D~04
0.7703362041D 00 \'0.1958935672D-04
$.78411084780 00 0.1982121919D-04

.7842075811D 00 0.1382549843D-04
0.723420759373D (0 0.1982549437D-04

LWy = o

. ’ o
MD= 1 SZAMPLING PERIOD= 7.84208D-01SEC RHTK&TUDE= 1.98255D-0%

\
LST SYSTEM-NUMERICAL SOLUTION OF DISCRETE DESCRIBING FUNCTION

GAMMA= 1,38000D.07 N= 3 PHI= 5.00000D 0O
ITERARTION SAMPLING PERIOD AMPL ITUDE
B 0.7342075974D 00 0.1982549433D~-04
1 0.3235810128D 00 0.1990482637D-04
2 0.9440712611D 00 0.2000313242D-04
2 0.9443923074D 00 0.2000432019D~-04
4 0.9443921728D 00 0.2000431868D-04

ND= 1 _‘SHHPLING PERIOD= 9.44392D-01SEC AMPLITUDE= &.00043D-0S

Figure 7-10.  Numerical iterations in the discrete case;
y = 1.38 x 107, n = 3, variable ¢.
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1.38 x 107, T, = 01

¢ =0

<
"
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-.0.08 k...

0.06 b

T(sec)

0.04} I SR

0.02

8 9 10
Amplitude (x1079)
Figure 7-13. Amplitude and frequency (27/nT) of self sustained

oscillations for various sampling periods in the
discrete case; y = 1.38 x 107, n = 10 through n =

100.
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