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P YSICAL AND DYNAMICAL STUDIES OF METEORS

Special Progress Report
|. SPACE DENSITY AND COLLISIONS OF METEOROIDS

A revised version of Sections 6 and-7 of our previous Spé;ial Progress

Report (NASA CR-2316) is being prepared for journalpublication.

A general theoretical investigation of space density of meteoroids, which .
takes colligions, the Péynting-Roberts-on effect, and sources into account,
has been formulated. It will be carried further when the observational bias

resulting from fragmentation has been quantitatively assessed.



2. FRAGMENTATION

2.1 Significance of Fragmentation

Jacchia {1955) showed that mass ablation in the form of small particles,
rather than in that of individual molecules, predonﬁnates in the fainter photo-
graphic (Super-Schmidt) meteors. Fragmentation of this sort was, naturally,
expected in radar meteors; finally, Southworth {1973) showed that it is common
in the Havana radar meteors. Theoretical treatments of the physical inter-
action of the mei:eoroid with the atmosphere have not yet, however, properly

come to grips with the physics of fragmentation.

A study of fragmentation was included in the present program of research -
for several reasons: The synoptic-year data, because of the careful calibra-
tion of the Havana recording apparatus, contains more information on radar
meteor fragmentation than has hitherto been available. A better understand-
ing of the physical interaction is essential for proper interpretation of the
observations, especially as regards selection effects (the possible drastic
selection effect that depends on fragmentation is discussed below). Finally,
we hope to learn more about the physical nature of the meteoroid befare it

enters the atmosphere.

The present discussion is of the nature of an interim report on an uncom-
pleted study. It will, however, permit some useful conclusions to be accepted

temporarily.
2.2 Data

This report uses the condensed results of the synoptic-year reductions;
specifically, some of the results for each meteor that were originally designed ;
to be punched on 'height-density cards, "' and that are now on tape. The detailed !

results for individual meteors, originally designed to be printed, have not



been used because the computer programing to transform taf;e designed for

printing to tapes suitable for machine reading is not yet comple'te.

From the synoptic year, 3550 meteors with well-defined decelerations

and ionization curves were selected.

As usual in this project, linear electron densities in the ionized column

have been denoted by radar magnitudes as defined by Kaiser's (1955) relation,
M=35-2.5log, 49 » (1)

where q is electrons per centimeter. The computer performs a least-squares
fit of the magnitudes Mi deduced from the initial Fresnel zones at stations i

and the times ti of crossing the specular reflection points to a guadratic
M, = at® +bt, +¢ | @)
i i i * o

whicﬁ represents the ionization curve. If this curve indicates a maximum of
ionization (rather than a minimum) and if the distribution of stations along

the ionization curve reached close encugh to the ends (defined by the limiting
oBse rvable magnifude), the curve is taken to be well defined. The beginning
and end heights above sea level hB and hE are defined by the points where the
ionization curve reached limiting magnitude. The height of maximum ioniza-
tion hM'is halfway betweenth and hE' since thf.- observations would only
rarely admit a more elaborate form than equation (2). Decelerations were
taken to be well defined if positive, and larger than 0.4 of their standard
errors. Diffusion rates were also required.to be consistent between observa-

tions at different stations.

Preatmospheric masses m have been revised from the computer outputs,
by using the ionizing efficiencies found from simultaneous radar—television
observations (Cook et al., 1973}. Observed ablation coefficients ¢ were

computed with values at the maximum of the ionization curve
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G = mx. (3)

)
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where the mass-loss rate m is computed from maximum electron density,

and the mass at maximum ionization is taken to be

m
o0

M ax =72 ) - (4)

For use in subsequent analysis, 'effective’’ fragment masses m, and
Heffective' numbers of fragments N have been computed as follows. The
computer output gives the "apparent' density b of 2 spherical meteoroid that
would experience the observed deceleration on the simplified single-body
theory (Hawkins and Southworth, 1958). This has been revised by use of the
radar—television ionizing efficiency. (The provisional use in the reductions
of CIRA 1961 atmospheric densities and the values I'= A= 1 for the drag
coefficient and shape factor may require much smaller revisions in the future.)
1f the meteor is conceptually replaced by Nf equal spherical fragments of
density 3.4 g cm-3, which would each exhibit the observed deceleration and

which sum to the observed mass, we have

2
_ (3.4 : :
N¢ = ("“5 ) (5)
and
m. = mmax (6)
f N ’

Density 3.4 is taken here, of course, because it is the approximate value for

stony meteorites.

Table 1 includes a variety of data for these 3550 meteors. They have

been divided into groups of preatmospheric mass m,, and deceleration ;’max

at the point of maximum ionization. (vmax is not the maximum deceleration,



which 6c.cu;;'s near the end.) The division into gr"ou'p-sl‘: of m_, is also almost
an exact division into groups of velocity Vonax at the point of maximum ioni-
zation, because of the limited dynamic range of the radar receivers, and the
very steep dependence of ionizing efficiency on velocity. Successive lines of
the table give 1) ra.nge': of ¥ (km _sec"g), 2) renge of m_(g), 3) fraction
of the 3550 mgteors with these ¥ and m_, 4) mean value of Voo 5) mean |
value of ;'max’ 6) mean number of Fresnel pattern extrema observed,
7) logarithmic mean of effective mass of a fragment (g), 8) logarithmic
mean of effective number of fragments, 9) distribution of mean numbers of
extrema: 4 lines show, respectively, the fractions of the group with 5-7, 8-12,
- 13-19, and 20—30 extrema cbserved, 10) distribution of logarithms of effective -
fragment masses: 5 lines show, respectively, the fractions whose logarithm
of mass (g) is (> -4), (<-4 and > -5), (<-5and > -6), (=-6 and >-7), and
=-7}, 11) distribution of logarithms of effective number of fragments:
5 lines show, respectively, the fractions whose logarifhm of effective number
of fragments is (<0), (=0 and <2), (=2 and <4), (=4 and <6), and {=¢),
12) height of maximum ionization {km),. 13)' trail length (;qn),_ 14) rise above
limiting magnitude Mim ™ Mpex? 15) maximum magnitude, 16) logarithm of abla-
tion coefficient (cgs). Logarithms are decimal. Groups containing fewer than
10 meteors (less than a fraction 0.0028 of the sample) have not been listed,
but are represented in the sum groups. The average of the logarithm of pre-
atmospheric mass is not tabulated, but may be found as the sum of the averages
of logarithms of effective fragment mass and number of effective fragments.
There are no observations of large meteors with large decelerstlon or small meteors
with small deceleration in Table 1. Any analysis of fragmentation needs to explain

this absence,

2.3 Height Data

Our observable meteor heights are known to be bounded on the top by
diffusion (Southworth, 1973). This is inevitably reflected in the selection of
data for Table 1, although the effect is much smaller there than in the total
observational sample because high meteors are much less likely to have their

deceleration sufficiently well measured for Table . An unbiased determination



of the trend of heights with velocity can be derived from Figure 4-1 of
Southworth and Sekanina (1973). Because the diffusion limit to height increases
with velocity, some observations are missed at all velocities but the effect is
marked only at the highest velocities. Taking the peaks of the height histo-
grams in Figure 4-1 and adding estimated corrections of 2 km to the height at
the highest velocity group and 1 km to the height at the next two velocity groups,

we derive Figure l.

The straight line drawn in Figure 1 corresponds to the following relation
between the atmospheric density Pmax at the point of maximum ionization and
the velocity v,

-1.9

Praax & vVt o (7)

2.4 Fresnel Pattern Extrema

Successive maxima and minima {collectively extrema) of the observed
Fresnel diffraction patterns are formed by the passage of the head of the
ionized column across successively shorter intervals (Fresnel zones) of the
trail. The time interval between successive extrema decreases uniformly,
and the difference in a.mplitude decreases monotonically (often until there are
no further extrema), so that only a rather well-defined number of extrema
can be measuréd. We will. interpret this number in terms of fragmentation,

but it is first necessary to discuss other effects.

The computer program that found the extrema rejected data yielding

fewer than 5 extrema, and stopped its search at 30. However, extrapolation

of the distribution of the mean number of extrema measured per meteor (MEXT
in Table 1) shows that the data lost by both limits is relatively small. The loss
is not important for the analysis in this report and can be taken into account
elsewhere. The computer program also stopped its count of extrema whenever
the interval between successive extrema decreased below 1.5 radar p’ul-ses,

to avoid misidentifications. At the mean velocity and slant range of each of

the mass groups in Table .1, this limits the observed number of extrema to



the values given in Ta.Ble 2. The breakddwns of MEXT in Table 1 show that
some meteore in each group had more observed extrema than the limit for
the mean; these are meteors at greater than mean range or less than mean
velocity. Correspondingly, other meteors would have had lower limits to
observed extrema. The mean number of obéerved'extre'ma is significantly
below the limit imposed by the 1. 5-pulse spacing (and below the limit of 30
extrema). We conclude that the 1. 5-pulse spacing limit is responmble for
much of the difference in mean number of extrema observed at dlfferent ‘

masses and velocities, but that other limitations are common.

Diffusion of the ion éolui‘nn into the surrounding atmosphere causes an

| éxponentia.l decay in the smoothed (Fresnel oscillations removed) amplitude,
which eliminates extrema after an initial few. We may study this in terms of
Loewenthal's (1956) theoretical Fresnel patterns, which depend on his param-
eter

c_BwDVth | | o _ (8)

-

where D ie the diffuaién c‘o‘efficient, \ the radar wavelength, and R the slant
range. Within our observed height interval,

log g Dlem® se¢™®) = 0.068h - 167 , (9)

where h is height in kiloreters., We may take mean slant range to be twice
mean height adequately for this purpose. Table 2 also gives C computed by
use of mean velocity and height for each group in Table 1. Values of C.
below 0,29 eliminate no extrema before the 30th, and the valu‘eg' of C just
found have no practical effect on the ease of obeerving any extremum, There
are, of course, meteors at greater heights than the mean that are meore
affected by diffusion, but the restriction in Table | to meteors giving gooed
“deeelerations ea gentiaily eliminates all those c.l.@ag to the diffusion eeilmg

on height, We conclude that diffusion is mimpgrta.nt in determining the
chserved numbers of extrema in Table 1.



The remaining possible limitation to observed numbers of extrema is
fragmentation. Arbitrary distributions of fragments along the trajectory can
give very odd Fresnel patterns, but any reasonably smooth unim_q:;ia.l distribu-
tion ‘Suppresses, or nearly suppresses, all Fresnel oscillations ;fter the
interval between two successive maxima or minima has shrunk to the: whole
half-width of the fragment distribution. Attributing much of the limitation
on extrema to fragmentation, we interpret the width of the last two observed
Fresnel zones as a high estimate of the half-width of the fragment spread.

If k extrema were observed, the width of the last two zones is, very nearly,

w = v RA ~ (10)
2k - 374

and again we may take R to be twice the height for this purpose. Table 2

gives values of w, computed with mean values of k and height.

2.5 Lag

Observed distances between radar meteor fragments much exceed the
fragment diameters and atmospheric mean free paths, and are very nearly
parallel to the direction of motion. We infer that the fragments are inde-
pendent of each other when observed, and that we may heglect any aerodynamic
interaction between fragments after their initial separation. It is natural to
compare the relative displacements of the fragments along the trajectory with
the total displacement of the main body or of the center of the group of frag-
ments caused by the atmosphere. This total displacement will be called the
flag;' it is the distance between the main body (or fragment group) and a
hypothetical -meteoroid that has experienced no atmospheric deceleration
since the fragments separated. A fragment whose mass/cross-section ratio
is 1/f of the mass/cross-section of the main body would be expected to have
f times the lag of the main body.

The distrjbution of mass/cross-section among fragments in a group
depends on their mass, shape, and density distributions. It cannot be pre-

dicted with any certainty, but an attempf {too long to describe here) at a



_ realistic estimate concludes that the standard deviation of mass/cross-section

is roughly 0.3 to 0.5 of the mean value.

1f separation occurs at tO‘ and if v is the meteoroid deceleration, the

lag at time t is
t .
L=-J v dt, dt, . ' : (11)
to

The observed values of ;"max in Table 1 were derived by fitting observed

velocities v at times t to an expression equivalent to

) ' -1 .
x{e:-:p [1'4vmax cos Zp H (t - tmax)] -1}

&
1"
P
1

max

(12)

Without the factor 1.4, and provided the ':imax term is relatively small,

(12) is the theoretical form for the deceleration of a nonablating single mete-
oroid in an exponentxal atmosphere. The emp1r1cal factor 1.4, adopted from
the results of Super-Schmidt meteors, roughly adapts the form to ablation

and fragmentation. Nothing more refined is possible with the radar data.

The time of fragment separation is of course unknown, but we will tem-
porarily assume that separation occurs at the beginning of the observed

jonized trail. By use of (11) to approxlmate v, and neglecting 1 - v/v .

max
the lags at the maximum and end of the ionized trail are

\ G - . -
Linax ™~ (vn'lax) Vmax [ - (l * I_Z%) exp (-2-.%)] (13)

and




where g is the trail length and

G=H/l.4cos Z (15)

R

is the scale distance in which deceleration increases by a factor e. Substitut-
ing mean valugs of cos ZR. = 0.7and H = 6, and ;'rrhax and g from Table 1, we

obtain the representative values of L and L. shown in Table 3.
max end

2.6 Fragmentation Degrades Observed Decelerations

Table 3 also contains the width w of the last two observed Fresnel zones.
Taking w as a high estimate of the fragment spread, we expect it to be roughly
proportionate to the lag. It is evident, however, that this is not true; the lag
(either one) is proportional to deceleration‘but w is almost independent of

deceleration.

We resolve the problem by observing that a group of fragments some
200 m long is not as satisfactory a radar target as the single body on which
the analyses have beén founded. The centroid of the group will shift within
the group as different fragments increase or decrease their electron output.
Any spread of the fragments normal to the trajectory, moreover, will have a
very large effect on the centroid; we will neglect this effect for the present.
The fragments will tend to be arranged in rough order of ablation, the most
recently ablated being at the head. If the meteoroid is inhomogeneous in
structure, we may expect systematic differences in fragment size within the
group, and therefore large shifts in the radar centroid as one subgroup or

another flares (subfragments) or burns ocut.

To estimate a plausible "fragmentation’ error in deceleration, consider
a 100-m shift of the radar centroid within the 200-m group while one Fresnel
pattern is generated (typically 2 to 3 km of tréjectory). That pattern would
imply a velocity 3 to 5% wrong. The typical drop in velocity between the first
and last observed Fresnel patterns is 8%, virtually independent of velocity.
In a simple case, where the erroneous velocity is one of only two velocities

with significant weight, one at the beginning and one at the end, the centroid

10



shift thus causes a deceleration error of the order of 40 to 60%. There are
comparable errors in other cases. A back-and-forth shift of the centroid

would obviously cause even larger errors.

Confirmation of the unreality of the ''observed' decelerations is given
by the near independence of height and deceleration within each mass group
of Table 1. Any reél physical circumstance causing order-of-magnitude
differences in deceleration ought to have more effect on height. We would,
furthermore, expect deceleration to be proportional to the cosine of the radiant
zenith distance cos ZR’ but that quantity (not tabulated here) shows only the |

most moderate trend toward larger values at the higher decelerations.

Once the fragmentation error in deceleration is recognized, we see that
individual decelerations are of small value a:nd that we should confine further
interest in Table ! to the right-hand column, which is an average of the others.
Conversely, being convinced that the scatter in the decelerations is largely
unreal, we deduce thé probable inhomogeneity 'of the meteoroids, since log10
{number of fragmgnts) ranges from 0.8 to 1.4 in Table 1, and random
electron-output variations among so many fragments 'would not shift the group

centroid enough to cause the observed deceleration scatter.

2.7 Trail LenJths

The 11-km spacing between stations was chosen to obtain well-distributed
observations along some of the longer ionized trails we expected to record.
This expectation was biﬁéd on the simplified theory for single-body meteoroids
as well as on observed trail lengths for bright radar meteors, but it proved
wrong for the faint radar meteors recorded at Havana. These, we found,
typically had much shorter trails. Well-distributed observations by five or
six stations were indeed common, but only when the meteor's path lay more

nearly perpendicﬁla.r than parallel to the line of five stations.

Thelsimplifiéd single-body theory (Hawkins and Southworth, 1958) made

the vertical length of the observable trail, hbeé -h dependent only on the

end’
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difference between the maximum and limiting magnitudes, Mlir; -M o
Table 4 shows theoretical lengths, observed lengths for faint photographic
meteors, and lengths for a sample of 6803 synoptic-year meteors with well-
defined ionization curves. A scale height H = 5.4 km is assumed for the
theory. The standard deviation of a single radar trail length from the mean

is designated Ty

Table 4 shows that both photographic and radar trails.are much shorter
than the simplified theory. The most sigﬂifica.nt comparison between photo-
graphic and radar is for the magnitude difference interval 2—4. In the 0—2
interval, the radar data, unlike the photographic, are closely bunched to
M,., -M =2, When M -M > 4, the quadratic fit to the ionization

lim max lim max
curve is likely to be a poor extrapolation at Ml'

im’

Table 5 and Figure 2 show the relation between vertical trail length and
cox ZR for the same 6803 meteors. Quite unlike the simplified theory, we
find that the actual (slant) trail length is much more nearly constant than is

the vertical trail length. The data can be fitted approximately by

b, -h .=10.7 (cos z.)°" 59

beg end (16)

r)
(Note added in proof: We have just realized that the result in equation
(16) is affected by systematic error, because the radar system is not oriented
to observe long trails from meteors with small cos ZR' Nonetheless, the
vertical trail length is still significantly dependent on cos ZR. Our best pres-

ent assessment is that the use of (16} in the following se«tion remains valid. )

2.8 Model for the Fragmentation Process

The Super-Schmidt observations introduced the concept of a meteoroid '
main body gradually shedding fragments (seen as the wake'') and sometimes
entirely breaking up into an elongated cloud of fragments (seen as "terminal
blending''). We use the same concept here for the radar meteors. Both the

main body and fragments are considered to generate light and electrons.

12



- Disentangling the effects of simultaneocus 'fragmen.ta.ti-'en"'eﬁd ionization will
not be easy. It is therefore worth noting that an alternative theory can be
formed and to show why it fails. The alternative is to suppese that fragmen-
tation occure appreciably before mmzatmn, so that single-body theory can be
used for the (preauma.bly sohd) iomzmg fragments. Several authors have
trea.ted sma.ll emgle bodies; their ionization curve is shorter at the beginning
than the sunplif;ed theory because the heated outer layer is most of or all the
body, and it may bef shorter at the end because of deceleration, but it is not
very different from the exmphf;ed theory ‘The ablation of fragments from the
main body would be separafely treated It would have been convement to use
single-body theory here as well, in terms of a heat of fragmentation that is
much smaller than the heat of vaporization in the usual theory, but that is
ruled out by the ionization curves that-are so much shorter than solid single-
body curves. The ionization curve of the fragment cloud must be at least as
long as the curve for a single fragment and, if the fragments are all the same
slze or random sizes, at least ag long as the "fragmentation curve'' of the main
bedy. (If large fragments are ablated first, and then smaller ones, it {s pos-
gible for the fragment cloud's ionization curve to be shorter than the main
body's fragmentation curve.) Nonetheless, while thie model may be useful
in clarifying ideas, it cannot be correct because of the marked dependence
(equation 16) of vertical trall length on cos ZR; this is quite at varlance with
the trail lengths of solid single fragments,

We therefore turn to a model involvihg simultaneous fragmentation and
onization. The newly ablated fragments will enter the atmesphere at lower
helghts than they would have reached in independent fall; this is Opik's (1958)
"abnermal envirenment. " Consequently, they will often have very shert
lonization curves, resembling the lower ends of normal ienization curves.,
A schematic lenization curve of the entire assembly of main body and frag-
ments can neglect direct ionization by the main body, whieh will have a much
smaller surface area than the {ragments together. Two extreme cases of the
model will help to clarify ideas, 1) If the main body broaks completely into
many fragments before it has ablated appreciable mass by vaporization, we
observe only the fragment cloud, and the lonization curve is that of the frag-
ments, perhaps lacking the beginning, 2) If the main body ablates fragments
so deep in the atmosphere that they have only very short ienization eurves,
the observed lenization eurve is essentlally the main body's iregmentatien
curve, The observed deceleration in ease 1) is that of the fragments; in

13



2), that of the rn‘a.ihe.ﬁody. In intermediate caseés, if will tend to lie between
those, but it is not difficult to.construct cases (as in Section 2.6) where the
observed deceleration is much smaller or larger than either the main body

or the fragments.

Our working model for analysis of individual meteors is that our data
represents a gradation from nearly case 1) for the low-mass (fast) meteors
to nearly 2) for the high-mass (slow) meteors. In either event, the frag--
mentation curve is short compared to single-body ablation curves aﬁd, thus,
cannot represent ablation of successive layers of fragments but something |
closer to a sudden collapsé, where ablation of the first few fragments weakens
the remaining structure. Only such a collapse combi.h_ed with very short

ionization curves for the fragments can explain the result in equation (16).

QOur low-mass (fast) meteors appear to approach case 1) because the
observed value of ¢ ~ 10-12 matches that observed for 1;arge solid meteoroids.
The relatively large fragment spread (~0.3 km) also appears to require
fragmentation early in the ionization curve. Our high-—fnass (slow)} meteors
appear to approéch case 2) because their observed o ~ 10—1l matches that
observed for Super-Schmidt meteors where the main body and '"wake" (ffag—
ment tail) can be separately‘-observed. The greater trail length of the high-
mass meteors is consistent with longer persisi~nce of the main body than in
low-mass meteors. The smaller fragment spread (~0.2 km) is also con-

sistent.

2.9 Frapment Mass

Whatever the unceftainty in the fragmentation curve of the main body,
we may identify the end of the observed ionization curve with the end of the -
fragment ionization curves. The simplified single-body theory predicts that
the atmospheric density at é.ny definite height interval before the end of the

ionization curve, like that at the maximum, obeys

-2 1/3
m

P v £ s

(17)

14



where m is the mass at the same height. Correcting (8) for the difference in
trail length between fast and slow meteors, we find the atmospheric density

at the end of the ionized curve to bhe

P ac v-z'l ] : . (18)
where the fragment mass, formally, obeys

m, o v 03, | | (19)
Equation (19) should be regarded with caution. . Because of -our observa-
tional correlation between v and m, (19) could also be, roughly,

and it is not yet clear that either exponent is significantly different from
ZEro. | '

T_a.ble 1 gives mean effective fragment masses mf For the low-mass
meteors, case 1} implies that this is the real fragment mass. For case 2),
this would be (8/3. 4)2 m, where the total mass m is essentially the main body
mass. For transitional cases, m, would be somewhere between {6/3.4) m
and the fragment mass, thus considerably above the fragment mass. The values
in Table | are therefore consistent with our finding that fragment mass is inde-

pendent of velocity, and we find
a6 | . |
m, ™~ 10 " g .- : : : (21)
This is, furthermore, consistent with McCrosky's (71958)..va.1u'e‘s of 10-4 to
10"6 g and,‘Smit-h's (1954) value of 5 X 10-6 g for the masses of particles

releascd in flares of photographic meteors, esjaeci_a.liy‘if_ equation (20) is -

correct in suggesting larger fragments from larger meteors.
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2,10 Selection Effect of Fragmentation

The simplified theory predicts that deceleration at maximum ionization
is nearly independent of velocity,
3cos Z

. - R
vmax 2Ho : , (22)

where H is the atmospheric scale height (Hawkins and Southworth, 1958}.
Similarly, any model where ¢ is independent of velocity (as seems to be the
case for the photographic meteors) predicts a similar result. This implies
that slow meteors have vastly larger lags than fast meteors and, therefore,
that their fragments should be much further spread along the trajectory.
Such a spread, however, also implies some measurable spread across the
trajectory, and a loss in radar echo strength that would be an extremely
significant selection effect against radar observation of slow, fragmenting

meteors. It would also be very difficult to recognize.

The working model described in Section 2. 8 eliminates the original cause
of worry about a selection effect; there is now no theoretical reason to expect
that there should be a large class of meteors invisible to our radar. Practical
demonstration that there is no such class is not possible by direct means.
Nonetheless, we should expect a gradation from those meteors we can observe
to those we cannot; the intermediate class of metecrs would have shorter
Fresnel patterns. Fortunately, we do not see any such intermediate class in
appreciable numbers. The distribution of mean numbers of Fresnel extrema
{(MEXT) in Table 1 for slow meteors is bunched at high numbers; the tail
toward low numbers is well explained by meteors close to the faint limiting
magnitude of the system. Thus, we also have no practical reason to expect

that many fragmenting meteors are lost.

2.1]1 Results

Several results from the fragmentation study thus far are important in
their own right, and will also serve as the basis for quantitative studies of

individual observed meteors.
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The spread (whole half.-width) of the aistribution 6'fl':fiié:.g—rﬁen_ts ;i:éi'hg the
trajectory averages 0.2 to 0.3 km. The centroid of ion production within that
spread shifts significantly and systematically within the life of one meteor
(but we have not deduced any systematic trend among meteors). The cause
" of the shift is probably inhomogeneous structure of the meteoroid. The result

of the shift is very large errors in individual measures of deceleration.

The main body of most of our meteors does not ablate fragments layer
by 1a,yer but collapses rather suddenly under a dynamic pressure of the
order of 2 X 10 dynes cm 2. It is not yet certain whether this is qulte inde-
pendent of mass or velocity, or how much it varies among meteors. Evi-
dently, this is the same class of meteors as those with sudden 1ight~c1irve

beginnings that formed 15% of McCrosky's (1955) Super-Schmidt meteors.

Our working model for these meteors envisages a gradation between two
simple models. In case 1), the smallest {(fastest) break up early in the ob-
served trail and continue as a group of independent fragments. In case 2), "
the largést (slowest) are observed in the process of breaking up; the frag-

ments h_a;ze a relatively short independent existence.

The mean mass of meteoroid fragments is nearly independent of mass

or velocity, and is of the order of 10 g.

Contrary to previous expectations from simplified theory; there is no
reason to expeét that many slow fragmenting meteors will be unobservable
by radar-. Moreox}er, we do not find any significant number that are mafgin—
ally unobservable. We there!fore do not think now that fragmentation causes

a serious selection effect in our data.
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3. DISTRIBUTION OF METEORS IN THE STREAMS
DETECTED IN THE SYNOPTIC-YEAR SAMPLE

3.1 Introduction

The distribution of meteor orbits in the 256 streems of the symoptic-year
sample (Southworth and Sekanine 1973) was studied in terms of the D-test, which
measures the similarity of two orbits by fhe differencés in their Keplerian
elements (Southworth and Hawkins 1963). To express a stream's strength rela-
-tive to the level of the 3pdradic background and the degree of dispersion of
meteor orbits within the stream, the statistical model of meteor streams
(Sekanina 1970) which ié based on the D-test, defines two parameters af the D-
distribution function of meteor orbité. The two parameters, the population co-
efficient A and the dispersion coefficient O, also serve to determine the number
of definite members of the stream in the sample used (Sekanina 1970), and to
estimate the actual space density in meteor streams (Southworth and Sekanina

1973).

3.2 Determination of the Parameters A and ©

Until recently, the parameters A and ¢ of the DP-distribution funcfion were
determined graphically (Sekanina 1970). This method required laborious plotting
of the D-distribution curves. To avoid this, & new method has recently been
deveioped.

' The theoretical cumulativé D~distribution, predicted by the statistical

model, has the form:

ND) = ¢ » f(-—-Q-—> | (23)
o/2

where N(D} is the number of meteors with the value of the D-test less or equel
\
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toD, C is a constant of proportionality, and

2 2 :

re) = 258 ¢ 2oun (N et ap - meF ] | (2h)
: 0

Since the parameters A and ¢ obviously cannot be determined explicitly, an

iterative least-squares solution has been preferred, which starts from an arbi-

trary pair of values for A and ¢ in (23) and calculates differential corrections

A logh and A logo (as well as A logC) from

EAlogN n 2A0 ZAA Alogl
— 2 L}
IA AlogN|| = ZA EAG TA A, Mggc (25)
) 2 V
| ZAﬂﬂlogN ZAA EAGAA ZAA Alogh
where
' 3.8 2 :
A - 38877 [1 + 1.389A E-D'Be_E 1, (26)
f(E) ‘
3-8
A, = - E
A f(E)
and
"D
E = — (27)
ov2

3.3 Numerical results

Since the actual cumulative distribution of meteors in a stream is a by- -
product of the main stream-search progranm, the above differential-correction
procedure can work directly with the punched qutput bf the distribution daté.
Practical calculations have shown that selection of'arBitréry constants in the
place of the initial values of A and 0 has created no problems and that in all
but six of the 256 cases the procedure converged successfully in less than TO
iterations and in most cases in less than 10 iterations. In four cases (May

Arietids, a Draconids, L Cepheids and € Umids) the method failed to converge,
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and in two cases (April Ursids and ¢ Ursids} failed to yield any solution (thé
reason being that the slope of the D-curve at D f 0.1 was steeper than allowed
by the model); In one other case (o Aurigids) the solution did converge, but
indicated that this "stream" does not satisfactorily discriminste from the
sporadic background.

Table & lists the results. An abbreviated name of the stream is given in
the first column (an asterisk meaning that the stream was also detected in the’
1961-65 sample) the parameters A and 0 are in the second and third, respectively,

the inner and outer limits, D DII’ of the stream (for definition see Sekanina

I!
1970) in the next two columns, and the number of definite members of the stream
in the sample is in the last -column. The definite members total 3182, or about

16% of the whole synoptic-year sample. A stream's population averages at about

12 to 13 meteors.

20



4, ON THE POTENTIAL ASSOCIATION OF FOUR METEOR STREAMS WITH
THE MINOR PLANET ADONIS

L,1 The problem

There are four stfeams in the synoptic year sample with orbits similar to
that of the minor plenet Adonis: Capricornids-Sagittériids, Scorpiids-Sagit-
tariids, X Sagittariids and € Aquarids. In terms of D the difference hetween
the orbit of any of these streams and that of the miﬁor planet is less than 0.2.
The orbital similarity may of course suggest the evolutionary relationship,
implying that Adonis might have been a comet longrtime agZop, and the meteor streams
could be its debris. In that case the streams should indeed move in orbits similar
to, but not identical with that of Adonis. The orbital differénc¢ is partly due to
the non-zero momentum the ejected particles gaiﬁed, enhanced by accumulation of
differen£ial perturbations by the pi&nets since the time of ejection, partly due

to the different size of the parent body and the debris.

4.2 The calculations

We have made an attempt to explore the obsefved difference between the orbits
of Adonis and the orbits of the potentially associated streams to learn something
on the time an@ circumstances- of ejection. . |

Since Adonis has aphelion af 3.3 A.U. and close encounters with Jupiter are
excluded, only secﬁlar perfurbations were considered. Poynting-Robertson effect
can be shown to accumulate over the spans of time considered here to not more than
0.09 A.U, in the semi-major axis, which is less than the uncertainty in the semi-
major axis of the mean orbits of the streams. The effecf of radiation pressure on
the ejected parFicles was considered, although it appeérs to be less important than
the other effects discussed below. For a zero ejection velocity the correcticns to

the five orbital elements due to radiation pressure are:
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My = - —_,
Trp e k2
A =AM =0,
rp rp
(28)
A - _A-cos v Ak
qrp 177+ 2
k
2
Ae = —(e + cos v) Ak .
rp kE

where v is the true ancmaly at the time of ejection, and Ake/ka < 0 is the
relative reduction in the gravitational constant due to radiation pressure,

which amounts to

me 6 x 1077
2 - - p a . T ;] (29)
k S B p

pS and a_ are the density and radius of the particle, Qrp £ ] is the scattering
efficiency for radiation pressure. The masses of meteoroids in the considered
streams are about lo_hg, which gives typically P8, - 0.03gm-2 and therefore
Ak2/k2 = -0,002.

There are three other factors, determining.the future orbit of an ejected
netecroid: the time of ejeétion, the position of the ejection point in orbit
(involved also in the radiation-pressure effect (28)), and the ejection velocity
‘(both magnitude and direction). If we know both the position of ejection in
orbit, given by the true anomaly v, and the velocity of ejection, given by the
radial é and transverse ﬁ components (ejection is assumed to be directed in the

orbital plane), we can write for the corrections to the orbital elements of the

parent body: c .
__o + 2 + e coS ¥ .
A = . [Ecosv+n—-——-l+ecosv sin v] ,
A=Al =0,
C g . . 2
_ o) . + 1 - ¢eos vV +esln vV
bhg = = Tre [~ sin v + N T+ e cos v ], (30)
. 2
_ : . 2 cos v + el +cos” v)
Ae -_C0 [E sin v + 1 T F o cos v ]
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where

1/2 1l/2
¢ = a+e)/ (31)
O v

4

and v = 2.978 x 10, if.é and n are expressed in meters per second.

The model calculations started.with running the orbit of'Adonis back for
12000 years, applying the secular_perturbations by Jupiter to Neptﬁne.- Basgd
on our frevious'experience (Sekanina 1971), we assumed ejections to take place
at five discrete times L0OQOO to 12000 years ago, aiways 2000 years apart. At B
each time, elections were cdnsideréd to take blace at 1.2 AU, and 0.7 AU from
the sun before perihelion, at perihelion, and aiso 0.7 and 1.2 A.U; aftef
perihelion. The ejéctions were then assumed to be'directed toward the sun and
also deviating by 30° and by 60° both in and opposite to the direction of
motion. Finally, the magnitude of the ejection velocity wés ezstimated from
Probstein's (1968) fluid-dynamics model. Assuming that ét the time 6f ejection
the radius of Adonis was between 1 and 20 km, the véporization fatgsbetween 1l

17 17

x 107" and T x 10 molecules/cmz-' sec and surface teﬁperature 190° to 200°‘K

(both fitting a range of values for water snow), the minimum ejection velocity,

v, (& + n2)l/2, of meteoroids of p o = 0.03 g cm*2 would vary as 17/r

(m sec-l), the maximum velocity as 200/r (m sec_l),;where r is the helio-

centric distance in A.U. A case with 60/r (m secfl) was also considered,

assumed to be & reasonable mean value,

4,3 The results

Altogether, theréfore,rfive election times were éonsidered with 5. x 5 x 3
= T5 options in each case, or a total of 375 individusl models. For each of
them the initial orbital elements were computed from the orbital elements of

Adonic at the time of ejection, adding the corrections due to radiation pressure
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Table 1. Data from 3550 Syﬁdpﬁc'Yearrneteors.

lJtCtL. .32-10[) 1.(1"3.2 3.£-10. 1“.—32“.' _32'-10U. IDU.OL.P ALL Dl(tL.
LUulb 1 ASS CVEW =g GVER =2 UVEF =2 OVER =2 OVER =2 GVER =2 OVET -¢
FRACT o197 20020 «U315 « 0025 10,0000 U,0U00 lle2
Sy whan 16,2776 17,6926 L8,6872 17,0347
AV DECEL b3 19578  4,TA3C - celli2
AV LEXT 20,7714 2U 306 19,1072 ‘ 195734
AL FROG-K -l oe60U2 -d o T070 «3,1759 =Zeb938
Av L FFC N 4217 1,3167 2.,1124 " lew292
CUEXT O ba? Ul UGG T LO0B5 : NIy
6=-12 1288 «1273 w1429 . aUs

13«19 . « 4857 « 3091 | +3929 . e34la
20=30 e4BHT #5591 4554, «5133

L FREG MASS Pk 29 .8500 o 5538 ’ JTT24
-4 TC =% - «U143 L 100U «2321 - ‘ e1211
% TO =8 288 +0318- 21518 . D678
-6 TO =7 s]1%3 «.0138 +0357 - N/FIT
LE =7 CaCOU0 - 20065 . L0268 . ) D123

L FRG HURB sk Thd 1545 _W083e6 184U
| ¢ 1C 2 « 3857 5455 W4 l07 by 7
.2 TL & al2H8 22727 s 196 ' . #2832

“« TC & 00000 0227 «10T1 . #0533

GE 6 o (1143 0045 «G0B9 . L0097

FsMA X 8747200 B7.1200 87,1618 : 67,1823
TRAIL LEN, 11,7609 12,4825 11,6621 12,0930
MMAX <ML IV 23,6700 3.7191 3.8723 3,7700
MAGN [MAX } 11.,4%986. 11,3809 11,2321 ) 11,3380
LO6 slGMHA -10.391‘0 wlO, 8744 -11123"5 ) wllu9034
DECEL, 032=140 1e0=3,2 3,2-10, 10,=32, 32,~100, 10D,+UF ALL DECEL,
LOGIO'MASS =2 TO =3 =2 TO =3 =2 TO =3 =2 70 «3 =2 TO =3 =2 T0 -3. =2 TO =3
FRACT ° +0093 +0842 1724 MLk «0020 0,0000 «297%
AV VMAX 2440291 24,9598 26,0872 28,0422 . 2549091
Ay DECEL =~ - L7170 2.1965 5,5707 13,5287 5.6622
ay MEXT 2121212 20,0301 19.01a7 17,4058 19.1278
AV L FRG M =1,y3778 =l ITHR -k o0321 wkab283 . =3,7311
AV L FRG N wla0l2é « 4800 1s#260 1.5022 : LlelS22
MEXT S=7 0.0000 + 0067 +0098 20385 - «0133
8=-12 +0909- «1003 «l225 «1250 «1155

13=19 «2727 «3T48 T 1 1) « 5000 LT
20=30 e63b4 o5l04 Wh592 «336% : w09

L FRG MASS 094657 «8595 + 49084 «3173 . +5947
wi TO =5 0,0000 + 0803 23105 «3173 02339
_"5 TO =4 D.0000 - ML7-1) .1389 02303 +1174%
=t TO =7 +0303 +0033 «0327 08865 +0303
LE =7 0,0000 +0100 + 01986 «0481 « 0237

L. FRG NuMB + 8485 © 34T ellll 0768 21979
o TO 2 w1212 » 2753 W&6127 <4808 . _ #5691
270 & 0.,0000 +0835 «2500 03942 + 2027

4 TO & +0303 0100 + 0180 20385 20208

GE & 00000 L0033 «0082 20098 «0095%
HMAX 89,4408 Gl 42l - 90,1688 88,3028 ’ 90,0635
TRAIL LEN, 122067 12,9729 13.212% 11,5872 12.9184%
- MMAX=MLIM 3,%000 3,86311 3,675 4,097) C3.TiO2
MAGN {MAX ) 1123394 11,3896 11,3325 10,9221 11,2999
LOG SIGMA  =104&339 «10,9464 =11,3548 =11,6897 ‘ 1142480
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DECEL . v32=140 lali=3,2 Jedm1l, lUg=32, 32,=100, 100,+uU¥ ALL DECEL,.
Liuil MASS =3 TW =4 =3 TO ~& =3 10 =t . =3 TO =4 23 70 «4 =3 TO -4 -4 Tu =4
Foongd #0023 W0321 + 1904 1496 sU034 0.0000 +3777
AV OULAK 33,1425 41,7109 32,7491 34,7395 35,0267 33,4707
Av ¢CCEL «n012 2.2738 56,7020 14,9699 «8,85%58 .94l
Av 1 LEXT 11,2500 16,3070 15,6805 14,5085 11,5000 15,2418
AV L FR(G M =la74b3 -3.,20648 4o 4007 -5,2542 ~ToO4b1 4406516
AV | Fhi M =Ll459%8 -,0486 «9779 1,7148 31,3768 lelBBS
T 57 040000 LiBB +0163 +Gl32 L0833 +U1lu®
#=12 1250 le9l «1938 L2881 wulb7 02289

13=19 « 750G 404 obl2% « 5800 +«3333 26L03
20-30 «1250 «2018 1775 1186 o 1687 + 1559

L FRO MASS 1.G0ULD . 7719 « 3107 .1318 0,0000 28U
-t TO =5 0Wt000 al491 « %201 «2957 0.0000 ¥ 3415
-t TG =6 0.L000 L0702 2012 03627 « 2500 2453
-6 TO =7 0uGOOO LLuas +05023 1318 Hl187 0820
LE =7 T Q000D (-,0000 .0178 +0979 $3333 «0507

L FRG HUNB LaLO0OO W 0849 «l027 0791 0,.0000 +1588
v TG 2 0,000 IR-THHY ebBb4 «5558 L33 6092

2 TU & U, 0000 L0351 o L435 «3lba w6867 2068

& TU & U, 0000 L4,0uD0 » 0064 L0377 «166T +0186

Gk & 0.,0000 00000 «0D30 «0113 +0B33 « 00867
HEAX 93,0378 92 ,9u00 G2,4T34 92,3034 93,7187 924568
TRAIL LEN, 127221 12,0106 ° 11,9529 11,3054 10,0895 1146891
MMAX &ML IN 3.6500° 3,408l 3,4731 31,7228 3,5250 33,5674
MAGN (MAX) 11,2125 11,4974 11,4558 11,2089 11,3917 11,3595
LOG S1GMA =1045162 =10,9312 «11,3934 =11,7205 «1Z.1756 =11,4854
DECEL, e32=140  1,0-342 3,2~10. 10e=32e 3221904 - LOO+UP AL.L DECEL,
LOGLO MASS =& TO =5 =4 TO «5 .4 TO =5 =4 T0 =5 =4 TO «5 =4 TO =5 -4 TO =5
FRACT 0,0000 .,0028 +0313 20879 »0220 00,0000 + 1439
AV VMAX 4G ,ST10 b3 1657 44,7239 49,8241 #5,0827
AV DECEL 2,5140 7.0659 17,8261 - 48,4267 19,8588
AV MEXT 13,2000 12,1802 11,3269 9,8077 11,3190
AV L FRG M =3,1816 =iy 3703 =5.%793 -boh&IT aSe3hbb
AY L FRG N =1lgll%6 « 0161 1,0887 1.8294 + 9135
MEXT L1 4 0,0000 +0270 «0817 el&lC «0528
8-12 23000 « 5495 «570% « 5769 25616

13=19 + 5000 » 3694 +3333 02051 3249
20=30 «2000 0541 0545 0769 « 0607

L FRG MASS «9000 w2613 20873 10841 w1252
=% TO =5 « 1000 #5135 « 2051 «0385 a2bhb
=5 TQ =6 00,0000 2162 b8 e 1795 03483
-6 TO «7 040000 0,0000 +2118 k359 + 1957
LE =7 ¢,.0000 + 0090 «0673 «2821 +0881

L FRG NUMB 1.,00600 ehiI2% +1218 « 10286 22035
0 TO 2 0,0000 « 5588 « 7051 + %359 sbl0&

2 T0 & u,0000 +0090 «1603 « 3974 1 0%

4 TO » 0,0000 0,0000 L0096 «0385 0117

GE & 00,0000 0,0000 L0032 + 0258 «005%
HMAX 94,4900 94,1775 94,1824 93,7462 94,1207
TRAIL LEN, 10,0275 10,7823 10,2897 B.9274 10,1793
MMAX =ML [ M 31,0700 3,3378 3,6003 3,.911% 31,5804
MAGN (MAX ) 11,7700 11,4712 11,2619 10,8090 11,2481
LOG SIGMA w10, 9140 =11,3782 =11,7539 =12,1253 wlleT126

Table 1. (Cont.)
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" ‘Table 1. {(Cont.)

ALL DECEL.

DECEL. +32=1.+0 1e0=342 3.2=10, }0.-32. 32,=3100, 100.+UP
LOGLIO MASS ~5+LOWER «54+LOWER ~53LOWER «54LONER =54LOWER =5yLOWER =54 LOWER
FRACT 040000 U, 0000 +0051 «0239 «0318 «0037 20645
AV VMAX 55,2972 56,4162 58,2167 60,8066 57,4659
AV DECEL Te%933 19,6924 52,7240 145,2349 42,1600
AV MEXT 9,2778 B,9177? 3.,4955 8,538% HaeTlb2
AV L FRG M -4 ,6235 =S5.b636 =645798 =7: 7659 ~bel533
AV L FRG H =193 «3398 1al388 241653 27812
MEXT 5=7 +0556 1647 «1770 «3077 LL703
Bul?2 7Y Ye +6B24 « 5044 W3B4L »5983
13=19 - 80,0000 20568 2212 «3077 olobd
20=30 0,0000 09%] «0973 0,0000 G830
L FRG MASS 20558 «047} « 0265 U4.0000 0349
-4 TU =% 7778 1176 ,0708 0769 eltél
-5 TG =6 1687 4706 1062 0.0000 « 2402
-6 TG =7 0,0000 «3529 «39B2 «1538 #3362
tE =7 0,0000 s0118 3982 2 1692 2445
L oFRG UL -7 TS «2B24 ei150 0769 242
v Te 2 20558 + 7059 o T345 «2308 Oully
2 TU 4 0,0000 20118 « 1504 ab154& «1135
4 TU & 0,0000 ¢,0000 0,000C «0769 «00%64
GE & 0,0000 0.0000 00,0000 00,0000 L.0L0U
HEA X 96,5611 96,1400 94,923C 94,4538 95447864
TREIL LEI, 9,8857 . 9.4502 8.0671 T.58l4 8,6958
M AX«ME TH 3,2187 31,2847 3,395 3,2308 3,3310
MAGH [MAX) 11,5000 11,4918 11,3726 11.3769 114271
LUG S5I1GHA «11,3711 =ll.,7621 =12,1183 =12,5482 =11,9517
DECEL. -32"1.0 le0=342 3ed=10a 10:4=32, 324+=100, 1OD|9UP ALL DECEL e
LOGIU MASS ALL 4A55 ALL MaSS  ALL MASS ALL MabS  ALL MASS  alL HASS ALL MASS
FRACT +UL313 L1811 2307 «2932 0592 20037 1,000u
AV VidAX 19,7975 23,9131 30,0888 38,7154 52,7705 60,B046 32,6248
av DECEL 7017 241334 b,l443 16,0626 51,4443 145,2369 1143403
AV MEXT 20,0216 19,3593 16,9386 13,3698 9,2000 B.5385 15,9625
AV L FRG It =leb&sS 249414 =4,2078 =5,2907 -b,bl32 =7.7659 -4 e 3640
AV L FKG N -sl463 26478 1,1561 Lokal5 1.666% 2.1653 1+13k6
rEXT 5«7 D.0000 2 Q0B2 My « 0365 s1619 «3077 «02b7
§=12 #1171 «1213 1502 23900 «9143 2 3B40 2508
13=19 «3TE4 o012 o899 w0524 «2333 »3077 i3l
20=-30 e 5045 eeTl12 02995 «1210 0905 00,0000 #2715
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Table 2. Additional data for the mass gr'oulﬁs of Table 1.

loglornass range {g)

Limit to number of extrema
at mean range and velocity

Mean observed extrema

Loewenthal's C at mean height
and velocity '

Width of last two observed
Fresnel zones (km}, a high
approximation to fragment
spread

-2 to -3

61

19.1

0.043

-3 to -4

37

15.2

0.050

0.22

-4 to =5

21

11.3

0. 047

0.26

13

8.7

0.046

0.31
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Table 3. Computed lag and width of last two Fresnel zones (km).
Decel: 0.32—1.0 1.0-3.2 3.2-10 10~32 . 32-100 100 + up
log m >-2 L 0.02 0.06 0.12
‘ max .
L 0.14 0,39 0.75
end
W 0.18 0.18 0.18
-2 to -3 _ 0.01 0.04 0.09 0.16
max
L 0.08 " 0.20 0. 57 0.92
end _
w 0.18 0.18 0.19 0.20
-3 to -4 0.02 0.06 0.11 0. 30
: max
0.15 0. 36 0.64 1.67
end : ,
w 0.22 0.22 0.24 0.25
-tto -5 L 0.01 0.03 0. 07 0.12
U max
L 0.06 0.18 0.39 0. 64
end-
W 0.23 0.24 0.25 0.27
=-3 L 0.02 0.04 0.09 0.19
max
0.10 0.23 0. 49 ¢.95
end
w 0.28 0.29 0.29

0.28




' Table 4. Mean vertical trail lengths.

hbeg_hend (km)
Simple Short Synoptic
Mlim—Mmax theory trail year ¢,

0 0.0

7.8 (7.3 1 2.4)
2 19.0

10.4 7.4+2.5
4 29.8

18.9 (8.3+2.8)
6 40.0
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Table 5. Mean vertical trail léngths and radiant zenith distance.

cos Z Mean cos Z h -h o

R R beg “end 1
0to 0.2 0.143 1.71 0.59
v
0.2to0 0.4 0.318 3.81 1.04
0.4t0 0.6 0.514 6.14 1.90
0.6 to 0.8 - 0.715 8.07 2.44

0.8tol 0.847 8.38 2.53
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Figure 1. Mean heights at maximum ionization of 11061 meteors, with estimated

corrections for diffusion.
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Figure 2. Vertical trail lengths and radiant zenith distances,

from Table 5.
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Figure 2. Vertical trail lengths and radiant zenith distances,
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