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ABSTRACT ,

The considerations in selecting the sampling rate for a digital
control of aircrafts are identified and evaluated, The design method
used in this analysis is the optimzl discrete synthesis, Due teo dis-
cretization of the continuous plant this method of design does not
introduce an artificial limitation on the sampling rate. The principal
example used is the short period mode of a hypothetical high perform-

ance aircraft. The assumed model includes a bending mode and wind gusts.

Four major factors which influence the selection of the sampling
rate are identified: (a)} the time response to control inputs; (b) the
response to an external disturbance; (c) the sensitivity to variation
of parameters; (d) the roughness of the response to control inputs,
Each of these factors and its relation to the sampling rate was inves-
tigated, It was found that the limiting factors in the selection of
the sampling rate for the example are the time response to a control
input, and the response to an external disturbance, The sensitivity to
variation of parameters is larger for lower sampling rates. However, the
sensitivity can be reduced by modifying the design of the optimal linear
compensator, Different roughness functions which measure the roughness

to control inputs are suggested and demonstrated on the example,

The optimal discrete synthesis computer program, which is based on
eigenvector decomposition of the state-costate Hamiltonian matrix, is
a highly efficient program, This program calculates the optimal discrete
regulator, the steady state Kalman filter, and the mean response to

external disturbances.
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a

1.IST OF SYMBOLS

In the following list of symbols, the matrices will be
represented by capital letters, and the vectors by small
letters.

weighting matrix (states)

-1
Ay 7 A R o

(Eq. 3.32)
weighting matrix (control)

B =A, (Eq. 3.32)

control gain matrix

correlation function

D(z) or D{w), discrete compensation (Fig. II-1)
def: E 2 z'1, ch. III

linear operator {average), Ch, VII
system matrix

force on the elevator

force on the nose

input distribution matrix

input distribution matrix (control)
input distribﬁtion matrix {noise)
measurenent matrix

defined in Eq. 3.89

Hamiltonian

defined in Eq. 3.80

rate gyro and accelerometer pickup
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LIST OF SYMBOLS (Cont)

unity matrix
cost function
Kalman gains
pitch rate and acceleration gains

general parameter
slope of first order hold, Ch, III and Ch, VII

distance (elevator--center of mass)

j=1, ..., n; eigenvectors of §

moment

error covariance matrix (after measurment)

aerodynamic moment coefficients

number of zeros

number of intervals (T)

number of states; acceleration
accelerometer’s measurements

acceleratiocn (z-direction)

error covariance matrix (before measurement)
n-order characteristic polynomial

power spectral density matrix

discrete covariance matrix

pitch rate

2
g

e

q

—-xiv—



R Ch VII

T Ch III

U Ch III

w II, TII

. LIST OF SYMBOLS {Cont)}

defined in Eq. 7.14
power spectral density matrix of the measurement noise

power spectral density of the measurement noise (rate
gyro and accelerometer)

solution of the matrix Riccati equation
Laplace transform

matrix of.the eigenvectors

sampling interval

transformation

trace of matrix

time

control covariance matrix
defined in Eg. 3.32

input

velocity

measurement {white noise)

measurement white noise of the rate gyro and the
accelerometer

weighting matrix for roughness function
w-traﬂsform

vertical wind (white noise)

external disturbance (white noise) :
discrete disturbance

vertical wind gusts (correlated)

—-_XYV—



LIST OF SYMBOLS {Cont)

X covariance matrix of the states

X Ch I1X defined in Eq. 3.59 and 3.88

x state variable vector

xa, x4 bending mode states

v measurements and/or output of a system
Zw aerodynamic 1ift coefficient

z z-transform

z bending mode deflection

z! bending mode slope

3 ] transformation to z-plane

Greek Symbols

a angle of attack

T discrote input distribuiion matrix

T discrete input distribution matrix (control)
F2 discrete input distribution matrix (noise)
T ' & ZX, (see Eq. 3.57)

At suﬁdivision of T

6£ elevator angle

Ssq pilot stick input (Fig., IV-11)

b5y see Fig, IVv-11

€ interval of time

c damping ratio

c* equivalent damping

-Xvi~



LIST OF SYMBOLS (Cont)

T white noise
no unstable mode
B angle (Fig. VII-14)
AE,Z defined in Eg. (3.59) and (3.88)
X Lagrange undetermined multiplier
§0 stable mode as defined in Egq, 3.64
Eo defined in Eq. 3.70
g standard deviation
T time, time constant, correlation time
3 transition matrix
w angular frequency
Superscripts
k corresponds to one of the n states
T transposition of matrix
~ estimation error

mean value

hest estimate

Subscripts
a corresponds to enlarged system (Section VI-F)
b corresponding to bending modes
c corresponding to closed loop
d discrete
E unstable eigenvalues (z-plane)
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LIST OF SYMBOLS (Cont)

i sampling instant

P corresponding to plant

sSs steady state

T total

w relative to wind

z relative to stable eigenvalues (z—plane)
Abbreviations

A/D analog to digital

cps cycles per second

E-L Euler-Lagrange

F-H hypothetical aircraft

FOH first order hold

LPF low pass filter

N(O,Q) normal distribution with a zero mean and a power spectral

density matrix Q

RF roughness function

rms root mean square

RSL root square locus

SAS stability augmentation system
SP short period

SPS samples per second

TRP time response parameter

ZOH zero order hold
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I, INTRODUCTION

A PROBLEM STATEMENT

During the last ten years, the aerospace industry has shown a ten-
dency to replace the analog components of closed loop systems with digital
computers, The advantages of using a digital computer instead of a
specially built analog system are numerous, Among them are greater
accuracy, the ability to change parameters during the control operation,
and flexibility of the control logic, On the other hand, the principal
disadvantage of a digital computer in a closed loop control system is
its discrete mode of operation, The computer processes numbers generated
in real time by sampling continuous signals, The computer outputs, which
are sequences of numbers, have to be reconstructed into analog signals
(commands to actuators), Therefore, in the process of designing a digi-
tal autopilot, careful selection of the rate of sampling and the process-

ing of commands are important,

Selecting an appropriate sampling rate for an aircraft digital
controller necessitates a compromise, Cost and accuracy are factors
which argue for lowering the rate, ws . A low ws directly reduces
the cost of A/D and D/A equipment, Using less central processing unit
percentage time can either free the system for other functions, or
result in reduced central processor costs, The increased accuracy ob-
tained by slower sampling is well documented [BO-1] and can be trans-—
lated intoc additional cost savings by reducing the word size, Economic-
ally speaking, the best engineering choice is the slowest possible samp-

ling rate meeting all performance specifications,

Factors which may constitute an incentive to increase the sampling rate
are, e.g., (1} closed-loop bandwidth, or time response requirements;
(2) sensitivity to parameter variations; (3) effect of random disturb-

ances; and (4) roughness of control,
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Qur objective will be to identify and analyze the important factors
which influence the selection of a sampling rate for a closed-loop air-
craft diserete control system, After discussing the factors and their
properties, we will propose methods which will help the designer choose
a sampling rate which will not violate given criteria of performance

or given properties of the system,

As an example, we chose a hypothetical, Mach 3 aircraft [BO-1, SU-1],
flying in a highly turbulent atmosphere., This choice, which we shall
term F-H, was made because the requirements of a high-performance military

aircraft impose a limit on the minimal sampling rate,

E. PREVIQUS RELATED RESULTS

Aircraft digital control systems have now been implemented [DE-1,
MA-1], and many more have been studied [BE-1, BO-1, DsS-1, LE-1, SU-1],
The pertinent literature discusses various methods for selecting the

sampling rate,

Sampling rate selection is sometimes based on a specific multiple
of the highest important bending mode. An appropriate value for this
multiple was reported by Lee [LE-1] to be four., Others [JO-1, SI-1, ST-1]
have also selected sampling rate to be about four times the highest
important bending mode; however, it is perhaps more typical to select
sample rates at approximately six to ten times the highest bending mode

(see, for example, Refs, BO-1, DE-1, ED-1, 0S-1, SU-1], Recently,

’
Berman [BE-1] introduced the concept that the proper sampling rate is

independent of the bending modes and should be based solely on disturb-
ance effects, This was applied to a V/STOL example and yielded a samp-—
ling rate which was slower than the highest bending mode., According to
some discussions [LE-17], such a slow sampling rate violates the sampling
theorem [RA-1], which is said to state that the sampling rate must be

at least twice the highest bending mode frequency, Our interpretation

of the sampling theorem will be discussed in Chapter IV,

A completely different approach to selection of sampling rates



was taken by Mrazek [MR-1]. His selection process was dominated by the
time constants of the measuring instruments' analog prefilters, This
consideration resulted in sampling rates ofs 100 to 200 cps, However,
flying experience with digital autopilots {MA-1] shows that such high

sampling rates as suggested by Mrazek are unnecessary.

The design technique used in the analysis often influences the samp—
ling rate selection and, in some cases, causes the sampling rate to be
significantly faster than required. Although many variations exist,
we prefer to divide the design methods into two broad categories:

(1) those whose design is done in the continuous domain (or s-plane), and
(2) those whose design is done in the discrete domain (z or w-plane).
Designs of the first category are attractive since they utilize the
experience gained over many years of continuous autopilot designing.

The authors using this method [BO-1, ED-1, 0S-1, SU-1] choose one or

a combination of discrete approximation techniques (reviewed recently

by Edwards [ED-2] and Slater [SI~1]) to transform the resulting contin-
@ous compensation into a discrete compensation, The effect of the ap-

proximation in the design is typically checked by a precise simulatiomn.

Designs of the second category include the w-plane techniques
[LE-1
space techniques of Berman [BE-1], Johnson [JO-1], and the author of

ST~1], z-plane Nyquist techniques [SI-1], and the discrete state

H

this work,

The approximations inherent in category 1 (s-plane) methods introduce
an additional constraint which may be important in sampling rate selection.
It is interesting to note that all authors reporting the use of a cate—
gory 1 design method gelected a sample rate which was a higher multiple
of the bending modes of interest than those authors using a category

2 method,.

An attempt was made to relate the sampling rate to overall per—
formance for the case of optimally controlled systems, Lewis and
Athans [LEW-1], and Astrom [AS-1] developed a method which investigated
the change in the quadratic index of the continuous plant for different

sampling intervals, Their results, which are essentially experimental



(on computer), show that for larger sampling intervals, the general

tendency of the quadratic index is to increase,

1)

C. NEW RESULTS

Four major factors which influence the selection of the sampling
rate for the discrete control of a continuous system were identified

and analyzed. These factors are:
1. the time response,
2, the response to an external noise,
3, the sensitivity to variations of parameters,
4, the roughness of control,

By using an optimal discrete design, we eliminated the time lags
introduced into the control loop by the discretization of a continuous
design, Hence, the sampling rate is ne longer limited by discretization
approximations and we can concentrate on the analysis of the four factors

listed above,

1, The time response to a step input is directly related to the
length of the sampling interval, TFor a given criterion in the
time domain, the time response deteriorates for longer sampling
intervals, From simulation of the F-H short period mode, we
found that the discretized low pass filter and the discretiza-
tion of the pilot's analog input introduce a considerable delay,
This delay is as long as two sampling intervals and limits the
choice of the sampling rate, For the F-H short period example,
the lower limit of the sampling rate, imposed by the time re-

sponse, was found to be in the vicinity of 10 cps.

2, The response to external disturbances is a function of closed
loop dynamics, the disturbance correlation time, and the samp-
ling interval, It was found that for any available (discrete)
control, there is a well-defined limit to noise alleviation,

This limit is a function of the sampling rate, For higher



sampling rates, the noise alleviation by the closed 1loop system

is greater,

By analyzing the external disturbance as a Gauss-Markov
process, and by using an optimal discrete control, greater

noise alleviation for the same sampling rates can be achieved,

Sensitivity to variation of parameters was reduced by proper
modeling of the discrete compensator, The optimal discrete
compensator assumes a perfect knowledge of the system and the
noise, However, if some of the system's parameters vary from
their nominal value, the filtering and controling action of the
optimal compensator is distorted, This distortion was shown to

be worse at lower sampling rates,

In the F-H short period example, a 10 percent uncertainty in
the bending frequency causes instability of the closed loop

system, By remodeling the discrete observer, essentially by
increasing the damping of the observer's error poles corres-—
ponding to the bending mode, the closed loop system was sta-

bilized, The same could be done for larger sampling intervals,

Further restriction in sensitivity to variations of the bending
frequency can be achieved by a damping augmentation of the

bending mode,

Roughness of control is caused by the guantization of the input
signal by the zero order reconstruction hold, Intuitively, it
is obvious that for very high sampling rates, this roughness

is negligible, But for lower sampling rates, the phenomenon
cannot be ignored, This is more than a theoretical speculation,
It was also reported by Mathew [MA-1], who detected an undesir-

able jittery action on the digitally-controlled Saab actuators,

To put the concept on an analytical basis, different roughness

functions (RF) were defined. Basically, the RF is defined as a

sum (for an impulse response), or as a mean value ( for rms response)
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of the squares of the contrel discontinuities. Algorithms for
calculating the RF are given and the RF concept is demonstrated
for the F-H short period mode configuration, An interesting
result came out: 1if the quadratic cost funection is kept con—
stant, the roughness of control may decrease for larger sampling

intervals, This phenomenon is fully explained in Chapter VII,

D, THESIS OUTLINE

In Chapter II, various discrete control techniques will be surveyed,

In Chapter III, the fundamentals of a continuous system's discretiza—
tion and of the optimal discrete theory will be outlined, The author's
approach to an optimal discrete synthesis, by eigenvector decomposition,
will be given, Various numerical algorithms, useful in discrete analysis,

will be described,

In Chapter IV, the limit on the sampling rate, imposed by a time
response, will be‘investigated. An example, which illustrates the basie

concepts and is used in cther chapters, will be described,

In Chapter V, we will investigate the relation between the sampling
rate and the response to an external disturbance, A theoretical proof
of the 1limit of noise reduction as a function of the sampling rate will

be given,

In Chapter VI, the sensitivity to variations of parameters will be
described, We will investigate the behavior of a closed loop system
which includes unwanted frequencies, in our case, the bending mode, We
will show how sensitive the system is to an imperfect knowledge of un—l

wanted frequencies and what can be done to reduce this sensitivity,

An interesting relation between sensitivity and the stability of

the compensator will conclude this chapter,

In Chapter VII, a new criterion (the roughness function), will be
explained and methods for calculating the function will be given, This
new concept will he demonstrated in the design of the control loop of

the F~H short period mode example.



In Appendix A, an instruction manual and a program DISC are given,
This program, for the synthesis of an optimal regulator and an optimal
steady state observer for discrete linear systems, has various options,
The discretization procedure and the calculation of the response to an
external disturbance are included, An illustrative example is given at

the end of Appendix A,

In Appendix B, the simulation algorithm of the principal example's
behavior will be explained., This simulation, based on a specially built
computer program, simulates the behavior of a discretely controlled con-
tinuous system, An imperfect knowledge of various parameters of the
simulated system is included as an option in the program, Most of our
results regarding the time response of our principal example are de-

duced from this simulation,

E, SUMMARY OF CONTRIBUTIONS

1. The first investigation of sampling rates, considering all

effects and identifying what is important,

2. The factors which influence the selection of the sampling rate
were evaluated for an F-H example, It was shown that a proper time
response and gust alleviation were the two major factors determining the

sampling rate,

3, Demonstration of a technique that eliminates bending modes and
uncertainty of their exact frequencies as an important constraint on many
aircraft autopilot designs, All cases are easier than that of an F-H

flying at Mach 1.2 and at zero altitude,

4, A relation between the stability of the compensator and the

sensitivity was described,

5. It was found that there is a definite limit on the alleviation
of an external noise by a discrete controller, This limit is a function

of the sampling rate,

6. A new criterion, the roughness function, was defined, Methods

for calculating the function by using existing algorithms are given and
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demonstrated for the F-H example,

7. A new algorithm is given for calculating the Liapunov equation

using eigenvector decomposition,

8, A computer program was developed for the synthesis of an optimal
discrete regulator and an optimal discrete steady state observer based

on eigenvector decomposition,



II, SURVEY OF TECHNIQUES FOR DESIGNING DISCRETE
CONTROLLERS FOR CONTINUQUS SYSTEMS

The method of design, divided in the previous chapter into two

major categories, can be further divided into the following cate-

gories:
A, A classical continuous design and a discretization,
B, A continuous design and an optimal discretization,
C. A classical discrete design,
D, Discretization and optimal discrete design,

A, CLASSICAL CONTINUOUS DESIGN AND DISCRETIZATION

Designh on the s-plane and discretization of the compensation network
is a widely used method, Borow et al [BO-1], Edwards [ED-1], Osder ros-17],
and Sutton et al [SU-1] use this method of design., Their fundamental

approach is to duplicate the analog filters by digital filters,

Edwards [ED-2] and Slater [SL-1] investigated various methods which are
used to design digital filters having properties similar to the corresponding
analog filters, The transformations used in converting the filters from the
s—plane to the z-plane are: the standard z—transform, the bilinear
transformation, 2z-forms, and the matched z-transform, These transforma-
tions yield digital fiiters of the same order as the original analog
filter., Edward's conclusion is that the z-matched transform has proved
to.be a good technique for generating all the standard filter forms,

McGough [McG-1] analyzed this design method and suggested using the fre—
gquency response characteristics of a zero order reconstruction held to
filter out the unwanted bending freguencies, which usually consist of
the highest frequency component, We will show in Chapter VI that in

practice, sampling at the bending frequency may cause instability,

—-9-



CONTINUOUS DESIGN AND AN OPTIMAI DISCRETIZATION

B

Designing a discrete controller in the continuous domain is attrac-—
tive to any designer because tlie reguired characteristics and the closed
loop properties are usually given in the time domain (or s—plane},

Most designers have a better understanding of the physical quantities
expressed in the s-plane, Hence, several attempts were made to trans-

form the continuous design to a discrete domain in some optimal way,

Melzer and Kuo [ME-1] use Taylor's approximation for the solution of
an optimal regulator as a function of the sampling interval, Once a
sampling interwval is chosen and an optimal continuous design is done,
the feedback matrix is obtained by Taylor's series approximation. As
the authors c¢laim, this method can be verified only by numerical experi-
ments, The method was later improved by Kuo and Peterson [KU-1],
Using Taylor's expansions of the feedback matrix and the solution of the
Riccati equation, they modified the feedback gains so that the response
of the sampled—data model was as close to that of the original continuous

system as possible,

Yet the most promising approach of this kind is given by Yackel,
Kuo, and Singh [YA-1], Their method, based on Kuo's previous results, is
a complete digital redesign of continuous systems by matching states in
multiple sampling periods, Their method is essentially based on the con—
trollability theorem, which states that an n-order discrete system can be
brought to an arbitrary state in no more than n-steps, The desired
state is the solution of the continuous system during the interval n x T,
(T is the sampling interval,) The main disadvantage of their method lies
in the fact that the gains have to be changed for every sampling period,
This adds to the complexity of the numerical calculation in the real

time computer,

€. CLASSICAL DISCRETE DESIGN

This is an exact method based on z-transformation of the continuous

plant F(s). The plant F(s) is transformed to a discrete plant F(z)
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(via 2 zero order hold) on the z~-plane, see Fig, II-1, F(z) includes

the zero order hold (ZCH),

»(I—/—»- D(z) > ZOH > F{s)

FIG., II-1 DESCRIPTION OF THE DISCRETE PLANT

Methods of design on the z-plane are well documented [e.g., CA-1,
CA-2, RA-1], However, designers who are accustomed to s—plane formula-
tions prefer to transform the F(z) plant to the w-plane, The F(z)
plant is transformed to a w-plane by the bilinear transformation

z = (14w)/(1-w),

F(w) has many properties similar to the continuous plant, F(s)
[e.z., RA-1], Therefore, a compensator design can be done by classical

methods (Bode plot, root locus).

After determining a proper compensation D(w), D(w) is transformed
back to the z-plane, w = (z—-1)/(z+1), D(z) immediately gives the re—

cursive compensating equations,

Analytical expressions for 3[F(s)] are only known for very simple
transfer functions, However, computer algorithms which transform F(s)
to F(z) are available, The main disadvantage of this method is its

inagbility to design proberly multi-input, multi-output systems.

D. DISCRETIZATION AND OPTIMAL DISCRETE DESIGN -

The optimal discrete design is based on fundamental work done by
Kalman [KA-1], He pointed out the equivalence between the optimal

linear discrete regulator and the optimal linear discrete observer,

-11—



and proposed algorithms for computing them, This is an exact method since
no discretization approximations are made. Franklin [GU-l] has shown

that the optimal discrete compensator can be designed by first design-

ing the optimal controller and then the optimal observer, We can
separate this approach into a set of two distinct problems: the trans-
formation of a continuous system into an equivalent discrete system,

and the numerical solution of the matrix Riccatl difference equation.

The discretization of the continucus system is done by a numerical
calculation of the state transition matrix and its integral, This subject,
seemingly elementary, has not been exhausted. New efficient algorithms
are discovered and rediscovered all the time, For example, Hansen [HA-1]
rediscovered ‘the algorithm devised nearly 25 years dgo by Frame [FRA-1]

and Fadeev,

Numerical methods for calculation of the discrete regulator and the
steady state filter are extensively documented [e,g,, BR-1, and Kw-11.
Those methods are based on recursive computation of the matrix Ricecati
difference equation until a steady state solution is reached. Following
Potter [PO-1], who solved the matrix Riccati differential equation by a
nonrecursive method, Vaughan [VA-1] found a nonrecursive solution for the
matrix Riccati difference equation. His method involves the calculation
of the eigenvalues and eigenvectors of the canonical state-costate equa-
tions, Using the QR transformation--a highly efficient algorithm for cal-
culating eigenvectors [FR-1], Bryson and Hall [BR-2] constructed a com-
puter program for steady-state optimal control and filter synthesis of
a continuous system, Independently of Vaughan's results, the author of
this work constructed a method and a computer program for a steady state
optimal discrete controi and filter synthesis by eigenvector decomposi-

tion,

The Vaughan solution is further explored by Howerton [HO-1], who
shows that further simplification of the discrete algebraic Riccati

equation can be achieved by transforming the system to a Luenberger

canonical form,
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III, OPTIMAL DISCRETE SYNTHESIS

There are different methods of designing a discrete compensator for
a continuous system, These methods can be divided into two basic cate-
gories as explained in Chapter I, They are: (1) those in which the
design is done in the continuous domain/s—plane; {2) those in which the

design is done in the discrete domain/z or w—plane.

The methods of the second category result in no artificial sampling
rate constraints due to discretization procedure, Therefore, these
methods are more suitable for our major objective in this work; 1i,e,,
to investigate the various factors which influence the sampling rate
selection, The author of this work preferred the discrete state approach
(instead of the w-plane approach) for the following reasons: {a) the
state space approach easily handles multi-input multi-cutput systems;

(b} the w—plane design method, essentially a classical method of design,
does not have convenient computational means for the minimization of

disturbance influences,

It will be shown in further chapters that the optimal discrete

approach, which is used in this work, is a valuable design tool,

In this chapter we will describe the procedure for synthesis of an
optimal linear regulator based on minimization of a quadratic cost func-
tion for a linear, time-~invariant discrete system, The procedure for
synthesis of a discrete optimal filter will be described by using the
Kalman analogy between an optimal regulator and an optimal steady state

filter,

The calculation of the regulator and the filter is based on eigen—

vector decomposition of the related state-costate Hamiltonian matrix,

A discretization procedure will be described for the case in which
the controlled system is continuous and the control input, generated by

a digital computer, is reconstructed by a reconstruction hold.
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Various useful numerical algorithms will be given,

A, DISCRETIZATION PROCEDURE

A-1 Reconstruction Holds

Most of the practical cases of designing a discrete controller are
those in which the controlled system is an analog plant, A special hard-
ware element, called the "reconstruction hold", is inserted between the
computer and the controlled plant, The purpose of the reconstruction
hold is to convert a sequence of numbers, usually equally spaced in time,

to a continuous sighal, See Fig, III-1,

u u u
o i Y
—>= | DIGITAL ~ 3| RECONSTRUC- |——~| ANALOG  |—
L | COMPUTER TION HOLD PLANT

Y

yiT\

FIG. III-1 DISCRETE CONTROL OF AN ANALOG PLANT,
u = control signal, uj = seguence of
numbers, T = sampling interval.

For real time in closed loop ceontrol systems, the reconstruction hold
generates signal u(t}) "(for t = nT), based on Uy for i = n,
Bagsically, the reconstruction scheme is an extrapolation, The zero order
hold (ZOM), generates a constant signal u(t) =u, for iT <t < (i+1)T,
This reconstruction hold is widely used, Higher order holds are used
primarily as examples in literature, The first order hold (FOH) is

based on the last two control vectors——ui, and u,

RT and generates a

signal varying linearly with time:

-14-



: i i-1
u(t) = u, +-———E————- T
(3‘1)
iT = t < (i+1)T 0<71<T,

This formulation of the first order reconstruction hold originates in
sample data theory. The sample data approach usually considers a single
input control channel and sequentially processed scalar quantities,

If a state space approach and a digital computer are used, the FOH can

be reformulated, The new FOH can be defined as

e

u( t)

u, + k.t
1 1
(3.2)
iT < t < {(i+1)T 0<T<T

where u, and ki are quantities calculated simultaneously in the digital
computer., Recall that the FOH is a hardware device, which generates

the step uy and the linear rate ki of the continuous control signal
u(t), during the interval T, The vector ki {a scalar for a single
input system), can be calculated with respect to some specific criteria

and does not necessarily have to be equal to (ui-ui 1)/T,

A-2 Formulation and Algorithms For Discretization Procedure

2. The transition matrix and its first integral,

The discrete formulation of a linear continuous, differential
system is essentially the solution in the time domain from sample point

to sample point, The solution of
X = Fx + G.u (3.3)

is given by [KW-1]
(i+1)T

Xyp = ¢(T)xi + J e[(i+1)T - 116 u(r)dr (3.4)
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For a time invariant system, the matrices ¥ and G are constants;

1
therefore, (3.4) may be rewritten as
T
= +\ o(7)G. ul(T (3.5)
X1 Q(T)xi g (t) 1 (1)dT
4]
where the transition matrix &{t) is given as
- F2 2
T T
Q(T) = e = I +FT+ 2'. + ae e (3.6)

If u(g) is a constant during the interval 7T, +then the second term on

the right hand side of (3.5) is defined as Pl(T)ui, where PI(T) is

T
ro(r) 2 S ®(1)G.dT . (3.7)
1 . 1

b, Discretization of a continuous system driven by a white noise,

The disturbed system:

x = Fx + Gw [w » N(O, Q)]Jr (3.8)

may be represented at sampling points [BR~1] by:

X1 T ox; + T, vy Wy o N(oO, Qd) (3.9)

i i

where T
T ¥

q, = ®(e (1)as
[0 ]
T

r, =S ®{(1)Gdr .

o

T We will use the following notation: w -» N(0,Q), where w 1is a random
disturbance, normally distributed, with a zero mean and a power spec—

tral density matrix Q,
* The reader's attention is directed to the fact that the symbol T 1is
used for the sampling interval and also for a transposition of matrices,.
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We are interested in the covariance matrix Qd for a statistical anal-
ysis of system behavior, whereas Pw and Wy would only be needed for a

complete stochastic simulation, Therefore, (3.9) will be replaced by

xi+1 = @xi + de. wd. > N(0, @)
i i d
1 0
L =1 (3.10)
0 1
T
T T
Q. = g 8(1)G QG © (1)d7 .
d . 2
o
€. Discretization of a continuous cost function,
A continuous quadratic cost function J{(x, u, t):
t T T
J = S (x"Ax + u Bu)dr (3.11)
o .
can be transformed to a discrete version
A
N-1 T T 11 A12
= u 3.1
J 12_0 [x] u)] (3.12)
A21 A22
where N = t/T; by the following procedure, (3,11) can be rewritten as
N-1 (i+1)T . T
J = E {(x"Ax + u Bu)dr . (3.13)
i=0 E
iT

The interval 0 — t was subdivided into N intervals T, The integrals
inside the summation expression of (3,13} can be expressed as functions

of xi and ui instead of x and u, Using (3,5)
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x(1) e(t)x. + T (1t)u,
i 1 i

iT = 1 < (i + 1)T

¥

therefore,
(i+1)T Alr A%
(xTAx + uTBu)dt = [xﬁug] (3.14)
iT A A u
21 22 i
where
T T
A, = g o' (1)A0 (1)d1
0
T
A = A Bld
- So [P, (1)AT) (2) + Bldt
(3.15)
T T
Al2 = S o] (T)APl(T)dT
o
T
Byg = Ay -

d. Numerical algorithms for calculating the matrices o,[ ’Qd’

All’ Alz’ A22 *

There are various methods for calculating the transition matrix
d{1r) and its first integral Pl(T). Most of them are included in
computer libraries, Efficient and simple algorithms for calculating

the matrices A however, are not found, A highly

A
Qd’ 11’ A21’ 22’

complicated method for evaluating the expressions for A and A

110 A1z 22
is described in Reference AS-1. This method requires about 250 FORTRAN
statements, We will describe a relatively simplé methed for solving
(3.15) without a numerical integration, which involves about 80 FORTRAN
statements, This solution is accomplished in two steps: first, we
transform all the A's to a simpler form; second, we subdivide the

. ) k Kk
sampling interval T into 2 subintervals AT[AT = (T)/(27)]. Then
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we show that if the various A's are known for AT [A = A(AT)], then
A(T) 1is obtained in k recursive computations, We will explain

exactly how it is done and how Kk 1is chosen,

The A's are transformed first because the integrands

in the integral expressions of these matrices are highly complicated;

e.g, the complete expression for A21 is:
T
T , T T
Ay, = [S ¢(T)Gldr] [AS ({)Gdf] + Bpdt, (3.16)
o] o ‘
Q
In order to simplify the calculation of A22 and Azl’ we will reformulate

the cost function of (3.11) by augmenting the state vector x with in-

put u, The cost function J will be

N T A O x
T T T i
J = :Z: S [xi ui] o (1) o' (1) dt (3.17)
i=0 o B u,
where &'(1) 1is defined as
o(<) r,.(7) F G
ot{1) = 1 = exp T .
0 I o 0 (3.18)
The expressions for ALl’ Alz’ and A22 are given by evaluating
T A O A A
{ o) ar(v)ar = | 0Pl (3.19)
°© °© B Ao1 Paz

By using this formulation we have transformed the problem to one of

evaluating an integral of the type
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T

Qd = S @(r)Q@(T)TdT. (3,20)
o

It is not necessary to calculate integral (3,20) by a numerical integra-

tion, As in Johnson [JOH-1], we will use the property of the trans-

ition matrix o(T).

(T + 1) = d(Md(x) = d(t)E(T) . (3,21)

k
T will be subdivided into 2 parts A&, If thﬁm) and &(LT) are
known, then Q(2&T) and $(24T) are given by

¢(2AT) = tI’(&T)tD(AT) (3.22)
2AT T
q(207) = | o(r)ae’(r)ar
7 (3.23)
AT AT
= S Q(T)QCD(T)T +S o(AT + 7)QdT (AT + t)dr
Q,(261) = @ (&T) + 8(amq (AT)eT(AT) . (3.24)

k . ;
Recall that £T =T/2", @(T) and Q_(T) are obtained by k recursive

computations of (3.22) and (3.24), which are relatively simple expressions,

In order to calculate initial values of O¢(ST) and Qd(ﬂT),
a constant is selected (say, k = 3) and the following approximations

are evaluated:

QAT), = QAT
2 2 3 (3.25)
AT T AT T AT
Qd(am)z = QAT + FQ 5= + QF —— + FQF™ —
@(AT)1 = I + FAT
3,26
ATZ (3,26)
(AT), = I+ FAT + F —
2 2
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If every term of |le - del and |¢1 - ®2| is smaller than
some predetermined number g, then Qd(ﬁT)z and @(ﬁT)z  are the initial
values, If not, k is increased by 1, Throughout our computation
{short period example), k was never larger than 4, Therefore the
sampling interval T was divided into 16 parts AT, The predeter—
mined number ¢ depends on the engineering judgment of the user who

will have the time constants of the system which interests him.

B, OPTIMAL DISCRETE REGULATOR

In the previous section we described how a continuocus system,
control via a Z0H, can be formulated as a discrete system on the
sampling points. In this section we will develop the theory of an
optimal regulator of a discrete system which minimizes a quadratic cost
function, Using the discretization procedure, the theory and results
of the discrete regulator can be applied directly to a continuous system

controlled by a digital computer.

B-1 The General Formulation of the Discrete Regulator Problem

In the last section, it was shown that a continuous system controlled
by a ZOH with an associated continuous cost function J can be reformu-

lated into a discrete form:

= +
X1 xy v T Y
N-1 A A X,
1 T T 11 12 i
J =3 E_, [xi ui] . (3.29)
1=0 A A u

21 22 i

System (3.29) can be transformed into a simpler form, The cost function

J will be rewritten as

-2]1—



1 &l T T
J = 3 2: (u1 + x A12 22) A (u + A22A21 )
i=o
(3.30)
+ XT(A - )x
i*11 12 22 21
or
1 N-1
J = 22 x&x1+1j B‘U (3.31)
i=o
where
@ = A ATl a
I B 12 22 “21
B = A22 (3.32)
Uj = uy Ay, Ay Xy,
Using the last expression of (3,32), (3,29) can be reformulated as
- @-T, At A ) Y
¢l T 1 %2 8 s T Yy
(3.33)
J:—Z ax1+‘usm

If a linear, full state feedback is defermined

i,e.,

then the control u, for system (3.29) will be

1
Aog Ay

Uy (c - i

This transformation is necessary because the th

crete regulator is solved for the system (3,33),

of the continuous system yields cost function (

R

for the system (3.33),

(3.34)

(3.335)

eory of the optimal dis—
while a discretization

3.29).



For the same reason we can transform a continuous system with an
FOH to an equivalent form of (3,33). Using our new formulation of FOH,

(3,2) yields

u
Xy T Qxi + [Tl Pk] . (3.36)
k.
1
where Pk is
T
i %S 3 (1)Grdr . (3.37)
(4]

B-2 The Solution of the Optimal Regulator

It was shown that most of the control configurations which interesti

us can be rewritten in the simple form of (3.33) repeated here:

xi+1 = @xi + 1—‘l1i
N
1 T T
= — X AX 4+ u, Bu_,
J 2 ;;L i i i i

The optimal linear controller is a control law
u, = C(i)x, (3.38)
i i

that minimizes the cost function J, for any initial conditions, If
N increases to infinity and a steady state is reached, then C(i) =

C = constant, and the controller is called a regulator,

The solution of the optimal linear controller was given by Kalman
[KA-1) who used the dynamic programming approach, We will use Bryson's
approach [BR-1] which solves the system (3,33) via the calculus of

variation,

For a finite N, the last control Uy is meaningless., It will

influence only the state x which does not interest us, Therefore

n+1’
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the cost function J obtains the form
N-1
1 T 1 T T
= = - . 3.39
J > XNAXN + 5 iéﬂ (xiAxi + uy Bui) ( )

In the minimization procedure used in the calculus of variation, we will

augment the cost function J by the constraints multiplied by a Lagrange
T

undetermined multiplier li {(vector), The constraints are the equations

of motion for (3.33)., The augmented cost function J 1is

1T T
= —— - - .40
J = XNAXN }\_NXN + iE (:ﬂl ax,) +H (3 )

where :Hi is defined as the Hamiltonian sequence:

T T (3.41)
uiBui + ki+1(¢xi + Fui).

Mi = xTAx +
i

i

pal=
b

Using the methods of the calculus of variation, the condition for

a stationary value of J is that dJ is zero for arbitrary dui:

N-1
T T al. T aH
dl = - A + —1 _ it
| (e = Ag)amy + 3 [ax. hi]dxi S My
i=1 i i
(3.42)
+ égﬂ dx + éﬁg du .
A% 0 on 0
o o
We choose Xi such that
3 "= o i =0, vu., N-1
ox i
i (3.43)
T
XAy = }\E - 0. (3.44)

For an extremum:
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égi = 0 (3.45)
du

i
yields "
; T
- B r =
3u, Bt A ° (3.46)
-1._T
= - . .47
uy BT A1 (3.47)
Combining (3,33) and (3.47), we obtain
-1 T
= - 3.48
X4l ox = TB Tyn (3.48)
and from (3,42) and (2,40), we obtain
= o' %, . + Ax (3,49)
MoS 141 i° :

Equations (3.48) and (3,49), called the "Euler-Lagrange difference

' formulated in state space notation are:

equations’
x s + 'B 9o ta -8 pTo"T
= . (3.50)
~T =T
A i1 -d TA o] M i
This is a two—point boundary value problem: x0 is given at i = 0,

From (3,43) we get the'buundary condition for i = N:
i = Ax . (3.51)

The solution to this problem was accomplished by Bryson using the
"sweep method" [BR~1], The sweep method assumes a solution for 3.
i

of the form:

Ay = B X, . (3.52)



This solution leads to a matrix Riccati difference equation in Sj:

-1

- T j =N- RN} 0
+TB ) o+a J L ’

T
s, = § (sj+1

s =4 (3.53)

Letermining S, from the backward recursive relations (3,53), and using
J
(3.57) and (3.42), the optimal control ui is expressed as a linear

combination of the state x If certain conditions are satisfied as

il
N increases, Sj reaches a steady state Sss’ and the controller is

reduced to a regulator:

-1, ~T
u, = -B 1r@ (sSS - A)xi (3.54)

which is obtained by combining (3.47), (3.49), and (3.52). In the steady
state, the matrix Riccati difference equation is reduced to a second-
order matrix algebraic equation

-1
T -1 -1.T
8 = 0 (sSS +TB T7) ¢ + A. (3.55)

ss

During the last two decades, a considerable effort has been made to find
an efficient solution of the Riccati equation and the steady state

matrix equation, The usual method of solution for (3,55) is a recursive
computation of (3.53) until 8 reaches a steady state Sss' A com-
pletely different approach to selving for SSS is to use the eigenvector

decomposition of the transition matrix (3.50).

3. Solution of S~s by Eigenvector Decomposition

In 1966, Potter [PO-1] described a method for the steady state solu-
tion of the matrix Riccati differential equation by eigenvector decomposi-
tion, Bryson and Hall [BR-2], using efficient QR algorithm for eigen~
vector calculation, constructed a computer program for linear regulators
and Kalman filter syntheses. Vaughan [VA-1] extended the Potter method

for discrete system control synthesis. The authors solved the eigenvector



decomposition problem independently of Vaughan, and also applied it to
the discrete filter synthesis problem., OQur interpretation and our proof
will be given here.

The Euler-Lagrange equation (3,50} will be repeated here, but on

the z-plane:

~1_T -T - ~
ZX 4B I d A -T'B lﬁTQ T X
zZ\ -6 Ta - A

The following theorems will be proved.

Theorem 1: If =z is an eigenvalue of the system (3,51), the 1/z is

alsc an eigenvalue,

- A -1 .. , A
Proof: (a) defining E: E =2z ; (b) defining a new variable: y = z)

and directly using (3.48) and (3.49), the system (3.56) can be

transformed to an equivalent form:

-1 T
 — Iz ~IB T X
= 0 (3.57)

T -1
A ¢ - Iz r

-1_T
TB T and A are symmetric; therefore, (3,57) may be rewritten

as

¢~ IE -TB IpT
T T
[y = ] = 0. (3.58)

T -1
A ¢ -IE

Systems (3,57) and (3,58) have the same transition matrix, There~
fore, if =z 1is the soluticn of the characteristic equation of

(3.57), then E is a solution also,

-0 7=



Conclusion: The eigenvalues of the Euler-Lagrange equations (3,536) are
reflected symmetrically across the unit circle on the z-plane, See

Fig, II1I-2,

A Im
\O\Ek 2~PLANE
N 1.0
x|
, . \
; k '
AN \
‘ N
/ \ .
- s /*1.0 " REAL
z. )
(] s i
‘-‘\:/ . zk = lzkle 6
g 7 oy i
1/{o/ I B, = |z,] e

FIG, III-2 ROOTS LOCATION OF EULER-LAGRANGE (E-L)

EQUATIONS
Definition:
Xz XE
A A
T = = T .
T [r, T, (3.59)

Matrices Tz and TE are the eigenvectors of the E-L equations,

(3.56), associated with =z and E respectively,

Before formulating and proving Theorem 2, a well-known result from

linear systems theory will be presented [e.g., KW-1],

A homogeneous, linear time-invariant discrete system
x = &x. (3.60)

isl i

with the initial conditions X has the solution
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X, = @ X . (3061)

The solution xi can be expressed in terms of the individual eigen-—
vector modes as follows: the initial condition X, is resolved along
the modes of the eigenvectors by the transformation T;

~1

E = T X (3. 62)
o r o

where Tr is the matyix of the eigenvectors of ©

T = [£

r

17 e ﬂj, crasy ﬂn]_ (3.63)

The solution xi is a linear combination of the particular excited
modes, i.e.,

n

i
x, = jzzlzj;ajgo_ (3.64)

Using this result, we can formulate Theorem 2,

Theorem 2: The steady state solution SSS at the matrix Riccati differ-

ence equation (repeated from Eq. 3.55)

1

T - -1 T.-1
S = ¢ (zS +TB IT") &+ A (3,65)

. _ -1
is 8 = AEXE . (3.66)

=3=}

Proof: The homogeneous solution of the E-L equations (3,56) is

(k) (k)

h i) X (3.67)



the order of the system,

]

where n

ok
{ = constants expressing boundary conditions
Toy
zk
{ = eigenvalues of (3.51)
I!'l~:
k k
Xz( J xE( )
and and
A (k) A (k)
z E

are the eigenvectors of (3.56) corresponding to Z) and Ek' Egua-

tion (3,67) may be formulated in a matrix notation

o o] [
n 1
X _ xz xz %olzl
A 1(4) h(n) ¢ Zi
Z A DIl n
- - = (3.68)
x(1) x(n) 0 - (N-1i}
E E ‘ol 1
+ M ’
(1) (n) ~(N-1)
K hE 3 hgon n
defining Z as
Zl 0
7 = T, . (3.69)
0 zn

Equation (3.68) can be further reduced to

N-i —

>
.
Il
=4
N
[wt
-
v
o)
+
;.
T
[N
O_—J

As 1 increases, the stable modes multiplied by the vector go
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attenuate so that equations (3,.70) beccome

N-1 —
= X_Z
*3 E T
_ (3.71)
N-i =
= 7 .
Ay o LS
-
Solving (3.71), we get
= Ax ! (3.72)
A= Mgt g .
But hi = Sixi was the assumed solution of the matrix Riccati

difference equation (3.53), Therefore {(repeat of Eq. 3.66)

-1
o 1
Sss AE E

This concludes the proof of (3,66).

Having these results, the optimal feedback control of the linear

discrete regulator is

u, = -B_lI‘tD*T(A X

1
_ - Cx. . 3,73
i B A)xi X, ( )

This solution requires nonsingularity of the transition matrix &.

Made discrete, the linear continuous system always has the property
that |®| £ 0. This stems from the fact that a continuous linear
system has a unique solution for a given initial conditions [e.g.,
KW-1]; however, this' property (I@l # 0) is not obvious for a pure
discrete system, If, in a pure discrete system & is singular, it
indicates that some of the states (or the modes) can be expressed as

a linear combination of the remaining states (or modes), Hence, if a
state variable feedback is required, the singular system representation
can be reduced in dimension until regularity is achieved and the feed-

back matrix C can be calculated,
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Two more results will be given:

a) The stable eigenvalues of the E~1 equations (3.56) are identical
with the eigenvalues of the closed loop optimal system, This useful

property ean be proven by analogy to continuous systems [e,gz., BR-2],

b) The expression for Sss’ Eq. (3.68), repeated

-«
-1
Sss = XEAE

is independent of any rearrangement of the individual eigenvectors in

*g

Ay

The proof is obvious if (3,66) is rewritten as
5 A = X . {(3.74)

Assuming SSS is fixed, then any column j of XE is a linear combina-

tion of 8 and column j of A_,
sS E

relative position with respect to other columns,

Its values are independent of its

The computer program, DISC, listed and explained in Appendix A,

is based on these results,

C, THE OPPIMAL LINEAR DISCRETE FILTER

C-1 The Measurement Timigg

The purpose of the filter is to reconstruct the states which are
not measured, and to minimize the process and measurement noise influ-
ence, For the physical system,

x
i+l

It

@xi + Piui + Pzwi w, 2 N(O, Qd)
(3.75)
vy, = Hx, + v v, = N(O,R) ,
i i i
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The optimal steady state filter is given by

x. = 0%, + ' u, (3,76)
i+l i ii
)
= K - L77
X141 X1 F RO, T ER ) (3.77)
K = PHR*
(3,78}

T

d
It

-1 T
e (M- T‘z%l"z)d)

where M is the error covariance matrix before measurements, and P

is the error covariance matrix after the measurements Yi+1 were done,

How M 1is computed will be explained later, Relation {3,77) is the
one which is used by Bryson and Ho [BR-1], and throughout this work.

Here, we assume a zero computation time between the measurements Yisl

and the output of the filter x_ Borow [B -1] shows that the delay

i+l
for the short period mode calculation is of the order of one millisecond,

The other possibility is to use the approach of Ewakernaak [Kw=1]:

N _
% = x,
i

is1 + K(yi - Hﬁi). {(3.79)

+1

These two approaches could be summesrized on the time axis in Fig,

ITI-3,

MEASUREMENT OUTPUT MEASUREMENT OUTPUT

¥t Y !
— - iT ()T ' x

FIG, III-3 MEASUREMENT AND SAMPLING INTERVAL
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In (3.77) we assume € - 0, Both of the formulations have
advantages and disadvantages. The main feature is that (3.77) is an
approximation only as '€ 1is finite, On the other hand, (3,69) uses
'obsolete' information, The compromise will be to use a third method;

for example, the cne shown in Fig, III-4.

MEASUREMENT OUTPUT
Ve,
O
N iT (i+1)T t
T
FIG. II1-4 INTERSAMPLE MEASUREMENTS

€, is the fixed time interval, longer than the maximum computation time
needed to generate the states ﬁi+1 from Yi+1 measurements, As is shown
by Kwakernaak et al [KW-1], the calculation of the optimal filter is
highly complicated., We will use the first approach which assumes that

the delay time between the measurements and the output of the filter ¥

is much smaller than the sampling, From an inspection of (3.76) and
(3.77), we can see that most of the updating of the filter can be done
before the measurements yi+1 are receiveq, Actually, the only calcula-

tion which has to be done during the delay interval is to multiply

K by Yin and to add this quantity to the rest of (3,77),

C-2 Calculation of the Steady State Optimal Filter by Eigenvector
Decomposition

The steady state optimal (Kalman) filter is an observer which mini-
mizes the steady state error covariance matrix P, The recursive equa-
tion for M obtained from the minimization process has the same struc-
ture as those for § for the optimal control problem, The equations
are identical if we consider the following equivalence first recognized

by Kalman [KA-1]:
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Contraol Filter

¢ > 3
H > rg
r, > Y
A > Q,
B < R

Thus we will replace the matrices of the optimal control problem by the

matrices of the filter in E-L equation (3.56) which yields the matrix

H:

T T -1__~1_T T
P —_
¢ + HR HD Pszz H B + 1@
-1 T
=& PZQsz o]

Making direct use of the results from the optimal regulator calculation,

the error covariance matrix M is given by

-1

M = X
' (3.81)
where XE and AE are defined from
X
x E
T = s (3.82)
A A
z E

T is a matrix of the eigenvectors of the 2n X 2n matrix X,

X
2

A

z
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are the eigenvectors of X corresponding to the stable eigenvalues of

are the eigenvectors corresponding to the eigenvalues of H located

outside the unit circle,

Similar to the optimal control problem, the stable eigenvalues of
K (inside the unit circle) are identical with the eigenvalues of the

observer error system defined from (3,76) and (3.77) as

H] g

X R -~ x (3.83)

"l

= (® — KHB)x, + (KHT, - T Jdw. + Kv_ - (3.84)
i 2 2" i i

i+l +1

D, ALGORITHM FOR AN EVALUATION OF THE STEADY STATE
RESPONSE TO AN EXTERNAL NOISE

A stable discrete system &, disturbed by an external noise with
a covariance matrix Qd reaches a steady state, The average behavior
of its states is characterized by a covariance matrix X which is the

solution of Bryson and Ho [BR-1]:
T
X = 9X¢ +Q . (3.85)
Following Bryson, the average behavior of an optimally contreclled dis-
crete system, with an external noise disturbance and measurement noise,

is characterized by the state covariance matrix X, This is the solu—

tion of

T
X~-M = (@ +IC)X-P)(T+TIC) {3.86)
where C is the optimal gain. (3.73), M and P are the observer error
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and covariance matrices defined in (3,78). Equation (3,87) will be re-

written as

X—P = &+ TC)X - P)(@® + )"

(3.87)
+ M-P.

Equation (3.87) is now in the form of (3.85), Equation (3.85) is essen—
tially a linear equation of X. New algorithms for solving (3.85)
appear frequently in the numerical method literature [e.g., BER-1], We
will present a new numerical solution of (3.85) which utilizes the al-

gorithm for eigenvector decomposition,

-1

Claim 1: X = AEXE (3.88)
where

Xz XE

AZ AE

is a matrix of eigenvectors of the 2n X 2n system of H:

) 0
H = , ' (3.89)
=T
o
Qd )
XE
g
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is the eigenvectors submatrix corresponding to the eigenvalues of H

outside the unit circle,

”,
Claim 23 If Z. is an eigenvalue of H, then z, = Ek is also an

,
eigenvalue of H.

Proofs: Claim 2 is obvious from inspection. To prove Claim 1, we

let
H = 1D (3.90)

where

e O
DE E,
D = = (3,91)
, 2 |E | > 1.
Dz (::) zn
Using (3.90) and (3.91)
-T
] )(E = XEDE
_ (3.92)
o} =
Qd XE + @AE AEDE
vields
-1 T -1
Qd + cI)AEXE ¢ = AKX . (3.93)
Define
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X = AEX,El .

(3.94)

Equation (3,93) is identical to (3.85), thus proving Claim 1,

Using this result, the average behavior

of the optimally con-

trolled discrete system, including process noise and measurement noise,

is given as the solution of (3.81), which is

-1
X = AEXE + P,
where
X X
Z E
Az AE

is a matrix of eigenvectors corresponding to 2n X 2n matrix

G + 1"c)T

T~
H

(M= PY@ + Te) T & + Tc
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E. SUMMARY

1, A linear continuous system, controlled by a discrete controller
via a zero order hold (ZOH) or a first order hold (FOH) can be formulated
as simple linear discrete systems (3.97). We have shown that if a digital
computer generates the control sequence, the information needed for the

FOH can be generated simultaneously, and not by extrapolating the last

two contrel inputs,

If 2 continuous cost function is assumed and a continuous white
noise acts on the system, the whole contrelled system can be represented

by equations of the form

Xiq = 9% FTu +Tw, Wy - N(O, Qd)
N-1 T T
Jd =
2: xiAxi + uiBui
i=o
(3.97)
vy, o= Hxg 4w, vy N(O, R) .

Converting to the formulation (3.97) enables us to calculate the optimal
'regulator and the optimal steady state observer using discrete algorithms.

2, We have developed an eigenvector decomposition computer program
for solving the discrete steady state matrix Riccati differential equa-
tion, It is highly efficient compared to recursive methods, due to the
use of the QR algorithm [FR-1], which finds eigenvalues and eigenvectors

of a matrix with widely dispersed eigenvalues very rapidly and accurately.



Our eigenvector decomposition program calculates the optimal
regulator gains and the optimal steady state filter gains, and as a by-
product, it provides the closed loop eigenvalues and the observer error

poles [App. Al.

3. Calculation of the root mean square response of the closed loop

system involves the solution of a linear matrix equation of the form

T
X = 0X0 + Q. (3.98)

A new algorithm for solving (3,98) was found, This algorithm is based
on eigenvector decomposition of a system associated with {3.98), VWe
do not claim that this algorithm is more efficient than algorithms
already in the literature, Its main advantage is that it uses the

existing program for eigenvector decomposition of a matrix,
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IV, SAMPLING TIME AND TIME RESPONSE

The time response of a controlled system is determined by its
closed loop dynamics and by the input signals, A system has a proper
time response if for a specific input, some combination of the states
follows approximately a predetermined pattern, In the case of a pilot's
commands, the input is a continuous signal, e.g., an output of a poten-
tiometer, This continuous signal has to be sampled and fed to the
digital computer which further processes it, The questions now are:
how well does the digital processor interpret the sampled signal,

and how well do the states follow the desired pattern?

The theoretical basis for the reconstruction of a continuous signal
from sampled data is given in the sampling theorem developed by Shannon [e.g.,
RA—l],, The sampling theorem states that in order to reconstruct an unknown
continuous signal from samples of that signal, one must use a sample
rate which is twice as high as the highest frequency contained in the
unknown signal, This theorem is not directly applicable to a reconstruc-—
tion of an input signal in a real time digital system, This is true for
the following reasons: (a) for causal systems, the reconstructed signal
has a phase shift with respect to the input signal, The theorem states
that it is possible to reconstruct the signal but it doesn't say that
it will be done in the same time, Actually, any reconstruction scheme
has to accumulate a minimal amount of data points in order to start the
reconstruction of the sampled signal, (b} For aircraft applications, the
proper time response is' formulated as a response to the pilot's step in-
put. However, from a theoretical point of view, a step input has an infi-
nitely large frequency spectrum, (c) In the feedback path, the sampling
theorem doesn't hold since we have knowledge of the plant, Therefore, in-
steady of applying the sampling theorem, we will investigate the time re-

sponse 0f a realistic example using a simulation scheme,

The key question of how to get a proper time response can be reform-

ulated as a problem of what the input signal should be in order to
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obtain some predetermined pattern of the states. Extensive research
dealing with this complicated problem is currently being done by Holley
and Bryson [HOL-1]., Their approach, called "a nonzero set point regulator
design'', consists of an analytical basis for the time response synthesis,
and can be extended to discrete control systems., Meanwhile, we will use
the time response specification given by Borow et al [BO—l] and Sutton

et al [SU-1], which is based on the accumulated experience of the U.S,
Navy. A complete description of this specification will be given in

Section IV-B,

The outline of this chapter is as follows, In Section IV-A we
will define the example, "F-H", which will be used in this work, It

includes the short period mode, a bending mode, and wind gusts,

In Section IV-B we will describe the various design objectives,

ineluding the time response.

In Section IV-C the inner control loop design will be described,
The classical approach will only be outlined, but the optimal discrete

design will be explained in detail.

In Section IV-D the main objectives of this chapter will be inves-—
tigated, It will be shown that, for the F-H short period example, a

proper time response imposes a definite limit on the sampling interval,

A. EXAMPLE DEFINITION

In order to be able to illustrate the various factors which influ-
eénce the sampling rate selection, our investigation into aircraft discrete
controls should be related to a definite and relevant technical system,

We chose a controlled Qhort period mode configuration of a hypothetical
type aircraft, which we term TF-H, This type of aircraft is described

by Borow [BO-1] and Sutton [SU-1] as the future aircraft of the U.S. Navy.
Our choice was made for the following reasons:

1. The time constants and the time responses in the longitud-
inal mode are short and they constrain the sampling rate,

2. The influence of bending modes on the stability and sensitivity
of the control loop must be taken into account, A considerable
effort must be made to include these effects in the control de-
sign,

—dd-



3. Only a military aircraft flies in such difficult flight condi-
tions as Mach 1.2 at ground level. The strongest wind gust
amplitudes are found at zero altitude, A high velocity flight
through such gusts generates a short correlation time of the
external disturbance, which makes the gust alleviation more
difficuit. During landing conditions (Mach 0,19), this type
of aircraft has an extremely slow time response (w = 0,5 rad/sec).
Therefore a strong bandwidth augmentation is necessary, It will
be shown that this behavior imposes serious limitations on the

sampling rate.
The geometry of this aircraft as a flexible body is described in Fig,
IV-la and Fig. IV-1b ., References BO-1, ED-1, and SU-1 use this model,

The equation of motion, based on body axes and dimensional stability

derivatives are

= (M + (Mo + (M) +
q ( q)q (M oy + (Ms)a (Mée)ﬁe
Z w Z T
. § a
QT = q + _O: aT + g + e ‘59 w W T] .
g
Uc: UoTw Uo Tv.on (4.1}
w Bt a
‘;" - . _E > w oW ,n
g T T g
W w

These are the short period mode equations; they include a vertical gust,

modeled as a first order Gauss-Markov process.

ne

1
o -y ¥ (4.2)

is defined as the total angle of attack, The reason for preferring the
state variable o instead of ¢ (as used by Borow [BO-1] and Sutton
[SU-1]) is that o is an important variable in the gust alleviation

study, The vertical acceleration is directly related to a&.

The bending mode is modeled as a second order system driven by the

elevator input and the rate of the angle of attack—rd, The bending mode
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FIG, 1IV-1a RIGID BODY CONFIGURATION,

Note: w = ¢ U,
X 0

N
-

s dz
T dx

MY

FIG, IV-1b BENDING MODE DEFLECTION



ig slightly damped (gb= 0,01), The bending equations are

X = w X
3 b 4 (4.3)

e
[t}

- - k.7 + Z 3.
4 wbx3 2gbwbx4 + wk, 5656 kzwb Qg

The actual acceleration and rotation of any point on the body axis x due

1
to bending, is
t
z
_ A
9 T G *a
b
= (4.4)
Eo= -t x
Y
b b 4

where kl' kz, are quantities depending on the airplane shape and mass
distribution, and El(x) is the first mode shape, .The wind gust influ-
ences the bending mode primarily through d& (see Egs., 4.1 and 4.2),
Sutton [SU-1] and Blakelock [BL-1] disregard this influence,

An accelerometer and a rate gyro are the measuring instruments,
The measurement signals are combined from the rigid body motion, the

bending mode motion, and additive white noises:
1
"1

_ (3.5)
%y
Uo(q - &) + zaq o Xy TV

T

=2

where Ve = N(O,rq), v, = N(O,rn). For a numerical example, we chose two
difficult flight conditions of the F-H aircraft [BO-1, SU-1]:
a) Flight condition No. 1 is a flight at zero altitude and Mach
0.19, As mentioned in the beginning of this section, a con-
siderable increase in the bandwidth (acceleration feedback) is
necessary in order to improve the time response, It will be
shown later that this flight condition limits the selection of

the sampling rate,.
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b) Flight condition No, 8 is a flight at zero altitude and Mach
1,2, High velocity flight at zero altitude generates strong
wind gusts, The maximum available gust alleviation is neces-
sary for several reasons, including improved aiming and mini-

mizing the fatigue of the pilot,
The corresponding numerical data are summarized in Table IV-1,

Table IV-1
NUMERICAL DATA OF THE F-# SHORT PERIOD (SP) MODE

Condition Ko, 1 Condition No. B
Uo(ft/sec) 212,0 1340
Mq(l/sec) ‘ -0.44 -1.91
Mw(lfft sec) . -0,0017 -0,13
2 -
Mse(l/sec ) -1.23 69,1
- . -3
M.{1/1t) -0,62x10 > 0,52x19
w
Zw(l/sec) -0,57 -4,03
Zse(ft/secz) -13,2 ~399,0
3.0 0.5
Tw(sec)
Uw(ft/sec) 12,0 12,0
.01
e c,01 v}
ub(rad/sec} 25.0 25,0
0.4 0,4
Bemax(rad)
51 of accelerometer 0,07 0,07
zi of rate gyro -0_005' -0,005
4,0
Ky 4.0
. o
k, 0.08 0,06
2 (1) i 14,0 14,0
SP freq (rad/sec) 0,60 13.2
period of SP (sec) 10,5 0.476
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A-1  Open Loop Coupling Between the Bending Mode and the Rigid Body
Motion

Borow et al, Blakelock, and Sutton et al [BO-1, BL-1, SU-1] dis-
regard any direct influence of the bending mode on the rigid body motion,
However, in flight condition No., 8, the supersonic velocity in a high
density atmosphere generates a considerable restoring moment (Ma)° Conse-
quently, the short period mode oscillation is high {~ 13.6 rad/sec) and

has the same order of magnitude as the bending mode freguency (25 rad/éec).

To estimate the influence of the bending mode on the rigid body
motion, we will assume a simplified configuration which generates a moment

around the center of mass, see Fig. IV-2,

FI1G, IvV-2 MOMENT AROUND THE CENTER OF MASS AS GENERATED
BY THE BENDING MODE,

The force Fe and the corresponding moment around the center of mass are
proportional to =z!'(x)., .We may consider the rotation of the tail as an
additional angle of attack of the elevator. In supersonic alrcrafts, the
whole elevator surface is moving and thus the moment caused by Fe is
. 2 2
a t -M ! ! i
pproximately equal to ae(zexs)/(wb) where (zex3)/(mb) is the

additional angle of the elevator due to the bending rotaticn,

We will use another assumption: the sum of the moments generated
by the deflection of other parts of the body (including Fn) is equal or
lower than 50% of the moment generated by the bending rotation of the

elevator,
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By using these approximations, the additional term of the first

equation of {4.1) will be

where 0 < kb < 1.5.

The poles of the coupled system, combined from the rigid body and

the bending mode are summarized in Table 1V-2,

Table IV-2

THE OPEN LOOP POLES OF THE COUPLED SYSTEM

Rigid Body Bending Mode
kb =0 5 =-2,5 % jl3,6 s =-0,5 * j25,0
kb =1 s =-0,9t j13.,5 s =-1,9 * j24.8
kb =1,5]s =~0,3 £ jl3.4 s =-2,4 = j24,7

From Table IV-2 we see that for a detailed design, the coupling be-
tween the short period mode and the bending mode cannot be neglected,
Although the stability augmentation system stabilizes the system, the

open loop configuration is only marginally stable,

B. DESIGN OBJECTIVES

There are several different objectives required of an inner loop
longitudinal autopilot,

The most important may be summarized as follows:
(1) A proper time response to various inputs; (2) A proper dynamic be-

havior based on the pilot's experience; (3} Wind gust alleviation.



The crucial constraint on the actual design is the conditien that
for one definite flight condition, there should be only one control con-

figuration which will meet all the objectives,

For the conventional aircraft where the elevator is behind the
center of the mass, the objectives 1, 2, and 3 are conflicting; thus,

a suitable compromise will be suggested in Section IV-3,

The various design objectives will now be explained in more detail,
Objective 1: The proper time response reguirement varies for different
aircrafts., Essentially, the requirement is for a fast response, but one
which is not too sensitive and has a sufficient stability margin, The

exact formulation will be given with Objective 2,

Objective 2: A desirable dynamic behavior, expressed as a location
of the augmented short period poles, is described in Kolk [KO-1], The
shaded area in Fig, IV-3 is the location of poles which is preferred by

pilots,

o

(cps)

0.5¢

o ¥

0.5 1.0

FIG, IvV-3 SHORT PERIOD POLES LOCATION; PREFERRED
BY MOST PILOTS,
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Combining Objectives 1 and 2, we may say that a high performance
military aircraft is expected to have a fast response in order to hbe
able to execute properly different maneuvers, It must also dampen ade-—
guately for precise weapons release, An attempt to give a quantitative
formulation to these requirements was made by the Navy, as described by

Borow [BO-1] and Sutton [SU-1]} under the name TRP (time response parameter),

The TRP is defined by the quantities in Fig, IV-4 and the relation,

t

£
TRP = (—‘i) + 0,08 (A -1) + 0,05 (ty. _ ~- 0.7)
A q nz

(4,8)
+ 0.3(A - 0.3)
nz

where Aq is the pitch rate overshoot, "and Ani iz the vertical accel-
eration overshoot, The objective iz to keep TRP < 0,25, All parenthe-

sized terms, if negative, are assumed to be zerc for the TRP calculation,

1 /n
Eg_ % %ss
ss B t, N
TA
1.0
0.5 - — = —
0 . >
et ="} t(sec)
th
z
" -
d

FIG, Iv-4 THE TIME RESPONSE PARAMETER (TRP)
DESCRIPTION
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We will interpret the meaning of the different terms in the TRP
specification: TRP is zero (the 'best' response) if: (a) the overshoot
of g is not larger than 1; (b) the time to reach half final value of
the vertical acceleration is less than 0,7s; {(¢) the maximum overshoot
of the vertical acceleration is less than 0,3; (d) the undershoot (the
non-minimum phase property) is shorter than 0,2 sec; (e) the system is
well damped, Therefore, (tc)q should be as large as possible, but not

lower than (tc)q = 4(td},

Generally speaking, the TRP specification indicates that the vertical

acceleration time constant should be less than ™ 1 sec,

Objective 3, Gust alleviation is achieved by a proper control,
The cptimal controller, which minimizes a gquadratic cost function
for an impulse response, minimizes also the mean response to white noise
disturbance (Parseval Theorem [KW-I]). Further alleviation can be
achieved if the external disturbance has a finite correlation time and
if the average wind gust behavior can be predicted, In Chapter V, a
detailed description of relations between gust alleviation and the samp-

ling time will be given,

€. INNER CONTROL LOOP DESIGN

The main purpose of this section is to point out the assumptions
and the basic differences between a classical design and the modern

control approach. Only a brief description will be given,

C-1 Summary of Classical Control Design

The classical confrol design of the inner loop can be subdivided
into two basic methods: (a) A continuous design on the s-plane and
discretization; (b) A design in the z or w-plane., Both of these
methods use the transfer function approach. This classicdl design is

summarized in Fig, IV-5.
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|
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| K -4—'—-\—— REF ILTEH

l I

DIGITAL COMPUTER

Fig. IV-5 CLASSICAL DESIGN OF THE CONTROLLED SHORT
PERIOD MODE

The first method consists of three basic steps:

1. A continuous design of the inner loop based on previocus exper-
ience,

2, Discretization of the compensation, using digital filter approx-
imations;

3. Modification of the different gains and parameters, in order
to diminish the unwanted properties of the sampling (e.g.
time lags).
Step 3 can be omitted if the sampling rate is fast enough for the digital

filter approximations to cause negligible error, It often results in

ms 5 to 10 times faster than the bending modes,

Different elements, mechanized on the digital computer, are
designed on the s-plané by classical techniques. Discretization is
achieved by the Tustin Transform [BO-1, ED-1, and 0S-1] or, in rare
cases, by z-transform [SU-1]. This design, which works quite well with
analog elements, has the following disadvantages: (a) Gust alleviation
c¢an only be achieved by a trial and error computation and simulationm,
(b) The sensitivity behavior on the s-plane doesn't coincide with the
sensitivity of the discrete controller. (c) Approximations in digital

filters lead to undesired properties of the closed loop system (as

aliasing).
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The second method consists of two basic steps:
1, Transformation (discretization) to z- or w-plane,

2. Classical design of the digital compensator based on previous
experience.
The compensation network is usually designed on the w-plane [ST-1, LE-1]
because of its similarity to the s-plane (c.f., Chapter II). This is
an exact design and therefore the problem of digital approximations is

eliminated,

The main disadvantage of the classical approach is its inability
to handle multi-input, multi-output design problems. Even Lee [LE—l],
who is currently developing a w-plane automatic synthesis program,
says, "fhe use of a classical approach is limited., Sooner or later,

we will have to start design in the state space.'

c-2 Optimal Discrete Design

An optimal discrete synthesis, based on quadratic criteria, includes
a full state-variable feedback and an optimal steady-state observer. This
is an exact design; no approximations are made as in the first

classical design, where the continuous compensatlon was made discrete,

The discrete compensator, calculated for a predetermined sampling
interval, always yields a stable system which minimizes given quadratic
criteria. However, these properties are only correct if the assumptions
about the controlled system are perfect; i.,e,, the system is linear,
there are no limitations on actuator bandwidths, the designer has a good

knowledge of the systems parameters, etc,

Furthermore, for a real system, the designer has to face a whole
new set of problems: {a) What model to use; (b) How to determine the
cost function; (c¢) How to achieve a proper time response; (d) How
to handle nearly undisturbable states; (e) How to reduce the sensitivity
to parameter variation; (f) What sampling rates to choose in order to
obtain a minimum response to external disturbances; (g) How the system
behaves for longer sampling intervals (roughness). The last three

problems will be answered in Chapters V, VI, and VII, The first four
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problems will be partially answered by outlining the optimal discrete
design of the principal example, The optimal design is based on the
Separation Theorem [GU-l] which shows that the controller and the ob-

server can be designed separately.

a. The controller design.

The main difficulty in an optimal control design is to find the
numerical value of the weighting matrix A of the quadratic criteria,
This problem is further complicated by the nonminimum phase property

of the F-H short period mode.

The necessity for a fast response conflicts with the effort
to alleviate the wind gusts, Therefore, the root square locus approach
was used [BR-4], The short period poles are relocated to an acceptable
region, while in the meantime the gust response is minimized, No weight
is given to the bending states x_ and x

3 4’
made to control the bending mode (during the first design). Similarly,

since no attempt will be

no weight will be given to wg.

The root square locus of the short period mode, based on Eq,

(4.1) is: (a) for a continuous system

A A
9 - e - - .
1+ 3 Yq( S)yq(SJ + 5 Yy SJya(S) = 0; (4.9)
(b) for a discrete system:
Aq -1 Ad 1
L+ g v (= Dy (2) + 5 v (z Dy (z) = 0 (k.10)
where
= 4
y =
q 6,
o (4,11)
Ya = % .
e

Aq and %d are the weighting terms in the main diagonal of the weighting

matrix A,

=56~



In order to obtain a better engineering insight, the root
square locus was also traced on the s-plane, Note that the trace on

the z-plane depends on the sampling interval.

The root square locus of the F-H short period mode for flight
condition No, 8 is given in Fig, IV-7. As can be seen, the minimization
of o increases the bandwidth, which is undesirable, Therefore, a com-

bination of Aq and Aa was chosen as a nominal design,

The root square locus for flight condition No, 1 is given in
Fig. IV-9. The major problem in this flight condition is the sluggish
response to the pilot's commands, Therefore, a bandwidth increase was

necessary, We will analyze the time response in morcdetail in Section

Iv-b,

The nominal pole design for flight condition No. 1 vs the

sampling interval is traced in Fig, IV-9, The damping is nearly unchanged.

b, The observer design.,

An observer design, which uses steady state optimal techniques,
is straightforward if the power spectral density matrices of the noises
are known, But the nearly undisturbable modes are a problem which needs
further clarification, A nearly undisturbable mode, in our case, is the
bending mode, which is primarily excited by the elevator's input [BL-l,
BO-1, ED-1], 1In this case, the observer error corresponding to the
bending mode is virtually undamped., Only Sutton {SU-1] assumes a slight
excitation of the bending mode by the external disturbance, Consequently,
for this particular mode, the optimal filter vields a very low gain in
the observer error equations, In order to avoid this situation, an
artificial noise will be applied to the bending mode state, This is
done only for computational purposes and it is equivalent to a pole
placement of the observer error, Another method, which relocates the
observer's error poles of the undisturbable modes and uses an optimality
criteria, is currently being developed by Breza and Bryson [BRE-1]. This

method can be extended to a discrete system,
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In this chapter we are interested in the time response to the
pilot!s commands. Those commands are fed simultaneously to the plant
and to the observer, Therefore, during the first seconds, the time re-
sponse of the plant is unaffected by the observer error poles. In

Chapter VI, where we deal with the sensitivity problem, the location

of the observer error poles will be investigated in detail.

D. THE TIME RESPONSE OF THE F-H SHORT PERIOD MODE EXAMPLE

One of the objectives of the optimal discrete controller is to mini-
mize the average pitch rate g and the average total angle of attack

o This is accomplished by determining a proper weight on the states

TO
in the quadratic cost function. But we are limited in our choice, de-
pending on: (a) the bandwidth of the actuator ( ~ 45 rad/sec); (b) the

maximum amplitude of the actuator {O.4 rad)}; ({(c) a proper time response,

The closed loop poles are far below the bandwidth of the actuator
and the restriction is the time response, We will explain in detail
how a proper time response is achieved and how the time response is

related to the closed loop poles and to the sampling interval,

The link between the pllot and the behavier of the aircraft is

described in Fig, IV-10,

- - T

] |
PILOT/ , | LOW PASS ZOH |-—a| AIRCRAFT }—
WeUY " FILTER

| |

| compEN- | | |

! 31 saTOR I
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I I

e e e e -

FIG. 4,10 THE CONTROL CONFIGURATION OF THE SHORT PERICD MODE
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The low pass filter is necessary and serves two purposes: (a) It
is known from previous experience [BO-1, SU-1] that pilots favor a
smoothed stick input with a time constant of O.4 to 0.6 sec. (b) The
low pass filter helps to reduce the pitch rate overshoot of the controlled

configuration.

The only way to visualize the time response to the pilet input is
to simulate it, Our resulis are based on a simulation scheme described

in Appendix B,

We will now explain in detail how the pilot command is actually

pProcessed by the system. This detailed analysis is important.

The time t =0 will be defined as the instant when the pilot
‘executes the 650 stick input {a step function), The information about
this command will reach the computer within T time (T sampling inter-
val). In order to be on the safe side, we have to assume a full delay

T, =T hetween the § and the time the computer receives this com-

1 So
mand (651). Some mechanization of the first order filter on the aircraft
computer will generate one delay interval (T = T2)' See Fig., IV-11,

ube is the output of the digital low pass filter,

5
s
9]
: -7 ANALOG LOW PASS FILTER
B d u
sy 5
| S~ % DIGITAL LOW PASS FILTER
‘ ;Zsec)
T, T,

FIG., IV~11 THE INPUT TIMING

One of the delay intervals, T can be eliminated if an analog low

27
pass filter is implemented, However, in this case, we are losing the
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option of changing the time constant of the low pass filter for different
flight conditions in the digital computer, We assume that the low pass
filter [as in BO-1 and sU-1] is mechanized on the digital computer and is
a part of the discrete control system, The control configuration des-
cribed in Fig. IV-10 is closed by an additional feedback loop--the pilot,
who is sensing 6 (the pitch angle), The pilot's transfer function in-
cludes a pure delay (At = 0,3 sec), and together with the delay caused

by the digital system, this loop may be unstable, A current research

done by Stapleford [STA-1] shows that by lowering the sampling rate to

ws = 10 to 15 cps, the pilot rejects this sampling rate before instability

occurs. The reason for this rejection is the roughness of control.

The simulation results for different flight conditions and differ-

ent sampling rates are analyzed and evaluated as follows:

(a) Flight condition No, 1 (zero altitude, Mach 0,19). The be-
havior of the aircraft is plotted in Fig., IV-12. The first
plet is the response of the free (uncontrolled) aircraft to
an elevator step-input, As shown, the response is slow and
unsatisfactory (TRP = 1,0). Fig, IV-12 shows that after the
closed loop pole relocation, the response to ﬁe is fast but
with an excessive pitch overshoot (TRP = 0.27). By filtering
the pilot stick input, a good time response was cobtained

{TRP = 0.1).

The time response for lower sampling rates is plotted in Fig.
IV-13 and Fig, IV-1L4, As far as the TRP criterion is considered,
the 1imit on the sampling interval is in the vicinity of T =0.,1
(Fig. IV-13). As seen in Fig. IV-14, the slow response (TRP

> 0.25) is caused by the two delay intervals, T1 and TZ'

(b) Flight conditions No.8 (zero altitude, Mach 1.2). The free
tflight behavior of the F-H aircraft, in this flight condition,
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is characterized by a fast, short period oscillation with a low
damping, The time response of the controlled aircraft to a
filtered stick input for different sampling rates is described

in Figs, IV-15, IV-16, and IV-17.

The time response parameter is within its specifications, but
the TRP is not a suitable criterion for this discrete case.

As seen in Fig, IV-17, the time response of the pitch rate be-
tween the sampling points is essentially a free oscillation,
Therefore we may conclude that, for this flight condition too,
the acceptable limit on the sampling rate is in the vicinity

of T =0.1 sec.

E. SUMMARY :

1. To preserve acceptable time response, there is a minimum value
of the sampling rate due to the delays introduced by the sampling of the
pilot's filtered input, This minimum sampling rate depends on the required

speed of response and on the time constant of the pilot's stick filter,

2. A sampling rate selection study was made for controlling the
short period motion of the F-H airplane, The maximal sampling interval,
T, was found to be in the vicinity of T = 0.1 sec; the rigid body
short period was 10.5 sec and 0,476 sec for Flight Condition No. 1 and

No. 8 respectively, and the first bending mode period was 0,2 sec,
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V. SAMﬁLING AND ROOT MEAN SQUARE RESPONSE TO NOISE

One of the principal objectives of the aircraft autopilot is to
reduce the influence of random gusts of wind., The problem of gust allev-
iation is especially severe during high speed flights at low altitudes,
If a discrete control is used, there is a finite time interval between
corrective commands., During this time interval, the aircraft's average
random motion due to_external nolse is increasing. If the time interval
is too long, i.e., the sampling rate is too low, the rms value of some
of the aircraft states may exceed acceptable boundaries. This Places

an upper limit on the sampling interwval.

The first systematic approach to sampling rate selection as it
relates to rms response was devised by Berman [BE-1] in 1973. Berman
discusses measurements contaminated by white noise at the sampling
instant. Then he propagates the state covariance matrix of an aircraft
disturbed by white noise until one of the covariants goes beyond a pre-
determined limit. The elapsed time is the sampling interval, Using this
interval, Berman calculates the optimal (Kalman) observer, Controls are

predetermined by a pole placement.

However, the purpose of an optimal observer is not only to recon-
struct the unmeasured states. In addition, it makes a better estimate
of the states than could be obtained from noisy measurements alone,
The uncertainty of the measurement taken at the beginning of the sampling
interval is only known after the optimal observer has been determined,
But the optimal observer can be calculated only if the sampling interval
is given, For this reason, Berman's approach would yield a higher value

of the covariance than would result from using an optimal observer,

We will show a systematic way to select a maximal sampling interval

related to the rms response,
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A, PRELIMINARIES

The behavior of a continuous system driven by white or colored
noise is well understood and is described in various sources [BR-1,
BR-4, KW-1], A closed loop system, with a perfect observer and a fast
confroller, may reduce the influence of an external colored noise to
any degree of acceptable rms response provided that a proper (quadratic)

criteria is assumed and that no restriction is imposed on time response,

In the case of nonminimum phase systems, or systems with a limited
amount of control available, the rms response will depend on dynamic
characterigtics of the closed loop system and on correlation times of
the colored noise, Discretely controlled continuous systems,. driven
by a continuous noise, white‘or colored, are more complicated. It
will be proven that if an unlimited control were available, there is a
well defined limit on the noise alleviation. This 1limit depends on the

sampling time,

The objectives of this section are as follows: (1) to outline
the basic relationships; (2) to demonstrate the limitation on noise

reduction due to sampling,

A-1 Basic Relationships

A continuous plant, F, driven by a colored noise w, may be

formulated as

it
X F G X G 0
1
= 3 + we |y (5.1)
W 0O F w o} G
w 2

where T - N(O, Q), white noise, and w is n, order Gauss-Markov

process for the case of a discrete control; the equations are:

= [0] +org e r,dm (5.2)
i+1 ¥
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where ﬂi -5 N(D, Qd).

As described in Chapter III, for practical reasons, we shall choose

and consequently, Qd{T) will be given as

T
e (1) = a{T)x(0)aiT)
T (5.3)
+ S o(T - T)qucgaT(T - 7)dt .
o
Assuming X{0) = 0, u; = Cx,, the rms response (or the steady state

of the Gauss-Markov sequence) is the solution of Bryson and Ho fBR-lj,
; T
X = (@+ P O)X(¢+0C) +a, (5.4)

where X is the covariance matrix of the sgtates; the square roots of
the main diagonal are the rms responses of the states. & + FIC is the
closed loop transition matrix, but not necessarily the optimal one,

In this case the state of the wind w is not fed back. Equation 5.k

assumes a perfect knowledge of the states of the plant.,

If the measurements are highly contaminated by noise, the rms
response of the system can be calculated by augmenting the plant equa-
tions, (5.1), by obserwer equations and solving for X from (5.4) for

the augmented system,

In Section V-2, we will use the optimal control and optimal filter-

ing approach which was described in detail in Chapter III,

A-2 Basic Limitation on Noise Alleviation Due to Sampling

Contrary to the continuous contrel systems, the discrete commands

" are executed at discrete intervals. During these intervals, the system
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is exposed to disturbances, The best way to reduce the noise influence
is to try to use inputs which will bring the system to zero as gquickly
as possible, But there is a limit to the noise alleviation no matter
what control we use, This will now be shown. First, some general

regults will be derived,

(a} A linear discrete system controlled by a state variable feed-
back, can be reduced to a zero state at most in n steps
{n-order of the system). A complete proof, using the Caley-

Hamilton theorem, is given in Kwakernaak [KW-1].

If 3 is the closed loop transition matrix, and

X, = & x, {5.5)

then the results are that (1) ¢c is a nilpotent matrix

(Q: =0), and {2) all eigenvalues of ¢ are located at
the origin., In classical control literature, this system is

named a2 "deadbeat" system, or a "finite settling" time design.

{p) Claim: Given a continuous system with zeros at the origin;
controlled by an optimal discrete controller, then if all
Ai/B ~» & {unlimited amount of control available), the system
is equivalent to a deadbeat system; where Ai is the weight

on the state x B is the weight on the control, assuming

i:
a single input system.

Proof: Using root sgilare locus, the system (5-5) can be
formulated as [KW-1]

B + y(z-l)TAy(z) = 0 (5.6)

where y(z) is the vector of the transfer functions, x(z) =
v(z)u(z), (u scalar); and A is the weighting matrix of
the states ih the quadratic criteria, The transfer functions

YJ(Z), where xj(z) = yj(z) u(z) have the following structure
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(5.7)

where zmj are the zeros corresponding to the state j,

and Pn(z) is the n-order characteristic polynomial of the
open loop system. For physical systems, mj = n, Using

{5.?), Eq. (5.6) can be formulated as

n mj

2B+ F—y Aj’ = 0 (5.8)
3 p(z) " P(2)

_mJ-

m
or, by multiplying the numerators and denominators by =z J

and rearranging

55 [BPn(zmj*l)Pn(z) + Ajzmj] = 0

J

as A./B - ®, the poles of (5.7), which are the poles of the
i

closed loop system, approach the zeros of the open loop system

(located'at the origin), and therefore become a deadbeat sys-

tem,
Using these results, we can formulate the following theorem,

Theorem: For a discretely controlled continuocus system, the rms response

to white noise, for any control, is equal to or greater than:

T
n-1 n-1 T
X = & Q& .02 Q. (5.10)

If all the closed loop zeros are located at the origin, the equal-
ity holds.

Proof: The closed loop system, (5.5), driven by white noise, is
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Xiq = o x; + Tw, . (5.11)

From {5.11)} we obtain

n n-1
= a s + 1j L
X4 en ¢ x, + 9 Tw, + Wy (5.12)
but @2 =0, Multiplying (5.12) by x1+n and averaging yields
T A n-1 n-lT
x = == "~ . ]
E(x,%]) X Q0 toaee T Q (5.13)
i>n

Equation {5.13) gives the lower limit on X, Note: (1) ¢, = ¢C(T);
(2) x = x(T,Q); (3) If not all the closed loop zeros are located
at the origin, or Af/B is limited, then o" # 0, in this case,

@nx_xT@nT > 0 and the rms response to white noise is greater than

(5.13).

Example: A first order system, driven by a continuocus white noise and

controlled by a discrete controller, e.g., the following system

X = ax + gu -+ w w > N(O, q)
- &M - N(O 14
X0 = € Xy + Tui oW, Wy Dy qd) (5.14)
T ar aT 4 2aT
q. = S e ‘ge dr = (e -1)
d A 2a

Closing the loop of {5.14) by Yu = bx. ylelds

T

2
= (e*+ b)xi +w al

aq
xi+1 wi-a N[OJ _2_3. (e - 1)}‘ (5015)

i

The rms response of the closed loop system to white noise is the

steady state solution of the Gauss=Markov sequence (5.13).
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Definition: oii = Qe The steady state value of x5 is given

by the solution of (5.4)

%E CEZaT _ 1)
q = - (5.16)
s 1 - aT b)2

Note: for T =0 (continuous control), q o/-2(a+b), a + b

S8
< 0. Some properties of (5.16) are: (a) for b =0 or T - w,
QXi i -q/ha which 18 the open loop steady state covariance of x.

(b) for a given T, the deadbeat b is

eaT-!-b = 0—=>lbh = =~ eaT

or

q = -%E(l—e . (5-17}

Xy
min

Equation (5.17) shows that even for any control available, g,
min
is always finite, and zero response to external noise can be

achieved by limiting T -+ 0 only, T- 0 = QXi =0,

This analysis is strictly valid on sampling points only., If
the open loop is stable and the output of the controller is a deadbeat

system, then this analysis could be extended to intersample points also.

B. DETERMINATION OF THE MAXIMUM ALLOWABLE SAMPLING INTERVAL

We will analyze in detall the influence of various factors which
determine the rms response of a discretely controlled continuous system,
Using the expression for rms response calculation derived in Chapter III,

we will consider the influence of
1, Different correlation times of external disturbance;
2, Optimal control vs pole placement:

3. Varying accuracy of measuring instrument.
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A clearer understanding of these factors will help us to select the
proper sampling rate.

aircraft example, flying in the most gusty envirounment.

After detailed analysls in Sections V-B-1,

V-B-2,

Qur calculation will be carried out for the F-H

and V-B-3, we

will summarize the method of selection of the sampling rate in Section

V-B-14,

B-1 Relation Between Correlation Time of The Colored Noise Disturb-

ance and the Sampling Time

For the rms calculations we will use

short period dynamics:

Kol

£

g

The wind gusts are modeled as a colored noise disturbance.

M
oM
= 1 Z(XT
0 o
. z
Mg + My
e
+
Zg /U
e
0
-

M M. Zor
i =t

a gsimplified medel of the

5

£

[

ﬁl ]
Y

]

£

m,

N - N(o, 1},

(5.18)

"Colored"

means that the power at the wind gusts is not equally distributed over

all frequencies,

process is used for the stochastic wind gust model,

tion time

Tw determines the spectrum of the wind gust.

It,

as in our case,

a first order Gauss-Markov

then the correla-

More power is

concentrated in the lower frequencies than in the higher frequencies,

The rms value of the wind is related to the integral of the power

spectrum and is designated by o ,

The mathematical process which
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generates this colored noise is based on a first order filter, with the
time constant T, which filters a white noise with a power spectral

densgity 202/%w.

Modeling the disturbance as a colored noise instead of as a white

noise has three advantages:

(a) It is a more realistic model from an engineering point of
view;
(b) The white noise has a weak mathematical definition [KW-1];

moreover, its total power is infinitely great.

(¢) In the short period example, one of the measurements is the
acceleration. The acceleration is related to aT which is
combined from the angle-of-attack and wind gusts. If a white
noise is used as a model of the wind disturbance, then the
measurements are contaminated, not only by the measurement
noise, but also by the process noise, This makes the calcu-

lation of the optimal observer much more difficult [BR-1].

The colored noise can be characterized by its spectral distribution, or
by its correlation function., The correlation function CW(T') indicates
how the disturbance at time t relates to a disturbance at time

t + 1% The various relationships can be visualized in Figs. V-1 and V-2,

ey

FIG, V-1 THE SPECTRUM OF lwgl .
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FIG, v-2 THE CORRELATION FUNCTION OF wg .

To calculate the rms response to a vertical gust, we will compare
the influence of different sampling rates and different correlation
times, The most meaningful comparison can be made if the gusts have the
same intensity, i.e., 62 = constant, In this case, 02, which is the
variance of the wind gust, is related to the intensity of the wind. The

energy distribution is schematically described in Fig., V-3 {1og scale) .,

FIG, V-3 ENERGY DISTRIBUTION OF WIND WITH THE SAME
INTENSITY AND DIFFERENT CORRELATION TIMES,
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The area under each curve is related to the total kinetic energy of the

wind and is constant.

Using the methods from Chapter III, the rms response of ¢ and QT
were calculated for different sampling times and different correlation

times,

The numerical example we are investigating in this Chapter is the
flight condition No, 8. of the ?-H aircraft described by Borow [BO-1] and
Sutton [SU-1]. This is a flight in zero altitude and at Mach 1.2, It
is usually assumed [cf ET-1] that the wind disturbance is "frozen"
in space and the velocity of flight determines the correlation time Tw'
Furthermore, T depends on various other factors such as the terrain
over which the aircraft is flown (zero altitude). Borow and Sutton
each give the average values of ¢ and Ty @8s g =12 ft/sec and
Tw = 0.5 sec. During our investigation, we will vary T only. The
total rms response is directly related to o and therefore it will not
be necessary to analyze the influence of various o's on a& and q.

The rms response depends also on the weighting matrices in the quadratic
cost function, In Chapter IV we described how the weights on the states
are chosen, It was shown that the selection of the weights represents

a compromise among such factors as rms response, time response to a
pilot input, bandwidth of the actuators, and of the closed loop system.
Taking into account these considerations, the selected weights and the

corresponding closed loop roots are summarized in Table V-1:

Table V-1
LOCATION OF THE CLOSED LOOP ROOTS, FLIGHT CONDITION No, 8

Closed Sampling
Loop Roots Time T = 0,005 sec T = 0,05 sec T = 0,1 sec

z—plane 0,929%30, 045 0,41 + j0,22 | 0,065%j0,15

s—plane -14.5%j9.6 -16 * 12,0 =-17+j12.5

Open Loop Roots:; s = -2,5 * 13,5

-1
Weights: Aq/B = 0,12 (sec ), A = 11,0 [o].

/B
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The results of the rms response calculations are plotted in Figs,
v-4% and V-5 as a function of various sampling times and various correla-
tion times, a is the rms response of the pitch rate, Reduction of the
pitch rate of the F-H example when the aircraft is flying at zero
altitude, is important for precise aiming. ﬁ% is the rms value of the
total angle of attack, and includes the angle of attack generated by
the vertical gust, GT is directly related to the 1ift and therefore
to the vertical acceleration, which in turn determines the pilot's
comfort, Figure V- demonstrates how the rms response increases as
the sampling interval increases, Figure V-5 demonstrates that a system
disturbed by colored noise is better able to alleviate ncise with a

longer correlation time and identical intensity.

Certainly the designer cannot choose the correlation time of the
vertical noise: this is an empirical, measured quantity. But these
figures show that it is important to identify the correlation time of
the disturbance and not only the rms value of the gust. For the sane
intensity of the vertical gust, the designer can cheoose a longer samp-

ling interval if he knows the correlation time of the external noise,

B-2 Reduction of RMS Response by Optimal Control Compared to the
Classical Approach,

As explained in the previous section, there is a deiinite rela-
tionship between sampling time, correlation time, and rms response,
Gust alleviation can be achieved by classical control methods, essen-
t ially by pole relocation, but maximal reduction can be obtained by
using existing knowledge of noise characteristics, Colored noise is
characterized by its correlation time constant, For longer correla-
tion times, we may make a more accurate prediction of future behavior
of the disturbance and consequently we may apply better feedback control
in order to reduce the disturbance influence, We will describe in more
detail how the optimal controller uses the information on behavior of

wg in the following equation, repeated from Eq, (5.2):
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T = 0,1 sec
w

w
0,04}
—-—-‘""
0.02 ‘ L . S—
0 0.1 a =12 ft/sec © 0.2 t {sec)
& 41
(r)
T =0,1 sec
w
0.008}

T = 0,5 sec
’*"—-__________-_—#,_«——- w
0,004 T =1,0 sec
4____,__..—~""“‘“‘_d“‘ w
O 1 L ;-
0 ' 0.1 g =12 ft/sec 0,2 t{sec)

FIG, V-4 RMS RESPONSE OF THE F-H SHORT PERIOD MODE AS A
FUNCTION OF SAMPLING TIME, T, ‘
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a }
(r/s)
0,06 |
0,04
0,02 . . . . . -
o 0.2 0.4 0.6 0.8 1.0 T (sec)
g =12 ft/sec v
a |
(r}
0,008 ¢t o T = 0,1 sec
T = 0,05 sec
T = 0,01 sec
¢,008 |-
0,004 |
0,002 i " N i 1 -

0,2 0.4 0,6 0.8 1,0

FIG, V-5 REMS RESPONSE OF THE F-H SHORT PERIOD MODE AS
A FUNCTION OF CORRELATION TIME T =12 ft/sec,
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= [¢] 0 ow+ [yl M 2 N0, g )

The matrices ¢, T Fz and the covariance matrix Qd have the

1’
following form:

1 ta (5.19)

Using the separation theorem, the optimal controller

u, = [CX Cw]

is calculated from the deterministic part of (5.2). Furthermore, it
could be proven that Cx 1s unaffected by the extended state of the
external disturbance wg [HAL=1], i.e., Cx is not a function of
@12 and ¢22. In other words, Cx feedback gains of the system states
are unaffected by the state of the disturbance, but not vice versa,

The feedback gain Cw of the external disturbance depends on the
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structure of the system, This indicates the main advantage of the

optimal design, Even if the closed loop roots are relocated by other
methods to the same position, the feedback gain Cw always reduces the
rmg response,

The rms response for the augmented short period mode, including
wind as a feedback state, was calculated for different sampling times
and different correlation times and is summarized in Fig. V-6, Figure
V-6 describes the rms response at the pitch rate to a vertical gust
for two different designs: (a) C, £ 0 is the optimal control approach;
(b) Cw = 0 1is equivalent to a pole placement design, the state of the
disturbance is not fed back., Figure V-6 clearly shows that the optimal
approach will be preferred, especially at low sampling rates and for

shorter correlation times of the external disturbance,

B-3 RMS Response for Imprecise Measurements

In this section we will analyze the influence of measurement
noise on the rms response to the vertical gust with reference to the
F-H example. We have no precise knowledge of the states. Only g
(piteh rate) is measured directly, The other two states, e {angle
of attack) and wg (wind gust) are estimated by an observer, For our

illustrative example, we will not use a reduced order observer even

if ¢ is directly measured,

The measurements are made by an accelerometer (na), and a

rate gyro, q.

q 1 0 0 v
y = =
o + (5.20)
n LM (AM-z)U o T v
a aw w n
W
g
where
v
al 5 N(O, R) .
v
n

—-B3—



1i(sec)

4 1}
(r/s)
0,06} w °
c, fo
0,041 = 0,5 sec
12 ft/sec
0,02 " A . : L .
0 0.1 0,2
q
(r/s
¢ = 12 ft/sec
0,06 |
T = 0,05 sec
0.04 L
0,02 \
V] g,2
FIG, V-6 COMPARISON OF THE SHORT PERIOD RESPONSE FOR

OPTIMAL CONTROL AND FOLE PLACEMENT DESIGN,
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The power spectral density matrix R of the additive white noise
is calculated by the following method. There are twc major sources of

measurement noise.

1. The A/D converter resolution inaccuracy, This error is

regarded as 2 white noise independent of the sampling rate.
Borow [BO-1] assumes the power spectral dengity of this noise

to be 0,1% of the full range of the measuring instrument,

2, The instrument noise, Borow congiders this noise to be colored,

with a correlation time of about 1 = 0,01 sec and an rms
level of 0.25% of the full range of the measuring instrument.
This continuous colored noise can be approximated as a dis-
crete white noise by a procedure suggested by Bucy and Joseph
[BU-1], where the discrete covariance of the sampled noise is

given by

21+ e-T/T
R = ¢ nry ol
1l -e

The full range of the instruments is approximated in Borow,
for the accelerometer nmax = 10g, and for the rate gyro,

q Z 1 rad/sec.
max

The total measurement noise is derived from these two sources,
The equivalent power spectral density matrix of the discrete noise is

given in Table V-2,

Table V-2

THE POWER SPECTRAL DENSITY OF THE MEASUREMENT NOISE

T R - R
q p
0,005 sec 2,6 ftz/sec 2.6 x 10 ° radz/secz
2, 4 — 2
0,05 sec 0.8 ft" /sec 8.0 x 10 ° radz/sec
0.1 sec 0.8 tt%/sec’ 8.0 X 10 ° raa®/sec’
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The rms response of the closed loop system was derived in

Chapter 3, Egq. (3.86). We repeat it here as a solution X of

X-M = (& +7C)(Xx - P + rc)T.

Obviously for larger R, the rms response of the closed loop system

will be larger.

In Fig., V-7 the rms response of the pitch rate and the total
angle of attack are plotted for different levels of the power spectral
densities of the measurement white noise, The price of the measuring
instrument is related to its accuracy, Precalculated figures, such
as Fig, V-7, can help the designer trade off between the sampling rate,

the external noise reduction, and the cost of the measuring instruments,

B-I Selection of Sampling Rate for the F-H Example

The properties of the external disturbance were given in Section
V-B-1, They are g =12 ft/sec, Te = 0.5 sec, In Borow and Sutton,
ne limits were given on the acceptable rms response, The general

requirement-is to reduce the gust influence as much as possible.

Ugsing the optimal control and the optimal filtering approaches,
the rms responses were calculated and plotted in Fig. V-8, The dynamic
properties of the closed loop are achieved by proper weightings in the
quadratic cost function (Ch, IV), keeping in mind the bandwidth of
the actuator and the time response to a step input. From Fig, V-8 we
can see that for sampling rates higher than ws =20 cps (T = 0.05'sec),
little improvement in gust alleviation is realized. Therefore, when
gust responsge is considered, the sampling rate of the F-H short period

mode should be in the vicinity of ws = 20 cps.



FREE AIRCRAFT RESPONSE

0,06 L
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= 0. sec
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FI1G, v-7 RMS RESPONSE OF THE F-H SHORT PERIOD EXAMPLE
FOR DIFFERENT MEASUREMENT NOISES,
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FIG. V-8 SELECTION OF SAMPLING RATE FOR THE F-H
SHORT PERIOD MODE,



C. SUMMARY

1. TFor a discrete controller, the lower limit on the rms response
to a random disturbance is a function of the sampling frequency, the

rms disturbance level, and the correlation time of the disturbance.

2. By using a simplified model, and a stochastic model of the
external disturbances, the designer may determine the lowest sampling

rate which will yield an acceptable rms response,

3. Furthermore, by plotting graphs such as Fig. V-7, the designer
may choose measurement instruments, which are economical with respect

to rms response,

4. We conclude that for our principal example, F-H flight condi-
tion No, 8, the sampling rate should be between 10 and 20 c¢ps, in
order to reduce effectively the rms response to gust. Any increase in

the sampling rate past 20 c¢ps results in a very small improvement,

5. An important consideration is that we are using linear models
and therefore the weights on the states should be chosen, keeping in

mind the bandwidth of the actuator,
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VI. SAMPLING TIME AND SENSITIVITY

In the linear discrete system theory, if a perfect linear model
is given, there is no lower limit on the sampling rate, i.e., one can
obtain closed loop roots in an arbitrary location in the z-plane for
any ws (sampling rate}, A completely different problem is the sensi-
tivity of the closed loop poles to variations of different parameters
of the assumed model. For example, in the F-H short period extended
model with the nearly undamped bending mode, the measured signals of
the accelerometer and of the rate gyro are contaminated by the bending
oscillation, Those combined measurements are fed to the observer
which reconstructs the desired states of the system. As shown later,
the optimal compensator generates a notch filter which filters the
unwanted bending frequency, But if the actual bending frequency differs
from the assumed model, the incoming bending frequency misses the notch
and is fed back to the elevator as a positive feedback, Potentially,
this mechanism can destroy the stability determined using a perfect model
of the system., The purpose of this chapter is to analyze this situation
and to find a way to reduce the sensitivity to bending frequency variation.

We will investigate the following aspects of this problem,

In Section VI-A we will show that in a linear control system, which
includes a nearly undamped and uncontrolled frequency, the optimal com—
pensator generates a notch filter, The depth of the notch is directly

proportional to the amount of the sensor pickup of the unwanted frequency.

In Section VI-B we will investigate the sensitivity of the short
period example to the bending frequency variation, We will show that the

sensitivity increases for lower sampling rates,

In Section VI-C a method which desensitizes the system will be
shown, The method is based on relocation of the cbserver error pcles
and of the closed loop bending poles., The primary goal is to increase

the width of the netch filter rather than to control the bending mode,
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In Section VI-D we will show how the rms response was changed after
the desensitization of the optimal system (as described in VI-C), It
will be shown that in this case, the rms response will increase slightly,

This is the penalty we have to pay for a less sensitive system,

In Section VI-E we will show that there is a definite relation be-
tween the location of the compensator poles and the sensitivity of the
closed loop system, A system with a more stable compensator is less
sensitive to variations of parameters, A theoretical proof will be

given,

In Section VI-F we will look into the possibility of filtering the
the bending frequency by sampling at the same rate as the bending oscilla-
tion, It will be shown that this approach may cause a hidden excitation
of the bending mode, This instability cannot be detected by a regular

analysis in the z—plane,

A, FORMULATION OF THE PROBLEM

A-1 Basic Configuration

The basic configuration being investigated is described in Fig,

Vi-1,

| RIGID BODY ——

A—I OSCILLATING MODES ©——

DIGITAL COMPENSATOR \-‘* A/D =

FiG, Vvi-1 THE BASIC SYSTEM FOR SENSITIVITY INVESTIGATION
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The oscillating modes, in our case the structural dynamics, are
part of the system, The primary purpose of the compensator is to control
the rigid body dynamics, but it must be done in such a way that the bend-
ing modes are adequately damped. In the basic system (Fig, VI-1), we
assumed that there is no direct coupling between the plant and the oscillat-
ing modes, This is the usual approximation found in several sources [BO-1],
[BL-1], [SU-~1], for modeling the rigid body dynamics and the structural
modes, There will certainly be an important coupling if the closed loop
bandwidth of the plant will be too near to the bending mode frequency,
However, usually the bending mode frequency is higher than the closed
loop frequencies. In our short period example, the first bending mode
(the slowest), is located at W = 25 rad/sec, while the fastest short
period open loop frequency is 13,5 rad/sec. The closed loop short
period mode frequency is about 10 rad/sec (flight condition No, 8, see

Ch, IV).

Using the results from Chapter IIIL, the different blocks of Fig,
VI-1 will be described in more detail in Fig, VI-2, where the following

definitions have been made:

xa
> r - o
a §El. Ha
Iw
r !
¥y
u COMPENSATOR
Y v

cl(1 - xH) (8 +c) - 12]7) k=

FIG., VI-2 THE UNCOUPLED SYSTEM
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a
d =
0 @b
H = [H Hb]
(6.1)
T
a
r =
Pb

As described in Chapter III, the compensator transfer function is based

on
2 = x. + K(y. - H;.)l
1 1 1 1
observer
Fa
X, = 0x, + I'u, s
i+l i i (6.2)
o~
u, = Cx, controller
i i
therefore,
u, = C[(I—KH)(@H"C)—Iz]qleyi compensator,

In this simplified system, the oscillating bending modes are separated
from the system, and are only slightly influenced by external disturbances.
Sutton [SU~1] and Blakelock [BL-1] assume that the bending modes are not
directly influenced by the external disturbance, Thelr assumption is

that the bending mode is excited by the elevator input only. Borow [BO—I]
uses a more elaborate model and assumes some direct influence of the
external disturbance on the bending mode, We are using the approach of

Borow, which is more realistic,
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A-2 Optimal Compensator as a Notch Filter

The compensator transfer function (6.3) can be more explicitly

written as

C adjT[(I—KH)(®+TC)—Iz]Kz f
ufz) = . (6.4)
|[ (I-KH) (¢4TC)-1z] |

Using a well known theorem from linear systems theory (e.g., [CH-1]),
the zeros of a linear system are unaffected by a state variable feed-

back and therefore (6.4) can be simplified to:

C adjT[m - Iz Kz
u(z) = 1 y(z) . (6.5}
| [(1-xB) (347C) - 1z2]]

Note that in the case of the compensator, the state variable feedback is
derived from gains of the observer and of the controller, Furthermore,

using the model of (6,1), where @a and ¢b are uncoupled, and assuming

that no attempt is made to control the bending modes, i,e,, C, = 0,

b
the numerator of Eq, (6.5) obtains the form:

(@a-Iz)-I 0 a

|¢ -IZI IQ -Izl z
0 ¢b-1z)'1 2 b K

(c 0]

(6.6)

and the simplified compensator transfer function will be

' where adj[ ] = cofactor matrix of [ ],
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|¢ -1z| ¢ adj’ [? -1z] K
b a a az
u(z) = Y(Z)
{[I-K H K H P+ C 0 Iz 0 (6,7)
aa ab a aa
\.h}{H - P ¢ O I )
pia TRy bCa b =

Johnson {[JO-1], using the relation of (6.6), points out that the zeros

of the compensator (represented by i@b - Iz|), consist of a notch filter
which is located exactly at the bending freguency. But a proper netch
filter is a combination of second order zeros and second order poles

[ca-2], as

) j -
(x - rleJ 1T)(z - rpe J 1T)
notch filter = T 5o : (6.8)
(z - r2eJ 2z - r,e 2

Here, w, is as near as possible to Wy (ml, the tuned frequency).
The sharpness of the notch is related to the ratio rz/rl. r, is relatod
to the damping of the open loop bending mode and cannot be changed. By

manipulating the controller gains € and the observer gains K the

'
notch filter poles can be shifted to a suitable position, However,
Johnson, who uses a pole placement approach, considers a completely
different criterion when observer error gains are chosen. Their cri-
terion is a proper time response of the whole closed loop system.

Usually the time response of a controller-observer design is unaffected
by the observer error gains, However, Johnson doesn't feed the input
commands to the observer; therefore the system response is significantly
influenced by observer gains, As indicated by Eq. (6.2), the pilot input
and the measurements are fed to the compensator, Except for sensitivity
problems, the observer error gains are chosen by the optimal design from
the standpoint of noise statistics, To obtain a better understanding

of the filtering action of the compensator, we will investigate the

behavior of the compensator for the extended model of the short period

example,
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As pointed out at the end of Section VI-A-1, several references
assume no direct influence at the external disturbance on the bending
mode, From a sensitivity point of view, that is a highly undesirable
model. The optimal design procedure in this case considers the bending
mode to be an undisturbable mode and generates zero gainsg for the ob-
server's error, Consequently, the damping at the observer's error of
the bending mode is nearly zero, We are using the approach of Borow
[BO-1], which assumes a direct influence of the external disturbance on
the bending mode, Hence, the optimal procedure generates a higher

damping of the observer error of the bending mode, 8ee Table VI-1,

Table VI-1

NOTCH FILTER POLES-ZEROS LOCATION, NOMINAL CONFIGUR-
ATION, FLIGHT CONDITION No, 8

Open loop bending mode:
(notch filters, zeros), z = 0.33 % 10,94
T = 0,05 sec)

s—plane equivalent: s = =0,3 % j25

Observer error bending

= t j
mode poles, T = 0,05s: % 0.32 =J0.91

s—plane equivalent: s = =0.98 £ j24.6

Compensator bending mode
poles, T = 0,05s: z = 0.25 * jo.91
{notch filter poles)

s—-plane equivalent: s = -1,3 £ j26.5

, The filtering properties of the notch are characterized by the ratio
of the open loop bending poles which are the notch zeros, and the com—
pensator bending mode poles, As we can see from Fig, VI-3, the notch is
generated by superimposing the fregquency response of the poles and the

zeros of the notch filter,
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The amount of the bending mode pickup,

tion of the measuring instruments with respect to the bending mode.

COMPENSATOCR,

depends ot the loca-

e

Hb’

the accelerometer and the rate gyro are located exactly on their neutral

points as per Fig, VI-4, then there is no direct nmneasurement of the

bending mode (H 0)

b

’

and the numerator bending zeros (in Eq. 6.7}

are cancelled by the denominator bhending poles,

FIG, VI-4

THE NEUTRAL POSITION OF THE ACCELEROMETER
RATE GYRO (h,) WITH RESPECT TO THE BENDING MODE,

(h,) AND OF THE
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It is highly impractical to assume that the measuring instruments can be
allocated to the neutral points, The neutral points (Hb = 0) are
changing during the flight, Moreover, the neutral points for higher order
bending modes (not considered here) are not in the same positions, There—
fore, we will analyze the behavior of the notch as a function of Hb.

In Fig., VI-5 the compensator bending pole location is traced as a func-
tion of the accelerometer position, assuming that the rate gyro is in

a neutral position (hr = 0), As can be seen, the frequency increaseg,

but the damping of the poles is nearly unchanged. Looking at Fig, VI-3,

as the frequency increases, the freguency pattern of the poles moves to

the right hand side and the depth of the notch increases,

It should be emphasized that in Fig, VI-3, only the notch response
is plotted. The total frequency response of the optimal ¢ompensator in—

cludes all other factors of (6,7).

B, SENSITIVITY OF THE SHORT PERIOD MODE

Based on the previous section, which shows how the optimal com—
pensator filters the unwanted frequency, we will investigate the sensi-

tivity of the system to a variation of this frequency.

B-1 Sensitivity Definition

The sensitivity of the closed loop system is defined as a change
in the location of the poles due to the parameter variations of the
system. The closed loop system includes the plant:

.

X, = ¢ X, + T u, + w,
i+l pi pi i
(6.9)

- H
y ¥t Yy

and the compensator: (repeated from Eq. 6.2)



_66_

10Xha

h
a

"K/f—_‘-“‘ OPEN LOOP BENDING POLE

0, a neutral position
of the rate gyro

nominal position of the
accelerometer

2-PLANE

FIG. VI-D

! s
0.5 1.0 real

RELOCATION OF THE COMPENSATOR BENDING POLES AS A
FUNCTION OF THE ACCELEROMETER PICKUP,



My
1
W
+
>
~
]
o
i
=
B
[y
-

i
- ~
X, = Ox_ + I'u,
i+l i
u = CX_ .
i i

If o =@ and I' =T , the assumed model in the observer, is completely
P P
identical to the plant, then we will define the observer's error x as
~ "
X =X - X,
Combining the compensator equations with the plant equations of

state, we get

X, . = (&4 TC)(x, — KHE, ~ Kv )
i+l i i i
(6,10)
X, = o(I ~ KH)X, + 0Kv, - w_ .
i+l i i i
The characteristic equation of the system (6,10) is:
O+['C-1z - (3+I'C)KH
= 0, (6.11)
0 ¢ (I-KH)-Iz

The closed loop poles, for a perfect knowledge of the plant parameters,

are the poles of the closed loop plant and the observer error system:
|o+1C-1z| |0 (I-KH)-Iz| = oO. (6,12)

The zeros of expression (6,12) are the poles of the total closed loop
system, (6.10)., But by inspecting (6.2) and (6.10, we see that the

time response of the closed loop is only influenced by the zeros of
|s+)C-Iz| = 0. These are the poles of the transfer function uj Y-
It could be shown that the zeros of (6,12) are the poles of the transfer

function v, .
i Yy
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If & #£ @& and Pp # I', then the plant-compensator system becomes:
p

X, = & x, +DCX +w
i+l pi P i i
ypo= WY (6,13)
o~ ~
¥i,1 T (I - KH)(D + PC)xi + Kyi+1.
The last equation can be rewriten as
~ S - A
x. = (I-KH){¢+lC)x, + r Cs . (6,14)
141 (L-KH)(0+TC)R, + KH(® x, + I CR, + W)+ Kv,
The characteristic equation, for the case of an imperfect knowledge
of the plant, will he
¢ ~-I r.c
p Zz p
= 9. (6.15)

KH® (1-KH){¢+T'C)+KH" _C-I
P p z

We may still define §, the observer error, but separation of the poles
no longer exists, The poles of the closed loop system are the eigen—

values of (6.15).

The sensitivity can be defined as the relocation of the eigenvalues

of the system (6.15) with respect to the perfect system, (6,11).

The pole's location on the z-plane does not provide us with a
clear physical interpretation of the behavior of the system; particularly
for poles located near point 1 on the real axis of the z—plane, Therefore,
as an aid to evaluating the performance of the closed loop system, an
equivalent damping, (*, based on sampling of a continuous system will

be defined, See Fig, VI-G,
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We may consider the egquivalent damping ratico (* as a damping ratio of a
continuous sampled second order system, This definition is necessary
since the discrete system, controlled by a zero order hold, behaves

differently between the sampling points.
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B-2 Sensitivity of the Extended Short Period Mode to a Bending
Freguency Variation

Because of the deep and sharp notch generated by the optimal com—
pensator, we assumed that the system is highly sensitive to the bending
frequency variation, We will investigate the sensitivity by wvarying the
actual bending frequency by 10% from its nominal value, i,e,, from 25

rad/sec to 22,5 rad/sec,

The model of the extended short period mode (flight condition No,
8) was described in Chapter IV, Using the controiler and observer design
of Chapter IV, the sensitivity was calculated by solving (6,15) and
(6.186). The beghavior of the equivalent damping ¢{* of the bending
mode as a function of the sampling rate is plotted in Fig. VI-7, We

can see how the sensitivity increases for lower sampling rates,

The time response of the normalized bending mode, Xy to a wind
gust impulse is plotted in Fig, VI-8 for u.)b/us = 0,02, 0,44, The
simulation scheme is described in Appendix B, Note that, contrary to an
input command, the impulse is applied only to the plant and not to the
observer., Therefore, correcting commands are only activated after one
sampling period, The main reason for the instability of the case
ub/ms = 0,44 (T = 0,1 sec) is the undamped behavior of the observer
error bending mode, In other words, the observer is unable to follow

the plant,

In the next section, we will describe a method for filtering the

bending mode, even for an imperfect knowledge of the bending frequency,

C. REDUCTION OF SENSITIVITY TO BENDING FREQUENCY
VARIATION

To reduce the sensitivity to the bending frequency variation, we
have to increase the width of the notch filter which is generated by the
compensator, As explained in Section VI-A, the width of the notch filter
is related to the damping of the bending mode in the compengator. The
damping may be increased by a modification in the control loop, or

in both, This modification can be achieved by three basic methods:

-103~



*4o

1.0F

4 A

g*Jk
PLANT; W = 22,5 rad/sec
0.02 OBSERVER: w = 25 rad/sec
3 -~\- 1 i -
0,2 0.8 )
| /g
-0.02}
0,04}
Y
FIG., VI-7 THE SHORT PERIOD MODE. Imperfect knowledge

of the bending frequency. (¥ vs wb/ws.

mh/ug = 0,02

/\/\/\/\/\

———-—  PLANT

----- OBSERVER

-1.0f

NG7

\/X/\/\/\/\/

mb/w = 0.44

/
SR VAR YA 4

STABLE

o

—— PLANT

OBSERVER

O

VIRV IV

UNSTADLE

FIG, VI-8

1,0

BENDING MODE TIME HISTORY. 10% error

in

(.Ub.

-104-

1.5

:fsec)



(a) By a pole placement,

{(b) By using an automatic synthesis procedure, which will satisfy
the gquadratic criteria and will reduce the sensitivity,
An appropriate computer program exists for continuous linear
systems [HAD-1] but it is not yet available for discrete

systems,

{c) By a modification of the optimal discrete system.

In our synthesis, we used the third approach, Stabilization of the
perturbed closed loop system was achieved by weighting the bending mode

state, x The gain of the observer was changed by assuming that more

4.
noise would act directly on the bending mode, This modification might
have changed the dynawmic properties of the system, but we will show that

no significant change took place,

c-1 Desensitivity by Increasing the Damping of the Bending Mode

We are investigating the nominal design of the short period mode
described in Chapter IV and in Section VI-B, In this design, no weight
was given to the bending mode in the quadratic criteria, For desensi-
tization of the system, we will damp the bending mode by weighting it
The relocation of the poles as a function of the bending mode weight ‘

(AX ) is given in Table VI-2,

4
Table VI-2

CLOSED LOOP EIGENVALUES A3 A FUNCTION OF WEIGHT ON
THE BENDING MODE (T = 0.1 sec),

A 4 Short Period Mode Bending Mode
0 z = 0,137 + 30,280 z =-0,781 = jO.584
—6
10 z = 0,14 + j0,275 z =—0,669 £ j0,485
-5
10 z = 0,16 £ jO,24 z = ~-0,51¢ * jO,629
Rigid body weights: A = 0,12 A = 11,

Flight Condition No, 3.
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From the results in Tablé VI-2, we conclude that Qhen A, varies from
zero to 10—5, the dynamic properties of the rigid body are not signifi-
cantly changed. The influence of this modification on the stability of
the closed loop bending modes is described in Fig, VI-9, where £* has
been plottéd vs A, . As seen in Fig, VI-9, it is possible to stabilize
the bending mode for an assumed 10 percent error in the bending frequency,
The time response of the bending mode to a wind gust impulse is shown in
Fig, V-10, The gust impulse was translated via the initial value theorem
to initial conditions formulation. The calculation of this time response
was done by a digital simulation scheme described in Appendix B. Note
that the impulse is applied only to the plant and not to the observer;
therefore, the first observer's states and the first command appear only
after one sampling interval. We can see that Ax4 > 10~6 stabilized the
system. Further stabilization, especially that of the observer error, will

be made in the next section.

Cc-2 Degensitivity by Increasing the Sampﬁng of the Observer Error Bend-
ing Mode

The observer error gains can be increased by introducing an arti-
ficial external noise on the bending mode, This artificial noise is not
included in the total rms response to external disturbances of the system,
But the dynamic and filtering propefties of the observer is no longer
optimal in the sense that it minimizes the influence of all the noises
acting on the system., This change in the total rms response for the

modified system will be treated in detail in Section VI-D,

By varying the factor G in the noise distribution matrix Pz,

4
the observer error gains were changed, The observer error poles corres—

ponding to the bending mode vs the factor G are given in Table Vi~3.

4
The equivalent damping of the closed loop bending mode (10% error on mb)

is plotted in Fig, VI-11, As seen for G4 > 100, the bending modes are
stabilized., The time history of the bending mode is traced in Fig, VIi-12,
The primary stabilization effect is achieved by a damping of the observer's
error. When these phenomena are understood, it is possible to desensi-

tize the perturbed short period made,
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Tabhle VI-3

OBSERVER ERROR BENDING MODE EIGENVALUES AS A

FUNCTION OF G4, THE ARTIFICIAL NOISE (T = 0,1 sec),
z—plane
G4 Ohserver Error Poles s—plane Equivalent
0 -0,725 * jO,572 ~1,0 % j25
100 -0,6736 £ j0,508 -1,5 £ j24.8
200 -0,622 * jO,452 -2,5 £ j24,5

D, THE EVALUATION OF THE PERFORMANCE OF THE DESENSITIZED
CLOSED LOOF SYSTEM

The rms response of the optimal system was evaluated in Chapter V,
In this chapter, Section VI;C, we desensitize the optimal design by
changing the weights in the cost function and by introducing an artificial
noise on the bending mode, As a consequence of this modification, the
control and the observer error gains were changed, The modified closed
loop system is not optimal in the sense that it minimizes the rms
respouse when the noise statistics and the original weight in the quadratic
cost function are given, Yet, from a more general point of view, this
meodification would bea:better engineering solution if the performance of
the system didn't greatly change. The performance criteria are mostly

characterized by the closed pole location and the rms response.

As has been shown in Table VI-2, the rigid body poles of the short
period example were only slightly relocated. The modification we used
(A, = 10—6) negligibly influenced the time response to a pilot input,.
The filtered pilot commands (Ch, III) are fed simultaneously to the air-
craft and to the observer, During the first second, the time response
is dominated by the closed loop rigid body poles and not by the observer

error poles of the hending mode, However, the observer error poles and
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gains of the bending mode were changed (Table VI-3), and thus the steady
state rms response properties were also changed. Therefore, it is
necessary to find out how the modification of the closed loop system
influences the rms response tb external disturbances, This investigation
will be conducted by considering the total rms response of the modified

closed loop system to all noises acting on the system,

The relation for the states covariance matrix calculation used in

Chapter III is repeated here as: (repeated from Eg, 3.86)

X=M = (&4 Te)X - p)(d + Te)'

is not more applicable because it assumes an optimal obsefver. The co-
variance matrices M and p of the observer error before and after
measurement do not represent the modified system, M and p now include the
additional artificial noise which was applied to the system to obtain a
better damping of the observer error of the bending wmode poles, Thus

the rms response will be calculated by the following method:

The state equations of the plant will be zugmented by the equa~
tions of the compensator system to a 2n x 2n open loop repre—
sentation, The external noise, combined with the measurement neise,
act simultaneously on the enlarged system, The equations of the

augmented system are, first, the controlled plant;

= ™ %
X401 ¢px1 + pri W wo o N(o, Qd) (6.17)
and the observer,
3 = : - £ +K v, » N(O,R)
X1 KH@pxi + [(1-KH)(¢p+C) + KHrpc]xi vy 1 ’

(6.18)
These equations were derived in Section VI-B,

The steady state covariance matrix Xa of the augmented states is

the solution of

T T
X, = @aXaQa + PaQaPa ' (6,19)
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where

P p
S R S
2 ! (6.20)
[}
KH¢ ! {I-KH)(Q+TC)+KHD C
1 P _
0
Q. | .
d ; o
Q, = [---- oo (6.21)
1
o !
-. : R
0! ]
~ ' o -
1 .
Iy ! ) (6.22)
T = | eacm=- = 9 .
a 0 :
._. ] K
o

The observer error gains K, and the state variable feedback gains
C were calculated in Section VI-C, ®p and Pp include the uncer-
tainty for the short period example, and the variation on the bend-
ing mode frequency. The rms response of the plat states are the

square roots of the first n terms on the main diagonal of Xa.

The results of the foregoing method for the rms response of the
modified system (Axy = 10_6, G4 = 200) is compared to the original
optimal design, Fig, VI-13. There is a certain increase of the rms

response of the states,

E, RELATIONSHIF BETWEEN THE COMPENSATOR POLES AND SENSITIVITY

In this section we will generalize the results of Section VI-A,
It will be shown that there is a definite relationship between the location

of the compensator's poles and the sensitivity of the closed loop system,

The compensator poles are not necessarily well damped or even stable
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for a stable closed loop system, However, our analysis will show that
if the coefficients of the plant are perturbed, the closed loop ples
have the tendency to migrate toward the compensator poles, Therefore,
if the compensator poles are stable and well damped, the closed loop
system is less sensitive to variations of the plant's parameters, This
interesting property of the perturbed closed loop system will be proven
as follows: The characteristic equation of the closed loop system
(from Section VI-2, Bg, 6,15) is

-1 T cC
P

KH¢p (I-KH)(¢+“C)+KHPprIz

By using (6.13) we will reformulate (6.15),

X, = ¢ x, + T C%,
i+l pi P i
(6.23)
~ Fa
X1 = At EY
h =
where yi+l Hxi+1
and A = (I - K@ + TC)
which yields a different formulation of the characteristic equation
o Iz I'c
p p
= 0, (6,24)

KHz A-1Iz

Using the well known relationship,

-1
det = det A det[A. — A A ]
et A, det[A) ohq A5l
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Equation (6,24) will obtain the following form:

Pc(z) det[(¢p - I1z) - Ppc B(z))KHz] = 0 (6,25)

where Pc(z) & |A - Izl are the poles of the compensator, B(z) are
-.1 . . :

zeros of (A - Iz) ~, Let @p =& + LD, Fp = I'. The characteristic equa-

tion will be

B(z) _
Pc(z) det[F@ + Ad - Iz) - T'C 3:(;7 KHz] = 0 (6.26)
aor
P (z){det (¢ - Iz) - I'C ELEL—IH& + M| = O, (6.27)
c P (z)
Assuming
O ¢ &8 &S84 Hass
AD = A%
ij

LRI Y

o

Equation (6.27) will become

Pc(z){det[(¢-Iz) -T %f%f% KHz ] + apij det{Mij]}
= W Y(z) ’

where Mij is the cofactor of M,

(6.28)

Now the characteristic equation obtains
the following form:

-

P r)idet M=) + AD, . det M, = 0
C(v){ et M{(=z) + A iy 9e 1J} 6.29)

However, Pc(z)det M(z) in (6.29) is the characteristic equation of the

nominal system:
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P (2) det M(z) = | (¢4+1C-12) [¢{1-KH)-12z]| & Np(2). (6.30)

All zeros of the NP(z) (nominal poles) are inside the unit circle.

Finally, the characteristic equation of the perturbed system is
NP + , P M, (= = . .31
(z) + a0, P ()| (=)] = o (6.31)

Recall that Pc(z) is the characteristic equation of the compensator,
Equation (6.31) is now in a familiar form for a root locus analysis,
where the perturbed coefficient ﬁ“ij replaces the gain, An increase
in A@ij will move part of the closed loop poles [zeros of NP(z) ]
toward the poles of the compensator {[zeros of Pc(z)]. Therefore, even
if the observer error system is stable, it is important to check the
location of the compensater poles, Unstable conpensator poles may cause

a greater sensitivity to variations in the parameters,

F, HIDDEN INSTABILITY DUE TO SAMPLING

In the previous sections we have defined the bending wmode as an
undesirable frequency. It has also been shown that the optimal compensator
generates a notch filter which attenuates the unwanted frequency, Class-
ical approaches, such as those given in Borow [BO-1] and Sutton [SU-1],
design the notch filter directly into the feedback loop, The notch
filter implementation requires mechanizing a second order system on the
digital computer., Therefore, it seems promising to circumvent the
necessity of using this filter by taking advantage of the filtering
properties of the sampler. McGough McG-1] in 1973 proposed sampling at
the same rate as the bending frequency and he proved doing this would
filter the unwanted fregquency, The purpose of this section is to show
that, for certain cases, the closed loop will diverge, This effect cannot

be detected by the regular stability analysis used by McGough NEG-l 1.
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In Section VI-F-1 we will show what the conditions are to generate the

instability effect, and in VI-F-2 we will demonstrate it for the short

period example,

F-1 Problem Statement and Theoretical Background

The transfer function of the ZOH is given as [RA-1]

The frequency response of the zero order hold is described in Fig. VI-14,

- JWT
1l-e J l
JuwT
A PHASE
PHASE
1.0+ . 180°
AMPLITUDE 90°
0O ——
w 2ws FREQUENCY

FIG, VI-14 FREQUENCY RESPONSE OF THE ZERO ORDER
HOLD (ZOH) '

Intuitively it is obvious that a signal with a frequency near the sampling
rate or near the multiples of the sampling rates will pass the ZOH

as a slow varying bias, or d-c, See Fig, VI-15, This idea is especially
atiractive for our principal example where the second bending mode is an

integral multiple of the first bending mode (25 H, 50 H), Therefore,
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this approach is worth a more detailed analysis.

uation, we shall use the formulation of Section VI-A-1.,

— - —
X ¢ 0
a a
x &
b 0
1 _ Py
ka 0
i+l
L. -
vy o= %

where Xby = ith bending mode state.

Using an optimal control and no weighting on

control is

%, ]

»

e s
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FILTERING PROPERTIES OF THE ZERO ORDER HOLD

For analyzing this sit-

The system,

xbl e ka,

{6,32)

the

(6,33)



The exact states x are not known, Any method of reconstruction of the
a
states, using ®, only, will generate states "contaminated"” by the un—

wanted frequencies
i a a b.; k = k(H). (6.34)

By inspection we can show that the closed loop poles of the subsystems
@b are separated, Therefore it will be sufficient to analyze one of
the second order subsystems., Explicitly written, the subsystem @b is

2
X, = ~H ek - ux +eu (6.35)

where u 1is a constant through the interval, T.

The system (6,35) will be rewritten in a state space form using an
artificial state *b' This is done in order to close the loop with an

accelerometer feedback

b4 0 (]
b 1
xb = -wb -Zgbwb u+ |0 u ., (6. 36)
e 2
X, 0 W &
Using a ZOH for u we get
. 0
Xy, o, by O % "
. . - u
x = ¢3 ¢4 0 xh, + Té ui + |0 [ui 1-1] (6,37)
X o ® g R B o g
7 b,
blin 5 6 i

where uy is a linear function of X and of the unwanted frequencies,

If an acceleration or pickoff is used, then:
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u, = Caxa + k(xb + xa) {6,38)

where % depends on the particular structure of the compensator, Thus

the characteristic equation of (6.37) has the following form

K
¢lz ¢2 71
-z YT k = 0.
% % 2 ) (6.39)
b b ¢, -z+gk(1-z )

The bending modes are nearly undamped (gb = 0.01),. To simplify, we will

assume that ﬁb = 0, The various terms ¢ dand y are:

¢1 = ¢COSs wﬂT ¢6 = wb sin mbT
sin wﬂr
- = T
¢2 " ¢7 COoS wb
b
_ B
T, = (cos w T ~- 1}
= i 1
¢3 ub sin wa wb b
¢ = cos wT y_oo= E_gin wT .
4 b 2 W b
b
¢5 = 0

If the sampling is done in the same frequency as (6,39) reduces to

b!
(1-2)(1-2) [1-2 + gk(1-z"1)] = 0 . (6.40)

1 )
The roots of (5,40) are 21’2 =1, z3’4 =[gk]. If |gk| > 1 == the
subsystem will diverge. The physical interpretation is as follows,

The modes x and X are constant at the sampling points, i.e,, X, =X 4y

% =% _,. But if lek| > 1, the acceleration will diverge and the closed
loop system is unstable, This property can be visualized in Figs, VIi-16
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VIi-17,

X J\
{deflection)

o, SAMPLING POINTS

NNVANFANNA

u
(control)

Y

—— ~ t(sec)

FIG, VI-16 HIDDEN INSTABILITY OF AN OSCILLATING MODE
(kg > 1),

Diagrams similar to Figs, VI-16 and VI-17 can be traced for -1 <kg <0
and kg < ~1, Note: (a) For all four cases, xband ib are constants at
the sampling points, (b) Without using the third artificial state ib or

an equivalent formulation, this behavior could not be detected,

F-2 Hidden Instability of the F-H Short Period Mode Example Due to
Sampling '
In order to investigate the effect of sampling at the same frequency
as the bending frequency, we will use the simulation scheme described in
Appendix B, The modél we will use is the extended short periocd mode

described in Chapter IV, That model represents the plant, Investigating
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FIG, VI-17 AleMTTOTIC STABILITY OF THE OSCILLATING MODE.
(Ikg| < 1)

the claim of McGough [McG-1] regarding the bending mode which generates the
notch filter, will not be included in the compensator, The closed loop

system we will simulate is described in Fig. VI-18.

b4
o G | F 8 » H
a a a
»! ZOH
X, 15
» G n -  —
b F, H -
y
Yy 7 1 .
4 c[ (1-KH)(§+TC)-1z]" Kz [<—
- ws = wb

FIG. VI-18 SIMULATION SCHEME FOR THE HIDDEN INSTABILITY
INVESTIGATION,
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where Ka
K = ) H H = {H O:F;
0
L
- c = [c 0];
w 0
b a
¢ = .
1]
LO 0
r
r = a
| O

Using this scheme, the influence of the bending mode is eliminated from
the compensator, However, the measurements y are combined from the

output of the whole plant,

The simulation results plotted in Fig, VI-19 and Fig., VI-20 con-
firm our analysis of Section VI-F~1, The behavior of the bending mode
for nominal accelerometer pickup is plotted in Fig, VI-19, We can see

that the bending mode is marginally stable,

Figure VI-20 plots the behavior of the bending mode for the case
in which the accelerometer pickup was increased by a factor of 10,
The system is unstable., The behavior of the bending mode and the input
in Fig, Vi-20 does not exactly match the schematic behavio; charted in
Fig, VI-17, The reason for this difference is that in Fig, VI-17 we
plotted the schematic behavior of the homogeneous solution of the

bending mode, In Fig, VI-20, the rigid body mode is also excited,

G, SUMMARY
l. An optimal compensator of a closed loop system having an un-

wanted frequency is essentially a notch filter, The depth of the notch

depends on the amount of pickup of the unwanted frequency,
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FIG., VI-192 MARGINAL STABILITY OF THE BENDING MODE DUE TO A
SAMPLING IN THE BENDING FREQUENCY, ws = wb = 31.4
rad/sec; ha = nominal; T = 0.2 sec,
X
3 A
XSD i

AW AN AN

§
e
0.027
0,01
| -
[ _ 1 1.0 f(sec)

0.5
FIG, VI-20 EXCITATION OF THE BENDING MODE DUE TO SAMPLING IN

THE BENDING FREQUENCY. w, = @ = 31.4 rad/sec;
ha = loxha nominal; T = 0,2 sec,
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2, In the F-H short period example, the closed loop control system

is sensitive to a bending frequency variation, The sensitivity increases

for lower sampling rates,

3, The sensitivity to a bending frequency variation can be reduced

by increasing the damping of the observer error poles,

4, Systems with more stable compensators are less sensitive to

parameter variations,

5. Sampling at the bending mode frequency may cause an instability
which contradicts the results given in McGough [McG~1]. The reason for

the instability is that McGough didn't consider the intersample behavior,

6. The important parameters which cause the sensitivity are poorly

damped, almost undisturbable modes, and 1low sampling rates,
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VII, SAMPLING TIME AND ROUGHNESS OF CONTROL

Most of the digital systems which control analog (continuous)—plaﬁts
use the zero order hold (ZOH) as a reconstruction hold, The abrupt action
of the ZOH for higher sampling rates is lessened and is further smoothed
by the filtering properties of the wvarilous electro-mechanical actuators,
The tendency is to shorten the actuator time constants as much as possible
in order to satisfy various time response criteria, Therefore the action
of the controls becomes more abrupt at lower sampling rates. However,
there is no documented analytical approach to contreol roughness in the
digital control literature, The pufpose of this chapter is to formulate
and analyze a criterion which will enable us to compare the roughness of

control for different sampling rates and for different control laws,

The firgt experimental evidence of the necessity for such a rough~
ness criteria appeared recently [MA—I]. In that paper, J. Mathews
describes the Saab digital flight control system, This is a highly
successful digital control impelmentation, The first.flight test was
made in March 1973, Upon installation of the system in the aircraft, it
was discovered that the servo valves responded to the small steps in the
output wave form, It was originally believed that the high sampling rates
{40 e¢ps in roll and 80 c¢ps in pitch) would be above the bandpass of the
servo valve, This turned out not to be the case and a lag had to be
added to the servo preamp., The roll axis computation rate was changed to
80 cps to minimize the size of the lag filter, This example clearly
shows the need for an analytical tool which will help the designer estimate

roughness of control,

The basic concept in this chapter are the definitions of roughness
functions (RF). The fundamental RF will be defined as the weighted sum of
the squares of the abrupt changes in the states' derivatives or the con-
trol inputs,

In Section VII-A we will define the RF for an impulse response of
a céntinuous system controlled by a digital controller, A method based
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on eigenvector decomposition will be given for computing the RF, A

simple first order example will illustrate the new concept. The RF of the
F-H short period mode for different sampling rates will be investigated in
detail, The surprising result is that if the dynamic properties of the
closed loop are kept constant, the RF is not a monotonic funetion of the
sampling interval, Actually, it will be shown that for this example,

the RF has a maximum, The minimum RF is obviously zero (for T = 0).

In Section VII-B we will define the mean roughness function,
(RFm), for a continuous system, disturbed by an external noise and
controlled by a digital controller, A direct solution of the RFm wil
be given, We will also investigate the RFm of the short period example
for different dynamic properties of the closed loop while keeping the
sampling rate constant. An intuitively predicted phenomenon, that the
RFm increases for larger mean values of the control, will be verified. 1In
Section VII-C we propose and investigate different RFs which enable us to
compare roughness of systems controlled via different reconstruction holds

and actuators,

A. THE ROUGHNESS FUNCTION/RF

A-1 Definition
A continuous linear system, controlled discretely, has the follow-

ing form:

x = Fx + Gu
where u = constant, ti =t < ti + T, Written in a discrete form,

= . (7.2)
xi+1 @xi + Fui

When a step function is applied to the system (7,1) at time ti’ some
of the variables X% abruptly change their magnitude from i—i to i+i'
These are all the variables (not states), which are directly influenced by
the input . In other words, the abruptly changed variables are the
derivatives of the states for which the control distribution matrix G

has nonzero elements, We shall 1limit our discussion to the case in
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which the state variables =x are not abruptly changed; i.e,, x._,_,l =

X_j = X This is the common case in mechanical systems, where a step
input in forces changes the acceleration., The requirement that none of
the states be abruptly changed is necessary in order to obtain an explicit

expression for the RF,

If a full state variable feedback is implemented, the equations

(7.1) and (7.,2) can be combined as the following form:

X - x = GC[t® + TC) - I]x, . (7.3)

Proof: The input u,, through the time interval T, t. <t< ti + T

is
u, = Cxi (7.4)
and
x = Fx, + Gu
441 i+l il
(7.5)
x = Fx + Gu .
+i+1 i+l +i+1
Combining (7.5) and (7.4)
x = }.{ + G‘C(X - X ) - (7¢6)
Tim i+l i+

By using (7.2) we obtain the desired form (7,3}, This concludes the

proof,

The quantity Iiti - i_i indicates the roughness of control in

the instant ti. We willl define a RF of a closed loop system as a

scalar non-negative number RF:

N
Nk W AX,
§, 1777 (7.1

e
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where . A . .
AV 4 = X - X
i + . -
i i
t = NxT
w =2 0.

In the definition of (7.7), RF = RF(N), By using (7.3), we may express

RF as a function of xi:

T.T.T,

RF xi[(¢+r‘c) - 1] ¢ g weel(a4rC) - I]xi. (7.8)

n
b=

(o]

-
il

If x is given, the RF is a function of X and N:

N T i
RF = 3, x0(¢+PC)1 [(qarC)-1]" ¢’ wee[8+C) -1 (04C) x
1=0 (7.9

Obviously, the expression (7,9) is rather difficult to calculate, However,
a simple form for RF can be obtained for the limiting case N = @, There

are two methods for the calculation of RFqu.

Method 1: Using z~transforms and Parseval's Theorem:

O
r = GC(xi+l - xi) (7.10)
r(z) = 6c{iz - 1){Iz - @-rc)xo (7.11)
1 T -1
RF = 5= § r(a)Wr(z )dz . (7.12)

Y

where ¥ 1is the unit circle,

Method 2: By using a Liapunov function, From (7,2) and (7.8) we obtain

the following set of equations:
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7.13
N, . ( )
RF = E x,Rx, = Tr{x x P )
iTi 0o o
i=0o
where
xo - given
R 2 [(a+7c) - 1]%cTeTwee[(9+rC) - 1] (7.14)
{R =z 0)
and PD is obtained by a backward sweep from (7,15):
P. = (9 +1"C)TP (¢ +TC) + R
3 G+1 .
(7.15)
Py =R, Jj=N-1, ...,0.
For N - «, the solution for the RF reduces to a2 simple form:
N T T
= = 7.186)
RF 2 x Rx, Tr(xoxoP), N (
i=o
where P is the solution of
T
P = (¢ +7C) P(® +TC) + R . (7.17)
A-2

Numerical Solution of the Roughness Function

The easiest way to obtain the limiting case RFNém is to use
Method 2, which involves the soclution of the linear matrix equation
(7,17), This type of equation is extensively treated in Chapter II
(Section B-4)}, The solution we proposed there was to use the eigen—
vector decomposition algorithm, This algorithm, directly applicable
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for (7.17) solves for P, After that, the RF is immediately obtained
from (7,16),

A-3 Example of Roughness Function

We will demonstrate the RF on a simple first order continuous system

controlled discretely, The purpose of this example is to illustrate
the new concept, A more realistic example will be worked out in

Sections VII-A-3 and VII-B-1,

The first order system is

x = =ax + gu
X, = e-aTx_ + "u,
i+1 i
(7.18)
r = (1- e-aT) E ‘
a
u, = CX, .
i i
Equation (7,18) combined together yields
_ -at aT, gc
i+l T [e t{1-e") a]xi . (7.19)

The behavior of the controlled system of (7.19) is schematically des-—
c¢ribed in Fig, VII-1.

A-4 Roughness Function of the Controlled Short Period Mode for
Different Sampling Rates

We will investigate the behavior of the RF for the short period
mode example described in Chapter III, The open loop poles of the
short period mode are located at s = -2,6 + j13.5 (flight condition
No, 8). The closed loop poles have been relocated to s = =15+ jlO,

The simplified equation of motion is
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3
+

FI1G, VII-1 SCHEMATIC DESCRIPTION OF THE ROUGHNESS FUNCTION

Qe KeX]
il
s

Q o
+
=]
=

where n is a discrete input, u I = Cx ] t <1<t H u mini-
i( ) i i i+1’ i
mizes the cost function, Jd.

£

J = lq o] + u2B dt . (7.21)
0 O Aa 04
In our RF calculation we are assuming a perfect estimation of the states,
This .is assumed in order to make a parametric study, In this section
we will investigate how the roughness changes at different sampling
rates, while the dynamic properties are kept nearly constant, In
the next section, we will keep the sampling rate constant but we will

vary the dynamic properties,

The dynamic properties are characterized by the location of the
closed loop poles on the z—plane, In Table VII-1 the closed loop
poles of the short period example are summarized., In order to provide
a better engineering insight, the equivalent s—plane poles are also

listed. Furthermore, the trace of the poles on the z-plane is given
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Table VII-1

POLE LOCATIONs OF THE SHORT PERIOD EXAMPLE FOR DIFFERENT
SAMPLING RATES

Pole Location Control Gains
?i?g;i:ﬁ Equivalent cq ca
(sec) z-plane s—plane
Open Loop -_ -2.6 * j13.5 0 0
T =20 -— -14,5 £ j59.6 | 0.3 0,6
T = 0,02 0,73 * j0,14| -15,0 = jl11 0,273 -0,0101
T = 0,03 0,63 + jo,68| —-15.5 * jl1.5 0,245 -0,25
T = 0,00 0,11 * jo,22| -16,0 * jl2 0,198 ~0,603
T = 0,08 0.18 * jo.2 | ~-16,4 * jl2.4 0,143 -0.93
T =0,1 0,07 * jO,15| -17,0 * jl12.5 0,11 -1,06
T =1,2 0,003 -17.5 * jlz2,7 0,086 -1.1
-0.06

in Fig, VII-2, All the z-plane poles and the feedback gains were cal-
culated by the discrete synthesis program, keeping the weights in

the quadratic cost function constant., The continuous case, T = 0

’
was calculated by a continuous synthesis program by Bryson et al [BR-2],

As seen in Table VII-1, the closed loop poles for different sampling
interval were not significantly changed, The reason for the drastic
change in the control gains will be explained later, The RF for this
example was calculated for two different initial conditions: {(a)

9, £0, a =0, () q=0, & #o.

For simplicity we assumed that the weigting matrix W has the
simple form -

o o {7.22)
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FIG, VII-2 THE CLOSED LOOP POLES OF THE SHORT
PERIOCD EXAMPLE

This is not a serious restriction as it can be easily proven that for a
scalar input system, the time history of the roughness (é&i) is similar
to all the states (influenced directly by the input), Therefore, we
calculated the abrupt changes in q only, The RF of the short period
example vs different sampling intervals is plotted in Fig, VII-3, In
order to make the various RF plots independent of the initial values,
the RF was:normalized by the initial conditions as follows: for

a =20
O

lH

(RF) = 3 ng? (7.23)
i

oW

q

and for q, = 0
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ol

.2
(RF)2 = ):iaq . (7.24)

8

Q

Note: (a) For different weighting matrices, W, the plots of RF in
Fig, VII-3 will have exactly the same form and only the scale of the
vertical axis will be multiplied by some constant, {b) Although we are
dealing with a linear system, the superposition principle does not hold
for the RF, i.e., the RF for combined initial conditions is a quadratic

form of the initial conditions,

Without a proper simulation, it will be difficult to explain the
behavior of the RF for different sampling intervals, Therefore a
complete digital simulation has been done and the simulation results
are plotted in Figs VII-4 through VII-7, The simulation scheme is
described in Appendix B, The different plots are organized by the

following order:

T = 0,02 sec
Fig, VII-4
T = 0,06 sec} q0 # ©
=0
T = 0,08 sec aO
} Fig, VII-5
T = 0,12 sec
T = 0,02 sec }
Fig, VII-6
T = 0,05 sec qO =0
T = 0,08 sec Qg £0
} Fig, VII-7
T = 0,12 sec

By inspecting these plots we can see the following properties,

(a) For o = 0 (Figs. VII-4, 5), as the sampling interval T
increases, the initial input u, decreases, This behavior
stems from the fact that the optimal gain c decreases for
larger sampling intervals (see Table VI-1), that change in

cq is easily explained by using the fundamentals of the optimal
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control theory: the optimal control gain minimizes the quad-
ratie cost function, By keeping the weights in the quadratic
cost function constant, the squared area under the u/q0 curve
should be approximately constant, For longer sampling inter—
vals, the first input acts on the system longer; therefore,

its amplitude has to be smaller,

(b} The optimal design essentially generates a damping augmenta-—
tion (see Table-VII-1), Thus if gq = 0 and o = 0, the input
builds slowly until ¢ reaches maximum (Fig, VI-6), But
for longer sampling intervals, the optimal control doesn't
have the time to wait for larger . Therefore it predicts
the larger g and generates feedback by increasing ca (see
Table VII-1 and Fig, VII-7).

(c) The fact that the RF is lower for sampling intervals and

(RF)%J} (RF),
(s “y ,.-1 2 2
RF =1 =
Ch ®F), = 1/q T 44" ... (@ =0)
2 2
RF =1 . =0
(RF), = 1/q_ B8, ees (3, =0
200
100
o 0.05 0,1 _¥}sec)

FIG, VII-3 THE ROUGHNESS FUNCTION OF THE SHORT PERIOD

EXAMPLE VS DIFFERENT SAMPLING INTERVALS.
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FIG, VIIi-4 TIME HISTORY OF THE SHORT PERIOD MODE.
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longer than 0,1 sec does not mean that we are going to recommend
the use of this low sampling rate (Fig. VII-3), There are
other considerations in the selection of sampling rate, e.g.,

the time response,

THE MEAN ROUGHNESS FUNCTION OF A CLOSED LOOP SYSTEM DIS-
TURBED BY AN EXTERNAL NOISE

=

We are alsc interested in estimating the average roughness of a

continuous system controlled discretely and disturbed by a random noise

B-1 Definition of RF

11k

The disturbed system is

-

x = Fx + Gu + w w -aN(O, Q)
(7.25)

= +
- YT wy > N0, Q) .

@c is the closed loop transition matrix, Qd is the covariance matrix of

the discretized white noise with a power spectral density matrix Q.

The mean roughness function, RFm, of this system will be defined

as

-il %

RF, = TrE {(i+ - % % -x .)Tw} i—m
i it (7.26)

where W2 0, Using relation (7,6), we have (repeat)

. A e .

AN 'S = X - X = G( u, - u, ) .
+ -

i+l i+l i+l i+l 1

Therefore,

x.)} . (7.27)

E[GC(X1+1 T Ay

E['&J.:i-i-l}

Combining (7.253) and (7.27, we get
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E{ A% = E{GC(@cxi - %+ wi)}, w, = N0, Qd)

i+1}

where E is a linear operator, Furthermore, Xy and wy are uncorrelated

by definition., Therefore
: - - 7
E{&xi 1} = E{GC((I\c I}xi} (7,28}

where Xi is a Gauss-Markov random process with a covariance matrix

X . &ii is a linear combination of X thus, A%i is also a Gaussian—
Markov process with a covariance matrix, Xri given by
T.T.,T T.T
X = GC ~I;X (¢ -I + G
r (¢c ) i( c )ce CQdC G (7.29)

i

T
where Xi = E{xixi}. The steady state value of the covariance matrix

Xi is the solution of
X = ¢ X + @ '
a c C d’ (7.30)

{see Chapter II}, By combining (7,26) and (7,29) we have the final

expression for RFm
RF, =~ = Tr(XrW) (7.31)

where

Gc(mc-I)x(¢c-I)TcTGT + chdcTGT. (7.32)

o
i}

Similar to the RF for an impulse response, the RFm involves the solution

of a matrix linear equation, (7.30),

B-2 RF of the Controlled Short Period Mode
(¢

1
In this section we will investigate the RFm for the short period

example described in Chapter IV, The only difference hetween this model
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and the one used in Section VI-A-3 is in the augmentation of the states

by the wind model as we will now describe,

The system:
M r.
' q
q Q Tw
A I g | +TueTw, w- NO, Q) , (7.33)
" 0 ] w
wg w g
The open loop poles were located at s = -2,6 + jl3.5 and the nominal

weights (Ch, VI-C) relocated the closed loop poles to s = 10 %+ 15, As

in Section VII-A-3, we are also assuming perfect measurements of the states,
This is done for simplicity of calculation as we are interested in the
behavior of the RFm for gifferent weights (Aa/B’ Aa/B) rather than in
its absolute value. The wind gusts model used in this example is the model
of flight condition No, 8 (o, = 12 ft/sec, 1_ = 0.5). All the calcula—

tions were made for one sampling rate (T = 0,05 sec),

By varying the values of Aq/B and AQT/B we will consider the
behavior of the following quantities: (1) q2, covariance of the state q;
(2) aﬁ, covariance of the state O (3) Ez, covariance of the control
u, Furthermore, the weighting matrix W in the RFm criteria (6,26)

will have the form

1 0 O
w =]lo 1 of . (7.34)
0 0 O

and we will consider the two components of RFm: (repeat of Eg, 7.31)

RF = T (X W)
m r r

namely, RFq, component of RFm, corresponding to (Zq) ; RF
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component of RF corresponding to (Z&)z. The RFm calculations are

m

as follows:

The closed loop pole location as a function of different
weight is plotted in Fig. VII-8, The nominal design was chosen
in Ch, IV, The behavior of the above listed quantities as a

function of A / is plotted in Fig, VII-9, The covariance

- q/B
of g (g2) decreases for larger weights Aq/B' But this cannot
be done without a penalty, which (a) an increase in RF ,

(b) an increase in u ,

The behavior of the system as a function of Aa B is more
complicated. As seen in Fig, VII-10, only EZ increases as
Aa/B increases, The physical explanation is given in Fig,
VIi-8 where the increase in Aa/B keeps nearly the same damp—
ing but decreases the natural frequency; this means that the
systems reponds slowly and there are less abrupt actions in the
control, As a conclusion of this section, we may say that the

RFm provides us with additional insight intoc the system,

c. ROUGHNESS FUNCTIONS FOR FIRST ORDER HOLD, TRIANGULAR

HOLD, AND PLANTS WITH FILTERED INPUT

The object of this section will be to suggest and investigate dif-

ferent functional forms which will enable us to compare roughness of

control for different reconstruction holds and for plants which include

actuators or filtered inputs,

The properties we expect from a roughness function are:

(a)

(b)
(c)

The RF should be related to the difference of numbers in

the discrete input sequence;
For T =0, the RF is zero;

In order to establish experimentally a relationship between
the RF and the pilot's evaluation, the RF should be repre-

sented by a positive function;
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FI1G, VII-8 SHORT PERIOD MODE. Pole locations as a function of weights
on gq and e Flight Condition No, 8, T = 0,05 sec.
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(d) The RF has to be user-oriented and it should have a conven-

ient computer program form,

We will investigate the RF for four different control configura-
tions: (a) zeroc order hold/ZOH; (b} first order hold/FOH; (c) tri-
angular hold; (d) filtered input (or actuator lag). The block diagrams
of the system and their schematical time responses are plotted in Figs,

VII-11 and VII-12, It should be noted that in the classical sample data

ui u X
COMPUTER 7.0H PLANT
u,
1 u X
COMPUTER FOH PLANT
i
W ] 1 u
COMPUTER ZOH < PLANT
. 'v ——_
TRIANGULAR HOLD
u; o 1 u
COMPUTER - zom —_— PLANT
sT + 1 T

|
FILTER or ACTUATOR

A

FIG. VII-11 DIFFERENT RECONSTRUCTION HOLD CONFIGURATIONS
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u ZERO ORDER HOLD

4. =0
NS

1
b2
=
ot

u FIRST ORDER HOLD

v TRIANGULAR HOLD

/ FILTERED INPUT
(or actuator)

FIG. VII-12 THE SCHEMATIC BEHAVIOR OF DIFFERENT RECONSTRUCTION HOLDS
AND THE PARAMETER DEFINITIONS FOR THE RF CALCULATIONS.
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theory, the triangular hold is an unrealizable reconstruction hold and is
used only for non-real time integration, However, if optimal control

is used, the input u 1is actually a part of the state vector and is

fed back (see Fig. ViI-11). Therefore the triangular hold is realizable

in this formulation,

The proposed RFs are:

N 52)2 9
RF2 = ‘Z (;75 Au

i=0
RF = maxl 2 ‘Aul
3 772
6)l
RF4 = ma.xlm Ay,

These four RFs can be calculated by simulation only, RF1 and RF2 are

actually identical to the RF which was defined in Section A for a

zero order hold. Only for this case does RF1 and RF2 have an analytical

solution,

D. COMPARISON OF ROUGHNESS OF THE F~H MODEL FOR DIFFERENT
RECONSTRUCTION HOLDS

Each of the four RFs will be demonstrated for the F-H short period
mode (Flight Condition No, 8, T =0.05s) using different reconstruction
holds and actuator. The optimal feedback gains and the digital simula-~
tion was done by the Program DISC and by the simulation program described
in Appendices A and B, Since the two programs are constructed for a
ZOH (zero order hold), the FOH (first order hold)--the triangular hold--

and the filtered input were reformulated to a ZCH eguation: (repeat)

i = Fx + Gu
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where u-is constant for 0 = 7 < T, For the FOH:

X F G| Ix c olla
2
- 4 : (7,35)
u! o ol [& o I||x
1
where
ﬁ2 = constant
k = constant }O0 = 7 < T,
F A
u = ﬁl + 4,

The triangular hold:

= + ﬁ (70 36)

where @ = constant, O < T< T,

The filtered input:

where 4 = constant, 0 < 7 < T,

The feedback gains (weighting matrices) were so chosen that the closed
loop poles of the short period mode were placed in identical positions

for all the four control configurations  (z = 0,44 + jO.22).

To obtain a visual impression of the roughness, the behavior of the
input u is plotted in Fig, VII-13 (for an initial condition in a).
However, from visual inspection, we cannot definitely conclude which hold
is *'better', The pilot's rating is necessary to evaluate the roughness

and to relate it to the proposed roughness functions, The numerical
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0
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FIG. VII-13 TIME HISTORY OF THE CONTROL INPUT OF THE DIFFERENT
RECONSTRUCTION HOLDS OF THE F-H, Flight Condition
No. 8, T =0,05s
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values of the proposed roughness functions are summarized in Table VII-Z,

Table VII-2

THE ROUGHNESS FUNCTIONS VALUES FOR THE F-H SHORT PERIOD
MODE OF THE DIFFERENT RECONSTRUCTION HOLDS

zon | om | TR e
RF1 1.42 0,95 0.16 1.1
RF2 1.42 0.9 0.36 1,0
RF3 0.9 0.6 0,3 0.9
RF, 0.9 0.62 0.6 0.8

From Table VII-2 we may conclude that for the four proposed RFs, the

triangular hold has the lowest wvalue.

E. SUMMARY

1. The experimental results of Mathew for the digital autopilot
of the Saab Wiggen airplane [(MA-1] indiecates the need for some measure

of roughness as a design tool.

2., We have defined such a measure, calling it the "youghness func-

tion" (RF), which can be calculated by relatively simple algorithms,
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VIII, CONCLUSIONS AND RECOMMENDATIONS

A, CONCLUSIONS

A-1 Selection of Sample Rate

Four principal factors influence the selection of the sample rate
for the discrete control of a continuous system, These factors are:

a, the time response to control inputs,

b, the response to an external noise,

¢, the sensitivity to-variations of parameters,

d. the roughness of the response to control inputs.l

Each of these factors and its relation to the sampling rate should be

carefully investigated,

a, The time response,

The time response is directly related to the sampling in—
terval, For future f£fly-by-wire controlled aircrafts, there is an in-
herent time lag between the pilot's decision and the execution of his

command, This was discussed in Ch, III,

b, Response fto an external noise,

The response to an external random disturbance is a function
of the sampling rate. It was'found that in discrete systems, there is
a limit on noise alleviation. This limit is a function of the sampling

rate,

_]_53_



¢. Sensitivity to variations of parameters

The sensitivity to variation of parameters can be reduced by
a modification of the discrete compensator. In the F-H short period example
the bending mode frequency is one of the major uncertainties. It was found
that the optimal compensator generates a narrow and sensitivé notch filfer
which attenuates the bending frequency. For a 10 percent error in the
bending frequency, the system is unstable for lower sampling rate (for
ms/wb < 2), By modifying the compensator to broaden the notch, the bend-

ing mode was stabilized for much larger errors in bending frequency.

d., The roughness of response to contral inputs

The roughness of response to control inputs is an inherent

property of the zero order reconstruction hold, The roughness function
defined in Ch, VI is used to give an analytical measure of the rough
behavior of the system. This criterion, demonstrated on the ¥-H short
period mode, will help designers to evaluate the behavior of a controlled

system and selecct a suitable sampling rate.

A-2 Relationship Between Sensitivity and Compensator Poles

As is already known; the stability of a closed loop system is
unrelated to the stability of the compensator., A stable system may have
an unstable compensator but it has been found that if the compensator
poles are more damped, the closed loop system has lower sensitivity to

variation of parameters,

A=-3 Filtering Property of the Zero Order Hold

The zero order hold has.a well-known property: it filters all
the frequencies which are integral multiples of the sampling rate,

However, it has been found that if the system includes a subsystemn
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oscillating in the same frequency as the sampling rate, the whole system
may be unstable in the intersample intervals, This instability cannot be
detected by a discrete analysis, It is necessary to investigate the

intersample behavior,

B. RECOMMENDATIONS

Further research is required on the following topics,

1, A theory and a computer algorithm for synthesis of an optimal

discrete system which includes a gensitivity minimization.

2, An analysis of the behavior of a closed loop system which

uses the modified first order reconstruction hold (proposed in Ch, II-A),

3. An experimental investigation of the relationship between both
handling gqualities and pilot comfort, and the numerical values of the

roughness functicn,

4, An analysis of the reduction of roughness by filtering the re-
construction hold output, and of the resulting influence on the stability

and complexity of the system,

5, A method which will help the designer decide on the minimal
representation model of a given system, This representation should be
sufficient to construct a control law for the actual plant, The behavior

of this controlled plant will be unaffected by the unmodeled states,

~155-



Appendix A

PROGRAM DISC: OPTIMAL DISCRETE CONTROL AND FILTER
SYNTHESIS BY EIGENVECTOR DECOMPOSITION

In this Program there are various options. The basic calculations

are as follows. (a) For a system given as

= + u -
*in ¥x; + Ty (4-1)
DISC calculates gain C, u, = Cxi which minimizes the cost function
dJ
& A>o0
1 T
J = > 2: x Ax, + u':Bui . (A-2}
i=o B>0
{(b) For a system given as
X = 0% FT,w W, o N(o, Qd)
(A-3)
yg = Hxg o+ vy v, > §o, R) ,

DiSC calculates the matrices M, P, K, where K represents the

gains in the Kalman filter,

i+l i

o
i

xi + K(yi - Hxi)

and M = the error covariance matrix before the measurements, and

P = the error covariance matrix after the measurements,

(c) For a system combined from controller (a) and filter (b), DIsC

RECEDING PAGE BLANK NOT FIMED — ~°™



calculates the covariance matrix X of the states, and the covari-
ance matrix U of the control., X and U are the solution of
T
X-M = (¢ +0Tc) (X-P) (& +TC)

- (a-5)
u = CXC .,

Various Options

The various options are (a) For

X = Fx + G u + G,w w - N(O, Q),

and if the controls are reconstructed by a zerc order hold, DISC

catculates
¢ = eFT
-6
T Fr (A )
Pl = S e GldT
o
T T T
= -7
o, = | e(v)eeee(n)Tar (a-7)
o
and setsg Pz = I (unity matrix). T is the sampling interval,
{b) If a continuous cost function,
10 ,.T T
J' = —2-5 (x"A'x + u Btu)dt (A-8)
(o)

is given, DISC calculates the control €, which minimizes the cost

function J' by transforming J' to J by

A A
o T T 11 12 1
J = 2: X, uy s (A-Q)

i=0
Azl Azz ui
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(e)

(a)

T

where AL = S @T(T)A¢(T)d1

T

A12 = S @T(T)AF(T)dT
° (A-10)
T T

8y, =\ [r'(0)ar(e) + Blar
T

A1 = Ap s

and transforms the system {A-1) into

-1
— - 1 -
Xjop = (@ - TiAy, Ajx, + Tyu (A-11)
w o= u, +A LA x. = COx. . (A-12)
1 i 22 “21 Ti i

After this transformation, (A-9) obtains the form of (A-Z), i.e.,

T -1 T
I = 3 x (A - ALALA, )x, + uA U (A-13)

DISC solves for C' (for A-11 and A-13) and calculates the desired

C from

C = -A A . (A-14)

b
If perfect measurements are assumed, DISC calculates the covariance
of the states, X, from
T
X = {¢ +Tc) X (¢ +Dc) + Q - (A-15)

DISC calculates the open loop eigenvalues and eigenvectors, (The
closed loop eigenvalues and eigenvectors, and the estimate error
eigenvalues and eigenvectors, are always calculated and printed.)

Using DISC
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DATA FORMAT

CARD 7 10C/ 1Q/ INQ/ ICC/ Format (4I2)
g8 Ns/ Nc/ Nz/ NG/ T Format (413, F10,5)
9 F or & w
‘ Gl or rl
Format (6F12,5)
g A
row by row
¢ B - each row starts
& by new line
G, or F2
. Q or Q,
» R
. H

/* (last card).

CARD 7: OPTIONS

Ioc =1 open loop eigenvalue and eigenvectors
Iq =1 response for perfect measurements

ING =1 response for estimated measurements

cc =1 continuous cost function

If one or more of these options are not desired, set values to zero.

CARD B
NS number of states
NC number of controls
NZ number of measurements
NG number of disturbances

T sampling interval
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Important: In order to simplify the utilization of this program,
all options are activated by necessary parameters and data, All

unnecessary information should be deleted.
The various options and instruction for data input are summarized

in Table A-1.

Table A-1
INPUT TO DISC

[
A CONT INYOUS SYSTEW DISCREVE SYSTEM
R PLUS ZOH
i
!
T x [} x X 4} L
T
REGUIATOR ONLY 8 NS K& T N5 |xC |0 ! o 0
? FG AL ] L) PL Al
[
7 x |1 q x x 1 o 0
REGULATOH PLUS :
RESPOSSE TO EX— L] N§] xC fo NG [ T lNs [xz 1o NG | ©
TERKAL DISTURBANCE 5 L — i}‘
2 F G ABG,Q L ABD, R
1
ki x ] x x 0 a o
FILTER 8 N5{ 0 XE | NG| T g3 (o N iwg | O
9 FG, RH ®T, R I
;
REGULATCR PLUS ? x x x x x X x 0
PILTER 8 NS XC INZ | NG| T |KRS [NC {x2 NG | O
'EC-J_ABGZQRH QI‘IABEQdR}[

x=2> 0, 1 ... different options; 9 » order of reading matrices in,

Note: If more than the minimal amount of necessary parameters and
data are read in, the program execution will fail, For exam-

ple, you cannot:

(a) set ICC = 1. for pure discrete system
{b) set 1IQ =1. and INQ = 1, simultaneously
{c) set ©NC #£ O if you are asking for filter only.

The following is the computer program for DISC,
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¥00d SI ADVd TYNINHO
@HL d0 AJITIAIDNA0Eddd

—-€91-

F/C1SC JO8 *9270,207%, 101, KATZ MSCLEVIL=]

. w Zey
ce /7 EXEC FORTHCLLZLEVEL=G
LA fFECRTSSYSIN DO »
bl IMPLICIT REAL*B8{A-F,0-7)
Eo C THE FOLLOWING ARZ DIMENSIONED ST THAT AN ) é CRDER Tk SMLLLEE SYERTEV
T C wWITH P TC 16 CCNTROLS CAN =UN
Ba DIMEMETIGN A{32+¢22) JRMIZ2422Y WRIZ2Z2 14 WITZ32) 0 {22422, PREGL32422,
T ICWRELE )+ CWIliA) ) TONTI22),0022) 3 IRNT(ZZ2Y,PA{In, 6] 200 {1A1E),
10, SONELI6+1E)y QUIGEW1E )+ RVEC{LE 416 yVECEN(L1Ey 1LYy VECIMILIE,16),
11, BVECI(16416) s VEVILLE ) VIVILIE ZVRRVIL1EY VRIVILIE) y4Wll{1E,186),0018),
12. GLTLZ256 s MTHP5E5) yBL1621E)CM{1H,161)
12 INeYI14,145),TCBU 32,16} ,ATIZ25€)4CI{1A),CTI16,16),BI{14,16),
14, SY{164YE) o FTULE,16)4FTIALLE 16} 4FTIV(16E,1E),FTIYALYE,L1E),
15 TSC{1&, 143, VECRI16,15),
16, 4G{1E416) ,FBGLIL16216) ¢ VECI16+416)2VFIZ2432)H{1E416),
17 TAQLZ2045, 20, W1QI20,20) 4 W30(20,200,C510204,20), ‘
18, IFTQ(2042004Q210164+18) 420211010, 1¢),GA{1A,+1€6),,0D(1E,1€),
19, IRILEWIETJRICIE41G)+BAK{YIEL1EN 2GLILE,1EY+GAT(LIELTED,
20 o IGATI(16,16)sCGI015418)FBGCRILG6,+16),.QDQL20,2C)
71a REAL*G FMTA(16]
2w CALL ERRSET(207+2%&y-151+1,4215)
221 c
e C
2242 C THE 'MAIN ' PROGRAM FEADS THE CIMENSION 4 THE COPTICGN CARD
2244 C AND CALLS FOF EXECUTION SUBRCUTINE.
288 ¢
22+ L C i
23a 21 READIS,y T432END=1D) NSy NCaNZLNG,T
2he NCi=NC
25, IF{NC.GTL0) G0 TO 1}
6w NC=NC+1
284 IF {NGeGT0F GD TO 2
29 NE=NG+1

3¢, 2  NI)=N{



400d ST 3Hvd TVNIOING
HHL J0 ATIdID0A0HITY

~£0T-

21 IF (NZ«CT4G) GO TO 3

2. NZ= NZ+1

33 3 READIS,51)1I0L, 19, INQ,yICC

34, 51 FORMAT(4]2)

a5, T432 FORMATI{4]3,F105)

A6, N2=2#NS

27 MHS=NS%®KS

38, NNC=NS +NC :

3G9. CALL EXECANSINC yNZ yAs RM WP oWl ¢ Xy PREWCWR +CWI o ICNTHD, INT,

40« JACLsSC CNsQoByBl 4G oFBGC yCMoBAsCHCTaCToMT LT yAT 4 W21 ,TCRBW11,VF,
41, INCL oy NGLyNZL s YoF T FTIALZFTIYZFTINAENZ,

42 2VEC+RVECy VECRN ¢ VEC TN, VECRZyVEC T+ VRV VIV, VRRV ,VRIV,MHS, A,

43, GAQ s WLG I W3GE,COQ0Qs FTQINM » G212 AQ21 9yNG T ,GALGD+RHRI 4 BAK,

44 4 GFBGCK yGLyGATWGATYL yGI»I0OL4IC,INDLICCH

45, GO 1O 21

4Es 10 RETURM

47 END

48, SUBROUTINE EXECINS yNCyNZ2y Ao RMyWRyWI g XyPROZCWRyCWIZECONT Ty INT,
43 1ACL+SCoGNeQyB BT s G+FBGL +GMyBA,CHCT4CT MT,LT AT W21 ,TCRW1l,VF,
50. SNCYL aNGLaNZL oY FT o FTTALFTIYWFTIYALHWNZ,

Ele SVECRVEC, VECRN,, VECIN VECRVECT 4 VRV VIV, VRRV yVRIV,.MHS, 1A,

524 GACYWLG)W3QyCUeQDQyFTQNAC s Q21+ AQ2L 4 NGy T4GAyCD»R4RIZBAK,

53 4LFBGCK sGLyGAT,GATL,GT,10L,IC,ING,ICC)

83,1 C
E3,.7 C -

Ela 32 € YEXECY READS ALL THE MATRICES FIRSTaws

53. 4 c

£3.9 C

4. IMPLICIT REALXB({A-E,0-1)

55 . DIMENSICN AINZ2sN2) JRMINZyNZY,WRIMNZI2WIIN2) s XIN2 N2} 4PROINZ4N2 ),
56, LTCWRINSY,CWIINS) yICNTINZ JoDUIN2) s INTUINZ) s BAINSyNSY JACLINSyNS),
ETa SGNINSoNSYy QING yNGHsRVECINS yNS)Y y VECENINS ¢y NSy VECTININS yNSY s VECRINS,
£Bs TNS),

£9a BVECTINSNE) y VRV INS Iy VIVINS) oVRRVINS) , VRIVINS) yWL1INSyNS)IoCIRS),y
60, SLT(MHS ) yMT{MHS) 4BINC ,NC)+GMINS,NS),

£l 3n2L ANSINS) o TCBUNZ Gy ASYyATIMES)yCIINS) oCTINS NSy BIUNC,NC)
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62,
€3,
b4 e
65,
Gt
£ET,.
£8,
69
70
Tle
T2,
LED
The
15,
15
17
T8
1<
04
Bl.
B2
83.
B4ge
ES.
E&a
87.
88'
BEa1
B8, 2
€%,
G0,
Sle
G2
G2
e

-
e

SYIMSyNS)y FTINSyNS) fFTIAINS yAS) o FTIWINS,NS) 4 FTIYA(NS NS HINZSNS),
GGINSINCIyFBGCINC yNSE o VECINS oNS Yo VFINZ N2 )y SCINSH NS ),
TAQUNNC , NNCY s WIQENNCyNNC Y s WICINNC,NNCY,CQUNNC,MNT ),
LFTQUINNCoNNC) Q21 INCoNS) AQ2LINCyNSY,GAINSyNG) s QDINSHNS I
1RINZ NZ)IyRICNZyNZY yBAKINS NS} +sGLINESNC) sGATING 4NS Y,
1GATIUING NS Y GIINS o NS) yFBRGCK NSy NZ ) 4 GCQUNNCNNC)
REAL®4 FMT(20)

C READ ALL MATRICES
C
C
I1CN=0
NC=NC 1
NG=NG1
NZ=NZ1
D0 &1 I=1,NS
€1 REAC(S,7423)(BA(I4J),J=1,NS)
IF (NCeEQeOY GO TG 10
DA &2 1=1,NS
£2 PREATIE, 7433 M{G(T4d)ed=14NC)
CALL MAKEI{GL,GyNSsNC)
DO 63 1=1,NS
63 REAC(5,74331(SC{1,4)sJ=1,NS)
DO €4 1=1,NC
64 REAC(5,7433)1(BULI,J),Jd=1,K()
7423 FORMAT(6GL245)
3 FORMAT(' v, '0PEN LODP DYNAMICS MATRIXeaee')
4 FORMAT(8(2X,1PD13,6))
WRITE(£,1)
1 FORMAT('3%,? - NFEFwWw CASE-—=- 1)
WRITE(6,6666) NSHyNC,T _
£666 FORPMAT('1',* THE ORDER OF THE SYSTEM =', 12,7, NUMBER CF CCANTRO
1LS=1, 12,', SAMPLING TIME=',F10.5)
IF (ICCeEQLO) GO TO 45
WRITE(6,111)
111 FOQRMAT('C?,* YOU ARE LSING THE CONTe COST FUNCTICN %,//)
45 WRITE(643)
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Shae
57
GBa
9%
128,
101,
102.
103.
104,
105,
106,
i07,.
108,
109,
110,
111.
112,
113,
li4.
115.
116
117,
118,
119,
120.
121
122.
123
124.
1254
126,
127,
128,
12¢%.
130.
1321,

5001
7004
7C05
3041
7007
3¢42

7009
10

72

73

74

65
11
6&ET

8C01
12
€04

8CGCH

DO 2001 NI=14NS
HRITE{b!'!", lBA‘NIfNJ"NJ=1'NSl
WRITE(&,7004)
FORMAT('0", " THE CONTROCOL CISTRIBUTION MATRIX ISaeee'e//)
00 7005 NI=1,4MNS
HWHRITE{E %) (GINTI NI NI=1eNC)H
WRITE(&E,32041)
FORMAT('0'y"THE STATE CCST MATRIX ISesae',//)
00 7007 NI=1,4NS
WRITELG4+4) (SCINTsNJ) 4yNJI=1,NS)
WRITE{&43042)
FORMAT{*0O"'y*THE CONTRCL CCST MATRIX ISssse?y//)
DC 7009 NI=1,NC
WEITEL&,44) (BINIsNJ) yNJI=14NC)
IF (NG4.EQsO) GD TO 15
DG 72 I=1,NS
REAC(5,7433’(GA(I'J),J=1'NG! :
DG 73 I=1,NG ’
REAC(5’7433)(Q(I!J’)J=11NG) .
IF (NZ.EQ.0) GO TO 11
DO 74 I=1,NZ .
READ(S, 7433 (RUI,d)yd=1,NZ)
DO &5 1=1,N2
REACIS5,7433)(H(I,J),Jd=1,NS)
WRITE(6+6667) NS NGyNZ,T
FORMATUL"*1l*,? THE OCRDER OF THE SYSTEM =t, 12, ¢, NUMBER CF PROCES

15 DISTa=*y I24*', NUM., (F MEASURe=",12,%, GSAMPL. TIME = '+F1045)

[F {NC«CTeG) GO TO 12
WRITE(&,3)
D0 B001 NI=1,NS
WRITE(644) (BAININJI),NJI=1,NS)
WRITE(5,8004) -
FORMAT('G*, "THE STATE NDISE DISTRIBUTICN MATRIX TSeeae's//)
00 8005 NI=1,NS
WRITELL,4) (GA{NT NJYyNJ=1 NG}
ARITE(£,8041)



-991-

132,
133,
1324
125,
136,
137
128,
123,
140.
143,
144,
145,
146,
147
148,
143G,
15G.
151,
152,
1E2.1
162.7
152,72
1524
152.°%
152
154,
155,
15£,
157.
158,
189,
160
1€l,.
1624
1e3,
164,

RBO41 FORMAT{'0Q" 4 "THE STATE NCISF PUWe Se DENe NMATRIX TSeesst,//)
CC 8007 NI=1,AG
BCOT WRITELL,4) {QINT +NJYy Md=14NG)
IF (NZ.EQe.Q0) GO TOD 15
WRITE(6,8042)
8C42 FORMAT('0', *THE MEASUR, NOISE POWe Se DENe MATRIX [Seees’r//)
DC 800¢ NI =1,NZ

8009 WRITE(E44) (RINTI NJINI=14NZ)
IF (T.EG.O} GO TD £8
68 WRITE(£,3043)

3042 FORMAT('O','THE MEASURMENT MATRIX F ISasa's//)
DC 7010 NI=1,yNZ
TC1l0 WRITE(G,4) (H{(NT 4NJIoeNJ=14NS)
15 CONTINUE
IF (NCeGTL0) GO TQ 6

NC=MNC1+1
& IF (ING.GT.0) GO TC 7
NG=NG1+1
7 NCNC=NC*NC
C
C
C HERE (QOPTICN) EXEC CALCULATES EIGEN VALUES
c
C
1F (10LeEWe0Y GO TC 501
D 53 I = 14NS ;
DG 53 J = 1sA5
53 GN{I,J) = BA(I,J)

Ot ok Ak R ot Rk ARk kR K EE Rhh e Rk ek
CALL BALANC (NSyNS+GNsL T [HIGH,D)
CALL ELMHES (NS yNS,LOWe IFIGH,GN,INT)
CALL HQORZ2 ANSsNS,LCWyIHIGHCNCHR yCKI»ACL yTUNT ,E46€)
CALL ELMBAK {NS yLCWy THICHy NSy GN, INT,ACL)
CALL BALBAK (NS NS, LOW, IFIGHyNS+D,ACL)
e % fooiate e ol aeode ok e e R ok ke ok ok R e g ok ok kR

WRITEL & ,2030)
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165,
1€é6.

167.
168,
1€9.
170.
171
172
17241
1722
172.32
172e4
172.5
l72. €
173,
174,
17%,.
175.1
176
177.

178

179,
180,
181.
182.
1B2.1
182.72
182.32
182.4
1824 ¢
182.¢
183,
184,
185.
136,
187,

2030 FORMAT('1*,'0PEN LGOP EIGENVALUES AND EIGENVEC TNRSessveeast)

1
5

. YoleNaRalals

18

OO0

[F{ IOLaNELO)
1 CALL CNORM{CWRyCWIoACLyNS FVECWECRN,VECINyVECR,VECI,VRV,
1VIV VYRRV, VRIV)
G TO 501
4¢ WRITE(6,1060)
060 FORMAT('OFAILURE IN HGR2'}
0l IF(T.EG.0) GO TO 16

IF THE SYSTEM IS CONTINe PRCGRAM *CONV' WILL
DISCRETIZE 1IT.

CALL CDNV{BAK‘GA'QfNG[GAT)GATIIGLjT’NCI9NG1'
IBAvGrSC’ByﬁﬁvwlQ:H3QqCQ'QCCvFTQ’Q21:NSvNC'NNCr
ZNCNC,ATgLT,MT,BI,FEGC;Y;FT,hEl|FTIA,FTIY,CT.QD,!CC]

GU 70 18
16 CALL MAKEIBAK,BA,NS,NS)
NC=NC1
NG=NG1
CALL Z0T1(GI4NS,NS)
DO 17 I=1,NS
17 GI(I,I)¥=1.
IF (NC.EQeQ) GO TG 320

PROGRAM * INNER' CALCULATES THE CPTIMAL REGULATOR,
PROCRAM " INNEK*CALCULATES THE S.S5. KALMAN FILTER

28 CALL INNERLANS yMC o N2 9 Ay R¥MyWRaWI 9 X FROyCHRyCWIg ICNT 4Dy INT,
1&CL,SC,GN;B,BI.GL.FBGC'GM,BA.C,CI,CT,MT,LT,AT'h21,TCB.Nll,VF'
3YFT,FTIA,FTIY,FTIYA,Q21,4Q21,1CC, :

ZVEC,RVEC, VECRNs VEC IN,VECRVEC T, VPV, VIV, VRRY ,VR IV ,MHS, IA)
IF (4Z2.50.0) GO TO 40
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188,
1e35.,
160,
161
192.
163,
154,
152,
19¢&,
19E,
155,
200.
2Cl.
202
20z,
20k
2056,
20&.
207,
208,
2C9
210.
211,
212.
213
214,
215,
21t
217a
218
219,
2204
221,
2¢2a
223,

30 IFITaFR.0) GD TO 22

CALL INMEKIMNS NSyN2 A 3RV yWRyWT 4y X o PRCYyCARZCWI,TCNT,O,ENT,
IQDfGNQFFRI'GI!FBGCK?GH’EAK'C1CI’CT|MTQLT,ATQNZl’TCB’w117VF'

ATQy ION Y FT,FTIA,FTIY,FTIYA,H,NZ,

ZVEC yRVECVECRN, VECTINy VECRZVECT, VEV VIV, VERV VR IV, ¥HS, TA)

GO T3 2¢

33 CALL INMEKENS NGyNZ24A RV WRWWI o XyPROJCARsCWIy ICNT40D,INT,

IQIGN!RiRlieﬂvFEGCK,GM,EAK'C’CI|CT'VTQLT,QTQN21
BIC, TQNy Y  FTHFTIA,FTIY (FTIYALHNL,

1TCBW1) ,VF,

2VECsRVECyVECRNy VECIN, VECRsVECT + VRV VIV, VRRYV VRIV,MHS, 14)

3¢ IF{INC.EQ.1) GO TO 51

40 IF (ICefQel) GO TC 51
GO TO £0

51 CONTINUE

eseeM-DPz=Q CP Cﬂ

C
C
C FROM HERE TO 60 CALCUL. CF CLCSED LCOP RESPCNSE
C WItL BE NCNE {COV. MATRIX OF THE STATES.)
C
C
C (X=P) = ACL*{X=P)%ACLT +{M-P)
C M 1S BAK * P IS FT 4 H SHOULD BE ZERO (LATER)
C ACL IS CLOSED LOOP TRANS. MATRIX, T IS TRANS.
C FOR RESP.OF CLOSED LCOP OMY (ND PRLCCESS NOISE)
C
C

[GQM=1

IFfF (NZ.GT40)} GQ TC 105

NZ=NZ+1
185 CALL ZCT1{HyNZ NS}

DO 10& I=1,NZ
106 Ril,I)=1.
IF (INGaEQeCY GO TC 200
ONE=1l,.
CALL ADCUONE +BAK,~CNEZFToQDNS,NS)
CALL MAKETISCHFT N5 ,NS)



TYNIOTHK:

T
]

ST Aoy
U AXrm

H00g
.

WH@OE

691~

224,

1 2254

226,
227Ts
228,
229,
230,
231.
232.
233,
234,
235,
236,
237.
23R
23%.
240,
241,
242
243,
265,
246,
24T
248 4
249,
250»
251,
252,
283,
2E4,
2EBS,
256,
25T
2 EE,
2Fa,

3C0

200

500

400

401

OO OO

Bl

82

56

catLtL INNEK“NS,NS,hZfA,RNgHF,H!,X;PFU,CHRQCHI,ICNTQD'INT’
IQE'GpryRIyGI;FBGCK,GMyﬁCL,C'CIQCT'MTpLTpAT,NZI,TCBQNll:VF,
BIQvIQNfY’FT'FTIAoFTIY,FTIYApHyNZ:
2VECORVEC!VECRN;VECIN-VECR,VECI,VRViVIV.VRRV!VRIV,HHSfIA’
CALL ADCUONE yACL yONE, SCyACL NS ,NS)

GO 10 400

IF{TaEQ40) GO TO 500

CALL INAEK‘NS,NS'NZQA,RH,NRgWI,x'PR01CWR1CHI'ICNTQDQINT;
IQD’GNfg'ngGlfFBGCK'GNyACL,C1CIjCT§MT1LTyAT:HZlgTCB,Nll,VF,
BIQ'IQN’Y’FT'FTIA,FTIY,FTIYAJH'NZ,
ZVECyRVEC,VECRNyVECINvVECR,VECIyVRVwVIV,VRRV;VRIV;MHS;IA,
GC TO 400

CALL INNEK(NS.NG,Nz,A.PH.HR,NI,X,P%D,CNR,CH[,ICNT.D.INT,
ZQyGN'R'?IsGﬂvFBGCKyGHcACL,C|CI,CT;HT'LT’ATrH211TCBeH11,VF1
3IQyTQN Y4 FT+FTIALFTIYWFTIYAH,NZ,
2VEC’RVEC1VECRN!VECIN!VECR’VECI'VRV,VIV,VRRV)VRIVQMHS,!A}.
WRITE{6,401) ’

FORMAT('O', ' THE CILBSED LOQF STYATE COVe MATRIX 1S 9,779
CALL SPITI{ACL, NS¢NS)

E(U, LTI=CUX-P)CT
=C{XICT seeFOR EXACT MEASe

{ C=FBGC

00O 81 [=1,NS

DO Bl Jd=1,NC

GUll s+ JY¥=FBGL{4d,1)

IF {INQeEGeQ) GD TC 82

CALL ACC{ONE yACL, ~CNE4SC,ACL,NS,NS)
CALL MULT(FBGC+ACL,Q21,AC NS, NS)
CALL MULT{O21+G4B+NC,yNS,HNC) .
WRITE(S6,8%)

FORMATL*G'y* THE CONTROL COV, MATRIX 1€ Y/ 1)
CALL SPITIL{BNC,NC)

RETURN
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280,
ZELla
2624
2E3,
26L,
26t
267,
ZEBe
269,
270
271
£72
273
ZTh,
275,
ZTt.
217
278,
279,
280G,
281,
2BZ .
283.
2 Bégy
2854
ZBE,
287,
z B8R,
cB9a
260,
2Gla
292,
2C3,
294,

2G5

C

C

END

SUBROQUTIME CONVIBAKyGAyCyNG«GAT »GATYIWGL T yhC1L4NGL,
1BA,GySCybrAQCIWL QI WRRs COyUTCFTQ,QZ214NSMNCyNNC,

ENCNC s AT o LTy MTyBI 4y FEGC o¥ o FT o W21 s FTIALFTIY,CT,Q0,ICCH

I#PLICIT PEAL*B{A-FH,0-1)

DIMENSICN FTUNS oNSY o W21 INSoRS e FTIAINS NS I FTIYINS, NS,
TAQUINNCyNNC) s WIQ INNCyNNC) o WICUNNC o NAC ) yCQUNNC,NNC)
TETQUNNC 4NNC H 9 Q2L UINCoNS) yGAUNSyNG) s COUINS 4NS
JCTUNS oNSY +BAKINS o NS)y GLINS)NC) » GATING,NSY ,
1GATYIUNG NS, QINGIyNG) s BAINSoASI o GINSHNC) »SCINS 4NS )y
TATINCNCYy LTINCNC) ¢ MTINCNC)Y
1B(MCyNCYyQDGINNCyKNC)  BT(NCJNCYFBECINC 4NSI,YINS,NS)

NC=NC1
NG=NG1
CALL MAKE{BAK,BA,NSyNS)
IFCICCLEQLO) GO TD 110

CPREPARE NEw MATRICES

c
C

22

23

oL,

CALL ZCT1(AQ,NNC,NNC)
LO 21 I=1,NS

DC 21 J=1,NS
AQL{T,J)=BA(1,4)

00 22 I=14NS

DC 22 Jd=1,NC

AQUI L J+NS)I=GLI, )

CALL ZOT1(LDQsNNC,ANC)
D0 23 I=1,NS

D0 23 J=1,NS§
QUCGTUT s I¥=SCLT,0)

DG 24 J=1,NC
QEQINS+ Ty NS+J)=B(1,4)
CaLiL FA1Q‘71AQ1Hl@!ﬂagfcatthfQCCQFTQ'
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A

£330
297,
2GR,
29%.
200,
301,
202 .
303,
304,
2105,
306,
207,
3LB.
309,
310
311.
12
3i3.
314,
315,
316,
317
316,
319
3204
321,
3272
323,
324
325,
A2%
3274
328,
329
220,
221

25

26

DO 23 I=14NS

DC 25 J=1,NS
BA(T»J)=W1QIT1.,d)
00 26 I=1.NS.

OC 26 J=1,4NC
GlIl+J)I=GDGLI4NS+J)

CALCULATE BRI= INVe CF CDQINS+I,ANS+J)

3

28

29

36

110

ng 27 J=1+NC

Do 27 K=14MC

I=({J-1)%NC+K

ATUI) =GCOUINS+Ke NS+ J)

CALL MINV (NCNC, AT NCDESLTHMT)
DC 31 J=1,NC

DO 21 K=1,NC

I1=0J-1)%NC#+K

BI(K,y=AT( )

0C 29 I=1,NC

o0 28 J=14NS

Q210,44 )=QDQINS+1 4 J)

CALL MULTH{BI Q21 ,FBGC +NC+NCNS)
CALL MULTU(G+EBGL Y 4NSINCNS)

D0 29 1=1,NS -
DO 29 J=14NC

GLIT,JY=W1Q(T,NS+J)

CALL MULT{GLFBGC+FT NS ¢NC¢RS)
o 30 I=1,NS

DG 30 J=1,NS

SCUI,J1=QDQ({TI4J)

(INE =1,

CALL ADC{ONE,SC~0ONE, Y, SCyNEHNS?
CALL ADE(CNE,BA?'GNE?FT,EA!NS:NS!
IF {(NGaFQRQe0QY GO TO 140 i
IF {NGEQeD) GO TO 120
G £0 I=14M%

on af) lei’\lG



A

owm Wi
a % a2 9

[FA VS IR EVIR SV R VO R NN AV
-~
[

[VERRVY IR IRYS ERVE R NS

(W¥]
(
£ o
L

240,
341,
242
143,
3’1‘}.
345,
46,
347,
248,
2493,
350
281,
3527
353,
3E4,
355,
356.
357
35Ea
TEQ,
2¢0.
31,
362
263,
3€lLs
3¢5,
2t6e
267

(1]

60

120
130

728

el

gl

140

GAT {d1)=GA{T1,4J1

CONTINUE

CALL MULTIQGAT 4GATL MG yNG4NS)
CALL MULTIGAZGATL 4QD ¢ NS ¢NG 4 AS)
GG T3 130

CALL ZOTLIQD NS yNS)

CALL EATIICC Ty BAK Y 32 e FTIALFTIY LT NS, QDLFT)

IF (NGeEQeO) GO TN 131
WRITE(E6,T7T20}
FCRMAT(*G",!' THE LCISERETE
CALL SPITYI(QO,NS,NE)
CALL MAKE({BAKsYyNSsAS)

IF (hNCeFEGQeG)Y GO TC 140
IF (ICC5Ge1) GO T 14D
CALL M2KE(BA Y NS eNS)
CALL MULTIWZ2L G eGL NSNSy NC)
WRITE (£,811}
FCREMAT
CALL SPITI{GLNSNC)
RETURN
END
SUBRDUT INF

FRCCESS NOISE COVARIANCE MATRIX 2

{'0",* THE CISCRETE CLONTROL

/)

CISTR . MATRIX 1S4as '4/7)

IMNE KI NSy MUy N2 3 AgRMy WR o BT oX sPROyCWR yCWI 4 ICNT, D5 INT

1SCyCNyB BT s GoFBGL yCMy BAyCyCIyCTyMT 4L T2 AT, W21, TCByH11,VF,

3ICy IQAN Y FT,FTILALFTIY,FTIYAH,NZ,

IMPLICIT PEAL*B{A-Hy0-4)

2VEC,RVEC, VECRNy VECINSVECR, VEC Ty VRV VIV, VFRV,VRIV,MHS, TA]

CIMENSICN ALINZ2,N2) RMIN2,NZ2), WRINZI,WIIM2) s XINZ N2} ,PEC{NZ,N2),
1CWRENS) yCWl INS) 2y ICKNTUINZ )y CUIN2 Y, IFTANZ ) s BAINS,NSY,

2GNINS 4NS),

TNS)

RVEC (NS yNS 1o VECRNINS ¢ NS )y VECININESNS), VECRINS,

BYECT{NGS,MNSY ) VRVINS Yy VIVINS) ¢VREVINE) yVRIVINE) WL Y (NS NSY,CIRS),

GLTIMHS) yMT{MHS) ¢BINZ 2NZ)CMINS,NS),

FWZLIAMS NSy TCBINZ GNSY yATINMHEY G CTINS) CTAINSHAS)Y ,BIINZ,,NTD,
SY(MSyNS) o FTINSoyMNS) yFTIAINSyNS Iy FTIYINSyNSY s FTIYAINS yNSYyHINZ4NED,
LGGINSyNCY o FBOCINS  NZY g VECIMS NS Y ZVFINZ,N2) , SCINC,NC)

TEALAL®L FMT(20)



A

o - = 1Y
2EG.
370.
371
372,
372
374,
175
176,
377
278.
375
3EG
281
2BZe
383,
28&e
387,
3R3,
289,
260,
3Gla
3G7.
293,
364,
2G5,
257,
268,
1GG%,e
w00
4Gl
“02 e
403.
404,
405.

Cx*XQLTPUT CPTIONS .
C-=--10L=Y IF THE OPEM LCCP ETIGENSYSTEM IS DESIRED--TOTHERWISE ICL=N

0L

Cokx ORDER CF THE SYSTEM DYNAMICS

(NCTE:THE DIMENSICNS CF THE SYSTEF DYNAMICS yCONTRCL

M
MH
N

Cx&%0ORDER
C====NC
NCC
Cx=2%0RDFR

NG

NG=1
C o e e e ool o e ok e o oo okaloR e el e e ok oo e o bl e ol

CALL ZCTYIBINZ,MNZ)

ac

22 B8I{I1,1)
*xxCALLULATICN OF KALMAN GAINS:FORMATIGON OF THE HAMILTONIAM

ok
%

* FT1
*
*

* YRFT]

%%

it

1/8(1,D)

F+Y*FTI%4

OF THE CONTRCL SYSTEM
DF STPARATE CONTROLS

F THE MEASURENMENT SYSTEM
(NOTE:IF OMLY THE CONTRCL PROBLEM

* %
* %

»

EE O

C s e e e ootk ol o o B 0 o o ool o ek
00 CONTINUE
DO 24 1

MEASURTMENT , AND CCST MATRICES MUST BE SPECIFIED .
IN THE DIMENSION STATEMENTS ABCVE)

IS TO BE SOLVEL TEEN NO=Q)

*xxf IS BA NSXNS OPEN LOCP STATE
¥3%G IS NSXNC STATE DISTR., MTRX.

**%B 1S R NZXNZ MEASUR, NOISE MTR
*RxSC IS ¢ NCXNC STATE NCISE MTR
*E*XH TS NIXNS MEASLR.,T IS TRANS.
*A5T IS IMVyA=HT#RI%H Y=CaQegT

KBATHE EQe APE: X(N+Y1)=F#X{N)4+GHK
ZIN)=H*X!NI+L1Q=F(K*KTI,iAVERAGEl

Q=E{L&xLT)

U R b sk ol ok e o o o o o o e o g
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'l

24

25

DC 24 J = 1yMH
PRO(I,J) = 0400
No 26 K = 1,80
PRAOLI,J) = PROCIJ) + SCUI4kI¥G{J 4K}
ne 25 1 1¢MH
no 2% J 1+MH
YI(1,J)=0.C0
nn 25 K = ]14KC
Y(I1JI:Y(I,J3+G(11KJ*PRO(K,J1
CALCULs A 4 A=HTXRI¥4Y [FI=RD) SCFRY TEME QEp A TY FTI1Y
nn 26 1=1,N2Z
D0 24 J=Y oMM
DEGi{]1,J)¥=0.DC
L 25 K=l.hl
PRCLT,J1=FRO014 JY+RI (T, K)RHIK )
RO 27 1=1,4ME
A 2T J=1.MH
FTIY( Irj’=00p0
a0 27 k=1,.NI7
ETIV T2 JI=FTIVL T )4HIK 1) EF2K, d)
CARLCULATE FT
73363 1=1.MH
oC 3001 J=1.MH
ET{1+J4)=0.D0
00 3002 I=1.MH
U 2002 J=1 4 M
FT{I.J0V=hAa0J,T}
CHLCULATR FTINV
DL 327 J=1.H5
D0 227 K=Y ,4NS
I=0J=-1y#NE+K
ATHII=FT{K,J)
caLt MINYIMASYAT y M3 DELLT T
pDoO32f U=,
DN 325 K=140S
T={J=1)*MNE+K
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442, 328 FT(KJI=ATHLI)

443, o MINV RFPLACE FT BY FTINV, SC FRCM HERE CN : FT=FTINV
444, C CALCULATE FTINV*A=FTIIA,A=HT%R ] *H

445, DO 3003 I=1,MH

446, CO 2003 J=1,MH

447, 3603 FTIA(I,J1=0.0D0

448 ' CALL GMPRDIMHSyMHS yMHSy FT FTIY FTIA ,MH,yMH M)
449, C CALCULATE Y*FTINV=FTIY

450, CALL GMPROUMHSyMHS MHS, Y FT,FTIY,MHyaMH, MH)
451, C CALCULATE VY=FTIA=FTIYA

52 CALL GMPRDIMHS yMHSyMHS, Y, FTIA,FTIYA yMH ¢MH M)
453, C DETERMINE THE SUBBLOCK RMZ2

458, DO 3004 I=1,MH

455, DO 3004 J=) ¢MH

456, 3004 RM{T+MH,J+MHI=BACT ,J)+FTIYAL{I ,J)

457, C CALCULAE SUBBLOCK RMZ21

658, DO 2005 I=1,MH

459, LG 3305 J=14MH

460, 3005 RMUI+MH,JY=FTIYI{I,J))

461, C CALCULATE SUBBLOCK RM12

467, DC 2006 I=] +MH

463, DO 3004 J=1|MH

Géb, 3006 RM(I,J+MH)}=FTIA{I,J)

4ES, C CALCULATE SUBBLOCK RM11

4€6, DO 3007 I=1,MH

4¢€Ta DO 3007 J=1,MH

G ERs 3067 RM{IQJ)=+FT‘11J|

4£9,. 00 3008 J=1,M

270 PO 3008 I=1.M

471. 3008 A{1,J)=RM(],J)

4?2. C**#***#****###**#*#*4####*#$##***###**###

4713, CALL BALANC (MyNyALOW, IHIGK,D)

474, CALL ELWMHES {MyNsLCWsIHIGF, A, INT)

475, CALL HGRZ {MyNy LW, ITHIGH Ay WR ;W4 X,ICNT 48461}
476, CALL ELMBAK {MyLOWoTHIGHsNy 2y INT,X)

ATT CALL BALBAK (MyN,LOW, IHIGH yNyD 4 X)
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478
4719
480,
4Ela
482
483,
4L B,
4BE,
“#Bba
487,
4B8e
4EQ,
LS50,
4.9] 4
4C%a
£93
4G4%,
4G o
4G5,
457,
L4GE,
465G,
S00»
501,
502
503,
504,
S0k,
5{6.
£Q07.
508,
503
510,
511.
5124
513,

€ 2 s st 4 ook e ok e ot b s e s o0 ot ok ) e ke o ok o 3o ok oo o
CALL  GAINMINM NS oNCyRMeWRyWI s XsGNe W11 27CB,

laEalale

ITW2Ll s ATy LT 4 C oI, CT 4 MHS ,MT)
CALL MAKE(BAGNsNS,NE)

IF (ION.EQel) GO TO 289
WRITE{&,1401)

1401 FCRMAT('QY,"THE MATRIX M (Tht CCVe.

£50

51

1402 FCRMAT(' ',*' THE MATRIX P (THE CCV.

1 IS *,/7)

OF EST.EPRCR BEFORE MEASUR,)

CALL PAPHNT(MH, MHyMH,, 8GNy & 1 {3 (1X,1PDL12£) )0 )
C CALCULATICN OF P 4 P=FINV{M-Y)IFTINV

OC €50 I=],MH

DO 650 J=1,.¥H

GM{ T+ 3) =GNl T, d)1=-Y{1,J)

gG 681 I=3% 4 MH

DC 651 J=1,MH

PEGL{T,J)=C.00

DO &£51 K=1,NH

PRGCTI yJI=PRO(TI, J)+CNL{ I KIEXZFTIK,J)
nCc 652 I=1'MH

D0 aS52 Jd=1+MH

GMUE1,J)=03,.,D0

DG €5¢ K=1,MH
GN{TyJI=GNL TSV +FTH K, 1) 2PRCIK, )
WRITE(6,1402)

CALL MAKEA{FT GN yNE4NSY

1 IS "w//)

’

FINV=FTINVT

CF ESTa

ERRDOR AFTER MEASUR,)

CALL RAPANTI{MHyMHsMHy By CN 4, "{B8L1X,1PD13,£01])7)

CALCULATION CF FILTER GAIN

CaLCile FILTER GAIN  K=CN&=HTXRT
FOCRMAT(B{2X,1PD13.€})

DO 830 T = 1,MH
nc 200 J = 1,N2
PEO(I 9d}) = D00



Y

5ls,
515,
£16,
517
518
519,
520.
521
5224
523,
524.
525,
526
527
528.
£ 20,
530.
531«
532,
533,
524,
535,
336
£27%.
5318,
533,
540,
541,
542,
43,
544,
545,
546.
547
543,

800

801
S77

<66

46

CC 800 K = 1,NZ

PRCOIIsJ) = PRO(T,4) +HIKy T)#31(Kyd )
FBGC=KALMAN=K=GN%PRD

DC 8D I = 1,MNS

DC 801 J = 1,NZ

FBGCLII,J) = 0.D0

DO 801 K = 1,N8

FBGC{I,4J) = FBGC(I,4) +GN{ I ,K)#PRC(K,J)
WRITE(6,977)

FORMAT(® ", "THE FILTER GAINS K=PE*HT®RINV ARE:?, //)
DC S68 I = 1,M8

WRITE{644) {(FBGC{I44)4d = 1,NZ)

WRITE{6,5998) :

catLL RGAIN(P,NS,NC;RM.NR'hI,XgGN,HIl¢TCB,

1W21 yAT LT 4CsCT4CT, FHS, MT)

3G98 FORMAT{*1',* ESTIMATOR EIGENVALUES AND EIGENVECTCRSews ')

CALL CNORM{ CsCICT !NS!RVEC!VECRN!VECIN'VECRIVECI!VRV'
IVIV,VRRV,VR1V)

1400 CGNTINUE

GO TD 389
WRITEL641060)

1060 FORMAT{'OFAILURE IN HCR2')
318%

RETUKN

END

SUBROUT INF INNER(hSqNthZ.A,RM,HR,tI.x,PRG,CHR,CHI.ICNT.D,INT,
1ACL,sc,cN.B,Bx,G.FEGC.GM,BA.C.CI,CT.MT,LT,AT,wzl.TCB.wll,VF.
3Y S FToFTIAFTIY,FTIYA,G21,AQ21,1CC,
2VEc,Rvec,VECRN.VEcIN,VECR,VECI.vnv.v:v,VRRv.VRIv,MHs,IAI

IMPLICIT REAL*B(A~F,0~7) '

DIMENSICN A(NZ,Nzi.RM(Nz,Nz),wRINZD.wI(h2l,xtN2,N21,PR0(N2,N21,
IChR(NSlfCHItNS)bIChT(NZD,DGNZI;INT(NZIyBAlNS,NSl,ACLINS.NSI'
EGN(NS,NS),RVEC(NS,NS).VECRN(NS,NSi,VECIN(NS,NS).VECR{NS.
TNS)9Q2YINC NS}, AQ21INC,NS),
BVECI(NS,NSl,VRV{NS}.VIV{NS).VRRV(NS).VRIV(NS),HlllNS,NSI,C(NS},
PLTIMHS) ,MT(MHS) s B{NC,NC )y GMINS ,NS ),

FWZLANS s NSy TCBUN2 3 NS 9 ATIMHS) yCIIAS) »CT INS oNS ) e RTINCLNEY .



=-8L1-

5504 5Y (NS, NS) o FTUNS,NS) JFTTALNS, NS )y FTTY(NS yNS )y FTTIYA{NSyNS)y

5Ele GGUINSyNC )y FBGCINC aNS) 2 VECTINS oNS ) o VF (N2 4N2) s SCINS 4 NS
6582 REAL*S4 FMT(20)

553, C

554 4 Cx*¥¥QUTPUT OPTIONS

555, C——-10L=1 1Ff THE OPEN LOCP EICENSYSTEM TS5 DESIREC—TOTFERWISE ICGL=0
556e ICL = 0

557 C*%%x QRDER OF THE SYSTEM DYNANICS

5584 c (NOTE:THL DIMENSICNS CF THE SYSTEM DYNANMICS,CONTROL,
£59. c MFASUREMENT , AND COS5T MATRICES MUST BE SPECIFIED
560, C IN THE DIMEMNSION STATEMENTS AEOVE)

5&1. M = 2%NS

5€2. . MH = NS

563 N = M

564, Cx*x(RDER UF THE CONTROL SYSTEM

5£5, C==-=NC = NUMPER 0OF SEPARATE CCATFOLS

5¢&t,. NCC = NC

571. NC =0

ST e NG=1

573, (C % aie oiesde o o e o o 3k v e e e e e ofv e e ofe o o et e ofeofe e ook o v e Mok o

El4. CxAxINITALIZATION OF MATRICES

575, IF (ICC.EQ41) GO 7O 500

576 po 7 I= 1,NC

E77a O 7 J = 14NC
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578
579,
SBD,
SEle
582 .
5E3.
584,
58¢,
586,
587
58e,
58S,

7T BI(I,J) =
N 23 1 =
232 B8I(1,I) =
Cx*¥%CALCULATICON
C .
C X%
C *
C * FeY#FTI%A
¢ *
C *
C *
C * ~fFTixA

0. D0
1.NC
1/8(L,1)

OF CONTRCL GAINS

~Y#FET]

FTI

%

# % ¥ 4 H ouH

tFORMATION OF CONTROLU HAMILTONIAN

*#%F AND FT ARE THE CPEN LOOP
DYNAMICS MATRIX aND TRANSPQSE

®¥exB [S NCXNC CCNTROL WEIGFT ING
MATRT X

%%%xA [S THE NSXNS STATE WFIGKTING
MATRI X

**¥%FT] =FTINVERSE, VY=GM*BI%*GM
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£90 . c L LR ¥*%GM IS THE NSXNC CONTRCL

56G1. C DISTRIBUTION MATRIX
592 C o 85K oKk o o oA O ok R ook oo ok ok o o o e R o e ok R o ok
5913, 500 CONTINUE

594, DO 24 I = 14NC

595, DC 24 J = 1,4MH

5G¢, PRO(I »J) = 0.DC

897, DO 24 K = 14+NKC

568, 26 PRO(I yJd) = PROUTI ) + BILIKIEGL LK)
£599. D0 25 1 = 1.MH

600, 00 25 J = 1.+MH

601, Y'I1+J)=0s00

&02. DO 25 K = 1,4NC

603, 2E YUl 4J)=YL 1,y JI4GHL T ¢+ KYXPRT{K,J)

£Q4a C " CALCULATEZ FT

505, D3 3061 I=1,MH

606 CO 3001 J=1,MH

607, 300 FT(I,=0.00

6508 DO 3002 I=1,MH ,

60%, DC 3002 J=1.MH

610, 3002 FTEI ,d)=BA(J,1)

611, C CALCULATE FTIMNV

612, DO 327 J=1.+NMS

cl3. DO 327 K=1,NMNS

£1l4,. I=0J=1 ) %NS +K

615. 2T ATLIN=FT(K,d)

616 CALL MINVIMHS yAT o ME4DESLTaMT}

617 DO 328 Jd=1,NS

618, DO 328 K=1,NS

619, I={J-1)2NS+K

£ 20 328, FT(K,J1}=AT(1)

621 C MINV REPLACE FT BY FTINV, SC FROM. HERF ON : FT=FTINYV
E22 C CALCULATR FTINV*®A=FTI 1A ,A=SC

623, no 39403 1=1,MH

£24 o D0 2362 J=1,MH

625. 3003 FTfA(IrJ'=QaDQ
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626,
627
628
629,
630,
631,
632.
¢33,
634,
635,
636
65237,
&38,
6329,
540,
641,
&E42,
€43,
G4t o
645,
646,
6547,
648,
649,
650,
651
6552,
653,
654,
655,
656,
65T
&58.
655,
6 £0,
66l

CALL GMPRUO{MHSyMHS ¢yMHSyFT 4 SC+FTIAMHyMH, MH)

C CALCULATE Y®FTINV=FTIY

CALL GMPROAMHSy MHS JMHS Yo FTFTEYy ME4 MH, MH)
C CALCULATE Y*FTIA=FTIYA

CALL GMPROD(MHS yMHSsMHS yY yFTIAZFTIYA,MHyMH, MH)
C DETERMINE THE SUBBLOCK RM]1

DO 3004 1=1,MH
DO 3004 J=1.MH
3004 RM{T,J)=—BA(J,J}-FTIYA(I,J)
C CALCULAE SUBBLOCK RM1?2
DO 3005 1=1,MH
DC 3005 J=1,MH
3005 RM{I,J+MH)=FTIY(I,J)
C CALCULATE SUBBLOCK RM2)
DO 3006 I=1,MH
DC 3006 J=14+MH
3006 RMUI+MH,J)=FTIA{I,J)
C CALCULATE SUBBLCLCK RM22
DO 3007 I=1,MM
00 3007 J=1,MH
3007 RMUI4#MH 3 J+MH)==FT(1,J)
DC 3008 J=1,M
DG 3008 I=1,¥
3008 AlI J)==RM(I,J)
C 3k kg e e deole o o ook ok o ol e o 2 e e e ool ofe ol etk gk okl ) B
CALL BALANC (MyNyA,LOWKy IKIGF,D)
CALL ELMHES (MyN,LCWy IHIGH,A, INT)
CALL HQR2 AMyNyLONyIHIGH A yWR g W4 X ICNT y£46)
CALL ELMBAK (Mg LOW 2 THIGHy Ny A, INT, X))
CALL BALBAK (MyNyLOWy THIGH Ny Dy X)
O g g (P i,
CalL RGAIh(M'NS!NC!RMgWR,HIjngN9“11vTCBl
LW2L s AT LT ¢CyCLyCT 4 MHS yMT)
WRITE(6,1401) .
140 FORMAT{'0', *THE RICATTI GAIN MATRIXY, /)
CALL RAPRNT(MH,MH,PH.S.GN,ﬁ.'(5(1x11P013.6li'!
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EE2.
6£3,
G éd,e
&6S,
666,
HETe
6EB.
6€G.
&T0,
£T71l.
672
£73,
O L
ET5
&ETEe
677.
678,
€79,
&80,
68l
682,
683,
684,
685,
686,
687,
688,
£ B89,
€90
6Gl.
6G2.
653,
&£C4,
&£G5,
HSE.
65T

C CALCULATION OF FEEDBACK CGAIN

C
c
4

CALCs FEZEDBACK GAIN U=-BIANVEGT*FTINVIGN-A),
FORMATIEL 2K, 1PD134€))

C—-—CALCULATE GT

£10

811

800

801

B0 81C I=1,MH
D3 BlD J=1.MH
PROLILJI=CN{T,J)=-SC{I,J)
Do 811 1 1,MH
co 811 J 1eMH
GN(IyJ) =0.00
00 811 K = 1,MH
GNL{IyJ) = GN{I,Jd) + FTUI,KI¥PROLIK,J}

DO 800 I = 1,NC
DO 800 J = 14MH
PRCO(T,J) = 0,00
DC BOO K = 1,4MH
PRO(IWJ) = PROUINJ) #GIK, I I*GNIK, )
DO 801 T = 1,NC
DD BOY1 J = 14NS

FBGCIT,J) = 0.0D
DG 801 K = 14NC
FBGC(I,J) = FBGCU{i,Jd) 4+BI(I,KI*PROLK,J)

Cx*xTHE OPTIMUM FEEDBACK CCNTRCL CAINS

802

ST7

L0 RO2 1 = 1,NC
D0 B8D2 J = 14NS
FEGCI{I,d) = -FBGC{T,J}

IF (ICC.EQ.1) GC TC 145

WRITE(E,97T)

FORMAT(* %,'THE CCKTROL GAINS ARE:",//)
00 868 T = 1.NC

GHR WRITE(H,41) (FBGCLI J)yd = 14NS)
CH*%%THE CLOSED LOCP DYNANMICS MATRIX

145

CONTINUE
DO 150 I = 1,NS
DO 150 J = 1,NS

A=5C
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698'
4G9,
T00.
703
702
T03,
T04,
705,
TOt
707,
TOB e«
709,
710,
711,
Tlza
713,
714,
T1E,.
7l6.
T17
718,
719,
T20.
721,
T22
TZ3.
T24%e
725,
T26
T27e
T29.
729
730,
T3le
T32.
733,

eNaYelalale]

PRO(L +J) = 0,DD
DO 150 K = 1,NC
15¢ PRO(I,J) = PRQ(I;J)fGlI'Kl*FBGCleJ!
DO 160 I = 1,NS
DC 160 J = 1,NS

160 ACLUI v d1=BA(1,J)+PRO(T,4)
iF (ICC.EC.O) GO TO 803
C=CPRIME-BI %*{21
CALL MULT(BT,Q21,A521 ,NC,NC,NS)
ONE =1, -
CALL ADD(DNEQFBGCv‘UNE;AQZItFBGCvNCQNS!
WRITZ(6,987)
SET FORMAT(® ¢, 'THE CONTRCL GAINS AREzv, /1)
DC 938 1 = 1,NC
S38 WRITE(6 44 (FBGC I d)sJ = 1 ,NS)
BQ3 WRITE(6,170)
170 FORMAT(*D',*THE CLOSEC LGCP DYNAMICS MATRIX ISae's//)
DO 1806 T = 1,NS
180 WRITE(&6,44) (ACL (T J)ed = 1,NS)
WRITE(£,8968)
5658 FORMAT('1','CLOSED LOCP EtIGENVALUES AND EIGENVECTORS eea '}
CALL CNGRM{ C4CI,CT !NS!RVECvVECRN!VEC{N!VECR!VECI,VRV!
IVIV,VERY,VRIV)
1400 CONTINUE
GO T} 259
46 WRITE(G6,1060D)
1060 FORMATU('GFAILURE IN HQR2')
389 RETUPN
ENG
SUBROUT INE EATYQ (VoA WL W34 CyN QD FT)

TEIS SUBRNUTINE CGMPUTES THE TRANSITION MATRIX AND IT'S INTEGRAL,

THE SERIES IS TRUNCATED WHEN THE LARGEST ELEMENT COF THE LAST TERM

THE SERIES IS LESS THAN leE~02 TINES THE SMALLEST ELEMENT CF TFE S
SEPIES. WRITTEN 8Y R. MAINE 8/17/71
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T34,
T3k,
T3t
T37s
T2,
T3%.
74Ce
T4l
7424
743,
T44,
T45.
T46s
T47,
T48,
T45 e
750-
TEis
TE2,
T5%
754,
TESR,
T5be
757,
{ZCa
T£9,
T€0
TEl
TEZa
TE£3a
T€4,
765,
TéES.
TETa
TER.
TES

aEelsNeNaleEnN e

CCMPUTES PHI(T/8)=EXPLAXT/8)

USES FNLLOWING RELATICNS 3 TIMES TC NBTAIN PHILT)

FHILZT)=PHI(T)*%2

INTECRALC(PHI (2T ) )= INTEGRAL(PHI{(T)IX(I+PHI(TI)

INTEGRAL(PHI(2T) #2T)=IRKTEGRAL(PHI(TI*T)I*(I+PHI(T)+

+INTEGRAL (FH

IMPLICIT REAL%¥B(A-h,C~1)
DIMENSICH A(NNI WLINWNIyW3IIN
TQCINGNIYFTUINLND

CO 5 I=14hN

OC 5 J=14N

FTLiI+Jb=A0J,1)

i=T/8,

CALL MULTHLOD A, C N 4Ny N)

CALL MULTUFTCoWlaNeNoN)

CALL MULTUFT QD +W2 gNgho M)
l2=Ix1/f2.

CALL ACCLZyQDeZ24+C2QD N NI
ONE=1.

CaLl ADD(OMNE,QD 4Z22+W3,QCe Ny M)
I13=22%2 %74/ 3

caLlL ﬂEE(ONEQQD,ZBQWl!QD’N,h‘

NX=N
NT=24

CALL ZOTLIWL 4Ny

DC 1 IzlyN
WilI,1)=1.0

CALL MAKF (W3,W1l,NsN)
G=1.0

WIMAX=] E+5(

T=T/8,

DO 7 I=1,NT

RA=1

G=GxT/RE

ANC 17S INTEGRAL

TITY PAPHIL T 2T

1N11C(N'N’1

AND

ITS INKTEGRAL
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T70.
T71,.
T72e
T73,.
T
775.
TTE
T77.
778,
T71%
TED,
781,
782,
783
TE4,
785
787,
788,
T899,
790,
7461,
7G2.
763,
TG4,
755,
TGhe
T97.
768,
799,
800C.
801.
BO0Za
303,
80‘3’.

3C

46

7

WIMIN=1,E+50
DO 30 J=1,NX
BO 320 K=1,NX

IFCHLIJ9K)aNEeOWe o AND, CABS{WL{J,K)) eL T HIMIN) WIMIN=DABS {W1{ JoK})

CONTINUE

WIMAXY =WIMAXET/ BR

CALL MULY (AsW3,4C,NyN,N)

CALL MAKE (W3,C,N,N)

W3MAX=0e

DC 40 J=1,NX

DO 40 K=1,NX

IF (DABS{W3(JU4K)) oGTe W3MAX) WAMAX=DABS(W31J,K)})
CCNTINUE

W3MAX=W3IMAX %(

CALL ACT lQNE!ngGfN3,H1!N!N’

IFl WIMAX oLTe WIMIN*1.E~Q3)GC TC 10
CCNTINUE

WRITE (£y1000) WIMIN,W3MAX W3IMAXI

1000 FORMAT(YOERROR IN EAT 'y S5X ¢ "WIMIN =9,F15.645X, ' WIMAK =%,E15.6/%

7C

71

90

51

17Xt W3IMAXLE =t,E15,.5)
CONTIMUF

DC 9D K=1,3 -

DO 71 L=1,N

DC 7Y J=1,N

FT{Lydd=Wlla4L)

CALL MULT{QD W1 yW3 4Ny NyN)
CALL MULTIFT sW3 3CoNyNyN)

CALL ADC(ONE,QDONEyC,QQDsN,N)
CALL MAKE {(wW3sWlyNh,yN)

CALL MULT [WlsW3,CyNgNgN)
CALL MAKE {wWl,C,N,N)

T=T=*2,

CONTINUE

WETITE (&,51) 1
FORMAT(*0*', *THE EXTENDED TRANSITION MATRIX*,I5,1
CALL SPITYI {W1l,NX4KX)

TERMS* /)
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3(0F.
1D,
81lla
Blle
313,
8l4b,
815
Bléae
817.
BEl18e
819,
8204
E£l.
B2Ze

E23,

B24e

325,
EZba

B27Te
a28.
825
g13Q,

831,

R332,
833,
836,
835,
B3t
B37.
838,
8329,
840a
gal,
42
842,
84”1’.

OO0 AnmOa0O000

RETHUERM
=MD

SUBROUTINE EAT (T1CCyToA Wl k2, W3, We,CyN4+QD,FT)

THIS SLERCUTINE COMPUTES THE TRANSITION MATRIX ANC IT'S INTEGRAL.
THE SERIES 1S TRUNCATED WHEM THE LARGEST ELEMENT CF THE LAST TERM
THE SERIES IS LESS THAN 14F-03 TIMES THE SMALLEST ELEMENT OF THE S

SERIES,

CCMPEUTES PHI(T/ B8 =EXP(A%T/3) AND ITS INTEGRAL
USES FOLLOWING RELATICNS 2 TIMES T2 OBTAIN FHIAT)

PHI(2T }=PHI(Th%%2

INTEGRALAPHI(ZT DI =INTEGRALIPHI{TIIF(I+PFI(T ),

INTEGRAL(PHI(2T)*2T )=INTEGRAL(PHI(TI*TY*(I+PRI(T)+
+INTEGRALIPHI(TY }2PHI(T)] %T

[MPLICIT REAL*B{A-F,0~2)

DIMENSICN A(NsNPoWLIN N Do W2{N gN) g WZINN) yWa{INSN}yCOMyND,

1QDINyN) JFTON,N)
DC & I=1.N
DT 5 Jd=1,N
Wil T4dr=A0Jd. 1)
Z=T/8.
CALL MULTIQD WL, WZeNeNsNI
CALL MULT(A, W29 W1 oNyNyN)
CALL MULLTUALGD w2 s AgNsN)
L2=1%1/7Za
CALL ACCU(Z4+0LD+Z22+W2+QCsNyN)
NME =1 »
CALL ADCICONE, QD22 4W3,00:NyM}
I13=22%7%74 /3,
CALL ACC(ONELQDZ3+W14QLsNyN)
NX =N
NT=2%
CaLl ZCTI{wl,N,N)

ANC ITS INTFGRAL
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845
846,
847,
548,
8§49,
B50a
851,
852,
853,
854,
855,
BS5&,
857
£58,
853,
B&0,
Béla
B&2a
R&3,
864,
8ES,
BEbe
BET,
8&Ba
8€9.
870,
B71.
B12a
873,
874,
875
876,
BT7s
B78.
8§73
880,

30

40

7

70

CALL MAKE (WZ2¢W1,NN)

oc 1 I=11N

WIlI,1)=1,0

CALL MAKE [W3,W1,N,N)

G=1.0

W3MAX=14E+50 o
T=T7T/8. . B
DO 7 I=14NT

8B=1

G=G*T/HA

WIMIN=1,E45C

HZMIN=] ,E450

DG 30 Jd=1,NX

OC 30 K=1.+NX

TF{Wl{JsKIeNEeDe oANDe CABSIWI{J)K)) oL TeWIMINIWIMIN=DABS (WL{ J,K))
IFIW2(JsK) e NED s oANDe CABSIWZ(JyKY) oLT.WZMIN) W2MIN=DABSIW2( J,K})
CONTINUE _ )

WAIMAX 1=W3MAX%T/ BB

CALL ADD (ENE W2 ,GyW3 4W2eNyN)

CALL MULT (A,W3,C4NyNyN)

CALL MAXKE (W3 .CeNeh)

WAMAX=0,

Do 49 leng

D0 40 K=1,NX

IF (DABS{W3{JWK])) 6T WIMAX) W3IMAX=DABS{KW3{J,K))

CONTINUE i

WAMAX =W IMAX %G

CALL ADD (ONEWW1aGoW3yWlahyh)

TF(W3MAXY LTy W2MIN#Z1,E~03 LANGe W3MAX ,LTe WIMIN*1,£-02)GC TC 70
CONTINUE

WRITE (3,1000) WIMIN,WIMAX,W2MIN,W2MAX]L

1000 FORMAT{'CERROR IN EAT*y5X,"WIMIN =2,F15.,6,5X, "WIMAX =1,5]R gs¢ v,

L117Xs "W2MIN =9, 152645 X, "WANAXY =9 ,E15.,6)
COMTIMUE

D0 50 K=1,3

DD 71 L=1,4N



-B8T~

Hdl.
8824
883,
BB8ha
885,
886
887.
R 88
889,
860,
B9l
8CS2
893,
B34,
B95,
696,
BG7.
898,
569,
330G
901.
02 »
303,
G904
905,
9Cte
307,
308,
90%.
91d.
G511,
Slia
Gl3.
914,
S15,.
Glé.

91

71

80

S0

11
i0

30 71 Jd=1.N
FT{LyJI=W10J,L)

CALI MULTICDFT W2 ,NyNyN])
CALL MULT (W1 W3 ,FT NyNyN)
CALL ACC{ONE QD yONE+FT3CCsNsN)

CALL MAKE (wW3.W1,M,yN)

CALL MULT (wlsW33CeNygNyh)

CALL MAKE (Wl,CoNeMN)

CALL MULT{WZ2 W3 sAsNsNyN)

nC 80

J=1,N

W2l JeJI=W3{Jy.d) +1l,

CALL MULTIWZ W3 ¢sCaheNyN}

CALL MAKE (WZ2,C+N,N)

T=T%2.

CENTINUE

IF (ICCaEQsl)

WRITE

FORMAT ("1 4, %THE TRANSITICN NMATRIX',I5,?

{&y51)

1

GO 19 %1

CALL SPITL {WlyNXsNX}
RETURN

END .

SUBROUTINE MULT{A¢ByCoNeM,yK)
IMPLICIT REAL#%#8{A-H,0-7)
DIMENSTIGN A(NMI pBIMaK) sCENLK)

DC 10
00 10

I=1|N
L=11K

XX=04,00

DC 11

Jxlyﬁ

XX=XX+A{T,J¥*B{JsL )

CLT 40L)
RETURN
END

SUBROUTINE SPITL(A N M)
IMPLICIT REAL*§(A-H,D-2)

=XX

NIMENSION ALIN,M)

DG 18

NI=1|N

TEAMS /)



UOOd SI FOVA TYNIDIEO
AHL IO ALITISIDNAOddAY

~-681-

217,
918,
919,
920
921,
Q22
923,
Q4.
925
926.
27,
928,
G529,
930,
93],
332
§33,
934,
G35,
G326,
937,
939,
940,
941
F42 «
943
944,
G455,
G 46,
G477,
48
942,
350,
951
9E2 .

19
20

10

10

10

10

WRITE(6,20) (ACNT 3 KJY yNJ=1, M)
FORMAT (8(1X+1PD1245))

RETURN

END

"SUBROUTINE ZC0TY1(A,Ny,M)

IMPLICIT REAL*8{A-+,0~7)
DIMENSIOM A{N,M)

DO 19 I=1,N

Be 10 J=1,Mm

A(T,44)=0.D0

RETURM

END

SUBROUTINE MAKE{AyRyN,M)
IMPLICIT REAL*83{A-K,0-7)
DIMENSICN AUNJM) yBIN,M)
00 10 I=1,N

00 10 J=1,Mm
Al s JV=8B{1,4)
RETURN

END

SUBROUTINE ADDILX, Ay YeByCoN, Ml
IMPLICIT REAL*8{A-H,0-2)
DIMENSION A(N,M),BRIN, M) yCUN M)
D0 10 f=1,nN
D0 10 J=1,M
CUI 4 3)=XEA0T4J) +Y%BT,J)
RETURN
END
SUBROUTINE RAPRNT(NMAX,MyNyLy Ay IDI V¥ ,EMT )
REAL#*8 A{NMAX,N)

DIMENSION FVMT(IDINV)

NU=L

DG 20 NL=1,N,L

TF (NUSCTaNY NU=N

DC 10 I=1,M
WRITE{6FMTY (AL T4d)ed=NLNUD
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as53,
984,
255,
056,
95T
9£3,
959,
SEQ.
3861,
962,
G&3,
GEeh .
GES,.
Shbe
967
DER,
&G,
S5T70.
971
972
72
9 T4,
975,
917
G785
GT9.
380
S98la
Q82,
983,
GE4L,
GES .
G 86
QRT,.
Q8L

OO0

100
20

91G1
101

WRITE(6,100)

FORMAT(® *)

NU=NU+L

RETURN

END

SUBROUTINE CDIV (A4BsCyLyEyF)
IMPLICIT REAL*8 (A-H,(-1) )

THIS SUBRGUTINE CCMPUTES THE COVMPLEX DIVISICN
E + Fx] = (A& + BxI}/(C + L*1)

T=C*C+0*D
E=(A%C+3xD) /T
F={B8%xC-AXD)/T

RETURN
Sk
SUBRAOUTINE HQRZ (AN, Ny LOWyHIsHsWR 4 ¥ 4 Fy ICNT 4%)

IMPLICIT REAL*8 (A-H,C-2)

DIMENSICN HUNM,NM) yWRINM) JWIINMIFINM,NMY, TCNTINM)
INTEGER HT, HIls ENy EL

REAL*E IM, IV,MA(5C),MB(50}

DATA EPSM / 734100C000000G0C0 7/

LOGICAL LASY -

D0 101 [=1,N
DC 9101 J=] 4N
F(I+J)Y=0,000
Fld,11=0,0D0
FtI.l})=1,0N0

IF (NaGTLZIMAI3 )=H(3,1)
IF {(NaLTed) GO T3 5102
CO 102 T=4,N
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IBG,
933G
95%.
992
983,
994,
995,
996,
G5G7.
998,
999 .
1000,
1001«
1002,
1003,
1004,
1005,
10Q7,
i0GB.
16495,
1C010.
1011.
1012,
1013,
1014,
1G15.
10146,
1017.
1018,
igle,
1020,
10z1.
1022
1023,
1024,

OO

la¥eXal

102

s102

103

3103

104

5104

165

200
1G¢

MACT)Y=HIT ,1-2)
MEBLI)=H(L,I-3)

LOWMI=LCW-1

‘HI1l=HI+1

===>= STORE KNOWN EIGENVALUES

IF (LOWMleLTel) GO TO 9103
DC 103 I=1,LCWM]
WRETI=H(T 41}

WI(1)=0.0D0

ICNT(1)=0

IF (HI1leGTeN) GO TC 9104
DC 104 I=HI1,N
WROIY=HET 1)

WI(I)=0.,0D0
ICNTtLI) =0

EN=HI
T=0¢0D0

————— DETERMINE EIGENVALUE EN
IF (ENeLT.LCKW) GO TO 100

175=0
NA=EN-1

----- SEARCH FCR SPLITA

L=EN

IF (LeEQelOW) GC TC 109

IF (DABSUH{L,L-1)}.LE.EPSM*{DAES(H(L~2,L=1))
+DABS(HIL L) })) GO TC 10¢
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1025,
102e,
1627
i0zZ8.
1629
1030,
1031,
1032,
1023,
1034,
14235,
1036
1037,
1028,
103g,
1946,
i0c4).
1042,

1043

1044,
1045,

1046,

10474
1048,
1649,
105C.
1051,
1052,
1053,
1054,
1055,
1056,
10E7e
1058,
1059,
1060,

OO0

YOO

109

11z

L=L-1
Gl TC 106

~———- TEST FCR CONVERGENCE

X=H{EN, EN)

IF {L«EQeEN) GC TO 110
Y=F{AhA,NA)
W=H{EN,NA)XH (NA,EN]

IF (L.EQ.NA) GO TO 111
IF {ITS.EQe2DIRETURNI

----- COMPUTE SKIFT

IF (ITSeNFoal10ANDQITSWNEL20) GC TO 113
T=T+X

nD 112 I=L0OW,,EN

H{T 4T =HIL1)~X
S=DABSAH{EN, NAY )+ DABS{H{NALEN~Z})

Y=, 7EDO#S

x=Y

Wz -0 43T5D0% S%kS

————— QP ROTATICN

ITE=1TS+1

EL=N&-L

DO 114 MM=1,FEL
M={]A=MM
Zz=H{M,M)
R=X-F
S=Y-d
P={R&S—W)/H(NV+1 MI+H{N,M+]1)
C=HI{M*1 M+l }~-I-R-5S
R=H{M+Z,M+1)
S=DABS{PY+DABS{CI+CABS(R)
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1061,
1062,
10623,
10&4,
1065,
1066
1067.
1068,
1069,
1070,
ig71.
1072,
1G73.
1674,
1075,
1076,
1077,
10178,
1079,
108G
1Qe1.,
1082,
1083,
1084,
i¢ges.
1086,
1087,
1088,
1089,
165G,
1051,
1092
1953,
10594,
10s5,
1096,

114
11¢

116

117
9117

>

P=p/5S
Q=Q/S

R=R/S

IF (M,EQeL) GO TO 115

IF (DABS(H(M,M=1) )% (CABS{C)4DABS(P))oLE. EPSM*DARS(P )
*{DABS(H( M-1,M=1) }+DABS(Z)+DABSIH{M+]1,M+1}}))

GO TO 115

CCNTINUE

MP2=M+2

0O 116 TI=MP2,EN
H{I,41-21=0,0D0

MP 2=M+ 3

IF {EN.LT.MP3) CGO TQ 9111
DO 117 I=MP3,EN
H{I,1-3)=0.0D0

CONT INUE

DO 118 K=MuNA
LAST-‘-K-EQ.NA
IF {KeEQse M) GO TO 116
P=HIK,K=-1) '
C=HIK+1,K=1)
R=0,00C0
[F («NCTL,LASTIR=H{K+2,K-1}
X=DABS(P) +DARS{C)+CLES{R)
IF {XeaEQe0e0OCO) GO TO 118
P=P/X
Q=0 7/X
R=R/X
S=0.0D0 )
If (P.FQeCe0CO) GO TO 1119
IF (DLCG1O(CABSI(P))WGEe—38.,000}) S=P=%pD
IF {QeEQeTBeCGLO) GC TO 2119
1F (DLOGIO(CABS{Q)) JGE.-38,.000) S=S+0%*0Q
IF {R.EQe0.0C0) GC TO 3119



-P61—-

1057,
1098,
1099.
1100.
1101.
1i02.
1103.
1104.
1105
1100,
1107.
1108,
1109,
1il0.
1111,
1112.
1113.
1114,
1115,
1116,
1117»
1118,
1119
1120,
1121
1122,
1123,
1124,
1125
1126
1127.
1128
11245,
1120,
1131,
1132,

3116

1zC
5121

122
121

124
123

12¢
125
11&

IF (DLOGIO(CABS{R}).CE«—-3R.000) S$=5+R=*R

5=DSQRTI(S)

IF (PLLTL,0)5==-5

IF (KeEQa M) GC TG 120

E{KyK-11=-5%X

Gr 70 9121

IF {LeNEeMIHIKyK=1)==+(KK-1)

P=P+S

=P /%

Y=GQ/S

1=R/S

g=Q/P

R=R/P

DC 121 J=K,sN
P=H{K, J)+QxHiK+1,J)
IF (LAST)Y GO TC 1272
P=P+REH{K+2, 1)
HIK+2y JI=HIK 2 , J)1=P*]
HUK+L,y JI=H{K+1 ,3) =P Y
HIK g J) sH{ Ky J 1= F%*X

JEMTMNOQ(EN,K+2)

DG 123 I=1,J
PaXtH{ T+ KI+Y2EH(] 4K+1)
IF (LAST)Y GO TC 124
P=P+I%xH{ 1 4K+ 2)
HIT K+ 2)=FH{T,K42)}-F*R
HET 3K+ 1) =H{T jK41 ) -P%Q
H{ T9KI=H{ 14K}~ F

DT 125 I=L0OWHI
P=X%F( I,KI+Y*F{T,K+1)
TF [LASTY GO TC 12
P=P+2%F {1 ,K+2)
FUI K42 E=FLIK42)-F%R
FII s +1)=F{],K+1)-F*Q
FI{ITyKY=F{1,K])-P

CONTINUE
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1733,
1124,
1135,
1136,
11137,
1138,
1139,
1140,
il141,
1142,
1143,
1144,
1145,
1146,
1147,
11 48,
1143,
1153,
11¢#1,
lit2.
1153,
11¢4,
1155.
1156,
11£7,.
1158,
1159,
1160,
l16l.
1142,
11£3,
11é4,
11e5,.
11l¢es,
11€7a

Y Oy

110

111

-—=+=— ENC OF QR ROTATICN
GO TC 200
-=~—=— CNE REAL RODT IS CETERMINED

FOEN JEN)=X4T
WREEN) =HUEN, EN)
WICEN)=040D0

IF (ENJNELLVHIEN,NA)=0.0C0
ICNTLENY =ITS

EN=NA

G0 TO 105

----- THG RDOTS ARE CETERMINED

P={Y-X)/2.,0D0

J=PxPe+l

/=DSCRT{CABSI(Q))

X=X+7

HIEN,EN}=X

HINAJNAY=Y+T

IF {NAJNEL1)HINANA~1)=0.000
ICNTUEN}=-ITS

ICNTINAY=ITS

IF [CeLE«0s0D0) GO TO 201

----- TWD REAL ROOTS

CIF (PelT+0.000) 2=-

=P+
WRANAI=X+Z
S=X-w/2

WR{EN)=S
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A Y
1170,
1171.
1172.
1173.
1174%,
1175.
1176,
1177.
11 76«
1179,
1180.
1181,
1182,
1183,
1184,
1185,
1186,
1187,
lise,
1i89,.
119G,
11st.
1192
1193,
1164,
1195,
1166,
1157.
1148,
1199.
1200,
1201
1202,
12G3.
1204,

el aNeNal

203

204

205

201

WiinNAT=UeUUU
WI{EN)=0,0D0
X=H{EN,NA)
R=DSCRT{ X*X+Z%Z)
P=X/R
C=Z/R
DO 203 J=NAyN
I=H{NAJ)
HINA, J)=Q*Z+P*H(EN, J)
HEENy JI=Q*HUEN, J) ~P*2
CO 204 I=1.EN
Z=H {1 +NA)

HIT sNAY=Q#Z+P2H{
HEUTZENI=QX*H{ [, EN
CO 205 I=L0OW,HI
Z=F (1,4N&)
FIIJNAD=Q*Z+PEFLIEN)
FUI4FN)=Q*F{I,EN)-P¥*]
HIFENyNA) =00D0
GO TC 202

I+EN
) -px%

----- TWO COMPLEX ROCTS

WRINA)=X+P
WRLENY =X +P
WI(NA)=Z
WICEN)=-2

EN=EN=Z
GO TC 10%
----- END OF EICENVALUE ITERATICN

ANRM=(C4 (DO

DC 210 I=1,N\
D0 209 J=K N
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1205,
1206,
1207.
1208.
1209,
1210,
1211,
1212,
1213,
1214.
1215.
1216,
1217.
1218,
1219.
122C.
122i.
1222
1223,
1224,
1225,
122¢.
1227,
1228,
1229,
12304
1é21.
1232
1233,
1234,
1235,
123¢&.
1237,
1238,
123%.
12490,

s RaEa Ny

209
210

4900

214
9214

215

92172

RNRM=RKNRM+DABS{HIT,4))

K=1
~———— DETERMINE THE EIGENVECTCRS OF THE TRIANGULAR MATRIX STORED
———— IN H ANG OVERWRITE THEM GON M
EN=N
IF {EN.LTs2) GO TO 401
P=WR {EN)
Q=wILEN)
NA=EN-1

IF (C.MNELC.000) GO TO 212

————— REAL EIGENVECTCF CCRRESPGNCING TO REAL EIGENVALUE

[=NA

IF {(I.LY.1)} GO TO 220
S=H{ T+EN)
IP1=1+]

IF {(NASLT&IP1) GD TO G214 -
OC 214 J=1IP1,NA
S=5+H{T+J 1 ¥H(JHEN)

¥=0,0D0 -

IF (1eNEs1)Y=H{1,yI-1)
Z=P-H{1,1}

IF (2.EQ.0.000)Z=EPSM*RNREM
IF {¥eNEeD«OQDO) GC TG 9213

H{I EN)=S/2
GC 1O 213

I=]-1
P=H {1 4EN}



-861-

1241. IP2=1+¢2

1242, If (NA.LT.IP2) GO TC S216
1243 DO 216 J=1P2,NA
1244, 216 R=R+H{ T ,J ) *H(J, EN)
1245, S21¢ wW=HI(] ,I)-P
1246, XeH(I,1+41)
1247, I¥ (DABS{ W) LE.DABRSIY))} GO TC 217
1248, C
1249. RM=Y/W
12504 Z=2{S—RM*R )} /L Z+RMEX)
12¢1. H(I+]1,EN)=2Z
1282, HIT+EN)=E -R=X*Z )/
1253, CC TO 213
1254, C
12¢%<, 211 RM=W/Y
12¢6. X={ KM*S-R )/ X+RN%])
1257 - H{I+1,EN}=X
258, HOT 4 EN)={ -S+X*Z /Y
12£9,. C
12¢0, C
12¢). 213 I=1-1
1262 GO TC 2906
12¢3, C
12¢¢, 2?20 H(EN!EN’=1OQDO
1265, GO 10 211
1266 C
1287 . = COMPLEX EIGEAVECTCR CORRESPONUING TO COCMPLEX ETGENVALUE
1268, C
l1ec9, clz I=MNA
1270. 2G¢ IF (T.LT.1) GO TD 3s5(C
1271 C
1272, F=H(I,EN)
1273, £=0,000
1274, IP1=1+1 ‘
121, TF (IP1.GT.NAY GO TO €3N)1

1275 NC 3201 J=1P1,NA
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1277,
1278
1279,
1280,
1281,
1282.
1283,
1284.
1285.
1286.
1287,
1288,
1289,
1250
1291
1292
1293,
1264,
1295,
1296.
1257,
1258,
1299,
130G,

1301.,

1302.
1303,
1304,
13405,
13G¢,.
13¢7,
1308
13209,
1310,
1311,
1312,

3201
2301

3303

364
3364

F=R+H(T+J I *H(J,NA)
S=S4+H(T,J)2HUJ+EN)
CONTINUE

¥=0,000

IF (I4NEa1)Y=HI{I4I-1)
I=H(l+1}=P

ITF (Y NE.Q.0LQ) GC TC 9303

CALL CDIVI-R,-S+2+4QsHII,NA),F(I4EN})
GC 70 303

I=1-1

KRA=H{ I ,EN)

SA=0.0D0

IP2=1+2

IF (NALJLTLIPZ) CO TC <304
DG 304 J=1P2,4NA
RA=RA+HIT s J12H( JyNA)
SA=SA+HII ,d}¥AH{ J, EN)
CONTINUE

W=H{111'-P

X=H{I,1+1)

[F {DABSIWI+DABSIC)LLE,CABS{Y)}) GO TO 305

CALL CDIV(Y 0.0CO Wy QeRM,IM)
R=R-RM%RA+IM%SA

S=E—RM*xSA-IM4RA

TI=RMEX-7

T2=1M%xX=-Q

CALL CDIVIR,yS+T14T72,RV,I1V)
Ti=—-RA-X=RYV ’
T2==SA-X%1VY

CALL COIVITYL oT2 W sQeHIT ,NA) yHITLEN) Y
G TO 306
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1313, 205 Ew=ufY

1314, [v=0/Y

121%. PA=r A-RMES+ ] MXS

13]e, SA=SA—-RM¥ES—=[M%ER

1317 TI=OM*T—T MEL-X

131¢&, To=IM$Z4RM*(

1314, Coll CDIVIRAGSA,TL,T242VIV)
132C. H{T,NAY=L IVH*L—RV*Z-F ) /Y
1221 HET+EN) == { S+ TVEZHFVEQY/Y
1322 C

1323. 306 H{T+Y ML =RV

1324, H{T+1 450 =1V

1325, C

1326, C

1327 33 I1=1-1

13z3. 1 TE 98

1i32% C

1330, 250 HETRyNA =Yl D0

1331, ' H(ENQEN)ZO.ODG

133Z. Fii=NA

1333, C

1334, 21 EN=EN-]

13235, GC YO 400

1336, c

1337, ¢ - END ETERNVECTARS OF TRIANGULAR MATRIX
13384 C ;

133G, C

1340, 431 IF (W10 )eEQaM DDOIHIZ,1)=1.000
1241, TF (LOwMl.LTa1d GO TO G402
1342, D0 477 1=1,L00¢1

i363a IPI=1+1

1344, U402 J=TP7 4N

13245, 40z FUTeJdY=H{I )

124¢ta C

1347, Gaip IF (HI1eGTeN) GO TC 404

134H, OO 433 T=HT1 .8



-108~

1345,

1350,
1351,
1352,
1353,
1354,
1385,
13546,
1357.
1358,
135%.
1360,
13¢£1.
1362
1343,
1344,
13¢5,
1366
1368,
1369,
13270,
1371,
1372,
1373,
1374,
1375,
1376,
1277,
1378,
1379,
1380,
1381,
1382.
13832,
1384,

403

9402

408
416

C
404

9404
C

C

409
408
407

411
410

If (I1.EQ.N) GO TO 9403
1P1=1+1

DO 403 J=1PL1,N
FII+JY=H(I,2)

IF (LOWSGTLHI) GC TO 404
LO 416 J=HI1,N
B0C 416 I=L0W,HI1
I=0000
D0 405 K=LOW,HI
I=24F(1,K)ZH (K, J}
F{1,4)=2

J=HI1 '
IF (JeLTeLOW) GO TC 413

IF (wltJ)aEQe040C0) GEC TC 407

Ip=4-1

DD 4C8 I=LOW,HT
Y=0.,000
2=0.0D0
00 409 KsLOW,Jd
Y=Y+F{ 14K %2HIK, IP}
Z=Z+F U1 ,K )*H(K, J)

FII,IP)=Y
Fll,J)=7
J=1P
GG TC 406

DO 410 1=LOW,HI
2=0,0D0
B0 411 K=sLCW,d
Z=7+F (I, K 1%H{K, J)
F{lyJ)=1
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14H%, 40¢ J=4-1

1386, GO T S404

1367, C

138E, C == FhD EIGENVECTOR DETERMINATION
1389. C

1360, 413 IF (NoGTLZIHE3,1¥=0A(3)

13G1. IF (NelLTa4)YRETURN

1352, DC 415 J=4,N

Y3493, H{I,I-2)1=MAL I}

1294, 415 F(I,1-3)=MB{1)

1395, c

1396, RETURN

1267, END

13G8. SUBROUTINE BALANC (NM M2, LCW,HI D)
1399, C

1400, TMPLICTT KEAL*8 (A-H,C-2}
1401, DIMENSTON AL{MNM,NM) 4 D{NM])
1402, INTEGER HI

1403, . LOGICAL NCCONV

1404, DATA B,B2 / 1640D0, 256.0C0 /
1405, C

1406, L =1

1407, K = N

1408, C

14049, C SEARCH FOR RCWS TSCLATIAMG AN EIGFANVALUE AND PUSH THEM DOWN
1411, 1¢0 J = K

1612, 101 IF (Ju.LTW4l} GO TG 110

1413, R = D700

1414, an 152 1 = 14K

l4als, 192 R = R+DaBS{ALI,I))

lale, R = R=-NABS{At I,y J))

1417 I[F (R NE.0L.0C0) GO TO 143
1412, DEKY = J

1415, IF (JuECKY GO TD 203

1420, D0 201 1 = 1,X
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1421, F = AMI,J)
1422, AIyJ) = A(I,K)

1423, 201 A{I,K} = F

1424, DC 202 I = L,N

1425. : : F o= Ald,1)

1426, ACJsI) = ALK,I)

1427. 202 AlK.I) = F

1428, 203 K = K-}

1429, GO TO 100

1430, 103 J = y~1

14231, GC 70 101

1432, C

1433, c SEARCH FDR CCLUMNS ISCLATING AN EIGENVALUE AND PUSH THEM LEFT
14344 C

1435, 110 J = L

1436, 109 IF (JaGTeK) GO TO 113
1437, C = 0.0C0 -
143286, ‘ DC 112 1 = {,K

14345, 112 € = C+DABSCA(I,J} )

1440, € = C~DABSEALI, I

1441, IF (CeNEsGeODO) GO TO 111
1442, DIL) = 4

1443, IF (JaEQel) GO TO 213
1444, 0C 211 I = 1,K

1445, F = AlL,d) _

1446, All,d) = AtI,L)

1447, 211 All,L) = F

1448. DO 212 1 = L,N

1449, F = 8J,I

14%0. A{JIV = A(L,1)

1451, 212 AlL,I) = F

1452, 213 L = L+1

1453, GO ™1 110

1454, 111 J = 4+

145%, GO 11 18

14¢%¢, C
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1457
14E8,
145%,.
14€C.
1461,
14467,
1462,
1464,
1465,
14¢&6.
1467,
14¢8,
146%
1470.
1471,
1472
1472,
147¢,
1475,
1476
1477,
1478,
1479,
14890,

is 81,
1482,
1483,
1484,
1485,
1486,
14874
1488,
148G,
1450
1491,
14924

laeNaNe;

113

302

308

30¢

307

LCW
HI
IF
ML

ol

NCW BALANCE THE MATRIX IN RCWS L THROUGH K

NGC
31

= L

= K

(LeGTa KIRETURN
g0 1 = LK

) = 1,000

ONV

= oFALSE.
201 I =

LK

C 0.G00

R G« 0DQ

N0 363 J = L.K

IF (JeEQaI} GO TQ 203

W

C = C+«CARSTALL,IN)
R = p+DaBRStA{LI,J)])
CONT INUE
= lsGDC
S = C+R
G = E/B
IF (CeGELG)Y GO TO 305
F = FxB
C = C*B?2
GO 1O 2C4
G = R*xB
IF (CeLTLGY CD TO 307
F = F/B
C = C/B2
GG ¥C z{s

IF ({(C+R)/Fa CELQ.9500%S) GO TO

301
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1453,
1464,
1495,
1466,
1467
l14¢8,
1499,
1500,
1501.
1502,
1503,
1504,
1505.
1506a
1507,
1508,
1509
1510,
1511,
1512,
1513,
1514,
1515.
1516
1517,
1518,
1519,
1520,
1521,
1522.
1823,
1524,
1525,
1524,
1527,
1528,

102

101

107

104

G = 1,000/F

DETIY = DE1I%*F
NOCONV = +«TRUE,
DO 311 J = LN
Al J) All,J)2G
DO 312°J = 1,K
AlJrI1) AlJd 1) *F

e i

CONTINUE

IF (NQCONVY GO TO 202
RETURN

END
SUBROUTIME BALBAK{NMyN,LOW4kT 4M,D,2)

IMPLICIT REAL*8 {A~H,(-2)
INTEGER HI
DIMENSION D(NM) yZ {NMsNM)
IF (LOWWGTLHIY GO TO 107
DC 101 I=L0Ww,HI
S=pt1)
DO 102 uU=1,M
FASERIE SN FWEE S
CONTINUE

IF {(LOWL.LELL) GO TO 108
LOWMI=LCW—-1
DO 103 I1=1,L0WM]
I=LCh=T11
K=t 1)
IF {KeEQsI) GO TO 102
DO 104 J=1.M
S=Z(I;J,
Z(LyJdl=Z{KyJ) -
Itk yJ)=§
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152G,
1530«
1531.
1522,
1533,
1534,
1535,
153¢.
1527,
1534,
1539,
1540,
154,
1542,
1543,
1544,
1545,
1546
1547,
1548,
1549,
1550,
1551 .
1552,
15832,
1554,
15E5,
1556,
1587,
1558,
15¢t9.
1560
1561.
15¢€2.
1562,
1564,

103

108

10¢
105

162

IF
IH=
oG

COMTINUE

{HI «GE «NJIRETURN
HI+1
105 I=1H4N
K=0{1)
IF (KeEQLI} GJ TO 105
DO 1696 J=1,M
5=z (1,0
{1, J)=1(K,J)
ZIKyJ)=S
CONT INUE

RETURN

END
SUB

IMP
DIM
LMl
KpP1l
IF

Do

ROUTINE ELMHESINMy N KyL o4, INT)

LICIT KEAL*8 {A-~H,(-2)
ENSICN INT{NM),A(NNM,AM)

=L-1
=K+1

(LM1.LTeKPL) RETURN

101 M=KP1l,LM]
I=M
X=0.000
0O 102 Jd=M,L
If {(DABSUA{JM-1) JuLELDABSIX))
X=Al.JsPF-1)
I=3
CCONTINUE
INT{M)=]
IF {I.EQ.M} GO TD 102

MM1=M—]
DG 104 J=MML,N

GNH TO 102
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I565.
1566
1567,
1568.
15¢9,
1570,
1571
15724
1573,
1574,
1575,
1576
1577,
1578,
1579,
1580.
1581
1582,
1583,
1584,
1565,
15€6.
1587.
15884
1589.
1550,
1591,
15524
1593,
1554
1595,
1596.
1557,
1598,
155G,
14600

<

104

10¢
103

107

108
106
101

Y=A(I,J)
Al y J)=AL Med)
AtM,J)r=Y

0O 105 a=1,L
Y=A(J, 1)
Ald,T)=AlJ,M)
AltJyM)=Y

IF {X«EQ.0) GO 10 101
, MP1l=M+]
% DO 106 1=MP1,L

‘ Y=A(],M-1)

Y IF (Y.EQ.0) GO TO 106
Y=Y/X
AL, M=1)=Y :

DO 107 J=MyN
AL ydD)=AL T, J)-YRA{M,J)
00 108 J=1,L
ACJsMI=AL Iy MI+YRA(S, 1)
CONTINUE

CONTINUE

RE TURN
END
SUBROUT INE FLMBAK {NMyKoLsRyAsINT, 2}

IMPLICIT REAL®8 [A-H,(0-1)
DIMENSICN AUNM NM) JINTOMM) 3 ZINM,NM)
INTEGER R
LMK =L-K=]1
IF (LMKalLTel)RETURN
00 101 ¥M=1,(LMK

M= L — MM

MPl=N+]

D3 182 I=vPl,L

X=A{T4M4-1}
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1601,
1602«
l16G3,
1604
1605,
1606,
1607
1608,

1609,

1610,
1611.
1512,
1613,
1614,
l161¢.
1616,
1617,
1818,
1619.
1620,
1621.
1622,
1623,
1624,
1625,
1626,
1627
l628.
1629.
1£30.
1631,
1632,
1633,
1634,
1635,
1636

IF {X+EQe 0) GO TO 102
BC 102 J=1,R

103 AL »J) =20 T 9 d ¥+ XxZ (M, T}
102 CCNTINUE
E=IAT(M)

IF {(1.EQeM) GO TO 101
DO 104 J=1,R

X=7Z(1,J)
I{Iyd)=ZiM,d)
104 ZiM,yJh=X
101 CONT INUE
RETURN

END

SUBROUTINE RGAIN(M NSyNCyRMyWRyWI 4VF,GN,W11,7TLB,
TW21 sAT oL T+CHCI o CT 4 FHS,,MT)

IMPLICIT REAL#%#8 (A~H,0-2)

DIMENSICN WR({M) yWICNM},VF(V, Pl’GNlNS NS) sRMEM, M)

DIMENSICN  WIL{NSoNS),TCB{M,NS),W21{NS, NSI.LT{NHS',MT(MHS)
ODIMENSICN AT{MHS)

DIMENSION CUINS)CTINS)I,CT{NS,NS)

MH = NS
K =1

Kp = 1
KN = 1

10 TFIK.GT4M) GC TO 200

W2=WHIK)2X24WI(K)*%2~1,

IF{WZ) 1006,50G0,50
S0 IFI(WI{K}) BO,75,80
-=———————=—FIGENVECTOR FOR REAL ;IGENVALUEpPOSITIVE
T5 CONTINUE

KP = KP+}1

K=K +1

GO 7O 10
=== —=———=~EIGENVECTOR FOR COMPLEX EIGENVALUE ,PCSITIVE REAL PART
B0 CONTINUE

KP = KP+2
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1637,

1638,
1639,
1640,
1641«
1642,
1643,
1644,

1645,

1646,
1647.
1648,
1649,
1650,
16F1.
1652,
1653,
1654,
1655,
1656,
1657,
1658,
1659,
1660,
16&1.
1562,
1663,
1664,
16465,
1566,
1667.
1668,
1669,
1670
1671,
1672

C

K= K+2
GO T3 10
100 IFIWI(K)) 120,110,120
—====——=——EIGENVECTCR FOR REAL EIGENVALUE,NEGATIVE REAL PART
110. C(KN) = WRLK)
CILKN) = WItK)
DO 95 J= 1.,M
S5 TCB{J, KN} = VFUJ,K)
KN = KN+1
K=K+1
GG 10 10
mw—=—————-EIGENVEC TOR FOR COMPLEX EIGENVALUE,NEGATIVE REAL PART
120 RR = WRI(K) '
RI = WI{(K)
C{KN) = RR '
CIKN+1) = RR ‘
CI(KN} = RI
CItKN+1) - RI
0o 121 J 1,M
FR = VFUJK)
FI = VF(J4K+1D)
TCB{J+KN) = FR#FI
121 TCB{JsKN+1) = FR~-FI
KN = KN+2
K = K+2
GO 70 10
200 CONTINUE
EO 299 1 T4 NS
DC 299 J 1,ANS
299 CT(I4Jd) = TCBA(I,4)
FCRMATION CF Wll

nh

DG 300 I = 1,MH
DO 300 J = 1 ,MH

300 WIL(T,J) = TCB{1,d)
KNS = NS+1

FORMATION CF W21
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1673,
1674,
1675
1675.
1677,
1618,
1679,
1680,
168},
1&£82,
1683,
1684,

1685,

1686,
1687,
1688,
lego,
1560,
1&81.
1692,
1£53,
1694,
1665,
1696
16%7.
1498,
1699,
17C0,
1701,
1702,
17G3,.
17C4.
170%.
1706,
1707
17Q8,.

C

C
C

320
322

CO 3220 I=1,MH

DO 229 J=1,VMH
Welllydi= TCBIT #MH,4J)
CONTINUE

- MHS=MH#*MH

TNVERT Wl1l

327

328

DO 327 J=1,NS

D0 327 K=1,NS

I=(J-11%NS +K

ATUI)=W1lLK,J)

CALL MINVIMHS, AT yMH4CETCH+LT4¥T )
DD 328 J=1,NS

DG 328 K=1,NS$

T={J-11%NS +K

WIL(K,J)=AT(1}

CALCULATE THE RGAIN MATRIX

325
5C0C

6000

DO 325 IL=l4MH

DG 325 JL=1,MH

GN{IL,JL) = 0.D0

DO 325 L=l ,MH ‘
GN(lLfJLl=GN(fL7JL’+H21(!LfKL'*HlllKL:JL)

GO TO 6000

WRITE(&,1) :
FORMAT('1?,*ZERC EIGENVALUE-RICATTI EQUATICN HAS NO S5¢%)
RETURN T

END

SUBROUTINE MINVINNM,ASN,DsL ™)

IMPLICIT REAL%B (A-H,0-7)

DIMENSTCN AUNM) sL{ANM) 4MINM)

OOUBLE PRECISION 4,0y BICGA,HOLD

0=1.000 -

NK==N

00 BY K=1,N

NK=NK +N

LiK)=K



=113~

1165,

1710.
1711,
1712,
1713.
1714,
1718,
1716,
1717,
1718,
1719,
1720.

1721
1722,

1723.
1724,
1725,
17264
1727,
1728,
17129,
1730.
1731,
1732,
1733,
1734,
1735,
1736
1737,
1738,
1739,
1740,
1741,
1742,
1743,
1744,

Y OVOY

10
15

20

25

30

35

28

4G

Mt =
KK=NK+K
BIGA=ALKK)
DO 20 J=K,N

- T2Z=N%(J-1)

DO 20 I=K,.N

1J=12+1

IF{ DAES({BIGA)- DABS(A{IJ))) 15,20,20
BIGA=A(T4)

LIK)=1]

MIK)=J

CONTINUE

INTERCHANGE RCWS

J=LIK)

IFtJ-K) 35,35,25
KI=K=~N

00 30 I=11N
Kiz=K]+N
HCLOD=—A{KI)
JI=KT=-K+J
A{KII=A(d1)
ACJIY =HOLD

INTERCHANGE COLUMNS

I=M{K}

IF{I-K) 45%5,45,33
JP=N&{1-1])

DO 40 J=11N
JK=NK +J

JI=JP+J

HOL C=-A{JK)
ALJK)=AL141)
A(JID) =k3LD
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Li%o.
1746,
1747,
1748,
1749,
170,
17%1e.
172
1753,
1754,
1755,
1756,
1757
1758,
17¢€9.
17&0.
1761,
17E€2,
17€3,
1764,
1765 .
1766,
1767,
1768.
1769,
1770,
1771.
1772
1773,
1774
1775.
1776
1777.
17718,
177G,
1780.

aNalele

oo

laXalks

%5
46

48

50

&0
62

65

70
75

DIVILCE COLUMN BY MIMUS PIVOT (VALUE CF PIVOT ELEMENT 1S

CONTAINED IN BIGA)

TF{BIGA) 48,46, 48
D=0.000

RETURN

DG 55 1I=14N

IF{I-K) 50455,50
IK=NK+1
ALTKY=A(IK)IZ{-BIGA)
CONTINUE

REDUCE MATRIX

00 65 I=1+N

TK=NK+1

HOLD=ATIK)

IJ=1-N

DO 65 J=14N

TJd=TJ4+N

IF(I=-K)} 60465460
IF{J-K) Hz.8E5,62
KJ=1Jd-1+4K

AT J)y=HCLD*AIKJI+ALT )
CONTINUE -

CIVIDE ROW BY PIvOY

KJ=K-N

DL 75 J=1,N
KJ=KJ+N

IF(J-K) T0375,70
ALK J}=ALKJ) /BIGA
CONT INUF



~-E18—

1781, C PRODUCT OF PIVOTS
1782, o

1783, D=0%*8ICA

1784, o

1785, C REPLACE PIVOT BY REC IPRCCAL
1786, c ‘

1787, A(KKI={1,0D0)/BIGA
1788, 80 CONTINUE

1789, c

1790. c FINAL ROW AND COLUMN INTERCHANGE
17¢1. C

1792, K=N

1793, 100 K={K-1)

1764, IF{K) 150,150,105
1755, 105 I=Li{K)

1756, IF{1-K) 120,120,108
1797 108 JQ=N*(K-1)

1798, . JR=N%{I-1)}

1799, DO 110 J=1,N

1800, JK=JQ+J

1801, HOLD=A{ JK )

1802 JI=JR 4y

1803, AtJK)=—ACIH1)

1804« 110 A{JI)} =HOLD

1805. 120 J=M(K)

1806 IF(J-¥) 100,100,12%
1807, 125 KI=K~N

1808, DO 130 I=1,N

1809, KI=KI+N

1810. HOLD=AC(KI )

1811, JI=KI-K+J

1812. ALKI}==ALJ1)

1813, 120 A{JI) =HALD

1814, GO TO 100

1815 150 RETURN

1816, _ END
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1817. - SUBROUTINE CNORMIWZ ¢ Yo VEC s NS RVEL,VECRM, VECIN,VECR,VEC T, VRV,

1818, I1VIV.VRRV,VRIV)

1819, IMPLICIT REAL*B (A-H,0-2)

1820 DOUBLE PRECISION WZ WY4VEC

1821, DIMENSICN WZINS) yWY(NS) s VECINS NS

1822 DIMENSION RVEC{NS o NS) s VECRNINSyNS ) JVECTINUNS ¢NS Y, VECRINSsNS)
1823, 1 VECTUNS yAS) ,VEVINS) 9 VIVIKSY 4VRRVINS Y, VRIVINS])

1224, T FORMAT(Y )

1825, B FORMATU{VOREAL EIGENVALUE (" 3123 " Veveosneos?ylaX,*REAL ETGENVECTOR
18 26, 10"y 12y Yeveonsn et / /1Ky () Fl5aB8e " )4Jl 'y FlEebBy ¥ )t 13X, (' ,F1lSeB,y")?
1827, 2)

1828, Q FORMAT (44 X" { ', F15.,8y %) "}

12829, 10 FORMAT{'CCOMPLEX EIGENVALUE(' 312y "lecssceesty14X,*COMPLEX EIGENVEL
1830. ITCORE?Y 412¢% Juunonnes' / /1L X eV { ' F1l5,8," 438", F15.8,")',13%,"'(",F15.8
1831 2eM)4J0Y,F1E48,')") '

1822, 11 FCRMAT (44X, " ('3 FlS48, ) 4J( ", F15.,8,%17)

1823. C .

1825, LR=0

1835, LC=0

1837, DO 999 Kk =14AS

1838, LK =K+1

1839, REMCD = @.DD

1840 IF (DABSIWY(K})eLTeleD-10) GO TO 988

1841. IF (LM-EQ-I.AN CK' i » !

1842 IF (LMueEQel) Gg Toqugs' 6¢ TO 1000

1843, LC=LC+]

1844, EMAX = QeC0

184¢, VECRLT 4LCI=VEC{ T ,K}

1847, VECI(ILLC)=VEC( I,+LK) _

1848. CMOD=VECR T o LC) %2 #VECTI (T, LC)%x%2

1849, I+ (CMCD-EMAX)IGST,590,950

1850. SS0 EMAX = CMOD

18F1. M=1

1882, S37 CONTINUE
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18¢€3,
1854,
1 BE6,
1885
18%7,.
1858,
18¢E9,
1860
16&Ll.
18¢&2
1863,
1864,
18¢5,
18€¢6.
18&7.
1868,
18¢9,
18704
1871,
1872,
18713,
1874
1875.
1876
1877,
18786,
1379,
1880,
188l
1882,
183832,
iBges4,
1885,
1886,
1887
13 84,

SBC

G692

58

0
0
N

699
C1000
1000

S60
S£1

a4t
1Ggs

VMR VECR(M,4LC)

VMl VECT{M,LC)

CEMXIN=1.00G/ENMAX

CC 930 1=1,.NS

VK = VECR(I,LC}

VI = VECI{I,LO)
VECRN{TLC)=EMXTNH {VREYME +V I*VMT)
VECINUILCI=EMXINF{-VREYMI+V]I*VYMR)
VRVILC ) =WwZ{K)

VIVILCY=WYIK)

{ ¥=Q

IFCDABSUNHY{KI+WY{LK) 1ol TelaC-10) L¥=1
GO T S99

LR=LR+]

DO 996 [=1,NS

RVEC{I+LRI=VECI{TI,K])
REMOD=RVECLI,LR)I**2+REMCD
RMOD=CSGCRTIREMGD}

DC S95 I=14NS

RVEC{ I,LRI=RVEC{I4LR)/RMOD

VREVILR )=WZ{K)

VRIVILR)I=WYI(K)

IF{K.EQ.NS) GO TQO 10900

CONTINUE

WRITELG,T)

CONTINUE .

IF (LC +EQe 0O} GO TO 961

DC 960 J=1l4LC

WRITELE,10) Jrydy VRV VIVIIY y VECRNIYL,J)y VECTINCY U
WRITELG411) (VECRAIKJ) yVECINIK yJ ) oK=2 415
IF (LRLEQe0)Y GO TO 10CS

WRITE(6,T)

N0 9585 J=1,LR :
WRITELEH8) JypJs VREVIJ ) o VRIVIJ)Y ZRVEL{L1,4)
WRITEUE yT) (RVEC(KJ) 4K=2 NS}

RETURN
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Lt HY,
1890
1691,
18G2 e
18¢G3,
18G4,
1895,
18%6.
1897,
1868,
1RG5
1900.
1201,
1502.
1303,
1204,
1585,
1906.
1907.
190CR.
1909.
1910,
iol1ll,
1912,
1¢13.
1514,
191%5.
1¢16.
1917
1918,
19193,
1920.
1521,
1222
1923,
i924.

10

1€

c iU
SUBFOUTINE
REAL%*B A, PR
DIMENSION
ngc 10 1=1,
R(Ib=ALI)+
RETURN

END
SURROUT INE
REAL®¥G A,R8
DIMENSTCN
IR=0

TK==HM

DC 10 k=1,
ITK=TK+M

gC 10 J=1,
IR=IR+1
JI=J=N
I6=1K
RIIRYI=0.
nc 10 1=%,
JI=dI+N
T1E=1R+1

GMADD (NMy AyByRyN M)
v R

ACNMY 4BEAMY 4R (AM)

NM

BULY

GMPROINMGML AL s AyB s RaNyM,L)
. R
ACNMY o3UNML)Y ,RINLY

L

M

M

RUIKI=R{IR) +A(JT }*BLIR)

RETURN

END
SUBROUT INE
1W2Y AT 4L T,
IMPLICIT R
DIMENSICN
DIMENSICN
OIMENS ICN
DIMENSILCN
MFE = NS

K =1

KP = 1

GATN{M NS NC,RM,WR 4 Wl s VF,GN,W11,TCB,
CsCICT o MHSMTI
EAL*8 (A-H,C-2)
WRIME 3 WI (M) VFIN, M) yGNERSyNS) yRMIM M)

WLLENS ¢NS) o TCBUM NS yWZLINSo AS Y4 LTIMES)y MTIMHS)
AT {MHS) :
CUINS) yCTINS I CTINS,NS)



=L1G~

1925, KN = 1]

1926, 10 IF{KeGTeM) GO TO 200

1927. : WZ=-WRIK)#%2-WI{K) %241,

1928, IF(WL) 100,5000,50

1629, 56- IF(WI(K)) BD,75,80

1930.  =-=-——————=EIGENVECTOR FOR REAL EIGENVALUE, POSITIVE
1931. TS5 CONTINUE

1932, KP = KP+l

1933, K=K+]

1934, GO TOQ 10

1935,  ===~=————FIGENVECTOR FOR CCMPLEX ETGENVALUE+POSITIVE REAL PART
1336, 80 CONTINUE

1937, ' KP = KP3a2 v

1938. K = K+72

1939, GG 70 10

1940, 100 IFIWI(KY) 12Cs+110,120

1941. £ ————————— EIGENVECTOR FOR REAL ETCENVALUF ,NEGATIVE REAL PART
1942, ' 110 CUKNY = WR{K)

1943, CI{KNY = Wd{K)

19 44, DO 95 Jd= 1M

1645, 95 TCBLLWKN) = VF{J,K)

1946, KN = KN+l

1947, K=K+1

1948, GG 10 10

1949, € =erm—————- EIGENVECTOR FOR COMPLEX EIGENVALUE ¢NEGATIVE REAL PARY
1950, 120 RR = WRIK) )

1951, RI = WILK)

1952, . CHKK) = RR ‘

19583, CIKN+1) = RR

1954, CI{KNY = RY .

1955, CITKN+1) = - R]

1986, CO 12Y 4 = 1M

1587, FR = VFLJ44K)

1958, FI = VF{J,K+1)

1989, TCB(JyKN) = FR+F1I

1960, 121 TCBUJ4KN+1) = FR-F]
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19€E)a
1%¢7.
1963,
1 C64.
19£54
196€.
1567
1768,
19¢9,
1970«
g7,
1972
1972,
15744
1975,
1976,
1977,
1978,
1279,
16 3.
1581l
1987.
1383,
1984,
1985,
198c,
1687,
1988
10849,
1960,
1661,
1937,
1993,
199,
1995,
19c¢sh,

A

C

C
C

KN = KA+
K = K47
GO 17 10
200 CONTINUE
on 299 1 1485
oon2es J 1 ¢ NS
296 CT(I+4) = TCBLULI )

HH

FCRMATION CF W1l
DO 300 1 = 1.MH
CC 200 J = 14MH

AC0 WIL(T 4J) = TCBI1,4J)
KNS = NS+1

FCRMATINN [F w2l
DO 2230 I=1,MH
o0 320 Js1l,MH
A0 w21l J)= TCRIT +MH L J)
322 CONTINMUF
MHS =M% MH
INVERT wWll
DG 2327 J=1+NS
Do 227 K=1,KS
I={J4-1)%NS +K
227 ATUI)I=W1l(K.J)
CALL MIAV(MHS, AT MH,CETC,LT,MT)
OC 228 J=1,NS
00 328 K=1.4MS
I=(J-1)#NS +K
A28 WIL(K,J)=ATI(])

CALCULLATE THE RGAIN MATRIX
D0 325 TL=14MH
DO 325 JL=1+MH
GN(TL,JL) = 0.00
DG 225 KL=1,MH

325 GNUIL,JUI=GNITIL oJL 1+W210IL KL I*WIL(KL,,JL)

GO 10 69000

R A N el



LY e
1563,
19535,
2000,
20GCla
2G02.
2003,
2004 .
20Cs5.
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TUUY WRLizleyL)
1 FCRMAT('1¢,Y7ERT ZIGEAVALUE~RICATTI SQUATICA FAS AT §5S*)
6000 RETURN
END
PR
//LKED.SYSLMOL OD [SN=5270,E2AN{DISC),
/7 UNIT=2314,VOL=SER=CSYS14,LISP={+KEEFI},
7/ SPACE={TPFK,(5,5,1),RLEF)
I *



Appendix B

THE SIMULATION SCHEME: A SIMULATION ALGORITHM FOR A DIS-

CRETELY CONTROLLED, LINEAR, CONTINUOUS, TIME INVARIANT SYSTEM

If one is interested in investigating the behavior between the sampl-
ings, =ay, nS times during the interval, T, the basic integration
step will be TS(TS = T/ns). The integration algorithm solves, step
by step, the following equations.

= ¢ + - B-1
X141 p{T%; FP(TS)uj (B-1)

The control uj is constant during n_ iterations, ¢P and PP are

calculated a priori from

=FpT
P s
¢_P(TS) = e
(B-2)
8 -Fp7T
P
PP(TS) = g’r e d,r G" .
¢ o . p
uj is calculated every T (after n, iterations of Eq. B-1) from:
u, = Cx. + u(T)
J J @
~ -~
= - * -
X1 (1 - xu)[(e(T) +(T) c)xj + u(T)} + S (B-3)
Vir = H X5 o

Equations B-3 are the compensator equations. & and ' are calculated
similarly to (B-2). Equations B-3 are mechanized in the discrete com-
pensator, the derivation of the equations having been given in Chapter

VI,
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All the matrices of (B~3) are calculated by our discrete synthesis
program, DISC. & and I' represent the assumed system, while QP and PP
belong to the actual real plant, The distinction between these two

systems is necessary in order to investigate the sensitivity (Ch, V1),

The reiation between T, Ts, and ns is described in Fig. B-1,

r
T

; = ¢

4!; L l

i ‘

m1 - s i
0. N . 2T t

i ngxTy . Uj=c0nstant i

FIG, B-1 THE SIMULATION TIMING,
T = sampling time of the plant,
T = sampling step in the simu-
lation,
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