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1.0 Introduction and Summary
0 Reliable evaluation of the dynamic characteristics of large structural

systems such as the Space Shuttle vehicle will require combined analytical and
experimental efforts. Because of its size and physical configuration, full-scale
vibration testing of the entire vehicle may be impractical. Testing

would then be limited to isolated substructures of the system such as the
Orbiter, Tank and Booster. Analytical means are being sought to utilize data
from sub-structure tests to predict characteristics of the connected assembly.
Modal coupling or synthesis has been used in the past to predict undamped dynamic
characteristics including vibration modes and frequencies. While the Shuttle
will require special consideration in the application of modal synthesis because

of its unusual configuration, existing methods have been developed to a point

where the capability is within the state of the art.

This is not true in the case of damping, however. A generally applicable
method for predicting the damping in a structural system on the basis of substruc-
3 ture damping has not yet been demonstrated. Yet, a reasonably accurate assessment
of structural damping will be necessary in order to properly evaluate conditions

of resonant response to either sinusoidal or random excitation. If reliable

predictions are to be made without recourse to testing the entire vehicle, this
capability will be essential.

Reported herein is the development of a method for damping synthesis.
The method has been applied successfully to .eal structures as well as analytical

models. It depends on the ability to determine an appropriate modal damping

matrix for each substructure. Previous attempts at using this approach nave
failed because of invalid restrictions placed on the nature of substructure damp-
ing. In the past, modal damping natrices have been assumed diagonal for lack of
being able to determine the cnupling terms which are significsnt in the general

case of nonproportional damping. This problem has been overcome by formulating
the damped equations of motion 23 a linear perturbation of the undamped equations

for lighc structural damping. Damped modes are defined as complex vectors

derived from the complex frequency response vectors of each substructure and are
obtained directly from sinusoidal vibration tests. The damped modes are used
to compute first order approximations to the modal damping matrices. The pertur-

bation approach acoids ever having to solve a complex eigenvalue problem. This

-
e

is a useful fact which a number of investigators have failed to recognize.
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o 2. Background

A variety of dissipative mechanisms contribute to the overall damp’- -

properties of a complex structure. They may include material damping cau- :a by
microscopic slip between particles within the material, thermal loss due Lv molec-
ular abrasion and, in most cases, structural hysteresis. At the macroscopic level,
lossas may arise from relative slip in mechanical joints, from acoustic radiatinn,
and from viscous losses due to liquid sloshing or vibration of viscoelastic
materials. Detailed investigations of damping in simple structures have revealed

*
various nonlinear damping laws [1,2] . Some lead to linear equations of motion,

while others do not. However, specific nonlinear phenomena are likely to be
obscured when appearing together in a complex structure. One may find it difficult i
i

to define a particular nonlinear damping law for general application. Although

Chang [3] has concluded that a simple nonlinear damping law may be appropriate

for some complex structures, based on his interpretation of test data from Saturn-
type vehicles and their scale models, other interpretations of the same data
indicate linear dmaping with respect to amplitude for many of the modes considered
individually. Chang's interpretation ignores differences in damping among the

! { ) various modes, with no clear physical justification.

Since modal synthesis presupposes linearity, it is consistent to treat
damping in the same manner. In view of the computational advantages offered by
linearization and the lack of much strong physical evidence supporting the
selection of a particular nonlinear model, the tentative assur»tion of equivalent
linear damping appears to be justified.

Recent attempts have been made to predict the modal damping properties
of structural systems based on the modal damping of their respective substructures
when damping is known to be linear. Collins, Hart, Hurty, and Kennedy [4] showed

that the uncoupled modal damping properties of substructures do not constitute ;

sufficient information to enable one to predict dampine in the system modes using
the standard matrix transformation approach. Kana and Huzar [5] confirmed this

finding and went on to develop a completely different approach based on total

energy dissipation rather than energy dissipation associated with anv particular

mode. They adopted a representation of structural damping similar to Chang's,
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plotting dissipative energy per cycle versus kinetic energy. These quantities,
obtr{ned experimentally at each of the structure's resonant frequencies within a
certain range, define points through which smooth curves are drawn. The curves
are used to define the overall dissipative properties of the structure through a
continuous frequency spectrum. After determining the coupied system modes, the
kinetic energy of each component is determined. Going back to the energy plots,
one may pick off appropriate levels of dissipative energy for each component and
sum them to get the total dissipative energy of the system. From this, damping

is found for each of the system modes. While the authors demonstrate successful
application of the method for the structural models employed, certain pitfalis are
noted. A significant one has to do with how the points fall on the energy plots.
If they do not align themselves reasonably well along some smooth curve, obvious
difficulties arise. This could very well be the case when the amount of dampiag
varies greatly from mode to mode, particularly if the variability is irregular.

In this case, the authors suggest the possible grouping of points into different
classes of modes in the hope that smooth curves may stiil be drawn. The chance
for ambiguity here is not difficult to imagine, and further study will be required

before the method is acceptable for general use.

On the other hand, the matrix approach is not affected by nonuniform
in the distribution of damping. In addition, it lends itself to a form commor
used by analysts. It is clear (at least in the case of linear viscous damping)
that failure to predict damping in the system modes on the basis ¢f component
modal damping is attributable to the fact that the off-diagonal elements of
the modal damping matrix are neglected. Hasselman [6] showed that the diagonal
elements of the modal damping matrix correspond to the modal damping constants
for each mode. Furthermore, it is shown that, in general, the off-diagc.al
elements will be of the same order of magnitude as the diagonal elements. They
may therefore not be neglected in transformations involving the component modal

damping matrices. The problem is to somehow determine these elements.
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Objectivas and Scope

This investigation is part of a broader study directed toward the devel-
opment of modal coupling procedures for the Space Shuttle vehicle. The principal
objectives have been to formulate analytical procedures and then verify them using
experimental data. TRW and the Grumman Aerospace Corporation (GAC) have been
jointly responsible for the fomulation of procedures. Experimental verification
has been made by TRW and GAC on the basir >f test data furnished by the NASA
Langley Research Center (LaRC). GAC has performed that part of the study which
involves synthesis of system modes and frequencies, while TRW has developed and
implemented a damping synthesis technique, hich is discussed in this report.

The scope of the present work fits within the {ramework of conventional
modal synthesis methods. Modal damping matrices derived at the substructure level
are operated on by the seme transformations used to couple and diagonalize the
undamped equations of motion at the system level. The main focus is placad on
obtajining the appropriate modal damping matrices.

Some basic assumptions are made: that the damping forces in the struc-
ture are small compared to either the elastic forces or inertial forces, and that
they vary linearily with respect to the amplitude of the motion. It has further-
more been assumed in the present development that the damping in the structure may
be represented by constant viscous damping. The Voigt model is used (as opposed
to the Maxwell model, for example). Thie is clearly an appropriate first step to
take in the investigation of a linearized matrix approach.

To relate this study to other recent work done in the same area, it is
recalled that both [4] and [5] reported attempts to use the standard matrix coup-
ling transformations a2s a means of predicting modal damping at the system level
based on measurements of uncoupled modal damping at the substructure level. That
is, diagonal modal damping matrices were a.sumed. Reference [4] concluded that,
in general, more information is required to enable the prediction of damping in
this way. Reference [5] concluded somewhat to the contrary that a different
method should be <oueht, and proceeded o develop an energy approach instead.

The present work begins with the conclusions of Reference [4] and movee in the
direction of identifying and obtaining the additional information required by
the matrix method. The basic problem can be formulated so that within the scope
of the linearized approach, information is provided by the off-diagonal terms cf
the substructure modal damping matrices and a description of any damping which

may take place between substructural interfaces.

- st
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Corresponding to the major objectives of the effort, this report is
organized into three parts: A, B, and C. Part A includes the formulation of
methods. Part B includes the presentation and discussion of results obtained by
applying the theory to both ideal and practical problems. Application of the
theory to ideal problems which satisfy the inherent assumptions serves to verify
the theoretical development and provide additional insight into practical appli-
cation. As such, it is an essential link between the theoretical work which tends
to become involved, and the results of practical applicatior which embody a number
of uncertainties associated with data acquisition and reduction.

While every attempt has been made to minimize the influence of these
uncertainties, a systematic treatment of their influence on the fiial results was
not within the scope of this study. Vibration tests were conducted with standard
equipment, and data were recorded on analog tape. Analog data reduction proce-
dures were also used. Manual transfer of the analog data to digital form on
punched cards was employed- Although the analog data were visually displayed in
digital form, some real-time variation did occur so that the person recordiag the
data was required, in some cases, to mentally average the resulcs before writing
them down.

The need for a final evaluation of the study, including a discussion
of the current app'icability of methods, suggested the addition of Part C. Some
general comments pertaining to the matrix method and a comparison with the energy

method of Kana and Huzar are made. Conclusions and recommendations are contained

therein.
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4. Basic Equations for Modal Synthesis

There are various coupling procedures available for modal synthesis
depending on the type of substructure modes used. From the standpoint of damping
synthesis, the basic equations are the same. Without going into detail, the gen-
eral procedure may be outlined rather simply.

It is convenient to begin writing equations for each substructure in terms
of a discrete coordinate system in which the displacement vector will be denoted
as xi. These coordinates may be thought of as resulting from some finite element
discretization of the substructure, although it is recognized that the equations
in this form need not be defined when basing an analysis on vibration test data.
Howev:r, a mass matrix corresponding to such a coordinate system will be required
so that conceptually thls step is necessary. The equations may be written

ui;i + piii + Kixi - fi (1)
The force vector f1 corresponds to displacements xi, while ui, pi, and Ki are
square matrices containing, respectively, the mass, damping, and stiffness coef-
ficients of the equations. In the case of free vitration , fi will represent
only the interaction forces between adjacent components. Similar sets of equa-
tions may be written for each of N components and arrayed in a diagonal pattern

such that a complete set of equations representing the complete structure becomes

.

The matrices p and k are of the same form as y.

ux +-p§ + kx = f (2)

1 1

U
2 and u = u2
N

where

R e X X

There are three transformations involved in going from (2) to a reduced
set of equations in system modal zoordinates. The first transformation, denoted
by ¢R’ involves the hypothetical undamped substructure ‘wdes. The subscript R is

used tc signify that these modes are real. The transformation may be written

x-¢Rp (3)

. | B, L e k.
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where

2
.¢§

e ——ud

and ¢; is a rectangular matrix whose columns define the characteristic deformation
shapes of the substructure. They aay include static as well as dynamic shapes.
The second transformation is a rectangular matrix denoted by B, and is
used to introduce compsitibility constraints at substructural interfaces. The
final transformation.¢R, involves the hypothetical undamped modes of the system
where each column of QR is a system eigenvector in the coupled component mode
coordinates. These two transformations relate the p coordinate vector to a new
coordinate vector pn, whose elements correspond to the system eigenvectors ¢R.

Thus

. p= BQ’R n=Tn. (4)

It is convenient both conceptionally and notationally to combine 8 and ¢, into

R
the single transformation matrix T. Transformation of (2) to the n coordinate

system gives equations of the form

In+Cn+ An=0 (5)

when QR is normalized to give unit modal mass. In other words,

T T B
T ¢Ru ¢RT -1 (6a)
T,T
T ¢g POGT = C (6b)
T.T .
+ ¢R K¢RT A (6C)

where I is an identity matrix, A is a diagonal mastrix of gystem eigenvalues
(frequencies squared), and C is, in general, a fully populated modal damping

matrix at the system level.

O
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The nonhomogeneous form of Equation (5) is used to solve the forced
{:} response problem. The off-diagonal elements of C are usually neglected while the

diagonal elements, according to [6] are given by

1/2
ij 2cj Aj s (7

;j being the critical damping ratio for the jth mode. Without full-scale testing
of the composite structure, ;j cannot be obtained directly. The problem then is

to find some other means of determining ij.

In Equation (6b), it is convenient to let ¢:p¢k = ¢ where

1
¢
2
c = c
N
c
1 4T 44
and ¢ = ¢R P ¢R. The scalar ij may then be expressed in the form
T
it 1.4
C,, = T, ¢ T 8
| TR LS ®)
i
where Tj denotes the jth column of T and
Tl
T = T2
TN

corresponding to the partitioning of c. The matrices Ti are given by synthesis

of the undamped equations. It remains then to @valuate ci.
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5. Forms of the Substructure Modal Damping Matrix

Identification of substructure damping properties will depend on the
type of substructure modes used in the synthesis. The mode types are governed
by the boundary conditions imposed. Interface boundaries may be free, fixed,
or reflect some intermediate degree of fixity by (by application of mass loading,
for example). The case involving free-interface boundary conditions is the sim-
plest, both conceptually and from an experimental viewpoint. In this case, the
modal matrix ¢; will contain rigid body and elastic modes. For free vibration
modes, ¢; may be partitioned to distinguish between the rigid body and elastic

[}
i iR iN
o = [¢R g ]

(nnrmal) modes.

9)
i i
Relative to the modal coordinates p~, ¢ may be partitioned as
T
iR 1 !
ol a -¢B - - [ 1] oIR 1 4iN - _chE _'Eifn- (10)
T e R R INR ' TiNN
¢iN c 1 €
R
Iv the absence of external damping, - o
1
1 o, 0
c - ——l---
0 .CiNN

The submatrix ciNN may be determined by the method discussed in [6]. After
obtaining 11 the ci matrices, i = 1 to N, modal damping for the coupled system
can be datermined by Equation (8). For mass-loaded interface modes, the form of
ci is .1sc given by (10).

When fixed-interface substructure modes are used, the determination of
c¢” will be more difficult. In this case, ¢; may include three different types
of modes--rigid body, constraint, and normal modes. The constraint modes appear
only for refundantly interconnected substructures and are introduced so that the

motion »f interface boundary points is completely defined. These are usually

A A St 5. o
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chosen to be static deformation shapes which are obtained by displacing each
boundary coordinate sequentially while holding all others fixed and applying
no loading whatsoever at points other than attachment points. Under these condi-

tions, ¢; may be partitioned in the manuer
[

[}
1 ¢§RB' I+ 0
¢, = |- 7 e R Y (11)
R RI,” Ic”,” iR
g % |, *r

where ¢;RB is the portion of rigid body modes corresponding to boundary points,
iRI

»

matrix, ¢;C defines the static deformation shapes of the substructure internal to

is the complementary part corresponding tc internal points, I is an identity

its interface boundary, and ¢1N represents the fixed boundary normal modes. In
R

evaluating the matrix product

1 4T

i1
c = ¢R P ¢R

in this case, p1 may be partitioned into submatrices corresponding to boundary

and internal coordinates

The symmetric matrix ci is given

c (12)

- e e e Em wm e e =

where, temporarily dropping the superscript i and the subscript R for notational

convenience,
RR _ .RB' BB .RB . .RB' BI .RI . .RI' IB .RB RIT 11 RI
c =46 P b+ ¢ P e+ b I A P ¢ (13a)
T T T T 1
RC RBY BB . .RBX BI .C 11 ~
cfC = ¢f BB 4 B GBL 4C GRET ST 4 R pIT € |
(13b) i
- T T 1
RN  .RBY BI RIT 11 N ?
RN = gRE BT N GRE Iy (13¢) |
cc BB . BI C. .C° IB. CI II .C
c  =p +p T +¢ o +4¢ o b (13d)
T
c
N BTN T oin N (130)
NN _ NT 1D N
c =¢ p ¢ (13f)
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Only cNN given by (13f) may be obtained directly from fixed boundary vibration

tests. In general, cRR, cRC, cRN, ccc, and cCN will not be completely determined.
There are various ways of assigning values to these submatrices. It is

first recognized that a representation of pII may be derived by the following

method. By definition,

Given that

it follows that

T T T
o 1L N =(¢N Re ¢N>CNN(¢N JIT ¢N). (16)

In particular, (14) will be satisfled if

N cNN NT II

1 II II
=577 =y ¢ v . (15)

) ¢

It i8 to be emphasized that pII is not determined uniquely by this method. In
fact, 511 may not even resemble pII. Nevertheless, 511
will satisfy

NN NT IT N

c =¢ b ¢

and one may determine values for the submatrices (13a) through (13e) by neglecting

all but the last term in each equation and substituting pII - SII. This is equiv-

I are both null. If this assumption i~ not

alent to assuming that pBB and pB
acceptable, then additional tests will presumably have to be made.

This line of reasoning was not pursued much further because of practical
difficulties assoclated with obtaining the boundary modes themselves. These are
discussed more fully in Reference [7]. From the standpoint of damping, however,
it ig apparent it the outset that both the free-interface mode method and the
fixed-interface mode method suffer from the same basic limitation: the repre-
sentation of damping near interfacial boundaries will tend to be poor. In the
free-interface mode case, the tendency is caused by the fact that convergence of
system modes is found to be poor, with more substructure modes required to attain

a given degree of accurac. This is usually explained by the failure of lower
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frequency modes to adequately "work" the local struct.re near interface boundaries.
1f strain energy in this region is not properly accounted for, it is likely that
the dissipative energy may not be either.

In some respects, the problem associated with using fixed interface
modes for damping synthesis 1s similar. Displacements near interface boundaries
are usually defined by static displacement shapes for which damping information
is not available. So again, the basic problem is an inadequate representation
of the st.ucture's dissipative properties near substructural interface boundar-
ies.

On the other hand, the use of mass-loaded interface modes can poten-
tially overcome this problem. Mass loading causes the structure to be "worked"
more in these local areas. It is felt that the dissipative properties of the
structure can therefore by represented more fully. Selection of the proper mass
loading will be important. This topic is also discussed in {71. Since the
damping matrices in this case are of the same form as in the rree-interface mode

case, their evaluation is straightforward.
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6. Use of Damped Modes to Compute the Modal Damping Macrix

In searching for a way to more fully describe the damping properties
of a structure, two things become apparent. The first is that most structures
tend to be lightly damped, therefore damped modes closely resemble the hypothe-
tical undamped modes except for small differences in phasing. The second is
that phase separation techniques presently emplcyed in vibration testing are
potentially capable of yielding these gma.l phage .. fferences qganticqtiyely
This phase information can be used to derive a more complete set of structural
damping information than simple decay tests provide.

Intuitively, one would expect that if the damping in a structure could
be gradually reduced to zero, the damped modes wr "' approach the undamped modes
in some continuous fashion. Thus, a damped mode '..-ht be representable by a lin-
ear perturbation of the corresponding undamped mode. This thinking led to the
formulation of the perturbation anai,-is contained in Refarence [6]. The salient
features of the derivation are included here using somewhat different notation to
pro-ide continuity in the overall formulation.

The basic equations of motion for a substructure are first considered
at the discrete coordinate level, as given by (l). Transformation from the dis-

crete coordinates xi to distributed coordinates pi using x1 = ;pi results in

mlpl + efpt +iklp - oagt = f; (16)
where T
o' = o3 uley (17a)
ot - gLty (17b)
ki = ¢;’TK10; (17¢)
f: - ¢; £ (174)

The modal damping matrix c1 may assume different forms, as suggested by (10) and
(12). The main objective is to determine the submatrix c1NN which appears in

both equations. For convenience, (10) and (12) may be put in the same form by

writing both (9) and (11) as
0
i iB,
¢R [¢R ) ¢R ]

LA RAN Y ‘] - . |

—— s —— pp—
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With this sort of partitioning, (16) becomes
' B, {BN|(-1B 188, 18N 1B) |£iB
miNB,miNN BiN ciNB'ciNN siN kiNB‘kiNN p N fiN
p
Then one may write
miNN;iN + ciNNﬁiN + kiNNpiN - E;N (19a)
where, in general, :
N . gIN _ INB-4B _ INB:iB _ | iNB 1B (19b) |
P P .
Now it is recognized that when
T
INT 4 AN _
¢g M g =1 (20)
by proper normalization of ¢;N, that (19a) is of the form
Ig+Eq+w q=¢ (21)
o q

2
o

viewed as the modal damping matrix.

where w

From this point on, it will simplify the notation considerably to drop

the superscript notation used to distinguish different substructures and differ-

ent classes of modes for a given substructure.
i

form of Equation (1) becomes

X + px + xx =0

These second order equations may be written in first order form leading to the

eigenproblem

where A, is a comples eigenvalue of the form

3

Aj = oj + imj

1t will follow, for example, that
x = x, ui = |, and ¢;N = ¢R. With the simplified notation, the homogeneous

Rttt 3

|

is a diagonal matrix of undamped frequencies squared, and £ may be

(22) :

(23)

(24)
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and QJ is that part of the complex eigenvector which corresponds to the displace-

ment vector x. The term -cj = cjwo may be interpreted as the decay rate associ-
B
ated with mode j, while wj - woj ‘1-:2 is the damped natural frequency of that
h]

mode. The vector ¢j will henceforth be referred to as the jth damped mode. It

may be related to the hypothetical undamped mode ¢R by the equation
3
b, = ¢, + 8¢, + 184 (25)
R R I
L T 3

where 6¢R and 6¢I are considered to be small compared to ¢R . For lightly
3 3 ]

damped structures governed by Equaiion (22), the eigenvectors will occur in con-
jugate pairs. The resulting matrix of eigenvectors will transform (23) to diag-

onal form (assuming that p, p, and « are symmetric) so that, in particular,

o0 L el

o
oRT 1 ampal | | ¥ * (26)

where the asterisk denotes the complex conjugate. Three separate equations may
be derived from (26)

T * T * K T * .
¢jp¢k + ¢j u @k Ak + Xj¢j y ¢k =0 : all j, k (27a)
T T . LT )ot Jfk (27b)

Using Equations (24), (25), and (20), and the perturbation assumptions

oy I< < @

3

l6o, | 160, | < < oy |
Rj Ij R]

lp¢Rj| << l(mj-wk)v ¢Rj|

one may derive from (27a) the relationships

T
Ejj - ¢R p ‘n = -203 - ZCj wO (283)
3 3 h|
By = 0n 0 0p = ~(u,mu ) (4n woey o7 uep ) i3 Ak (280)
J " 3 3 I Ly Ry
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From (28b) and (27b), an alternative expression for Ejk may be found.

T T
Eop ™ w80y uwé, +wdy ube (29)
jk 94 1j R,k Rj I,

Finally, from (27c), one may derive
A, = 20 ("20: u5¢r +1 ) ’ (30)

a relationship which will be needed later.

It will be of interest to examine more closely the structure of
Equation (29), and compare it to that of Equation (28a). It has been postulated
that Ejk and Ejj

are of the same order of magnitude (at least when wy > ).
This implies that the elements of 601 should be of the same order 3 k

as 5j . Since |6¢1 < <I¢R I;, the 3 phase angles associated with elements
of the complex vectAr ¢J ] will be of the order Gj. This relationship
will govern the accuracy requirements on phase angle data,

The important conclusions to be drawn in this section are that the
diagonal elements of the modal damping matrix §{ correspond to the uncoupled
modal damping constants for each mode, and that the off-diagonel elements can

be determined provided that some way can be found to identify 601 .
h|

-
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7. Use of Resonant Response Data to Identify Damzed Modes

The method for constructing a nondiagonal damping matrix outlined in
Section 6 requires that the damped modes of the structure be known. These modes
are complex, having both real and imaginary parts, and occur in conjugate pairs
for lightly-damped structures. In a practical sense, it is not likely that these
modes will be directly measurable from vibration tests because it is difficult to

excite sufficiently "pure" modes. Off-resonant modes way contribute signifi-

cantly to the total accele..iion response, particularly in the <ncident com-
ponent defined to be in phase with the forcing function. The . ::ature compon-
ent leads the force by 90° and is normally used to define the {cal undamped

modes. The fact that off-resonant mode rerponse tends to be relatively small

and out-of-phase with that of the resonant mode has provided the basis for phase
separation techniques now used to more accurately define the undamped modes; how-
ever, contamination of the coincident response by off-resonant m~de participation
imposes the need for modal separation if the damped modes are to be determined at
all. An iterative procedure has been developed and demonstrated. For damping
levels on the order of 1%, convergence has been achieved in only one or two
iterations although the process may be cycled any number of times should con-
vergence proceed more slowly.

The basic technique to be used for mode separation requires, in addition
to resonant response frequencies and damping rates, a knowledge of the force
input to the structure. Assuming that the quadrature component of each reson-
ant response is a reasonably accurate representation of the undamped mode associ-
ated with that frequency, the extent of off-resonant mode participation can be
determined to good approximation and subtracted from the total response, leaving
an improved representation of the resonant mode. This procedure was successfully
epplied by Stahle [8] a decade ago to improve upon the real undamped modes of a
structure. The present work extends that method for application to the damped
modes which are complex. The generalization is valid provided that the struc-
ture is lightly damped. Specific validity criteria which involve quantitative
relationships among the distribution of the forcing function, the amount of
damping, trequency separation of the modes, and measuremen: accuracy are derived
in the Appendix. In keeping with the simplified notation, the equations wWhich
follow may be considered to apply to a substructure even through the supersc:-ipts

are dropped for notational convenience.
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It is assumed that the n equations of motion for a real structure

(substructure) may be written in the form

Uk + px + kx = £(t) (31)

In order to make this development applicable to free-free atructu es as well as
constrained structures, it will be assumed that the displacement vector x defines
elastic deformations relative to rigid body motion. 1In the free-free case, this
implies that to utilize total response measurements, rigid body response must
first be computed independently and subtractad from the total response. This is
discussed further in Section 9.5

Under these conditions, the equations of mction as given py {31) may

be transformed according to
X = ¢g 1 (32)

where ¢R is a modal matr.x containing undamped elastic modes. Then (31) becomes

R X RN PR,

T4 63 +u)q = g F(6) = £ (0) (21)

——

The force vector f(t) will include any forces which couple the elastic modes
to other modes, as indicated by (19b). This equation was given earlier as in-~

dicated. 1t ie assumed that, in general, a different force vector f(t) will be

eI ey

generated to excite a resonant response at each natural frequency 91, and conse-
quently, that )
f(t) = §x1 g4 (t) (33)

1 The complex frequency rcsponse vector corresponding to 9, is then given by
-1
2 2 T3
t Hg, = [(w -Q 1) + 10 %] o; Py (34)
i 3 ° b b R X4

Initially, it may be assumed (as shown in the Appendix) that

) o m ooy * o)

"3k \

where ij is the Kronecker delta, and that OR is equal to the normalized quadra-

e

ture component of acceleration response. Thus, a vector qu may be evaluated for
each of the resonant response conditione and transformed back to the x coordinate

( system by
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Combining these equations in a single matrix equation gives
Hx - ¢RHq
where Hq is assumed to be a nonsingular square matrix. Then
-1
bp = HH (35)

provides the first estimate of the undamped modes ¢R' The vector ij is obtained
from total acceleration response data as shown in the Appendix. In this way, an
improved versium of °R is obtained.

In order to derive an estimate of §¢;» Equation (31) is written in the

first c-der form

o b Fi

Solution of the corresponding first order eigen-problem leads to the trans-

formation

it - b

The freqrency r-~sponse vector in the z coordinate system is then given by

_ -1 -1
HZ - fiizjf ..A.) - - = - - é .i_. 9 - ¢ P
! 0 e 1wf oot ax | [e] "
! ]

- e e

36
g (36)
where A is a diagonal matrix whose elements are given by (30). If it may be
initially assumed that

Aj = iij

and that ¢ is given by the real part ot the resonant response matrix, then a vec-
tor sz may be evaluated “or each resonant frequency and transformed back to the
X coordinate system by
]
H =1[4¢: ¢*]H
X z
i ' i

Combining these equations into a single matrix equation gives

Ho= [ o] ¢% H, (37a)
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‘;’ Alternatively, recognizing that ¢ and ¢* may be expressed in terms of
2% + 6¢R ~ ég and 6¢I, one may write
Hx = ¢R RR + 6¢I HI (37b)

where HR and HI are both complex square matrices. Having already found ¢R from
(35), 6¢I is given by the equation

s6; = (B - o W) H' (38)

With ¢R and 6¢I computed, the first iteration is comple:+. To begin
the second iteration, these values are used in (29) and (30) to up.ate the
matrices £ and A, respectively. Then Equations (34) through (38) may be recycled
to complete the second iteration. Succeeding iteratioms follow in the same way.

The entire procedure may be summarized by the following:

Initial values

Define the damped modes initially by the quadrature acceleration response
QUAD (). That is,

(0) ¢y = QUAD (“ij)/[Q"AD (“ij)T u QUAD (H;;j)lll2

These vectors are defined to be real, and are of the form ¢J = ¢R + the imaginary

parts 6¢I = 0. J
h]

Evaluate matrices £ and A

; y :
1 g, = -5 (0+0)-(w-w)(¢ b 66, - 8¢ w)
L e R O P T Y
! (2) A, ==k, 6% u 4, +1 2u
. 3 I Ry Ij j
where 6jk is the Kronecker delta

fJ1ii=k
) S5k { 0:j 4k
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Compute the real and imaginary parts of the damped modal matrix ¢
+ 2_ 2 1
o -1, -
(4)  ¢p = H uq : (in initial step ¢R] ¢J)
\ -1
19 I - T
(5)* Hz I L - - *;— 0. 4 - Px
4 \ 19y - 0 , A o* 3
1
() &® = [ ! °f1 Ho = dp Hp + S¢p Hy
(7) &¢ -(H—¢ H)H'l
I b4 R R I

Steps (1) through (7) may be repeated any number of times. The procedure should

converge i1f the proper conditions are met. These conditions are derived

in the Appendix.

¥ Note that Ex

Step (3). ]

is used in Step (3), while Px

3

(without the bar) is used in
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8. Analytical Verification

A variety of examples have been worked in the process of formulat‘.g
equations and coding them for numerical computation. They were used as check
cases to debug computer codes and to facilitate the understanding of unfamiliar
concepts. As such, they have been of considerable value in relating the theory

to practical application. Some of the examples are included in this section.

The first set of examples .. be discussed in Section 8.1 was selected
bv GAC to demonstrate the relative merits of coupliuns precedures involving sub-
ctructure modes with different kinds of boundary conditions. The purpose of that
fuvestigation was to provide a basis for selecting a coupling procedure best
suited for application to the Shuttle. Since the matrix method for damping synthe-
sis relies on the same transformations as the synthesis of undamped equations, it
was a simple matter for GAC to punch them on cards and transmit them to TRW. This
avoided duplication of effort and provided a consistent set of examples by which
to evaluate the convergence of modes and frequencies as well as modal damping in

representative Shuttle configurations.

In Section 8.2, a four-degree of freedom lumped parameter model ig intro-
duced to demonstrate the computation of a modal damping matrix. In this example,
the damped modes are first computed by a complex eigenvalue routine. The modal
damping matrix is then computed without using the original damping matrix, using
only the mass matrix, the frequencies, and the damped modes. For comparison, the
standard computation is made using the known damping matrix. The resulting matrix

is nondiagonal in form, confirming that the damping is nonproportional.

The same example is used in Section 8.3 to demonstrate how the damped
modee can be deduced from resonant response information. In this case, it is
assumed that neither the origina) damping matrix nor the damped modes are known,
only response at each of the system's resonances. The response includes contri-
butions from all the modes in general, but mainly from those which are adjacent
in the frequency spectrum. It is shown that the off-resonant mode response can
be removed, leaving just the damped modes themselves. Computationg involve an
iterative procedure which alternately computes the damped modes and the modal

damping matrix until both converge.
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8.1 A Numerical Comparison of Coupling Procedures

A comparative evaluation of the coupling procedures referred to in
Section 5 has been made on the basis of math model data furnished by GAC [7].
These data reflect the mass and stiffness properties of realistic Shuttle con-
figurations. Damping parameters for these models have been assumed arbitrarily.
The main objective has been to define simple nonproportional damping matrices
for each substructure corresponding to its respective discrete coordinate system,
Modal damping matrices are then derived from the substructure mode matrices pro-
vided by GAC. These are treated in the same way that experimentally derived
matrices will be treated in subsequent work.

The Shﬁttle configuration adopted in this study involves two substruc-
tures, orbiter and tank, which are connected in a parallel arrangement. Schematic
drawings representing each substructure are shown in Figure 1. The coupled con-
figuration is shown in Figure 2. The models are planar, having three coordinates
defined for each nodal point: two translations, and one rotation. No mass is
associated with any rotational coordinate. Thus, a total of 14 component modes
are obtained for the orbiter and 22 for the tank. Pinned connections are assumed
at the attachment points. With six constraint equations acting to coupie the two
vehicles, the total number of degrees of freedom for the coupled vehicle totals 30.
Eigenproblem solutions including all 30 degrees of freedom are usad for reference.
Truncated mode solutions involving 16 and ten degrees of freedom are obtained to
evaluate convergence. The former is understood to include 11 uncoupled component
modes for each substructure, while the latter includes eight, the lowest in each case.

Numerical computations for four different coupling configurations have

been made. These configurations are:
Case 1. A free-free orbiter coupled to a free-free tank.

Case 2. An orbiter fixed at its junction points coupled to a

free-free tank.

Case 3. A free-free orbiter coupled to tank fixed at its base

whose junction points are free.

tase 4. An orbiter fixed at its junction points coupled to a

tank fixed at its base whose junction points are free.

ik e v e S
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Cases 1 and 2 each include two subcases designated by a and b. Cases la and 2a
involve the use of free-interface substructure modes when the substructure is
considered to be free-free. Cases 1lb and 2b correspond to substructure modes
reflecting mass loading at the junction points.

Computations are executed in the following manner.

l. Preset ij = 0, all j.

1 1T 1
2. Read T" and evalute C,, = ij + Tj c

i
1 Tj for all j.

T
3. Read pi and evaluate ci = ¢; pi ¢;.

4. Read 0; .

The procedure is recycled until all (both) of the substructures are taken into
account. Matrices ¢; and Ti were furnished by GAC.

Several different sets of ¢~ damping matrices were assumed, the simplest
corresponding to externally-grounded lateral dashpots, as shown in Figure 3.
Although this damping distribution gave diagonal oi matrices, the corresponding ci
matrices were not diagonal. In order to specify internal damping, the damping
matrices must involve rotational as well as translational coordinates since coupled
modes may involve rigid body rotations of the two substructures. Such damping
matrices may be derived in the same way as the stiffness matrices. Although this
form of damping is more representative, it is not deemed essential for evaluation
of coupling procedures, and time constraints were prohibitive. Therefore, only
external damping was assumed. This permitted all rotational displacements to be
deleted from the substructure modal matrices ¢;, thereby reducing somewhat the
computational effort.

The nominally chosen distribution of damping is illustrated by Figure 3
where dashpots are ghown connecting each substructure to ground. The dashpot con-
stants were assigned identical values of 300 lb-sec/in. Tabulated results from
the damping synthesis involving Cares one through four are given in Tables one
through four, respectively. Damping constants ij are given for seven elastic

modes in each case.
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Table 1 - Damping Constants C,J oy Modal Synthesis for Case 1

a. No Mass Loading in Free-Free Modes

Mode

(=2 ~N O W W N e

N O e N

Table

N Oy B W N e

No. 10 chnf.

5.489
6.603
3.583
3.743
1.320
6.856
2.002

4.295
9.309
1.33%
1.578
5.942
2.851
1.878

E-3
E-4
E~4
E-4
E-4
E-6
E-4

Mass-Loaded Junction

E-3
E-3
E-3
E-4
E~5
E-6
E-7

6.549
6.604
1.487
6.661
1.630
4.934
2.560

E~4
E-3
E-3
¥=5
E-6
E-8
E-4

6.667
7.820
2.631
1.539
2.233
4.029
6.147

Points in Free-Free Modes

6.565
7.831
2.627
1.530
1.073
6.628
1.169

E-3
E-3
E-3
E-3
E-6
E-5
E-3

6.840
7.644
2.630
1.540
2.279
4.029
6.095

2 - Damping Constants ij By Modal Synthesis for Case 2

a. No Mass Loading in Free-Free Modes

7.494
2.692
2,054
1.267
1.958
7.017
1.097

E--3
E-3
E-4
E-3
E-4
E-5
E-5

9.424
9.753
1.264
1.187
8.159
2.176
8.608

E-4
E-3
E-]
E-3
E-7
E-4
E-4

6.666
7.822
2.630

1.539 E

2.286
4.029
6.100

E-3
E-3
E-3
E-3
E-6
E-4
E-4

E-3
E-3
E-3
E-3
E-6
E-4
E-4

E-3
E-3
E-3

E-6
E-4
E~4

1
e md

4 R suneat
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b. Mass-Loaded Junction Points in Free-Free Modes

Mode No. 10 d.o.f.

~N N U W

Table

P

~N o BN

Table

N oy W

6.087 E-3
8.096 E-3
1.175 E-3
1.276 E-4
1.149 E-4
4.475 E-6
2.365 E-7

6.843
7.641
2.632
1.542
1.302
2.814
1.167

E-3
E-3
E-3
E-3
E-6
E-4
E-3

6.843
7.640
2.630
1.539
2.284
4.029
6.103

3 - Damping Constants_gjj By Modal Synthesis for Case 3

8.943 E-3
2.033 E-4
1.284 E-6
1.181 E-4
1.354 E-7
2.052 E-7
3.188 E-10

4 -~ Damping Constants C

6.075
9.526
7.237
6.847
5.744
3.135
8.699

E-4
E-3
E-4
E-4
E~7
E-5
E-5

6.663
7.592
1.668
1.489
1.890
3.955
1.618

By Modal Synthesis for Case 4

9.321 E-3
3.347 E-4
5.630 E-6
1.141 E-3
1.378 E-6
2.198 E-6
4.490 E-11

—33

9.035
9.613
7.560
1.107
7.544
2.127
8.973

E-5
E-3
E 4
E-3
E-7
E-4
E-4

.843
.640
.630
.539
.283
.029
.033

NN N

fen e —y e

E-3
E-3
E-3
E-3
E~6
E-4
E-4

E-3
E-3
E-3
E-3
E-6
E-4
E-4

E-3
E-3
E-3
E-6

E-4
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It may be observed from these results that all but Cases 1b and 2b
yield very poor results for all modes. In Case lb, none of the modal damping
constants have converged in the 10-d.o.f. approximation, while four of the 13
elastic mode damping constants appear to have converged reasonably well in the
16-d.o.f. approximation. Case 2b, based on fixed-interface orbiter modes, is
the better of the two. Reasonably good approximations are indicated for the
first two elastic modes in the 10-d.o... case, while excellent approximations
are given for the first four elastic modes in the i6-d.o.f. approximation.
Although the use of fixed-interface substructure modes produces the
best results from the standpoint of modal convergence, dampilng associated with

the boundary modes is difficult to assess. In previous examples, both OBB and

DBI have been null. For comparison, Case 2b was evaluated with lateral dampers
connecting the orbiter attachment points to giound. Sulmnatrix OBI remains null
in this case, but DBB does not. Damping constants Cj1 for the first four elastic
modes of the 30-d.o.f. solution are compared in Table 5 to thosc obtained prev-
iously for DBB = 0. Considering OBB $ 0 to provide the reference solution, one

BI) destroys some of the advantage

observes that having to neglect DBB (and ¢
of fered by the use of fixed-interface modes as far as damping calculations are
concerned. Intuitively, this effect should diminish, however, as the ratio of
internal coordinates to boundary coordinates increases.

Irn all of the-e examples so far, full modai damping matrices c1 have
been utilized. To show what happens when off-diagonal terms of c1 are neglected,
Case 1lb was evaluated on this basis. Results corresponding to the 30-d.o.f. soln-
tion are presented in Table 6 for comparison to the previous case. In this case,
all of the off-diagonal terms were neglected, not just those of ciNN. Had only
those of ciNN been neglected, the comparison iliustrated in Table 6 might have
been closer.

The damping in Mode No. 5 is quite small, pres.mably because this is
a longitudinal mode whereas the others are primarily lateral and nc longitudinal
dashpots have been included up to this point. The addition of one longitudinal
dashpot (300 1b sec/in) to the forward ends of both Orbiter and Tank produced the
resulte shown in Table 7. Although damping in the 5th mode is shown to increase
appreciably on a percentage basis, it remains small compared to the other modes.
This may be explained by the fact that there are only two longitudinal dashpots
compared to ten in the lateral direction, and the likelihood that the modal mass
is iairger in this mode due to essentially rigid body motion of the Orbiter and
Tank in opposing directioms.
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ﬁ Table 5 - Effect of Neglecting 028 in Modal Danniny Computations
Case 2b
Dagping,Qoustantl_gﬁ‘
Mode No. 088 . o o240
1 6.843 E-3 7.165 E-3
2 7.640 E-3 7.857 E-3
3 2.630 E-3 2.707 E-3
4 1.539 E-3 2.050 E-3

Table 6 - Effect of Neglecting Off-Diagonal Terms of the Modal Damping Matrix
in Synthesis of cij
‘ase 1B

Damping Constant, C

O0ff-Diagonal Terms Neglectcd i Reference
1 5.782 E-3 6.840 E-3
2 3.930 E-3 7.644 E-5
3 1.577 E-3 2,630 F-3
4 1.495 E-3 1.540 E-3
5 4.755 E-6 2.279 E-6
6 2.006 E-4 4.029 E-4
7 3.834 E-4 6.095 E-4

Table 7 - Effect on C|1 of Adding Longitudi-.xl Dampers to Orbiter and Tauk 30-d.u.f.

Case 1b
Damping Constant, Cj
Longitudinal Dampers Added RPeference
1 8.352 E-3 6.840 E-3
2 8.599 E-3 7.644 D-3
3 2.707 E-3 2.630 E-3
4 2.053 E-3 1.540 E-3
5 8.278 E-6 2.279 E-6
6 5.416 E-4 4.029 E-4
7 7.622 E-4 6.095 E-4
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8.2 Approximation of the Modal Damping Matrix

This section is included to demonstate the validity of the perturbation
results presented in Section 6. The modal damping matrix of the spring-mass sgys~
tem shown in Figure 4 is sought. 1In this case, the free vibration of the system
is of concern so that the input g(t) shown in the figure may be fgnored. The

equations of motion are of the form

u;i'%'p;i“O'Kx‘O

where

.04 -.02 O 0 ]
O03 -001
p =
Sym 002 -001
i .01 |
- b
2 -1 0
2 -1
= Sym 2 -1
1

The eigenvalue problem given by (23) was solved to obtain A and ¢ as defined by

(24) and (25), respectively. Numerical values are given in Table 8. The modal

damping matrix c (which is identical to £ in this case) was approximated using
(28a) and (29),

c = g

33 7 B3y T 729 (28a)

T T
Cop, ® £, = w, 867 o, +w ¢, nd. : J#K (29)
L e L ¢ I,

> o R X127 £ 7w Eee v w
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LLLLLLLLL 22 LL1LS

c= ,02 k=1
B
cC = . tlrl % = ]
__.f *2
Pias me=1
iA j’
c=.01 J- §;k.- 1
B
m= .5
c = .01 E% %:k =1
] X
REPRODUCIBILITY OF THE m= .3 —J 4
ORIGINAL PAGE IS POOR
g(t) = sin 03:
Figure 4. Four-Degree of Freedom Lumped Parameter Model
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[J and also computed directly by (17b),
= ¢T ¢ (17b)
€= PP %

assuming that ¢R = ¢R + 6¢R to first-order approximation. The results are com-

pared in Table 9 where they are shown to be in good agreement.

Table 8 - Eigenvalues and Eigenvectors for a 4-d.o.f. System

(a) Eigenvalues

Mode No. Real (oj)_ Imag. ij)_

1 -2.083 E-3 4.681 E-1
2 -1.062 E-2 1.236
3 -2.579 E-2 1.745
4 -3.317 E-2 2.557

(b) Eigenvectors

Real (¢, + 80y = 6p)

; Coordinate

: Number Mode 1 Mode 2 Mode 3 Mode 4

1 3.503 E-1 -6.833 E-1 6.382 E-1 -5.430 E-2
2 6.238 E-1 -3.233 E-1 -6.675 E-1 2.467 E-1
3 7.606 E-1 5.306 E-1 6.001 E-2 -1.066
4 8.142 E-1 9.793 E-1 6.960 E-1 1.108

Imaginary (6¢I)

1 -4.570 E-4 6.809 E-3 1.451 E-2 -2.476 E-3
2 ~7.785 E-4 -4.638 E-3 ~4.778 E-3 2.286 E-3
3 -2.258 E-4 -2.167 E-3 -7.698 E-3 7.952 E-4
4 0. 0. 0. 0.

B | VRt S AR < §1 1 At ERT . e e P | . e v -
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Table 9 - Comparison of Modal Damping Matrices

4,166 E-3

Symmetric

4.166 E-3

Symmetric

Approxim-te Solution

-11608 2-3 -lo 336 E-3
2.124 E-2 -9.062 E-3
5.158 E-2

Reference Solution

-1.409 E-3 -1.336 E-3
2.124 E-3 -9.060 E-3
5.158 E-2

6.331
1.455
-4.277
6.634

6.332
1.454
-4.279
6.635

E~4
E-3
E-3
E-2

E-4
E-3
E-3

E-2
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8.3 Identification of the Damped Modes

To demonstrate the use of resonant response data to identify damped
modes, the four degree of freedom structure illustrated in Figure 4 is again con-
sidered. Assuming sinusoidal excitation of the structure as shown, the accelera-
tion frequency response was computed for each of the four masses including both
amplitude and phase angle or, equivalently, real and imaginary components of
arceleration relative to the forcing function. Numerical values are given in
Tatle 10. The total acceleration amplitudes are plotted as functions of fre~
quency in Figures 5a~d. This frequency response was then normalized so that,
initially, the largest element of each column had the complex value (1,0). The
real parts of the vectors were used to compute modal mass, and both real and
imaginary parts of each vector were divided by the square root of its respective
modal mass. The results are shown in Table 11. The normalized modal mass matrix
is given in Table 12, where the largest off~diagonal element is noted to be
1.37 E-2.

Resonant frequencies were defined to be those frequencies at which the
quadrature response of the largest displacement in a mode reached its peak value.
Damping values were obtained from the real parts of the complex eigenvalues.

They would be determined experimentally under practical circ'mstances. Given the

force input, the Modal Separation Procedure (MODSEP) was initiated. After each iter-

ation, the magnitude of the normalized incrementai changes in both real and

imaginary parts of the complex modes were determined from

ok ¢k-1|
R R

B Gp ) = L
] '*Rj |

k k-1
|‘”Ij "%, |

k
AT (8 ) =
I k-1
3 607 |
s
where the superscript is used to denote the number of iteration. These results
are listed in Table 13. For practical purposes, convergence is seen to be
achieved in only one iteration. The improved modes, real and imaginary parts,

are listed in Table l4. The agreement is seen to be good to one cr two percent
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Figure 5, Acceleration Response of the Four d.o.f. Model
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(:) Table 10 - Complex Resonant Acceleration Response %
Coincident (Real Part) ;
Mass No. Mode 1 Mode 2 Mode 3 Mode 4
1 01572 -03917 ‘100092 . 3397
2 .2142 1.2831 -~ .5414 - .11
3 . 0487 1.0940 2.9473 1.0749
4 - .1578 ~ .2156 1.9115 3.2120
Quadrature (Imaginary Part) ;
1 32.0465  -38.9270 15.0036 ~ 2.2961 '
2 57.0674 -18.4483 -15.7395 10.5035
3 69.5931 30.2452 1.4041 ~45.5123
4 74.4808 55.8524 16.4846 47.3419
-
) Table 11 ~ Normalized Resonant Acceleration Response
‘ Real Part
Mass No. Mode 1 Mode 2 Mode 3 Mode &
1 1 3.5029E~1 -6.8291E-1 6.3100E-1 -5.3202E-2
2 6.2378E~1 -3.2374E-1 -6.6981E~1 2.4462E-1
3 3 7.6070E~1 5.3055E-1  7.4002E-2  -1.0635
3 4 8.1413E-1 9,7990E-1 7.0813E-1 1.1134
syl
i Imaginary Part
1 -2.4612E-3 9.5097E~3 1.1652E-1 -1.1599E-2
2 ~3.6637E~-3 ~2.1261E-2 -5.4412E-2 3.4729E-2
3 -2.1450E-3 ~2.1242E-2 ~1.1802E-1 ~9.7437E-2
4 0. 0. 0. 0.
LW 4
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Table 12 ~ Initial Modal Mass Matrix
1.0 -3.8313E-5 4.3135E~3 1.3142E-3
¢R Bép =
1.0 ~2.8946E-4
Symmetric 1.0
Table 13 -~ Normalized Change in Modal Vector Length
Iteration 1
Mode No. Real Part Imaginary Part

1 3.1019E-5 8.1573E~1
1 2 6.8161E-4 8.0687E-1

3 1.6637E-2 9.0720E-1
. T 4 3.9757E-3 9.8476E-1
E’.
1 Iteration 2
¥ ~
: 1 1.2322E-5 3.2084E-4
| 2 6. 9856E-5 4.0783E-4
! 3 4.9095E~4 2.3828E-3
é 4 9.0579E-5 3.3180E-3
£
g Iteration 3
i
‘ 1 2.6201E-8 5.4733E-7

2 4.2167E-7 2.3002E-6

k} 2.9780E-6 4.7326E-6

4 6.6202E-7 9.7453E-6
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i:} Table 14 - Improved Modal Vectors
' Real Parts Imaginary Parts
; Mode/Mass MODSEP _Reference MODSEP Reference
: 1 1 3.5032E-1 3.5027E-1 -4.5713E-4 -4.5704E-4
2 6.2380E-1 6.2380E-1 ~7.7822E-4 ~7.7854E-4
3 7.6069E-1 7.6065E-1 ~2.2671E~4 -2.2582E-4
4 8.1409E~1 8.1418E-1 0. 0.
2 1 -6.8342E-1 -6.8334E-1 6.8140E-3 6.8086E-3
’ 2 -3.2321E-1  -3.2328E-1 ~4.6422E-3  ~4.6355E-3
% 3 5.3066E-1 5.3063E-1 ~2.1807E-3 -2.1667E-3
: 4 9.7923E-1 9.7934E-1 0. 0.
3 1 6.3763E-1 6.3822E-1 1.4370E-2 1.4513E-2
2 ~6.6783E-1 -6.6749E-1 ~4.6619E-3 -4,7784E-3
3 6.0753E-2 6.0011E~2 ~7.6738E-3 -7.6975E-3
4 6.9664E~1 6.9598E-1 0. 0.
;
4 1 -5.4558E-2 ~-5.4308E-2 -2.4867E-3 -2.4760E-3
2 2.5 .05% -1 2.4667E-1 2.2613E-3 2.2857E-3
3 -1.0657 -1.0659 ~6.2719E-4 -7.9520E-4
4 1.1079 1.1076 0. 0.
Table 15 - Final Modal Mass Matrix
t 1.0 ~4,6318E~-5 2.7321E~5 4,2270E-4
k ; 1.0 8.4953E~4 2.2443E-4
I 1.0 ~4.1186E-4
Symmetric 1.0

R AR RRE
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except for element (4,3) which is about 20% off. (The probable source of error
will be discussed momentarily.) The final modal mass matrix is shown in Table
15, The largest off-diagonal element now is 8.49 E-4, down a factor of sixty-two
from its initial value of 1.37 E-~2. The full modal damping matrix given in

Table 16 was found to be in good agreement with the reference values except for
fourth row elements which deviate by as much as 18.3%. This is a direct result
of the 20% deviation in the imaginary part of the third element of mode 4.

In the foregoing example, all four modes were used. The first three
and first two were used in subsequent work to assess the effect of modal trunca-
tion on £ . These results are shown in Tzble 17. The effect of modal truncation
is shown to be small in this case.

While this example problem seems to demonstrate the theoreticzal validity
of the procedure formulated in Part A, it also points up a potential problem.
The 20% error in the fourth mocde, which was noted earlier, does not appear to
be the result of a trivial input error c¢r an error in the formulation of the
method. Similar results were obtained for other examples; however, it was
found that these errors could be reduced by identifying resonant frequencies
more accurately.

The source of the error is believed to be attributable to the fact that
large changes in phase accompany very small changes in frequency near resonance.
In the present example, resonant excitation frequencies were specified to five
significant figures. Even so, changes in the fifth significant figure resulted
in changes on the order of 100X in some of the coincident response values
because of the small amount of damping (around 1%). The problem is compounded
by the fact that as damping becomes smaller, phase angles become smaller at the
same time their derivatives with respect to frequency become largar, so that
the sensitivity factor is of the form (d6/dw)/6. Hence, precise frequency
determination is very important.

In the present investigation, the resonant frequencies ﬂj were assumed
equal to the natural undamped frequencies w, on a one-to-one basis. In practi-
cal applications, particularly when modes arl not well separated, it may be
necessary to analytically determine modal frequencies W, slightly different
from the corresponding excitation frequencies nj. Sweeplng across w would
allow one to compute the rate of change of quadrature response with jrespect
to frequency. The frequency at which this function is a minimum may be used to
determine w, » &8 suggested by Kennedy and Pancu in Reference [9]. While this
approach see&s to merit consideracion, alternative procedures might also be

sought. A need for further investigation of this problem is clearly indicated.
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0 Table 16 - Comparison of Modal Damping Matrices
Col/Row MODSEP . (32 _Eq. (33
1 1 4.1663E-3 4.1663E-3 4,1662E-3
2 -1.4179E-3 -1.4085E-3 -1.4087E-3
3 -1.2800E-3 -1.3356E-3 ~1,3360E~3
4 7.4791E-4 6.3308E-4 6.3325E-3
2 2 2.1240E-2 2.1240E-2 2.1237E-2
-8.9431E-3 -9,0619E-3 -0, 05S95E-3
1.6128E-3 1.4548E-3 1.4544E-3
3 5.1583E-2 5.1583E-2 5.1581E-2
~4.,2064E-3 -4,2773E-3 -4,2791E-3
4 4 6.6356E-2 6.6356E-2 6.6346E-2
()
Table 17 - Effect of Truncotion on Computation of the Modal Damping Matrix
Col/Row 2 Modes__ 3 Modes 4 Modes
1 1 4,1663E-3 4.16€3E-3 4,1663E-3
2 -1.4132E-3 -1.4179E-3 -1.4179E-3
3 -1.3630E-3 -1.2800E-3
4 7.4791E~4
2 2 2.12408-~2 2.1240E-2 2.1240E-2
4 1.6128E-3
3 3 5.1583E-2 5.1583E-2
4 -4 ,2064E~3

6.6356E-2
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8.4 Conclusions

There are several important conclusions to be drawn from the numerical
examples presented in this section. The convergence of system damping values
obtained by modal synthesis 1is governed by convergence of the system eigenvectors.
Sirce this topic is to be discussed more fully in Reference [7], 1t will not be
elaborated upon here. From the standpoiut of damping synthesis, the coupling pro-

I cedures which avoid the use of fixed-boundery modes are preferable. The possible
advantage of better convergence that fixed-bocundary mode formulations offer is
outweighed by the difficulty of determining both the static and dynamir modes
experimentally, and by the difficulty of relating experimental damping properties

4 to such a coordinate system. Of the modal coupling procedures which do not rely

on fixed-bounliary modes, the ore utilizing mass loading at interface boundaries may
be more desirable than the one utilizing just the free-free modes. Provided that

i appropriate means are available to determine what the mass loading should be, this

procedure tends to converge faster with no apparent disadvantage relative to

{ identification of damping prcperties. In fact, the dissipative energy character-

istics should be brought out better for the same reasons that the strain energy

: characteristics are.

A four-degree of freedom lumped mass model was used to illustrate the

accuracy attainable by the approximate method for generating modal damping matrices

b

given the damped modes. For damping values on the order of 1%, it was found that
the approximation yielded comparable results. When the damped modes were not given,
it was shown that they could be derived from resonant response information by en

iterative procedure which converged rapidly in that case.

A significant problem was, however, indirated. As the modal separation

[ R

procedure is presently used, it is assumed that excitation is applied to the struc-
ture precisely at its resonant frequencies. It is unlikely that this will be rea~-
lizable in practical situations where modes are closely spaced in frequency. 1In
this case, it may only be possible to excite the structure near a resonant fre-
quency. In this case, more information will be required to identify modal frequen-
cles to the degree of precision required by this procedure. This is an area which

demands further investigation.
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9. Experimental Verification

The chief purpose of this study is to apnly the matrix methed for
damping synthesis to a r=sal structural system and compare predicted values of sys-
tem modal damping with those obtained by direct measurement. In the recent past,
LaRC has conducted vibration tests on a 1/15th~scale dynamic mcdel ¢f a Shuttle

vehicle. The model consists of an Orbiter and a Booster which can be coupled by

special spring assemblies. Each of these components is constructed of thin-walled
. tapered aluminum tubing. Propellant tanks are mass simulated by str.pting lead

i ballast to each component at appropriate locations.

Two basic modifications were made for this investigation. FPreviously,
the courling configuration included only two spring assemblies, making the inter-
face forces between the Orbiter and Booster statically determinant. For these
tests, a third spring assembly was added between the original two, creating redundant
load paths. Also, pin connections were added to the spring assemblies, eliminating

the requirement for slope continulty at the connection points.

Since earlier tests were concerned mainlv with the undamped charact-
eristics of the structure, the inherently small amount of damping in the system
(less than 0.5%Z) did not pose a problem. In this study, however, it was esti-
mated that modal damping on the order of several percent would be required in
order to extract meaningful data witn the available analog test and data reduc-
tion equipment. Thus it was decided to attach three externally grounded dampers
to the Orbiter. For comparative purposes, no damping was added to the Booster.
1t was felt that this lopsided distribution of damping would represent a worst

case in somz respects and nelp to elucidate significant trends in the data.

9.1 Descriptiva of Tests

Schematic drawings of the 1/15th-scale model Orbiter and Booster sub-

# e g n

structures are shown in Figure 6. Tne coordinates defined in rhis figure corre-
spond to the accelerometer locations used during vibration tests. The spring
assemblies were included as part of the Booster substructure. Interface points
between the Orbiter and Booster are defined to coincide with pinned connections

between the two. & lumped mass distribution was defined for the system taking

H \ into account tihe physical distribution of mass and requircments for accelerometer
Foo..
- placement. Distributions for both the Orbiter and the Booster are given in
Table 1J.
‘t
o - ' e - ' i ; -
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Figure 6, 1/15th-Scale DLynamic Model of Orbiter and Booster Substiuctures
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Table 18 - Mass Distribution for the 1/15-3cale Dynamic Model
of a Shuttle Vehicle

Coordinate
Number

W 00 ~N & Ut & W N =

-
(=]

O ® N O S wWwN

I T S e S
W @ ~ O W\ W N RO

20
*with mass loading

ORBITER

-0.50
18.6
28.0
39.6
46.5
65.2
77.75
28.0
46.5
65.2

0.0
15.0
20.3
32.0
38.7
45.3
57.5
56.0

105.6
134.9
20.3
38.7
57.5
20.3
38.7
57.5
134.%
20.3
38.7
57.5

Station x

BOOSTER

Station y

O O O O O © O O O o

O O 0O O © O © o ©o ©

0
.
[

o
—

o O O ©

9.1
9.1
9.1

Weight
1lbs

6.40
62.85
4,80
1.53
9.34
3.87
1.33
74.55
10.38
5.20

1.20

83.04

11.3:

48.25
6.87

48.75
8.83

21.4

32.1

17.89
2.2 (15.32)*
2.2 (14.08)*
2.2 (16.64)*

95.59

103.87

30.23

49,99
2.5 (15.62)*
2.5 (14.38)*
2.5 (16.94)*
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Discrete dampers were connected to the Orbiter at the locations
indicated in Figure 6. These dampers were identical, each consisting of a wooden
ball attached to the Orbiter and placed in a glass jar fixed to ground. The
jars were filled with Dow Corning damping fluid having a viscosity of 20K centi-
stokes. The balls were immersed in the fluid. Relative ﬁotion between a ball
and jar was permitted in both vertical (in and out of the jar) and horizontal
directions. The damping characteristics of a typical ball damper were evaluated
by rigidly attaching che ball to a shaker,with force and accelerction transducers
petween them in series. The vertical and horizontal test setups are shown in
Figures 7a and b respectively. Sinusoidal excitation was provided at peak amp-
litudes ranging from 0.1 g to 2 g, over selected frequencies from 25 to 500 Hz.
Based on the assumption of linear viscous damping (damping force proportional to
velocity), values of the proportionality '"constant" ¢ were determined from the
peak exciting force amplitude F, the peak acceleration amplitude a, their rela-

tive phase angle 6, and the frequency of excitation w.

_ WF sin®
a

(39)

Tabulated results received from LaRC are presented in Table 19. Damping in both
horizontal and vertical directions was found to be linear with respect to ampli-
tude. Only averages for the four amplitudes are shown. These values are plotted
against frequency in Figure 8. They vary considerably over the frequency range.
Another method for determining ¢ is discussed in Section 9.3, where a comparison

with these results is made.

Substructure vibration tests were run separately for the Orbiter and the
Booster. The Orbiter was suspended horizontally in the Orbiter/Booster plane and
free-free modes were excited in the pitch (lateral in-plan:) direction by a shaker
located at its tail. Each of the dampers, one at the nose, one at midspan, and
one at the tail, are shown in Figures 9a-c, respectively. Booster vipration tests
were made with the Booster suspended vertically. Free-free modes were excited by
placing an exciter at the tail of the Booster. Two sets of modes were obtained,
one without mass loading and one with. No external dampers were used on the

Booster.

Finally, the Orbiter aul Booster were connected and suspended vertically.
Two sets of modes were obtained by exciting the structure in the pitch direction
at the Booster tail, then in the axial direction at the Booster tail. Three exter-

nally grounded dampers were attached to the Orbiter as in the substructure tests.
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Vertical Motion
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Ball Damper Test Configuration, Horizontal Motion

7-b.

Ficure
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Table 19 - Ball Damper Characteristics

[ [

Frequency v H
(Hz.) (1b _sec/in) (1b sec/in)
25 711 .544
30 .686 .530
40 .665 .502
50 .629 471
70 . 584 425
100 .521 . 380
150 .458 . 365
200 431 . 340
300 .377 . 342
400 .325 .392

500 .378 .435
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) Vertical motion
—~—D—— Horizontal motion

0.8L

{J

Damping Coefficient, ¢ (1b sec/in)

i

o T

0 1 | 1 - [

0 100 200 300 400 500

Frequency (Hz)

Figure 8, Ball Damper Characteristics
Determined from Measurements of Damping Force and Velocity
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Ball Damper Installation for Orbiter Test, Nose Damper

Fipure 9-a.
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Ball Damper Installation for Orbiter Test, Tajl Damper

Figure 9-c.
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This time, however, the Orbiter was vertical. In order to introduce damping in
the longitudinal direction and accommodate the new orientation of the Orbiter with
respect to the jars, different mounting brackets were used for the balls. They
are shown for the nose, midspan, and tail of the Orbiter in Figures 10a-c. These

brackets are stiff in both the pitch and axial directions.

9.2 Summary of Test Results

For each of the component and system tests defined in Section 9.1,
the input force and acceleration response data were recorded on magnetic tape.
The tapes were shipped to TRW for data reduction using the Spectral Dynamics
Model SD109B Co/Quad Analyzer. Acceleration response at each station was sepa-
rated into components in phase (Coincident) and 90° out of phase (Quadrature)
with the forciny fruction. These reduced data were recorded in digital form on

punched cards. A duplicate copy was given to GAC.

In addition, measurements of modal damping were made at LaRC. Three
methods were used based on (a) half-power-point bandwidth, (b) log decrement, and
(c) Kennedy-Pancu [9) methods. All the modes obtained from component and system
tests are listed in Table 20. Along with the measured frequency of each mode are
included the damping values obtained in each case. Since most of the damping in
the system came from the external dampers on the Orbiter, the damping properties
of the Booster were not considered particularly significant. Therefore, modal
damping for the mass-loaded Booster modes was measured for only a selected number

of modes.

9.3 Orbiter Damping Matrix

Evaluaticn of the Orbiter damping matrix is considered first for
several reasons. The Orbiter is by far the simpler of the two components. Only
the first three bending modes were found below 500 Hz. The frequency of the
first axial mode (although not shown) was determined to be above 500 Hz. From
Table 20, it is noted that the frequency separation between modes is nearly an

octave in each case. Modal damping calculations made by the three methods are

- &
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\/'ﬂ:.

! Firure 10-a. Ball Damper Installation for Coupled Orbiter/Boc

Orbiter Nose Damper
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'Booster Test,
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Fipure 10-c. Ball Damper 1

Orbiter Tail Damper

nstallation for Coupled Orbiter/Pooster Test
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Table 20 -~ Experimental Mcdal Frequencies and Damping Valyes

Mode
Description
1st bending
2nd bending
3rd bending

Spring axial
Spring axial
Spring axial

LATERAL (PITCH) EXCITATION OF ORBITER AT STA. 74

l1st longitudinal 259.74

1st bending
2nd bending
spring axial
spring axial
spring axial
3rd bending
spring pitch
spring pit:ch
spring pitch
4th bending
5th bending

Frequency Force Percent Critical Damping*
(Hz,) (1bs) (a) (b) (c)
101.40 0.78 3.43 3.33 3.78
219.78 0.58 2.00 1.90 2.32
414.93 0.50 0.75 0.78 0.87

LONGITUDINAL (AXIAL) EXCITATION OF BOOSTER AT STA. 136
145.56 0.94 —— e _—
151.51 0.59 —— —— ————
162.60 G.49 —— ————— ———

0.59 .231 - .281

LATERAL (PITCH) EXCITATION UF BOOSTER AT STA. 134

37.93 0.45 —-—— .290 .281
171.62 0.49 .197 .179 .181
145.56 0.49 .210 .198 .200
151.05 0.51 .132 .163 142
162.86 0.49 144 144 .152
183.90 0.50 -— (.300) A% oo
211.12 0.50 - (.200) %%  —eeo
220.75 0.51 -—-- (.200) %%  —me-
224.71 0.51 —— .204 ——
284.09 0.50 -— .597 —
369.00 1.00 _— —— ——

*(a) Half-power-point bandwidth; (b) log decrement; (c) Kennedy-Pancu

**Data unavailable.

I g

—
f

Values in parentheses were assumed for analysis
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LATERAL EXCITATION OF ORBITER/BOOSTER ASSEMBLY AT BOOSTER STA. 134

Table 20 (Cont'd)

Mode Frequency

Number (Hz.)
1 26.01
2 38.73
3 57.57
4 92.25
5 108.22
6 125.31
7 185.18
8 281.69

Force

(1bs)
1.01

0.99
1.00
0.70
1.00
0.97
1.41

18058-6001-R1-00
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Percent Critical Damping

a) (b) ()
2.77 2.85 3.01
0.96 0.94 0.62
0.76 .49 - .96 0.64
1.67 1.37 1.08
0.30 0.256 0.221
3.15 3.36 3.47
0.282 0. 366 0.289
0.425 0.412 0.378

LONGITUDINAL EXCITATON OF (RBITER/BOOSTER ASSEMBLY AT BOOSTER STA. 135

s~ WON e

Gl & W N =

W 00 ~N O

10
11
12

LONGITUDINAL EXCITATON OF BOOSTER WITH MASS

57.43
108.3
185.52
256.41

LATERAL EXCITATION OF BOOSTER WITH MASS LOADING

34.05
52.77
71.27
76.39
81.49
109.76
182.81
186.56
187.61
198.41
202,83
279.32

53.44
65.35
257.06

2.01
1.50
0.99

0.50
1.00
0.99
1.00
1.00
0.70
0.50
0.98
0.99
0.98
1.48
1.40

1.51
1.46
1.00

- ——

LOADING AT

AT STA. 134

0.42

—-——— -
-————

0.33
0.44
0.32

0.48

STA.

134

0.563

0.307

————
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——
————
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in very good agreement. Of course, most of the damping was placed in the
Orbiter specifically to enhance the chances of achieving conclusive results.

A major part of the effort was therefore devoted to avaluating the damped char-
acteristics of the Orbiter and interpreting the results.

This study was not without its share of problems. Certain unexpected
difficulties did arise which caused part of the schedule to be compressed in time.
Unfortunately, when some of the Orbiter test data appeared to be in error, it
was not possible to repeat any tests on the damped configuration, but only on the
undamped one. As a result, two sets of data became available, neither of which
could be considered complete or entirely free of possible error. This situation

required some exercise of judgement in deciding how best to utilize the data.

There was one other complicating factor. Both sets of data led to
poor orthogonality between the first and third modes. It was specuiated that
this might be a result of the lumped mass matrix which was used, in the sense
that no rotational mass was assigned to either of the lead weights used to simu-
late propellant tanks. Modal slopes are significant at these locations, particu-
larly in the third mode. To test the hypothesis, the modes were plotted from
available data and slopes were scaled. Additional coordinates corresponding to
slope at Stations 18.6 and 46.5 were included, and representative mass moments of
inertia were inserted in the mass matrix. This improved the orthogonali*y con-
siderably. The difficulty was that modal slopes cculd not be scaled very accu-

rately due to the small number of data points along the Orbiter.

The second set of Orbiter response data corresponding to the undamped
configuration yielded better modes than the origiral data since the momentum
balance and orthogonality were both better than in the first set. The decision
was made to use these modes in the synthesis even thongh they lacked the damping
information. Comparison of real mode plots between the two sets indicated rea-
sonably good agreement as far as the overall appearance of the mode shapes was
concerned. Based on the assumption that the introduction of small amounts of
damping should not alter the quadrature response appreciably, the quadrature
response obtained in the undamped test was combined with the coincident response

from the damped teat to complete the second set of data. This was accomplished

o s A A AP e R

PP T &
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by matching accelerometer response at the input locations (Station 74 in each
case) and multiplying the coincident response from the damped tests by the ratio
of corresponding quadrature elements at each station. The forcing functions
assumed for the second set of data were idantical to those obtained from the

damped tests.

In order to be as objective as possible under the circumstances,

damping matrices for the Orbiter were computed for each of four cases:

Case la. Original data--no rotational mass
Case 1b. Original data--rotational mass included
Case 2a. New augmented data--no rotational mass
Case 2b. New augmented data--rotational mass included.
Before introducing any results, it is of interest to first examine the response

data which comprise the basis of these computations.

Coincident and Quadrature response at the first three resonant fre-
quencies of the Orbiter are plotted in Figures 11 through 13. The solid lines
correspond to the original data, while the dotted lines represent the augmented
data. The two are in reasonably good agreement after adjusting the accelera-
tion response at the nose of the Orbiter in the first mode of the original data
for an apparent gain error of 10 db. It is observed that the Coincident data tend

to display the same general shape as the Quadrature data.

Before modal separation was begun, the rigid-body response was
removed from the total response. Forces tending to excite rigid-body response
included both the exciter force and the damper forces. . 5 the damper charac-
teristics had to be known a priori. While it would have a1 desirable to avoid
this by introducing some form of internal damping instead, no way of doing so was
readily available. On the other hand, there is a distinct advantage to using
externai dampers whose characteristics are known because it provides an alterna-

tive way of evaluating the modal damping matrix.

Earlier when the characteristics of the ball dampers were discussed,
an alternate method for evaluating these characteristics was mentioned. This

method is based on Equation (28a).

p o, = 2L.w (28a)

R X L
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Case 1

— == — = Case 2
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a. Coincident and Quadrature Response
0 20 40 60 80
L ) - F 1 . ; O
x
Station (inches)
2]
ll
0
x

b. Coincident Response (Expanded Scale)

Orbiter Acceleration Response at First Resonant Frequency
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ﬁ Assuming that internal damping in the Orbiter is small compared to the external
damping, that the three ball dampers are identical, and they they intrnduce
damping forces proportional to velocity by the constant c, (28a) suggests that

27,0

where the three dampers are located at coordinates 1, 4, and 7. Having measured

g values of ¢ Wo » and ¢ , values of ¢ were computed for each of the three

3" S

E modes (Case 2b). They were not in very good agreement with those values of ¢

presented in Figure 8 except for the first mode at about 100 Hz. Instead of

c tending to decrease with increasing frequency (as in Figure 8), it increased
as shown in Figure 14. This presented somewhat of a dilemma as to what values
% should be used.

It was learned that 6 in (39) varied from 39.8° down to 8.9° in going
from 100 Hz to 400 Hz in the case of horizontal motion, and from 71° down to
14.3° in the case of vertical. The damping force on the ball was of the same

order as the driving force and the inertial force. The "virtual mass' of the

L2

¥ fluid is an uncertain factor, and could vary with frequency. On the other hand,
the damping fornes exerted on the Orbiter at resonance are much smaller than
inertial forces, and fluid mass stould have no significant effect in this case.
It is therefore believed that values of ¢ obtained from (40) are more reliable
than those obtained from (39). Unfortunately, there was no clear cut way of
checking values of c for vertical motion since, in the system tests, horizontal

and vertical motion occur together.

In evaluating the modal damping matrix of the Orbiter, an average
value of ¢ = 0.68 was assumed for the damper constant in each of the four cases.

For comparison, a value of ¢ = 0.36 was also used in Case 2b.

The task nf computing reference values for the modal damping matrix

by
T
£-¢Rp ¢R

=y
Lo

is not altogether straightforward either because of the variability with frequency
of the damper "constants'. However, from the form of (29), it is observed that

in each of the two terms on the right-hand side, the frequency is associated with
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(:D the imaginary part of the mode 5¢I , Wwhich must be related to ‘5' Other things
T 3

being equal, the term having the larger of the two frequencies should dominate.

In evaluating £ = ¢: P dgo it is therefore justified at least to some extent to
replace the nonzero elements of the diagonal matrix p by unity, and compute a
matrix £'. Then each element Ejk can be multiplied by the value of c corresponding
to wok > w j. This sort of frequency scaling will cause the diagonal elements of
the reference matrix to be identical to the diagonai elements of the other matrices,
and will cause the off-diagonal elements to be proportioned accordingly. The refer-
ence modal damping matrix determined in this manner is presented for comparison to
matrices computed from the damped modes in Cases la, lb, 2a, and 2b in Table 21.
Also included is Case 2b, computed on the basis that c = 0.36, instead of c = 0.68.
This case is labeled Case 3.

Several things are apparent in Table 21. Most noticeably, the off-diag-
onal elements in the third column are more sensitive to differences among cases.
This is to be expected because of the importance of rotet.onal mass in the third

mode. The final modal mass matrices obtained in Cases la, 1lb, 2a, and 2b are:

Modal Mass Matrices

Case la Case 2a
1.0 - .097  .623 M.o - .010  .543
100 - n123 1-0 - 0093
1.0 1.0
f. Case 1b Case 2b
3 1.0 - .103  .308 Mo -.o19 167
b 1.0 - .071 | 1.0 - .043

o it
1 B "
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Table 21 -~ Comparison of Orbiter Modal Damping Matrices

Case la Reference
42.4 37.0 5.77 42.4 30.0 46.8
52.5 16.1 52.5 18.9
!
L 40.7 i L 40.7_J
Case lb
= -
42.4 42.0 80.5
52'5 -1302
42.7
Case 2a
-l I
42.4 34.4 35.6
52.5 41.6
L_ 40.7~
Case 2b Case 3
42.4  37.2 128.2 | [4i 4 39.8  123.1)
52.5 £.25 52.5 11.5 ;
40.7 40.7_|

Case 2b is shown to represent the best of them. Significant improvements in
orthogonality are seen to be offerel by inclusion of rotational mass and by the
second set of data over the first. It may also be noted that 512 is relatively
stable and diifers from the reference value by the least amount. A computation
was also made using Case 2b, but only two of the three modes. In this case,

£12 = 39,0, whica is still in the right ballpark.

It is of interest to look at the imaginary parts 6¢I of the damped modal
vectors ¢. They are plotted in Figure 15. They do not resemble the real parts
of the modes as closely as the Coincident response resembled the Quadrature, partly
because of the way in which they are normalized. Ten data points were available
to plot these curves. Eight of them are accounted for by the circled dots. The

other two come from slopes obtuined at Stations 18.6 and 46.5. Without these, it

would have been difficult to plot 6¢I for the third mode. Each of the vectors 6011

3

was normalized so as to cause the phase angle to be zero for the largest element
in the mode. This element happened to correspond to the tail in every case. It
is possible that this type of normalization could obscure some otherwise meaning-
ful characteristics of the vectors. Other forms of normalization were not

explored, however.
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()~ Horizontal motion, Eq. (40)
- «®-- Vertical motion, Eq. (39)
=« - Horizontal motion, Eq. (39) /
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Figure 14 - Compayison of Ball Damper Characteristics
Obtained by Different Methods

etk e e wtraw aw s of Dy



Imaginary Modal
Displacement

Imaginary Modal Displacement

N e A S S a STt S R

oK e, agew P

Imaginary Modal Displacement

Am‘
A Ty

18058-6001-RU-00
Pape 73

0.2 * Mode 1

Mode 2

-0.2
0 20 4 60 80
L 1 [l 2 |
Y \J v v
x
Station (inches)
0.2 Mode 3

Figure 15 -~ Imaginary Parts of Damped Orbjiter Bending Modes

L e e B3



s

S RTORR YL ATASY TSI R TPRYY

e -t LR L AT ¢

ANV

Tt

O

PN
X e

18058-6001-RU-00
Pag. 74

9.4 Booster Damping Matrix

Since the amourc of damping in the Booster is very small, there was not
much hope of computing a meaningful modal damping matrix aside from the diagonal
terms. Nevertheless, an attempt was made to see how the modal separation program
would work. Resonant response for the first nine Booster frequencies with no mass
loading was entered. The iterative procedure failed to converge. This result
was not unexpected. In the first place, the damping is so small that the accu-
racy of the coincident response measurements is in questicn, and secondly, the
frequency separation among spring modes in particular violates the criteria for
convergence derived in the Appendix. It was noted, however, that after just one
iteration, the orthogonality of the modal mass matrix was imprcved significantly,
in particular, with respect to the seventh mode, which is the lowest frequency
spring mode in the pitch direction. The original seventh column of the modal mass
matrix is shown in Table 2Z rcr comparison to the same column after one iteration
oi MOLSEP.

Table 22 - Improvement of Orthcgonality Among Booster Moacs

(Column .’ of Madal Mass Matrix)

Row Nc. Original Improved
y - .116 - .319
2 .555 134
3 - .09 - .019
4 - ,010 .053
& 1155 .055
6 - .419 - .065
7 1.000 1.000
8 .428 194
9 - .809 .039

The overall change ie seen to be for the better even though some of the elements
did tecome larger. This kind of improvement was not realized for the Orbiter
because the pocr orthogonality there was caused by an incomplete description of
the third mode, and not by having more than one mode contributing to the resonant

response.
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ﬁ J The effort to compute a damping matrix was pursued further, however, by
introducing fewer modes in the separation algorithm. A case involving oniy the
first two bending modes was tried first. This eliminated the frequen'y separaticna
problem. Convergence was achieved in a single iteration. Then the firat axial
spring mode at 145.56 Hz was included in a three-mode case. This time, converg-
ence (to cpproximately two significant figuves in 6¢I) was achleved in four iter-

ations. The second axial spring mode at 151.51 Hz was added to make a four-mode

case, Computations diverged.

In the Appendix, a convergence criterinn is derived in terms of a scaled

impedance matrix Z(iQ,) associated with each resonant excitation frequency Qj‘

3

In the case of proportional damping and in the case .f diagonal molal damping in

b oo ine

general, Zis a diagonal matrix whose largest element zZ,, is unity. The other

1

diagonal elements diminish ir size as they become further displaced from the unit

element. In the cas¢ of nonproporcional damping in general, E is a fully-popula-
ted matrix whose elements tond to diminish in magnitude ac they Secome forther
displaced from the unit element in any direction. A criterion foir <y nvergeuce is

1 that each element Z - eii(in (ek denoting the kth column of the identity

)

! ke

{ matrix 1) of each resonant impedance matrix Z(iQJ) satisfy
VA - .E_kz. /__;CL_ < <1
1
LY V(s - 1)

where B = 0 /ww > 1. Sont iypi~=l ~“uiues for Booster c=lculations aire given
| .
in Table 23,

Table 23 - Convergence Indicators for Booste. Damping Macrir -‘alculations

TGRS, DY VEWIE RS S TEG SRR B oy e 30 PRSI ONT l TME S T I M E ATIARS T R A AT T

Nu;;g::sOf K2 s 311_0_2_ ‘[2‘1/(82'1)‘ ATATL _'__)5—_
% 2 z, 7.18 .290 .0306 .83 .2178
3 3,2 2.06 179 .0581 4.64 .270
4 4,3 1.08 .198 * %
) 5 5,4 1.165 Lod ! A *
. 6 6,5 1.278 144 L1302 * *

— - -

*Values unknown because iteration failed to converge
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The modal damping matrix computed in the three-mode case was found to

be
1.382 .805 ~10.58
£ = 2.285 6.195
Sym. 3.622

The (3,2) =lements of £ are seen to be quite large. This may be due to an insuf-
ficient number of response measurements, as the res-lts of some ¢f the Orbiter
calculations suvzgested. It is not particularly easy to “el.eve that an axial
spring mode coull couple so strongly with the bending modes. What appears to

be happering i- that che modal mass of the spring mode is so small that the ele-
ments of 5¢I3 are large compared to corresponding elements of 6¢12 or 5¢Il, for
example, since the . -4 are r rmalized to give unit mcdal mass. Errors would

tend to be amplifiea 1. this case.

It is clear from Table 21 that the cwo-.>de case should have converged
rapidly since the upper bound B on zkl was much smaller than unity. It is inter-
esting also to note that in the three-mode case, convergence was achieved even
though B = .270. This is not too surprising since other off-diagonal e'ements of
the i ma.rices are mich smaller. In the cases involving four or more muucs, con-

vergence was not achieved at all, so that values of Ekl are unknown.

It is of interest to examine the re~ponse measurements and the first two
damped modes computed for the Booster. Response measurements are plotted in Fig-
ures 16 and 17, while the corresponding damped modes are plotted ir Figures 18 and
19. Again, apparent errors were found in the original response data so that tests
were rerun for some of the modes (including the first). Data from the second
test are plotted with circles, while data obtained originally are plotted with tri-
angles. Ten-db gain errors were apparent at Statione 20.3 and 45.3 in the first

mode of the original data.

Several things are observed in Figure 16. Coincident data from the first
test follow the shape of the Quadrature data and are greater in magnitude than
Coincident data from the second test, which also exhibit more scatter. Different
procedures for data reduction were used in each case. In the first case, data

were recorded simultaneously on tape over a 20-second time interval and reduced
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using the Co/Quad Analyzer. Data from the second test were recorded manually in
real time o.er approximately a five-minute time interval. Amplitude and phase
information were taken, phase angles being read from a phase meter. No phase lock
system was used in either case although preliminary tests indicated no significant
phase shifts over a typical 20-second interval. Over a five-minute period, how-
ever, the possibility of significant phase shifts is acknowledged. Phase drifting

-ould explain the scatter as well as all of the positive Coincident data points.

Another notable characteristic is that the imaginary parts of the modes
are considerably greater in magnitude than they should be if only damping informa-
tion were reflected (see Section 6). Yet, 512 < 511 = 2“1‘1' A plausible expla-
nation for this is that the mode was probably not tuned pe..ectly, causing some
of the resonant (uadrature response to "spill" over into the coincident. This ’
would tend to account for the fact that the Coincident and Quadrature shape char-
acteristics are so similar, at least in the first test. This explanation would
also admit the possibility that computations of 512 might not be altered appre-
ciately if phase shifts were proportional to the real part of the mode. This is,

¢T

- 4T
R u(€¢R +6¢I)-¢R L5¢I

2 1 1 2 1

(where ¢ is a small propnrtionality constant) because of the supposed orthogonal-

ity of ¢ and ¢, .
R, Ry

The damped mode characteristics shown in Figure 18 are interesting, too.
Aside frcm the sign difference in the imaginary part of the mode. results from the
two tests bear a fairly close resemblance. For the sake of comparison, the modal

matrix obtained with the substitution of Test 2 data for the first resonance into

Test 1 data is

1.385 .052 -8.382
£ = 2.285 2.286
Sym. 3.622

R R & % 2 e
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The largest change from earlier computations is seen to occur for the (1,2)

element, supporting the contention that the highest frequency term in (29) is

dominant.

Although the Booster damping matrix computations are felt to contribute
significantly to the value of this investigation, it was not deemed critical that
the ful! modal damping matrix be included in synthesis calculations because of
the small amount of damping. Since not all the off-diagonal elements could be
obtained anyway, the diagonal matrix
1.38

2.28
3.62
3.10
2.94
5.78
5.31
5.54

5.76

—

vas used. No computations for the mass-loaded Booster case were made since tie

modal synthesis attempted by GAC yielded ursatisfactory results.

9.5 Damping Synthesis

The modal damping matric~s given in Seciions 9.3 and 9.4 provide only

part of the component damping matrices c1 needed to synthesize system damping.

If the Booster is designated as Component 1 and the Orbiter as Component 2, con-

sistent with the vonvention adopted by GAC, the modal damping matrix derived for

1NN

the Booster may be denoted by c and that for tt~ Orbiter by czNN

1RR 1RN

The other submatrices c¢ and c¢ must be found

the notation of Section 5.

before synthesis can begin. In cases where there is no external damping, these

Thus, for the Booster,
1
c RR 0
clRN = 0.

matrices are null.

2RN

2RR and ¢

The Orbiter does have external damping, however, so that c
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idf Given the rigid-body Orbiter modes ¢§R and the elastic body rormal modes ¢§N,

these matrices were computed from the equations

T
2RR 2R 2 2R
< -¢R p()"R

(23
o

where Cy and ey were, respectively, the horizontal and vertical damping "constants"
of the ball damvers.

It is recogni:ed that Orbiter coordinates 8, 9, and 10 do not correspond

to axial displacements of the Orbiter at Stations -0.5, 39.6, and 77.75, where the

~

3 dampers were actually attached. However, in synthesizing system modes, GAC used
only the component modes up to about 225 Hz. Since the first Orbiter axial mode
is above 500 Hz, axial motion of the Orbiter was primarily rigid-body motion.
This was confirmed by the data. Small variations among these axial response mea-

surements were present due to the positioning of accelerometers about three inches

off the centerline of the Orbiter in the Orbiter/Booster plane. The accelerometers

PRI
’

¥ -

were actually mounted on the spring brackets. Orbiter bending did induce small

amounts cf relative axial motion, but they were negligible.

o e T b o o e bk
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Because of the dependency of damper characteristics on frequency, it was

hard to decide which values to chcose for Cy and cv. To be consistent with

computations of the modal damping matrix, a value of ey = 0.68 was used.

earlier

Figure 14

indicates that while no corresponding values of v are available from Orbiter

damping tests. separate tests performed on a typical damper indicate that Cy >cH.

It was therefore assumed that Cy = 0.900.

The selection of these values might be disputed on the grounds that

according to Figure 14, °y

= (0.068 corresponds to a frequency of approximately

250 Hz, while the system modes range from about 26 to 200 Hz. At 100 Hz, cH=0.45.

Maintaining the same ratio between CH and Cy would indicate a corresponding
of ¢

v = 0.62.
Table 24 for comparison to measured values.

good, especially for the case where cy = 0.68 and cy = 0.90

Table 24. A Cumparison of Predicted and Measured System Damping

cH=.68*

value

Computations were made using both sets of values, and are shown in

The agreement is seen to be quite

o e e oese ol
Mode v v v s
1 2.24 3.23 3.21 2.77 -3.01
2 .768 1.03 1.02 62 - .96
3 485 .658 .660 .49 - .96
4 .835 .765 .855 1.08 -1.67
5 »262 .311 .331 .221- .30
6 2.42 2.98 3.10 3.15 ~3.47
7 .193 .197 .219 .282- .366

Another set of computations using these values for u and Cy only

2
time a diagcnal ¢
off-diagonal element to zero.
estingly enough, deleting the off-diagonal element made little difference.

reason is obvious when one looks at the modes of the coupled system. There

this

sub-matrix was assumed for the the Orbiter by setting the

These results are also shown in Table 24, Inter-

The

is 8o

much frequency separation between the Orbiter modes that for all practical purposes,

they combine only one at a time in the synthesis of system modes.

o v -

*The off-diagonal 2lement of the Orbiter modal damping matrix was neglected
in this case.
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$

This conclusion {s somewhat disappointing in the respect that a

F.=N
w-

comparison of the predicted modal damping constants of the system to those mea-
sured directly does not establish the importance of including the off-diagonal

terms. In fact, the overall effect of neglecting the off-diagonal term seemed

to make things a little better rather than worse, especially for the fourth mode.
4 One must be cautioned against drawing this conclusicn teo readily, however,

1 because the modal damping predicted in the fourth system mode was significantly

1 in error to begin with. The reason for the vrror is indicated by a comparison

of the predicted and experimental modes (Refer:nce [7])., The experimental

mode exhibited a large displacement cf the Orbiter tail, whereas the predicted
mode indicated practically no displecement. The predicted frequency was 98.26 Hz,

whereas the experimental frequency was only 92.25 Hz. The system mode did contain

e e g~

a large amount of the first Orbiter bending mode whose frequency is 101.41 Hz.

9.6 Conciusions

Application of a matrix method for damping synthesis to real struc-
tures has produced encouraging results. The predicted values of system modal
damping agreed very well with measured values, for the most part. Resonant
response was successfully used t evaluate the coupling term between the first
two Orbiter modes. Coupling terms involiing the third mode were also computed,
but not enough response measurements were available to fully describe that mode.

Consequently, large amounts of uncertainty were introduced in those terms.

Damping calcnlations were made with the Booster test data also, even
though damping levels were very small. Notable in this case is the improvement
in orthogonality among the Booscer modes which resulted from the modal separa-
tion effort. While computations involving more than the first three modes
failed to converge, the results were at least in agreement with the convecgence cri-
teria derived in the Appendix. Cumputations involving only two or three modes
did converge, but there was no way of verifyirg the results. The damped modes

contained no cbvious discrepancies, and che lmaginary parts indicated reasonablv

e g

Smcotn curves.

T

The¢ synthesis of Orbiter and Booster damping matrices to predict System
damping yizlded results wh' ch agreed very well with direct measurement, Part of
T »
the succ.sc must be attribut=d to the use of external damping, however, so that

the results are not as conclusive as they might be had a different model been

chosen.
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10. Curient Applicability

Parts A and B document the development of a new method for damping
synthesis based on the use of substructure damping matrices. The method depends
on the ability to determine the damped modes of isolated substructures. These
mcdes are complex, and embody phase as well as amplitude information. While the
ugse of compiex modes in the dynamic analysis of linear systems is not uncommon,
it does represent a departure from the mainstream of structural dynamics analysis
and testing. As a consequence, two major obstacles arise: conceptual difficulty
related to the physical interpretation of complex modal vectors and practical
problems which have nct previougly been enccuntered because there has not been
a need to acquire complex modal data. Thic section is included to help over-
come these obastacles by providing a condensation of concepts and findings which

ave particularly relevant to practical application.

The combined use of amplitude and phase information to evaluate dynam-
ies characteristics is certainly not new. Classical «:1alysis of feedvack con-
trol systems has frequently employed the Nyquist diagram which is a polar plot
of output/input amplitude versus phase angle. Kennedy and Pancu {9] used the
same representation of data for structural vibration arslysis. The primary dif-
ference between these techniques and the present use of complex modes is that
the former is used to completely characterize a system between d’screte points
over a continuous frequency spectrum, whereas the latter is used to characterize
the entire system in terms of a discrete frequency spectrum. Most current text
books on structural dynamics describe two alternative methods for response anal-
ysis: the Frequency Response Method and the Normal Mode Method. The -resent
work draws upon both approaches and, in a sense, bridges the gap between them.
The amplitude and phase respcnse of a structure %o sinusoidal excitation deter-
mine its frequency response. This, in turn, is used to evaluate the damped
modes. Because structural damping tends to be small, the damped modes are rela-
ted to the classical (and hypothetical) undamped modes in a simple manner; {i.e.,
to first-order approximation, the real part of a damped mode is equal to the
undamped modc vhile the magnitude of the imaginury part is small compared to that
of the real part. Through a linear perturbation of the undamped equation of
motion, the damped modes are used to determine a full modal damping matrix for

the structure or substructure.
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From the perturbation equations developed in Section 6, it i{s evident
that the magnitude of modal phase angles one might expect to find would be on
the order of ;, the critical damping ratio. Thus, for a structure having 1%
damping in a piven mode, modal phase angles on the order of .0l radian, or .6°,
could be expected. In order to determine such phase angles experimentally, mea-
surement errors must be relatively small. This matter is discussed more fully

in Section 1l1.

It has been poiated out tnat phase angles associated with the resonant

response of a structure to sinusoidal excitation are likely to be w:ich larger
than &, This may be due to the presence of off-resonant mxde contribution in

the total response as well as small differences between excitation and nodal
frequencies. The effect of the latter is to 'spill" some >f the real jpart of

the mode over onto the imaginary axis; this should be of little consequence
however, because of modal orthogonality wi 1 respect to the mass matrix, as
pointed out in Section 9.4. Off-resonant mode response must, of course, be sep-
arated from resonant mode response in order to determine the damped modes. The
iterative procedure developed to do thig appears to work satisfactorily except
when modes become too closely spaced, in which case, the iterative computations
may fajil to converge. Quantitative crdteria for convergence ar: derived in

the Appendix, and indicate that for damping on the order of 1%, modal separation
should be at least 20X to achieve convergence. The larger the amount of damping,
the more frequency separation is required. DNamping on the order of 5% will
require a freqeuncy separation of about 50%, i» general. These conditions assume
a ratio of unity between the respective off-diagonal and diagonal terms of the
modal damping matrix; which is to say, the two modes in close proximity to each
other are strongly coupled by damping. As this ratio becomes smaller, the
requirement for frequency separation is reduced according to the square root

of this ratio.

Another requirement discovered in the course of this investigation is
that the excitation frequency at each resonance must be maintained at the reson-
ant frequency to perhaps five significant figures when damping is on the order
of 14. Resonance may be defined as the frequency at which the quadrature
response peaks for that part of the structure undergoing the largest amplitude

of response.

R R P
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A sufficient numuer of response measurements will be required to fully
describe each mode of interest. Interpolation may be used where appropriate.
If poor orthogonality of the "undamped'" modes is evident even after modal sepa-
ration, either a poor mass matrix or an in-omplete description of the motion (not
enough response points) or both may be suspected, assuming that the modes were
properly tuned during test. Toor orthogonalit} in this case will imply errors

in damping matrix computations since the same quantities are involved.

Some comments are in order with regard to choosing a physical mecdel for
the experimental support of an effort such as this. In retrospect, it has become
ciear that the use of external damping has led to certain practical difficulties.
In the iirst place, it was hard to determine the characteristics of the ball
dampers used in this study. Different methods employed to evaluate their damping
"constants' led to different conclusions, thus introducing considerable uncer-
tainty. Since this information was needed to remove rigid-bely response from
the total resonant response and to account fur thec coupling between rigid and
flexure modes, the uncertainty had a significant influence on damping computa=-
tions. Furthermore, since the lower system modes contained large amotunts of
Orbiter rigid-body mction, the influence of rigid-bcdy damping upon predictions
of overall system damping was strong. In this respect, the 1/15th-Scale Dynam-
ics Mudel of Shuttle was not well suited to the objectives of a damping study. Al-
though attempts were made to ‘ncrease the level of damping by adding internal
damping, no method was found to provide e¢nough damping because of the large stiff-
ness =nd mass of the lead-weighted tubular structure. In the future, this problem
can be avcided by the use of lighter weight, more flexible structures for whioh
damping tape and the like are capable of providing sufficient damping. Flat beam

type as well as hinged structures are possibilitiess for consideration.

Of ccurse, in the case where the design of a test specimen is dictated
by other requirements, it may be necessary to "work" with only a small amount
»f iaternal) damping. Improvements in phase measurement accu.acy will undoshtedly

be required. Data acquisition is discussed in the following se<tion.
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> 11. Data Acquisition

At the outset of this study, an investigation was made to determine
the degree of accuracy to which phase angle data could be measured with avail-
able analnag equipment [10]. Phase errors are introduced by the transducers and
conditioning equipment, by the recording and playback equipment, and by the

ana'-,. data reduction equipment. An effort was made to determine the magnitude

L e o S P A T L £ P

of ituese errors and to minimize them whenever possible.

PR SUN

Tests were conductad at LaRC to determine the variability of phase angles
measured by diff - rent piezoelectric accelerometers. The accelerometers were
mounted on a rigid mass attached to a shaker. Relative phase angles between
pairs.of them were recorded versus frequency for all 30 accelerometers used in
this series of tests. These data fell within a + 0.1° bandwidth over a frequency
range of 30-500 Hz.

To assess the magnitude of phase error which could be introduced by
recording and play-back tape systems, LaRC recorded sinusoidal signals on tape
and shipped ther to TRW for playback and analysis [11]. Static phase shifts
tending to increase with frequency were observed (as much as 10° at 450 Hz).
These were presumably caused by imperfect alignment of the record and reproduce
neads. The need for phase calibration of each channel had been anticipated in
advance, and a special calibration device was built. At tape speeds of 15 ips,
dynamic phase variations of + 1° were observed at 450 Hz. These can be caused
by tape stretching and low frequency flutter. It was decided to increase the
tape speed to 60 ips to minimize flutter and operate in the tape synchronization
mode to compensate for tape deformation. In this manner, dynamic phase varia-

tions were reduced to + 0.1° (over a 20-second time period).

The third possible source of error is the analog data reduction equipment
which included a Spectral Dynamics 1012B Dual Channel Tracking Filter and a Spec~-
tral Dynamics SD109B Co/Quad Analyzer. While amplitude errors were assessed,
phase angle error data and/or specifications were unavailable. Precautions were
taken, however, to have the system carefully tuned for optimum performance during

this task.
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1f the phase error introduced by the Co/Quad Analyzer is also assumed
to be on the order of + 0.1°, the cumulative error would be about + 0.2°, or
.0035 radians. In order to get meaningful damping measurements, the amocunt of
damping should therefore be greater than one percent. This was the reasoa for

adding external damping to the Orbiter.

In summary, phase errors must be held to a minimum. A phase-lock system
is recommended to prevent the excitation frequency from drifting and intro-
ducing phase shifts. For 1% damping, the overall phase error should be held to
+ 0.2°. This allows for approximate.y + 0.1° errors in the instrumen ation, tape
handling, and Co/Quad reduction, respectively. All data should be recorded simu-
taneously on tape for a period of 20 to 30 seconds at a tape speed of 60 ips to
minimize effects of low frequency flutter. Tape playback should operate in the
synchronization mode to compensate for tape deformation. Every channel of data

should be phase calibrated to compensate for head misalignment.

With regard to improving measurement accuracy, a-digital system offers
potential advantages over an analog system. By digitizing the data in real time,
the analog tape problems are eliminated completely since records would be stored
in digital form. The Co/Quad analysis could then be accomplished by digital fil-
tering and Fast Fourier Transform methods, rather than having to use a tracking
filter and the Co/Quad Analyzer. The only problem remaining would be one of

improving the instrumentation and/or conditioning equipment. This problem has

not been considered yet.
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12. Comparison with Energy Method

Two methods for damping synthesis have now been proposed. They are
distinguished by the form in which substructure damping properties are described.
In the matrix method they are described by a modal damping matrix, and in the
energy method, by total dissipative energy. In the matrix method, the spatial
distribution of damping throughout the structure is represented; in the energy
method, a kind of average distribution is represented in the sense that total
dissipation energy is a summation over the structure. Herein is believed to

be the basic difference between the two methods.

As might be expected, it is more difficult to determine the modal damping
matrix of a structure than total dissipative energy. More data are required and
measurerent accuracy is more of a problem because of the need to measure small
phase angles. In general, it will cost more to get the better resolution offered

by the matrix method.

In an attempt to compensate somewhat for the lack of resolution in the
energy method, Kana and Huzar have proposed the use of engineering judgement to
categorize structural modes so as to form more than one energy curve for a given
substructure. More judgement would then be required to decide which curve to use
when trying to establish damping energy on the basis of some given kinetic energy.

An advantage of the matrix method is that it can be fully automated with no human

interaction required.

Regarding the question of linearity, it is recognized that the matrix
metiod presupposes linearity in the equations of motion. This type of linearity
was also assumed by Kana and Huzar. Although they claim this is not a fundamental

requirement, their report does not indicate how nonlinear problems might be handled.

One final consideration is that of uncertainity in the predicted values
of system damping. Even when making direct measurements, it is not uncommon to
experience errors on the order of 50%. While the energy method is attractive from
the standpoint that energy data are believed to be fairly reliable, it will be
difficult if at all possible to assess errors introduced by ignoring the distribu-~
tion of damping. The matrix method is more amenable to a rigorous statistical
evaluation of error because the information used in computations relates directly

to measured quantitiee such as frequency, response and mass distribution; it does

not involve human judgement.
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13. Final Conclusions

A matrix method for damping synthesis has been developed. Its
theoretical basis relies on a linear perturbation of the undamped equation of
motion for lightlv-damped structures. Verification has been accomplished
using both analytical models, which satisfy the inherent assumptions of linear
viscous damping, and experimental data from tests of real structures. The
results are encouraging in that the nonproportional damping characteristics
of real structurcs have been determined for the first time, making it possible
to synthesize the damping matrix of a structural system from those of its

component parts.

The presen. study has encompassed a number of separate investigations,
related to damping synthesis. The following major conclusions have been

drawn from this study:

1. Modal damping in structural systems can be determined to first
order approximation by operating on the substructure modal
damping matrices with the same linear transformations used to
couple and diagonalize the mass and stiffness matrices.

Solution of the compliex eigenproblem is not required so that
the procedure will be easy to incorporate in existing structural

dynamics computer programs such as NASTRAN.

2. Coupling procédures involving fixed-interface, free-interface
and mags~-loaded-interface substructure modes were investigated
for their suitability to damping synthesis. The two major
considerations included the practical ability to determine an
adequate description of damping at the substructure level, and
the convergence of synthesized values of system level damping.
Convergence of system damping depends directly on the convergence
of system eigenvectors. While the fixed-interface mode method is
superior from the standpoint of convergence, it requires the use
of static modes which are difficult to determine experimentally
and contain no damping information. The free-interface mode method
avoids the use of static modes but converges poorly in general.
The use of mass-loaded interface modes appears to yield a favorable
compromise between the other two methods, offering reasonably good

convergence without the use of static modes. Provided that a way of
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2. (Cont'd)
g&;

determining and applying appropriate mass distribution to the

interface boundaries can be found, this method appears tc hold the
most promise.

The basic feasibility of determining substructure modal damping
matrices irom resonant response data has been established. The
damping may be nonproportional, leading to a fully-populated
modal damping matrix. Resonant response data are used to compute
the damped modes which are also complex. These in turn are used

to evaluate the off-diagonal terms of the modal damping matrix.

R AT TR BT AT i 1
w
:

The off-diagonal terms must in general be included in the
synthesis. It is only when the modes of a given substructure
participate one at a time in the system modes that the off-diagonal
terms (while perhaps comparable in magnitude to the dilagonal terms)
may be neglected. Although this was evidently the case in the
present application to a real structural system, it will seldom be

true of more realistic structures.

4. The isolation of damped structural modes from total structural
response to sinusoidal excitation requires an iterative computational
procedure wherein the damped modes and the modal damping matrix are
alternately computed. Criteria for the convergence of this procedure
have been derived and appear to be in agreement with experience to
date. (See Section 9.4 for example.)

5. A significant improvement in the orthogonality of the "undamped
modes" (real parts of the damped modes) may be achieved as a by-product
of the damping matrix computations. This will be true whenever poor
orthogonality of the "raw modal data' (quadrature component of resonant
response) is caused by the presence of off-resonant mode contributions
¢ ? in the resonant response. Improvements will not be realized whenever
g the poor orthogonality is due to having a poor mass matrix or to an

inadequate description of the modes.

6. Predictions of structural system damping based on experimentally

determined substructure damping matrices have been verified by direct
measurement.

d et rde ka2 il 4 e w
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i:} 7. Further development will be required to enable the separation of
closely-spaced modes from the total response at resonance. This is
a problem even when the imaginary parts of the modes are of no
concern; but it is more of a problem when the complex damped modes
are being sought because the requirements ca frequency separation

are more stringent.

8. It may be necessary in applying this method to define modal frequencies
independently of resonant excitation frequencies because of the
difficulty in exciting a structure precisely (five or six-digit
accuracy) at a modal frequeucy. In this case, additional information

will be required to help identify the modal frequencies.

Y. Phase errors introduced by the transducer and analog tape systems
have each been held to + 0.1°. If phase errors in the Co/Quad
data reduction are held to a comparable level (and it appears that

they are), the total measurement error in the analog system should

be on the order of + 0.2°. This degree of accuracy should permit
- the measurement of nonproportional damping in systems with damping
levels as small as 1% to within approximately 30% accuracy. The use
of digital data acquisition systems should further reduce measurement
errors in the latter two stages significantly. The basic limitation

would then lie with the transducers and conditioning equipment.
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aﬁ 14. Recommendations for Future Work

While the basic methodology for damping syrthesis by the matrix
method has been developed and demonstrated, there are certain limitations
to its current applicability, as already discussed. The following recommenda-

tions are made for further refinement:

1. 1Investigate methods for separating closely~spaced modes.

2. Investigate methods for more accurately idertifying modal frequencies.

3. Implement the use of digital data acquisition and rn~duction.
? 4. Design and test a physical model without external damping, where
% the substructures' resonant frequencies are more closely spaced.
P
Compare predicted and measured values of system damping.
I 5. Develop a systematic procedure for estimating the uncertainty
: in predicted values of system damping. This should be based
:
1 on an appropriate statistical characterization of all input
' data.
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APPENDIX
CONVERGENCE OF THE MODAL SEPARATION PROCEDURE

The identification of damped mcdes depends on being able to implement
an iterative procedure for removing the off-resonant mode reponse from the total
response of a structure at resonance. In order for the process to converge, cer-
tain conditions should be satisfied. While an exhaustive investigation of this
matter has not been attempted, some relationships have been derived which may be
interpreted as criteria for convergence. They are not claimed to constitute suf-~
ficient conditions or even necessary conditions in a strict sense. They are

plausible, however, and seem to be consistent with experience.

In deriving cthese relationships, it will again be convenient (and
will avoid crnfusion) to consider the response vector x to represent flexible-~body
motion only. Thus, when discussing the total response of a free-free structure
excited by forces which do not add vectorially to zerc, it will be assumed that

rigid-body response has been removed.

In the present study, vibration tests were conducted on "free-free"
structures which were externally damped. Strictly speaking, they are no longer
free-frue in this case. Coupling betweer the rigid-body modes and flexible-hody
modes is introduced by the dampers. Thus the matrix ciNB, which appears in
Equation (19b) of Section 6, has nonzero elements. This need not complicate the
study of convergence. Although forces arising from this term may be included in
the generalized forces which excite flexible modes, it is simpler, and does not
sacrifice generality to ignore them altogether. Besildes, this type of damping is

artificial and will presumably not be encountered in most practical applications.

Perturbation Analysis

It is assumed that the n equations of motion for a real structure may

be written in the form [Equation (31) of Section 7]

uX(t) + ox(t) + kx(t) = £(t). (Al)

Consistent with the approach taken in [6], the n second-order differential equa-
tions of (Al) may be put in first-order form leading to a 2n eigenproblem. The

solution of this eigenproblem will result in a set of complex eigenvalues A and

oA Ty AR R ek €
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¥

eigenvectors ¢, where A is considered to be a complex diagonal matrix, and ¢, a

complex full matrix. The elements of A are of the form

A, =5, + 1w -
3 3 3

where cj 1s the modal decay rate for mode j, and w,

quency of that mode. The jth complex eigenvector iay be expressed in the form

is the damped natural fre-

$, = ¢, + 8¢, + 18¢ (A3)
IR 1

where ¢R is defined to be the classical undamped mode. The equations of motion

may be transformed according to

x=d¢p4q (A4)
where ¢R is a real matrix whose columns are ¢R .  Then, (Al) becomes
|
” . 2 T
Iqg + &g +uw q= ¢, £(e) (A5)

where it is assumed that ¢R has been normaiized so as to result in ¢: u ¢R = 1

and ¢§ K ¢R = mi. Here I denotes an identity matrix while mg denotes a real diag-
onal matrix whose elements correspond to the undamped frequencies squared of the
various modes. The matrix £ = ¢§ p ¢R is a full modal damping matrix, ;.e.. non=-

diagonal in general. It will be assumed that f(t) is of the form

f£(t) = ij gj

where ij is a vector characterizing the spacial distribution of the forcing func-

(t) (A6)

tion f(t), used to excite the jth mode, and g(t) is the corresponding scalar
function of time. Then, (A5) may be written

I3+ 64 + w2 q = B g (€) (a7)

8
ay 3

T
where P = ¢ P .
R x
1 3

LI Y
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3

where H is the frequency response vector in the q cocrdinate system. Further

b aad
{;; It will be convenient to represent { as the .um of two matrices
E = Ed + gn (A8)

5 where Ed is a diagonal matrix containing the diagonal elements of £, and En is
i a matrix with a null diagonal containing all the (. f-diagcnal elements of .
3 Thus, Ed may be considered to be the diagonal damping matrix of tie system. Equa-
¢ tion (A7) then becomes
1 . D 2 -
] 1q + (Ed + En) q+ W, 9 qu sj(t) (A9)
: The Laplace transformation of (A9) leads to
i 2 2 .
r f(iQ)’1 + (m)((»:d + ;n) + “’o] Hq (12) = P (410)

defining a complex impedance matrix Z(iR) by

z(i) = Zd(iﬂ) + Zn(in)p (Alla)
2.(19) = [(w2 - a?) + () £,] (A11b)

- d ° '’
z_ (10} = (10) £, 10)

one may express (Al0) in the foru

[zd(in) + Zn(iﬂ)] qu (19) = qu (A12)

Since zd(in) is a diagonal matrix, a scaling transformation

q= ;Y

4 2(19)7

may be made leading from (Al2) to

& 1+2]H =P (A13
' [ n] Yj Yjv v )
where z = z.V/2 2 z'1/2. B =224 andP =2Y2% . Then
n d n d Yj d qj YJ d qj

)
’

5 -1
Ho=(1+2)7 P . (A14)

R R e
,
AY
e
<
e



i

E

v 18058--6001-RU-00

{ Page A-4
- k4
hld Examination of zn reveals that its diagonal elements will be zero, and that its

off-diagonal elements will be much less than unity in magnitude whenever

sz-nj = wg for any frequency woy» provided that adequate separation exists among

the variouz resonant frequencies of the structure. For these discrete fr»*quen-

£ cies, (Al4) becomes ﬁ\
£ H i = [T +2 (4 P iq AlS) ©,
{ Y( nj) { ,¢ nj)l Y( j) (A15) .
§ 3 b .
% The matrix [I + in(i QJ)]_1 las the series represeantation
L4
; p -1 z k
: (I1+2Z (10,)] ~ = [-Zz_(iq,)] (A16)
n ] k=0 n J

provided tha. the efgenvalues of Zn(iﬂj) are less than unity in magnitude [10].
In practice, this condition may be established on the basis ~f Gershgorin's disk

theorem [11] which states that all the eigenvgéfca of the complex matri.. G lie
in at least one of the disks of radius r,Z = ;L, |6 | centered at G, . It is
clear that on the basis of (Al6), (Al5) may be expressed in the manner
H (19,) = [I - z (12,)] P_ (iR AL7
y U9 7 -z apl e, day) (AL7)

to first-order approximation. Consistent with this formulation, it is uscful to

also expand HY (1Q,) and PY (1Q2,) in power series about some nominal values

jj g

HY (inj) and PY (1), retaining only the first two terms in each case. Equa-
o o

b h|
tion (Al17) then beromes

[HYo (mj) + 6HYj(in)] = [1 - zn(mj)] [P*oj(mj) +6 PYj(inj)] (Al18)
j

IE NN R W ) s S o




I oS S ! | ; . N

18058-6001-RU-00
Page A-5

&

Treating H , I, and P as zeroth-orcer terms and §H_ , Z , and 6P_ as
Y Y Y n Y
oj oy h| ]

first-order terwns, one may equate terms of the same order resulting in

RYO (iﬂj) = pyo (iﬂj)

3 3

GHY (iﬂj) = GPY (19,) -Zn(iQ

) P (i)
gy 3 Y

3 R

Transformation from the y back to the q coordinate system, with the notational

convention Z(iﬂj) = Zj’ gives

B = zc'l1 P (A19a)
LT B
-1 -1 -1
SH = Z SP -2 YA Z P
d A d d (A19b)
93 i Y i MY qoj

In order to define Pq , 1t is required that some initial approxima-
(o]

tion of the undamped modes be available. The quadrature acceleration response
provides this information. The normalized acceleration response H;j corresponding
to the total response of the structure whe~ excited by a sinusoidal force at fre-

quency u; is therefore considered to be the sum of two components

1 . .o
%t [coGip) + 1 quwndiy;]
where
g(t) = 2, sin fﬁt
xj = x, sin (th + Bj)
co(x,) = —Q2 X_ cos §

3 j’o R
OUAD(x.) = -0% x_ sin 8 f
) 3 j o b i

Initially, then, ¢Rj may be assigned the values

&Rj = quab (it )/fquaD (i )Ty quap @i )32 (20)

3 3 3

P ey M s A A ALY T SERRRL AT SRR
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Then, Pq is defined to be
°j
~T
qu ¢R ij
3
Since Zd(in) has been defined in (Allb), Hq (iﬂj) is also now defined.
o
3
The vector P has been used in (A7) to represent the total general-
h|
ized force vector in the q coordinate system. With Px considered to be known,
hj
T .
Pq. ¢R Px. is determined by ¢R. Then
] J
N
6P_ = (¢, - ¢.) P
. R R X
% 3
The interpretation of 6P as a first-order term in (Al18) is valid as long as
'3
-1/2 ~ T
|27 “ (o = 850" P |
d R R X
Al <« 1 (A21)
-1/2 T
EAi =
J *3

An alternative form for Equation (35) of Section 7 applied to the

first iteration of this procedure, is

. -1
= (A22)
R ¢(quD)

~

where ¢ = HxD and D is a complex diagonal matrix having elements

Ta e )'1 (A23)

Dyy = (og Hy e

The vector ej corresponds to the jth column of the identity matrix. The matrix D
acts as a normalizing matrix such that whnn ¢j represents response in only the

¢R to first—-o. der approximaticn. From (A22),

resonant mode, then ¢R = R(¢j
h|

3
. © =1 -1
R($ - ¢) = Rl¢(D " H = -I)]. (A24)

[0}
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i:} Since the diagonal elements of the matrix Hq D are, by definition, unity, one ‘
can represent H D as °
9%
Hq D=1+A (A25)

(o)

where A is a matrix whose diagonal elements are zero. If the eigenvalues of 4
are 1iess than unity in magnitude, a series representation may be used for
(quD).l as discussed earlier. Furthermore, with adequate frequency separation
of the modes, the elements of A will be small in magnitude compared to unity.

In this case, the ipproximation
-1
(H D) =1-4 (A26)
%

is valid. Substitution of this result into (A24) leads to

R(¢ - ¢) = R[¢(I - & - I)] = R(-48) (427)

Use of (A22), (A26), and (A27) in (A21) gives

=1/2 o o)\ T
R(-$8)" P
djl/ x; |
-1/2 o2 T
4, R[4(1-2)] ijl

iz

< <1 (A28)
|z

It is clear that (A28) will be true if the elements of A are in fact small compared

to unity.

The element Akj of A is

T
By ™ %k (Hq D) e (A29)

(o]
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From (23), it is found that the jth element of D 1is
' T -1 T -1
Py = (%58 oy ¢y 8y,
b
T . -1 “T -1
= [ej Zd (iﬂj) ’R ij]
“T -1
$ | 4
- | — MY
(mo - nj) + mj(zcj w )
k| ]
When Qj = moj, then
d .
i (ZCJ) w,
D =
1] ‘: Px (A30)
b I |
The vector (HqcD)ej = Djj qu is found to be
3
= -1 AT
Dy qu Dy % (mj) P
3 b
Because Zgl(inj) is a diagonal matrix
2 ~T
i
T (Z;J) woj ORkij
* 13 1, o b ‘[(wz~mz)+1(2c‘n o ]
b Rj X, o " k 0y °j]
for @, = w_ . Then
b Oj
AR
- - °T
12,) 1-— 1 25, 4 )| % 2,
wo w fe) R‘k j
k L " k
by = T NI - 3 (a31)
2 O3 ) [T e
. m? ¥ zck w Rﬂ xj
°k ok
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It is clear from this result that to keep the magnitude of 4 , small compared to

k]
unity, it is required that
mo 2 ogk Px
2r __1 ,\—_—J—
| R ¢T P
k Rj xj
<
7N 2 7Y 172 < 1 (a32a)
Yo Y
2 k w
Yo Ok
k
It is meaningful to denote the quantity
2
Y9
2t —1
3 2
w
ok _
2 2 N 17172~ g (a32b)
w
o o
R | S
1-= * V%% 3
w o
o k

where ak could be interpreted as a normalized dynamic amplification

factos f.r the kth mode being excited at frequency w . Thus, (A32a) may be writ-

ter. in the form J
Pq
okj
<< 1 A
Ky > (A32¢c)
%
33
where Pq represents the kth element of the generalized force vector which
o
k;

excites th; structure at frequency y, . The requirement will be satisfied if

e et

Ear
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there is adequate frequency separation. Otherwise, it will be necessary to shape

the force distribution Px so as to achieve

3
P A
qo ¢T P

k

s - -:;'-‘—-—xl << 1 (A33)
P4, o B

1 B

The justification for ignoring En in the first iteration depends on

being able to write
~ _1_ -~
(1+2 (191)] (1 - z (193)]
(A34)

It is therefore required that each element e: Zn e, of Zn satisfy the relation

]

lei in ej| << 1

(A35)
From the definition of in which follows Equation (Al13),
in - z;1/2 z z;1/2
Then
e{ in ey = ei Z;llz z Z;l/z ey = e: Z;l/z e, ei Z e e§ Z;l/z ey (A36)
It is recalled that
e§ z;1/2 e = [(”ij -ah 12, woj a1/
and that
er 2, e, = 10 Enkj (437)
where En is the kjth element of the modal damping matrix { for j¥k. The largest

ki
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Without loss

b o,
k b
of generality, it may be assumed that Q = 0y < 0, Then
3 k
eT z-1/2 e = (i2r w2 )-1/2 - (2 m2 )-1 (2t u)2 1/2
jd 3 j o j o J o
b h h|
Furthermore, 2 -1
1w & (127, w ) = f /20w . (A38)
n )
° kg 1% k0%
Substitution of (A37) and (A38) into (A3€) for 9 = w, leads to
b
12¢, w2 /2 ¢
T %y : s
ke |77 2 ) 7, w
(wo -w )+ 12;k W W >3 oJ
k9 °5 %k
2 2 1/2
0)0 wO wol
| R 1 - i
H2e) == 1\ 3 2%
uok moy k {n
- S
r 2 2 2 2 2L, w
wy mo 3 oj
- -1 3
1l 3 + 2§k 2
Y Yo
k K
“,: 1/2
2r -4
j 2
w E“
; k _— LS
ley 2, ;1 = N 7 1372 e | (A39)
w w J o I
23 ° .
1 - 7 + 2ck o
(Jok L
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The use of Equation (28a) from Section 6, and the use of'(ASZb) in (A39) suggest
that (A35) may be written

T; a2t
ley 2, el = @ | << (A40)

With regard to frequency separation, Equation (A40) is seen to be more restrictive

than (A32c) because 6kJ is, for the most part, expected to be less than unity.

A tentative criterion for frequency separation can easily be derived
by writing (A40) in the form

(ékj) =B<<1

where B = B|Ejj/£kjl and B = |e£ Zn ejI' Squaring both sides of the equation and

defining w_/w_ = 8 > 1, gives
OkO

3
4;2
=6t -D? 4l
B
2
“laa-a Hetafr-%) -0
: 34
For small 4
2
4z
8221+J- 1-—_‘1-
B

2z 2z
R )
B B Ejj

If B is interpreted as the largest value permissible for any Ie: Zn e |, all k,3,
then for W, /wo s 1, it would be required that

k 73
—
Wy 2 £ 2
—= 2 1+ =1 (g—“i) : all 3,k (A41)
) B~ j3
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For example, not knowing (gkj/gjj) ahead of time, one might tentatively assume
that (gkj/sjj) < 1. Then it would be required that

2z, |
‘/1+ -—21 : all 4, k
B

For ¢ = .01, B = .2, the minimum ratio w_/w_ permitted would be
o, o

uL:-

! kS
¥
}%‘,

w
4 o
k 02
§ o 1+ 04 1.225

However, the value of B = .2 was selected somewhat arbitrarily, and will, in fact,
depend upon both the size and distribution of the scaled impedance matrix é. The
larger the dimension of i (i.e., the larger the number of modes considered), the
lower one w0uld expect the upper bound B to be. Another way to look at (A4l) is

Lt to express{e Z ey | as a function of (£, /E ), B and C

‘/ (A42)
(8

Thus, the largest absolute value of any element of the scaled impedance is seen

T -
lek Zn e I =

to be
§ . £ . 2z
. leXz e | =] X4 —1—
}' k n j max ,Ejj (82 ~ 1) [max
i r-
% The question of how small Ie Z e | must be in order to ensure convergence
H k n j'max

has not been investigated. This condition appears to be fairly restrictive for

many conceivable applications. However, it could turn out that modes which are

A% fagna w1

closely spaced in the frequency spectrum have very weak coupling in the damping

S W

matrix. If two modes are orthcgonal mainly because they represent local motion
in different parts of the same structure, one would expect corresponding values
of gkj to be small. Another example i1s given by a beam which has weak coupling

A between in~plane and out-of-plane vibration, but nearly the same frequency in

each case. The iuplications nere suggest a need for furtlier investigation.
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So far in this treatment, it has been assumed that the values of £
are deterministic. In practice, this will not be the case since there will always
be some element of uncertainty. A statistical treatment of the problem has not
yet been attempted. One would expect that the implication of randomness in £
might have an impact on the problem of convergence. If so, the requirements
involving exciter placement, frequency separation, amount of damping, and measure-
ment accuracy will be interrelated. A systematic accounting of randomness may
be of value at some future time, after other refinements have been made, and more

experience with the method is acquired.





