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1.0 Introduction and Summary 

Reliable evaluation of the dynamic characteristics of large structurd 

systems such as the Space Shuttle vehicle will require combined analytica,, and 

experimental efforts. Because of its size and physical configuration, full-scale 

vibration teating of the entire vehicle may be impractical. Testing 

would then be limited to ieolated subatructuree of the syatem ouch as the 

Orbiter, Tank and Booster. Analytical means are being sought to utilize data 

from sub-structure tests to predict characteristics of the connected assembly. 

Modal coupling or synthesis has been used in the past to predict undamped dynamic 

characteristics including vibration modes and frequencies. While the Shuttle 

will require special consideration In the application of modal synthesis because 

of its unusual configuration, existing methods have been developed to a point 

where the capability is within the state of the art. 

This is not true in the case of damping, however. A generally applicable 

method for predicting the damping in a structural system on the basis of substruc- 

ture damping has not yet been demonstratad. Yet, a reasonably accurate assessment 

of structural damping will be necessary in order to properly evaluate conditions 

of resonant response to either sinusoidal or random excitation. If reliable 

predictloas are to be made without recourse to testing the entire vehicle, this 

capability will be essential. 

Reported herein is the development of a method for damping synthesis. 

The method has been applied successfully to .cal structures as well as analytical 

models. It depends on thc ability to determine an appropriate modal damping 

matrix for each scbstructure. Previous attempts at using this approach k r e  

failed because of invalid restrictions placed on the nature of substructure damp- 

ing. In the past, modal damping t~atrices have been assumed diagonal for lack of 

being able to determine the c~upling terms which are significent in the general 

case of nonproportional damping. This problem has been overcome by formulating 

the damped equations of motion es  a linear perturbation of the undamped equations 

for light structural damping. Damped modes are defined as complex vectors 

derived from the complex frequency response vectors of each substructure and are 

obtained directly from sinusoidal vibration tests. The damped modes are used 

to compute first order approximations to the modal damping matrices. The pertur- 

bation approach a20ids ever having to solve a complex eigenvalue problem. This 

is a useful fact which a number of investigators have failed to recognize. 



2. Background 

A variety of dissipative mechanieme contribute to the overall damp4.- - 

properties of a complex structure. They may include material damping cau. ?a by 

microecopic slip between particles within the material, thermal loss due rc, m01.e~- 

ular abrasion and, in most casee, structural hystereeie. A t  the macroecopic level, 

10683~. may arise from relative slip in mechanical jointa, from acoustic radiarlnn, 

and from viscous losses due to liquid slashing or vibration of viscoelaeeic 

materials. Detailed investigations of damping in simple structures have revealed * 
various nonlinear damping laws [1,2] . Some lead to linear equations of motion, 

while others do not. However, specific nonlinear phenomena are likely to be 

obscured when appearing together in a complex structure. One may find it difficult 

to define a particular nonlinear damping law for general application. Although 

Chang [ 3 ]  has concluded that a simple nonlinear damping law may be appropriate 

for some complex structures, based on his interpretation of test data from Saturn- 

type vehicles and their scale models, other interpretations of the same data 

indicate linear dmapin~ with respect to amplitude for many of the modes considered 

individually. Chang's interpretation ignores differences in damping among the 

various modes, with no clear physical justification. 

Since modal synthesis presupposes linearity, it is consistent to treat 

damping in the same manner. In viev of the computational advantages offered by 

linearization and the lack of much strong physical evidence supporting the 

selection of a particular nonlinear model, the tentative assumtion of equivalent 

linear damping appears to be just if led. 

Recent attempts have been made to predict the modal damping properties 

of structural systems based on the modal damping of their respective substructures 

when damping is known to be linear. Collins, Hart, Hurty, and Kennedy [4] showed 

that the uncoupled modal damping properties of substructures do not constitute 

sufficient information to enable one to predict dampiny in the system modes using 

the stand at^ matrix transformation approach. Kana ard Huzar [ S ]  confirmed thia 

finding and went on to develop a completely different approach based on total 

energy dissipation rather than energy dissipation associated with any particular 

mode. They adopted a representation of structural darn pin^ similar to Chang's, 

------------ 
* 
Nunbers in square brackets d.*:lgnate references at end of text. 
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p1.otting d i s s i p a t i v e  energy p e r  c y c l e  ve r sus  k i n e t i c  energy. These q u a n t i t i e s ,  

ob t r  tned exper imenta l ly  a t  each of t h e  s t r u c  t u r e ' s  resonant  f r equenc ies  w i t h i n  a 

c e r t a i n  range,  d e f i n e  p o i n t s  through which smooth curves  a r e  drawn. The curves  

a r e  used t o  d e f i n e  the  o v e r a l l  d i s s i p a t i v e  p r o p e r t i e s  of t h e  s t r u c t u r e  through a 

continuous frequency spectrum. A f t e r  determining t h e  coupled system modes, t h e  

k i n e t i c  energy of each component is determined. Going back t o  t h e  energy p ? o t s ,  

one may p i c k  o f f  appropr ia te  l e v e l s  of d i s s i p a t i v e  energy f o r  each component and 

sum them t o  g e t  t h e  t o t a l  d i s s i p a t i v e  energy of the  system. From t h i s ,  damping 

is found f o r  each of t h e  system modes. While the  a u t h o r s  demonstrate s u c c e s s f u l  

a p p l i c a t i o n  of the  method f o r  the  s t r u c t u r a l  models employed, c e r t a i n  p i t f a l l s  s z e  

noted.  A s i g n i f i c a n t  one has  t o  do wi th  how t h e  p o i n t s  f a l l  on the  energy p l o t s .  

I f  they do not  a l i g n  themselves reasonably w e l l  a long some smooth curve,  obvious 

d i f f i c u l t i e s  a r i s e .  This cou1.d very  w e l l  be the  c a s e  when the  amomt of dampiag 

v a r i e s  g r e a t l y  from mode t o  mode, p a r t i c u l a r l y  i f  t h e  v a r i a b i l i t y  is  i r r e g u l a r .  

I n  t h i s  case ,  t h e  au thors  suggest  the  p o s s i b l e  grouping of p o i n t s  i n t o  d i f f e r e n t  

c l a s s e s  of modes i n  the  hope t h a t  smooth curves  may s t i l l  be drawn. The chance 

f o r  ambiguity he re  ts not d i f f i c u l t  t o  imagine, and f u r t h e r  s tudy w i l l  be r equ i red  

be fo re  t h e  method is accep tab le  f o r  genera l  use.  I , ?  
On the  o t h e r  hand, the  matr ix  approach is no t  a f f e c t e d  by nonuniform 

i n  t h e  d i s t r i b u t i o n  of damping. I n  a d d i t i o n ,  i t  l e n d s  i t s e l f  t o  a form commor 

used by a n a l y s t s .  It is  c l e a r  ( a t  l e a s t  i n  t h e  c a s e  of l i n e a r  v iscous  damping) 

t h a t  f a i l u r e  t o  p r e d i c t  damping i n  the  system modes on the  b a s i s  of component 

modal damping is a t t r i b u t a b l e  t o  the  f a c t  t h a t  the  a f f -d iagona l  elements of 

t h e  modal damping matr ix  a r e  neg lec ted-  Haseelman (61 showed t h a t  t h e  d iaponal  
elements of the  modal damping mat r ix  correspond t o  t h e  modal damping c o n s t a n t s  

f o r  each mode. Furthermore, i t  is shown t h a t ,  i n  genera l ,  t h e  off-diago,.al 

elements w i l l  be of t h e  same o r d e r  of magnitude a s  t h e  d iagonal  elements.  They 

may t h e r e f o r e  not  be neglected i n  t ransformat ions  involving t h e  component modal 

damping mat r i ces .  The problem is t o  somehow determine these  elements.  



3. Objectives and Scope 

This investi~ation ie part of a broader etudy directed toward tire devel- 

opment of modal coupling procedures for the Space Shuttle vehicle. The principel 

objectives have been to formulate analytical procedure3 and then verify them using 

experimental data. TRW and the Grumman Aerospace Corporation (GAC) have been 

jointly responsible for the fomulation of procedures. Experimental verification 

hae been made by TRW and GAC on the basic, 3f test data furnished by the NASA 

Latlgley Research Center (LaRC). SAC has performed that part of the study which 

involvee synthesis of system modee and frequencies, while TRW has developed and 

implemented a damping synthesis technique, ~ h i c h  is discuesed in this report. 

The ecope of the present work fits within the framework of conventional 

modal synthesis methods. Modal damping matrices derived at the substructure level 

are operated on by the ss.me transformations used to couple and diagonalize the 

undamped equations of motion at thd system level. The main focus is placzd on 

obtaining the appropriate modal damping matrices. 

Some basic assumptions are made: that the damping forces in the struc- 

ture are small compared to either the elastic forces or inertial forces, and that 

they vary linearily with respect to the amplitude of the motion. It has further- 

more been assumed in the preseqt development that the damping in the structure may 

be represented by constant viscous damping. The Voigt model is used (as opposed 

to the Maxwell model, for example). Thle is clearly an appropriate first step to 

take in the investigation of a linearized matrix approach. 

To relate this study to other recent work done in the same area, it is 

recalled that both [ 4 ]  and (51 reported attempts to uee the standard matrix coup- 

ling transfarmations as a means of predicting modal damping at the system level 

based on measurements of uncoupled modal damping at the substructure level. That 

is, diagonal modal damping matrices were d-eumed. Reference [4] concluded that, 

in general, more information is reqdired to enable the prediction of damping in 

this way. Reference [ 5 ]  concluded romewhat to the contrary that s different 

method should be souqht, and proceeded :o develop an energy approach instead. 

The present work begine with the ciinclusions of Reference (41  and movcc in the 

direction of identifying and obtaining the additional information required by 

the matrix method. The basic problem can be fornulafed so that within the scope 

of the linearized approach, information is provided by the off-diagonal terms cf 

the substructure modal damping matrices and a description of any danping which 

may take place between substructural interfaces. 
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Corresponding t o  the  major ob jec t ives  of t h e  e f f o r t ,  t h i s  repor t  is 

organized i n t o  th ree  par ts :  A, B, and C. Pa r t  A includes the  formulation of 

methods. Par t  B includes t he  presen ta t ion  and discussion of r e s u l t s  obtained by 

applying the  theory t o  both i dea l  and p r a c t i c a l  problems. Application of t h e  

theory t o  i dea l  problems which s a t i s f y  the  inherent  assumptions se rves  t o  ve r i fy  

the t heo re t i ca l  development and provide addi t iona l  i n s igh t  i n t o  p r a c t i c a l  appli-  

cation. A s  such, it is an e s s e n t i a l  l i n k  between the  t heo re t i ca l  work which tends 

t o  become involved, and the r e s u l t s  of p r a c t i c a l  a p p l i c a t i o ~  which embody a number 

af uncer ta in t ies  associated with da ta  acqui2i t ion and reduction. 

While every attempt has been made t o  minimize the  inf luence of these 

uncer ta in t ies ,  a systematic treatment of t h e i r  inf luence on t h e  fi-ial r e s u l t s  was 

us t  within the  scope of t h i s  study. Vibration tests were conducted wi th  standard 

equipment, and data  were recorded on analog tape. Analog da ta  reduction proce- 

dures were a l so  used. Manual t r ans fe r  of the  analog da t a  t o  d i g i t a l  form on 

punched cards was employed- Although the analog da t a  were v i sua l ly  displayed i n  

d i p i t a l  form, some real-time va r i a t i on  did occur so  t h a t  the person recordiag t he  

data  was required, i n  some cases,  t o  mentally average the results before  wr i t i ng  

them down. 

The need f o r  a f i n a l  e . d u a t i o a  of the  study, iacluding a discussion 

of the current  app ' icab i l i ty  of methods, suggested the addi t ion  of Pa r t  C. Some 

general comments per ta in ing  t o  the  matr ix  method and a comparison with the  energy 

method of Kana and Huzar a r e h a d e .  Conclusions and recommendations a r e  contained 

therein.  



4. Basic Equations for Modal Synthesis 

There are various coupling procedures available for modal synthesis 

depending on the type of substructure modes used. From the standpoint of damping 

synthesis, the basic equations are the same. Without going into detail, the gen- 

eral procedure may be outlined rather simply. 

It is convenient to begin writing equations for each substructure in terms 

of a discrete coordinate system in which the displacement vector will he denoted 
i as x . These coordinates may be thought of as resulting from some finite element 

discretizatiol of the substructure, although it is recognized that the equations 

in this form need not be defined when basing an analysis on vibration test data. 

However, a mass matrix corresponding to such a coordinate system will be required 

so that conceptually thLs step is necessary. The equations may be written 

i i i i 
The force vector f corresponds to displacements xi, while u , p , and K are 

square matrices containing, respectively, the mass, damping, and stiffness coef- 
i ficients of the equations. In the case of free vibration , f will represent 

only the interaction forces between adjacent components. Similar sets of equa- 

tions may be written for each of N components and arrayed in a diagonal pattern 

such that a complete set of equations representing the complete structure becomes 

The matrices p and K are of the same form as v .  
There are three transformations involved in going from (2) to a reduced 

set of equations in system modal ~oordinates. The first transformation, denoted 

by +R, involves the hypothetical undamped substructure lodes. The subscript R is 

used tc signify that these modes are real. The transformation may be written 



where 

'R 

i 
and $R is a rectangular matrix whose columns define the characteristic deformation 

shapes of the substructure. They .my include static as well as dynamic shapes. 

The second transformation is a rectangular matrix denoted by 0, and is 

used to introduce comp~tibility constraints at substructural interfaces. The 

final transformation.9 involves the hypothetical undamped modes of the system 
R' 

where each column of @ is a system eigenvector in the coupled component mode 
R 

coordinates. These two transformations relate the p coordinate vector to a new 

coordinate vector '1, whose elements correspond to the system eigenvectors @ 
R' 

Thus 

It is convenient both conceptionally and notationally to combine fl and @ into R 
the single transformation matrix T. Transformation of (2) to the q coordinate 

system gives equations of the form 

when QR is normalized to give unit nodal mass. In other words, 

where I is an identity matrix, A is a diagonal mctrix of eystem eigenvalues 

(frequencieb squared), and C is, in general, a fully populated modal damping 

matrix at the system level. 
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The nonhomogeneous form of Equation (5) is used to solve the forced 

response problem. The off-diagonal elements of C are usually neglected while the 

diagonal elements, according to [ 6 ]  are given by 

being the critical damping ratio for the jth mode. Without full-scale testing 
' 5 
of the composite structure, cannot be obtained directly. The problem then is 

J 
to find some other means of determining C JJ' 

In Equation (6b), it is convenient to let (:P(~ = c where 

i' The scalar C may then be expressed in the form and c " $R ? @R* 5 1 

where T denotes the jth column of T and 
1 

i corresponding to the partitioning of c. The matrices T are given by synthesis 
i 

of the undamped equations. It remains then to @valuate c . 
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5 .  Forms of the Subetructure Modal Damping Matrix 

Identification of substructure damping properties will depend on the 

type of substructure modes used in the synthesis. The mode types are governed 

by the boundary conditions imposed. Interface boundaries may be free, fixed, 

or reflect some intermediate degree of fixity by (by application of mass loading, 

for example). The case involving free-interface boundary conditions is the slm- 

plest, both conceptually and from an experimental viewpoint. In this case, the 
i modal matrix +R will contain rigid body and elastic modes. For free vibration 

i 
modes, +g may be partitioned to distinguish between the rigid body and elastic 

(normal) modes. 

Relative to the modal coordinates pi, ci may be partitioned as 

I k r  the abse~ce of external damping, . 

The submatrix ciNN may be determined by the method discussed in 161. After 

obtaining ill the ci matrices, i - 1 to N, modal damping for the coupled system 
can be determined by Equation (8). For mass-loaded Interface modes, the form of 

cf is . l s r  given by (10). 

When fixed-interface substructure modes are used, the determination of 

c- will be more difficult. In this case, may include three different types '+ R 
of modes--rigid body, constraint, and normal modes. The constraint modes appear 

onLy for reflundantly interconnected substructures and are introduced so that the 

motion ' ~ f  interface boundary points is completely defined. These are usually 
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chosen to be static deformation shapes which are obtained by displacing each 

boundary coordinate sequentially while holding all others fixed and applying 

no loading whatsoever at points other than attachment points. Under theee condi- 

tions, (: may be partitioned in the manner 
I 

9 

(11) 

where (iu is the portion of rigid body mode. corresponding to boundary points, 

(F is the complementary part corresponding to internal points, I is an identity 
t n 

matrix, 4 l L  defines the static deformation shapes of the substructure internal to R 
its interface boundary. and 4: represents the fixed boundary normal modes. In 

evaluating the matrin product 

in this case, pi may be partitioned into submatrices corresponding to boundary 

and internal coordinates 

The symmetric matrix c' is given 

where, temporarily dropping the superscript i and the subscript R for notational 

convenience, 

B I C  c T I R  c T I I C  
c C c = P B B + P  4 + 4  P + 4  P 4 
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Only cNN given by (13f) may be obtained directly from fined boundary vibration 

tests. In general, cRR, cRC, cRN, cCC, and cCN will not be completely determined. 

There are various ways of assigning values to these submatrices. It is 

first recognized that a representation of pl' may be derived by the following 

method. By definition, 

Given that 

it follows that 

In particular, (14) will be satisfted if 

It is to be emphasized that DII is not determined uniquely by this method. In 

fact, 6'' may not even resemble Nevertheless, 6 I I 

will satisfy 
m 

and one may determine values for the submatrices (13a) through (13e) by neglecting 

all but thc last tern in each equation and substituting plI - ;I1. This is equiv- 

alent fo assuming that pBB and pB1 are both null. If this assumption ic not 

accept.able, then additional tests will presumably hcve to be made. 

This line of reasoning was not pursued much further because of practical 

difficulties associated with obtaining the boundary modes themselves. These are 

discussed more fully in Reference [ 7 ] .  From the standpoint of damping, however, 

it is apparent ~t the outset that both the free-interface mode method and the 

fixed-interface mode method suffer from the same baeic limitation: the repre- 

sentation of damping near interfacial boundaries will tend to be poor. In the 

free-interface mode case, the tendency is caused by the fact that convergence of 

system modes is found to be poor, with laore substructure modes required to attain 

a given degree of accurac*.. This is usually explained by the failure of lover 



frequency mode8 to adequately "work" the local structde near interface boundaries. 

If strain energy in thir region is not properly accounted for, it is likely that 

the dissipative energy may not be either. 

In some respects, the problem associated with using fixed interface 

modes for damping eynthesis is similar. Displacements near interface boundaries 

are usually defined by static displacement shapes for which damping information 

is not mailable. So again, the basic problem is an inadequate representation 

of the st ;ucturel s dissipative properties near substructural interface boundar- 

ies. 

On the other hand, the use of mase-loaded interface modes can poten- 

tially overcome this problem. Mass loading causes the structure to be "worked" 

more in these local areas. It is felt that the dissipative properties of the 

structure can therefore by represented more fully. Selection of the proper m s s  

loading will be important. This topic is also discussed in (71. Since the 

damping matrices in this case are of the same form as in the rree-interface mode 

case, their evaluation is straightforward. 



6. Use of Damped Modes to Compute the Mod81 Damping Matrix 

In searching for a way to more fully describe the damping properties 

of a structure, two things become apparent. The first is that moat structures 

tend to be lightly damped, therefore damped rsodas closely raaarsble the hypothe- 
tical undamped modes except for small differences in pharing. The second is 

that phase separation techniques presently emplcyed in vibration testing are 

potentially capable of yielding theae ~ 2 1  ~ h a a e  &!ffey.nces qu~qtifqt~yaly. 
. . $  

This phase information can 'be used to derive a more complete ;et of etructudl 

damping information than simple decay tests provide. 

Intuitively, one would expect that if the damping i3 a structure could 

be gradually reduced to zero, the damped modes wc " approach the undamped modes 

in some continuous fashion. Thus, a damped mode 7...fht be representable by a lin- 

ear perturbation of the corresponding undamped mode. This thinking led to the 

formulation of the perturbation anai12is contained in Refzrence 161. The ealient 

features of the derivation are inciudcd here using somewhat different notation to 

proclde continuity in the overall formulation. 

The basic equations of motion for a substructure are first considered 

at the discrete coordinate level, as given by (1). Transformation from the dis- 

crete coordinates xi to distributed coordinates pi uaing x = $:pi results in 

i-i + =iji + ,'ip r # = fi 
P P 

where 

The modal damping matrix ci may assume different form, ae suggested by (10) md 

(12). The main objective is to determine the submatrix ciNN which appears ir! 

both equations. For convenience, (10) and (12) may be put in the same form by 

writing both (9) and (11) as 



With this sort of partitioning, (16) become8 

Then one may write 

where, in general, 

Now it is recognized that when 

by proper normalization of (F, that (19a) is of the form 

where wL is a diagonal matrix of undamped frequencies squared, and E may be 
0 

viewed as the modal damping matrix. 

From this point on, it will simplify the notation considerably to drop 

the superscript notation used to distinguish different substructures and differ- 

ent classes of modes for a given substructure. It will follow, for example, that 
1 i 

x - x, v - L. and (F = (R. With the simplifie.1 notation, the homogeneous 

form of Equation (1) becomes .. 0 

VX + OX + KX ' 0 (22) 

These second order equations may be written In first order form leading to the 

pigenproblem 

where A is a complex eigenvalue of the form 
1 
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and 4 is that part of the complex eigenvector which cor~arponds to the displace- 
d 

ment vector x. The tern -a 
j = CjWoj 

may be interpreted as the decay rate associ- 

ated with mode j, while w = w 4- is the damped natural frequency of that J oj 1-zj 

mode. The vector 4 will henceforth be referred to as the jth damped mode. It 
j - - 

may be related to the hypothetical u n d m e d  mode OR by the equation 
j 

where 64R and are considered to be small compared to 4 . For lightly 
J j Rt 

damped structures governed by EquaLton (22), the eigenvec+ors will occur in con- 

jugate pairs. The resulting matrix of eigenvectors will transform (23) to diag- 

onal form (assuming that p, p ,  and K are symmetric) so that, in particular, 

where the asterisk denotes the complex conjugate. Three separate equations may 

be derived from (26) 

T *  T * *  T * 
4j~"+ 4j ' 4 k A k +  Aj4j P 4 k =  0 : all j, k 

Using Equations (24). (25). and (20). and the perturbation assumptions 

one may derive from (27a) the relationships 



From (28b) and (27b), an  a l t e r n a t i v e  expre r r ion  f o r  f may be found. 
j k 

F i n a l l y ,  from ( 2 7 ~ ) .  one may d e r i v e  

a r e l a t i o n s h i p  which w i l l  be needed l a t e r .  

It  w i l l  be of i n t e r e s t  to examine more c l o s e l y  t h e  s t r u c t u r e  of 

Equation (29),  and compare i t  t o  that of Equation (28a). It has  been pos tu la ted  

t h a t  F and 6 a r e  of t h e  same order  of magnitude ( a t  hart when wO > wok). 
j k j j 

This implieo that t h e  elements of should be  of t h e  same order  j 

a s  6 . Since 1 < e 14R 1 ;, t h e  
j 

' phase  a n g l e s  a r e o e i a t e d  wi th  elements 

of t h e  complex vec td r  4, w i l l  be of t h e  o r d e r  6,. This r e l a t i o n s h i p  
.I .I 

w i l l  govern the  accuracy requirements on phase ang le  d a t a ,  

The important conclus ions  t o  be drawn i n  t h i s  s e c t i o n  a r e  t h a t  t h e  

diagonal  elements of t h e  modal damping mat r ix  6 correspond t o  t h e  uncoupled 

modal damping cons tan t s  f o r  each mode, and t h a t  t h e  off -diagonal  elements can 

be determined provided t h a t  some way can be  found t o  i d e n t i f y  b o I  . 
j 
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7. Uae of Resonant Rerponse Data to Identify Danwd Modes 

The method for constructing a nondiagonal damping matrix outlined in 

Section 6 requires that the davped modes of the structure be known. Theae modes 

are complex, having both real and imaginary parts, and occur in conjusate pairs 

for lightly-damped structures. In a practical sense, it is not likely that these 

modee will be directly measurable from vibration tests because it Is difficult to 

excite sufficiently "pure" modee. Off-resonant modes may contribute signifi- 

cantly to the total accela. "Lion response, particularly in thc , itxident com- 

ponent defined to be in phase with the forcing function. The . :.:ature compon- 

ent leads the force by 90' aqd is normally used to define the leal undamped 

modes. The fact that off-resonant mode rerponse tends to be relatively small 

and out-of-phase with that of the resonant mode has provided the basis for phase 

separation techniques now used to more accurately define the undamped modes; how- 

ever, contamination of the coincident response by off-resonant mcde participation 

impoues the need for modal separation if the damped moder are to be determined at 

all. An iterative procedure has been developed and demonstrated. For damping 

levels on the order of lX, convergence has been achieved in only one or two 

iterations although the process may be cycled any number of ~ i m e s  should con- 

vergence proceed more slowly. 

The basic technique to be used for mode separation requires, in addition 

to resonant response frequencies and damping rates, a knowledge of the force 

input to the structure. Assuming that the quadrature component of each reson- 

ant response is a reasonably accurate representation of the undamped mode associ- 

ated with that frequency, the extent of off-resonant mode participation can be 

determined to good approximation and subtracted from the total response, leaving 

aT.l improved representation of the resonant mode. This procedure was successfully 

applied by Stahle (81 a decade ago to improve upon the real undamped modes of a 

structure. The present work extends that method for application to the damped 

modes whfch are complex. The generalization is valid provided that the struc- 

ture is lightly damped. Specific validity criteria which involve quantitative 

relationships among the distribution of the forcing function, the amount of 

damping, trequency separation of the modes, and measuremer.; accuracy are deri.rred 

in the ~ppendix. In keeping with the simplif led notation, the trquations which 

follow may be considered to apply to a substructure even through the supersciipts 

are dropped for notational convenience. 



It 18 arrumed t h a t  t h e  n equat ionr  of motion f o r  a r e a l  r t r u c t u r e  

(rubrtruct .- lrr)  may be w r i t t e n  i n  t h e  form 

p)t + + KX = f ( t )  (31) 

I n  o r d e r  t o  make t h i s  development a p p l i c a b l e  t o  f r e e - f r e e  s t r u c t u , e e  a s  w e l l  as 

conr t ra ined  s t r u c t u r e s ,  i t  w i l l  be a r ~ u m e d  t h a t  t h e  displacement v e c t o r  x d e f i n e s  

e l a s t i c  deformations r e l a t i v e  t o  r i g i d  body motion. I n  t h e  f r e e - f r e e  c a w ,   his 

impl ies  t h a t  t o  u t i l i z e  t o t a l  r e rponre  meeeurentents, r i g i d  body reeponse must 

f i r r t  be  computed independently and r u b t r a c t t d  from t h e  t o t a l  reeponse. Th i r  i r  
d i r c u r s e d  f u r t h a r  i n  S e c t i o n  9.5 

Under these  cond i t ionr  , t h e  equat ions  of mrEion a s  give? by (31) may 

be transformed according t o  

x ' O R q  (32) 

where 4 is  a modal matr-x con ta in ing  undamped e l a s t i c  modee. Then (31) becomea R 

The f o r c e  vec to r  Z ( t )  w i l l  i nc lude  any f o r c e s  which couple  t h e  e l a s t i c  modee 

t o  o t h z r  modee, a s  i n d i c a t e d  by (19b). This  equat ion was given e a r l i e r  a s  in -  

d ica ted .  It i e  assumed t h a t ,  i n  g e n e r a l ,  a d i f f e r e n t  f o r c e  vec to r  ? ( t )  w i l l  be 

genera ted t o  e x c i t e  a resonant  response  a t  each n a t u r a l  frequency a , ,  and conse- - 
quen t ly ,  t h a t  

The complex frequency rczponso vector corresponding t o  Sl, is then given by 

I n i t i a l l y ,  it may be assumed ( a s  shown i n  t h e  Appendix) t h a t  

where d is t h e  Kronecker d e l t a ,  and t h a t  + i s  equal  t o  t h e  normalized quadra- 
j k R 

t u r e  component of a c c e l e r a t i o n  r e ~ p o n s e .  Thus, a v e c t o r  Hqj may be evaluated f o r  

each of t h e  reaona.nt response condi t ione and transformed back t o  t h e  x coord ina te  

system by 
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Combining these equations i n  a s ing l e  matrix equation gives  

where H is assumed t o  be a nonsingular square matrix.  Then 
9 

provides the f i r s t  estimate of t he  undamped modes $R. The vector Hx is obtained 
j 

from t o t a l  acce le rs t ion  response data  a s  ahown i n  t he  Appendix. In  t h i s  way, an 

improved version of $R is obtained. 

I n  order t o  der ive an estimate of 64 Equation (31) is wr i t t en  i n  t he  
I ' 

f i r s t  c -.der form 

Solution of t he  corresponding f i r s t  order  eigen-problem leads  t o  the  t rans-  

formation 

The freqvency r-sponse vector  i n  the  z coordinate system is then given by 

where A is a diagonal matrix whose elenients a r e  given by (30). I f  it  may be 

i n i t i a l l y  assumed tha t  - 

and tha t  4 is given by t h e  r e a l  par t  or the  resonant response matrix, then a -lec- 

t o r  Hz may be evaluated For each reaonant frequency and transformed back t o  the  
j 

x coordinate svstem by 

Combining these equations i n t o  a s ing l e  matrix equation gives  
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Alternatively, recognizing that $ and $* may be expressed in terms of 

$R + 64tR $1 and one may write 

where % and HI are both complex square matrices. Having already found bR from 

(35). 6$1 is given by the equation 

With (R and 6$1 computed, the first iteration is complc.:~*. To begin 

the second iteration, these values are used in (29) and (30) to upbate the 

matrices F, and A, respectively. Then Equations (34) through (38) may be recycled 

to  complete the second iteration. Succeeding iterations follow in the same way. 

The entire procedure may be summarized by the following: 

Initial values 

Define the damped modes initially by the quadrature acceleration response 

QUAD (He.). That is, 
X 

T 
(0) bj = QUAD (H.. ) / [QUAD (Hz ) p QUAD (H- ) I 112 

Xj J Xj 

These vectors are defined to be real, and are of the form + the imaginary 
J = (R, ' 

parts 6bI z 0. 
j 

Evaluate matrices E and A 

where 6 is the Kronecker delta 
lik 

.- ---- 
a m .  I 

1 I I I I 
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Compute the real and imaginary parts of the damped modal matrix g 

(4) 4, - Hx Hq ; (in i n i t i a l  s tep  4R = 4,) 
J 

Steps (1) through (7) may be repeated any number of times. The procedure should 

converge if the proper conditions are met. These conditions are derived 

i n  the Appendix. 

' Note that P is used i n  Step (3 ) ,  while Px (without the bar) is used in  

Step ( 5 ) .  Xj j 
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PART B: VERIFICATION 



8. Analytical Verification 
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A variety of examples have been worked in the process of formulat?. g 

equations and coding them for numerical computation. They were used as check 

cases to debug computer codes and to facilitate the understanding of unfamiliar 

concepts. As such, they have been of considerable value in relating the theory 

to practical application. Some of the examples are incl*~ded in this section. 

The first set of examples LI be discussed in Section 8.1 was selected 

by GAC to demonstrate the relative merits of couplin: procedures involv!.ne sub- 

rtructure modes with different kinds of boundary cnnc?ittnns. The purpose of that 

hvestigation was to provide a basis for selecting a coupling procedure best 

suited for application to the Shuttle. Since the matrix method for damping synthe- 

sis relies on the dame transformations as the synthesis of undamped equations, it 

was a simple matter for GAC to punch them on cards and transmit them to TRW. This 

avoided duplication of effort and provided a consistent set of examples by which 

to evaluate the convergence of modes and frequencies as well as modal damping in 

representative Shuttle configurations. 

In Section 8.2, a four-degree of freedom lumped parameter model is intro- 

duced to demonstrate the computation of a modal damping rcatrix, In this example, 

the damped modes are first computed by a complex eigenvalue routine. The modal 

damping matrix is then computed without using the original damping matrix, using 

only the mass matrix, the frequencies, and the damped modes. For cornparisan, the 

standard computation is made using the known damping matrix. The resulting matrix 

is nondiagonal in form, confirming that the damping is nmproportional. 

The same example is used in Section 8.3 to demonstrate how the camped 

modee can be deduced from resonant response information. In this case, it is 

assumed that neither the original damping matrix nor the damped modes are known, 

only response at each of the system's resonances. The response includes contri- 

butions from all the modes in general, but mainly from those which are adjacent 

in the frequency spectrum. It is shown that the off-resonant mode response can 

be removed, leaving just the damped modes themselves. Computationo involve an 

iterative procedwe which alteimtely computes the damped modes and the modal 

damping matrix until both converge. 



e 8.1 A Numerical Comparison of Coupling Procedure8 

A comparative evaluation of the coupling procedures referred to in 

Section 5 has been made on the basis of math model data furnished by GAC [ 7 ] .  

These data reflect the mass and stiffness properties of realistic Shuttle con- 

figurations. Damping parameters for these models have been assumed arbitrarily. 

The main objective has been to define simple nonproportional damping matrices 

for each substructure corresponding to its respective discrete coordinate system. 

Modal damping matrices are then derived from the substructure mode matrices pro- 

vided by GAC. These are treated in the same way that experimentally derLved 

matrices will be treated in subsequent work. 

The Shuttle configuration adopted in this study involves two substruc- 

tures, orbiter and tank, which are connected in a parallel arrangement. Schematic 

drawings representing each substructure are shown in Figure 1. The coupled con- 

figuration is shown in Figure 2. The models are planar, having three coordinates 

defined for each nodal point: two translations, and one rotation. No mass is 

associated with any rotational coordinate. Thus, a total of 14 component modes 

are obtained for the orbiter and 22 for the tank. Pinned connections are assumed 

at the attachment points. With six constraint equations acting to coupie the two 

vehicles, the total nmber of degrees of freedom for the coupled vehicle totals 30. 

Eigenproblem solutions including all 30 degrees of freedom are used for reference. 

Truncated mode solutions involving 16 and ten degrees of freedom are obtained to 

evaluate convergence. The former is understood to include 11 uncoupled component 

modes for each substructure, wtdle the latter includes eight, the lowest in each case. 

Numerical computations for four different coupling configurations have 

been made. These configurations are: 

Case 1. A free-free orblter coupled to a free-free tank. 

Case 2. An orbiter fixed at its junction points coupled to a 

f ree-f ree tank. 

Case 3. A free-free orbiter coupled to tank fixed at its base 

whose junction points are free. 

Lase 4. An orbiter fixed at its junction points coupled to a 

tank fixed at its base whose junction points are free. 
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Cases 1 and 2 each include two subcases designated by a and b. Cases la and 2a 

involve the use of free-interface eubstructure modes when the substructure is 

considered to be free-free. Casee lb and 2b correspond to substructure modes 

reflecting mass loading at the junction points. 

Computations are executed in the following manner. 

1. Preset C = 0, all j. 
j j 

i i1 i i 2. Read T and evalute C C + T c T for all j. 
1j jj j j 

i i T i i  
3. Read p i  and evaluate c = (R p (R. 

i 
4. Read OR . 

The procedure is recycled until all (both) of the substructures are taken into 
i 

account. Matrices (i and T were furnished by GAC. 
R i 

Several different sets of P damping matrices were assumed, the simplest 

corresponding to externally-grounded lateral dashpots, as shown in Figure 3. 

Althoujh this damping distrihtion gave diagonal Pi matrices, the corresponding c i 

matrices were not diagonal. In order to specify internal damping, the damping 

matrices must involve rotational as well as translational coordinates since coupled 

modes may involve rigid body rotatims of the two substructures. Such damping 

matrices may be derived in the same way as the stiffness matrices. Although this 

form of damping is more representative, it is not deemed essential for evaluation 

of coupling procedures, and time constraints were prohibitive. Therefore, only 

external damping was assumed. This permitted all rotational displacements to be 

deleted from the substructure modal matrices 4~~ thereby reducing somewhat the R' 
computational effort. 

The nominally chosen distribution of damping is illustrated by Figure 3 

where dashpots are shown connecting each substructure to ground. The dashpot con- 

stants were assigned identical values of 300 lb-eeclin. Tabulated results from 

the damping byntheais involving C a ~ e s  one through four are given in Tables one 

through four, respectively. Damping constants C ai-e given for seven elastic 
j j 

modes in each case. 
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Table 1 - Damin6 Constants C oy Modal Synthesis for Case 1 ; j 
a .  No Maee Loading i n  Free-Free Modee 

Mode No. 10 d.o.5,  16 d . 0 . f .  30 d . 0 . f .  

b. Mass-Loaded Junction Points in  Free-Free Modes 

Table 2 - Damping Constants C,, BY Modal Synthesis for Case 2 
3 .J 

a .  No Mass Load.ing in  Free-Free Modes 



18058-6001-RU-00 
Page 31 

b. Marr-Loaded Junction Pointr in Free-Free Modes 

Mode NO. 10 d00.f. 1 6  d.0.f. 30 d.0.f. 

1 6.087 E-3 6.843 E-3 6.843 E-3 

2 8.096 E-3 7.641 E-3 7.640 E-3 

3 1.175 E-3 2.632 E-3 2.630 E-3 

4 1.276 E-4 1.542 E-3 1.539 E-3 

5 1.149 E-4 1.302 R-6 2.284 E-6 

6 4.475 E-6 2.814 E-4 4.029 E-4 

7 2.365 E-7 1.167 E-3 6.103 E-4 

Table 3 - Damping Constants C BY Modal Synthesis for Case 3 
j j 

3 
A 8.943 E-3 6.075 E-4 6.663 E-3 

2 2.033 E-4 9.526 E-3 7.592 E-3 

3 L. 284 E-6 7.237 E-4 1.668 E-3 

Table 4 - Damping Constants C By Modal Synthesis for Case 4 ; j 



18058-6001-RU-00 
Page 32 

It may be obrerved from there rerulte that all but Caeca lb and 2b 

yield very poor rerults for a11 rnoder. In Care lb, none of the modal damping 
L d3 conrtantr have converged in the 10-d-0.f. appmxim6tion, while four of the 13 

elastic mode damping constante appear to have converged reasonably well in the 

16-d.0.f. approximation. Case 2b, based on fixed-interface orbiter modes, is 

the better of the two. Reasonably good approximations are indicated for the 

first two elastic modes in the 10-d.0.;. caue, while excellent approximations 

are given for the first four elastic modes in the id-d.0.f. approximation. 

Although the use of fixed-interface substructsre modes produces the 

best results from the standpoint of modal convergence, damping associated with 

the boundary modes is difficult to assess. In previous examples, both pBB and 

pB1 have been null. For comparison, Case 2b was evaluated with lateral dampers 

connecting the orbiter attachment points to g:.ound. Sul-natrix pB1 remains null 

in this case. but pBB does not. Damping constants C for the first four elastic 
j j 

modes of the 30-d.0.f. solution are compared in Table 5 to thosr obtained prev- 
BB 

iously for P = 0. Considering pbB + 0 to provide the reference ~alution, one 
B X 

observes that having to neglect pBB (and P ) destroys some of the advantage 

offered by the use of fixed-interface modes as far as damping calculations are 

concerned. Intuitively. this effect should diminish, however, as the ratio of 

internal coordinates to boundary coordinates increases. 

In all of there examples so far, full modal damping matrices ci have 

been utilized. To show what happens when off-diagonal terms of ci are neglected, 

Case lb was evaluated on this basis. Results correspondinb to the 30-d.0.f. sol.fi- 

tion are presented in Table 6 for comparison to the previous case. In this case, 

a11 of the off-diagonal terms were neglected, not just those of ciNN. Had only - 
t h o ~ e  of ciNN been neglected, the comparison iliustrated in Table 6 might have 

been closer. 

The damping in Mode No. 5 is quite emall, preb.%bly because this is 

a longitudinal mode whereas the others are primarily lateral and no longitudinal 

dashpots have been included up to this point. The addition of one longitudinal 

dashpot (300 lb seclid to the forward ends of both Orbiter and Tank produced the 

resulte shown in Table 7. Although damping in the 5th mode is shown to increase 

appreciably on a percentage basis, it remains small compared to the other modes. 

This may be explained by the fact that there are only two lon~itudinal dashpots 

compared to ten in the lateral direction, and the likelihood that the modal mass 

is i a rgnr  in this mode due to essentially rigid body motion of the Orbiter and 

Tank in opposing directions. 



Table 5 - Effect of Neglecting pBB in Modal Da1~3Anb Computations 
Caee 2b 

Dampinir Coxstaat, C 
--.I P--- 

Mode No, pBB - 0 . - PBB + 0 

Table 6 - Effect of Neglecting Off-Diagonal Term of the Modal Damping M3trix 
in S thesis 0 4  
+e 18 iJ 

Darnping Constant. %j .. - 
Of f-DiaponLTenns Neglected ite f erence -- 

Table 7 - Effect on C of Addink Longitudi:.al ilampers to Orbiter and Tauit 304.0. f. 
.i .I Caee lb 

Damvin~ Constant, C 

Lon~itudinal Dampers Added 
2 j 

F.e f erence 



This section is included to demonstate the validity of the perturbation 

results presented in Section 6. The modal damping matrix of the spring-rnass sys- 

tem shown in Figure 4 is sought. In this case, the free vibration of the system 

16 of concern so that the input g(t) shown in the figure may be idnored. The 

equations of notion are of the form 

where 

The eigenvalue problem given by (23) was solved to obtain X and 4 as defined by 

(24) aad ( 2 5 ) ,  respectively. Numerical values are given in Table 8. Thc modal 

damping matrix c (which is identical to 5 in this case) was approximated using 

(28a) and (29), 



= 1 

REPRODUCBILrn OF THE I x 4  

ORIGIN& PAGE IS POOR 

Figure 4 .  Four-Degree of Freedom Lumped Parameter Model 
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and also computed directly by (17b), 

assuming that $JR $J + 6dR to first-order approximation. The results are com- R 
pared in Table 9 where they are shown to be in good agreement. 

Table 8 - Eigenvalues and Eigenvectors for a 4-d.0.f. System 

(a) Eigenvalues 

Mode No. -- Real (0~1 Imag. ( u j l  

1 -2.083 E-3 4.681 E-1 

2 -1.062 E-2 1.236 

3 -2.579 E-2 1.745 

4 -3.317 E-2 2.557 

(b) Eigenvectors 

Real (OR + 6QR OR) 

Coordinate 
Number Mode 1 Mode 2 Xode 3 Mode 4 

1 3.503 E-1 -6.833 E-1 6.382 E-1 -5.430 E-2 

2 6.238 E-1 -3.233 E-1 -6.675 E-1 2.467 E-1 

3 7.606 E-1 5.306 E-1 6.001 E-2 -1.066 

4 8.142 E-1 9.793 E-1 6.960 E-1 1.108 

Imaginary 
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Table 9 - Compari~on of Modal Damping Matricee 

Approx1m:te Solution 

4.166 Z-3 -1.608 X-3 -1.336 E-3 

2.124 E-2 -9.062 E-3 
C = 

5.158 E-2 

Symmetric 

Reference Solution 

Symmetric 
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8.3 Identification of the Damped Modes 

To demonstrate the use of resonant response data to identify damped 

modes, the four degree of freedom structure illustrated in Figure 4 is again con- 

sidered. Assuming sinusoidal excitation of the structure as shown, the accelera- 

tion frequency response was computed for each of the four masses including both 

amplitude and phase angle or, equivalently, real and imaginary components of 

acceleration relative to the forcing function. Numerical values are given in 

Tatle 10. The total acceleration amplitudes are plotted as functions of fre- 

quency in Figures 5a-d. This frequency response was then normalized so that, 

initially, the largest element of each colu~ur had the complex value (1,O). The 

real parts of the vectors were used to compute modal mass, and both real and 

imaginary parts of each vector were divided by the square root of its respective 

modal mass. The results are shown in Table 11. The normalized modal mass matrix 

is given in Table 12, where the largest off-diagonal element is noted to be 

1.37 E-2. 

Resonant frequencies were defined to be those frequencies at which the 

quadrature response of the largeet displacement in a mode reached its peak value. 

Damping values were obtained from the real parts of the complex eigenvalues. 

They would be determined experimenta1,ly under practical circo-mstances. Given the 

force input, the Modal Separation Procedure (MODSEP) was initiated. After each iter- 

ation, the magnitude of the normalized incremental changes in both real and 

imaginary parts of the complex modes were determined from 

i 
! 

where the superscript is used to denote the number of iteration. These results 3 
B 

are listed in Table 13. For practical purposes, convergence is seen to be 

achieved in only one iteration( The improved modes, real and imaginary parts, 

are listed in Table 14. The agreement is seen to be good to one cr two percent 
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0.1 0.2 0.4 1.0 2.0 4.0 10.0 

Excitation Frequency, Q (sec-l) 

b) Mass #2 

Excitation Frequency, Q (Seew1) 

Figure 5, Acceleration Response of the Four d. o. f . Model 





Table 10 - Complex Reronant Acceleration Response 

Coincident (Real Part) 

Maas No. Mode 1 - Mode 2 Mode 3 Mode 4 

1 a1572 -. 3917 -1.0092 ,3397 

2 .2142 1.2831 - ,5514 - -7711 
3 .0487 1.0940 2.9473 1.0749 

4 - ,1578 - .2156 1.9115 3.2120 

Quadrature (Imaginary Part) 

1 32,0465 -38.9270 15.0036 - 2.2961 
2 57.0674 -18.4483 -15. 7395 10.5035 

3 69.5931 30.2452 1.4041 -45.5123 

4 74.4808 55.8524 16.4846 47 3419 

Table 11 - Normalized Resonant Acceleration Response 

Real Part 

Mass No. Mode 1 Mode 2 Mode 3 Mode 4 

1 3.5029E-1 -6 8291E-1 6.3100E-1 -5.3202E-2 

2 6.2378E-1 -3.2374E-1 -6.6981E-1 2.4462E-1 

3 7.6070E-1 5.3055E-1 7.4002E-2 -1.0635 

4 8.14133-1 9.7990E-1 7 0813E-1 1.1134 

Imaginary Part 

1 -2.4612E-3 9.5097E-3 1.1652E-1 -1.1599E-2 

2 -3.6637E-3 -2.1261E-2 -5.44123-2 3.4729E-2 

3 -2.1450E-3 -2.1242E-2 -1.1802E-1 -9.7437E-2 

4 0. 0. 0. 0. 



Table 12 - Initial Modal Mass Matrix 

Table 13 - Normalized Change in Modal Vector Length 
Iteration 1 

Mode No. Real Part Imaginary Part 

1 3.1019E-5 8.1573E-1 

2 6.81613-4 8.0687E-1 

3 1.66373-2 9 0720E-1 

4 3.9757E-3 9.8476E-1 

Iteration 2 

Iteration 3 

1 2.62OlE-8 5.4733E-7 

2 4.2167E-7 2.3002E-6 

3 2.9780E-6 4.7326E-6 

4 6.6202E-7 9 7453E-6 
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Table 14 - Iuwroved Modal Vector8 
Real Parte Imaginary Parts 

ModelMase MODSEP Reference MODSEP Reference 

Table 15 - Final Nodal Mass Matt& 

I 
1.0 -4.6318E-5 2.7321E-5 4.2270E-4 

1.0 8.4953E-4 2.2443E-4 

1.0 -4.1186E-4 

Symmetric 1.0 I 
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except for element (4,3) which is about 20% off. (The probable source of error 

will be discussed momentarily.) The final modal mass matrix is shown in Table 

15. The largest off-diagonal elentent now is 8.49 E-4, down a factor of sixty-two 

from its initial value of 1.37 E-2. The full modal damping matrix given in 

Table 16 was found to be in good agreement with the reference values except for 

fourth row elements which deviate by as much as 18.3%. This is a direct result 

of the 20% deviation in the imaginary part of the third element of mode 4. 

In the foregoing example, all four modes were used. The first three 

and first two were used in subsequent work to assess the effect of modal trunca- 

tion on 5 . These results are shown in Table 17. The effect of modal truncation 

is shown to be small in this case. 

While this example problem seems to demonstrate the theoretical. validity 

of the procedure formulated in Part A, it also points up a potential problem. 

The 20% error in the fourth mode, which was noted earlier, does not appear to 

be the result of a trivial input error er  an error in the formulation of the 

method. Similar results were obtained for other examples; however, it was 

found that these errors could be reduced by identifying resonant frequencies 

more accurately. 

The source of the error is believed to be attributable to the fact that 

large changes in phase accompany very small changes in frequency near resonance. 

In the present example, resonant excitation frequencies were specified to five 

significant figures. Even so, changes in the fifth significant figure resulted 

in changes on the order of 100% in some of the coincident response values 

because of the small amount of damping (around 1%). The problem is compounded 

by the fact that as damping becomes smaller, phase angles become smaller at the 

same time their derivatives with respect to frequency become larg,.-r, so that 

the sensitivity factor is of the form (d.0/dw)/0. Hence, precise frequency 

determination is very important. 

In the present investigation, the resonant frequencies n were assumed ' 
equal to the natural undamped frequencies w on a one-to-one basis. In practi- 

OJ cal applications, particularly when modes ar not well separated, it may be 

necessary to analytically determine modal frequencies wo slightly different 

from the corresponding excitation frequencies S l  sweeping across wo would 
j 

allow one to compute the rate of change of quadrature response with 'respect 

to frequency. The frequency at which this function is a minimum may be used to 

determine oo , as suggested by Kennedy and Pancu in Reference [ 9 ] .  While this 

approach seedis to merit considerarion, alternative procedures might also be 

sought. A need for further inveetigation of this problem is clearly indicated. 



Table 16 - Comariaon of Modal Dampinu ?btricee 

MODSEP m. (32) - Eq. (33) 

4.1663E-3 4.1663E-3 4.16623-3 

-1,41793-3 -1.4085E-3 -1,40873-3 

-1.280OE-3 -1.33563-3 -1.33603-3 

7.47913-4 6.3308E-4 6.3325E-3 

Table 17 - Effect  o f  Trunc;:tCon on Computation o f  the Hbdal Damping Matrix 

Co 1 /Row -- 2 Mode8 - 3 M o d e ~  4 Modes 

1 1  4.1663E-3 4.1663E-3 4.1663E-3 

2 -1.4132E-3 -1.4179E-3 -1.4179E-3 

3 -1.3630E-3 -1.28OOE-3 

4 1.4791E-4 



8 . 4  Conclurions 

There are reveral important conclusions to be drawn from the numerical 

examples presented in this aection. The convergence of system damping values 

obtained by modal synthesis ie governed by convergence of the system eigenvectors. 

Sir.ce this topic is to be discuared more fully in Reference 171, it will not be 

elaborated upon here. From the standpoiut of damping synthesis, the couplin~ pro- 

cedures which avoid the use of fixed-boundery modes are preferable. The possible 

advantage of better convergence that fixed-bcundary mode formulations offer is 

outweighed by the difficulty of determining both the static and dynamir modes 

experimentally, and by the difficulty of relating experimental damping properties 

to such a coordinate system. O!: the nodal coupling procedures which do not rely 

on fixed-bounlary modes, the one utilizing maer loading at interface boundaries may 

be more desirable than the one utilizing just the free-free modes. Provided that 

appropriate means are available to determine what the mass loading should be, this 

procedure tends to converge faster with no apparent disadvantage relative to 

identification of damping prcperties. In fact, the dissipative energy character- 

istics should be brought out better for the same reasons that the strain energy 

characteristics are. 

A four-degree of freedom lumped mass model was used to illustrate the 

ac.curacy attainable by the approximate method for generating modal damping matrices 

given the damped modes. For damping values on the order of lX, it was found that 

the approximation yielded comparable results. When the damped modes were not given, 

it was shown that they c o ~ l d  be derived from resonant response information by en 

iterative procedure which converged rapidly in that case. 

A significant problem was, however, indicated. As the modal separation 

procedure is presently used, it is assumed that excitation is applied to the struc- 

ture precisely at its resonant frequencies. It is rinllkely that this will be rea- 

lizable in practical situations where modes are closely spaced in frequency. In 

this case, it may only be possible to excite the structure near a resonant fre- 
quency. In this case, more information will be required to identify modal frequen- 

cies to the degree of precision required by this procedure. This ia an area which 

dernands further investigation. 
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The chief purpose of ihie otudy is to apbly the matrix method for 

damping synthesie to a real structural eysteni and compare predicted values of eye-, 

tem modal damping with those obtained by direct measurement. In ths recent past, 

LaRC has conducted vibration taste on a l./lSth-scale dynamic mcdel cf a Shuttle 

vehicie. The model consists of an Orbiter and a Booster which can be coupled by 

epecial spring aesemblies. Each of theee components is constructed of thin-walled 

topered aluminum tubing. Propellant tanks are mass simul sted by s t r ~ . p i i ~ ~  ? ead 

ballast to e ~ c h  component at appropriate locations. 

Two baeic modifications were made for thie inveetigation. Freviously, 

the courling configuration included only two epring assemblies, making the inter- 

face forces between the Orbiter and Booster statically determinant. For these 

tests, a third epring assembly wae added between the original two, creating redundant 

load paths. Aleo, pin connections were added to the spring assemblies, eliminating 

the requirement for slope continuity at the connection points. 

Since earlier tests were concerned mainly with the undamped charact- 

eristics of the structure, the inherently small amount of damping in the system 

(less than 0.5%) did not pose a problem. In this study, however, it was esti- 

mated that modal damping on the order of several percent would be required in 

order to extract meaningful data witn the available analog test and data reduc- 

tion equipment. Thus it was decided to attach three externally grounded dampers 

to the Orbiter. For comparative purposes, no damping was added to the Booster. 

lt was felt that this lopsided distribution of damping would represent a worst 

case in some respects and help to elucidate significant trends in the data. 

9.1 Descriptiui~ of Tests 

Schematic drawings of the 1115th-scale node1 Orbiter and Booster sub- 

structures are shown in Figure 6. Tne coordinates defined in this figure corre- 

spond to the accelerometer locations used during vibration tests. The spring 

assemblies were included as part of the Booster substructure. Interface points 

between the Orbiter and Booster are defined to coincide wiih pinned connections 

between the two. &* lumped mass di3tribution was defined for the system taking 

into account tile physical distributior. of mass and requirements for accelerometer 

placement. Distributions for both the Orbiter and the Booster are given in 

Table 13. 



BOOSTER 

L % 1 
X 

ORBITER 

Bal l  Damper 

( t y p i c a l )  

X 

Figure 6 .  1115th-Scale Gvna.nic Model of Orbiter and Booster Substi-uctures 
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Table 18 -Mass Distribution for the 1115-Scale Dynamic Model 
of a Shuttle Vehicle 

Coordinate 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

i5 

16 

17 

18 

19 

2 0 

*with mass loading 

ORBITER 

Station x 

-0.50 

18.6 

28.0 

39. G 

46.5 

65.2 

77.75 

28.0 

46.5 

65.2 

BOOSTER 

Station Y 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

9.1 

9.1 

9.1 

0 

0 

0 

0 

9.1 

9.1 

9.1 

Weight 
lbs - 
6.40 

62.85 

4.80 

1.53 

9.34 

3.87 

1.33 

74.55 

10.38 

5.20 

1.20 

83.04 

11.35 

48.25 

6.87 

48.75 

8.83 



Discrete dampers were connected to the Orbiter at the locations 

indicated in Figure 6. These dampers were identical, each consisting of a wooden 

ball attached to the Orbiter and placed in a glass jar fixed to ground. The 

jars were filled with Dow Corning damping fluid having a viscosity of 20K centi- 

stokes. The balls were immersed in the fluid. Relative motion between a ball 

and jar was permitted in both vertical (in and out of the jar) and horizontal 

directions. The damping characteristics of a typical ball damper were evaluated 

by rigidly attaching the ball to a shaker,with force and accelerction transducers 

oetween them in series. The vertical and horizontal test setups are shown in 

Figures 7a and b respectively. Sinusoidal excitation was provided at peak amp- 

litudes ranging from 0.1 g to 2 g, over selected frequencies from 25 to 500 Hz. 

Based on the assumption of linear viscous damping (damping force proportional to 

velocity), values of the proportionality "constant" c were determined from the 

pehk exciting force amplitude I?, the peak acceleration amplitude a, their rela- 

tive phase angle 8, and the frequency of excitation w. 

C = 
UF sine 

a 

Tabulated results received from LaRC are presented in Table 19. Damping in both 

horizontal and vertical directions was found to be linear with respect to ampli- 

tude. Only averages for the four amplitudes are shown. These values are plotted 

against frequency in Figure 8. Thev vary considerably over the frequency range. 

Another method for determining c is discussed in Section 9.3, where a comparison 

with these results is made. 

Substructure vibration tests were run separately for the Orbiter and the 

Booster. The Orbiter was suspended horizontally in the OrbiterIBooster plane and 

free-free modes were excited in the pitch (lateral in-plan?) direction by a shaker 

located at its tail. Each of the dampers, one at the nose, one at midspan, and 

one at the tail, are shown in Figures 9a-c, respectively. Booster vi~ration tests 

were made with the Booster suspended vertically. Free-free modes were excited by 

placing an exciter at the tail of the Booster. Two sets of modes were obtained, 

one without mass loading and one with. No external dampers were used on the 

Booster . 
Finally, the Orbiter a d  Booster were connected and suspended vertically. 

Two sets of modes were obtained by exciting the structure in the pitch direction 

at the Booster tail, then in the axiai direction at the Booster tail. Three exter- 

nally grounded dampers were attached to the Orbiter as in the substructure tests. 
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Table 19 - Ball Damper Characteristics 

Frequency 
(Hz. ) 

2 5 

30 
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Vertical motion 

Horizontal motion 

0 100 200 300 400 500 

Frequency (HZ) 

Figure 8 .  Ball Damper Characteristics 
Determined from Measurements of Dam~lna Force and Velocity 









This t ime,  however, t h e  O r b i t e r  was v e r t i c a l .  I n  o rde r  t o  in t roduce damping i n  

the  l o n g i t u d i n a l  d i r e c t i o n  and accommodate the  new o r i e n t a t i o n  of t h e  O r b i t e r  wi th  

respec t  t o  t h e  j a r s ,  d i f f e r e n t  mounting b racke t s  were used f o r  t h e  b a l l s .  They 

a r e  shown f o r  t h e  nose,  midspan, and t a i l  of t h e  O r b i t e r  i n  Figures  10a-c. These 

b racke t s  a r e  s t i f f  i n  both t h e  p i t c h  and a x i a l  d i r e c t i o n s .  

9.2 Summary of Test  Resu l t s  

For each of t h e  component and system t e s t s  def ined i n  Sac t ion  9.1,  

the  input  f o r c e  and a c c e l e r a t i o n  response d a t a  were recorded on m q n e t i c  rape.  

The t apes  were shipped t o  TRW f o r  d a t a  r educ t ion  us ing t h e  S p e c t r a l  Dynamics 

Model SDlO9B CofQuad Analyzer. Accelera t ion response  a t  each s t a t i o n  was eepa- 

r a t e d  i n t o  compozPnts i n  phase (Coincident)  and 90' o u t  of phase (quadrature)  

wi th  t h e  fo rc i , lb  f-:.tction. These reduced d a t a  were recorded i n  d i g i t a l  form on 

puncned cards .  A d u p l i c a t e  copy was given t o  GAC. 

I n  a d d i t i o n ,  measurements of modal damping were made a t  LaRC. Three 

methods were used based on (a )  half-power-point bandwidth, (b) log  decrement, and 

(c )  Kennedy-Pancu (91  methods. A l l  t he  modes obta ined from component and system 

t e s t s  a r e  l i s t e d  i n  Table 20. Along wi th  t h e  measured frequency of each mode a r e  

included t h e  damping values  obta ined i n  each case .  Since  most of t h e  damping i n  

the  system crine from t h e  e x t e r n a l  dampers on t h e  O r b i t e r ,  t h e  damping p r o p e r t i e s  

of t h e  Booster were not considered p a r t i c u l a r l y  s i g n i f i c a n t .  Therefore ,  modal 

damping f o r  the  n~abs-loaded Booster modes was measured f o r  only a s e l e c t e d  number 

of modes. 

9.3 O r b i t e r  D a m p i x  Matrix 

Evaluat icn  of t h e  O r b i t e r  damping mat r ix  is considered f i r s t  f o r  

s e v e r a l  reasons.  The O r b i t e r  i s  by f a r  the  simp]-er of the  two components. Only 

the  f i r s t  t h r e e  bending modes were found below 529 Hz. The frequency of the  

f i r s t  a x i a l  mode ( a l t h o ~ g h  not  shown) was determined t o  b e  above 500 Hz. From 

Table 20, i t  is noted t h a t  the  frequency s e p a r a t i o n  between modes is  near ly  an  

octave  i n  each case.  Modal damping c a l c u l a t i o n s  made by t h e  t h r e e  methods a r e  
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Table 20 - E x ~ e r i m e n t a l  Mc d a l  Frequencies and D = D ~ ~ R  

LATERAL (PITCH) EXCITATION OF ORBITER AT STA. 74 

Mode Frequency Force Percent  C r i t i c a l  Damping* 
Descr ipt ion (Hz. 1 ( l b s l  la) (Ill (c 1 

1st bending 101.40 0. :8 3.43 3.33 3.78 

2nd bending 219.78 0.58 2.00 1.90 2.32 

3rd bending 414.93 0.50 0.75 0.78 0.87 

LONGITUDINAL (AXIAL) EXCITATION OF BOOSTER AT STA. 136 

Spring a x i a l  145.56 0.94 ---- --.-- ---- 
Spring a x i a l  151.51 0.59 ---- ---- ---- 
Spring a x i a l  162.60 C. 49 ---- -- -- - ---- 
Is t long i tud ina l  259.74 0.59 .231 ---- .281 

LATERAL (PITCH) EXCITATION c)F BOOSTER AT STA. 134 

1st bending 

2nd bending 

spr ing  a x i a l  

sp r ing  a x i a l  

s p r i t g  a x i a l  

3rd bending 

spr ing  p i t c h  

spr ing  p i t -h  

sp r ing  p i t c h  

4 t h  bending 

5 t h  bending 

*(a)  Half -power-point bandwidth ; (b) log  decrement ; ( c )  Kennedy-Pancu 

**Data unavai lable .  Values i n  parentheses  were assumed f o r  a n a l y s i s  
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LATERAL EXCITATION OF ORBITER/BOOSTER ASSEMBLY AT BOOSTER STA. 134 

Mode 
Number - 
1 

2 

3 

4 

5 

6 

7 

8 

Frequency 
(Hz. 1 

26.01 

38.73 

57.57 

92.25 

108.22 

125.31 

185.18 

281.69 

Force 
Ilbe) 

1.01 
---- 
0.99 

1.00 

0.70 

1.00 

0.97 

1.41 

Percent Critidal Damping 
A4 (b ( 2 )  

2.77 2.85 3.01 

0.96 0.94 0.62 

0.76 .49 - .96 0.64 

1.67 1.37 1.08 

0.30 0.256 0.221 

3.15 3.36 3.47 

0.282 0.366 0.289 

0.425 0.412 0.378 

LONGITUDINAL EXCITATON OF L,PBITER/BOOSTER ASSEMBLY AT BOOSTER STA. 135 

LATERAL EXCITATION OF BOOSTER WITH MASS LOADING AT STA. 134 

LONGITUDINAL EXCITATON OF BOOSTER WITH MASS LOADING AT STA. 134 
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G 
in very good agreement. Of course, most of the damping was placed in the 

Orbiter specifically to enhance the chances of achieving conclusive results. 
I 

A major part of the effort was therefore devoted to ~valuating the damped char- 

acteristics of the Orbiter and interpreting the results. , 

This study was not without its share of problems. Certain unexpected 

difficulties did arise which caused part of the schedule to be compressed in time. 

Unfortunately, when some of the Orbiter test data appeared to be in error, it 

was not possible to repeat any tests on the damped configuration, but only on the 

undamped one. As a result, two sets of data became available, neither of which 

could be considered complete or entirely free of possible error. This situation 

required some exercise of judgement in deciding how best to utilize the data. 

There was one other complicating factor. Both sets of data led to 

poor orthogonality between the first and third modes. It was specuiated that 

this might be a result of the lumped mass matrix which was used, in the sense 

that no rotational mass was assigned to either of the lead weights used to simu- 

late propellant tanks. Modal slopes are significant at these locations, particu- 

larly in the third mode. To test the hypothesis, the modes were plotted from 

available data and slopes were scaled. Additional coordinates corresponding to 

slope at Stations 18.6 and 46.5 were included, and representative mass moments of 

inertia were inserted in the mass matrix. This improved the orthogonali'y con- 

siderably. The difficulty was that modal slopes cculd not be scaled very accu- 

rately due to the small number of data points along the Orbiter. 

The second set of Orbiter response data corresponding to the undamped 

configuration yielded better modes than the origical data since the momentum 

balance and orthogonality were both better than in the first set. The decision 

was made to use these modes in the synthesis even thovgh they lacked the damping 

information. Comparison of real mod& plots between the two sets indicated rea- 

sonably good agreement as far as the overall appearance of the mode shapes was 

concerned. Based on the assumption that the introduction of small amounts of 

dampis8 should not alter the quadrature response appreciably, the quadrature 

response obtained in the undamped test was combined with the coincident response 

from the damped test to complete the second set of data. This was accomplished 



0 by matching accelerometer response at the input locations (Station 74 in each 

case) and multiplying the coincident response from the damped tests by the ratio 

of corresponding quadrature elements at each station. The forcing functions 

4 assumed for the second set of data were idontical to those obtained from the 

damped tests. 

In order to be as objective as possible under the circumstances, 

damping matrices for the Grbiter were computed for each of four cases: 

Case la. Original data--no rotational mass 

Case lb. Original data--rotational mass included 

Case 2a. New augmented data--no rotational mass 

Case 2b. New augmented data--rotational mass included. 

Before introducing any results, it is of interest to first examine the response 

data which comprise the basis of these computations. 

Coincident and Quadrature response at the first three resonant fre- 

quencies of the Orbiter are plotted in Figures 11 through 13. The sol.;d lines 

correspond to the original data, while the dotted lines represent the augmented 

data. The two are in reasonably good agreement after adjusting the accelera- 

tion response at the nose of the Orbiter in the first mode of the original data 

for an apparent gain error of 10 db. It is observed that the Coincident data tend 

to display the same general shape as the Quadrature data. 

Before modal separation was begun, the rigid-body response was 

removed from the total response. Forces tending to excite rigic!-body response 

included both the exciter force and the damper forces. t the damper charac- 

teristics had to be known a priori. While it would have n desirable to avoid 

this by introducing some form of internal damping instead, no way of doing so was 

readily available. On the other hand, there is a distinct advantage to usi,-g 

external dampers whose characteristics are known because it provides an alterna- 

tive way of evaluating the modal damping matrix. 

Earlier when the characteristics of the ball dampers were discussed, 

an alternate method for evaluating these characteristics was mentioned. This 

method is based on Equation (28a). 



18058-6001-RU-00 
Page 66 

Case 1 

---- Case 2 

a. Coincident and Quadrature Response 

I I I I I 

X 

Station (inches) 

Coincident Response (Expanded Scale) 

Figure 11. Orbiter Acceleration Response at First Resonant Frequency 
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- Case 1 --- Case 2 

a.  Coincident and Quadrature Response 

0 2 0 40 60 
t 

air 
I 

I 
I 

I 
I 1 

X 
Station (inches) 

Coincident Response (Expanded Scale) 

Figure 12.  Orbiter Acceleration Response a t  Second Resonant Frequency 
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a .  Coincident and Quadrature Response 

X 
Stat ion (inches) 

b. Coincident Response (Expanded Scale) 

Figure 13. Orbiter Acceleration Response a t  Third Resonant Frequency 



Assuming that internal damping in the Orbiter is small compared to the external 

damping, that the three ball dampers are identical, and they they introduce 

damping forces proportional to velocity by the constant c, (28a) suggests that 

where the three dampers are located at coordinates 1, 4, and 7. Having measured 

values of 5 wo , and (I , values of c were computed for each of the three 
" j b 

modes (Case 2b). They were not in very good agreement with those values of c 

presented in Figure 8 except for the first mode at about 100 Hz. Instead of 

c tending to decrease with increasing frequency (as in Figure 8), it increased 

as shown in Figure 14. This presented somewhat of a dilemma as to what values 

should be used. 

It was learned that e in (39) varied from 39.8' down to 8.9" in going 

from 100 Hz to 400 Hz in the case of horizontal motion, and from 71" down to 

14.3" in the case of vertical. The damping force on the ball was of the same 

order as the driving force and the inertial force. Tilo, "virtual mass" of the 

fluid is an uncertain factor, and could vary with frequency. On the other hand, 

the damping f o r w s  exerted on the Orbiter at resonance are much smaller than 

inertial forces, and fluid mass sl-ould have no significant effect in this case. 

It is therefore believed that values of c obtained from (40) are more reliable 

than those obtained from (39). Unfortunately, there was no clear cut way of 

checking values of c for vertical motion since, in the system tests, horizontal 

and vertical motion occur together. 

In evaluating the modal damping matrix of the Orbiter, an average 

value of c = 0.68 was assumed for the damper constant in each of the four cases. 

For comparison, a value of c = 0.36 was also used in Case 2b. 

The task of computing reference values for the modal damping matrix 

is not altogether straightforward either because of the variability with frequency 

of the damper "constantst'. However, from the form of (29). it 

in each of the two terms on the right-hand side, the frequency 

observed that 

associated with 



the imaginary part of the mode 54 , which must be related to C Other things 
-, A 5 j ' 
being equal, the term having the larger of the two frequencien rhould dominate. 

T 1 

In evaluating 6 = +R p OR, it is therefore justified at least to some extent to , . 

replace the nonzero elements of the diagonal matrix p by unity, and compute a 

matrix 6'. Then each element E '  can be multiplied by the value of c corresponding 
Ik 

to wO > w . This sort of frequency scaling will cause the diagonal elements of 
, 

k OJ 

the reference matrix to be identical to the diagonai elements 0: the other matrices, 

and will cause the off-diagonal elements to be proportioned accordingly. The refer- 

ence modal damping matrix determined in this manner is presented for comparison to 

matrices computed from the damped modes in Cases la, lb, 2a, and 2b in Table 21. 

Also included is Case 2b, computed on the basis that c = 0.36, instead of c = 0.68. 

This case is labeled Case 3. 

ceveral things are apparent in Table 21. Most noticeably, the off-diag- 

onal elements in the third column are more sensitive to differences among cases. 

This is to be expected because of the importance of rotec;onal mass in the third 

mode. The f lnal modal mar8 matrices obtained in Cases la, lb, 2a, and 2b are: 

Case la 

1.0 - -123 
1.0 

Modal Mass Matrices 

Case lb 

1.0 

Case 2a 

!-LO - .ole ,5431 

Case 2b 

p. 0 - .019 .1671 
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Table  21 - Compi~rfron of O r b i t e r  Modal Damping Mat r i ce r  

Case l a  

37.0 
'* 771 ["*' 52.5 16.1 

40.7 

Case l b  

Case 2a 

34.4 

52.5 

Case 2b - -- 
42.4 37.2 128.2 

52.5 8.25] 

- 40.7 

Reference 

r 4 2 . 4  30.0 4 6 . 8 l  

52.5 18.9 
I 

- Case 3 r 4  39.8 1 2 3 . 1 1  

52.5 11 .5  1 
40.7 \ - 

Case 2b is  shown t o  r e p r e s e n t  t h e  b e s t  of them. S i g n i f i c a n t  improvements i n  

o r thogona l i ty  a r e  seen  t o  be o f fe red  by i n c l u s i o n  of r o t a t i o n a l  mass and by t h e  

second s e t  of d a t a  over  t h e  f i r s t .  It may a l s o  be noted t h a t  5 is r e l a t i v e l y  12 
s t a b l e  and d i f f e r s  from t h e  r e f e r e n c e  va lue  by t h e  l e a s t  amount. A computation 

was a l s o  made us ing Case 2b, but only two of t h e  t h r e e  modes. In  t h i s  c a s e ,  

[12 
= 39.0, whim is s t i l l  i n  the  r i g h t  b a l l p a r k .  

I t  is of i n t e r e s t  t o  look a t  the  imaginary p a r t s  6 4  of t h e  damped modal 
=j v e c t o r s  4. They a r e  p l o t t e d  i n  Figure  15.  They do not resemble t h e  r e a l  p a r t s  

of t h e  modes as  c l o s e l y  a s  t h e  Coincident response resembled t h e  Quadra tu re ,  p a r t l y  

because of t h e  way i n  which they a r e  normalizzd. Ten d a t a  p o i n t s  were a v a i l a b l e  

t o  p l o t  these  curves.  Eight of them a r e  accounted f o r  by t h e  c i r c l e d  d o t s .  The 

o t h e r  two come from s l o p e s  obta ined a t  S t a t i o n s  18.6 and 46.5. Without t h e s e ,  i t  

woald have been d i f f i c u l t  t o  p l o t  6$ f o r  t h e  t h i r d  mode. Each of t h e  v e c t o r 6  64 
I 
j I1 

was normalized so  a s  t o  cause  ~ h c  phase ang le  t o  be zero  f o r  t h e  l a r g e s t  element 

i n  t h e  mode. This  element happened t o  correspond t o  t h e  t a i l  i n  every casz .  It 

is p o s s i b l e  t h a t  t h i s  type  of normal iza t ion could obscure  snme o the rwise  meaning- 

f u l  c h a r a c t e r i s t i c s  of t h e  v e c t o r s .  Other forms of normal iza t ion were not  

explored,  however. 
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Horizontal motion, Eq. ( 4 0 )  

I - a- Vertical motion, Eq* (39) -*- Horizontal motion, Eq. (39) / 

Frequency, f (Hz.) 

Figure 14 - Com~arieon of Ball Dam~er Chsracteristics 
Obtained bv Different Kethode 



0.2 Mode 1 

Mode 2 

X 
Station (inches) 

1 .  A Mode 3 

Figure 15 - Imaninarv Parts of Damped Orbiter Bendinn Modee 



9.4 Booster Damping Matrix 

Since the amoucc of damping in the Booster is very small, there was not 

much hope of computing a meaningful modal damping matrix aside from the diagonal 

terms. Nevertheless, an attempt was made to see how the modal separation program 

would work. Resonant response fot the first nine Booster frequencies with no mars 

loading was entered. The iterative procedure failed to converge. This result 

was not unexpected. In the first place, the damping is so small that the accu- 

racy of the coincident response measurements is in question, and secondly, the 

frequency separation among spring mode8 in particular vioiater thc criteria for 

convergence derived in the Appendix. It was noted, however, that after just one 

iteration, the orthogonality of the modal mass matrix was improved significantly, 

in particular, with respect to the seventh made, which is the lowest frequency 

spring mode in the pitch direction. The original seventh column of the modal mass 

matt:'x ie shown in Tabla 2 rcr  comparison to the eame column after one iteration 

oi MOLSEP. 

Table 22 - Impro~sment of D=%onality Anong Booster Moass 

(Column : of Xadjl Mass Mat~ix) 

Row Nc . Original Improved 

The overall change ie seen to be for the better even though some of the elements 

did become larger. Thie kind of improvement was not realized for the Orbiter 

because the poor orthogonality there was caused by an incomplete description of 

the third mode, and not by having more than one mode contributing to the resonant 

response. 
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The e f f o r t  t o  compute a damping matr ix  was pursued f u r t h e r ,  however, by 

in t roducing fewer modes i n  t h e  r e p a r a t i o n  a lgor i thm.  A c a s e  involving only t h e  

f i r s t  two bending modes wag t r i e d  f i r s t .  This  e l imina ted  t h e  frequen,  y repara t ic ,n  

problem. Convergence was achieved i n  a  r i n g l e  i t e r a t i o n .  Then t h e  f i r s t  a x i a l  

r p r i n g  mode a t  145.56 Hz was included i n  a three-mode case .  This  t ime,  converg- 

ence ( t o  ~ p p r o x i m a t e l y  two s i g n i f i c a n t  f iguces  i n  641 ) was achieved i n  four  i t e r -  
I 

a t i o n s .  The second a x i a l  s p r i n g  mode a t  151.51 Hz was added t o  make a  four-mode 

case.  Computations diverged.  

I n  t h e  Appendix, a  convergence c r i t e r i n n  i s  der ived  i n  t e n s  of a  sca led  

impedance mat r ix  i ( i n  ) aeeoc ie ted  w i t h  each resonant e x c i t a t i o n  frequency R . 
.I .I 

I n  t h e  case  of p ropor t iona l  damping and i n  t h e  case  J£ diagona l  molal damping i n  

genera l ,  is a  d iagonal  ma t r ix  whose l a r g e s t  element is u n i t y .  The o t h e r  
j .I 

diagonal  elements d iminish  i~ s i z e  a s  they become f u r t h e r  d i sp laced  from t h e  u n i t  

element. I n  t h e  case  of nonpropor i ional  damping i n  genere], is a  fully-popula- 

t e d  mat r ix  whose elements tend t o  d iminish  i n  ~ . a g n i t u d e  as they becor!:e f v r t h e r  

d i sp laced  from t h e  u n i t  element i n  any d i r e c t i o n .  A c r i t e r i o n  f o ~  clnvergence is  
T- t h a t  each element i = e Z(in  ) e  ( e  denot ing t h e  k t h  column O E  t h e  idencity 

ke k ~ I I  k 
mat r ix  I )  of each resonant impedance matr ix  i ( i ~  ) s a t i s f y  

.I 

where B = UI / W  > 1. SOL; i y p ' n ~ l  -.;:ues f o r  Booster  r s l c u l a t i o n s  a l e  g iven 
"I! 

i n  Table 23, 

labl . :  23 - Gnvergence  I n d i c a t o r s  f 3 r  Boostt. Damping Mac r-i-i.,;31: u1at.ions 

No...ber of  
Modes & -2- C,xlo -- i . . k t  1 

-, -- 
2 2 , l  7.18 ,290 .0306 .1383 . ? I78 

3 3,2 2.06 . I73  .0581. 4.64 .270 

4 4 . 3  1.08 . I98  . .' : * i - . 
5 5,4 1 ,165  . l a 3  ' 49 n * 
6 695 1.278 .144 . .: 2 r~ * -- -- ---- 

*Values unknown because i t e r a t i o n  f a i l e d  t o  converge 



The modal damping matr ix  computed i n  the  three-mode case  &as  found t o  

The ( 3 . 2 )  alements of 5 a r e  seen t o  be q u i t e  l a r g e .  This may be due t o  an  Lnsuf- 

f i c i e n t  number of response measurements, a s  t h e  r e s t ~ l t s  of some cf t h e  O r b i t e r  

c a l c u l a t i o n s  s r sges ted .  I t  is  not p a r t i c u l a r l y  easy t o  ' S e l ~ e v e  t h a t  an  a x i a l  

sp r ing  mode could couple so  s t rong ly  wi th  t h e  bending modes. What appears  t o  

be h a p p e ~ i n g  i; t h a t  che modal mass of t h e  s p r i n g  mode is s o  smal l  t h a t  t h e  e l e -  

ments of 6 4  a r e  l a r g ~  compared t o  corresponding elements of 6'$ o r  6$ , f o r  
I 3  2 I1 

example, s i n c e  t h e  $ .  - 3  a r e  r. rmalized t o  g ive  u n i t  mcdal mass. Er ro r s  would 

tend t o  be ampl i f ied  LL! t h i s  case .  

It  i s  c l e a r  from Table 2 1  t h a t  t h e  iwo-l.3de case  should have converged 

rap id ly  s i n c e  t h e  upper bound B on itl. was much s n d l e r  than u n i t y .  I t  is i n t e r -  

e s t i n g  a l s o  t o  no te  t h a t  i n  the  three-mode c a s e ,  convergence was achieved even 

though B = .?70. This i s  not  too s u r p r i s i n g  s i n c e  o t h e r  off -diagonal  elements of - 
t h e  7, n a L r i c e s  a r e  rn-lch smal le r .  I n  t h e  cases  involving four  or  more r n u ~ ~ s ,  con- 

vergence was not achieved a t  a l l ,  so t h a t  va lues  of 5 a r e  unknown. k 2 

I t  is  of i n t e r e s t  t o  examine the  reyponse measurements and t h e  f i r s t  two 

damped modes computed f o r  t h e  Boostex. Response measurements a r e  p l o t t e d  i n  Fig- 

u r e s  16 and 1 7 ,  whi le  t h e  corresponding damped modes a r e  p l o t t e d  i r  F igures  18 and 

19. Again, apparent  e r r o r s  de re  found i n  t h e  o r i g i n a l  response d a t a  s o  t h a t  t e s t s  

were re run  f o r  some of t h e  modes ( including t h e  f i r s t ) .  Data from t h e  second 

t e s t  a r e  p l o t t e d  wi th  c i r c l e s ,  while d a t a  obta ined o r i g i n a l l y  a r e  p l o t t e d  w i t h  tri- 

angles .  Ten-db gain e r r o r s  were apparent a t  S t a t i o n s  20.3 and 45.3 i n  the  f i r s t  

mode of t h e  o r i g i n a l  d a t a .  

Severa l  th ings  a r e  observed i n  Figure  16. Coincident d a t a  from t t e  f i r s t  

t e s t  fol low t h e  shape of t h e  Quadrature d a t a  and a r e  g r e a t e r  i n  magnitude than  

Coincident d a t a  from t h e  second t e s t ,  which a l s o  e x h i b i t  more s c a t t e r .  D i f f e r e n t  

procedures f o r  d a t a  reduct ion were used i n  each case .  I n  t h e  Eirst c a s e t  d a t a  

were recorded simultaneously on :ape over a 20-second t ime i n t e r v a l  arid reduced 



COINCIDENT ACCELERATION (g 's) QUADRATURE ACCELERATION (g ' s) 
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$ 
using t h e  Co/Quad Analyzer. Data from t h e  second t e s t  were recorded manually i n  

1 

j 
r e a l  tjme o . e r  approximately a five-minute t i m e  i n t e r v a l .  Amplitude and phase 

informat ion were taken,  phase ang les  being read from a phase meter.  No phase lock  

system was used i n  e i t h e r  case  al though p re l iminary  t e s t s  i n d i c a t e d  no s i g n i f i c a n t  

phase s h i f t s  over  a t y p i c a l  20-second i n t e r v a l .  Over a five-minute pe r iod ,  how- 

ever ,  t h e  p o s s i b i l i t y  of s i g n i f i c a n t  phase s h i f t s  is acknowledged. Phase d r i f t i n g  

, o d d  exp?ain the  s c a t t e r  a s  w e l l  a s  a l l  of t h e  p o s i t f v e  Coincident  d a t a  p o i n t s .  

Another n o t a b l e  c h a r a c t e r i s t i c  is t h a t  t h e  imaginary p a r t s  of t h e  modes 

a r e  considerably  g r e a t e r  i n  magnitude than they should  be i f  only damping informa- 

t i o n  were r e f l e c t e d  ( s e e  Sec t ion  6). Yet, Clp  Ell = 2 u 1 ~ , ~ .  A p l a u s i b l e  expla- 

n a t i o n  f o r  t h i s  i s  t h a t  t h e  mode was probably n o t  tuned p e - ~ e c t l y ,  causing some 

of t h e  resonan t  ~ a d r a t u r e  response t o  " s p i l l "  over i n t o  t h e  co inc iden t .  This 

would tend t o  account f o r  t h e  f a c t  t h a t  t h e  Coincident and Quadrature shape char-  

a c t e r i s t i c s  a r e  s o  s i m i l a r ,  a t  least i n  t h e  f i r s t  test. This  exp lana t ion  would 

a l s o  adrci t t h e  p o s s i b i l i t y  t h a t  computations of  C12 might not  be  a l t e r e d  appre- 

c i a t e l y  i f  phase s h i f t s  were p r o p o r t i o n a l  to  t h e  r e a l  p a r t  of the  mode. This is, 

(where E is  a smal l  p r o p o r t i o n a l i t y  c o n s t a n t )  because of t h e  supposed orthogonal-  

i t y  of $ and $ . 
R2 R1 

The damped mode c h a r a c t e r i s t i c s  shown i n  Figure  18 a r e  I n t e r e s t i n g ,  too .  

Aside f r c a  t h e  s i g n  d i f f e r e n c e  i n  t h e  imaginary p a r t  of t h e  mode. r e s u l t s  from t h e  

two t e s t s  bear  a f a i r l y  c l o s e  resemblance. For t h e  sake of comparison, t h e  modal 

ma t r ix  obta ined w i t h  t h e  s u b s t i t u t i o n  of Tes t  2 d a t a  f o r  t h e  f i r s t  resonance i n t o  

Test  1 d a t a  is  

5 = 
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The largest change from earlier computations is seen to occur for the (1,2) 

element, supporting the contention that the highest frelluency term in (29) is j 

dominant. 

Although the Booster damping matrix computations are felt to contribute 

significantly to the value of this investigation, it was not deemed critical that 

the full modal damping matrix be included in synthesis calculations because of 

the small amount of damping. Since not all the off-diagonal elements could be 

ohtained anyway, the diagonal matrix 

was used. No computations for the mass-loaded Booster case were made since tLe 

modal synthesis attempted by GAC yielded ursatisfactory results. 

9 . 5  Damping Synthesis 

The modal damping matricms given in Sec~ions 9 . 3  and 9.4 provide only 
i 

part of the component damping matrices c needed to synthesize system damping. 

If the Booster is designated as Component 1 and the Orbiter as Component 2, con- 

sistent with the convention adopted by GAC, the modal damping matrix derived for 

the Booster may be denoted by clNN and that for tk- Orbiter by cZNN, according to 

the notation of Section 5. The other submatrices clRR and clRN must be found 

before synthesis can begin. In cases where there is no external damping, these 

matrices are null. Thus, for the Booster, 

2RN 
The Orbiter does have external damping, however. so that c2RR and c are nonzero. 
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2N 
Given the rigid-body Orbiter modes 4: and the elastic body co-1 modes PR , 
these matrices were computed from the equations 

based on an assued diagonal matrix p (2), defined to be 

where c and c were, respectively, the horizontal and vertical damping "constants" 
H V 

of the ball damqers. 

It is recogni2ed that Orbiter coordinates 8 *  9, and 10 do not correspond 

to axial displacements of t'he Orbiter at Stations -0.5, 39.6, aad 77.75, where the 

dampers were actually attached. However, in synthesizing system modes, GAC used 

only the component modes up to about 223 Hz. Since the first Orbiter axial mode 

is above 500 Hz, axial motion of the Orbiter vas primarily rigid-body motion. 

This was confirmed by the data. Small variations among these axial response mea- , 

surements were present due to the positioning of accelerometers about three inches 

off the centerline of t k e  Orbiter in the Orbiter/Booster plane. The accelerometers j 
r, 

were actually mounted on the spring brackets. Orbiter bending did induce small 

amounts cf relative axial motion, but they were negligible. i 
1 



, 
Becauee of t h e  dependency of damper c h a r a c t e r i s t i c s  on frequency,  i t  was 

hard t o  decide  which va lues  t o  choose f o r  cH and c To be c o n s i a t e n t  w i t h  e a r l i e r  v 
compi,cations of t h e  modal damping matr ix ,  a  v a l u e  of c = 0.68 waa used. Figure  14 H 
i n d i c a t e s  t h a t  whi le  no corresponding v a l u e s  of cV are a v a i l a b l e  from O r b i t e r  

damping t e s t s .  s e p a r a t c  t e s t s  performed on a t y p i c a l  damper i n d i c a t e  t h a t  c > c  V H' 
It was t h e r e f o r e  assumed t h a t  cV = 0.900. 

The s e l e c t i o n  of t h e s e  values might ba dispu ted  on t h e  grounds t h a t  

according t o  Figure  14,  c = O.G8 corresponds t o  a frequency of approxima:ely 
H 

250 Hz, while  t h e  system modes range from about 26 t o  200 Hz. A t  100 Hz, cH=0.45. 

Maintaining t h e  same r a t i o  between cH and cV would i n d i c a t e  a corresponding v a l u e  

of cV = 0.62. Computations were made us ing both  s e t s  of va lues ,  and a r e  shown i n  

Table 24 f o r  comparison t o  measured values .  The agreemeat i s  seen  t o  be q u i t e  

good, e s p e c i a l l y  f o r  t h e  c a s e  where cH = 0.68 and cV = 0.90 

Table 24. A Comparison of P r e d i c t e d  and Measured System Damping 

c a . 4 5  
H 

cx=. 68 cH= .68* Reference 
Sys t e m  c p  62 cv= .90 (Experimental) cV5. 90 
Mode - 

Another set of computation@ using t h e s e  va lues  f o r  c and cV, only  t h i s  
H 

time a d iagonal  cZNhl nub-matrix was aseumed f o r  t h e  t h e  O r b i t e r  by s e t t i n g  t h e  

off-diagonal element t o  zero .  These r e s u l t s  a r e  a l s o  shown i n  Table 24, I n t e r -  

e s t i n g l y  e n o ~ g h ,  d e l e t i n g  the. o f f  -diagonal element made l i t t l e  d i f f e r e n c e .  The 

reason is obvious when one looks a t  t h e  modes of t h e  coupled system. There is  so  

much frequency s e p a r a t i o n  between the  O r b i t e r  modes t h a t  f o r  a l l  p r a c t i c a l  purposes,  
*.. 
4 i j  they combine only one a t  a  time i n  t h e  s y n t h e s i s  of system modes. 
P' 

*The o f f  -diagonal dement  of t h e  Orbiter modal damping matr ix  was neglected 
i n  t h i s  case .  
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This conclus ion 1 s  somewhat d i sappo in t ing  i n  the  r e s p e c t  t h a t  a 

comparison of t h e  p red ic ted  modal damping c o n s t a n t s  of the  system t o  those  mer- 

sured d i r e c t l y  does not  e s t a b l i s h  t h e  importance of  inc lud ing  t h e  off -diagonal  

terms. I n  f a c t ,  t h e  o v e r a l l  e f f e c t  of n e g l e c t i n g  the  off -diagonal  term seemed 

t o  make th ings  a l i t t l e  b e t t e r  r a t h e r  than worse,  e s p e c i a l l y  f o r  t h e  f o u r t h  mode. 

One must b e  caut ioned a g a i n s t  drawing t h i s  conclusicr! too r e a d i l y ,  however, 

because t h e  modal damping p red ic ted  i n  the  f o u r t h  system mode was s i g n i f i c a n t l y  

i n  e r r o r  t o  begin  wi th .  The reason f o r  t h e  t-rror is i n d i c a t e d  by a comparison 

of t h e  p r e d i c t e d  and exper imenta l  modes (Reference 171).  The experimental  

mode exh ib i t ed  a l a r g e  displacement cf t h e  O r b i t e r  t a i l ,  whereas t h e  p r e d i c t e d  

mode i n d i c a t e d  p r a c t i c a l l y  no displacement.  The p red ic ted  frequency was 98.26 Hz, 

whereas t h e  exper imenta l  frequency was only  92.25 Hz. The system mode d i d  conta in  

a l a r g e  amount of t h e  f i r s t  O r b i t e r  bending mode whose frequency is 101.41 Hz. 

9.6 Conclusions 

Appl ica t ion  of a matrix method f o r  damping s y n t h e s i s  t o  r e a l  s t r u c -  

t u r e s  has produced encouraging r e s u l t s .  The p r e d i c t e d  va lues  of system modal 
. P 

damping agreed very  w e l l  wi th  measured v a l u e s ,  f o r  t h e  most p a r t .  Resonant 

response was s u c c e s s f u l l y  used t eva lua te  t h e  coupl ing term between the  f i r s t  

two O r b i t e r  modes. Coupling terms i n v o l i i n g  t h e  t h i r d  mode were a l s o  computed, 

bu t  no t  enough response  neasurements were a v a i l a b l e  t o  f u l l y  d e s c r i b e  t h a t  mode. 

Consequently, l a r g e  amounts of uncer ta in ty  were in t roduced i n  those  terms.  

Damping c a l c d a t i o n s  were made wi th  t h e  Booster t e s t  d a t a  a l s o ,  even 

though damping l e v e l s  were very small .  Notable i n  t h i s  case  is t h e  improvement 

i n  o r thogona l i ty  among t h e  Boosier  modes which r e s u l t e d  from t h e  modal separa-  

t i o n  e f f o r t .  While computations involving more than t h e  f i r s t  t h r e e  modes 

f a i l e d  t o  converge, t h e  r e s u l t s  were a t  i e a s t  i n  agreement w i t h  t h e  convecgence c r i -  

t e r i a  der ived i n  t h e  Appendix. Cumputations invo lv ing  only two o r  t h r e e  modes 

d i d  converge, but  t h e r e  was no way of v e r i f y i r g  t h e  r e s u l t s .  The damped modes 

conta ined no cbvious d i sc repanc ies ,  and cne imaginary p a r t s  i n d i c a t e d  reasonab l :~  

smooth cur7es.  

Thc s y n t h e s i s  of O r b i t e r  and Booster  damping mat r i ces  t o  p r e d i c t  System 
' I .  

danping yi*?lded c d s u l t s  wh:ch agreed very w e l l  wi th  d i r e c t  measurement. P a r t  of k % P  

t h e  s u c c r s e  r z t  be a t t r i b u t ? d  t o  the  uae of e x t e r n a l  damping, however, s o  t h a t  

ii P t h e  r e s u l t s  a r e  no t  a s  conclus ive  a s  they might b e  had a d i f f e r e n t  model been 

# 
?I 

chosen. 



PART C. APPLICATION AND FUTURE DEVELOPMENT 



10. Cura,ent 4 D D l i c a b i l i t ~  

P a r t s  A and B document t h e  development of a new method f o r  damping 

s y n t h e s i s  based on t h e  use of s u b s t r u c t u r e  damping mat r i ces .  The method depends 

on t h e  a b i l i t y  t o  determine t h e  damped modes of i s o l a t e d  s u b s t r u c t u r ~ s .  These 

modes a r e  complex, and embody phase a s  w e l l  a s  ampl i tade  informat ion.  While t h e  

use of compiex modes i n  t h e  dynamic a n a l y s i s  of l i n e a r  systems is not  uncommon, 

i t  does r e p r e s e n t  a d e p a r t u r ~  from t h e  mainstream of s t r u c t u r a l  dynamics a n a l y s i s  

and t e s t i n g .  A s  a  consequence, two major o b s t a c l e s  a r i s e :  conceptual  d i f f i c u l t y  

r e l a t e d  t o  t h e  p h l a i c a l  i n t e r p r e t a t i o n  of complex modal v e c t o r s  and p r a c t i c a l  

probl.ems which have n c t  previously  been e n c ~ u n t e r e d  because t h e r e  has  not  been 

a need t o  a c q u i r e  complex modal d a t a .  Thia s e c t i o n  is included t o  h e l p  over- 

come t h e s e  o b s t a c l e s  by provjding a condensation of concepts and f i n d i n g s  which 

a r e  p a r t i c u l a r l y  r e l e v a n t  t o  p r a c t i c a l  a p p l i c a t i o n .  

The combined use of amplitude and phase informat ion t o  e v a l u a t e  dynam- 

i c s  c h a r a c t e r i s t i c 3  is c e r t a i n l y  not  new. C l a s s i c a l  i : ? a l y s i s  of feedback con- 

t r o l  systems has  f r e q u m t l y  employed the  Nyquist diagram which i s  a po la r  p l o t  

of ou tpu t / inpu t  amplitude ve r sus  phase ang le .  Kennedy and Pancu [9] used t h e  

same r e p r e s e n t a t i o n  of d a t a  f o r  s t r u c t u r a l  v i b r a t i o n  a r ~ ~ l y s i s .  The primary d i f -  

f e rence  between these  techniques and t h e  p r e s e n t  use of complex modes is t h a t  

the  former is used t o  completely c h a r a c t e r i z e  a system between d ' s c r e t e  p o i n t s  

over a confinuous frequency spectrum, whereas t h e  l a t t e r  is used t o  c h a r a c t e r i z e  

the  e n t i r e  system i n  terms of a d i s c r e t e  frequency spectrum. Most c u r r e n t  t e x t  

books on s t r u c t u r a l  dynamics d e s c r i b e  cwo a l t e r n a t i v e  methods f o r  response anal -  

y s i s  : t h e  Frequency Response Method and t h e  Normal Mocle Method. The 7 resen t  

work draws upon both approaches and,  i n  a s e n s e ,  b r idges  t h e  gap between them. 

The amplitude and phase response of a s t r u c t u r e  t o  s i n u s o i d a l  e :cc i ta t ion de te r -  

m'ne i t s  frequency response.  Th i s ,  i n  t u r n ,  is used t o  e v a l u a t e  t h e  damped 

modes. Because s t r u c t u r a l  damping tends  t o  he s m a l i ,  t he  damped modes a r e  r e l a -  

t ed  t o  t h e  c l a s s i c a l  (and h y p o t h e t i c a l )  undamped modes i n  a s imple  manner; i . e . ,  

t o  f i r s t - o r d e r  approximation,  t h e  r e a l  p a r t  of a damped mode is equal  t o  the  

undamped modc l ~ h i l e  t h e  magnitude of t h e  imaginkry p a r t  is small compared t o  t h a t  

of t h e  r e a l  p a r t .  Through a l i n e a r  p e r t u r b a t i o n  of the  undamped equa t ion  of 

motion, the  damped nodes a r e  used t o  determine a f u l l  modal damping ~ a t r i x  f o r  

the  s t r u c t u r e  o r  s u b s t r u c t u r e .  
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From t h e  p e r t u r b a t i o n  equat ions  developed i n  Sec t ion  6 ,  i t  l a  ev iden t  

t h a t  t h e  magnitude of modal phase angles  one might expect  t o  f i n d  would be on 

the orcier of 5 ,  the  c r i t i c a l  damping r a t i o .  Thus, f o r  a s t r u c t u r e  having 1% 

damping i n  a p,iven mode, modal phase ang les  on t h e  o rde r  of . O 1  r a d i a n ,  o r  . 6 ' ,  

could be expected. I n  o rde r  t o  d e ~ e r m i n e  such phase ang les  exper imenta l ly ,  mea- 

surement e r r o r s  must be  r e h t i v e l y  smal l .  This ma t te r  is discussed more f u l l y  

i n  Sec t ion  11. 

I t  has been po ia ted  o u t  t h a t  phase ang les  a s s o c i a t e d  w i t h  the  resonant  

response of a s t r u c t u r e  t o  s i n u s o i d a l  e x c i t a t i o n  a r e  l i k e l y  t o  be w:ch l a r g e r  - 
than 5. This may be due t o  t h e  presence of off - resonant  m2de c o n t r i b u t i o n  i n  

the  t o t a l  response a s  w e l l  a s  smal.1 d i f f e r e n c e s  between e x c i t a t i o n  and modal 

f requencies .  The e f f e c t  of t h e  l a t t e r  is  t o  " s p i l l "  some ~f t h e  r e a l  > a r t  of 

the  mode over onto the  imaginary a x i s ;  t b i s  should  be 05 l i t t l e  consequence 

however, because of modal o r thogona l i ty  w i  h r c a p c c t  t o  the  mass m a t r i r ,  a s  

pointed out  i n  Sec t ion  9 . 4 .  Off-resonant mode response must, of course ,  be sep- 

a r a t e d  from resonant  mode response i n  o r d e r  t o  determine the  dampcJ modes. The 

i t e r a t i v e  procedure developed t o  do t h i s  appears  t o  work s a t i s f a c t o r i l y  except  

when modes become too c l o s e l y  spaced,  i n  which c a s e ,  t h e  i t e r a t i v e  computations 

may f a i l  t o  converge. Q u a n t i t a t i v e  c r i t e r i a  f o r  convergence a r e  der ived i n  

the  Appendix, and i n d i c a t e  t h a t  f o r  damping on t b e  o rde r  of I%, modal s e p a r a t i o n  

should be a t  l e a s t  20% t o  achieve convergence. The l a r g e r  the  amount of damping, 

the  more frequency s e p a r a t i o n  i s  required.  "amping on the  o r d e r  of 5% w i l l  

r e q u i r e  a freqeuncy s e p a r a t i o n  of about 50%. i? genera l .  These cond i t ions  assume 

a r a t i o  of u n i t y  between the r e s p e c t i v e  o f f -d iagona l  and diagonal  terms of the  

modal damping matr ix ;  which is t o  say ,  the  two modes i n  c l o s e  proximity t o  each 

o t h e r  a r e  s t r o n g l y  coupled by damping. A s  t h i s  r a t i o  becomes s m a l l e r ,  t h e  

r e q ~ i r e m e a t  f o r  frequency s e p a r a t i o n  is reduceu according t o  the  square  r o o t  

of t h i s  r a t i o .  

Another requirement discovered i n  t h e  course  of t h i s  i n v e s t i g a t i o n  is 

t h a t  thC e x c i t a t i o n  frequency a t  each resonance must be maintained a t  t h e  reson- 

a n t  frequency t o  perhaps f i v e  s i g n i f i c a n t  f i g u r e s  when damping is on the  o r d e r  

of 1%. Resonance may be def ined aa the  frequency a t  which t h e  quadra tu re  

response peaks f o r  t h a t  p a r t  of the  s t r u c t u r e  undtrgoing the  l a r g e s t  amplitude 

of response.  



A s u l f i c i e n t  number of reeponee measurements w i l l  be r equ i red  t o  f u l l y  

desc r ibe  each mode of i n t e r e s t .  I n t e r p o l a t i o n  may be  used where a p p r o p r i a t e .  

I f  poor o r thogona l i ty  of the  "undamped" modes i e  evident  even a f t e r  modal sepa- 

r a t i o n ,  e i t h e r  a  poor mass mat r ix  o r  an in,:omplete d e s c r i p t i o n  of the  motion (not  

enough response p o i n t s )  o r  both may be suspec ted ,  assuming t h a t  the  modes were 

proper ly  tuned during t e s t .  Poor o r thogona l i ty  i n  t h i s  case  w i l l  imply e r r o r s  

i n  damping mat r ix  computations s i n c e  the  same q u a n t i t i e s  a r e  involved.  

Somt c o m e n t s  a r e  i n  o rde r  with regard  t o  choosing a  phys ica l  mcdel f o r  

t h e  exper imenta l  euppor t  of an  e f f o r t  such as t h i s .  I n  r e t r o s p e c t ,  i t  has  become 

c l e a r  t h a t  t h e  use of e x t e r n a l  damping h a s  l e d  t o  c e r t a i n  p r a c t i c a l  d i f f i c u l t i e s .  

I n  t h e  Lirst p lace ,  i t  was hard  t o  determine t h e  c h a r a c t e r i s t i c e  of the  b a l l  

damprre used i n  t h i s  s t u d y ,  D i f f e r e n t  methods employed t o  e v a l u a t e  t h e i r  damping 

"constants"  l e d  t o  d i f f e r e n t  conclus ions ,  thus  ir i troducing cons ide rab le  uncer- 

t a i n t y .  Since  t h i s  informat ion was needed t o  remove rigid-bccl.y r t3ponse  from 

the  t o t a l  resonant  response and t o  account L a  t h e  coupling between r i g i d  and 

f l e x u r e  nodes, t h e  u n c e r t a i n t y  had a  ~ I g n i f i c a n t  i n f l u e n c e  on damping computa- 

t i o n s .  Furthennore,  s i n c e  t h e  lower ryetem modes conta ined l a r g e  amomts  of 

O r b i t e r  rigid-body n c t i o n ,  t h e  in f luence  of r igid-bcdy damping upon p r e d f c t i o n s  

of o v e r a l l  system damping was s t r o n g .  I n  t h i s  r e s p e c t ,  the  1115th-Scale Dynam- 

i c s  Model of S h u t t l e  was not  w e l l  s u i t e d  t o  t h e  o b j e c t i v e s  of a  damping otudy. ~ 1 -  

though a t t empts  were made t o  :;-ncreaoe t h e  l e v e l  of damping by adding i n t e r n a l  

damping, no method was found t o  provide e ~ m g h  damping because of t h e  l a r g e  s t i f f -  

ness  qnd mass of t h e  lead-weighted tubu la r  s t r u c t u r e .  I n  the  f u t u r e ,  t h i s  problem 

can be  avcided by the  use of l i g h t e r  wefght ,  more f l e x i b l e  structures f o r  whioh 

damping t ape  and thr: l i k e  a r e  capable of providing s u f f i c i e n t  damping. F l a t  beam 

type aa w e l l  as hinged s t r u c t u r e s  a r e  possl l1i2it : i re f o r  cons ide ra t ion .  

Of ccurse ,  i n  t h e  case  where t h e  destl ;n ui a ter; t  specimen is d i c t a t e d  

by o t h e r  requirements,  i t  may be necessary t o  "work" wi th  only a  smal l  amount 

c~f in terna!  damping. Improvements i n  phase measurement accu;acy w i l l  u n d o ~ 5 t e d l y  

be requ i red .  Data a c q u i s i t i o n  is d i scussed  i n  t h e  fo l lowin& sect!on. 



! -  . ...- 11. Data Acqu is i t ion  

A t  t h e  o u t s e t  of t h i s  s tudy ,  an  i n v e s t i g a t i o n  w a s  made t o  determine 

t h e  degree of accwacy  t o  which phase ang le  d a t a  could be measured w i t h  a v a i l -  

a b l e  anal9g equipment 1101. Phase e r r o r s  a r e  in t roduced by the t ransducera  and 

cond i t ion ing  equipment, by t h e  recording and playback equipment, and by t h e  

ana l - ,  d a t a  r educ t ion  equipment. An e f f o r t  was made t o  determine t h e  magnitude 

of Lurse e r r o r s  and t o  minimize them whenever p o s s i b l e .  

T e s t s  were conducted a t  LaRC t o  determine t h e  v a r i a b i l i t y  of phase a n g l e s  

measured by d i f c a r e n t  p i e z o e l e c t r i c  accelerometers .  The accelerometers  were 

mounted on a r i g i d  mass a t t a c h e d  t o  a shaker.  R e l a t i v e  phase ang les  between 

p a i r s  of them were recorded versuo frequency f o r  a l l  30 acce le romete r s  used i n  

t h i s  s e r i e s  of t e s t s .  These d a t a  f e l l  w i t h i n  a + 0.1' bandwidth over  a frequency 

r a i g e  of 30-500 Hz. 

To a s s e s s  t h e  magnitude of phase e r r o r  which could be  in t roduced by 

recording and play-back t a p e  systems,  LaRC recorded s i n u s o i d a l  s i g n a l s  on t a p e  

and shipped t h e r  t o  TRW f o r  playback and a n a l y s i s  [ l l ] .  S t a t i c  phase s h i f t s  
.\ r 

tending t o  i n c r e a s e  w i t h  frequency were observed (as  much a s  10' a t  450 Hz). 

These were presumably caused by imperfect  al ignment of t h e  record  and reproduce 

neads. The need f o r  phase c a l i b r a t i o n  of  each channel had been a n t i c i p a t e d  i n  

advance, and a s p e c i a l  c a l i b r a t i o n  dev ice  was b u i l t .  A t  t a p e  speeds of 15  i p s ,  

dynamic phase v a r i a t i o n s  of t 1' were observed a t  450 Hz. These can b e  caused 

~y t ape  s t r e t c h i n g  and low frequency f l u t t e r .  It was decided t o  i n c r e a s e  t h e  

tape speed t o  60 i p s  t o  minimize f l u t t e r  and o p e r a t e  i n  t h e  t a p e  synchron iza t ion  

mode t o  compensate f o r  t a p e  deformation.  I n  t h i s  manner, dynamic phase va r i a -  

t i o n s  were reduced t o  + 0.1' (over a 20-second time p e r i o d ) .  

The t h i r d  p o s s i b l e  source  of e r r o r  1st the analog data r e d u c t i o n  equipment 

which included a S p e c t r a l  Dynamics 1012B Dual Channel Tracking F i l t e r  and a Spec- 

t r a l  Dynamics SDlO9B Co/Quad Analyzer. While amplitude e r r o r s  were a s s e s s e d ,  

phase ang le  e r r o r  d a t a  and/or s p e c i f i c a t i o n s  were unava i l ab le .  P recau t ions  were 

taken,  however, t o  have t h e  system c a r e f u l l y  tuned for optimum performance dur ing  

t h i s  t a sk .  
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I f  t h e  p h a s ~  e r r o r  in t roduced by t h e  CoIQuad Analyzer is a l s o  assumed 

t o  be on t h e  o rder  of 5 O . l O ,  t h e  cumulative e r r o r  would be a b o u t ?  0.2', o r  

.0035 rad ians .  I n  o rder  t o  g e t  meaningful damping measurements, t h e  m o u n t  of 

damping should t h e r e f o r e  be g r e a t e r  than one percent .  This  was the reasoa  f o r  

adding e x t e r n a l  damping t o  t h e  O r b i t e r .  

I n  summary, phase e r r o r s  must be he ld  t o  a minimum. A phase-lock system 

is recommended t o  prevent t h e  e x c i t a t i o n  frequency from d r i f t i n g  and i n t r o -  

ducing phase s h i f t s .  For 1% damping, t h e  o v e r a l l  phase e r r o r  shocld  be he ld  t o  

+ 0.2". This a l lows f o r  approximately + 0. lo e r r o r s  i n  t h e  i n s  trumen a t i o n ,  t ape  - 
handl ing,  and Co/Quad reduc t ion ,  r e s p e c t i v e l y .  A l l  d a t a  should be recorded simu- 

taneously on t ape  f o r  a per iod of 20 t o  30 seconds a t  a t ape  speed of 60 i p s  t o  

minimize e f f e c t s  of low frequency f l u t t e r .  Tape playback should o p e r a t e  i n  t h e  

synchronizat ion mode t o  compensatc f o r  t ape  deformation.  Every channel of d a t a  

should be  phase c a l i b r a t e d  t o  compensate f o r  head misalignment. 

With regard t o  improvinq measurement accuracy,  a ' - d i g i t a l  system o f f e r s  

p o t e n t i a l  advantages over an  analog system. By d i g i t i z i n g  t h e  d a t a  i n  r e a l  time, 

t h e  analog t a p e  problems a r e  e l imina ted  completely s i n c e  records  would be s t o r e d  

i n  d i g i t a l  form. The CoIQuad a n a l y s i s  could then b c  accomplished by d i g i t a l  f i l -  

t e r i n g  and F a s t  Four ie r  Transform methods, r a t h e r  than having t o  use a t r a c k i n g  

f i l t e r  and t h e  Co/Quad Analyzer. The only problem remaining would be one of 

i ~ p r o v i n g  t h e  ins t rumenta t ion  and/or condi t ioning equip men^. This problem has  

not  been considered y e t .  



12. Comparison with Energy Method - 
Two methods for damping synthesis have now been proposed. They are 

distinguished by the form in which substructure damping properties are described. 

In the matrix method they are described by a modal damping matrix, and in the 

energy method, by total dissipative energy. In the matrix method, the spatial 

distribution of damping throughout the structure is represented; in the energy 

method, a kind of average distribution is represected in the sense that total 

dissipation energy is a summation over the structure. Herein is believed to 

be the basic difference between the two methods. 

As might be expected, it is more difficult to determine the modal damping 

matrix of a structure than total dissipative energy. More data are required and 

measurement accuracy is more of a problem because of the need to measure small 

phese angles. In general, it will cost more to get the better resolution offered 

by the matrix method. 

In an attempt to compensate somewhat for the lack of resolution in the 

energy method, Kana and Huzar have proposed the use of engineering judgement to 

categorize structural modes so as to form more than one energy curve for a g!.ven 

substructure. More judgement would then be required to decide which cur-:e to use 

when trying to establish damping energy on the basis of some given kinetic energy. 

An advantage of the matrix method is that it can be fully automated with no human 

interaction required. 

Regarding the question of linearity, it is recognized that the matrix 

metiad presupposes linearity in the equations of motion. This type of linearity 

was also assumed by Kana and Huzar. Although they claim this is not a fundamental 

requirement, their report does not indicate how nonlinear problems might be handled. 

One final consideration is that of uncertainity in the predicted values 

of system damping. Even when making direct measurements, it is not uncommon to 

experience errors on the order of 50%. While the energy method is attractive from 

the starrdpoint that energy data are believed to be fairly reliable, it will be 

difficult if at all possible to assess errors introduced by ignoring the distribu- 

tion of damping. The matrix method is more amenable to a rigorous statistical 

evaluation of error because the information used in computations relates directly 

to measured quantitir~ such as frequency, response and mass distribution; it does 

not involve human judgement. 



13. Final Conclusions 

A matrix method for damping synthesis has been developed. Its 

theoretical basis relies on a linear perturbation of the undamped equation of 

motion for lightly-damped structures. Verification has been accomplished 

using both analytical models, which satisfy the inherent assumptions of linear 

viscous damping, and experimental data from tests of real. structures. The 

results are encouraging in that the nonproportional damping characteristics 

of real structura have been determined for the first time, making it possible 

to synthesize the damping matrix of a structural system from those of its 

component parts. 

The presen: study has encompassed a number of separate investigations, 

related to damping synthesis. The foilowing major conclusions have been 

drawn from this study: 

1. Modal damping in structural systems can be dctermined to first 

order approximation by operating on the substruct~re modal 

damping matrices with the same linear transformations ust?d to 

couple and diagonalize the mass and stiffness matrices. 

Solution of the compiex eigenproblem is not required so that 

the procedure will be easy to incorporate in existing structural 

dynamics computer programs such as NASTRAN. 

2. Coupling procedures involving fixed-interface, free-interface 

and mass-loaded-interface substructure modes were investigated 

for their suitability to damping synthesis. The two major 

considerations included the practical ability to determine an 

adequate description of damping at the substructure level, and 

the convergence of synthesized values of system level damping. 

Convergence of system damping depends directly on the convergence 

of system eigenvectozs. While the fixed-interface mode method is 

superior from the standpoint of convergence, it requires the use 

of static modes which are difficult to determine experimentally 

and contain no damping information. The free-interface mode method 

avoids the use of static modes but converges poorly in general. 

The use of mass-loaded interface modes appears to yield a favorable 

compromise between the other two methods, offering reasonably good 

convergence without the use of static modes. Provided that a way of 
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determining and applying appropriate mass distribution to the 

interface boundaries can be found, this method appears tc hold the 

most promise. 

The basic feasibility of determining substructure modal damping 

matrices irom resonant response data has been established. The 

damping may be nonproportional, leading to a fully-populated 

modal damping matrix. Resonant response data are used to compute 

the damped modes which are also complex. These in turn are used 

to evaluate the off-diagonal terms of the modal damping matrix. 

The off-diagonal terms must in general be included in the 

synthesis. It is only when the modes of a given substructure 

participate one at a time in the system modes that the off-diagonal 

terns (while perhaps comparable in magnitude to the diagonal terms) 

may be neglected. Although this was evidently the case in the 

present application to a real structural system, it will seldom be 

true of more realistic structures. 

The isolation of damped structural modes from total structural 

response to sinusoidal excitation requires an iterative computational 

procedure wherein the damped modes and the modal damping matrix are 

alternately computed. Criteria for the convergence of this procedure 

have been derived and appear to be in agreement with experience to 

date. (See Section 9.4 for example.) 

A significant improvement in the orthogonality of the "undamped 

modes" (real parts of the damped modes) may be achieved as a by-product 

of the damping matrix computations. This will be true whenever poor 

orthogmality of the "raw modal data" (quadrature component of resonant 

response) is caused by the presence of off-resonant mode contributions 

in the resonant response. Improvements will not be realized whenever 

the poor orthogonality is due to having a poor maes matrix sr to an 

inadequate description of the modes. 

Predictions of structural system damping based on experimentally 

determined substructure damping matrices have been verified by direct 

measurement. 
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7. Further development will be required to enabls the separetion of 

closely-spaced modee from the total response at reeonance. Thie ie 

a problem even when the imaginary parts of the modee are of no 

concern; but it ie more of a problem when the complex damped modes 

are being sought be:ause the requirements on  frequency separation 

are more stringent. 

8. It may be necessary in applying this method to define modal frequencies 

independently of resonant excitation frequencies because of the 

difficulty in exciting a structure precisely (five or six-digit 

accuracy) at a modal frequency. In this case, additional information 

will be required to help identify the modal frequencies. 

9. Phase errors introduced by the transducer and analog tape systems 

have each been held to + 0.1'. If phase errors in the Co/Quad 

data reduction are held to a comparable level (and it appears that 

they are), the total measurement error in the analog system should 

be on the order of + 0.2'. This degree of accuracy should permit 

the measurement of nonproportional damping in systems with damping 

levels as small as 1% to within approximately 30% accuracy. The use 

of digital data acquisition systems should further reduce measurement 

errors in the latter two stages significantly. The basic limitation 

would then lie with the transducers and conditioning equipment. 
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14. Recommendations for Future Work 

While the basic methodology for damping syvthesic by the matrix 

method has been developed and demonstrated, there are csrtain limitations 

to its current applicability, as already discussed. The following recommenda- 

tions are made for further refinement: 

1. Investigate methods for separating closely-spaced modes. 

2. Investigate methods for more accurately idectifying modal frequencies. 

3. Implement the use of digital data acquisition and reduction. 

4 .  Design and test a physical model without external damping, where 

the substructures ' resonant frequencies are more closely spaced. 
Compare predicted and measured values of system damping. 

5 .  Develop a systematic procedure for estimating the mcertaintv 

in predicted values of systen damping. This should be based 

on an appropriate statistical characterization of all input 

data. 
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APPENDIX 

CONVERGENCE OF THE MODAL SEPARATION PROCEDURE 

The identification of damped modes depends on being able to implement 

an iterative procedure for removing the off-resonant mode reponse from the total 

reeponse of a structure at resonance. In order for the process to converge, cer- 

tain conditions should be satisfied. While an exhaustive investigation of this 

matter has not been attempted, some relationships have been derived which may be 

interpreted as criteria for convergence. They are not claimed to constitute suf- 

ficient conditions or even necessary conditions in a strict sense. They are 

plausible, however, and seem to be consistent with experience. 

In deriving rhese relationships, it will again be convenient (and 

will avoid cmfusion) to consider the response vector x to represent flexible-body 

motion only. Thus, when discussing the total response of a free-free structure 

excited by forces which do not add vectorially to zero, it will be assumed that 

rigid-body response has been removed. 

In the present study, vibration tests were conducted on "free-free" 

structures which were externally damped. Strictly speaking, they are no longer 

free-frl!e in this case. Coupling betweer the rigid-body modes and flexible-body 

modes is introduced by the dampers. Thus the matrix ciNB, which appears in 

Equation (19b) of Section 6, has nonzero elements. This need not complicate the 

study of convergence. Although forces arising from this term may be included in 

the generalized forces which excite flexible modes, it is eimpler, and does not 

sacrifice generality to ignore them altogether. Besides, this type of damping is 

artificial and will presumably not be encountered in most practical applications. 

Perturbation Analysis -- 
It is assumed that the n equations of motion for a real structure may 

be writte~ in the form [Equation (31) of Section 71 

Consistent with the approach taken in [6j, tne n second-order differential equa- 

tions of (Al) may be put in first-order f o m  leading to a 2n eigenproblem. The 

solution of this eigenproblem will result in a set of comp1.e~ eigenvalues X and 
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eigenvectore 4 ,  where X ie considered to be a complex diagonal matrix, and 4, a 

complex full matrix. The elements of X are of the form 

where a is the modal decay rate for mode j, and w, is the damped natural fre- 
j " 

quency of that mode. The jth complex eigenvector may be expressed in the form 

where 4 is defined to be the classical undamped mode. The equations of motion 
R4 

may be tiansformed accarding to 

where $ is a real matrix whose columns are $ . Then, (Al) becomes R Rj 

where it 
T and $R K 

T is assumed that has been normaiized so as to result in $R p $R = I 
2 R 

$R = wo. Here 1 denotes an identity matrix while w2 denotes a real diag- 
0 

onal matrix whose elements correspond to the undamped frequencies squared of the 
T various modes. The matrix 5 = OR p OR is a full modal damping matrix, i.e., non- 

diagonal in general. It will be assumed that f(t) is of the form 

(A61 

where Px is a vector characterizing the spacial distribution of the forcing func- 
1 

tion f(t), used to excite the jth mode, and g(t) is the corresponding scalar 

function of time. Then, (A5) may be written 
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It will be convenient to represent as the ,an of two matrices 

where t d  is a diagonal matrix containing the diagonal elements of 5, and En 1s 
a matrix with a null diagonal containing all the c If-diagonal elements of 5 .  

Thus, fd may be considered to be the diagonal damping matrix of t:.e system. Equa- 

tion (A7) then becomes 

The Laplace transformation of (A9) leads to 

where H is the frequency response vector in the q coordinate system. Further 
9 

defining a complex impedance matrix Z(in) by 

zn(in: - (in) En, 
one may express (Al0) in the £0- 

Since 2 (in) is a diagonal matrix, a scaling transformation 
d 

may be made leading from (A12) to 

.. 

., 
-112 

where Zn - Zd , z H and P P . Then 'n zd 
Y~ qj q1 



- 
Examination of Z reveals that itr, n 
off-diagonal elements will be much 

3 = RJ * uO, for any frequency wo , J 

diagonal elements will be zero, and that ite 

less than unity in magnitude whenever 

provided that adequate separation exiets among 

the variou* resonant f requencies bf the structure. For theee discrete f r'lquen- 

ciee, (A14) becomee 
- 

The matrix [I + in(i n )I-' has the series representation 
J 

provided t h a ~  the eigenvalues of Zn(iR ) are less than unity in magnitude [lo]. 
j 

In practice, this condition may be established on the basis 1 - f  Gershgorin's disk 

theorem [ll] which states that all the eigenva?~cs of the complex matri.; G lie __ 
in at least one of the disks of radius r = ); l ~ ~ ~ l  centered at G 

j j  ' 
It is 

j k+l 
clear that on the basis of (A161, (A151 may be expressed in the manner 

to first-order approximation. Consistent with this formulation, it ie ue2ful to 

also expand H (inj) and P (in ) in pDwer series about some nominal values 
Y~ 

j 

H (inj) and P (in), retaining only the first two terns in each case. Equa- 
Yo 
j 

Yo 
j 

tion (A17) then becomes 
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Treat ing H , I, and P a e  zeroth-order terms and 6 H  , Zn, and 6P as 
Y 

O i  Yj  
-I J 

f i r s t - o r d e r  terra, one may equate  terms of  t h e  rame order  r e s u l t i n g  i n  

Transformation from che y back t o  t h e  q coord ina te  system, w i t h  t h e  n o t a t i o n a l  

convention Z(iR.) = 2 g i v e s  
J j ' 

I n  order  t o  d e f i n e  P , i t  i s  requ i red  t h a t  some i n i t i a l  approxina- 
qo 4 

4 

t i o n  of t h e  undamped modes be  a v a i l a b l e .  The quadra tu re  a c c e l e r a t i o n  response 

provides t h i s  information.  The normalized a c c e l e r a t i o n  response Hi corresponding 
j 

t o  t h e  t o t a l  response of t h e  s t r u c t u r e  whe. exc i t ed  by a  s i n u s o i d a l  f o r c e  a t  f r e -  

quency bQi is  t h e r e f o r e  considered t o  be t h e  sum of two components 
* 

H.. = [CO(;j) + i 
x, S; 

.J 

where 

g ( t )  = go s i n  R t 
J 

I n i t i a l l y ,  then,  may be ass igned t h e  va lues  
j 



Then, Pqo is 
J 

Since Zd(iR ) 
j 
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defined to be 

has been defined in (Allb), H (in ) is also now defined. 

qol 
1 

The vector P has bezn used in (~7) to represent the total general- 
q 4 

ized force vector in the q coordinate system. With Px considered to be known, 
'P j 

P - (i Px is determined by @ Then 
q. 

3 j 
R' 

The interpretation of 6P as a first-order term in (A181 is valid as long as 
Y1 

An alternative form for Equation (35) of Section 7 applied to the 

first iteration of this procedure, is 

where 4 = H D and D is a complex diagonal matrix having elements 
X 

The vector e corresponds to the jth column of the identity matrix. The matrix D 
j h 

acts as a normalizing matrix such that whnn represents response in only the .. ,. (j 
resonant mode, then ( = R((j) = 

(R, 
to first-o:der approximation. From (A23), 

R4 



Since the diagonal elements of the matrix H D are, by definition, unity, one 

can represent H D as 
90 

90 

where A is a matrix whose diagonal elements are zero. If the eigenvalues of A 

are iess than unity in magnitude, a series representation may be used for 

(Hqo~)-l as discussed earlier. Furthermore, with adequate frequency separation 

of the modes, the elements of A will be small in magnitude conpared to unity. 

In this case, the ipproximation 

is valid. Substitution of this result into (A241 leads to 

Use of (A22), (A26), and (A27) in (~21) gives 

It is clear that (A28) will be true if the elements of A are in fact small compared 

to un?.ty. 

The element A of A is 
k j 



Prom (23), it is found that the j th  element of D is 

The vector (H D)e = 1) H is found t o  be 
s, 1 jj no 

1 

- 1 
Because Zd (in ) is a diagonal matrix 

1 
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for Q = uO . Then ' .I 
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It is c l e a r  from t h i s  r e s u l t  t h a t  t o  keep t h e  magnitude of A k j  smal l  compared t o  

un i ty ,  i t  is requ i red  t h a t  

It is meaningful t o  denote  t h e  q u a n t i t y  

where could be i n t e r p r e t e d  a s  a normalized dynamic a m p l i f i c a t i o n  
k j 

fact01 far t h e  k t h  mode belng e x c i t e d  a t  frequency u . Thus, ( ~ 3 2 a )  n a y  'ue w r i t -  

tet  i n  t h e  form Oj 

where P r e p r e s e n t s  t h e  k t h  element of t h e  genera l i zed  f o r c e  v e c t o r  which 
q- 

P 

"k: 
e x c i t e s  t h e  s t r u c t u r e  a t  frequency wo . The requirement w i l l  be s a t i s f i e d  i f  

1 

< <  1 
- 
0 
'kj 

'03 J 

q 
Okl - 

P 
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there is adequate frequency separation. Otherwise, it will be necessary to shape 

the force distribution P so as to achieve 
X1 

The justification for ignoring & in the first iteration depends on 
being able to write 

It is therefore required that each element eT e. of satisfy the relation 
k n J  n 

- 
From the definition of Zn which follows Equation (~13). 

Then 

e T Z  e = e  T z-1/2 zn p2 T -112 
k n j  k d  ej a ek T ~ - 1 / 2 e  d k k n j j d  e T z  e e z ej 

(A361 

It is recalled that 

and that 

C ". 
u .  where gn is the kjth element of the modal damping matrix 6 for j#k. The largest . 

k j 
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T - 
value of e Z e ie realized whenever Q equals either wo or w . Without loss 

k n j k 0 
j 

of generality, it may be assumed that Q = w < w . Then 
Oj 

0 k 

Furthermore, 



The use of Equation (28a) 

that (A35) may be written 

from Section 6, 
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With regard to frequency separation, Equation (A401 is seen to be more restrictive 

than (A32c) because Gd is, for the most part, expected to be less than unity. 

A tentative criterion for frequency separation can easily be derived 

by writing (A401 in the form 

T - 
where 6 = I([ . / E  I and 8 = I ek Zn ej 1 . Squaring both sides of the equation and J J  kj 

defining w /W = B > 1, gives 
Ok Oj 

9 

For small ck, 

T 
If B is interpreted as the largest value permissible for any le Z e 1 ,  all k , j ,  

k n 3 
then for wo / w  > 1, it would be required that 

k Oj 

W 
0 - - : all j,k 

W 
0 
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For example, not knowing ( 5  /E  ) ahead of time, one might tentatively aeeume 
kj jj 

that (6 /5 ) 5 1. Then it would be required that 
kj jj 

W 
0 - - 

W 
0 1 > ,/L- 2' : all j, k 

For 5 = .01, B = .2, the minimum ratio wo /wo permitted would ba 
k j 

However, the value of B = . 2  was selected somewhat arbitrarily, and will, in fact, - 
depend upon both the size and distribution of the scaled impedance matrix Z. The 

-, 

larger the dimension of Z (1.e.. the larger the number of modes considered), the 

lower one would expect the upper bound B to be. Another way to look at ( ~ 4 1 )  is 

to express leT e I as a functioa of ( E  .I5 ), B and Z . 
k n j k~ jj j 

Thus, the largest absolute value of any element of the scaled impedance is seen 

to be 

T' 
The question of how small lek Zn ej lmsx must be in order to ensure convergence 

has not been investigated. This condir.ioi: appears to be fairly restrictive for 

many conceivable applications. However, it could turn out that modes which &re 

closely spaced in the frequency spectrum have very weak coupling in the damping 

matrix. If two modes are orthogonal mainly because they represent local motion 

in different parts of the same structure, one would expect corresponding values 

Of 'kj 
to be small. Another example is given by a beam which has weak coupling 

between in-plane and out-of-plane vibration, but nearly the same frequency in 

each case. The 2iPlic&tions nere suggest a need for fartlrbr investigation. 
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So far in this treatment, it has been assumed that the values of 5 

are deterministic. In practice, this will not be the case since there will always 

be some element of uncertainty. A statistical treatment of the problem has not 

yet been attempted. One would expect that the implication of rendomness in 5 

might have an impact on the problem of convergence. If so, the requirement8 

involving exciter placement, frequency separation, amount of damping, and measure- 

ment accuracy will be interrelated. A systematic accounting of randomness may 

be of value at some future time, after other refinements have been made, and more 

experience with the method is acquired. 




