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PREFACE

- L A

The present status of fluid mechanics, in particular the fluid mechanics
of turbomachines, is much like a flexible montage: It consists partly of
derived theoretical expressions and partly of expressions obtained through
insight, but to a far greater degree the montage consists of the empirical
results derived from the hard-earned experimental data that also serve
as the bond for the montage. This montage stems from our inability to
solve the complex equations governing real fluid flow for all but the sim-
plest problems. The nature of their nonlinearity in the general case pre-
cludes any closed-form solution. Unfortunately, the flow of fluids in
turbomachines requires the solution to these equations in their most
complex form. Even with our modern computers, the time required to
solve this set of equations is prohibitive from the monetary viewpoint.
Their manual solution has never been considered practical.

Engineers, physicists, and mathematicians have all imposed many
simplifying assumptions to gain some knowledge of the behavior of fluids.
Engineers and physicists found this approach necessary to solve practical
flow problems confronting them. Mathematicians used this approach to
obtain a whole series of elegant closed-form solutions to simplified, usually
steady state, inviseid and incompressible, fluid-flow problems. These
mathematical solutions are in many cases excellent approximations to the
real flows and are used as the starting point for analysis of most real flow
problems. But now our needs extend far beyond these simplified solu-
tions and also beyond the ability of the theorist to provide a true solution
within the imposed limitations of time and cost. The need for speed on
the one hand and for precision on the other has created separated branches
for the experimental and the theoretical approaches to fluid mechanics.

The need for the rapid development of modern gas turbines and rocket
engines to satisfy our expanding needs for communication and trans-
portation has necessitated quick answers, whether approximate or exact,
to many questions long extant and some new ones. The need for answers
has been on the one hand useful in narrowing the gap between the mathe-
matician and the fluid dynamicist, but on the other hand it has forced a
division of fluid dynamics into several disciplines and subgroups within
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vi PREFACE

them. Research is now being conducted on specialized problems in the
realms of subsonic, transonic, supersonic, and hypersonic flows; viscous,
boundary-layer, and secondary flows, two-phase flow and cavitation;
laminar and turbulent flows and flow stability; steady and nonsteady
flows and noise; and flows in cascades, compressors, and turbines. So-
lutions to any of the specialized problems in each of these disciplines are
certainly contributing to a better understanding of fluid flow. The super-
position of all these separate solutions cannot describe the flow of real
fluids in a complex flow field because in many instances the assumptions
as to flow conditions and boundary conditions will be inconsistent and
incompatible.

In the development of a turbomachine, the fluid dynamic designer
must sift through the results obtained in the various disciplines and
determine which are applicable. All his knowledge and skills are required
to reassemble these separate flow pictures artfully in an iterative process
to define the desired blade shapes. He is painfully aware that all his
efforts can at best give him only reasonable assurance that his design
goal can be met and that final blade adjustments or even the need for
some redesign will be determined in the laboratory. The theorist is in a
similar position. He must use the empirical results first to guide and
justify the simplifying assumptions to obtain a tractable set of equatlons
and then again to check the accuracy of his solutions against the experi-

mental results.

Obviously, theory, design, and experiment are interdependent; so too
are the several disciplines of fluid mechanics. Major advances in the
design of turbomachines can only be obtained through constant inter-
change of knowledge among specialists in all these facets of fluid me-
chanics. This conference was designed to promote just such an exchange
of ideas. Its dedication to Dr. George F. Wislicenus is in recognition of his
continuing efforts to narrow the gaps between those interested in the
theoretical, the design, and the experimental phases of flow in turbo-
machines and of his efforts to make us all aware of developments in
the other disciplines.

Credit for the conception, structure, and organization of this conference
goes primarily to Dr. Lakshminarayana, who devoted considerable time
and effort beyond his normal duties to bring this meeting to a successful
conclusion. Arrangements for the symposium were efficiently handled by
Professors N. F. Wood and W. S. Gearhart, Betty Beckwith, and Maude
Gagorik.

Many thanks to Jack Suddreth, Nelson Rekos, and Dr. Robert Levine
of NASA Headquarters, to Irving Johnsen of the NASA Lewis Research
Center, and to Dr. Ralph D. Cooper of the Office of Naval Research for
their considerable effort and support toward making this conference
possible.
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The committee extends its thanks to The Pennsylvania State University
for hosting this conference; to the Office of Naval Research for providing
travel for the overseas participants; and to NASA for its financial support.
We wish to thank Dean N. J. Palladino for his continued encouragement
of this conference and Dr. A. O. Lewis for his enjoyable and enlightening
after-dinner presentation ‘“From Bakewell to Buxton—The Engineer A
Humanist.” Above all many thanks and much credit are due the session
chairmen, who had the primary responsibility for inviting the papers for
their sessions, and to the authors and the discussors without whose
contribution this conference would not have been possible.
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Keynote Address

J. H. HorLoCKk

Cambridge University, England

Professor Lakshminarayana has asked me to provide the technical
introduetion to this conference, and it is a pleasure and an honor for me
to do so.

The idea for this meeting on the fluid mechanics and design of turbo-
machinery was born at The Pennsylvania State University during the
last year of Professor George Wislicenus’ distinguished term of office as
head of the aerospace engineering department and as director of the
Garfield Thomas Water Tunnel. It was felt that there was a need in the
United States for a wide-ranging discussion of turbomachinery aero-
dynamics and hydrodynamics and that it would be most appropriate to
link this discussion with a tribute to Professor Wislicenus, in view of his
own broad interests in the field. There have been two recent conferences
on turbomachinery in Europe—the Royal Society Conference at Cam-
bridge in 1967 (ref. 1) and the Brown Boveri Conference at Baden in
1969 (ref. 2), but I think it is true to say that they did not range as
widely as this conference, which will cover basic fluid mechanics, pro-
pulsion aspects of the field, and design applications to turbomachines
using gases and liquids.

The reason for the wide range of subjects at this conference is the
breadth of Professor Wislicenus’ interests. Each of us who has organized
a session has been closely associated with him and benefited from his
experience and wisdom; and each of us has tended to concentrate in a
different specialist area. Yet Professor Wislicenus has made his mark in
most of them—the design of one of the first supersonic compressors at
Worthington; studies of the performance of the bypass engine (ref. 3);
the work of Smith, Trangott, and Wislicenus (ref. 4) (perhaps the first
essential statement of the streamline curvature calculation method); the
mean streamline method for design of two-dimensional blading (ref. 5)
(widely used in the turbomachinery designed here at Pennsylvania State
and elsewhere); the contributions to design taking account of cavitation
(refs. 6, 7, 8); basic thinking on marine propulsion (ref. 9); and a survey
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2 KEYNOTE ADDRESS

of noise generation (ref. 10). In passing, we may note that not the least
of Wislicenus’ achievements has been the establishment of his own
“school” of research workers, many of whose names appear as joint
authors of the publications I have quoted.

It is the hope of the organizing committee that this meeting will pro-
vide a unifying environment for workers in turbomachinery aerodynamics.
Indeed, we have invited several people not directly in the field to con-
tribute so that we may get a wider view of a difficult subject, for, if there
is one area that has almost every difficulty and complication built in, it
is turbomachinery fluid mechanics. It is unsteady; it may be incompres-
sible but with cavitation; it may be compressible—mixed supersonic,
transonic, and subsonie; it is certainly viscous—including laminar, tran-
sitional, and turbulent flows; it is highly three-dimensional and rotational;
it may contain large separated regions; it is noisy; and it is closely linked
with the thermodynamics of the working fluid. From this complicated
fluid mechanics the designer must make his decision, taking into account
overall cycle and/or propulsive efficiency. Professor Wislicenus’ keen
interest in the design aspects of turbomachinery is reflected in a special
session we have devoted to this subject.

It is perhaps useful briefly to review some recent developments in the
field of turbomachinery fluid mechanics to set the scene for this Con-
ference. In referring to recent developments I would distinguish three
phases.

First of all, in the era during and following World War II, the appli-
cation of classical aerodynamics to turbomachinery design allowed the
gas turbine to become a reality and steam turbines to be further de-
veloped. I have in mind developments such as the analysis of free vortex
flows (which has been associated with the names of Whittle, Griffith,
Tietjens, and von K4rman), which enables a rational design of long turbine
blades to be undertaken; the analysis of potential flow in cascades by
Howell (ref. 11), Kraft (ref. 12), Merchant and Collar (ref. 13), and
others; and the application of aeronautical standards in experimental
testing of turbomachines and their components. This led to the com-
pressor cascade correlations of Howell (ref. 14) and Erwin et al. (ref. 15;
see also ref. 16), which provided a sound base for the design of compressor
blading. The careful analysis of experimental data from turbines and
cascades similarly led to the blading design methods of Séderberg at
Westinghouse (ref. 17), Ainley at N.G.T.E. (ref. 18), and Zweifel at
Brown Boveri, for axial flow turbine blade sections (ref. 19; see also
ref. 20).

Concentrated aerodynamic work continued for a substantial period
with the actuator disc theory of Marble (ref. 21); the general equations
of Wu (ref. 22); the secondary flow work of Mager (ref. 23), Hawthorne
(ref. 24), Smith (ref. 25), Johnston (ref. 26), and Taylor (vef. 27). The
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diffuser work of Kline and his collaborators (ref. 28) and the work of
Emmons (ref. 29) and others on rotating stall are some later examples.
This period perhaps culminated in the outstanding review by NACA on
axial flow compressor design (ref. 30).

The second major development over the last 10 years or so has been in
the massive use of computers to analyze internal flows. Use of the com-
puter has led to the rapid solution of the incompressible cascade flow
(usually using the Martensen (ref. 31), Schlichting (ref. 32), and Stanitz
(ref. 33) methods); of the three-dimensional meridional or axisymmetric
flow (for example, Marsh’s numerical solution (ref. 34) of Wu’s general
through flow equations; of flutter problems (for example, Whitehead
(ref. 35)); of the flow past propellers or fans with widely spaced aerofoils
(where we may not smear out the vorticity over the complete annulus);
and of off-design performance. Perhaps in this stage we may not have
continued sufficiently the careful aerodynamic experiments of the first
stage, and we may have put too much emphasis on uncorroborated com-
puter solutions. It is very often experimental work from the earlier era
that we refer back to in making comparisons between theory and experi-
ment.

I think perhaps we are now in a third era where we are absorbing
new aerodynamic knowledge from other fields—the theory of boundary
layers and acoustics—but at the same time making maximum use of the
computer. This is particularly true in the general area of unsteady fluid
mechanics, which is so obviously of vital importance in turbomachinery.!
Here we see the application of established aerodynamic theory—the work
of von Kdrmén and Sears before the war (vef. 37), for example, together
with new questioning of established ideas (witness Giesing’s work on the
Kutta condition in unsteady flow (ref. 38), something of which you will
see in a film to be shown during the symposium).

If there is a main challenge remaining—a fourth stage of development—
it appears to me that it lies in the synthesis of all this developing fluid
mechanics into the design process. For example, although we know the
pressure distribution on the blades is unsteady, no designers are as yet
calculating this pressure distribution together with the unsteady boundary
layer development and optimizing design as a result. Although estimates
of annulus wall boundary layer growth are made, predictions of angle
variation through the boundary layer due to secondary flow are not in-
cluded in the design—at least not to my knowledge. To include all these
effects is a vast undertaking, principally in the education of designers and
in the integration and management of design and research teams.

! Professor Dean (ref. 36) pointed out some years ago that we would not get any
change in stagnation enthalpy in reversible flow through a turbomachine unless the
flow were basically unsteady.
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So although great progress has been made in the understanding of the

internal fluid mechanics of turbomachines, and in establishing this field
as a recognized technological discipline, much remains to be done, par-
ticularly in the application of the results of research. It is to further this
end that this conference has been initiated jointly by The National
Aeronautics and Space Administration, The Pennsylvania State Univer-
sity and The Department of the Navy.
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Turbomachinery Design Described by

Sim
Similarity Considerations

GEORGE F. WISLICENUS

The dimensionless representation of the operating conditions of turbo-
machinery by the specific speed and the suction specific speed is well
known, although specific speed and suction specific speed are often not
used in truly dimensionless form. It is also known that these expressions
of operating conditions are related to the design of the machine. This
paper presents first an extension of this approach, particularly in the
direction of mechanical design characteristics. Secondly, the paper at-
tempts to establish a reasonably comprehensive picture of the dimen-
sionless field of turbomachinery design. This attempt results in the
concept of a “‘space of dimensionless operating conditions.”’ Every point
in this space can be associated with a set of dimensionless design param-
eters such as diameter ratios, flow coefficients, head coefficients, and the
like, provided certain “design choices” regarding the fluid and the ma-
chine have been made. The core of the design proeess then relates such
sets of design parameters to the dimensionless design form of the machine.
This part of the design process is not described in this paper but only
“located’’ relative to other parts of the overall design process.

For over half a century, the design of turbomachines has been related
to a principally dimensionless expression of operating conditions, the
“specific speed,” which is defined by the statement that any fixed value
of the specific speed describes that combination of operating conditions
which permits similar flow conditions in geometrically similar turbo-
machines. Figure 1 depicts the well-known relation between the runner
design of hydrodynamic pumps and the specific speed.

The specific speed, called in this paper the “basic specific speed,” is
here used in strictly dimensionless form:

ne= Ve (1)

(o.H)*
A list of symbols is provided at the end of this paper. Metric or any other
units may also be used, as long as consistent units are employed for length
and time. This is often not the case, as for example with the pump specific
speed usually used in the United States. There the speed of rotation, =,

7
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I ] l
ns=0.06
W looo)

ng=0.12
(2000)
ng=0.25
(4300)
Tne=0.37 ng=0.60 ng=0.85
(6400) (10 000) (15 000)

FIGURE 1.—Pump runner profiles as a
function of basic specific speed.

is measured in revolutions per minute (rpm), @ in gallons per minute
(GPM), and H in feet (ft), omitting the standard acceleration, g,. This
dimensional specific speed is related to the dimensionless specific speed n,
given by equation (1) as follows:

n(rpm) v/ Q(GPM)
H (ft)3

=17,200 n,

The dimensional values of the pump specific speed are given in figure 1
(and in fig. 18) in parentheses.

The relation between the design form of the machine and the dimen-
sionless specific speed is easily obtained by putting

Uo D¢21r th
n=Do - and Q= V,,,,.-——4 (I—D,-z)

The notations used are defined in figure 2 and are given in the list of

symbols. Substituting these expressions into equation (1) leads to the
following equation:
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_ nvQ B 1 U2 N (Vo \Y? (D2 D;2\12
M= (g H )3 21Ax12 \2g,H U, D, I_D—,-z 2

By assuming fixed values for the flow coefficient V,.,/U: and for the
maximum head coefficient 2¢.H/U%_,,, it is not difficult to derive the
runner forms shown in figure 1. However, one can, by using the condition
of continuity for incompressible fluids, relate the basic specific speed also
to other form characteristics of the runner or of stationary flow passages
adjacent to the runner.

About 35 years ago the concept of specific speed was extended to
include cavitation conditions, leading to the now well-known concept of
“guction specific speed.” Suction specific speed can be expressed in exactly
the same form as the basic specific speed (eq. (2)) simply by replacing
the total head of the machine (H) by the total suction head of the machine
above the vapor pressure (H.,,). A more useful expression of the suction
specific speed (in dimensionless form) is

anlz 1 Vm¢2 3/4 Ui th 12
S= (goHav)3/4= 21/47"”2 (2goHcv> Vm.' (1_Di2> (3)

because it is concerned only with conditions at the low-pressure side of
the runner, and 2¢.H,./Vn? is approximately constant for a wide range
of S values.

by
¢
Co, 2. <00,

%gzqvo% 2?0/4
VELOCITY DIAGRAM sl 2ol
AT POINT 1 RS 1 b,
TANGENTIAL TO W Two 96 %0
CYLINDRICAL STREAM 70§
SURFACE WITH u v

DIAMETER Dy
7 .
Vmo\— [ d°mal
Jo
[ v U“min
- —
1 ! /
STREAM
SURFACE /

1@ Dog / /

Ficure 2.—Profile of a turbomachine runner, defining notations.
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During the last few years it has become apparent that the basic specific
speed and the suction specific speed are only examples of a much wider
range of dimensionless expressions of operating conditions. References 1
and 2 demonstrate the application of this type of consideration to a
variety of engineering design problems. The “power factor” Bp=
n\/P/V52 is a “specific speed”’ that has been used in marine engineering
for many years.

This paper represents an attempt to present the relation between the
dimensionless operating conditions of turbomachines, expressed here in
the form of various specific speeds, to the design form of turbomachines.
A design form shall be defined as the three-dimensional, geometric form
of an engineering device (i.e., a device conceived and judged by fune-
tional, not artistic, criteria). The term ‘“‘design’ is broader, including
properties of the structural materials. Furthermore, the word “design’
denotes a plan (like drawings, specifications, or a computer program) for
an object as well as the action of creating such a plan.

It shall be understood that all geometrically similar machines represent
only one design form so that the entire field of all possible design forms of
turbomachines is dimensionless. Since the corresponding field of all
possible, continuously variable operating conditions can also be presented
in dimensionless form (the specific speeds), it is seen that the relation
between operating conditions and design forms is a relation between two
fields of dimensionless technical informations.

It is hoped that a presentation of the physical facts involved in this
relation will stimulate a mathematically competent engineer or a mathe-
matician to formulate this subject in a theoretically more satisfactory
fashion. In view of this possibility, it should be mentioned that the
terminology used in this paper is that of an engineer, not that of a mathe-
matician. For example, the word “field,” when used here, does not have
its mathematical meaning. In some cases the mathematicially inclined
reader might substitute “class’” for “field.”

OPERATING CONDITIONS EXPRESSED IN THE FORM OF
SPECIFIC SPEEDS ‘

There are, of course, many other operating conditions besides n, Q,
H, and H,, that determine the design of a turbomachine. These operating
conditions may be expressed in dimensionless form in many different
ways. It is merely for reasons of tradition that this writer has chosen the
form of the specific speed for this purpose.

Table 1 presents the operating conditions and corresponding specific
speeds that have been considered by this writer. No doubt other operating
conditions could be considered. The right sides of the equations presented
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can be expressed in as many ways as the rate of volume or mass flow may
be related to the fluid velocities in various parts of the machine (see
table IT).

It is evident that all dimensionless operating conditions (i.e., all
specific speeds) follow the same general scheme. In all cases, the kine-
matically determined velocity (n+/Q)??3, raised to the § power, is divided
by the 2 power of a velocity expressing some forces that determine the

action of the machine; for example, (v/20.H)*?, (A/20,H,,)*?, the
acoustic velocity a¥2, (1/¢/p)3?, and so on. Designating this general,
force-describing velocity by v, tables II and III present the form of all
specific speeds considered here and its relations to various parts of the
machine.

TasLE 1.—Partial List of Dimensionless Operating Conditions (Specific Speeds)

Basic specific speed:

an 12 1 U92 3/4 Vm~ 1/2 D’_ §/2 Dhg 1/2
Ny = = —= - 1—— (a)
(g,,H)‘”‘ /45112 2gaH U; D, D2

Suction specific speed:

1/2 1 Vot \** U D.2\V2
g L) <1—-l (b)
(goH")s “ QliAgli2 2gon Vm‘ D;’

Compressibility specific speed:

nQl 1 w; \3'? (Vi /U Dz\'/?
- - hadd 3 k] 1___
ad’t 2712\ g Ve Va2 Vil D2 (c)

1—2——4——4—7-
( U.-+ U.-2+ U2
Viscosity specific speed:

_nQiz q U.D\*" (DN [ V.. 2 th s 4
(nv)‘”‘ —2_ v —b—a U; 1- D2 @

Stress specific speed:
nQuz 1 onz 34 Di 3/2 Vm' 1/2 th 1/2
o=t = (2Z = ! 1-— (e)
(o./p)au Qitgliz\ 24 D, Us D2
nQi 1 / U2\ /D D2\12
no= L D; @
(g/np? 2x* \gD, D,
Vibration specific speed:

Gravity specific speed:
_ .anlz - 1 Ps Lrag 3/4 —I/_- th 1/2 ( )
- (E/p)*" 2titgiiz\ 2F U; .'2 &
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TanLe 11.—Spectfic Speeds Based on the Representative Velocity (v) Defined in Table 111

an/g 1 Uo 3/2 D.' 3/2 Vm.’ 1/2 th 1/2

(0)3/2=21r"2 G D, U = D

anl2 1/2 ; __2’!_2 1/2

()32 2412 (v) U; D2

an 2 D2 1/2

Oz \ G J\! D2

nQ”“ w; (Vm(/U‘.)lﬂ D)2 1/2
= 1—=

(w)siz ,rx/z ) Vu, Vur Vor\os D

AN

an/z 1 Ua 3/2 Vm, 1/2 bo 1/2
@p2 12\ () U, D,
Q2 1L UN (VN2 f D \12 At
-—f§ =2 ° - Ntz
@32 » \(v) U, D¢ Da

One may also compare the general velocity (v) with the head of the machine in the
form (v)?/g.H

TaBLE II1.—Definitions of the Representative Velocity (v)

v={(g,H)'"? for the basic specific speed

v=(goH»)!"? with respect to cavitation

v=a=the velocity of sound, with respect to compressibility

v=(nv)1"2=(U-v/xD)' " with respect to viscosity

v=_(0c/ps)!"* with respect to centrifugal stresses

v=(ay/ps)''? with respect to fluid-induced stresses

v=g/n=grD/U with respect to any general acceleration g of the system as a whole
v=(E/p)t=D-f with respect to vibrations of the machine at a frequency f

The foregoing comments raise the question whether the 2 power of the
specific speeds would not be a better dimensionless expression of operating
conditions than the specific speeds used here, as the % power would be a
velocity ratio. Since any power of such a ratio serves essentlally the same
purpose, this writer prefers not to depart from the conventional specific
speed more than to use it in its dimensionless form, recognizing that
raising the specific speeds to any power does not make any essential
difference.
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PHYSICAL SIGNIFICANCE OF THE DESIGN PARAMETERS

The various dimensionless ratios appearing on the right sides of the
specific speed equations (tables I and II) are here denoted as “design
parameters.” This does not require any explanation regarding the simple
ratios of iinear dimensions D/ D,, b,/ D,, Di/ D, etc., as these ratios have
clear meanings regarding the form of the “profile’”’ of the machine to be
designed (see fig. 2). The flow coefficient Va;/U; and the head coefficient
20.H/U2=2mV.,,/U, (for zero rotation of the fluid at the suction side
of the runner) determine the velocity vector diagrams at the inlet and dis-
charge edges of the impeller vanes, using the condition of continuity. By
some extensions, this is true also for the nearby stationary vane systems,
provided the general form of the machine has been selected, as will be
discussed later. Figure 3 depicts the information that can be derived from
equations (2) and (3) regarding the design of a radial- or mixed-flow
runner, considering that the direction of the vane ends is closely related
to the direction of the relative velocity of flow (w). (It illustrates that
this relation exists also if the flow on the suction side of the runner has a
circumferential component (V.,, V., Vu).) With the information given
in figure 3 the true design process starts, connecting these pieces of
information to a geometrically, hydrodynamically, and mechanically
consistent structure.

’ bo

v”‘o\

T
Vim; —

v \fm w Zuio)

Yu W Domu Dy
V,(D! min

uv "
4 h Vm,,

Vuh Ay th——
b—U), —~ —:] D;
On

F1cure 3.—Information on runner design derived from basic and suction-specific speeds.
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With respect to mechanical design characteristics, the “stress specific
speed”’

nQue 1 pU\ (DN [V, \!/2 DiF\?

v m(a) (5) () (75s) @
is of particular interest. The stress (o) is here an allowable stress and is
therefore known from the properties and the working conditions of the
structural material. The stress coefficient pU.?/2¢ is of the most direct
significance regarding the centrifugal stress ¢. of a structural rotating
element having the mass per unit volume p,. For example, a thin, freely
rotating hoop has the centrifugal stress coefficient p,U,2/20,=1/2.

For a radial strut of constant cross section, the maximum stress coeffi-
cient at the center of rotation is p,U,2/20.=1.! Straight radial structural
members are of importance for runner blades (as shown in fig. 4), having
radial blade elements to achieve maximum resistance against centrifugal
forces. This condition is fulfilled almost automatically for axial-flow
runners. In such cases the radial blade elements usually do not have con-
stant cross sections, but radially diminishing cross sections. Figure 5
shows the cross-section distribution of straight radial struts having

DEVELOPMENT OF
CYLINDRICAL SECTION i-i

Ficure 4.—Turbomachinery runner with radial blade elements.

LIf the fluid rotates at the same angular velocity as the solid, rotating parts, then
the difference between the mass-density of the structural material and the fluid should
be used in these expressions.
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F1GURE 5.—Area distribution of a rotating radial strut (vane element) of constant stress,
and thickness distribution of a rotating disc of constant siress.

radially constant centrifugal stress including their outer cross section at
radius 7;, where such a stress might be imposed by an outer shroud or by
an extension of the radial element with nonuniform, radially diminishing
stress. The curves shown in figure 5 describe also the thickness distribution
y/w of a rotating dise of constant stress. In this case the radial stress at
the outer periphery is generated by the vanes and vane-holding rim,
considering a standard axial-flow turbine or compressor runner as shown
in figure 6. If the stress coefficient is calculated with the maximum
peripheral velocity U, at radius r,>ry, its value will be higher than shown
in figure 5. For radial blade elements, the stress at radius r, permits a
constant area radial extension of the blade beyond ry, say to ro>r. The
resulting cross-section distribution and stress coeflicients p,U.*/20. are
given in figure 7.

Axially extending, nonradial vanes (as used, for example, with standard
centrifugal pump or compressor runners with backward-bent vanes)
obviously lead to bending stresses in the vanes. The resulting centrifugal
stress coefficient referred to the peripheral velocity at the vane section
considered is

(5)



16 TURBOMACHINERY DESIGN DESCRIBED BY SIMILARITY CONDITIONS
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Ficure 6.—Azial-flow runner of high stress-specific speed, defining notations.
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FiGURE 7.—Area distribution of a rotaling radial element with zero stress at ro and
constant stress from r=r, to r=0.

The notations used are defined by figure 8, except ¢, which varies from
8 for no bending stiffness at the axial end supports of the vanes (i.e., very
thin shrouds) to 32 for completely rigid end supports; ¢ is 2 for vanes
cantilevered axially from a single shroud.

From the above, one can readily draw some conclusions regarding the
centrifugal stress coefficients of runners of various forms. For example, an
axial-flow runner as shown in figure 6 will have a centrifugal stress coeffi-
cient of p,U?/20.=4 if r,/r1=v2, if the disc thickness ratio y/y,=7 at
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\ \ SECTION A-A

Ficure 8.—Bending stress con-
figuration of nonradial vanes,
defining notations.

r=0, and if the blade cross-section ratio a/a,=2.5 at a blade root-to-tip
radius ratio of r/r,=0.75. This may well be close to a maximum for
turbomachinery runners. The corresponding stress-specific speed would be,
according to the equation given for n,, in table I:

an/Z
ac/ Ps

where it was assumed that Dy/D;=0.75, V,.,/U:=0.3, and, of course,
D,=D;.

For a runner with axially extending nonradial vanes, one finds from
equation (5) that p,U.2/20.=1.52, where it was assumed that h/b=1,
r/b=4.2, and 8=60°. The coefficient ¢ was assumed to be 15. The corre-
sponding centrifugal stress specific speed was found to be in the neighbor-
hood of n,,=0.17, where the basic specific speed was assumed to be about
0.12 (2060). The fact that this stress specific speed is only about one-third
that previously calculated for an axial flow runner of very favorable propor-
tions (in terms of stress) reflects correctly the less favorable design form
of a centrifugal runner with backward-bent vanes. Nevertheless, even this
runner form does not come close to representing a minimum of centrifugal

=n,,=0.487 (6)
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stress specific speed. Comparable runners of higher specific speeds would
have lower stress specific speeds than 0.17.

The most important fluid-dynamically generated stresses o, are
probably the bending stresses in the vanes, and are therefore proportional
to the average vane-pressure difference Crp,w?/2. A corresponding bend-
ing-stress coefficient would be

psUl2 Ul m,
2%, L Cowt bl

(7)

where m, is the root section modulus of the vane, b the vane span, I the
vane length, and ¢=2 for cantilevered vanes; or ¢=8 to 32 for vanes
supported on both ends.

It is of interest to compare the fluid-dynamically induced stress (oy)
with the centrifugal stress (o.). This comparison is most direct for centri-
fugal bending stresses in axially extending, nonradial vanes. One finds

agr psr T CLw?

g, ;, 2h Uz2sin B ®)

with the additional notations defined by figure 8.

Evidently Crw?/U,sin 8 is of the order one. r/2h is for geometric
reasons much larger than one, usually in the neighborhood of ten. For
gases, p,/p; is about 1000 so that o.> o,. For liquids with densities in the
neighborhood of that of water, p,/p; lies between 2 and 10 so that o= o,.
For liquid hydrogen, p,/p;> 10 so that o.>a;.

It should be evident that next to the basic specific speed, the suction
specific speed, and (perhaps) the compressibility specific speed, the stress
specific speeds have the best defined influence on the design of turbo-
machines. It is for this reason and because this specific speed and coeffi-
cient are not yet used extensively that this type of stress consideration has
been given a prominent place in this paper.

RELATION BETWEEN VELOCITY DIAGRAMS AND VANE
SHAPE

Figure 3 presented an example of the information on design form
represented by the design parameters derived from the flow-determined
specific speeds. It was pointed out that the complete design form of the
vane system has to be derived from this information by what may well be
considered as the core of the design process. This derivation requires the
entire knowledge and experience available in the field and is a problem
far too extensive to be explored here. Two considerations will be presented
because they describe the nature of the design problem: A real-flow limita-
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tion of the velocity diagrams and the relation between the velocity
diagrams and the shape of cylindrical, coaxial vane sections through
axial-flow runners.

The limitation of the velocity diagrams results from the “separation”
or “stall’” limits of the flow of a real fluid in vane systems. It has been
found by approximate theoretical considerations, supported by test
results, that the mean relative velocity of flow cannot be reduced in a
single vane system to less than about 60 percent of its initial mean value
(i.e., wo/w1 = 0.6 for rotating vane systems and V,/V,20.6 for stationary
vane systems). The reason for this limitation is outlined in chapters 12
and 25 of reference 3 and does not lie within the scope of this paper.
However, the existence of such a limitation is important for the present
considerations. It means that there is a limitation on the velocity vector
diagrams (i.e., on the conditions of design) before the design process is
started. This limitation is different from other limitations such as cavita-
tion limitations insofar as it is not a function of a continuously varying
operating condition, because the dependence of this limit on the Reynolds
number (and thereby on the viscosity specific speed) is not known.

With this limitation of the velocity vector diagrams in mind, these
diagrams will now be related to the vane shapes as appearing in coaxial,
cylindrical sections through axial-flow vane systems. Figure 9 shows the

!

$=0.25

+—AV > —
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Figure 9.—Family of axial-flow vane systems.
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vane shape as a function of the flow coefficient ¢ = V,.,/ U, and of the head
coefficient y = 2¢g,H/ U?. The velocity vector diagrams are shown for pump
(or compressor) flow (vertically up) except for the case ¢=0.25, ¢y=2,
where this condition leads to ws/w; <0.6 for pump operation. Thus this
system is shown for turbine operation (flow from top to bottom) only.

The family of axial-flow vane systems indicated diagrammatically in
figure 9 is not uniquely related to the flow and head coefficients ¢ and ¢
as the rate of changing the angular momentum along the blade; i.e., the
distribution of blade pressure difference affects the blade shape for given
inlet and discharge conditions. However, for some given (say, optimum)
pressure distribution, the (optimum) blade shape may well become a
unique function of the inlet and discharge conditions, or of ¢ and .

Before closing this discussion it is necessary to say something about the
vane spacing. Its determination is theoretically included in criteria con-
cerning a satisfactory vane pressure distribution. However, a more prac-
tical approach is one by way of the blade lift coefficient, which should for
this purpose be expressed in the following form:

2T
Cr=—
Wel
where T is the circulation per blade. For axial-flow machines, this reduces
to the simple form

AV, ¢
CL=2 - (10)
Wy 1
and, for radial-flow machincs,
Vuo Di to
CL_zwm <1 Vs Do>l (11)

One can only estimate that, for vane systems with very little change in
mean static pressure, C; has about the same maximum value as for a
single airfoil in an infinitely extended stream (say, Cr...=1.5). For
systems with retarded relative flow (w,<wy), Cr,.. is lower (say, between
1 and 1.5), whereas, for accelerated relative flow, Ci,,. may be chosen
higher than 1.5 (say, 2, and perhaps still higher, although a true maximum
value of Cz has never been established).

For any estimated value of Cy, equations (10) or (11) determine the
vane spacing ¢ or {, for a given vane length I.
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“DESIGN CHOICES’® AND THE RELATION BETWEEN
OPERATING CONDITIONS AND DESIGN FORMS

Assuming the relation between the velocity diagrams and the vane
shape is extended into the field of radial-flow runners, including the three-
dimensional relation between vane shape and profile shape of the runner,
one can imagine a complete line of connections between the operating
conditions (the specific speeds), the design parameters (which determine
certain elementary design form characteristics and the velocity vector
diagrams), and, finally, the complete design form of a turbomachine.
This connection is as complete as the given operating conditions and the
knowledge available regarding the design of such machines.

However, even under the most ideal circumstances this relationship is
not unique. Certainly there is a vast difference in design between ma-
chinery handling liquids and machinery handling gases. There is another
fundamental difference between pumps (and compressors) on one hand
and turbines on the other. Distinctions of this type will be called ““design
choices,” although many of them are obviously not made by the design
engineer but by the customer. Obviously design choices of such funda-
mental nature have to be made before the design process can start. How-
ever, even regarding what many may consider as design details, certain
choices must be made before one can start with the most elementary
analytical procedures. For example, it is well known that the runner
forms given in figure 1 are not the only forms by which the given specific
speed values can be satisfied.

Figure 10 shows a series of azial-flow runners covering essentially the
same range of basic specific speeds as figure 1, but agreeing in design form

" ny,=0.20
ng,=0.27 ngy=0.07
n~=0.|

ng, =0.55
Ns, =10 ns, =0.20
Ny, =0.35 —1
3 ;
k(M9 1
?} ] |

Ficure 10.—Axzial-flow runner profiles as a function of basic specific speed.
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with figure 1 only in the region of high specific speeds. (n,, denotes the
basic specific speed achieved with a root head coefficient ¢ =1, and n,,
with a blade root head coefficient ¢ =4. For the axial vane sections, see
fig. 9.) On the other hand, figure 11 shows the same range covered entirely
by radial- and mixed-flow runners. It is thus apparent that a choice
between radial- and axial-flow design must be made before the design form
can be determined from the specific speeds. Figure 11 also shows diagram-
matically the stationary parts encasing the runner, indicating that for the
highest specific speeds only a diffuser with axial discharge is a practically
useful solution, thus demonstrating why in this range of n, axial-flow
machines are usually preferred.

Figure 12 describes the design choice between a single-stage, radial-flow
pump and a multistage, axial-flow pump. Here the choice is often de-
batable. Both types of machines have about the same volume and weight,
and, for medium basic specific speeds (about 0.12), about the same
efficiency. The radial-flow pump has a wider stable operating range (at
constant speed). The axial-flow pump has a mechanically much better
casing with respect to high internal pressures, and, by virtue of its large
number of vanes, probably lower amplitudes of pressure fluctuations at
the discharge. In the aircraft gas turbine field, the lower “frontal area’’
was decisive for the choice of the axial-flow design.

Another design choice is that between “single-suction” and “double-
suction” machines shown in figure 13. The double-suction machine has the
advantage of a higher suction specific speed or (for gases) a lower Mach
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Frgure 11.—Radial- and mized-flow pump profiles as a function of basic specific speed.
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SINGLE VOLUTE

Ficure 12.—Design choice between a single-stage radial-flow and a multistage azial-flow
turbomachine.

F16URE 13.—Design choice between double-suction and single-suction turbomachines.

number of the relative flow entering the runner, or higher compressibility
-specific speed. The single-suction machine has the advantage of greater
mechanical simplicity.

Figure 13 also demonstrates still another design choice; namely, that
between the so-called horizontally split and vertically split casing con-
struction. ‘“‘Horizontally split” actually means that the casing is divided
along a plane containing the axis of rotation; “vertically split”’ means the
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casing is divided along planes normal to the axis of rotation. Figures 14
and 15 show the principle of this distinction with respect to multistage
machines. ,

Horizontally split machines are much easier to assemble or disassemble
than vertically split machines, particularly multistage machines. This
construction is mostly used for commercial multistage pumps and com-
pressors and large steam turbines. The vertically split construction has the
advantage of greater reliability and is therefore preferred in rocket
pumps; pumps for highly corrosive, toxie, or otherwise dangerous fluids;
aircraft turbine engines; ete.

There are other design choices; examples include choices regarding
number of stages and “volute” versus ‘“diffuser” pumps. From the
examples given, it will be clear that the term ‘“‘design choice’ is used here
whenever one is concerned with a very limited number of alternates—often
only two. In contrast, operating conditions are understood to be given in
terms of continuous variables (speed, rate of flow, head, allowable stress,
density, etc.).

=B VERTICAL SECTION A-O

SECTION B-8B.

HORIZONTAL {(SPLIT)
SECTION O-H

Freure 14.—“Horizontally split” multistage pump casing.

N ’ N H

@:‘ = ===

Ficure 15.—Vertically split”
multistage pump casing.
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It has been mentioned before that under idealized conditions of knowl-
edge one can imagine a definite relation between the continuously varying
operating conditions and the corresponding continuously varying design
forms. Furthermore, it was stated that this relationship is not unique even
under the idealized assumption that for completely given conditions there
is only one optimum design form. Ii can now be siaied ihai ihe mulitvalued
character of the relation between operating conditions and design forms is
dictated by the discrete design choices described in this section.

REPRESENTATION OF THE FIELD OF TURBOMACHINERY
DESIGN

The last step in this presentation of turbomachinery design is the con-
struction of a mental picture or scheme representing what was said before
" The field of all possible dimensionless operating conditions—here
presented as a number of specific speeds (the left sides of the equations in
tables I and IT)—is imagined as a multidimensional space, each coordinate
being one of the dimensionless, continuously variable operating conditions
(one specific speed). A point in this space represents one complete set of
dimensionless operating conditions.

According to what was said before, every specific speed can be related
to a number of design parameters as expressed by the right sides of the
equations in tables I and II. This relation is multivalued, every particular
solution depending on a number of design choices. However, after all
pertinent design choices have been made, one can imagine that every point
in the space of dimensionless operating conditions can be associated with
a set of numerical values of the design parameters appearing on the right
sides of the specific-speed equations. Accordingly one can draw in the
multidimensional space of operating conditions the loci (lines, surfaces,
ete.) of constant values of the design parameters concerned.

It is somewhat difficult to demonstrate this situation, not only because
of the multidimensional nature of this space, but also because the design
information available for most of the specific speeds is as yet far too
incomplete to permit such a demonstration in definite terms. Therefore
a highly simplified case will be considered for this demonstration.

Only two specific speeds will be considered as being variable. The best
design information available today falls in the hydrodynamiec field, repre-
sented by the basic specific speed and the suction specific speed. These two
specific speeds shall therefore be the variable operating conditions con-
sidered in this demonstration, with all other specific speeds having fixed
values in ranges where sufficient design information is available. One may
consider this example as a plane section through the multidimensional
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space of operating conditions, this section being parallel to the n, and
S axes, and normal to all other coordinate axes of this space.

The next step is that of making the necessary design choices. These
choices shall be the following:

(a) The machine is a pump (not a turbine).

(b) The fluid is a liquid of low viscosity; this determines a sufficiently
low value of the compressibility specific speed and a sufficiently high value
of the viscosity specific speed to make the effects of changes in com-
pressibility and changes in viscosity (and size) negligible.

(¢) The peripheral velocities are sufficiently low and the strength-
to-weight ratio of the structural material sufficiently high to practically
eliminate stress considerations; specifically, the centrifugal stress specific
speed shall be well below 1.

(d) The gravity specific speed is sufficiently high and the vibration
specific speed sufficiently low to practically eliminate gravity and vibra-
tion effects from the design consideration.

(e) The runner design form will be single-suction and will vary con-
tinuously from radial (outward) flow for low basic specific speeds to axial
flow for high basic specific speeds.

These design choices are not yet sufficient to solve the equations for the
basic specific speed and the suction specific speed for the design param-
eters. However, certain design parameters can be chosen on theoretical
and empirical grounds, as follows.

On theoretical grounds, one can select the inlet velocity head ratio
20oH .o/ Vn=3.5, and, on empirical grounds, the hub diameter ratio
Di/D:=0.25. With these assumptions, the equation for the suction
specific speed is reduced to

1 U

T 5.585 Vi (12)

With the flow coefficient V..,/U; so determined by the suction specific
speed alone, the basic specific speed equation can be solved for Di/D, if
one can make a rational assumption about the head coefficient. It will be
assumed empirically that the maximum value of this head coefficient,
which exists at the minimum discharge diameter (Do), 18 2¢.H/Uspin=1.
With this assumption and equation (12), one finds:

Va\"*( D; V* 04585 < D; )"2
'= * i - 1
n,=0.4585 ( Ui) (Domn) (5.5858)12 \D, .. (13)

Figure 16 shows a graphical evaluation of equations (12) and (13);
this evaluation indeed represents the beforementioned “‘section” through
the multidimensional space of operating conditions. In this section appear
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two systems of lines—lines of constant values of the inlet flow coefficient
Vmi/U; and lines of constant values of the diameter ratio D:/Dopin- It is
quite proper to use, for dimensionless coordinates, logarithmic scales,
which give this section the qualities of a computation chart. Thus this
initially somewhat abstract concept of a section through the space of
dimensionless operating conditions appears in a practically useful form,
giving hope that the concept of a space of dimensionless operating condi-
tions may have eventually some practical usefulness.

The diameter ratio Di/D,,,, and the flow coefficient Vn,/U; are of
course not the only design parameters that are of interest and can be
related to the specific speeds. Of particular significance is the maximum
outside diameter, D,_,.. Often this diameter must be larger than Doy,
because of the previously mentioned limit of the retardation of the relative
flow. To arrive at a simple solution, it was here assumed that the circum-
ferential component of the relative flow should not be retarded more than
according to w,,/w.,;=0.65.

Using Euler’s turbomachinery momentum equation as well as w,; = — U;
(for zero rotation of the absolute flow at the impeller inlet), and with
(29.H/Uoyin)?=1, one arrives at ’

Do 1 Do i 2 1/2
Tomexs | | —= 0.3252 0.325 14
Ds'_|:277h< D.‘)+ 2 ] + (14)

where n, is the so-called hydraulic efficiency of the machine, accounting
only for head losses, not for leakage or parasite torque increases. Figure
17 shows the evaluation of equation (14) under the assumption that
7 ="0.90, and using only the equality sign, so that Do,,./D: has its mini-
mum value. Evidently it would be possible to enter this information into
the section through the space of operating conditions represented by
figure 16. This has been done only for D;/D,.,=0.8, 1.0, and 1.2. These
values are represented in figure 16 as dash-and-dot lines to indicate this
family of lines diagrammatically. Since, according to equation (14), the
lines D;/D,,,. = constant are parallel to the lines D,/D,,;,= constant,
it would be difficult to distinguish the D./D.,,, family of lines clearly
from the D,/D,,,, family. However, only such practical considerations of
visibility prevent one from showing other parameters such as Di/Dopary
or 2g,H/U?,,., in the section (fig. 16). The minimum head coefficient
2¢,H/ U2, is derived easily from the assumed value of the maximum
head coefficient 2¢g,H/U?%,..=1 by the relation:
Di.
20 H [ U2 e = (20:H/ Ulid) 75— (15)

Omin D2
Omax

with D,_,./D,.:, given in figure 17.
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Additional design coefficients can easily be caleulated by the elementary
laws of turbomachinery design (as for example the discharge width ratio
bo/D,.;. (see fig. 2) from the condition of continuity, or dimensions of
stationary vane passages adjacent to the impeller), primarily on the basis
of the law of constant angular momentum. Every point in the section
shown in figure 16 therefore represents in principle the whole set of
dimensionless design parameters as completely as permitted by the state
of knowledge available. Figure 3 depicts the type of information repre-
sented by every point in this section (fig. 16), in this case with respect
to the design form of the impeller only.

Before returning to multidimensional considerations on the space of
operating conditions, it is desirable to illustrate the last step; i.e., the
establishment of a complete design form from the design parameters. At
present this step can be demonstrated (under many simplifying assump-
tions) only for the relatively well established field of hydrodynamic
runners, represented in an only two-dimensional “space’ of the operating
conditions, n, vs. S.

Ideally every point in this space, or section, should be associated with a
complete design form. This can be demonstrated here only for a very
limited number of points A, B, C, D, E, and F in figure 16. Figure 18
illustrates diagrammatically the corresponding design forms by showing
the impeller profiles only. The various profiles are correlated with the six
points in figure 16 by the same letters, as well as by the values of the basic
specific speed (n,) and the suction specific speed (S). (Values of the
specific speeds in conventional pump units are given in parentheses.)

Since the impeller design forms actually include the vane shapes as
derived from the velocity diagrams (shown in fig. 3), it is evident that
this last step is a very major step, demanding all the knowledge, experi-
ence, and skill available in the pump design field. It is the core of the
design process. Hopefully, what has been said shows this process in its
proper position within the overall design procedure.

Since D,,./D: given by figure 17 is a minimum value of this ratio, it
is permissible, even desirable, to show in figure 18 a larger ratio D,*/D;=1
whenever D, =< D;.

It is now time to return to the original, multidimensional picture of the
space of dimensionless operating conditions. To aid our imagination, we
will consider at one time the interaction of the n, vs. S section (shown in
fig. 16) with only one of the other coordinates (specific speeds) of this
space. This particular coordinate axis is of course normal to the n, vs. S
plane, giving a three-dimensional picture of this ‘“‘interaction” with a
third specific speed.

The lines in figure 16 represent in this picture surfaces intersecting the
n, vs. S plane. Under the design choices (or assumptions) made at the
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ng * 0.086 (1462)
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F1GURE 18.—Runner profiles as functions of n, and S.
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beginning of this example, these surfaces will intersect the particular =,
vs. S plane at right angles if the third specific speed is either the com-
pressibility specific speed or the viscosity specific speed, the stress, the
gravity, or the vibration specific speed, because it was assumed that the
effects of small changes in the compressibility, viscosity, stress, gravity,
and vibrations characteristics should be negligible. This set of assump-
tions or design choices therefore eliminates (as intended) the multi-
dimensional character of this space, leaving n, and S as the only significant
variables.

As soon as one extends considerations to large changes in compressi-
bility, viscosity, stress characteristics, ete., the picture becomes quite
different. The surfaces, represented in the n, vs. S plane by lines
D./D,_;.=constant and V,.,/U;=constant, curve in planes normal to
the n, vs. S plane. For example, at low viscosity specific speeds (low
Reynolds numbers) the lines in the n, vs. S plane have different positions,
and the surfaces they represent intersect the n, vs. S plane at angles sub-
stantially different from 90°. This is just a geometric way of saying that
the viscosity of the fluid (the viscosity specific speed), and changes
thereof, have substantial effects on the design parameters of the machine.

The very same type of statement can be made for other specific speeds
as the third coordinate, for example, the stress specific speed. It is to be
expected that at high stress specific speeds the surfaces of constant design
parameters, such as D.;/D,;, or V,.,/U;, will intersect an n, vs. S plane
not at right angles and at a substantially different place than at the low
stress specific speed assumed before. To describe this three-dimensional
space of the three operating conditions n,, S, and n,, one could investigate
relations in planes normal to the 7, vs. S plane, for example, in several
n, vs. n, planes at different constant values of S. A series of diagrams,
analogous to figure 16, representing n, vs. ns, 7, vs. S, and n, vs. S planes
at different, constant values of S, n,, and n,, respectively, would describe
the field of single-suction centrifugal and axial-low pump design forms
rather completely and would be of great practical value, particularly for
preliminary design. Unfortunately, presently available information on
the design of such pumps is not nearly sufficient for arriving at an answer
for such a representation that is even approximately unique.

To avoid the impression that the foregoing mental pictures are merely
abstract speculations, figure 19 presents a somewhat qualitative picture
of the final results that might be obtained from a step in the direction of
the n,, axis at constant values of n, and S. The step is taken from the
point G in figure 16, from a centrifugal stress specific speed 7,,<0.1 to a
value between 7,,=0.2 and n,,=0.3. (It would require a fairly detailed
stress analysis to arrive at more definite figures.) As mentioned pre-
viously with respect to hydrodynamic design, it will take the entire avail-
able knowledge, experience, and skill in hydrodynamic and mechanical



F1GUure 19.—Radial-flow runner design as a function of stress-specific speed.

design, and more, to make a reasonably useful attack on the design
problems of the n,, S, and n,, space. This situation can hardly be better
in the n,, n,, and n,, space of gas-dynamic machines, and it appears to be
much farther from a practically useful solution when the viscosity,
gravity, or vibration specific speeds are involved.
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SUMMARY

The field of turbomachinery design is first represented by a number of
analytical relations among various dimensionless operating conditions,
the “specific speeds,” and dimensionless design parameters such as ratios
of important linear dimensions and flow and head coefficients. Every set, of
operating conditions is associated with a corresponding set of design
parameters that can be reasonably unique only after certain design choices
have been made regarding the nature of the fluid, purpose and type of
the machine, and so on.

This situation can be represented as a space of dimensionless operating
conditions, every coordinate representing one of these operating conditions
(i.e., one “specific speed”). Every point in this.space represents a complete
set of dimensionless operating conditions (as complete as possible within
the present state of knowledge).

After all pertinent design choices have been made, every point in this
space can be associated with a corresponding set of design parameters, so
that one can locate in this space the loci of constant values of all design
parameters appropriate for the design choices made. A two-dimensional
section through this space shows these loci as lines of constant values of a
design parameter (fig. 16). Such sections may thus be charts from which
one can read values of the design parameters. Modern means of computa-
tion may not restrict this possibility to the use of two-dimensional, graphical
charts.

The core of the form design process consists in associating with points
in this space—i.e., with complete sets of design parameters (as complete as
permitted by the state of knowledge)-—corresponding design forms (see
figs. 18 and 19). This process requires all the knowledge, experience, and
skill available in the field of design and is not described, only located, in
this paper relative to other aspects of the overall design process.

Persons qualified in mathematical or computational matters should
take over at this juncture.
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LIST OF SYMBOLS

A a area ft?
a velocity of sound ft/sec
b width of impeller, vane span ft
CL lift coefficient
D diameter ft
E Modulus of Elasticity bs/ft?
g acceleration of the whole system ft/sec?
go standard gravitational acceleration ft/sec?
H head ; ft 1bs/Ib =1t
H,, total suction head above vapor pressure ft
h vane thickness ft
l vane length ft
m, section modulus ft3
n speed of rotation ps
Nay Moy Nay Ngy Ny See table I
Ny basic specific speed
N number of vanes
P pressure in a fluid lbs/ft?
Q rate of volume flow ft?/sec
r radius ft
S suction specific speed
t circumferential vane spacing ft
U circumferential velocity of

solid rotating parts ft/sec
14 absolute fluid velocity ft/sec
w relative fluid velocity ft/sec
Weeo vectorial mean relative fluid velocity be-

tween inlet and discharge of a vane system ft/sec
Y axial thickness of a rotating disc ft
v/ ratio of axial thickness of a rotating disc to

its thickness at outer radius r;
B angle from the meridional direction
r circulation, vane circulation ft?/sec

] efficiency : 95 “hydraulic efficiency”
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v kinematic viscosity ft*/sec

P mass density Ibs-sec?/ft*
o stress Ibs/ft?

¢ flow coefficient V,,/U

¥ head coefficient 2¢g,H/U?

Subscripts Not Listed in Connection With Symbol

f fluid, fluid-induced

h hub, measured at hub diameter

) inside, inlet of pumps or compressors

m meridional

0 outside, measured at outside diameter

s structural, solid material

th ‘“throat,” discharge cross section of the
volute

U circumferential, in direction of velocity U

REFERENCES

1. Lang, THomas G., A Generalized Engineering Design Procedure. Naval Undersea
Warfare Center, NUWC TP 137 (San Diego).

2. WERNER, R. A,, anp G. F. WisLicENUS, Analysis of Airplane Design by Similarity
Considerations. ATAA Paper 68-1017.

3. Wisuicenvus, G. F., Fluid Mechanics of Turbomachinery. Dover Publications (New
York), 1965.




TURBOMACHINERY DESIGN DESCRIBED BY SIMILARITY CONDITIONS 37

DISCUSSION

T. G. LANG (Naval Undersea Research and Development Center).
This paper is a refreshing and enlightening new approach to the design of
turbomachines. By utilizing a nondimensional approach it collapses a
large number of design problems into a basic set of design problems,
leading to a better understanding of the field of turbomachinery design.
The fundamental operating conditions which determine most design
problems are listed and the steps leading to the design solutions are
described.

It is pointed out that certain design choices must be made which de-
pend largely upon the specific design situation. The design solution is
then that form which “best” satisfies the problem in view of both theo-
retical relationships and empirical design results which have lead to
highest efficiency, ease of manufacture, etc.

New operating conditions are introduced, such as the stress, gravity,
compressibility, and vibration specific speeds. The latter might be more
generally called the elasticity specific speed. The use of this approach
should be helpful to the designer who is designing a complete system,
since this paper indicates how the turbomachine design might vary as the
inlet pressure, shaft speed, flow rate, head, strength of the material, ete.,
vary. Consequently, this approach could help in selecting the power
source, gearing, and other aspects of a complete design problem by quickly
showing how the resulting turbomachinery form would vary.

The design example of relating the design form with variations in n,
and S clearly demonstrates the usefulness of this procedure.

J. H. HORLOCK (Cambridge University) : Professor Wislicenus’ paper
gives me much food for thought. My own use of the concept of specific
speed has been limited to the basic specific speed, which means the ratio
(low coefficient)/(head coefficient)32 to me. A low basic specific speed
means (relatively) a machine with a small hole at the front for the flow
to go through, but a machine with a strong capacity for changing tan-
gential momentum and doing work. Hence the geometry of the first
diagram of figure 1, and hence my preference for the term “shape param-
eter” instead of ‘“basic specific speed.” But Professor Wislicenus’ intro-
duction of other specific speeds greatly widens visual concepts for the
designer.
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My main contribution to discussion of his paper must be to add a
complication. In the multidimensional space of specific speeds, room
should be found for one or more (dependent, not independent) coordinates
that give the performance of the machine. For example, in figure 16, the
probable efficiency of each of the eight machines should be plotted per-
pendicular to the paper so that the designer can be assisted in his design
choice. (Fig. 1.15 of ref. D-1 was a crude attempt to go in this direction.)

May I also add a philosophical point, or rather a question? Why is it
that pump designers and consulting engineers are the widest users of the
concept of specific speeds in turbomachinery design? Is it in fact that the
gas turbine or steam turbine designer is wallowing in Professor Wislicenus’
multidimensional space and cannot cope with the complexities of the
problem? Or is it that he has been forced by long experience very close
to one point in that multidimensional space, and he cannot get away
from it? I suspect the consulting engineer faced with continuously new
pump designs can get good estimates of where to design from a graph
such as Prof. Wislicenus’ figure 16. The situation is more quickly under-
stood because of the effective elimination of many variables (or extra
specific speeds)-——hence the ready use of the concept.

One final reaction. My first thought on reading this paper was that the
designer could turn to the computer to obtain the answer within the
multidimensional space of specific speeds. But I think he will get little
advantage in doing so. Any “solution’ of a design point in that space must
be associated with an empirical knowledge of performance for such a de-
sign. He may have obtained the geometry (design parameters) that meets
the requirement of a dozen specified specific speeds, but it may be a poor
machine. He will have to compromisc to meet his design point. The
computer cannot eliminate the designer’s judgment based on experi-
mental observation.

WISLICENTUS (author): The writer should like to express his appreci-
ation to all who took the time to discuss this paper. Not every comment
can be explicitly recognized here.

Dr. Lang may be interested to hear that in a report to the National
Science Foundation entitled “Form Design in Engineering” this writer
used in 1967 the term “elastic specific speed” for what he has called now
“vibration specific speed.” The reason for this change in name is that the
writer is as yet not certain that this specific speed is given here in the
best form with respect to steady elastic deformations. The parameter
U/~/E/p. on the right side of this specific speed equation is, for simple
elastic systems, proportional to n/f, where 7 is the frequency of excitation
(e.g., the speed of rotation or a blade-passing frequency) and f a natural
or “critical” frequency of the system. Thus U/~/E/ps has a clear dynamic
significance.
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The writer is not sure that he agrees with Dr. Horlock’s term “shape
factor” for the basic specific speed. Any specific speed is primarily a
dimensionless expression of operating conditions. Its relation to the form
of the machine is derived, and it is multivalued, depending on several
“design decisions.”

The space of dimensionless operating conditions has, indeed, “room”
for performance characteristics such as efficiency, stall margins, and
others. However, most performance characteristics of this type are not
rigorously determined by the specific speeds even after the necessary
design decisions have been made. The lines, surfaces, etc., of constant
efficiency, etc., that can be drawn into the space of dimensionless operating
conditions are empirically, not rigorously located, compared with the
loci of constant design parameters such as diameter ratios considered in
this paper. Of course, this distinction may be only temporary if one
assumes that efficiencies, stall margins, ete., will be predictable under
some future state of knowledge and design of turbomachinery. With a
more complete knowledge than available at present it should certainly
be possible to draw (for example) lines of constant efficiencies (at design
flow conditions) into figure 16 of the paper.

The basic specific speed is not generally used with machines for com-
pressible fluids because the rate of volume flow (@) does not have one
single value. However, if @ is measured always at the same place in the
machines compared, say at their low-pressure ends, then n, can be de-
fined and employed advantageously. In principle one can use the basic
specific speed, the compressibility specific speed, and the stress specific
speed for compressible fluids just as effectively and in the same manner
as the basic, the suction, and the stress specific speeds for machines
handling liquids.

Computers can do, of course, much more accurately what is done by
computation charts such as that shown in figure 16, and the computer is
not restricted to two (or three) dimensions, as are graphical charts.
However, whether graphical or computerized, the results can only repre-
sent the knowledge, experience, and skill that originally went into the
construction of the charts or into the programming of the computer.
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Computer Solutions of Wu’s Equations for
Compressible Flow Through Turbomachines

D. J. L. SmiTH

National Gas Turbine Establishment
Hampshire, England

Two computer programs, known as Matrix Through-Flow and Matrix
Blade-To-Blade, for analyzing the meridional and blade-to-blade flow
patterns are described. The numerical solutions are obtained by finite
difference approximations to the governing Poisson-type differential
equations for the stream function. Solutions for several turbomachines,
giving flow patterns and velocity distributions, are included.

The flow through a modern gas turbine or compressor is an extremely
complicated three-dimensional phenomenon. The flow has strong gradients
in the three physical dimensions—axial, radial, and circumferential—as
well as time and viscosity effects. The observation that the low problem
was not easily amenable to numerical solution led early investigators to
search for a design system having ease of application. The computational
difficulties were resolved by making approximations which permitted the
use of two-dimensional techniques. These approximations were based on
two flow models,

(1) Blade element flow
(2) Axially symmetric flow.

The blade element approach assumes that the flow in the blade-to-blade
or circumferential plane can be described by considering the flow around
blade profiles formed by the intersection of a cylindrical flow surface and
the blading.

Axial symmetry assumes that an average value can be utilized to
represent the state of the fluid in the blade-to-blade plane.

On the basis of these two flow models, several investigators developed
analysis and design methods for the axial-low compressor and turbine.
In the case of the compressor, one of the earliest design methods appeared
in Howell’s classic papers in 1945 (refs. 1 and 2). Using the blade element

43
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flow model, Howell correlated experimental linear cascade data to es-
tablish a limit that has to be placed on the allowable deflection in any one
blade row and determined empirical rules for the deviation and flow loss.
In estimating the overall performance of the compressor, the flow is
analyzed along a “mean’ or “reference” diameter and the gas state is
estimated at planes between adjacent blade rows, making use of the
axially symmetric flow model. Similar methods were developed for the
axial-flow turbine and, of these, the method of Ainley and Mathieson
(ref. 3) is one of the best known. These relatively simple, albeit one-
dimensional methods for analyzing the overall properties of the flow field,
developed when the digital computer was in its infancy and the develop-
ment of methods suitable for hand desk machines was one of the prime
goals, are still, in principle, used widely throughout the aircraft industry
and are likely to remain in use for some time.

More recently, with the advent of the large, high-speed digital com-
puter, techniques (refs. 4 and 5) have been developed for analyzing the
subsonic fluid motion in the meridional or hub-to-tip plane of axial-flow
machines at stations other than the mean diameter (which was used in
the early days) both inside the blade rows and in the duct regions. Similar
methods have been developed for centrifugal and mixed-flow impellers by
Hodskinson (ref. 6) and Wood, et al. (ref. 7). In parallel, several in-
vestigators (refs. 8, 9, and 10) have been working on the problem of
generating a computer solution for the subsonic blade-to-blade flow with
allowances for radial acceleration imposed by the eurvature of the stream-
lines in the meridional plane and for the effects of Coriolis forces.

The purpose of this paper is to present an outline of two advanced
computer solutions that have been developed at the National Gas Turbine
Establishment (NGTE) for the meridional and blade-to-blade flow
patterns. Solutions for several turbomachines, giving flow patterns and
velocity distributions, are included.

MATHEMATICAL ANALYSIS

The mathematical analysis is based on the earlier work of Wu (ref. 11)
who developed a general theory for the three-dimensional, inviscid,
steady flow through an arbitrary turbomachine. The equations of motion
are satisfied on two intersecting families of streamn surfaces known as the
first kind, S1 (blade-to-blade), and the second kind, S2 (meridional), the
complete flow solution being obtained by an iterative process between the
flows in the two stream surfaces.

Stream Function Equation for S1 Surface

In the real blade-to-blade flow, the S1 stream surface would be twisted.
To permit computations of the potential flow in the blade-to-blade plane
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of a stationary or rotating blade row, Smith (refs. 10 and 12) assumed
the stream surface was a surface of revolution.

The shape of the S1 surface is obtained by rotating a streamline in the
meridional plane (fig. 1) about the axis of rotation.! In order to analyze
the flow through any type of turbomachine, it is convenient to rotate the
7,2 axes through an angle 8. Using x and ¢ as the two independent. vari-
ables, the continuity equation and the equations of motion can be mani-
pulated to arrive at a Poisson-type differential equation for the stream
function.

iy 1%
oot e~ F (@) (1)
where the stream function ¢ is defined by

T oy ow.
7 0¢

> (2)

and the velocity components W, and W, are related by
W,=—Wztan A (3)

Equation (3) is the geometrical condition that the flow follows the stream
surface. The derivatives in equations (1) and (2) are those which Wu

BLADE F1GURe 1.—Meridional plane.

STREAMLINE

AXIS OF ROTATION

! For two-dimensional cascade flow the stream surface is a cylinder.
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refers to as special derivatives taken on the stream surface, and the
integrating factor b is proportional to the local thickness of a thin stream
sheet whose mean stream surface is the S1 surface considered.

Stream Function Equation for $2 Surface

To analyze the flow in the meridional plane of an arbitrary turbo-
machine, Marsh (ref. 4) developed a matrix through-flow method. Inside
the blade rows, the flow is analyzed in an S2 stream surface and for the
duect regions between adjacent blade rows, the flow is assumed to be
axially symmetric.

As in the case of the S1 surface, the r,z axes (fig. 1) are rotated through
an angle 6 and x,y are the two independent variables. In a manner similar
to the S1 solution, an equation for the stream function can be derived.

oy o
5;—2+5?—/;=f(x,y) (4)

where the stream function satisfies

% =—rBoW,
or
’ (5)
E
iid =rBoW,
Y

The integrating factor B in equation (5) is proportional to the local angu-
lar thickness of the 82 stream surface and in the through-flow analysis it
is assumed to be proportional to the width of the blade passage. In formu-
lating the stream function equation—equation (4)—the viscosity terms
were omitted in the equations of motion but the entropy terms were
included, and Marsh introduced the effects of irreversibility into the flow
calculation by defining a local polytropic efficiency for expansion and
compression.

For the flow to follow the stream surface, within the blade rows, the
three components of velocity are related by

Wo=~W, tan \— W, tan u (6)

In the duct regions there is no change of angular momentum along a
streamline and the circumferential velocity satisfies the relationship

rV 4= constant (7
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NUMERICAL SOLUTION

The equations for the stream function—equations (1) and (4)—are
nonlinear, but they can be solved iteratively using finite difference
techniques. :

Finite Difference Approximations

In conventional finite difference analysis the domain is covered with a
square or rectangular grid and a five-point star is used since this leads to
a simple approximation for the Laplacian operator. However, for an-
alyzing the flow in the S1 and S2 stream surfaces such a simple grid is not
accurate enough, owing to the irregular boundaries of the flow domain
giving rise to boundary finite difference stars with short limbs and con-
sequently a large truncation error. A good example of this, in fluid
mechanics, is the recent blade-to-blade method developed by Katsanis
(refs. 8 and 9) in which the flow domain is covered with a square grid.
It is clear that the truncation error is significant since the boundary
condition of zero velocity normal to the blade surfaces is not satisfied.

In the NGTE methods, use is made of the powerful software of present-
day digital computers by adopting an asymmetric finite difference grid.
The grid (fig. 2) consists of straight lines normal to the z direction, each
line having the same number of equally spaced grid points. In the case of
the S1 surface, the blade suction and pressure surfaces form curved grid
lines, and for the 82 surface, the inner and outer annulus walls form
curved grid lines so that there are no additional difficulties for grid points
close to the boundaries. The spacing of the straight lines need not be
uniform and where necessary can be varied locally (in the blade leading
and trailing edges, for instance) in order to obtain a detailed picture of
the flow.

GRID POINT
T T
LT =TT
|41 L’ ’E
LA
i
£

L

BLADE -T0-BLADE MERIDIONAL L.
COORDINATES COORDINATES FI1GURE 2.—Asymmetric grid.
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To formulate a finite difference approximation for the Laplacian
operator having an error of k2, where k is the local grid spacing, equations
(1) and (4) were modified by adding the term E(3y/dx) to both sides.
Thus, for the S1 surface the stream function equation becomes

Py 18 S i
o a¢2+E Flzg)+E
or
E}
VY+E a_*qu(x,d,) (8)
X

where E is a function of the grid spacing in the z direction and is zero for
uniform spacing. The operator V¥+E (dy/dz) is approximated by a
ten-point star for the interdependence of the function values at neigh-
boring grid points. To maintain an overall accuracy of order k%, the
derivative dy/dz is also approximated by the use of a ten-point star.

Boundary Conditions

Considering first the S2 surface, the boundary conditions are relatively
simple. At inlet to the turbomachine, the flow conditions are known;
therefore, the stream function distribution is defined for the first straight
line of the grid. The inner and outer annulus walls form limiting stream-
lines, so that for grid points on the walls the stream function is known.
For the far downstream boundary, it is assumed that the shape of the
exit duct is such that the stream function distribution is the same on the
last two straight lines of the grid.

The blade-to-blade problem—S1 surface—poses quite complex bound-
ary conditions. Far upstrcam of the blade row the gas state and flow angle
are known and it is assumed that the flow is uniform. The gradient of
stream function is defined, therefore, for the first straight line of the grid.

Thus, from equation (2)
3
<—¢> = _Q Ad tan a,
ox u Tu

where A¢=2x/N and N is the number of hlades in the row. For the blade
region the suction and pressure surfaces form, by definition, limiting
streamlines so that for grid points on the blade surfaces the stream
function is known. Upstream and downstream of the blade the locations
of the streamlines are not known until the problem is solved. For these
regions, the boundary condition is that there is a circumferential perio-
dicity of the flow. The final condition is that for the far downstream
boundary. In a real blade-to-blade flow the circulation, and consequently
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the outlet flow angle, is largely controlled by viscosity. In a potential flow
model a criterion has to be adopted for fixing the circulation. In the
method developed at NGTE, it is assumed that the flow is uniform and
the flow angle is known far downstream of the blade row. These conditions
fix the gradient of stream function on the last straight line of the grid

B N A N VP PN 3- 3
WiiiCa, 110N cquatxun (2), i3

(6_:#) = Q A¢ tan ay

iz Ta
d

Solution of Banded Equations and Convergence

By making use of the finite difference approximations and the boundary
conditions, the modified stream function equations—equation (8) for the
S1 surface—can be written in matrix form:

[M]-[¥]1=[q] (9)

where [¢] and [¢] are column vectors formed by ¢ and ¢ at each grid
point and [M ] is a band matrix of the influence coefficients of the finite
difference approximations. The method of solving equation (9) for the
stream function is to solve for a given vector [¢], to correct [¢ ] using the
new flow pattern, and then to repeat the cycle of caleulation until the
solution has converged to a specified tolerance. Since the matrix [M] is
“banded,” only the band of nonzero elements is formed and stored in the
computer and a very efficient direct method (ref. 13) is used to solve
equation (9) for a given vector [¢]. This method is better than the
alternative indirect or relaxation method, as used by Katsanis, for the
simple reason that it is very stable numerically.

Numerical stability can be a major problem with any iterative method.
In the matrix through-flow and blade-to-blade methods, the iterative
process has been made stable by introducing a relaxation factor R; thus,

'/’p=¢p—1+R(¢’_‘//p—l) (10)

where

¥ calculated value for the pth iteration
¥p  value taken for the pth iteration
¥p-1  value taken for the (p—1)th iteration.

Additional stability was obtained in the through-flow method by limiting
the percentage change in ¢ between successive iterations, a restriction
which is automatically removed as the solution converges. For the blade-
to-blade method, the stability was further improved for compressible flow
by adopting a ‘“marching’”’ process of increasing the inlet Mach number
gradually to the required value.
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When the stream function is known, it is possible to calculate the
products pW,, pW4 and pW,. To calculate the density and hence the
velocity components a tabular method, as developed by Wu, is used in the
through-flow method. For the blade-to-blade problem, an alternative
method, suggested by Gelder (ref. 14), is used. In this method, the cal-
culation of density is allowed to lag the stream function calculation by
one iteration. This has the effect of improving stability and for com-
pressible flow, the relaxation factor R—equation (10)—is a function of
the maximum Mach number.

BLADE-TO-BLADE FLOW PATTERNS

Eight examples are given to illustrate the use of the blade-to-blade
computer program.

(1) Impulse turbine cascade

(2) Seventy-degree camber blade

(3) Axial turbine rotor tip section

(4) Axial turbine rotor root section

(5) Axial turbine stator blade

(6) Turbine stator cascade

(7) Three-dimensional flow past turbine stator blade
(8) Radial cascade diffuser

Impulse Turbine Cascade

The first example is the incompressible flow past a 112-degree camber
blade in cascade. The blade profile (fig. 3) is an impulse-type turbine
blade having a pitch/chord ratio of 0.59 and 101 degrees flow deflection.

-L (a) 112 DEGREE CAMBER BLADE >i1.17o
5°°(
INLET

OQUTLET

-t

"]
FLOW FLOW
ANGLE ANGLE

z

35¢
24-84°
Y
Ficure 3.—Blade profile-exact B\

solulions. (b) 70 DEGREE CAMBER BLADE
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The velocity ratios are plotted in figure 4. (Velocity ratio is defined as the
ratio of local surface velocity to far downstream velocity.) Also shown is
an exact solution obtained by Gostelow (ref. 15). The matrix solution is
in very good agreement with the exact solution.

Seventy-Degree Camber Biade

This blade profile (fig. 3) has a pitch/chord ratio of 0.9 and 70 degrees
of camber. The two-dimensional, incompressible velocity distribution for
—70 degrees of incidence is compared with an exact Gostelow solution in
figure 5. In general, the matrix solution is in excellent agreement with the
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exact solution. It is noticeable that the main discrepancies are in the
region of the blade trailing edge on the suction surface. For this region,
the exact profile coordinates are a long way apart and it is probable that
errors in interpolating the coordinates for the matrix solution have caused
the discrepancies. There seems no reasonable doubt that complete agree-
ment would have been obtained if the exact airfoil shape had been more
fully defined. This example shows that there is no problem in analyzing
high-incidence flows. The streamline pattern, calculated by the matrix
method, is shown in figure 6. It may be seen that the leading edge stagna-
tion point is well round on the suction surface.

Axial Turbine Rotor Tip Section

This example of two-dimensional, incompressible flow past a rotor tip
section is given to illustrate the type of detailed flow pattern that can be
calculated. The blade section is typical of a high pressure ratio turbine
stage and is formed by a parabolic camber line and an analytical thickness
distribution (ref. 16). Initially, the profile was designed so that the blade
inlet angle was equal to the gas inlet angle of 18 degrees, a condition often
referred to as zero geometric incidence. Figure 7 shows the blade profile.
The surface velocity distribution around the blade leading edge is plotted
in figure 8. It may be seen that it has the undesirable characteristic of a
high peak on the suction surface. Such effects have been found by Hall
(ref. 17). This is due to the large induced incidence which can be seen
from the streamline pattern in figure 9a. The high suction peak was
reduced by effectively drooping the nose of the blade (fig. 7) by 10 degrees
so that the profile was operating at — 10 degrees gecometric incidence. The
resulting velocity distribution is shown in figure 8 and, from the streamline
pattern (fig. 9b), it may be scen that the induced incidence was consider-
ably reduced. These results serve to show that computer methods can be
very powerful in analyzing detailed aspects of the flow which would prob-
ably be very difficult to find experimentally.

Fi1GURE 6.—Streamline patlern for leading
edge of 70-degree camber blade.

i
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ZERO INCIDENCE

FigUure 7.—Turbine rofor tip sections.

Ficure 8.—Velocity distributions for
turbine rotor tip sections.
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Axial Turbine Rotor Root Section

This blade section is typical of a high pressure ratio turbine stage. The
basis for the design is the same as that of the previous example. The gas
inlet angle was 48.9 degrees and the blade geometry at inlet was chosen so
that the geometric incidence was zero. At outlet, the blade passage was
adjusted to satisfy the gas outlet angle of —63.9 degrees by the empirical
rule of Ainley and Mathieson (ref. 3). The blade surface velocity for two-
dimensional, incompressible flow (fig. 10) shows that a detailed solution
can be obtained in the region of the leading edge stagnation point. A
particularly interesting feature of this blade section is that, according to
the Ainley and Mathieson rule, the deviation? is 2.87 degrees negative.
The velocity distribution for the trailing edge region is shown, enlarged,
in figure 11 for an outlet flow angle of —64.15 degrees—a difference of
only 0.25 degrees from the Ainley and Mathieson value. It is seen that on
both the suction and pressure surfaces there is a rapid rise in velocity as
the flow passes around the trailing edge. At the blade cutoff points, the
velocities are equal, a criterion often used for fixing the outlet flow angle
(ref. 18). Also, if the two surface velocity distributions are extrapolated
then the loading at the blade trailing edge is zero, thus satisfying Preston’s
theorem (ref. 19) that equal and opposite vorticity should be shed from

Fiaure 10.—Velocity distribution for 151
turbine rotor root section. VELOCITY
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2 Deviation is the difference between the fluid and blade outlet angles.



COMPUTER SOLUTIONS OF WU’S EQUATIONS FOR COMPRESSIBLE FLOW 55
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the two blade surfaces. The streamline pattern is shown in figure 12. It
is seen that the flow leaves the trailing edge smoothly. This example
shows that, applying existing velocity distribution criteria, the potential
flow model gives an outlet flow angle in good agreement with well-
established empirical rules, although it is perhaps surprising to find that
the deviation is negative.

Axial Turbine Stator Blade

This example of two-dimensional, compressible flow is for the mean
diameter section of a stator for a NASA turbine (ref. 20) operating at the
design mass flow. The theoretical and experimental distributions of blade
surface Mach number are compared in figure 13. In general, the computed
Mach numbers agree well with experimental data. As mentioned earlier,
Katsanis has developed a similar blade-to-blade method. In his recent
paper (ref. 21) mention was made of an attempt to analyze the flow past
this blade. He found that it was not possible to obtain an exact solution?
and he had to resort to an approximate solution.

Turbine Stator Cascade

This turbine cascade was fitted with blades having the same profile as
the mean diameter section of the second-stage stator blades of the turbine

3 The term ‘“‘exact” has been used as meaning a numerical solution from the com-
puter program.
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Ficure 12.—Computer output—streamline pattern for turbine rotor root section.

described in reference 22. Two compressible flow solutions for the blade
surface Mach number distribution are compared with experimental

data in figure 14. The computed Mach numbers agree well with experi-
mental data for this example.
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Three-Dimensional Flow Past Turbine Stator Blade

The flow through the two-stage turbine mentioned in the previous
example has been analyzed using both the blade-to-blade and through-
flow programs. The results of the through-flow analysis are presented in a
later section of this paper.

Two matrix blade-to-blade solutions for the flow past the second-stage
stator blades were computed. The first solution was for two-dimensional
flow (i.e., cylindrical stream surface of constant thickness) and the outlet
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flow angle was calculated from the Ainley and Mathieson empirical rule.
The second or quasi-three-dimensional solution is a refinement in that the
stream surface thickness was varied. The variation of thickness was
determined from a solution for a meridional flow pattern using the
through-flow program and the outlet flow angle was determined by
applying the condition of zero trailing edge loading.

A comparison of observed blade surface Mach numbers with the
theoretical calculations, for the mean diameter section, is shown in’ figure
15. The most striking point here is that when some of the interactions
between the meridional and blade-to-blade flow patterns are introduced
the quasi-three-dimensional solution is in good agreement with experi-
mental data. As mentioned earlier, this mean diameter section has been
tested in cascade. The cascade Mach number distribution shown in figure
14s corresponds to the turbine flow conditions given in figure 15. By
comparing the cascade and turbine results, it may be seen that the three-
dimensional flow effects are significant on the peak surface Mach number.

Radial Cascade Diffuser

To illustrate the types of turbomachines to which the matrix blade-to-
blade method can be applied, the last example is a radial cascade diffuser.
The initia) calculations were made for incompressible flow with the cascade
operating at zero geometric incidence and the outlet flow angle equal to
the blade outlet angle (i.e., zero deviation). The theoretical velocity
distribution is shown in figure 16. The peak near the trailing edge is due to
the potential flow model picking up the rapid change in blade surface
curvature in this region. In real flow, such peak velocities would be
removed by the presence of boundary layers. By extrapolating the suction
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--- TWO DIMENSIONAL } MATRIX
—— THREE DIMENSIONAL SOLUTIONS

LOCAL
MACH o

NUMBER L7 N SUCTION
S e~ N, SURFACE

SURFACE

FIGure 15.—Blade surface Mach X

numbers for two-stage turbine 0 50 100
stator blade. PER CENT AXIAL CHORD




COMPUTER SOLUTIONS OF WU’'S EQUATIONS FOR COMPRESSIBLE FLOW 59
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surface velocity distribution from 90 percent of the way along the surface
(i.e., just upstream of the rapid acceleration in the trailing edge region),
it is seen that the condition of zero trailing edge loading is not satisfied.
By increasing the outlet flow angle such that the deviation is 4.5 degrees,
it is seen that the loading at the trailing edge satisfies Preston’s theorem.

MERIDIONAL FLOW PATTERNS

In this section, four examples are given of meridional flow patterns
obtained from the matrix through-flow program.

(1) Two-stage axial-flow turbine

(2) Single-stage axial-flow turbine

(3) Low pressure ratio centrifugal compressor
(4) High pressure ratio centrifugal compressor

Two-Stage Axial Flow Turbine

This turbine (ref. 22) is the one referred to in the previous section. In
applying the matrix through-flow program, the effects of irreversibility
were taken into account by assuming that the local polytropic efficiencies
were constant throughout the flow field. From the comparison of the
experimental and predicted profiles of axial velocity at the turbine exit
shown in figure 17, it is seen that the through-flow theory gives a fair
estimate of the axial velocities. Recent work by Gregory-Smith (ref, 23)
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F1GURE 17.—Axial velocity profiles far 4001
downstream of two-stage turbine.
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on annulus wall boundary layers shows that it should be possible to
improve the predictions in the region of the end walls.

The turbine was fitted with static pressure tappings in the annulus
walls. Figure 18 shows comparisons of observed pressure distributions
with the theoretical calculations. The static pressure ratio is defined as the
ratio of local static pressure to turbine inlet stagnation pressure. The main
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point to note is the presence of an inverse pressure gradient in the region
of the second-stage stator blade—static pressure on the inner wall greater
than that at the outer wall—which was successfully reproduced by the
through-flow analysis. An alternative to the through-flow method is what

is known as the streamline curvature duct flow method (ref. 5). Frost
LS Iy DI 1S I, ) g,

(ref. 24) has found that this method, which is widely used throughout the
aircraft industry, did not predict the inverse pressure gradient. This
example serves to show that when calculating the detailed internal
aerodynamics, the flow inside the blade rows must be analyzed if a fairly

accurate solution of the flow pattern is required.

Single-Stage Axial Flow Turbine

This single-stage, lightly loaded turbine was designed and tested at
NGTE (ref. 25). In the initial through-flow analysis, no allowance was
made for annulus wall boundary layers and the local polytropic efficiencies
were assumed to be constant throughout the flow field. The predicted
velocities (fig. 19) at turbine exit were in fair agreement with the observed
values. Some measure of improvement in the region of the outer annulus
wall was obtained by Herbert et al. (ref. 26) by allowing for the blockage
caused by the boundary layers on the annulus walls. Improved matching
of the experimental and predicted velocity profile would require a detailed
boundary-layer analysis along the lines suggested by Gregory-Smith.
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Low Pressure Ratio Centrifugal Compressor

This centrifugal compressor was designed and tested by a firm in the
United Kingdom. The results shown in figure 20 are the experimental and
theoretical distributions of static pressure ratio along the shroud. The
static pressure ratio is defined as the ratio of local to inlet static pressure.
In performing the initial calculations, the values of local polytropic
efficiency were assumed to be constant throughout the flow field and the
slip factor equal to unity. The solution, although giving the correct trend,
is in poor agreement with the observed pressures. By assuming a non-
uniform distribution of local polytropic efficiency and a slip factor of 0.91,
the matching between experiment and theory was improved. This example
shows that if a scientifically based model for the flow loss can be formu-
lated then the through-flow theory might eventually be used to provide a
quantitative picture of the flow pattern.

High Pressure Ratio Centrifugal Compressor

This example of a centrifugal compressor has been included to illustrate
the use of the through-flow program at the design stage of a machine. The
initial and modified (final) hub-shroud profiles are shown in figure 21.
The only difference between the two impellers is that for the modified
machine, the inducer extends beyond the leading edge of the splitter
vanes, thus giving a deeper inducer section. The relative Mach number
distributions along the hub and shroud profiles are shown in figure 22. It
will be seen that the severe velocity gradient in the region of the inducer
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leading edge for the original impeller is to some extent alleviated in the
modified impeller. This example demonstrates the effects of modifications
that are possible within the limits of the same inlet and outlet areas and
overall length of the machine. A new design may, of course, permit
variations on all these factors and the use of a computer method helps in
choosing the best combination.

CONCLUSIONS

Computer solutions for the meridional and blade-to-blade flow patterns
in turbomachines have been described. The theory is based on the earlier
work of Wu (ref. 11) and the numerical solution is obtained by finite
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difference approximations to the governing equations. The main con-
clusions are the following.

Blade-to-Blade Flow

(1) Comparisons with exact cascade solutions show that the blade-
to-blade program gives an accurate solution for incompressible flow.

(2) Analysis of turbine rotor blade sections shows that detailed flow
patterns can be obtained which would probably be very difficult to find
experimentally.

(3) A comparison with experimental data for a turbine stator blade
shows that the method gives a good estimate of high subsonic flow. This
analysis demonstrates that the asymmetric finite difference grid developed
here is an advancement over the conventional square or rectangular grid.

(4) An example of a two-stage turbine illustrates that the three-
dimensional pressure distributions can be predicted quite well.

Meridional Flow

(1) The matrix through-flow theory has enabled significant advances
to be made in calculating meridional flow patterns. An analysis of a two-
stage turbine shows that the theory gives a good estimate of annulus wall
static pressure distributions.

(2) An example of a centrifugal compressor shows that small modifica-
tions to the impeller can have significant effects on the flow field. This
analysis demonstrates that computer methods can help in selecting the
“best’’ geometry.

(3) A simple calculation of annulus wall boundary layers for a single-
stage turbine enables the through-flow predictions to be improved by
allowing for the blockage caused by the boundary layers.

(4) Improved matching between experimental and predicted flow
profiles depends on finding a better loss model and an accurate solution
for the boundary-layer development along the annulus walls.
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LIST OF SYMBOLS

Q Mass flow
7,2, ¢ Radial, axial, and circumferential coordinates
14 Absolute velocity

7 v wralanidey
W locit

Relati vE VEiOTivYy
z,y Coordinates with tilted axes
A\, a, ¢ Flow angles

¥ Stream function

Subscripts

d Far downstream of blade row
u Far upstream of blade row

z z-component

] y-component

) Circumferential component,
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DISCUSSION

T. KATSANIS (NASA Lewis Research Center) : Mr. Smith has shown
that approximate three-dimensional solutions for flow through a turbo-
machine can be obtained by a combination of meridional and blade-to-
blade solutions. This is fairly well known. However, we have here a fair
number of examples showing both the strengths and weaknesses of these
methods in applications.

Limitations of the method should be clearly stated. It appears that the
flow must be absolutely irrotational, steady relative to the rotating blades,
and nonviscous, and that the flow must be complete subsonic. There must
be other assumptions. Certain advantages are stated for the method and
the program, but the basic assumptions and limitations are not specified.

The author should specifically state how his method differs from those
currently available. For example, a nonorthogonal mesh is used, but the
corresponding finite difference equation is not given. Another example is
equation (8), where a term has been added, but no explanation of its
significance or why ¢(z,¢) is not also a function of 3y/dz.

Some comments must be made on one error. This is the statement that
the boundary condition of zero velocity normal to the blade is not satisfied
in references 8 and 9. This statement is not true. Further, the statement
is made that finite difference stars with short limbs leads to large trunca-
tion errors. It is true that the standard finite difference equation for
unequal spacing has a larger truncation error than with equal spacing.
However, this does not mean that the error in the solution will be larger.
In fact, with a rectangular mesh, there is theoretically no loss in the
aceuracy of the solution due to an irregular boundary. This has been
amply demonstrated by extensive use and experimentation with the
programs of references 8 and 9.

Mr. Smith does not discuss the reason for the use of iterative or relaxa-
tion methods for solving matrix equations. There are two main reasons,
one being the numerical stability which can be controlled by using a
suitable rigorously calculated overrelaxation factor, which assures
numerical stability with an optimum rate of convergence. The other
reason is economy of storage, which is not shared by most direct methods.
Certainly numerical stability cannot be improved with a direct method.
The advantage of a direct method would be in reducing the computer
calculation time. This reduction in computer time could conceivably be a
real advance, provided that storage requirements are not significantly
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increased, and that, as indicated, numerical stability is achieved. I would
be very much interested in seeing a comparison of computer times for Mr.
Smith’s program with the times for a method using optimum over-
relaxation.

M. D. WOOD (Cambridge University): The paper indicates the
magnitude of the recent advances made in calculating fluid flow in turbo-
machines. The examples given show that compressible flow in turbine
configurations can be predicted to a high degree of accuracy. However,
as soon as compressor-type machinery is considered, the position is not so
satisfactory. No one is really surprised, because the influence of boundary-
layer growth and separation in compressor flow is likely to introduce
effects which are of dominant importance. These effects are only recog-
nized in the Wu equations through the presence of losses, and in general
even these losses represent average or “smeared” values taken over
appropriate computing planes.

It is clear that there are few shortcomings in the equations of motion
which Wu manipulates—the shortcomings are only in the simplifications
we impose in order to obtain quick gains in current predictive accuracy.
I therefore suggest that we should now have the courage to involve our-
selves in combining the currently developing detailed calculations of the
viscous effects in turbomachinery with the typec of basic Wu program
described by Mr. Smith. To take examples, we can see how boundary-
layer separation in blade corners will lead to warping of stream surfaces.
This warping can, in principle, be incorporated in the Smith-type pro-
grams. Again, incorporating the predicted development of the boundary
layer on blade surfaces would give better understanding of the ‘slip”
factor for use in investigations of centrifugal compressors. Finally, in-
clusion of the turbulent diffusion effects between adjacent fluid layers
would lead to more realistic representation of the fluid forces in the Wu-
type equations.

Although this sounds like a daunting program, it is no more daunting
than the thought, 10 years ago, of putting Wu’s equations on a computer.
Perhaps the author would put my hopes into perspective by explaining
what he intends to do next.

A. 8. MUJUMDAR (Carrier Corporation): As pointed out by Dr.
Katsanis, since the program itself is apparently the major contribution
made by the author, it is unfortunate that it cannot be released for
publication. Any comparison with the generally available Katsanis
programs must, therefore, remain one-sided. The overrelaxation pro-
cedure using proper grid spacing and an optimized overrelaxation factor
should yield numerically stable results for well-guided geometries. As
suggested by Wilkinson (ref. D-1), the maximum relative velocity change
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between successive iterations should be taken as the criterion for con-
vergence rather than the maximum streamline deviation chosen by
Katsanis.

Since reference 12 in the author’s paper is not readily accessible, may I
suggest that the finite difference analysis and the numerical scheme be
included as an appendix to the paper when it is published. To my knowl-
edge there is no ‘“‘conventional” finite difference scheme to solve the
Poisson-type partial differential equations; a number of variations are
possible.

Referring to figure 15 of the paper, could the author explain why the
two-dimensional matrix solution appears to give better agreement than
the three-dimensional solution with the experimental data for the pres-
sure surface.

Finally, I wish to bring to the author’s attention the experimental
study of the flow in the blade passages of a radial turbine reported by
Glenny (ref. D-2), which may be used to provide further checks for the
computer code.

R. C. DEAN (Creare Inc.): I'm a little bit disturbed by perhaps the
implications that you suggest about the use of potential analysis in
centrifugal compressors. In my experience, the potential analysis usually
considerably overpredicts the pressure rise in the wheel and underpredicts
or predicts a low relative Mach number at the discharge of the impeller.
We have found this through several comparisons between these solutions
and data. The potential analysis you are suggesting implies, I think, that
the flow follows the blading. I think it is very misleading to think that
such a solution would work toward the back of the impeller. The important
physics of the flow are not included in the analysis.

L. MEYERHOFF (Eastern Research Group): I have a number of
questions.

(1) Do you have any convergence criteria?

(2) Are you able to predict the number of iterations for the con-
vergence criteria?

(3) How do you determine the trailing edge flow angle?

(4) Did the addition of the E term referred to in your paper still keep
the equations set up by Wu, exact? It is not clear whether the equations
are still exact after you add these E terms.

(5) Do you know of any analytical proof of the truncation error for
the overrelaxation referred to in your paper?

SMITH (Author): The author thanks the five discussors for their
review of this paper.

First, taking the specific points raised by Dr. Katsanis, the purpose
of this paper was to present numerical solutions for several turbomachines
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to indicate the magnitude of the recent advances made in ealculating the
fluid mechanics rather than a detailed account of the mathematiecs of the
flow models. The limitations of the methods and the finite difference
approximations have been published in references 4 and 10.

On the question of boundary conditions, I have perhaps not made my
point clear. In Dr. Katsanis’ method (refs. 8 and 9) the flow domain is
covered with a rectangular or square grid (fig. D-1). To obtain the blade
surface velocity at points such as A, the circumferential component of
velocity, W, is obtained from the relationship

and the resultant surface velocity W is determined so that there is zero
velocity normal to the blade; thus,
W,

W= p— (D-1)

where 3 is the local blade surface angle. For points such as B the meri-
dional component of velocity, Wa, is obtained from the relationship

_1w
" bor 9¢
and the resultant velocity is given by
W
W=—- (D-2)
sin B

I agree with Dr. Katsanis that these relationships ensurc zero velocity
normal to the blade. However, a restriction is placed on the resultant
velocities; equation (D-1) is limited to | 8 | <60° and equation (D-2) is
limited to | 8 |230°. This, I feel, implies an error in the derivatives of the
stream function or the stream function values and when the condition
of zero normal is imposed gives rise to an error in the resultant velocity.

|
~

e\
ESS__

BLADE
SURFACE

Ficure D-1.—Square finite difference grid.
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Turning to the problem of the solution of the matrix equations, I must
admit that I have no experience of iterative or relaxation methods. The
method I have adopted is a direct method developed by the National
Physical Laboratory (NPL), England. This approach, which removes one
possible source of divergence, has proved to be very stable numerically
and, as T pointed ont in my paper, only the band of nonzero elements are
formed and stored in the computer. In the recent blade-to-blade com-
puter program, the storage requirements have been further reduced by
making use of magnetic tapes as backing store; if the width of the band
matrix is W, the core store required is approximately 8W?2 There is a
further point concerned with the basic techniques of the method of
solution. Unlike “conventional” direct methods, the NPL procedures do
not “invert” the matrix on every iteration; the solution is obtained by a
backward and forward substitution process. The matrix equation to be

solved is
(M]-[v]=[q]
The first step is a decomposition of the matrix [M J; thus

LL]-CU]-[¥1=[g]

where the matrices [L] and [U] are lower and upper triangular band
matrices, which are only computed on the first iteration. The solution is -
then obtained by (1) a process of forward substitution, solving for [Z]
from

CL1-[2]=[q]

and (2) a process of backward substitution, solving for [¢] from

LUl-lvl=[2]

The direct method provides an exact solution for the matrix equations
and so it could be argued that, since the overall process for finding the
stream function distribution is an iterative procedure, it is not necessary
to obtain an exact solution on the earlier iterations. It may well be that
the best approach is a relaxation method on the earlier iterations, making
no attempt to reduce the residuals to zero on each iteration, followed by a
direct method on the final iterations.

In answer to Dr. Wood, I would ‘agree that we should now have the
courage to extend the type of calculations I have described to include
viscous effects. However, as is inevitable with an advanced calculation
procedure, my experience of the use of the matrix methods has shown
that, for the computer programs to become basic design tools, effort is also
required in generating supporting programs for preparing geometric input
data and graphical display of output data. This is one aspect I intend
to examine.
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I am grateful to Mr. Mujumdar for drawing my attention to experi-
mental investigation of a radial turbine. With regard to the solutions for
the turbine stator (fig. 15) I am unable to provide an explanation for the
two-dimensional solution being in better agreement with the pressure
surface experimental data than the three-dimensional solution.

I agree with Mr. Dean that, in the case of centrifugal compressors, some
of the important physics of the flow are not included in the analysis.
However, I feel that, even with the assumption that the flow follows the
blading, the computer tools can help the designer in selecting the best
geometry. If a boundary-layer analysis of a potential flow velocity dis-
tribution indicates, for example, separation in the inducer of a centrifugal
compressor then I am sure Mr. Dean would agree with me that the
designer would modify the geometry to overcome this problem. A number
of examples illustrating this point are given by Dallenbach (ref. D-3)
and Ball et al. (ref. D-4).

In answer to Mr. Meyerhoff, it is difficult to establish a unique con-
vergence criterion. The criteria I have adopted are

ToL=¥=¥= (through-flow method)
p—1
lﬁ —_ ‘pp—l
TOL=—F7— (blade-to-blade method)

It has been found that TOL can be reduced to 0.001 in 15 iterations for
the through-flow method and 0.0001 in 10 to 30 iterations for the blade-
to-blade method.

The calculation of the flow angle is a problem I have avoided by as-
suming it can be determined from existing empirical rules for the devia-
tion. Clearly this is unsatisfactory, as I have indicated by the turbine
example of figure 10. In a real flow the circulation is determined by viscous
effects, particularly for compressor-type machinery as illustrated by
figure 16. This is one aspect of turbomachinery fluid mechanics that
demands research.

The addition of the E(8¢/dz) does not change the basic Wu equations.
This term was added to keep the width of the band matrix to a minimum.

Finally, on the question of the truncation error for conventional finite
difference analysis, which Dr. Katsanis alsc raised, I can perhaps best
illustrate my point by considering a square grid. For such a grid a five
point star (refs. 8 and 9) is adopted to represent the Laplacian operator.
Consider a star near to a boundary (fig. D-2) with one irregular limb. It
will be supposed that for the star center, point 3,

af A\ &
(@)ﬁ(a“;;ﬁ)f,,%“"f"” (D-3)
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BOUNDARY

Figure D-2.—Five-point star with one
irregular limb.

where T is a truncation term and @y, a; are the weightings. The function f
can be expanded as a two-dimensional Taylor series about the point 3 at
which the function has the value f; and derivatives fi ., fs.y, fs.22, €te.
Substituting the Taylor series expressions into equation (D-3), it follows
that

Soatfom=a1 (fa_hfs.z+§f3.u—§f8,uz+ e )

h? h?
+a» <f3'—hf3.u+§—f3.w_‘6_f3,m+ . )
+asfa

k2 k?
+-a4 <f3+kfs.u+2—fa.w+6—fa,m+ ce )

h? h?
+a’5 (f3+hf3,z+2_f3.zz+6_f3,zn+ P )

+T’

Since f is a general function, it follows that the coefficients of f and each
of its derivatives may be equated on each side of the above equation.
There are five disposable constants a;(z=1(1)5) and so only the coeffi-
cients of f, fz, f,, fz= and f,, may be used in order to make the finite differ-
ence approximation independent of the low-order derivatives. From the
coefficient equations, it is easy to show that the solution for the weightings
is

Q=
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2
(DR
_2(y+1)
BT e
—— 2
! (v+1)vh?
1
a5=ﬁ
where y=k/h.
The truncation error is
’ h(72_1>
=mf3,uw+0(h2f3.ww) (D-4)

It is seen, therefore, that as the irregular limb gets shorter (i.e., v de-
creases) the truncation error increases.
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Matrix Methods for the Design of Cascades
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and for Fully Compressible Flow
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Derby, England

This paper describes matrix methods that have been developed for cal-
culating compressible flow on a blade-to-blade surface of revolution. The
methods have been fully tested to date only for the design of plane cas-
cades to prescribed blade surface distributions; the methods will be illus-
trated here for that problem only. Similar methods are presently being
applied to both the direct and indirect problems and for flow on arbitrary
surfaces of revolution in annular cascades with stream sheet thickness
variations. It is believed that by such methods, both the direct and in-
direct calculations can be reduced to about 60 to 90 seconds of computing.

The trend in compressor and turbine design is toward fewer and more
highly loaded stages. T'o do this and maintain high efficiency demands the
ability to calculate in ever-increasing detail the gas flow through such a
machine. So complex are the equations governing the flow and the
geometries involved that practicable solutions can be found only after
making simplifying assumptions. The degree of approximation is always a
compromise between a realistic description of the physical processes and
a mathematical model that can be solved within reasonable time and cost.
This has led to design procedures which treat the flow in two stages—a
two-dimensional through-flow calculation which neglects circumferential
variations, followed by a two-dimensional blade-to-blade calculation in
which the flow is assumed to take place on a surface of revolution. Al-
though fully three-dimensional calculations are being attempted, these
are slow and costly and have a long way to go before they become design
tools.

It seems likely, therefore, that for a few years to come, two-dimensional
approaches will remain the basis of most design work and, for this reason,
it is worthwhile to make these calculations as realistic and fast as possible.

75
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Methods will be described here for calculations on blade-to-blade
surfaces of revolution. These methods are being applied both to the direct
problem of calculating blade surface velocities when the blade geometries
are prescribed and to the indirect problem of calculating the blade
geometry when the blade surface velocities are prescribed. The methods
will be illustrated by discussing the indirect problem for compressible
flow in a plane cascade. This has been chosen because it is the only problem
for which the methods have been fully tested to date and because the
authors have seen no other fully compressible solution to this problem.
It is believed that the methods described here extend easily to both the
direct and indirect problems on surfaces of revolution with stream sheet
thickness variations.

MATHEMATICAL ANALYSIS

Assumptions
The following assumptions have been made.

(1) The flow is steady, inviscid and irrotational.

(2) The fluid is a perfect gas.

(3) The total temperature is uniform across the entry to the cascade.

(4) The flow is plane two-dimensional flow and the normal com-
ponent of velocity is zero on the blade surface.

(5) The cascade contains an infinite number of equally spaced blades
of infinite length.

The assumption of irrotationality, together with the finite difference
approximations to the differential equations and the boundary-value
approach to the solution of the finite difference equations, tacitly assume
that the flow is everywhere subsonic. However, the method will formally
produce answers with supersonic patches and, where these are small and
the peak Mach numbers only a little above sonic, these solutions are
probably realistic.

Equations of Motion

In the analysis that follows, = and y are Cartesian coordinates with x
measured in the “axial” direction and y in the “pitchwisc” direction, as
shown in figure 1. Velocities and density are normalized with respect to
the stagnation sound speed and stagnation density, respectively.

The equations governing the flow are those of irrotationality and

continuity which are, respectively
V., 9V
——¥=0
dy oz

1)
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i) 0
P (pV2) +@ (pVy) =0 (2)

Density is related to velocity through Bernoulli’s equation

r v—1 e ]1/(7—1)
p=11_7 (sz,_i_yyﬁ)f

Equations (1) and (2) may be satisfied identically by a potential
function ¢ and stream function ¥ defined by

3

— Ve

or

oy
Z=,V,
oy P

oy
or Vy

It will be convenient also to work in terms of the net velocity V and
flow direction 6, related to V, and V, by the equations

Ve=V cos @
V,=Vsiné

F1GURE 1.—One strip of the cascade in the physical plane.
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If we now use ¢ and ¢ as independent variables instead of z and y,
equations (1) and (2) become

1% a6
——V2—=0 3
oV ; v 5 (3)

i) a0
— 2 —=0 4
Va¢(pV)+(pV) a0 (4)

and Bernoulli’s equation is
-1 1(r=1)

p=[1——~—72 V"’] (5)

At this stage, Stanitz (ref. 1) linearized equations (3) and (4) by ap-
proximating equation (5) by

1
SEVAERE

At the equivalent stage in the direct problem, other workers have
arranged the equations either in the form of a pseudo Poisson’s equation,
collecting the terms describing incompressible effects on the left in the
form of a Laplacian and the terms describing compressible effects on the
right in the form of a source term; or they have arranged the equations
in the form of a general partial differential equation in which the coeffi-
cients contained derivatives of the density p. Finite difference and
singularity methods have then been used to solve the equations in these
forms iteratively by guessing the source term or coefficients, solving as
though the equations were linear, and then re-estimating the terms that
had been guessed. Iterative methods based on these forms of arrangements
of the equations converge slowly at high Mach numbers because the
guessed terms are by no means small perturbations and important con-
tributions are left “trailing” one cycle behind in the iterations.

In order to introduce compressibility effects quickly into an iterative
method, the authors consider it better to use Bernoulli’s equation to
express the derivatives of p in terms of those of the dependent variable
and then to collect together all terms containing any particular derivative
of that variable. The coefficients of these variables then do not contain
derivatives of p which have to be guessed. For the indirect cascade problem
considered here, the term d(pV)/d¢ in equation (4) should not be ex-
pressed as p(dV/d¢) +V (3p/3¢) with p and 9p/d¢ being guessed. Instead,
equation (5) should be used to obtain

1—[(y41)/2]7*
1—[@—4»@1W>dv

a7 =5 (
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so that equations (3) and (4) become

Vo0 5a=0 (®)

1 1-[(r+1)/2]7°\ 8V 26

oV \I—[(v—1)/2]*) 36 "oy

If one second-order equation was to be obtained by eliminating be-
tween (6) and (7), then, again, the derivatives of p introduced should be
expressed in terms of those of V. For this problem there is, however, a
neater approach. Define F and H by

=0 )

dF=% av (8)
(S o

s0 that equations (6) and (7) become
%Jrg%: (10)
%—%ﬂ (11)

Using equation (5), equation (8) may be integrated directly for some
values of v. Taking v =4 and writing z=V?2/6, we have
3z 322

F(V) = log V"_J’T_E (12)

~ Taking v=£ and writing 22= 1~ (V?/5), we have

1—|—z> 23 (13)

F(V)= logV+ + e lo (2 =

In each case, the constant of integration has been chosen such that
F(V)—>log V as V—0.

The function F will now be taken as the dependent variable and
equation (10) written in the form

dH aF a0

14
dF 6¢ 61// (14

where, from (8) and (9),
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dH_1 (1—[(7+1)/2]V2>
dF ~ @ \1=[(v—1)/2]V?

The Potential and Deflection Conditions

In figure 1, which shows one strip of the cascade, AB, CE, GF and KH
are dividing streamlines. At any point (z,y) on AB, the flow conditions
are the same as at the point (x,y+t) on JH and similarly for CD and
GF. The lines KA and FE are far upstream and downstream of the
cascade, where flow conditions are uniform. Figure 2 shows the same
diagram mapped into the (¢,¢)-plane with A, B, C, D, and E chosen as
¢ =0. From the definitions of ¢ and ¥, it follows that

do="V ds (15a)
dy=pV dn (15b)
Define
A¢L =¢u—¢n
Adr = —dc
Aps=¢dc— o5
App=de—¢u
Clearly
AdL=ds—¢x
Apr=¢r—op

From (15a), remembering that J, K, E and D are far from the cascade,

T
///////

F16URE 2. —One strip of the cascade in the (¢,4) plane.
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A¢pr=V,tsin 6,
Ad)z' = th sin 04

It is also clear that
Ads— App=A¢pr— A¢r
so that
A¢S—A¢p=t(vu sin Ou—V,i sin 0d) (16)

Equation (16) will be called the potential condition.
From equation (11), we have

9§ F dp+0dp=0

AEFK

from which it follows that

C G
/ Fdp— / F dé=0(0,—62) + Fulps— Fapr (17)
B H

where ¥ is the value of ¢ along KF. Equation (17) will be called the
deflection condition.

In the indirect problem, the velocity on the blade surfaces is prescribed
as a function of fractional arc length S’ measured from S’=0 at the
leading edge stagnation point and S’'=1 at the trailing edge stagnation
point. Let these velocity distributions be Vs(S’) and Vp(S’) along the
suction and pressure surfaces. If Lg and Lp represent the physical lengths
of these surfaces, measured between stagnation points, the potential and
deflection conditions may be written

1 1
Ls/ Vst’—Lp/ Ve dS'=1(V. sin 6,— V. sin 65) (18)
0 (1]

and
1 1

Ls / (VF)s dS'—Lp ] (VF)p dS'=yo(8u—02) +Fubdr—Faldr  (19)
0 0

From the prescribed velocity distributions and upstream and down-
stream conditions, the corresponding values of F may be found from
(12) and (13) and Lg and Lp from (18) and (19). The lengths in the
(¢,¥)-plane, Aps and A¢p, may then be found from

1
Ags=Ls / Vs dS'
0

1
Agp=Lp / Ve ds'
1]
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and the diagram of the (¢,¢)-plane constructed. Eliminating 6 between
equations (11) and (14) gives
oF, 2 (4197
W a¢ \dF o¢
To determine the blade shape corresponding to the prescribed surface
velocity distributions and far upstream and downstream conditions, we

have to solve equation (20) inside and on the contour ADFJ, subject to
the boundary conditions:

=0 (20)

(1) Fis prescribed on BC, HG, AJ and DF
(2) Along ABand JH

F(,0) =F(¢+A4¢L, ¥o) (21a)

6($,0) =6(¢+A¢z, Yo) (21b)
(3) Along CD and GF

F(4,0) =F (¢+A¢r, ¥o) (21c)

0(¢,0) =8(p+Adr, ¥o) (21d)

Transformation of the (¢, ¥)-Plane

There are a number of possible approaches to a numerical solution of
this boundary-value problem. The one given here involves an approximate
transformation of the (¢,¢)-plane and some tedious algebra. However,
the error in the transformation can be controlled so that it is less than that
involved in the numerical methods and leads to a boundary-value problem
posed in a form for which this is a quick and elegant method of solution.

First, in order to get a good spacing of points on a finite difference grid
and not to map part of the suction surface twice, it is convenient to invert
the diagram in the (¢,¢)-plane through a transformation y—yo—y. We
can achieve this without altering the equations if we make the additional
transformation 6— —6. In what follows, this transformation will be as-
sumed to have been made. Define new variables ¢’ and ¥’ through the
equations

b

v="_ v (22a)

Agp | A '
= _42_*_& |:¢’+‘i— (a1+ag tanh ¢'):| (22b)

o= 8

where
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B A¢r+A¢r
GH=——"
Adp 2
o B A¢r—AdL

T A 2

D
T

The constant « is merely a scaling factor which can be chosen freely;
8 is a constant which, for values of ¢'>8/2, makes tanh ¢'~1. This
transformation approximately maps the contour ADFJ of the (¢,¢)-
plane into three rectangular regions in the (¢’,¢’)-plane as shown in
figure 3. If we write

o= B/A¢p
14 (¥/ ) as sech? ¢’

,___—(m+astanh ¢)
Vo[ 1+ (¥/¥0) as sech? ¢']

(), &)
Yo (2
d¢/, 3¢’/

] ] afd
— =b’ - —_ —
@), (o), 7o),

Writing H for dH /dF, equation (20) becomes

then we have

}

J=T K2 H G K4 F

=0 Xi 3 c K3 D ¢
fei =—ff §=B/ (=1

F1aURre 3. —One strip of the cascade in the (¢' ") plane.
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. 9°F aF[ o'« ab’]
2k b'2 il — 'H ' -
(a”H+ )¢,2+ - (@’'H)+b a¢+¢ v
'a PF o FF
Yo 3¢’y Y oYt

(23)

Although this equation looks more complicated than (20), the boundary
conditions (21a) and (21b) are simplified to

F(¢',0) =F(¢',)
6 (¢I70) =0 (¢’:a)
along AB and JH and similarly along CD and FG.

Numerical Analysis

Equation (23) may now be solved numerically by finite differences on
a rectangular grid in the (¢’,¢’)-plane. The method will be described for a
grid with spacing 8¢’ and 8¢’ constant in the ¢’ and ¢’ directions, respec-
tively. In practice, it is better to use an unequally spaced grid but, to
avoid unnecessary complication in the description, a discussion of un-
equal grid spacing will be left until later. The grid described here is shown
in figure 3. Write equation (23) in the form:

2

e POV

The method of solution will be to estimate the coefficients A, B, C and

D, solve (24) as a linear equation, and re-estimate these coefficients. The

process is continued until converged, which usually requires about three

or four cycles. Equation (24) may be approximated by finite differences
in the form:

A(5¢")? ¢,2+2Ba¢ ¢+4C¢S¢ ' =0 (24)

AF(FfH—2F i+ F )+ B (F#—F#) +Ci(Fi—Fii—Fh+Fio

i—1
+Dji(Fi—2F#+F; ") =0 (25)
for 1<:i<I—-1; 1<5<J—1.

The boundary conditions are (1) that Foé and F;* are given on BC and
HGQ, together with F,2 and F/ for j=0...J, and (2) that Fy'=F,* and
6o'=06,* along AB and JH and along CD and GF (egs. 21(a)-21(d)).
The method of solving these finite difference equations is a slight modifica-
tion of a method suggested to the authors by Stocker (ref. 2). Rewrite
equation (25), grouping terms according to superseripts ¢-+1, 7, and t—1.
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[—C/Fif+ (A +B;) F++-CF 1]
+[D;F;+*—2(A;4+D;) Fi+DjF 11*]

+[CAFT+ (A7 —B)F;~1—C;F;31]1=0 (26)

Inside the rectangle BCGH, augment equation (26) with the equations
Foi=Fy
Fri=F;

remembering that both Fy'and F;* are known. In the rectangles ABHJ
and CDF@, augment equation (26) with

FoizFJi
001'_—_ 0‘]‘

The last relation must be expressed in terms of F. This could be done
using equation (11), which implies that

o)~ Gv),
'/ \o¥'/;
and approximating this relation by finite differences. This was tried, but
it led to small but unacceptable errors. Instead, therefore, equation (11)
was integrated along ¢'=constant and the boundary conditions 8y'= 6,

inserted into the integral. The integral was then approximated by finite
differences using Simpson’s rule, giving

J ”2
5 (4 23) KBsn=F =0 (21)
=0 ar
where K;=1,4,2...2,4,1.
Therefore, inside the rectangles ABHJ and CDFG, equation (26) is
augmented by (27) and Fyi=F,.

Defining F¢ to be the column vector (Fy', Fy5, . . ., Fs), equation (26),
together with the augmenting equations, may be written in the form

MF# 4 NFigPF-1= Qi (28)

where M, N*and P* are square matrices and Q¢ is a column vector which
contains only zeros inside the rectangles ABHJ and CDFG and is of the
form (£, 0,0,0,...0, F;%) inside the rectangle BCGH. To solve equa-
tion (28), we begin by estimating F;i at every mesh point other than
those along ¢=0 and =1 where F is prescribed. From these estimates,
the coefficients 4, B, C, and D of (24) may be calculated at each point
and hence the matrices M*, N and P¢ of (28) may be determined. We
then look for a solution of (28) of the form
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Fi= RF#14t (29)

where the Ri are square matrices and the t’ are column vectors. To
determine Ri and t¢, we substitute (29) into (28) and, after some re-
arrangement, obtain

Fi= — (N4 PR¥)IMFH+ (N+PR™)(Q'—Pit*!)  (30)
Comparing (29) and (30), we obtain by inspection

i= — (N4 P:RY)\M¢ (31)

= — (VPR (P-1-Q) (32)

Equations (31) and (32) may be solved recursively for B¢ and t?, for
1<¢<I—1, once R® and t° are known. These are obtained from the pre-
seribed value of F°, for

Fo= R'F'+t° (33)
If (33) is to be satisfied, whatever the value of F!, we must have
R'=0
t9=Fo

Having determined R and ti, 0<¢<I—1, we can now solve for F every-
where, using (29) and commencing from

FI-! = RI-IFI 411

where F! is the prescribed boundary condition on i = 1. Having determined
F ;i everywhere, the coefficients A, B, C, and D of (24) may be re-estimated
and the process repeated until successive estimates of F everywhere
converge to within some tolerance. In practical cases, two to four itera-
tions are usually required, depending on the level of Mach number.

There is a further point in the calculation of F which requires dis-
cussion; namely, the treatment of the stagnation points, the points B, C,
G, and H in figure 3. Near stagnation points, V—0 and F—— . If,
when prescribing the velocities along BC and HG, zero velocities are
prescribed at the stagnation points, then it is clear that the methods
described so far cannot be applied.

A simple and approximate method of overcoming this difficulty, which
is equivalent to removing the stagnation points by cusping the blade, is as
follows. At the start of each compressibility iteration, a nonzero velocity
is assigned to the points B and H and another nonzero velocity to the
points C and G. With these values, together with the other prescribed
boundary conditions, we can now solve for F everywhere by the methods
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already described and this solution will satisfy all the prescribed boundary
conditions. However, for arbitrary choices of velocity at the points B and
H and C and G, the function F is not constant at upstream and down-
stream infinity; that is, although 9F/dy’ is zero there, 9F /3¢’ is not zero.
Furthermore, for given boundary conditions, the value of 9F/d¢’ at
upstream infinity is primarily controlled by the velocity assigned to B
and H, and 0F /3¢’ at downstream infinity by the velocity assigned to C
and G. Therefore, at the start of each iteration, as well as recalculating
the matrices M, N%, and Pi, new estimates are made of the velocities at
B and H and at C and @ to make 9F/d¢’ zero at points far upstream and
downstream. This additional change does not seriously affect the con-
vergence of the main iteration.

Although this is a rather crude treatment of the stagnation points, it
does lead to accurate answers in the following sense. When 6 is calculated
from F, equation (11) is integrated along a streamline starting from far
downstream where 6 is prescribed. The closeness of agreement of the
calculated and prescribed values of 6 far upstream is one measure of the
accuracy of the calculation. This agreement is best (about 0.2 percent for
100° of turning) when the adjustments described have converged.
Methods such as those of Woods (ref. 3) for dealing with singular points
were tried but did not appear to increase the accuracy of the calculation,
possibly because the computing grid was coarse compared with the small
region over which the velocity is close to zero.

From the converged solution for F, the blade coordinates may be cal-
culated. This is done by first integrating equation (11) along ¢’ =a/2 to
give 6 along the center of the blade passage and then integrating equation
(10) away from this mean line to give 8 on the blade surface. Having
found 6, the blade coordinates are found by integrating the equations

d
dx=—¢ cos 0—% sin 8
oV
d d
dy=7¢ sin 0+p—‘£ cos 6

The integration is performed in the (¢’y’')-plane and commences
from arbitrary values of z and ¥ In the middle of the blade passage, out
along the line ¢’ = constant to the blade surface and then along the blade
surfaces, ¥’ =0 and y’ = a. This path of integration avoids the necessity of
crossing the stagnation point region. The blade shapes obtained show the
cusps over the first and last two points on each surface and the leading and
trailing edges are generally rounded by eye.
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SIZE AND SPEED OF COMPUTER PROGRAM

The methods described have been programed on an IBM 360/65
computer. Using 40 points of each blade surface, 50 upstream and 50
downstream points, and 11 points across the blade passage, the program
size is 162K bytes. For a fully converged solution, three to five cycles are
required at an average of 24 seconds per cycle. For a fully compressible
calculation on such a large grid, the method is therefore very fast. To
obtain this speed of computation, an unequally spaced grid has been used,
with the grid becoming more widely spaced far upstream and downstream.
The only change required in the methods described is to modify the finite
difference approximations to derivatives in the obvious way.

Sample Calculation

The program has been tested on a number of examples, one of which, a
NASA blade taken from reference 4, is described here. In figure 4, the
circles and triangles represent the measured velocity distribution while
the full line is the velocity used in the calculation. The measured outlet
angle was changed by about 0.7° to —67.7° because the calculation cannot
take into account viscous effects. The true and calculated blade shapes are
shown in figure 5, where it will be seen that the agreement is generally
good. Agreement is worst near the leading and trailing edges. The shape of
the leading edge depends critically on the velocity distribution and this is

4 Bu= 0.0
Vu = 0.210%
o 8d=-67.7
§U Vd = 0.7079
t =09743

2 $ Measured velocity distribution

— Distribution used for
calculation

o WA 2 3 A 5 6 7 .8 9 1.0
FRACTIONAL ARC LENGTH

¥1GURE 4.—Velocity distribution
of blade of reference 4.




— —— _— True blade shape

Calculated blade shape

Figure 5.—Comparison of the true and calculated blade shapes.

impossible to measure at points sufficiently close together to give accurate
definition. Also, one of the measured points on the pressure surface has
been ignored, for it was found that a smooth velocity distribution through
that point did not reproduce the correct blade shape. The velocity dis-
tribution used in this region is merely guessed to give a reasonably good
blade shape.

LIST OF SYMBOLS

A function of velocity

A function of velocity

Distance normal to a streamline

Distance along a streamline

Fractional length along a blade surface measured between stagnation
points

Pitch

ata®

nn3

o~
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vV Velocity, normalized with respect to the stagnation sound speed
V. The z-component of V

V, The y-component of V

z  Cartesian coordinate measured in the axial direction

y  Cartesian coordinate measured in the pitchwise direction

v  Ratio of specific heats

¢ Flow direction measured counterclockwise from the positive z
direction -

Density, normalized with respect to the stagnation density
Potential function

Transformed potential function ’}‘

Stream function C/ - )

Transformed stream function

€€ o6

~

Subscripts and Superscripts

Far downstream

Index referring to the value of ¢’
Index referring to the value of ¢/
Leading edge

Trailing edge

Far upstream

RN e Y
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DISCUSSION

D. PAYNE (Rolls-Royce) : The authors are to be congratulated on
applying a highly efficient matrix method to the solution of the boundary-
value problem which cascade design presents in the compressible flow
function plane.

The technique used to solve each iterate of equation (24) (as yet un-
published by Professor Stocker) transmits boundary-value information
just once to the right through the vectors t and just once to the left
through the F vectors themselves. This elegant technique thrives on
highly rectangular grids, such as the one established here in the (¢’ ,¥')-
plane, although the slightly approximate transformation {(22b) into this
plane could possibly be avoided by the use of a variable skew mesh in
the (¢,¥)-plane.

The starting approximation to the coefficients in equation (28),
although not explicitly stated, presumably results from taking H=F, and
this assumption is, in itself, quite accurate for Mach numbers less than
about 0.8 (ref. D-1).

The desirability of basing the design of gas turbine blading on a pre-
scribed distribution of surface velocity can be justified by consideration
of the mechanical, aerodynamic, and mathematical aspects of the overall
design problem (ref. D-2). For the past eight years, all turbine blades
designed at the Bristol Engine Division of Rolls Royce Ltd. (previously
Bristol Siddeley Engines) have been produced on this basis, using the
Bristol Design Transformation (ref. D-3) to generate the necessary
cascade geometry. Until now, it has been a rather unfortunate handicap
that, while a complete velocity distribution theory (parametric descrip-
tion of velocity distribution, optimization under geometric constraints,
wake models, ete.) could be established for an arbitrary density-speed
relation (ref. D-1), the actual transformation from the (¢,¢)-plane to the
(z,y)-plane was only practical, on a routine basis, for a simplified form of
the p(V) function (linearized compressible flow, or Chaplygin gas).
Although the linearized transformation can be shown to agree closely
with plane-flow experiments for Mach numbers up to about 0.85 (ref.
D-1), it is to be expected that the methods of Mr. Silvester and Miss
Fitch will produce a routine design transformation abie to cope with near-
sonic and, perhaps, slightly supersonic flow, as well as allowing incorpora-
tion of blade-to-blade variations of radial aerodynamic influences, as such
variations become better understood.
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J. P. GOSTELOW (Cambridge University): The authors introduce
their promising new matrix techniques as being suitable for both the
direct and the indirect problems of cascade flow prediction. Since it is
well known that some considerable effort at their company (ref. D-4)
has becn invested in iterative solutions of the direct problem, using the
Martensen method (ref. D-5) as a basis, it would be of interest to know
whether the iterative approach has failed and has therefore been written
off. The difficulty with the iterative schemes is that the source distribution
contains first derivatives of p and, therefore, second derivatives of ¢. It
would not be surprising, therefore, if convergence difficulties were experi-
enced at high subsonic Mach numbers where the desired result is masked
by rounding-off errors. This question does not concern simply the direct
problem since, as Murugesan and Railly (ref. D-6) have shown, the
Martensen method can become a successful design tool in solving the
indirect problem.

It is interesting to observe that Silvester and Fitch deliberately re-
arrange the equations so that density-change information is transmitted
immediately into the flow solution. It is more conventional for the density
. calculation to lag the stream function calculation by one iteration, again
deliberately to improve stability. This latter approach is employed in
Smith’s exccllent paper (ref. D-7) and in most streamline curvature
solutions to the axisymmetric problem. It was clear from Smith’s presenta-
tion that the trailing density approach is justified for cases where the
local Mach number does not exceed 0.85, but even linearized flow models
can cope with such examples. It would be interesting to know whether
Smith can retain numerical stability, with density lagging by onc itera-
tion, when sonic conditions are reached and exceeded on the blade surface.

The kernel of the question is whether one ought to follow Silvester and
Fitch in rearranging the equations when local sonic conditions are ap-
proached.

L. MEYERHOFF (Eastern Rescarch Group): I have three questions.
The first is about trailing edge conditions. I'm curious to know
what the author believes would happen if, in our reiteration, the stagna-
tion point of the trailing edge was set right at the trailing edge to zero
velocity and the iteration continued with that fact reinserted in each
iteration. The other questions are (1) What is meant by the term “cycle”
for fully converged solution in your report? Is the word “cvele” meant to
be “iteration number”’? and (2) What is the total number of mesh points
allowed by the program at present?

H. YEH (University of Pennsylvania): You refer to the need for an
estimate by the computer for the velocities near the inlet and the trailing
edge in order to have the prerequisite velocity at plus and minus infinity.
Now, isn’t this due to the fact that they really cannot completely describe
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the velocities anyway because you must have prerequisite separation for
the whole profile to fulfill your inlet and exit conditions at infinity.
Furthermore, there is a condition for which you get a closed profile. In
other words, the profile may not be closed; this is a so-called conditioned
closure. Now, if you had to make use of these conditions beforchand, and
if you had considerable freedom in adjusting the velocity distribution and
did so0, it seems to me that you would not really need a computer to make
further adjustments.

J. W. DZIALLAS (General Electric Co.): Here are a few questions
which should be of general interest.

(1) If the flow is assumed everywhere subsonic, how can the field
contain “supersonic patches”? If there are these patches, where are they
located? Doesn’t the authors’ selection of the function F(V') near the
stagnation points strongly affect these supersonic patches?

(2) Isthe Kutta condition satisfied?

(3) How close to the sonie velocity can the authors’ method go on the
profile surface? Does the solution become unstable?

(4) What useful information can the authors extract from their
hodograph? ,

(5) Recalling the comparison with the experimental velocity dis-
tribution presented in a slide, I ask: How valid is this comparison since,
through smoothing of the data, adjustments on the function F(V), and
variable grid size it seems possible to arrive at predetermined results.
How many trials are necessary to recover the profile?

(6) It would be interesting to see a comparison with an exact direct-
method airfoil computation.

P.N. R. SHEKHAR (University of Liverpool, England) : At Liverpool
University, we have been concerned with the problem of designing airfoils
in two-dimensional cascades. Hence, we would like to raise the following
points: '

(1) Equation (17) is valid only for special cases of y. According to
reference D-8, the deflection condition for any v is (fig. 2)

2 st
[ Gogads+o/o anr— [ [ ai3(1/0)/081ds db=0

y=0 ¥ ¢p=—00

This equation can only be solved iteratively. The final solution is con-
sistent with the Price-Martensen theory (ref. D-9).

(2) In the main paper, the problem is considered as well posed in the
(¢’¥’)-plane. However, the problem can be well posed in the (¢,¢)-plane
itself by Green’s function of the second kind as demonstrated in reference
D-8. Hence, one wonders if it is not advantageous to work in the (¢,¥)-
plane itself?
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(3) Once the boundary conditions are formulated, the problem can
be treated as a typical boundary-value problem. The methods available
include (i) Green’s function, (ii) finite difference scheme, and (iii) varia-
tional finite element. Even Stocker’s method (ref. 2) could be used ad-
vantageously. However, in reference D-8, it is used to get the following
matrix:

[41le]1=L/]

where A is a codiagonal block matrix with submatrices that are also
codiagonal. No equation contains more than five nonzero elements and
only the nonzero elements are stored; hence, the storage requirement is
minimized. This method is attractive compared to the marching procedure
for two reasons, at least.

(a) The distribution of log ¢ is found at all the interior points of
the rectangle in one go.

(b) The boundary conditions are consistent with the interior
solution, whereas in marching procedures this is not so. In our opinion,
once the boundary conditions are known, it really does not matter which
method is adopted for determining log ¢ inside the rectangle. We are sure
Stocker’s method could also be adopted very effectively.

(4) At stagnation points, logq has logarithmic infinity and 6 is
multivalued. According to L. C. Woods, the movement of the front
stagnation points by tdso of chord distance affects the velocity peak by
more than 10 percent for isolated airfoils (let alone cascades). What is
really important is not so much the presence of the stagnation points as
the effect it might have on the rest of the solution. It is probably true that
Woods’ method needs a very refined mesh. However, Payne has proposed
a very attractive method for determining the effect of stagnation points
on the rest of the solution by integral equation techniques. A detailed
analysis is available in references D-8 and D-1. We find it very difficult
to accept the concept that the solution achieved by ignoring four stagna-
tion points is satisfactory. One could even say that the classic channel
model proposed by Stanitz is satisfactory for cascades. Stanitz has pro-
duced some very realistic profiles in NACA 1116.

(5) Last, we would like to examine the following two problems:

(a) Inconsistency with the Price-Martensen theory

(b) The simplicity of Green’s function solution.

The Price-Martensen theory has been used extensively and, to a great
extent, satisfactorily. However, we understand from Silvester-Fitch that
Smith’s solution is consistent with the design problem. Presumably this
means that the stagnation points, shape of the stagnation, and other
streamlines tie up completely. Hence, it should be pointed out that with
the help of design and Smith problem, and treated on an iterative basis,
it should be possible to produce a one-to-one correspondence and a closed
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profile. The simplicity of Green’s function solution can be illustrated very
simply by taking the incompressible or linearized flows. The profile shape
depends completely on the boundary conditions and it is immaterial what
is happening inside the boundary. In the method reported, it is necessary
to know what is happening not only on the boundary but inside the
boundary as well. The difference between the incompressible and com-
pressible flow lies in the presence of a double integral term and some
minor points.

SILVESTER anp FITCH (authors): The authors agree with Dr.
Payne about the desirability of being able to design blades to prescribed
surface velocity distributions. We believe that both the direct and in-
direct approaches can be useful to the blade designer and it was for this
reason alone that we developed an indirect method alongside our existing
direct method based on the work of Martensen and Price.

We have found that the Martensen-Price method converges well for
subsonic flow and that convergence can be obtained, although somewhat
more slowly, for flows containing supersonic patches, provided these are
not too large. We have also been looking at matrix methods for the direct
problem because we believe that they can be made faster than singularity
methods. We also believe, but have not shown, that the immediate
introduction of density change terms into the equations will improve the
stability and rate of convergence. '

Concerning details of the calculation, we agree with Dr. Payne that
we could have worked on a skew mesh in the (¢,)-plane. With the
method adopted, the algebra is more tedious, but this is compensated for
by the fact that the approximation of partial derivatives by finite differ-
ences with small truncation error and using only the lines, i—1, 4, ¢+1 is
easier in the (¢’,¢)-plane.

We do not commence the calculation by assuming H =F. Referring to
figure 3, we assume velocities of V, on AB and JH, V4 on CD and GF,
and the prescribed velocities on BC and HG. The velocity elsewhere is
assumed to vary linearly with ¢’ at constant ¢'.

In response to the comments of Meyerhoff and Yeh, it is certainly true
that for given values of V and 6, far upstream and downstrcam, not every
velocity distribution that the designer may prescribe will give a closed,
nonintersecting curve for his blade profile, but only those velocity dis-
tributions which satisfy the so-called closure conditions. It is also true
that although we have tacitly assumed a closed profile when deriving the
equations, we have not placed any restrictions on the velocity distributions
that may be prescribed and so may not obtain sensible blade shapes for
every velocity distribution. When we use this program, we assume that
the designer is able to specify a velocity distribution which nearly satisfies
the closure condition and which will require only slight modification within
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the program. In practice, we use the program in conjunction with a
direct method, so this is usually true. We justify this approach with two
arguments. First, when designing a cooled turbine blade, there are factors
other than aerodynamic (stressing and cooling considerations) which
place restrictions on an acceptable blade geometry. In order to satisfy all
these conditions, it is likely that the designer will require three or more
runs of the program to achiceve a satisfactory blade, modifying his velocity
distribution with each successive run. Since the program prints out the
modifications to the velocity distributions that it makes internally and
these can be fed into the next run, after the first one or two runs, little if
any internal modification is required. Second, we know of no method of
determining velocity distributions for compressible flow satisfying the
closure condition which would involve the designer in any less work than
the method we use.

The choice of nonzero velocities at the stagnation points is a necessity
since it is impossible to evaluate F or H for zero velocity.

If arbitrary, nonzero values are used and reinserted each cycle, a con-
verged solution may or may not be found. If convergence is obtained,
then it will be found that, although the velocity attains the values V.,
and V, far upstream and downstream, 9V /3¢ is not zero there. In addi-
tion, integration of 39/8¢ between far upstream and far downstream will
not result in the prescribed turning, 6,— 8. The authors regard the finding
of velocities at the stagnation points as a process of finding the shape and
direction of cusps which must be added to the rounded profile in order to
support the prescribed velocity on the remainder of the profile.

In the paper, the words “cycle’” and “iteration’ have both been used to
denote the process of solving numerically equation (24) for fixed estimates
of the coefficients A, B, C, and D at every point and of the velocities of
the stagnation points.

The program allows up to 50 points upstream and downstream of the
blade, 40 points on cach surface of the blade, and 11 points across the
blade passage. Best results have been obtained by using a mesh of variable
spacing in both the ¢’ and ¢’ directions, having points closer together near
the blade surfaces and particularly so near the leading and trailing edges.

As to the remarks of Dziallas, it must be made clear that the indirect
method described here is intended for use as a design tool in which blade
shapes are determined from velocity distributions prescribed by the
designer. Although we have tested the program by using it as a direct
method (that is, by trying to recover blade shapes from measured velocity
distributions) this is not the mode in which it was intended the program
should be used. The method described here is not intended as an alterna-
tive to the direct methods but as an additional aid to the blade designer.
With this intended use of the program in mind, such questions as, “How
many trials are necessary to recover a profile?’” are not strictly applicable.
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Taking the last two questions first, the program has been tested by
recovering blade shapes both from measured velocity distributions and
from distributions calculated by the singularity method of Martensen
and Price, the matrix method of D. J. Smith, and the author’s own matrix
method, which is still under development. (The method of Katsanis was
not available to the authors.) It was found that, for a given blade, the
three direct methods gave velocity distributions which differed by small
but significant amounts, so that each produced a slightly different blade
with the indirect program. Best agreement was with the authors’ own
direct method. Because of the inconclusive nature of these tests and
because it is a more valid test of a program to a designer, most testing of
the program has been with measured velocity distributions. In those cases
where the tests were two-dimensional and shock-free, blade shapes could
be recovered well with velocity distributions close to those measured.
There is some freedom in choosing F near the leading and trailing edges
because pressure tappings are rarely close enough to give an adequate
picture there. Such a test of the program is a useful one, provided one
remains close to the measured results (which may include small experi-
mental errors). It simply is not true that one can arrive at predetermined
results. Blade shapes are independent of the mesh size, provided it is
fine enough.

Although the numerical methods used can be justified only for elliptic
equations and hence subsonic flows, even so we can and sometimes do
prescribe velocity distributions with supersonic regions. If eonverged
answers are obtained, these must necessarily contain supersonic patches
adjacent to the regions of the blade when supersonic velocities have been
specified. It can be assumed that in these supersonic regions, small errors
due to round-off increase the more distant a mesh point is from the
boundary where the velocity is specified. If the patches are small, the
errors may not have a chance to grow too large, so it seems possible that
sensible answers may be obtained. There is, however, no provision in the
program for discontinuous solutions as would be caused by shocks.

The program effectively selects F near stagnation points. We still have
some further work to do on this, but we have found that it is more difficult
to converge on velocities at the stagnation points when supersonic patches
have been prescribed.

As for the Kutta condition, remember that we produce cusped blades.
The velocities on the cusps (that is, the velocities which are chosen to
satisfy upstream and downstream boundary conditions) are chosen to be
equal on both pressure and suction surfaces. In addition, we usually
prescribe velocity distributions which become equal on both surfaces
close to the leading and trailing edges. This treatment is something like a
Kutta condition, although we do not talk specifically in terms of zero
velocity.
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We have not looked seriously at solutions in the hodograph plane.

In reply to Mr. Shekhar, if the function F is defined by equation (8),
then equation (17) is true for all values of v and for all Mach numbers.
Closed analytic forms for F ean be found for rational values of v, and
the values of f and 4 given by the authors should be quite sufficient for
all practical purposes. The error involved in using vy=4/3 for the design
of a hot turbine blade will be negligible compared with the errors intro-
duced by other assumptions in the mathematical model such as, for
example, isentropic inviscid flow. If this is accepted, then it is certainly
more convenient and almost certainly more accurate to solve the potential
and deflection conditions explicitly by simple numerical integration of the
prescribed velocity distribution than iteratively by methods requiring
the numerical evaluation of double integrals over the whole flow field
with each compressibility eycle. Also, it is worth mentioning that the
deflection condition, as we have formulated it, depends only on the
boundary conditions. This is useful in two ways. First, it enables the
surface lengths to be calculated without any knowledge of the flow field
elsewhere and so allows the possibility of abandoning the program before
any major computation has been performed if the prescribed velocity
leads to unrealistic surface lengths. Second, it allows a check of the ac-
curacy of the solution of equation (24) for fixed boundary conditions,
because when the coordinates (z,y) of the blade are eventually found from
the solution of (24), the lengths can be calculated and compared against
those calculated from the potential and deflection conditions. We have
found that for fully converged answers, the lengths calculated by the two
methods agree to within less than 0.2 percent.

The relative advantages of the (¢,¢) and (¢’,¢) planes have been given
in the reply to Dr. Payne.

With reference to question (3), it seems as though Mr. Shekhar believes
that the method used by the authors is a marching procedure and one in
which, in some way, the solution is inconsistent, with the boundary condi-
tions. We do not use a marching procedure; the solution obtained depends
at every point upon all the boundary conditions and is completely con-
sistent with them. Moreover, the solution is obtained “all in one go” just
as much as in his own method, for (using Mr. Shekhar’s own notation),
Stocker’s method is simply a method of solving the matrix equation

[A1e]=L/]

Concerning question (4), again, it is not true to say that the authors
have neglected the stagnation points. There is a striking similarity be-
tween the method used by the authors and the treatment described by
Payne as a relaxed treatment. Referring to figure 3, Payne’s method
consists of the following steps:
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(1) Choose nonzero veloeity at the stagnation points.

(2) Set the velocity at V, along AK; and JK, and V; on K,F and
KsD.

(3) Apply the cyclic or repeat conditions to the segments K.H, K;B,
GK,and CK,.

(4) Set up a variable, but one-parameter, mesh spacing.

(5) Solve as though there were no singularities.

Payne points out that if a solution is now obtained, ignoring the singu-
larities and with an arbitrary mesh parameter, the points B and H, for
example, will not be one blade pitch-apart in the physical plane—but for
a particular choice of the mesh parameter, this can be achieved. Notice
that by making the assumptions (2), Payne is, in fact, forcing 4V /¢ =0
far upstream and downstream but, at the same time, relaxing the repeat
conditions on # over the segments on which V is prescribed. Relaxing
these conditions permits the streamlines JH and AR to be of different
shape when they should be identical, but the error is reduced by forcing
B and H to be nearly one pitch apart.

This approach is very similar to that of the authors. We apply the
repeat conditions on both V and 8 over the whole length of the dividing
streamlines, so that the streamlines corresponding to AB and JH, for
example, are identical in shape. It then follows that because A and J are
one pitch apart in the physical plane, B and H must be. If we were to
follow Payne and choose fixed velocities at the stagnation points, then we
would have to choose a mesh spacing to make 9V/3¢=0 far upstream
and downstream. Instead, we keep the mesh spacing fixed and vary the
velocity at the stagnation points. The mesh spacing and the chosen
velocity are to some extent interchangeable, for both affect the calculated
values of derivatives of V near the leading and trailing edges. Payne also
justifies the use of such approximate methods of dealing with stagnation
points.

As already stated in reply to Mr. Duzillias, the authors do not obtain
complete agreement with any direet method, just as none of the direct
methods is in complete agreement with any other. The differences are
small, but some further work is needed.

Finally, I would agree that where the equations of motion can be
reduced to Laplace’s equation (that is, for two-dimensional incompressible
flows or flows of sufficiently low Mach number that one could reasonably
assume H =F) an integral method is probably to be preferred to a differ-
ential equation approach. Most practical cases, however, cannot be
described adequately by Laplace’s equation, either because the Mach
number level is too high or because it is necessary to take into account
effects such as stream-tube thickness variation or the fact that a turbine
blade row does not form a linear two-dimensional cascade. (These effects
have yet to be incorporated in the authors’ program.) Therefore, in most
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practical cases, it is necessary to compute the fluid velocity everywhere
(not only on the boundaries), whichever method is used. In such cases,
it is debatable whether integral methods are to be preferred to differ-
ential methods. It should be pointed out that the double integral to which
Mr. Shekhar refers is not simply a minor term in integral methods; apart
from increasing the amount of computation to be done (compared with
incompressible flow) it does express the difference between incompressible
and compressible flow and this can be quite marked when Mach number
levels are high. Further, if the other effects referred to were included, the
double integral term would express the difference between plane in-
compressible flow and compressible flow with stream-tube thickness
variation and in an annular cascade.
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A Note on the Influence of Axial Velocity Ratio
on Cascade Performance'
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A thin airfoil quasi-two-dimensional potential flow theory has been
used to analyze cascades with axial-flow contraction. Attention is
centered on the flow turning of a lattice of foils as measured by the
deviation angle. The influence of both axial-flow acceleration and
foil thickness on the deviation angle is summarized in plots that
should be useful for design purposes. It is shown that the effect of
axial-flow contraction is larger when the foils are relatively far apart
than when they are close together. The influence of axial velocity
ratio across the cascade changes markedly with the stagger angle.
These effects are essentially unaltered due to foil thickness.

Design of axial-flow compressors and fans relies heavily on experimental
data and simplified empirical rules (see, for example, ref. 1). Concurrent
with experimental research, there have been strong advances in theoretical
two-dimensional potential flow solutions of cascades (e.g., ref. 2). Within
the limitation of assumed two-dimensionality, these theoretical solutions
should be very useful in the interpretation and correlation of test data for

! All graphs, tables, equations and conclusions presented in this revised paper have
been corrccted from the earlier version presented at the symposium. The work pro-
viding the basis for this paper was carried out under Department of the Navy Con-
tract Nonr 220(59).
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design purposes. In an actual turbomachine design, of course, there is
always a three-dimensional character to the flow, and one of the inter-
esting consequences of this complication is that there is a change in the
axial-flow velocity through the cascade. Recent theoretical calculations
by Mani (ref. 3) contribute to the possibility of more rationally predicting
the potential flow performance of a lattice of airfoils under conditions of a
varying axial velocity. A survey of Mani’s work appears in reference 4;
reference 5 describes the computer techniques used in obtaining numerical
results.

The purpose of this note is to outline some further results of computa-
tions using Quasi-two-dimensional theory (QTD) and to present these
numerical data in the form of graphs and tables useful for design. Primary
emphasis is placed on the influence of axial velocity ratio (AVR =Vay/Vay)
on cascade performance although, as will be seen later, wide ranges of
most of the other cascade variables have been considered. In addition, we
include some comparisons between existing theoretical results for two-
dimensional cascade flows and the present results. The curves presented
in the main body of this note are supplemented by the tables of data
given in the appendix.

THE QUASI-TWO-DIMENSIONAL CASCADE

The problem under consideration is that of the irrotational incom-
pressible flow through an infinite cascade of airfoils spanning a channel
whose width A(z1) changes slightly along the extent of the blade (figs.
1 and 2). Because h(x;) is a slowly varying function of x; only, the flow is
very nearly two-dimensional (hence the term ‘“‘quasi-two-dimensional”).
In the study of plane cascades, the basic flow disturbed by the airfoils is
represented by the vector mean V.. of the inlet and outlet flow velocities.
In the case of varying axial velocity, for reasons explained in the dis-
cussion of this paper, if Va; and Va, denote the axial velocities at the
cascade leading and trailing edges and Vi, and Vi the corresponding
tangential velocities, the mean velocity representing the basic flow through
the cascade (fig. 3) has an axial component 3 (Va4 Vae) and a tangential
component V., +31AV.(1+a/2E), where AV,=V,,— V. and a and E are
contraction parameters shown later in figure 4.

Cascade and Flow Parameters

Performance of a cascade system is usually represented by the amount
of flow turning exerted by any one blade Ag=81—p: as a function of all
the remaining cascade and flow parameters. To some extent, performance -
is also indicated by the resulting circulation I' about an airfoil. In strictly
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M F1GURE 1.—Schematic of flow
K< through an infinite cascade of

2h(x)) [ ttci i, airfoils spanning a channel
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Va,

jol Direction x,

X
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Section A — A
(b)

plane flow, the circulation is a direct measure of the lift exerted on the
blade.

Figure 2 defines the various parameters of cascade and flow geometry.
The notation adopted here differs slightly from that used by Mani in
references 3, 4, and 5; it coincides more with Lieblein (ref.1) and Mellor
(ref. 2). In figure 2 all angles are indicated in their positive sense.

The inlet and outlet flow angles are

i ; 61 .
! 2

0.
Br=A—3+5*

and the angle Ag through which the flow is turned is
AB=73(01140,) +1—o* (2)
In the work to follow, the camber line is symmetric so that 6;=6,.
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Chord Line

Cascode Axis
Axial Direction

X

1

Ficure 2.—Definition sketch for the cascade and flow paramelers.

Basic Equations

The quasi-two-dimensional (QTD) flow analysis is modeled after the
approach and method of solution for plane flow cascades described in
reference 2. There are several notable features of this theory that can be
briefly mentioned here. The principal feature is that the governing equa-
tion of the strictly three-dimensional flow is reduced to a two-dimensional
equation. This simplification can be made only because it is assumed that
the channel width h(z;) is a slowly varying function. Beyond this, for
simplicity, a channel contraction shape is adopted which minimizes the
requisite calculations yet retains the essential features of the problem. In
the present work there is the additional (but not essential) simplification
that the thin airfoil approximations can be used. These same approxi-
mations have, in fact, been used before for plane cascade flow analysis
with good effect (ref. 2) and are believed to be equally useful in the
present case.

The key notion in this work is that all relevant quantities can be
averaged over the channel height and that any errors that result are much
smaller than the effect being sought. This idea is well known, as is indi-
cated in reference 4, and rough estimates of the error involved can even
be made (ref. 3). The flow is assumed to be an incompressible, potential
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Figure 3.—Velocity vector diagram.

flow. There will be, accordingly, a velocity potential ¢(z,y,2) having
velocity components u(z,y,2) =d¢/dz, etc. We define the following
averages

1 h
@(21,51) =z /o e(x,y21) dzy
(3)

h
d(xl,yl) =m . u(x;,yl,zl) dzl, etc.

It may then be shown (ref. 4) that

__ 99
U=
62:1

> (4)
99

i=—
6y1

and that a quasi-two-dimensional stream function ¥ (2,3:) can be defined
by
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In terms of the averaged flow quantities, the full three-dimensional flow
field equations become

M) 95
A‘”+h(ycl) or
; (5)
R (z) 89
AJ_h(xl) 6—.’01_0

where h’(x1) =dh/dx;. Fundamental solutions of these equations corre-
sponding to source and vortex flows are clearly dependent on the channel
shape through the function h'(x1)/h(z1). The principal feature of the
quasi-two-dimensional flow theory developed in reference 3 is that it takes
explicit aceount of the fact that the velocity fields of sources and vortices
should be calculated on the basis that these singularities themselves are
modified by the lack of two-dimensionality.

Even from the equations quoted above for the average potential ¢
and stream function ¢, it is clear that a good choice for the channel shape
h(x;) is one for which the function &’ (x,)/h{x:1) is as simple as possible.
For this ratio equal to a constant, —a (a contraction), the result is an
exponential channel shape h(x;) =heexp (—ax1). A more realistic choice
is one which gives a contraction effect and also constant stream velocities
far upstream and far downstream. For purposes of the calculations in this
report, a channel shape is chosen with a central contraction

b (1)

Wy =~ e[Hoate) ~Hoz—a)] (6)

where Ho(z;) is the Heaviside unit step function. This channel is sketched
in figure 4a and can be conveniently termed a finite exponential channcl.

Calculations of the fundamental source-like and vortex-like singularities
of equation (5), even for the case of a finite exponential channel, are very
complicated. It is only for the case of small contraction parameter « that
the velocity components used for these computations can be approximated
to the first order in «; i.e., that the z;-component of a unit vortex in
axially accelerated flow can be expressed in the form

1 751

_51: (x12+y12) Fati, (7)

Uvortex =

where u,, is a correction term for the non-two-dimensional character of
the flow. Details of the calculations of all the necessary velocity com-
ponents are contained in reference 3 and are summarized in reference 4.
They all have the same form as equation (7), where the resulting formulas
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are linear in . This points to a feature of the final results of the computa-
tions described in this note: they can be extended by linear extrapolation
to any arbitrary but small a.

The problem is nondimensionalized by putting the chord length c¢=2.
The extent of the contraction (2a in fig. 4a) is denoted by E. In the com-
puter computations it is necessary to keep the ratioc E/2cos A>1.0.
Figure 4b indicates the nondimensional channel geometry in the z,~z
plane.

The axial velocity ratio is computed using the axial velocity com-
ponents Va, and Va,, measured at the leading edge and trailing edge,

respectively. From the continuity equation, we have

AVR=_=.—_=eZa cos A (8)

[~ C COS A —]
—C/2 cos A Q| C/2 cosh
X,
~ag
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F1GURE 4a.—Channel shape for a central contraction.
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FiGurE 4b.—Nondimensional coniracting flow problem, with a finite length exponential
channel and airfoils of chord length ¢ =2.
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Hence, for the special geometry chosen, the contraction parameter « is
related to the axial velocity ratio by the formula

1
CcoSs A

In (AVR) (9)

Airfoil Sections

The principal geometrical features of any airfoil section are the camber
line function y.(z) and the thickness distribution yu(z).

From figure 2 we see that the camber angle 6 is a convenient index for
describing the camber line. This is especially true of a symmetrically
cambered foil for which /2 measured at the leading edge is identical with
8/2 measured at the trailing edge. Now, for design purposes it is often
useful to be able to preseribe the seetion lift coefficient Cb of an isolated
airfoil in terms of the camber angle. Two simple camber line functions
are of special practical interest: the parabolic arc and the circular are.
They are shown schematically in figure 5, indicating how the camber
angle 6 is measured for cach one. From thin airfoil theory, the section lift
coefficient due to camber for the parabolic arc is (ref. 6)

[} ] 1
= Il — ... 0
Cs wtan2 1r2<1+120+ ) (10)

Using the Joukowski transformation, the section lift coefficient for a
circular arc camber line at an angle of attack o* is (ref. 6, p. 69)

Y

K
D TN
-1 I Ji'—l 1

u
(2]
Parabolic _Arc Camberline Circular _Arc Camberline
Ye _px dye __ %
=A, fhut/ S S—
dx c dx 'CSC % - xz
where: A, = -7,"— where: 8=8(Cp)

FI1GURE 5.—Parabolic and circular-arc camber lines.
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_,_sin (a*+6/4) .
Co=2m cos 8/4 (11)

Putting o* =0, the lift coefficient due to camber for a circular arc is
[/} 8 1
Cb=27rtan7ﬁ1r:(1+;302+...) (12)
4 o\ L 26] /

Clearly, for reasonably small camber angles, 8, these lift coefficients are
nearly the same.
It is convenient to prescribe the camber-line slope in terms of a poly-
nomial
dy.
e _ Aot Ao+ Aga? (13)
dz
The present calculations use a parabolic symmetric camber line with
Cy(6) from equation (10), so that in equation (13)

Ap=A,=0
(14)
4=-2
™
and
Cy .
6=2tan™* — (parabolic arc) (15)
T

A circular arc camber line could be only approzimately represented by
equation (13). The camber angle 6, given Cs, is determined from

C .
§=4 tan~! — (circular arc) (16)
T

The present computations were performed using a thickness distribu-
tion yu(z) of a symmetrical Joukowski airfoil. The thickness slope is

d i .
Wan_ (0.77) - <tan ¢ _2sin <p) a7
dz c 2
where 2= cos ¢.

One of the direct results of the QTD analysis is the determination of the
coefficients in the thin airfoil vorticity series

N
v(z) =a, tan g—{— > an sin (np) (18)

n=l1
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For purposes of the calculations, the number of terms N in this series was
limited to 5. This is used throughout. However, a higher number of terms
might be better, especially for the larger values of the stagger angle A and
for the larger solidities o.

The total circulation (measured positive counterclockwise; see fig. 1b)
for both the two-dimensional and three-dimensional calculations is
given by

ax
I‘¢=1l' <a0+2—> (19)

For the two-dimensional cascades, a lift coefficient can be calculated
directly from the circulation. Correcting for the sign of I'; from equation
(19), the lift per unit span is

L= —‘meI‘g
Then

L T,

CL = =
oVaic 1V.c

Wi

This is nondimensionalized using ¢c=2 and V,=1. Hence the lift coeffi-
cient for an airfoil in the two-dimensional cascade system is

CL=—P1 (20)

Values Used in Present Computations

The results presented in this note have been calculated for a range of
stagger angles and solidities with a thickness ratio of 0 and 0.1 and for
mean angles of attack of 0 and 0.1 radians. The camber parameter C, was
taken to be unity and the contraction parameter o was taken to be 0
(two-dimensional) and 0.1. The extent of the contraction was always 1.1
times the axial projection of the blade. It was found sufficient to use five
terms in the vorticity series. The resulting calculations required a 15-
second execution time (per each solidity and stagger angle combination)
for the two-dimensional case and 48 seconds for the quasi-three-dimen-
sional case on the IBM 7094 computer.

RESULTS: EFFECT OF FLOW ACCELERATION ON FLOW
TURNING

In this section, the main results of this note are presented in the form
of nondimensional plots of the deviation angle. As mentioned previously,
the calculations were performed assuming parabolically cambered airfoils
with a prescribed section lift coefficient C. Computations illustrating the
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effect of foil thickness (t/c) are presented only for ¢=1, using the sym-
metrical Joukowski thickness distribution discussed earlier.

Throughout the ensuing discussion the term “flow turning” will refer
to the change in the flow angle A8 = (8+-7) — &*. This conforms to the usual
convention and is the one adopted in references 3, 4, and 5. Comparisons
made between two- and three-dimensional flows assume a given inlet
condition; so the incidence angle ¢ can be thought of as constant at a given
A and ¢. Hence it is actually (—6§*) that measures changesin Ag.

Flow turning through a cascade with accelerating flow is influenced by
two factors: the magnitude of the circulation Tsp about the blades and
the increase in axial velocity. It has been pointed out (refs. 3 and 4) that
the reduced circulation caused by axial-flow acceleration weakens the
ability of the cascade to turn the flow, but the speed-up in axial velocity
tends to make the flow more axial, and hence acts to increase the flow
turning in compressor cascades. The final balance between these effects is
complicated and appears to involve all the parameters of the cascade
and flow geometry.

Zero Thickness Cascade Blades

Flow turning represented in terms of the nondimensional deviation
angle 6*/6 can be described as a function of the stagger angle ), the solidity
o, the particular choice of camber-line function y,(z), and the inlet flow
conditions represented by 8y (or, better, by the incidence angle 7).

Figures 6 and 7 are graphs of the change in §*/6 due to accelerated
flow divided by the quantity (AVR-1), plotted two different ways for
convenient use. An important feature of these graphs is that the values of
8*/6 appearing in the quantity A[6*/6]= (8*/6) (2D)— (6*/68) (3D) have
values of two-dimensional minimum loss incidence from Lieblein (ref. 1,
Chapter VI). This was accomplished by first establishing the minimum-
loss-incidence angles from figure 138 of Lieblein’s report. For each of the
cight stagger angles N (see the section on the quasi-two-dimensional
cascade) and the prescribed camber angle §=35.314°, the appropriate
incidence angle ¢ appearing in 8;=\+46/2+7 was determined by inter-
polation. The incidence angles found in this manner are referred to as
i2P). From the computer results, values of (§*/6) (2D) and (6*/6) (3D)
are known at two different values of the mean angle of attack a. (one
block of calculations at a,=0 and another at a,=0.1). By assuming a
straight-line variation of 6*/6 between the two «. values, the angles
1P can be cross-plotted on the same graph to obtain (5*/6) (2D,i£le)
and (8*/8) (3D,i&”) by interpolation. Note that this means that the
plane flow 6*/0 is compared with the accclerated flow 5*/8 at the same
inlet condition; namely, minimum loss incidence. From figures 6 and 7,
it is clear that the effect of flow acceleration (AVR>1) is larger when the
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T T T ¥ T
= ene Sk g% (20), _ &% (2p)
0.4 A= 600\ Alg ) =5 (2, L 07) ~ g (3, 170) J
A = 45°
t
S=0, € =1.0
0.3
A = 30°
0.2k
[5*/8]
(AVR-1) A = 15°
o1k
A= 0°
0 —

0.1 //——’__—
A = -15°

-0.2F SOLIDITY, o = c¢/s

[l L i ] L

0 0.5 0.5 1.0 1.5

FiGure 6.—Effect of flow acceleration on the deviation angle ratio at minimum-loss
incidence 12D,

foils are relatively far apart (¢—0) and that the influence of flow accelera-
tion is diminished as the foils are brought closer together (o increases).
The character of the change in §* due to AVR>1 is also altered as X
increases; i.e., A[6*/6] has a steeper curve for the higher A values. It also
changes sign for A<0 (compare the case of A=—15°). In the case of
A=0° extremely small values of A[4*/6] were obtained and, from a
practical design point of view, it would be best to assume A[§*/6]=0
for A=0°.

The mean angle of attack a. is not a constant in figures 6 and 7, but
varies with the appropriate minimum-loss-incidence angles i&".

Several things should be kept in mind concerning the minimum-loss-
incidence angles i&: (1) they were determined experimentally by
finding the minimum points on the curves of total pressure loss coefficient
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T T T T T T T

o a¥fy - %*(21), L:IZLD)) - %*(31), i;iD))

g = 0.50 /

o =10.75
0.2

o= 1.00

A[s*/e
(AVR-1)

c.1L

-0.1

-0. A I 1 1 1 A
-10° 0° 10° 20° 30° 40° 50° 60°
STAGGER ANGLF, X

Ficure 7.—Effcct of flow acceleration on the deviation angle ratio at minimum-loss
incidence im @D,

versus incidence angle ¢ and (2) the experiments that formed the basis for
figure 138 of Lieblein’s work were performed with NACA 65-(Ay,)-series
airfoils, and the results were referred to equivalent circular-arc camber
lines.

The impact-free-entry operation of an airfoil is a useful reference
condition in design. Large velocity peaks on either foil surface of zero
thickness blades are avoided by locating the forward stagnation point
exactly at the leading edge. This simple impact-free criterion is not
applicable to nonzero-thickness blades with rounded leading edges, but
it seems reasonable to apply it to zero-thickness airfoils in a cascade.
This was first done by Weining in his approximate theory of a two-
dimensional cascade of cambered airfoils (see ref. 1, Chapter VI). For
thin airfoil theory, impact-free entry corresponds to arranging the inlet
flow angle 8; so that the coefficient ay equals zero in the vorticity series
(eq. (18)). The incidence angle ¢ leading to the condition ac=0 can be
referred to as an impact-free incidence, 4,,=0. Values of this parameter
for two-dimensional cases using the present theory were determined by
interpolation. Figure 8 is a plot comparing the experimental values of
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T T T I T
=——— Impact-Free —Entry Incidence
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16 A '\75° Minimum - Loss — Incidence
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A=60° o e t/c = 0
- 40;___0.4 \6 ~\ Cp = 1.0
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g 8
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w
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w
a
O —6%
£
— g0}
F—0O.1
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SOLIDITY, o = ¢/s

FiGURE 8.-—Comparison between experimental minimum-loss-incidence angles (Lieblein,
ref. 1) and potential theory impact-free incidence.

impact-free incidence 7,,%» =0 using the QTD theory with a=0. Both
are for zero-thickness airfoils. The two sets of curves are seen to agree
only somewhat at high values of A, and disagree completely for the lower
and minus values of X\, It is for this reason that we chose inlet conditions
corresponding to values of the experimental minimum-loss incidence

iZP in presenting the curves of A[§*/8] in figures 6 and 7.

Mutual Influence of Thickness Ratio and Flow Acceleration

To study the effects of thickness, a limited number of computations
were carried out for a 0.1-thickness-ratio cascade of parabolic-arc camber-
line airfoils of unit solidity and a camber of 35.314°. A range of stagger
angles from —15° to 75° was considered. The mean angle of attack was
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assumed to be zero. Both quasi-two-dimensional and plane flows were
considered, with «=0.1 and E=2.2 cos \ for the quasi-two-dimensional
flows. Thickness, in general, tends to increase deviation angles. In table
III of the appendix, we present values of the parameter 5*/6(t/c=0)—
6*/6(t/c=0.1) for both plane and quasi-two-dimensional flows. The table
shows that, in quantitative terms, the effect of thickness in increasing
deviation angles is practically identical for plane and QTD flows. Based
on these results, it seems reasonable to suggest that the results of figures
6 and 7 will be directly and quantitatively applicable to finite-thickness-
ratio cascades as well.

SUMMARY

Flow turning is an important aspect in the design of a compressor row,
and it is known that changes in axial-flow velocity through the row can
modify cascade performance. In this note, figures 6 through 8 summarize
some results concerning the effects on the deviation angle of both axial-
flow acceleration and changes in foil thickness. These curves are presented
in a fashion that should be useful for design purposes.

The curves of A[6*/6]/(AVR-1) versus ¢ and A in figures 6 and 7
combine both experimental and theoretical results. Two-dimensional
experimental values of minimum-loss-incidence angles from Lieblein were
cross-plotted with potential flow results for §*/4 from the QTD theory in
order to generate values for these graphs. In these two figures, the mean
angle of attack a. is not constant but varies with both X and ¢.

All of the results presented here pertaining to the effects of axial velocity
ratio on cascade performance are valid for small contraction parameter
a=In (AVR)/2 cos \. Whatever trends are evident can be thought of
as being linear in terms of this parameter, since the present QTD cal-
culation is essentially a regular perturbation expansion in «. This fact is
useful in extrapolating the present results to other small values of the
contraction parameter.

We should emphasize that the effects displayed in the graphs of this
report are to be taken as trends since they actually apply to a finite
exponential contraction and not necessarily to an actual contraction.
Also, we have not made a systematic exhaustive numerical study of all
the variables at our disposal. For example, variations in the extent of
contraction, the camber angle, and the camber-line function are not con-
sidered here. However, before further calculations of this type are under-
taken, it would be very desirable to have experimental results available
from cascade experiments in which the contraction effect and flow geom-
etry are well defined.
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LIST OF SYMBOLS

AVR

Ao, Ay, As

Qo, A1, . . . , AN
Cy

c

E

h

)

Ten 2y G650

2P

QTD

8

t/c
Vay, Vap

Vi, Ve

Vo
x! y} 2

2D
3D

o
Qom

@D) _GD)
am ) am

(2D) (3D)
Qmgy =0y Omag=0

pm
B1, B2

v(x)
T,

Axial velocity ratio=Vay/Va,

Coefficients of the camber line slope (eq: 13))

Coefficients of the vorticity series (eq. (18))

Section lift coefficient due to camber

Chord length of airfoil

Extent of cascade blades along the z; direction (fig. 4b)

Width function of channel = (x;)

Incidence angle (see fig. 2)

Incidence angles for impact-free entry (for t/¢=0), for
two-dimensional -and three-dimensional cascades,
respectively

Incidence angle of minimum-loss operation (2D cascade)

Quasi-two-dimensional; refers to the spanwise averaged
three-dimensional flow developed in reference 3

Spacing between foils in a cascade (see fig. 2)

Thickness/chord ratio

Axial flow veloeity components at the leading edge and
trailing edge, respectively

Total velocity at the leading edge and trailing edge,
respectively

Mean total velocity, 4 (Vi+ V)

Coordinate system with z, taken along the axial direction
(cascade axis)

Refers to plane flow cascades, h(x;) = constant

Refers to three-dimensional (QTD) cascades; for the
present calculations, a constant contraction parameter
a=0.1 was used

Contraction parameter, exp (2a cos \)

Mean angle of attack of V,. (see fig. 2)

Mean angle of attack corresponding to minimum-loss
incidence for two-dimensional and three-dimensional
cascades, respectively

Mean angle of attack corresponding to impact-free entry
for two-dimensional and three-dimensional cascades,
respectively

Mean flow angle, A a.

Inlet and outlet flow angles, measured with respect to
the cascade axis

Vorticity distribution (eq. (18))

Total circulation (positive counterclockwise) ; we also use
T'=—T,for parts of the discussion
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A[5*/6]
ATP[6%/8]

AFD[8*/6]
5*

A

g

6

Change in 6*/6 due to axial-flow acceleration,
8*/6(2D) —5*/8(3D)

Change in 6*/8 due to thickness change for two-dimen-
sional cascade, 6*/6(f/c=0)—58*%/6(t/c=.1)

Same as above for three-dimensional cascade

Deviation angle (see fig. 2)

Stagger angle, angie of foil chord with axial direction

Solidity, ¢/s

Camber angle, 3(6,46;) (see fig. 2)
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TasLe 1I1.—Values of Parameter [6*/6 (t/c=0)—3*/8 (t/c=0.1] as a Function of
Stagger Angle \ for a Parabolic Arc Camber-Line Atrfoil Cascade!

Parameter for Parameter for
\ degrees Q.T.D. flow T.D. flow

— 15 el 0.000 —0.001
O el —0.011 —0.012

15 e —a —0.025 —-0.025
30 oo —0.040 —0.041
- YD —0.0575 —0.057
60, o ieee- —0.076 © —0.075

[ T —0.106 —0.107

1 In the quasi-two-dimensional case, @ = 0.1 and E = 2.2 cos M. Also, &, =0, 6 =1 and O =
35.314° fcr both cases.
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DISCUSSION

J. H. HORLOCK anp J. P. GOSTELOW (Cambridge University):
We have followed the work of Mani and Acosta (and now Wilson) with
considerable interest over the past few years since, at Liverpool and
Cambridge, we have been working on the same problem of axial velocity
ratio effects.

On the analytical side, two approaches to the problem have been
described in the discussion of reference 4, referring to papers by Pollard
and Horlock (ref. D-1), and Shaalan and Horlock (ref. D-2). Briefly,
the first approach was to place strip sources across the blade pitch and
solve the potential equations for the flow past thin airfoils in two dimen-
sions. (This is somewhat similar to the approach of Smith, described in
the first paper, in which he allows for the flow in the §2 plane in his
solutions for the S1 plane.) The second approach made the initial assump-
tion that meridional flow through the midspan section of the blade was on
gently inclined planes, and a potential equation

W) 3 _

Ve =
¢+h1(xl) o

was derived for the flow near the center line. Solution of this equation was
again obtained by using local sources S=—(hl/h)(d¢/d2) varying
linearly across the pitch, No allowance was made for the modification of
the induced velocity due to restricted length of singularities. Essentially,
the problem solved was two-dimensional, but one in which fluid was
introduced uniformly at all values of Z in order to increase the axial
velocity.

Hawthorne (ref. D-3) has since argued that neither the Mani-Acosta-
Wilson nor the Pollard-Horlock-Shaalan approach is strictly valid. If the
Mani-Acosta-Wilson approach is more realistic than the Pollard-Horlock-
Shaalan solution in its allowance for spanwise variation in singularity
strength, then the effects of trailing, or shed, vorticity should also be
included, downstream of the blades. Hawthorne has solved the problem
for closely spaced blades using the type of analysis developed by Honda
for shear flows (ref. D—4).

Another approach is that of Norbury (as yet unpublished) who con-
siders the radial flow through “ring” airfoils. The bound singularities are
then uniform but circular in shape, rather than infinitely long straight
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lines (Pollard-Horlock-Shaalan) or lines of finite length (Mani-Acosta-
Wilson). -

Shaalan has recently provided a summary design manual similar to the
current paper. It allows for axial velocity ratio effects and is based on
reference D-2. A summary of Shaalan’s calculations is given in figures D-1
and D-2 for 20° and 30° camber. We doubt the validity of the thin airfoil
analysis, especially for cambers higher than 30°. Also shown is Howell’s
rule for deviation (ref. D-5), based on experimental cascade data. We
expect this rule to be valid for 1.1 <AVR <1.2. We have replotted these
calculations in figure D-3 (at zero incidence, not minimum-loss incidence,
which would be roughly —5°) for direct comparison with the Mani-
Acosta-Wilson calculations.

We would commend the use of the parameter A[6*/6]/(AVR—1) to
designers. This is a logical dimensionless group which adequately repre-
sents the observed linear dependence of deviation on camber (Howell)
and of deviation on axial velocity ratio (Pollard and Gostelow, ref. D-5).

}

Figure D-1.—Shaalan’s pre- b
diction for 20° camber. a®—
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The experimental evidence available is that of Pollard and Gostelow
(ref. 13), Heilmann (ref. 14) and Masek and Norbury (ref. 15). Pollard
and Gostelow used 10/C430 C50 airfoils at 36° stagger, with solidities of
unity and 1.15. This resulted in the empirical rule

Ad*=5*3p—d%p=10(AVR—1)
giving
A[*/6] 10
AVR—1 30 0%
Heilmann tested a NACA 65-(12A2 I8b)10 cascade with 25.5° stagger
for minimum-loss incidence and a solidity of 1.5. The slope of the experi-
mental results gives

A—[6‘;‘:/—0—]‘=~i-0.15

AVR-1
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Ficure D-3.—Effect of axial velocity O4r
change on deviation angle ratio.
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AMasek and Norbury tested a specially designed compressor cascade
with 35.5° stagger and a solidity of 1.2. The slope of their experimental
results, for both zero and minimum-loss incidence, gives

A[5*/6]

AVR—_1_ +0.31

We understand that the thin airfoil potential theory used by Mani-
Acosta-Wilson for airfoils of finite thickness neglects perturbations of
chordwise velocity and of velocity gradient in the equation for source
distribution. This may well result in erroneous prediction of lift and
deflection. It would be of interest to see the presentation of pressure
distributions from the Mani-Acosta-Wilson analysis, for comparison with
Shaalan’s predictions and with experimental results and for calculation
of the biade boundary layers. A disadvantage of all thin airfoil theories is
that the Kutta/Joukowski condition again results in erroneous prediction
of lift and deflection. Real blading usually has a rounded trailing edge.

It seems that there is much more work to be done. The changes in
A[5*/6]/(AVR—1) for off-design incidence have not been assessed
either theoretically or experimentally. There may or may not be a signifi-
cant change in this parameter as incidence is increased. Our own limited
evidence is contradictory. The designer also needs information on the
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relationship between loss coefficient and axial velocity ratio. This will
need a substantial effort with both experimental work and viscous flow
calculations.

B. LAKSHMINARAYANA (Pennsylvania State University) : I have

cairied out an approximatc analysis for the prediction of the change in
deviation angle due to change in axial velocity through the cascade. The
predicted change agrees qualitatively with those of the authors and
Pollard, Horlock, and Shaalan’s theory (refs. D-1 and D-2) and is in
good agreement with values measured by Pollard and Gostelow (ref.
D-6), Heilmann (ref. D-7), and Schulze, et al. (ref. D-9).

The change in circulation associated with change in axial velocity is
given by:P~!

AT = 8[(V., tan g1— V., tan B') — V., (tan 8;— tan Bz) ]
=SV, (tan 82— AVR tan ;') (D-1)
where 8;' =B:— As* and B is the outlet angle for AVR=1.

Ad* = Boq* — 03a™*
For small values of Aé*,

tan 8y’ = (tan B;— A%*) (1— As* tan Bz) (D-2)

Substituting equation (D-2) in (D-1) and neglecting the second-order
term (Ad*)?,

AT/SV.,= (1—AVR) tan Bs+AVR As* sec? i (D-3)

With regard to change in circulation (AT), mutual interaction of thick-
ness and axial velocity changes should be small and this has been demon-
strated by the authors (table III). Thus, the problem reduces to com-
putation of AT for a cascade of cambered plates.

The circulation distribution for a cascade of symmetrically cambered
(parabolic or circular) plates is given by (ref. D-10),

v(z) =KV .[2a(14 cos 8) /sin §+8(G/c) sin 8] (D—4)
where
K is the cascade influence coefficient (see fig. 282.1 in ref. D-10 for values)
a=1+6/2

(G = maximum camber
z=(¢/2) (1— cos ), the coordinate transformation

b-1 All primed expressions such as 831, V! refer to values with AVR 1 and V.
refers to axial velocities.
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The change in circulation distribution due to axial velocity change
(with V; and 8, held fixed) is given byP~*

dy=2KV,, Aa(14 cos8)/sin 8
4+ KAV ,.[2a(1+ cos 8) /sin 64-8G/c sin 6] (D-5)

where AV, for a cascade (which corresponds to the change in free-stream
velocity in the case of an isolated blade) varies from zero at the leading
edge to its full value at the trailing edge.

For small changes in axial velocities, the maximum change in V.. can
be approximated by

(Va') 2= V2222V n(AV )1 (D-6)

where V., is the vector mean velocity for a cascade with AVR>1 and
TE refers to values at the trailing edge.

Using the cascade relationships for V.. and V.’, equation (D-1), and
the approximations indicated in equations (D-2) and (D-3), the follow-
ing expression can be derived

AT
SV,

(AVm)TE__l_ V::
Ve, 8Vn

{(1+AVR)2—4— [(14+AVR) tan . +2 tan ;31]}

(D-7)

In equation (D-7), second-order terms such as A8*? and ATAs* have
been neglected.

Similarly, the trailing edge of the blade will have an incidence change
(for small Aarr) given by

tang’ 1 (tan Bt Aarg) (14 Aarr tan 8;)

tan 68, " AVR tan 8
Hence,
1—AVR tan 8,
= D-8
*TETTAVR sec? by (D-8)
If AV., Aa, and AV,, vary linearly with z, it is clear that
1—AVR
o= lZAVRIAD By ) (D-9)

2AVR sec?f

D-2 The analysis is based on the fact that each infinitesimally small blade element
in the cascade sees a different change in angle of incidence (Aax) and velocity (AVa)
due to change in axial velocity. The values vary from zero at the leading edge to full
value at the trailing edge; hence, dv, Aa, and AV, are all functions of z or 8.
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1— cosf

AV = (AV.)1E 2

(D-10)

Substituting equations (D-7) through (D-10) in equation (D-5) and
integrating the expression between =0 and x =c, the following expression

is derived for total change in cireulation
AT Va 1—AVR tan 8 (G oz) (AV,,.)
=IIK ———— ———+0Ke | —+- D-11
SV ROV AR sees o)\ v ) (DD

Substituting equations (D-3) and (D-7) in (D-11) and rearranging,
the following expression can be derived for the change in the deviation
angle due to axial velocity change

As*

AVR AVR-1

= cos? B, | tan B,

<1’IKa[(G’/c)+(a/4)]cosﬁ,,.[(AVR+1)’—4:|_ 211 K¢ tan 8; )
AVR—-1 AVR cosBnsec?B

8+ MK (a/4)+ (G/¢)] cos B[ (AVR+1) tan 8;-+2 tan 81 ]
(D-12)

Equation (D-12) provides deviation values which are better than those
of either of the two theories (see discussion of this paper by Horlock and
Gostelow) for the cascades of Pollard and Gostelow (ref. D-6), Heilmann
(ref. D-7), and Schulze (ref. D-9) as shown in table D-1.

It is not clear why the approximate theory developed above has better
agreement with experimental values than the theories developed by the
authors and Pollard-Horlock-Shaalan (refs. D-1 and D-2). One possible
source of error may be the numerical method. The numerical solution
adopted by the authors is not capable of predicting extremely small
change in angles. One way to overcome this is to solve directly for the
perturbed flow, as shown in this discussion, rather than to solve for the
entire cascade flow.

It should be emphasized here that all the theories, including that of the
discussor, are strictly valid for small changes in AVR (possibly for
0.9<AVR<1.1) and small flow turning. At higher values of AVR and 6,
the three-dimensional effects are important and the flow cannot be con-
sidered quasi-two-dimensional.

+
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TasLE D-1.—Comparison Between Predicted and Experimental Values of
A(6*/8)/(AVR-1)

Predicted
Cascade Parameters Experi- | BL (M/A/W | P/H/S
mental (refs.
value D-1 and
D-2)
Pollard and Gostelow
(ref. D-6)
10/C430 C50__ . ... A=36° o =1.14
B1=>52°50, B =31°
G/c=0.065, K=0.8
0=30° a=16°50" 0.330.42| 0.13 0.09
Heilmann
(ref. D-T7)
NACA 65(12A.1,)10. .. | A=25.5° ¢=1.5
B81=45° B2=19°
G/c=0.073,
K=0.65

0=31° «=19°30" 0.15 ] 0.18 0.062 0.04
Schulze, et al.
(ref. D-9)
NACA 65(11)10__ . _____ Xx=40.5° ¢=1.00
B1=52°30%, B;=35°
G/c=0.06, K =0.87
6=28° a=12° 0.37 | 0.49 | 0.175

WILSON, MANI, anp ACOSTA (authors): In view of the spirited
discussion of our paper at the symposium, a thorough review was carried
out of all aspects of the calculations. As a result, a rather subtle but
important error has been uncovered in our procedure of evaluating
deviation and incidence angles once the circulation has been determined.
We regret this error®— deeply but, as this closure demonstrates, once this
error is rectified, our results for deviation angles are in much better agree-
ment with those of other investigators.

Having obtained the total circulation T' around each airfoil, we as-
sumed previously that the row of infinite vortices would contribute
tangential velocities +=T/2s on the downstream/upstream side, where
s is the transverse spacing between adjacent airfoils. This result is indeed

D-3 These corrections have been incorporated in the final version of the paper pub-
lished in these symposium proceedings.
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true in the two-dimensional problem. It has turned out to be erroneous to
0(a) in the quasi-two-dimensional problem. We have calculated anew
these tangential velocities by summing the fundamental solution v, spelled
out in Appendix 1 of reference 4 of our paper. The correct result was
found to be that the tangential velocity (due to the vortices) downstream

is
—T «a
— - E
2s <1+2 )

where « is the contraction parameter and E is the extent of contraction,
The tangential velocity due to the vortices upstream is

T @
—{1—F
2s< 2 )

Note that the difference of these tangential velocity contributions is still
T'/s (as it should be), but the contraction introduces an asymmetry
whereby the downstream contribution is enhanced by a factor 14- (o/2) E
and the upstream contribution is reduced by a factor of 1—(a/2)E. We
thereby calculate the inlet flow angle with the equation

an gy 5 Oban) HAAV 1= (2/2) E]
an = (1—acos \) cos (A am)

and the outlet flow angle by

tan g S0 (M am) —3AV[1+(a/2) ]
an ﬁz-—
(14 acos A\) cos (A+an)

where AV, is still T'/s.

As can be readily appreciated, correction of this error has the effect of
decreasing (at fixed mean angle of attack) both incidence and deviation
angles. Two sets of computations were performed with the corrected
equations to demonstrate the vastly improved agreement of our results
with those of other investigators.

First, in figure D—4, we plot the §*—i curves for a zero-thickness,
parabolic camber line cascade with A=45° ¢=125 6=35.314°,
E/2 cos A=1.1,and a=0.1. Dr. L. H. Smith of General Electric Company,
Cincinnati, Ohio, referred our paper originally to his colleague, Dr. D. C.
Prince, Jr. Dr. Prince performed computations based on a finite difference
method and kindly supplied us with results for the effect of the contrac-
tion on the 8*—1 curves, based on his program. Dr. Prince was among the
first to express strong reservations about our results, indicating that the
deviation angles may sometimes increase (due to speeding of the flow).
The figure is largely self-explanatory, and it is seen that our corrected
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F1Gure D—4. — Deviation angles for parabolic camber airfoil.

results are in much better agrecment with those of Dr. Prince. Our
analysis predicts a drop of around 0.7° due to axial acceleration, while Dr.
Prince’s estimates are closer to 1° to 1.1°,

The second set of computations pertains to calculations carried out by
Professor Lakshminarayana in his discussion of the paper. He considers
two cases: first, a cascade with A=36° and o =1.14 and, second, a cascade
with A=25.5° and ¢=1.5. By interpolation from our new (corrected)
figure 7, the following results were obtained:

The table follows the notation of Professor Lakshminarayana’s dis-
cussion.

It is seen that the agreement with Professor Horlock’s results is now
much better. A discrepancy of even 0.04 in the value of the predicted
parameter with #=35° and AVR =1.15 corresponds to a discrepancy in
A* itself of only 0.21°. Considering that these results have been
derived by interpolation, the agreement seems satisfactory. Professor
Lakshminarayana’s predictive procedure, of course, would appear to fit
the experimental data the best of all. Perhaps most important, corrected
results of the present paper seem to fall in line with those of other in-
vestigators in that deviation angles would appear to be always reduced
due to axial acceleration for decelerating (A>0) cascades.

It is worth emphasizing that, in all these corrected calculations, the
value of T used was the same as obtained previously. No errors were




INFLUENCE OF AXIAL VELOCITY RATIO ON CASCADE PERFORMANCE 133

TaBLE D-I1.—Comparison Between Predicted and Experimental Values of
A(3*/6)/(AVR-1)

Predicted
Cascade Experi-
mental BL WMA, WMA, P/H/S
value old, new,
erroneous | corrected
Pollard and Gostelow___ . 0.33 0.39 —0.05 0.13 0.09
Heilmann______________ 0.15 0.16 —0.13 0.062 0.04

found in the basic theory itself; namely, in the singular solutions or the
setting up and solving of the integral equation.

All graphs, tables, equations, and conclusions presented in this Jfinal
version of this paper have been corrected from the earlier version.

In conclusion, we wish to express our sincerest gratitude to several
individuals, notably Drs. L. H. Smith and D. C. Prince, Jr., and Professors
Horlock and Lakshminarayana, for their sustained interest in our work.
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Past effort in computational techniques in internal flow systems has
been concentrated on two-variable problems. This paper establishes a nu-
merical method for the solution of three-variable problems and is applied
here to rotational flows through ducts of various cross sections.

An iterative scheme is developed, the main feature of which is the addi-
tion of a duplicate variable to the forward component of velocity. Two
forward components of velocity result from integrating two sets of first-
order ordinary differential equations for the streamline curvatures, in
intersecting directions across the duct. Two pseudo-continuity equations
are introduced with source/sink terms, whose strengths are dependent on
the difference between the forward components of velocity, When econ-
vergence is obtained, the two forward components of velocity are identi-
cal, the source/sink terms are zero, and the original equations are
satisfied.

A computer program solves the exact equations and boundary condi-
tions numerically. The method is economical and compares successfully
with experiments on bent ducts of circular and rectangular cross section
where secondary flows are caused by gradients of total pressure upstream.

The presence of secondary-flow losses is well known. When a shear flow
passes through a bend with a vorticity component directed toward the
center of curvature, a secondary flow exists, transverse to the mean flow.
The vorticity is produced by a velocity gradient in the flow approaching
the bend. This velocity gradient may be produced by viscous losses up-
stream and by nonuniform work being done on the fluid. The losses in a

135
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secondary flow are due to the energy contained in the transverse flow,
much of which is not recovered. (The presence of secondary flow may also
cause subsequent parts entered by that fluid to run partly “off design.””)

This attack on the secondary-flow problem solves the fully three-
dimensional flow equations. The equations of three-dimensional fluid
flow are intractable to analytic solution, even with the inviscid and steady
flow assumptions. Until now, they have defied numerical solution due to
the insufficient core size and speed of the past-generation computer and
the lack of a numerical technique. The development of this three-dimen-
sional method of solution was stimulated by the success of various
two-dimensional numerical methods. The method is an extension of the
two-variable streamline curvature method (refs. 1 and 2).

Although the method as presented is restricted to enclosed ducts, it is
also possible to include repeat boundary conditions, thus enabling solu-
tions of the turbomachinery blade passage flow to be obtained.

DEVELOPMENT OF THE THREE-VARIABLE METHOD

To economize on time and effort during the initial development of a
three-variable method and to facilitate a clear understanding of the
mechanisms involved, attention was restricted to incompressible flows
and a simple geometry, for which experimental data was available (ref. 3).
The geometry is shown in figure 1. It consists of a rectangular duct which
turns through any number of degrees on constant mean radius R..
Coordinates z and z are fixed in each plane of cross section and y is meas-
ured along the centerline.

An Eulerian approach to the equations is used, since the Lagrangian
method, which is used in two-variable streamline curvature methods, is
excessively complicated in three variables. It requires the storage and
manipulation of expressions for two interacting families of stream surfaces
and their interaction with the boundaries.

Basic Equations

Continuity

o () o e o
14z/R.. dx R, uJ 1+z/Rndy 9z
Momentum

wu, o u wu__# _ dp @
or ' 14+z/R.dy 92 Rtz oz
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F1GURE 1.—Geometry of the duct.
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These cquations may be verified by considering a simple change of
independent variables, r=R,+z and ¢=y/R,., which yields the well-
known inviscid fluid flow equations in eylindrical polar coordinates. The
components u, v, and w are physical velocity components normal to the
local coordinate surfaces, and the static pressure p is understood to
include the specific volume 1/p, which is constant. The term 1/R,, is zero
outside the bend region, corresponding to infinite radius of curvature.

Manipulation of Equations

Following usual streamline curvature procedure, the u and w velocity
components are replaced by new dependent variables A and

where

U=\ (5)
and '

w=puv (6)

(Most authors use tan \ and tan g, but thisis not necessary for the present
analysis.) The ““in-plane” components u and w, which are expected to be
relatively small in an enclosed duct, are expressed as fractions of the
dominating velocity component », normal to the planes of cross section.
No approximation is here implied, but the transformations (5) and (6)
are singular when v is zero, a condition which must be avoided. Using
(5) and (6), equations (1) through (4) become
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1 i) x 1 6
1+x/Rm£[<l+RZ> ]+1+ 2/ oy 0 . (=0 ™
v? ap
M—(M)+1+ /R 3y (>\v)+uv (Av)—R Te or (8)
ov v v ov Av? _ -1 1_917
Mt R oy T o T Rate 142/Rady ©)
( Y ( + ( __ (10)
W)+ /13 2 7)) o o) 2

Bernoulli’s equation is also derived from equations (8) through (10).

)\aP-}-—l‘ §£+ QB—O (11)
1+z/R. dy * 9z

where the total pressure
P=pt+Rr(14 230+ u) (12)

The five equations (8) through (12) are not independent, as Bernoulli’s
equation is linearly dependent on the three momentum equations. One
equation must be omitted, and (9) is selected since it is identical with
(11) in the trivial case A=p=0.

Still adhering to the two-variable streamline curvature method, the
dv/dy terms are eliminated from equations (8) and (10) with the aid of
(7) to obtain

[ 1 A N 142 ) ]
” o, o1ty —x—“]=-—p (13)

1+x/R dy 9z R.+x 9z dx
and
1 9 a A (2N d
2 Ok (O M _“_]=__p (14)
| 1+z/R. 9y 0z R.+z = oz 9z

However, p is related to »* and P by (12). Using this equation in (13)
. and (14)

1 N 1422
14+z/Rn ay R.+z

1(1_*_)\2_*_#2) — (1)2) P 2|:

(15)
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and

1 a_y_ A
1+z/R. 0y Rntzx

oP
%(1_}_)\2__*_#2) 3 (,,)2) =——+1)2 [
a9z 0z

)\% 3_,u+)\6_,u al 16

0z K 0z ox ”axJ (16)
There are now four equations, (7), (11), (15) and (16), for the four
dependent variables A, g, v, and P. Boundary conditions are required to
close the system.

Boundary Conditions

It is necessary to appeal to the physics of the problem to obtain the
correct boundary conditions. Some of these are obvious: A =0 at the walls
given by r=-constant and p=0 at the walls given by z=constant (the
no-flow conditions). Upstream conditions are easily come by: straight
shear flow where the static pressure is constant and either » or P is speci-
fied at the inlet cross section. However, the conditions downstream are
not so evident, being complicated by the presence of secondary flow. Two
different downstream boundary conditions have been tried, both of which
are sufficient to close the system of equations and boundary conditions
from a numerical or computational point of view. The first condition is
IN/dy=0u/dy=0; the second is dv/dy=0. The latter is a little more
symmetric and converges faster, but both produce near-identical flow
fields except over the last few computing planes. If, far downstream, there
is a uniform swirling flow pattern, repecated at all subsequent planes of
cross section, both boundary conditions are correct.

Method of Solution of the Equations

The extent to which the two-variable procedure may be followed has
now been reached. Examination of the equations indicates the following:

(1) Bernoulli’s equation (eq. (11)). Given values for Aand p through-
out the flow field, P may be calculated from the starting values at the
inlet cross section,

(2) The momentum equations (egs. (15) and (16)). Either of these
may be integrated for » when )\, u, and their derivatives are known.

(3) The continuity equation (eq. (7)). Assuming that » is given
throughout the flow field, this equation may be integrated for \ if u is
known or for u if A is known.

These integrations will be for linear, first-order, ordinary differential
equations with nonconstant coefficients. Bernoulli’s equation is written
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DP/Dt=0 along a streamline to fit this classification. It is inconvenient,
though, to have two equations, either of which may be solved explicitly
for v, and only one equation to solve for both X and w. Two methods of
solution have been tried.

First Method of Solution

A pattern similar to that proposed by Wu (ref. 4) was followed.
Separate sets of two-dimensional solutions were sought, with an iterative
procedure connecting them as shown in figure 2. This did not work.
Alternating between one set of two-dimensional solutions and the other
is not sufficient to produce convergence since neither solution ‘realizes”
that it is not the same as the other. The information conveyed between
the solutions is not sufficient to produce convergence.

Although Wu’s proposals differ in that his two-dimensional solutions
are calculated on S; and S, stream surfaces using two stream functions,
the method follows the pattern suggested by Wu. A few variations on this
method have also been tried, but without success. This suggests that fora
method to have any chance of success it must “know”” about the “error”
or difference between separate two-dimensional solutions, »*—w»? for
example, and act on this information until the error is reduced to zero.

Second Method of Solution

Let the result of integrating equation (15) in the z-direction be v7,
and the result of integrating equation (16) in the z-direction be »*. The
error »*—v° is related to a static pressure difference by equation (12).
Physically, this pressure difference will change the curvature of the
streamlines, and thus A and u must be influenced by v*—v=. The best choice
seems to be the replacement of the continuity equation (eq. (7)) by the
two equations,

] z R z\ 9
2 [(1+R—m) " J*@*(”E)& () =Br—v)  (17)

and

9 [(1 +i) o |+ 274 (1 +,1> 9 () =Brr—r)  (18)
ax R. d 0y \ R./oz
where 3 is a constant. In these equations, the right-hand sides represent
source/sink terms and each reduces to the continuity equation (eq. (7))
when v*=v*. One additional equation and one additional unknown have
been introduced and now (17) is integrated directly for N, (18) for u,
(15) for v*, (16) for v#, and (11) for P. In (17) and (18), v* and v* are
selected appropriately to make the boundary conditions for the velocity
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integrations explicit. The essential feature of these equations is that when
v*=1v* they reduce to the physically correct equations.

START

Calculate P
from 11

A

Calculate v
from 15

A

Calculate A

from 7

Repeat until
converged

e

{ D G G s ey

Calculate P
from 11
!

Calculate v

from 16

Calculate u
from 7

—_——————-—-J

v

Repeat until
converged

|
L

A

]
I
I
.

Repeat whole process
until converged

v

END

Ficure 2.—Iterative procedure for Method 1.
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Revised Boundary Conditions

Although the boundary conditions described are sufficient to determine
a solution, they do not lend themselves to an easy integration of the
equations in their present form. First, (17) and (18) are first-order
equations; each requires only one boundary condition for A and g and
there are two for each. Second, (15) and (16) also require one boundary
condition each for v* and v* and there are none. This matter is rectified by
the requirements that two boundary conditions may be satisfied by each
of the first-order pseudo-continuity equations (egs. (17) and (18)).
These requirements are found as follows. Equations (17) and (18) are
integrated, first with respect to z from z=— 1X across the duct to z=3X
and then with respect to y from y=0 at the inlet to some station ¥/,

to yield
1/2X ¥’ 1/2X z ]
/ v* dz+ / / (1+—>— (w0*) dz dy=0 (19)
—1/2X o Jo1x R..) o2

and

1/2X y! 1/2X T a
/ vt do+ f / <1+—)— (u0*) dz dy=0 (20)
—1/2X 0o Y-112x R,/ 0z

where the 8(»*—v7) terms have been omitted, and the boundary condi-
tions A\=0 at = 21X have been incorporated. Alternatively, a repeat
condition, A (—1X,y,2) =A(3X,y,2) and v*(— 1X y,2) =v*(3X,y,2), yields
the same results. The requirement (19) is used as a boundary condition
for equation (15). The procedure is repeated with the roles of z and 2
interchanged to obtain a similar requirement for the other pseudo-
continuity equation and a boundary condition for (16).

In general, sets of coupled partial differential equations cannot be put
into explicit form, so it is necessary to select one variable in an equation
and guess or assume values for all others. Each of the variables must
take its turn as the unknown in one of the equations. When all variables
have been found, the equations are solved again and this iterative pro-
cedure is continued until convergence is obtained.

Iterative Scheme

Figure 3 shows the iterative scheme. Each block represents the integra-
tion of the appropriate equation for the unknown variable throughout
the entire flow field. In each integration, the most up-to-date values are
used for all other variables. This scheme is chosen for its simplicity and
because it also simplifies the boundary conditions of (19) and (20).
Between the calculation of u and the next calculation of X, v remains
unchanged; hence, on subtracting equations (19) and (20)
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1/2X 1/2X
f vdo= [ vede 1)

—1/2X —1/2X

This is the boundary condition used for v*. Similarly, the boundary

condition for v is
1/22 1/2Z
/ vt do= / v* dz (22)

—1/2Z2 —1/2Z

The right-hand sides of these equations are known from previous cal-
culations.
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END

Ficure 3.—Iterative procedure fof
Method 2.
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Uniqueness

These boundary conditions for the velocity are not of a familiar type,
and the existence of a unique solution must be explored. Equation (15)
is like the equation

d
iz vr=0v?g(z)+f(x) (23)
x
A solution is sought, subject to the condition
1
/ vdz=Q (24)
0
If two solutions, »; and v, exist then
d
— (viP—w?) = (0’ —v?*) 9(x) (25)
dr
subject to
1
/ (1—v2) =0 (26)
(1}

The solution of (25) is
ni—vl?=FE exp </ g(s) ds) (27)
0
where E is determined by (26) as follows

exp (/: g(s) ds>

1
E / dz=0 (28)
0 v1+02

The further restriction that v>0 is necessary for uniqueness. Now, the
integrand of (28) is always positive; whence E=0 and v;=2v..

Stability

Theoretically, it is only possible to perform a stability analysis for
trivial flows where the total pressure is constant, but the resulting eriterion
is found to have general application. A straight flow without shear is
considered, where v*=v*=V and A=u=0 is the required solution. Small
perturbations from this trivial solution are examined and the following
stability criterion is obtained

{l—r [1 +2 (0.63 %)2]}2+E (0.63 %3—/)2r6]2< 1 (29)
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where X is the duct width, Ay is the grid spacing in the y dir-ction, and
r is the relaxation factor on the velocity.

A computer program has been written in FORTRAN IV to solve the
problem as outlined. An experiment with a 5-inch by 5-inch 90° bend on a
15-inch mean radius, where the velocity varied across the duct from about
30 feet/second to 80 feet/second atb inlct, was simulated. The results, in
the form of P, contours, are presented for comparison with experiment.
The small diserepancies can be accounted for by the presence and separa-
tion of the boundary layer. Otherwise, an adequate prediction of the flow
is obtained.

Comparison With Experiment

Numerieal computations have been carried out for the experiments of
Joy (ref. 3) for ducts of rectangular cross section bending through 90°
and subject to substantial inlet total head variations across the duct.
A comparison has also been made with ducts of circular cross section
(Eichenburger reported in ref. 5). The theory presented in this paper is
directly applicable to the rectangular duct but requires modification to
the circular geometry although the equations are of a similar form.

In figure 4 the total pressure contours at inlet to the duct are presented.
In figures 5, 6, and 7 the computed contours are compared with experi-
ment at three stations down the duct.

Station 1 6 inches upstream of the bend
Station 2 30° of turning
Station 3 60° of turning
Station 4 90° of turning

The duct is 5 inches by 10 inches in cross section with a mean radius of
15 inches. For consistency with Joy, the total pressure contours are
labelled as velocity contours computed on the assumption of constant
static pressure. Similar comparisons are shown for the circular-cross-
sectioned duct in figures 8, 9, and 10. The duct is of 6 inches diameter and
30 inches mean radius.

In general, the experimental contours are predicted by the theory.
For the circular duct, the agreement is particularly good except in the
immediate vicinity of the wall where the viscous forces in the boundary
layer are dominant, causing reductions in total pressure. The discrepancies
in predictions for the rectangular duct near the inside of the bend are
probably due to the occurrence of separation of the boundary layer near
Station 3.

A measure of the convergence of the numerical procedure for the
rectangular bend is presented in figure 11 showing good convergence
after 58 cycles. This procedure took 14 minutes on an IBM 360/65.
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LIST OF SYMBOLS

P Static pressure

P, Total or stagnation pressure
u, v, w Velocity components

z,y,2 Coordinates

8 Strength of source/sink distribution
o Flow directions as defined
p Density
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Ficure 4.—Velocity contours in rec-
tangular duct. VELOCITY CONTOURS FEPS.
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FIGURE 5.—Velocily conlours in rectangular duct; comparison between theory and
experiment.
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Figure 6.—Velocity contours in reclangular duct; comparison belween theory and
experiment.
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Figure 7.—Velocity contours in reclangular duct; comparison between theory and
experiment.
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bent on a mean radius of
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Ficure 8.—Total pressure contours in circular duct.
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(2

30

) ol

EXPERIMENT THEORY

149

Figure 9.—Total pressure contours in circular duct; comparison belween theory and

experiment.
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F16uRE 10.—Total pressure contours in circular duct; comparison belween theory and

experiment.
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DISCUSSION

H. MARSH (Cambridge University) : The authors have successfully
solved a major problem in the calculation of internal flows, namely the
three-dimensional flow in a duct. Until recently, it has not been possible
to solve this problem due to the lack of adequate computing facilities. It
would be interesting to know the computer storage requirements for this
program.

Two methods of solution have been examined, but only the successful
second method is described in detail. The first method is similar to that
proposed by Wu (ref. 4). Until now, this has been considered a viable
method for calculating the full three-dimensional flow field. The authors
have investigated this technique and have found that they could not
obtain convergence. This negative result is extremely important and it
deserves a more detailed discussion. Smith (ref. D-1) has described the
methods which are available for calculating the two separate two-dimen-
sional flow fields. Until now, it has been assumed that by alternating
between the two solutions, the full three-dimensional flow field might be
calculated. It would be helpful if the authors would give more details of
the basis for their conclusion that the first method of solution does not
work.

In the second method of solution, the error v*—v* is related to a static
pressure differcnce, but it is not clear why this term should have any
physical significance. The replacement of the continuity equation by two
equations with source/sink terms is a numerical technique which is used
in order to obtain a convergent solution. It is therefore unlikely that the
intermediate values of the error v*—v* have any physical meaning.

In the derivation of the boundary conditions, the authors have omitted
the source/sink term but have not discussed this point. Perhaps they
would outline their argument for neglecting these terms. It is possible to
argue that any convenient boundary condition can be used, provided that
it approaches the true boundary condition as the solution converges.

This is a major contribution to methods of flow calculation and the
authors must be congratulated on their presentation in this paper. If this
work can be extended to include compressibility, then it would provide a
single comprehensive technique for calculating inviscid three-dimen-
sional duct flows.

W. R. HAWTHORNE (Cambridge University): I agree with what
Mr. Stuart says. I think the work of Rowe (ref. D-2) should be referred
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to in this excellent paper which seems to me to be a substantial break-
through on three-dimensional and secondary flow caleulations. But I also
want to raise the question of getting the right downstream boundary
conditions. It isn’t clear from what the author was saying how and where
the boundary conditions were established. Were they established at 30°,
40°, or down the bend? In one case, he showed a section 1 foot downstream
from the bend. How far downstream could you go before you get the
right downstream conditions?

STUART axpo HETHERINGTON (authors): In reply to H. Marsh,
we would like to state the following:

(1) The computations were performed on an IBM 360/65 and re-
quired between 120 000 and 180 000 bytes (depending on whether the
program was overlayed or not). Typical execution times were 10 to 14
minutes CPU.

(2) The conclusion that simple alternation between two separate
two-dimensional solutions does not produce the required three-dimen-
sional flow field is based on our failure to make such methods produce
identical fields for the axial velocity from both two-dimensional solutions,
in the absence of the 8(v*—v?) terms in equations (17) and (18). For test
computations with 8=0, convergence has not been obtained, and over a
considerable portion of the flow field (about half), near the start of the
bend, the sccondary flow turned in the wrong direction. This even
propagated upstream where no secondary flow is to be expected.

(3) We agree that physically no terms 8(v*—v?) cxist. The argument
for the usc of such a term as a numerical device is as follows: Physically,
fluid will tend to flow from high pressure toward low pressure regions until
the pressure gradient is balanced by acceleration. Now, an imbalance may
exist between the pressure gradient of one two-dimensional solution and
the acceleration or curvature terms of the other (since these balance their
own pressure gradient, which is not neceessarily identical to that of the
first solution). This imbalance between respective pressure gradients is
related to »*—v?, which term or “error” is used to change A and p ac-
cordingly in the psendo-continuity equations (17) and (18).

(4) The neglect of some terms B(v*—v*) in the derivation of the
revised boundary conditions is justified as follows: In practice, the pseudo-
continuity equations (17) and (18) arc solved with additional source and
sink terms 8%(y,z) and S*(z,y) to allow for the effect of the terms omitted.
Now, it must be shown that these terms vanish when convergence is
obtained. If the two solutions v* and v* converge (remember that these are
both the axial velocity, and not components in the z and z directions),
then subtracting equation (17) from equation (18) yields, at most

87(y2) =8(zy) = (y)
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Integrating equation (17) or (18) over a plane of cross section yields

dQ
1@ [ demt

where @ is the mass flow. Since Q is constant, f(y) =0= 8= 8-,

(5) Inits present form, the method has been extended to compressible
flows (Mach number less than 0.98) and the computer program can
handle the following problems:

(a) Bent rectangular ducts

(b) Bent circular ducts, including S-bends

(¢c) Three-dimensional flow through a turbomachinery blade
passage specified by random points, including rotors.

Arbitrary values for total temperature, total pressure, and static pressure,
varying across the inlet section may be specified as input data to the
program. Future work in the Department of Mathematics at the Uni-
versity of Aston will attempt to extend the method further, to include
viscous and turbulent flows,

As regards the right boundary conditions mentioned by Sir William
Hawthorne, we would like to offer the following reply.

The computing mesh is usually extended two or three planes further
downstream of the region of interest (there being expense involved in
using too many), but from the calculations we have done, the condition
downstream does not have much effect two or three planes upstream
(i.e., about three pipe diameters) of where the downstream boundary
condition is applied. The flow fields for the two different downstream
boundary conditions described were within 0.1 percent of being identical
two planes upstream of where the conditions were established.
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Recent developments in the three-dimensional aerodynamic theory of
inviscid flow in transonic axial compressors are reviewed briefly. Empha-
sis is placed on the newly completed lifting surface theory of a transonic
ducted rotor. The relationship between the lifting surface theory and
axisymmetric through-flow theories of turbomachines is illustrated; a few
examples of the additional information obtainable from the new theory
are then given. Quasi-two-dimensional cascade theory can also be ex-
tracted from the present analysis and the relevance of cascade theory to
the actual three-dimensional problem assessed. Details are reported else-
where, but some of the qualitative conclusions are discussed here. Even
moderate departure from uniform spanwise loading of the rotor blades,
for example, leads to a rather profound influence of the downstream
wakes, suggesting the need for considerable care in applying cascade
data on a direct quasi-two-dimensional basis.

The inviscid, three-dimensional, compressible flow through an axial
compressor rotor or ducted fan can be described in terms of the perturba-
tion of the incoming flow by the rotor and its wake. If the incoming flow
is sufficiently uniform and regular, and if stator interference can be
neglected as a first approximation, then the flow is steady in coordinates
fixed in the rotor. If, moreover, the perturbations induced by the rotor are
“small” they can be described by a velocity potential which satisfies the
convected wave equation.

1 A major part of this work was supported by the United Aircraft Corporation Re-
scarch Laboratories while Dr. Okurounmu was a member of the Research Staff at
that Laboratory. A portion of the work of J. E. McCune was also supported by the
Pratt and Whitney Division of United Aircraft Corporation.
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For steady flow in rotor coordinates, when the relative Nach number
is everywhere small, the governing equation for the velocity potential
reduces to Laplace’s equation. In this paper, however, we will be con-
cerned with transonic rotors (i.e., rotors operating with subsonic axial
Mach numbers), while the relative Mach numbers at the tip may be
supersonic. The relative Mach number at the hub is usually subsonic and,
therefore, the flow will generally be of a mixed type. The governing
(linear) equation changes from elliptic to hyperbolic type at the ‘‘sonic
eylinder,” r = r,, where w2+ U= a2 Becausc of three-dimensional effects,
however, the linear theory does not exhibit the degeneracy for relative
Mach numbers approaching unity which occurs in two-dimensional
theory.

The coordinate system we use in this paper is fixed in the rotor (fig. 1);
w is the angular velocity of the rotor, U the (purely axial) velocity far
upstream, a the (undisturbed) speed of sound and r the radius; x is the
axial coordinate, 6 the azimuthal. The corresponding dimensionless
variables are (2,6,0) = (wz/U,8,0r/U).

In this paper we will be concerned primarily with the lifting problem,
The thickness problem was treated earlier (see refs. 1 and 2). In those
papers, source-type singular solutions (B radial source ‘“spikes”, where
B is the number of blades in the rotor) were constructed by superposition
of the acoustic eigenmodes of the system in a straight annular duct of
infinite extent. These source spikes, of arbitrary strength, Q(r), were then

RELATIVE WIND, /\ _

Fioure 1.—Geomelry and coordinale system fizxed in rotor.  is the angular speed of the
rolor relative Lo the shroud.
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distributed over helical surfaces of finite chord approximating the blades,
thus representing blades of arbitrary thickness distribution (with the
limitation, of ecourse, that the thickness-to-chord ratio remain small).
The camber line of the blades was left free in that study so that the
“rotor” produced no lift and hence no positive work. Attention was thus
focused on the effects of blade thickness in three dimensions,

The conditions under which quasi-two-dimensional cascade theory
could be recovered from the three-dimensional theory were delineated in
reference 1, while it was shown in reference 2 that large departures from
quasi-two-dimensionality are to be expected in the transonic regime
because of an acoustic resonance of certain eigenmodes. It was also shown
that the wave drag due to thickness should be considerably smaller than
that corresponding to quasi-two-dimensional (strip) theory.

Reference 3 describes experiments on a ‘“free-wheeling’’ transonic rotor
undertaken in part to verify the latter theoretical result. In this regard,
the experiment was somewhat inconclusive, partly due to the difficulty of
identifying and separating out the various types of drag and/or losses and
partly due to the fact that any actual (rigid) rotor, of course, produces
lift, varying from hub to tip. For a free-wheeling rotor (zero torque
input) the result is that vorticity is shed downstream, adding substan-
tially to the drag.

In order to complete the three-dimensional potential theory, the basis
elements of the theoretical lifting problem were set up in reference 3.
Following the general procedure of superposing the appropriate eigen-
modes to construct singular (Green’s function) solutions, B bound vortex
spikes were constructed, having arbitrary strength T'(r). (The method is
almost identical to that used in ref. 4, except that a finite hub-to-tip ratio
was included and an important error occurring in ref. 4 was removed.)

The most important new feature of the lifting problem, relative to the
thickness problem, is the necessity of including the downstream wakes
of shed vorticity (one helical wake for each blade) with strength propor-
tional to dT'/dr, the rate of change of bound circulation along the span.
This is done by a slight modification of the method of Reissner (ref. 5),
to allow for the presence of the hub and shroud. Thus, a ““wake potential”
is included in the downstream flow, added to the acoustic eigenmodes, and
construction of the bound vortices at the blades proceeds as before, with
the wakes now included. It is interesting to observe that the wakes them-
selves excite acoustic modes, except when T'(r) = constant.

The acoustic eigenmodes mentioned above are versions of the familiar
“spinning” modes associated with cylindrical geometry (refs. 6 and 7).
If the relative Mach number at the tip exceeds unity, some of these modes
propagate undiminished in strength (in the inviscid, linear theory)
upstream and downstream, while the remaining modes die out exponen-
tially at large distances from the rotor. The propagating modes are said
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to be above “cut-off”’; modes near cut-off can set up the acoustic reso-
nances mentioned above. One effect of such resonances is to create a
significant spanwise flow, yielding strong communication between hub and
tip. Under these conditions (which require supersonic tip Mach numbers),
a hub section with a subsonic relative Mach number can nevertheless
have a pressure distribution over the blade which is more typical of
supersonic flow than subsonic flow (refs. 1, 2, and 8).

In reference 9, the lifting theory was refined and extended. In that
paper, the blades were characterized by their total bound vorticity,
I'(r), and the first-order static pressure rise across the rotor, the turning
angles, the torque required, etc., were determined as functions of T. For
example, the first-order static pressure rise was found to be

~Pe)— (P—w) 20 2 ! T'(n)\_ —20r r

Cpom Bl Pem) 2T 2 [ gy )= (1)
p—U%/2 gz \1—h2J, ULy B2 ULy

where n=r/rr=0/or, h=ry/rr, < > denotes the azimuthal average of a

given quantity, g*=1—U?/a?=1—M?, and Lr=2=rr/B, the blade

spacing. The subscripts T and H denote tip and hub, respectively. The

sign convention on T is such that it is negative for lifting blades. The

corresponding torque required, to first order, is

1
O = —p_wU27T2B / 7 an‘ (2)
h

By extending these calculations consistently to second order (a procedure
analogous to the computation of induced drag and wave drag in ordinary
wing theory), the losses due to energy stored in the wakes of shed vorticity
(when T'(r) #constant) as well as those duc to acoustic radiation (for
supersonic relative tip Mach numbers) were estimated. These are pre-
sented in figure 2 for a typical rotor (B=40, h=0.8), in terms of a
dimensionless efficiency decrement. Since these results are essentially
“integral relationships” (i.e., obtained from momentum balances, etc.)
we expect them to carry over without change to the lifting surface theory,
which will be the main subject of our discussion. Despite the linearizing
assumptions inherent to the theory, we estimate that these results will be
accurate up to static pressure ratios across the (single) rotor of about 1.3
(see eq. (1)). It should be noted that the “concentrated bound vortex
solution” of reference 9 is not a lifting-line theory in the sense of Prandtl,
since no quasi-two-dimensional assumptions were used.

The lifting surface theory, in analogy to the procedures described in
reference 1, can be constructed from the concentrated bound vortex
solution by distributing the bound vorticity, with its associated wakes,
over helical surfaces representing the blades. Details will be made avail-
able shortly in reference 10. In the next sections, we describe the salient
features of the theory and some of its more interesting results.
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B= 40, h=08, Co,/Ly2106 Fi1GURE 2.—Losses for a typical
&= a+bn, D= (G-I, /T rolor configuration as caused by
FOR M=0.6 o3=1.333 (1) energy stored in wakes
M=05 o5 1.732 " (D #0) and (2) acoustic radia-
T T T T ) tion (o1>0,). Solid Ui -
1>0,). Solid lines (left

L1 hl;nd scale)’, give values of the

efficiency decrement, normal-

10 ized to C1, an average (over the

span) sectional lift coefficient.

09 The relation between Cp and

T', defined in the text, is shown,

Qe.:_c_.'-. for this rotor geometry, by the

/ULy broken line (righi-hand scale).
07 . .

The sharp increase in losses due

06 to acoustic radiation as ot ex-

ceeds os ts readily observable

05 for both D=0 and D =0.2213.

In the latter case, the efficiency

04 decrement associated with non-

uniform loading is comparable
to the acoustic radiation loss.
(Figure taken from ref. 9.)

LIFTING SURFACE THEORY

The velocity potential obtained by distributing bound vorticity, in the
manner described, over the helical surfaces representing the rotor blades
can be written '

3 cax ™0
bz = ( / 56 di+ j s dt 3)
where ¢ labels the axial location of the bound vortex filaments while
t=z 0Lz <coxmax)
£=0 <0
£=cax™® T2 Cax ™™

If we denote by ¢(r) = tan™! 6= tan™! (wr/U) the complement of the
stagger angle at each radius, the axial projection of the local chord is
cax (1) = €08 ¢, and in (3) cax™*® is the maximum of this quantity along
the span. The elemental potentials 6¢* and &¢¢ are, respectively, the
upstream and downstream velocity potentials associated with B radial
strips of concentrated bound vorticity located on the helical surfaces
r=§, 0=wt/U+lxr/B, I==+1, 23, &5, .... Each strip has elementary
chord dg/cos ¢ and strength v (n,£) df/cos ¢. Their associated wakes of
free vorticity, proportional to d/dn(y/cos ¢), are included in 8¢%. The
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total bound vorticity (per blade) at each radial station is the local blade

circulation:

cax(r) .
P =T = [ 7(n8) di/eos (4)
0

The elemental potentials occurring in (3) can be expressed as follows
(ref. 10; real part implied)

8p*(2,0,0;¢) =

8¢ (2,6,0;¢) =

£ e ()] ()

+3 Z{ e [hnk(s)ﬂnk(s)]}

n=1 k=1 )\ﬂk

oo [ (5-2)]
o) ()

w§

Y (77)5)

#®) <z——>+62 208,

+Z — ( 1)"xx(n,§) exp(inB¢)

n=l1

70k(£) ‘j’_f ( o
B e[ (=) ()

© 0 —_ "hnk — i
+ZZ{( 1) (E)_iﬂz(n;) [hnk(£)+7nk(£)]}

n=1 k=1 Ak
Xexp Il:MB (9— g)_}

(B2

In these expressions, the “radial eigenfunctions” R.p(kao/07) =Rap(knin)
are orthonormal combinations of Bessel and Neumann functions whose
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properties, including the radial eigenvalues k., are determined by the
requirement of vanishing radial velocity at hub and shroud. Details are
available in references 1 and 3. The quantities A.x, determining the azzal
behavior of the acoustic modes, are given by

no ,K,.k" o ivL~
T Ve
,30’1' n’B ﬁ
r (7)
Kok
0k = """
Bor

These quantities are either pure real (yielding axial decay) or pure
imaginary (yielding propagating, ‘“‘spinning” modes). Since the .. are
all greater than |nB| (ref. 11), the latter possibility occurs only if
or>M/B=uwr,/U, and then only for a finite number of modes at each n;
k=1,2,...k,* The condition or>0, implies supersonic relative Mach
numbers at the tip.

In (6), the variable { =0—wz/U =60—2z is the helical coordinate used by
Reissner (ref. 5) and the (generalized) function {; is a “sawtooth fune-
tion,” the essential properties of which are that 8{:/00=1, 3¢1/dz=—1
everywhere, while the function itself is discontinuous (by an amount
F2x/B) at {==4x/B, £3x/B, . ... The combination of the second and
third terms in (6) makes up the wake potential mentioned earlier,
representing the free vorticity shed in the wakes and the induced flow
between them. The wake functions, x.(n,£), can be written in terms of
modified Bessel functions of the first and second kind:

Xn(1,8) =xn5(nBnor,§) = an(£) Ins(nBo) 1B (§) Kap (nBo)

relend] g

cos ¢(d’)

g 9
+1.5(nBo) f —,K,,B(nBa')a'—[
ox 40 ]

’
g

ad

—K,3(nBo) /v a’(jj I.z(nBe)d' — [Mjl do’

cos ¢ (o)

ds’ )

where a.(f) and B.(¢) involve definite (radial) integrals over
9/0a[v(n,£)/cos ¢] and depend on the parameters oy and o7, as well as
nB (refs. 3, 5,9, and 10). Note that each x.(n,§) vanishes when v/cos ¢
is independent of o (or ) ; i.e., when I'= constant.

The quantities 7(£), v« (£) and k.. (£) are the coefficients of expansions
of the functions v(n,£)/cos ¢ and x.(n,) in terms of the orthonormal
radial functions R,p(x.n). Thus,
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b K
cos p(nor) 7(8) +E70k(f)30( ok7)

=D vnk(E) Rup(kmen); n>0 ¢ (9)
cos ¢(n07)  jm

(18 = S (8) R (k)

k=1

The usual Fourier-Bessel formulas for the expansion coefficients apply;
for example

1
Yk (§) = / 7 dn b R.p(knin)
A cos ¢(nor)
while
e 2 v(ng)
D= [ nn (10)
Note that
%x(mnx)
dgy(§) =T

0

as defined in equation (1), and that the coefficients vo (£), as well as the
ha(£) vanish whenever v/cos ¢ is independent of radius.

In the special case for which c.x=constant and v(n,£)/cos ¢ is fac-
torizable (i.e., y/cos ¢=T(5)g(£)) we have the especially simple relation-
ShipS, ’Yﬂk(E) = Fnkg(s); hnk(f) =Hﬂkg(£)y ‘7(5) = f‘g(E), where, from (4);

[" o a=1 an)

Tnk, Hai and T are then identical to the corresponding quantities occurring
in the concentrated bound vortex solution (refs. 9 and 10), in which the
blades are characterized by T'(r).

The three-dimensional lifting surface solution, deseribed formally by
equations (3) through (10), has the desired property of producing dis-
continuities (at the helical surfaces representing the blades) of the velocity
component parallel to the blade surface. In fact, if we denote this com-
ponent by v,-, the discontinuity in ».- is —y(9,z), and the blade loading is
—p—oUry(n,z), where U,=(U?+w%?)!2, The detailed proof that (3)
with (5) and (6) has this property is available in reference 10. At the
same time v,, the velocity component perpendicular to the helix of
advance, is continuous, and v,/ U, defines the slope of the blade camber
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line (in the absence of thickness effects) for any loading. As is usual in
wing theory, if the blade shape is specified and the loading required,
the mathematical problem becomes one of inverting an integral equation—
in our case an unusually complicated one.

Actually, if one is given a shape for the rotor blades (desired thickness
and camber), the thickness probiem must be solved first (refs. 1 and 2)
since the distribution of sources used to obtain the desired thickness
distribution inevitably produces a camber distribution of its own. This
“camber due to thickness” must then be included in the distributed
vortex problem if one is to obtain the desired overall camber.

The results given in this paper, however, will be restricted to those for
the indirect lifting problem: given the loading, and omitting thickness
effects, what is the associated camber line of the blades, how does the flow
and pressure field develop, and what is the performance of the rotor? The
last of these questions has been substantially answered in reference 9,
since most performance characteristics calculable in this theory do not
depend on the details of the chordwise loading distribution but primarily
on T'(r). This is not to say that the chordwise loading distribution is not
important; for example, it will affect boundary-layer behavior, stall
margins, etc., of the rotor and is of great interest for these and other
reasons.

RELATION TO AXISYMMETRIC “THROUGH-FLOW*
THEORY

Let us consider first the mean pressure level (i.e., the azimuthal average
pressure) developed by the rotor. We have generally, in the strictly
linear approximation,

P=p— Pow)=—p-UV1+0%, (12)
where
vz =1V, COS @+ g SIN @

__w (9 9¢
T UA1+a2 (6z+60> (13)

Then for any axial station downstream of the rotor x>c.x™*®, using
(3)~(6) and averaging over 8, we obtain

(p(z,7) )= (P-w)

36 3¢
=—wre 5, o
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B _ 1 ] Ca, w,
=—p_q 2‘:_—!32 {I‘+§ k=21 /0 dE exp [—)\Ok <Z—EE>J ’YOk(f)Ro(Kow)}
(14)

(max)
X

Upstream of the rotor (x<0) the corresponding result is

(p(@,r) )*—(P-w)
wB & r°
Py /
If we recall that all y’s are zero when v/cos ¢ is independent of » (imply-
ing “constant work” design, I'=constant=T'), we see from (15) that for
a constant work rotor, there is no change in mean pressure (starting
from upstream) until the rotor itself is reached, while from (14) we see,
for the same design, that the entire mean static pressure rise is achieved
within the rotor passage and the “far-field”” value (compare cqs. (14) and
(11)) is already attained at x = c, (™%,

On the other hand, if T'(r) #constant, then the ve’s do not vanish and
there is essentially exponential approach, away from the rotor, to the
respective upstream and downstream values of the mean pressure level.
This type of result is typical of axisymmetric theories of axial compressor
flows (ref. 12), but the rate of approach is, of course, sensitive to the
assumed area distribution of the flow annulus (ref. 13). For the particular
case we have considered (ry/rr=-constant), the ‘“decay length” for
approach to the upstream and downstream values is of order 8(rp—ryg) /7
(seeeq. (7) and refs. 11 and 12). At large (subsonie) axial Mach numbers,
approach to the asymptotic states is very rapid, as expected (ref. 12).

The result (1) or (14) indicates a constant radial static pressure
profile far downstream of the rotor, at obvious variance with the need
for a radial pressure gradient to balance the centripetal acceleration asso-
ciated with the induced tangential velocities (see eq. (18)). This is
simply a result of the lincarization used throughout the present theory
(for example, eq. (12)). However, comparisons between appropriate
azimuthal averages of the results from the present three-dimensional (but
linear) theory and higher-order (but two-dimensional) “actuator disc”
results are expected to suggest means of identifying and including the
more important nonlinear effects. We have already shown (ref. 9) that
the sccond-order caleulations, used in that paper to compute losses, are
consistent with “radial equilibrium”. It should be possible to include
certain nonlinear effects, such as centrifugal effects, consistently in a
modified three-dimensional theory. Further work in this direction is
underway.

The results (14) and (15) can be understood in terms of the mean
(azimuthally averaged) stream-surface deflections associated with non-
uniform loading. (Note that the wake functions themsclves, depending

(max)
ax

w§

dt exp [)\Ok <Z—E>} Bo(xoem)yoe ()  (15)
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only on ¢ and 5, yield zero first-order pressure perturbations.) If I'(r)
increases from hub to tip, more work is done by the rotor at the tip than
at the hub. This appears initially (just behind the rotor) as a higher
pressure near the tip than at the hub. In fact, using (7) and evaluating
(14) for z=c.x'™*0 with the assumption c,x®™*®/rr<<1, we find, imme-
diately behind the rotor,

wB

oo (T +D) (16)

(P (Cax7) )= (P-w)=—»
where we have used the first of equation (9) and also equation (4). The
higher (lower) pressure at the tip (hub) must relax to the constant value
given by the linear theory far downstream of the rotor. Moreover, the
azimuthally averaged flow is effectively subsonic if M <1 (ref. 12). This
means contraction of the outermost streamtubes and expansion of those
near the hub. The stream surfaces must, therefore, be deflected cutwards.
In fact, we find

O‘TT /’" ( I‘)
—const =777 dyp{l—= 17
0 (7]) {¢)=const ULT'/] . nan T ( )

provided T'— I'«T. These average radial stream-surface deflections are
zero, as required, at =" and =1 and are positive if T increases radially
and negative if T decreases radially. There is no (average) streamline
deflection if T'=constant=T'.

Associated with (14), (15), and (17) are certain azimuthally averaged
tangential, axial, and radial velocity profiles. Downstream of the rotor
(see also ref. 9), these are given by

BT (n)

2mr (18)

(1=

(02 {f~wrm>

. w
T 2rUR
1 o0 Ca:
+5 2 /
2 k=1 "0

—— B [ c“x(mEX)
(vr>d=41r;U IE/O df exp I:_')\Ok (Z—(ﬁUg>] vor (€) Ry’ (xom) (20)

(max)
x

d exp [—)\Ok (z—%g):l ’Yok(E)Ro(Kokn)}‘{" U (19

The actual velocity field derivable from (3)—(6), of course, is curl-free
except at the B helical sheets (wakes) of concentrated shed vorticity,
this vorticity having strength proportional to dI'/dy and being oriented
s0 as to lie in the helical sheets representing the wakes.
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By contrast, the vorticity of the (mean) downstream velocity field
defined by (18)-(20) is

o= T ( or )
Q= curl ()= Tor 1, i 0 (21)
Thus, since Q" /Q,{» =wr/U, an important effect of defining an “equiv-
alent axisymmetric” flow (through averaging the more detailed three-
dimensional theory) is to replace the original concentrated vorticity by an
equal total amount of vorticity which is, however, distributed uniformly
over the flow annulus, yet still oriented along the zeroth-order streamlines.
This distributed downstream vorticity is an important feature of axisym-
metric through-flow theories (ref. 12); results such as (21), (19) and
(14) help to establish connection between the latter theories and that
described here.

It should be clear from the preceding that the three-dimensional (but
linearized) potential theory contains many important elements of the
axisymmetric theories and has, in addition, the capacity to describe
azimuthal variations superposed on those results. Some interesting
examples of the latter are given in the following section.

THREE-DIMENSIONAL PRESSURE FIELD (LIFTING
PROBLEM)

The azimuthally-averaged pressure fields (14) and (15) are the same,
regardless of whether the compressor is transonic or not (ref. 12). But
the azimuthal variations about these mean levels are vastly different,
depending on (1) whether or not the tip relative Mach number is super-
sonic and (2) whether or not the rotor is uniformly loaded (along the
blade span).

The latter observation comecs from consideration of the conditions
under which transonic “acoustic resonance” (see the introduction) can
occur for the strictly lifting problem. As mentioned earlier, when
M2, =M2(140r?) > 1, some of the quantities A, (eq. (7)), as determined
by the linear inviscid theory, can vanish. A glance at equations (5) and
(6) shows that when this happens some of the acoustic eigenmodes can
be amplified indefinitely unless the corresponding kn(¢) are identically
zero. This is the “resonance’” to which we have referred. However, we have
already noted that the h.(£) are, in fact, zero if the spanwise loading is
constant at each £ Thus a constant work rotor with similar chordwise
loading profiles (i.e., v(n,£)/cos ¢=Tg(£)) excites no transonic reso-
nance. A more general way of saying this is that any (purely lifting)
transonic rotor which sheds wakes of free vorticity can excite acoustic
resonances of spinning modes and otherwise not. (Finite values of hax
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can be regarded as representing excitation of acoustic modes by the
wakes.) Of course, the finite thickness of the blade of any real rotor will
always induce transonic resonances (ref. 2).

If transonic resonance is excited, one or several acoustic modes will be
singled out and tend to dominate the pressure field, although the (linear)
azimuthal average of the pressure fields will vanish. Naturally, the
resonant modes do not attain infinite amplitudes; their finite amplitudes
are easily predicted by including either viscous effects (asin refs. 1 and
2) or certain nonlinear effects (as in ref. 10) or both. In the following, we
present typical numerical results extracted from reference 10; included
are pressure-field results for a typical rotor (B=40, h=0.8) operating
both subsonically (M.;=0.9) and transonically (M,,=1.054). In refer-
ence 10, both a uniformly loaded rotor (I'=T) and a rotor with lincarly
increasing I' (), characterized by an increase of approximately 20 percent
in I' from hub to tip, were analyzed. However, for lack of space we present
here only the results for a uniformly loaded rotor. The axial Mach number
in the examples discussed is M =0.5. The specific loading distributions
used in the calculations were of the factorizable type v/cos ¢=T{(q)g(¥),
where

8

wC a.x2

g(§) = \/E(Cux_g)

Note that this chordwise loading distribution is symmetric about the
midchord, nonsingular, and satisfies the Kutta condition and the nor-
malization (11).

Our first example (fig. 3) shows the “ncar field” subsonic upstream
pressure fluctuation, at x/c.x= —0.1, over an azimuthal period A0=2x/B
(corresponding to a single blade passage). Five radial stations are indi-
cated. The tip Mach number being 0.9, we have or=1.46. The pressure
side of the airfoil corresponds to the smaller values of Bf/2x. For the
solidity noted in figure 3, the projection of the helix of advance forward
from =0 (for which Bf/2x =1} is the blade leading edge) to x/cax=—0.1
corresponds to Bf/2x =0.35. Note that the high- and low-pressure regions
remain relatively well identified just upstream of the airfoil (typical of
subsonic flow). The fluctuating signal is superposed on a zero mean pres-
sure level, in agreement with (15) for a uniformly loaded rotor. This
pressure signal is almost entirely dominated here by the (n=1, k=1)
eigenmode, not because of any resonance effect, but because the exponen-
tial decay of this mode (for B=40) is significantly slower than that of
the remaining modes.

Let us contrast this behavior (fig. 4) with the same rotor of the same
solidity, but at the transonic state of M,,=1.054. In this case, or=1.84,
and the angle (B8/2x) of projection of the leading edge is approximately
0.3. The fluctuating pressure signal is significantly distorted, relative to
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FiGURE 3.—Pressure variation just
upsiream of typical uniformly
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F1cure 4.—Pressure variation just
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sonic tip Mach numbers. Note dis-
tortion due to modes above cui-off.

the subsonic case, by the presence of a large number of modes which are
now above cut-off and therefore propagate. (For example, the k=1 modes
for all n are above cut-off at this tip Mach number; the (7,2) mode is also
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above cut-off, etc.) The shift toward smaller angles of the expansion region
just ahead of the blade is consistent with the expected formation (for the
specified loading) of an expansion fan emanating from the leading edge
of the blade tip (y=1), but the flow field is still predominantly subsonic
in character over the whole annulus. Hence, no really clear-cut develop-
ment of a quasi-two-dimensional type flow ficld can be identified in this
region.

A clearer distinetion between hub and tip section contributions to
the pressure pattern seems to develop just behind the rotor (figure 5)
indicating some semblance of quasi-two-dimensional behavior. Here, the
pressure signal oscillates about the uniform downstream level given by
(1) or (14) at each 5 (because of the uniform loading) but a fairly strong
local compression followed by an equally strong expansion fan seems to be
emanating from the aft portions of the blade tips.

The results available in reference 10 indicate similar behavior for the
nonuniformly loaded rotor, except that the near-field upstream and down-
stream pressure signals oscillate about different mean levels for each 7,
in accord with (15) and (14). One other major difference occurs for the
case of nonuniform T', however; namely, the expected transonic resonance
appears (see earlier discussion). For M,r=1.054 the (1,1) mode is the one
nearest resonance, and the relative fluctuations in the near-field pressure
that it produces are noticeably larger than for the constant-T' case. The
radial structure of this resonant mode also makes it more difficult to
separate hub and tip behavior in the strip theory sense.

Far-field pressure signals (for example, at x/c.x= —5.0, 2/cax= +6.0)
were also computed in the work reported in reference 10. As expected,
essentially no pressure fluctuation about the azimuthal mean is observed

UNIFORM LOADING, D=0
B:40, h=.8, Cq, /L7106, M=.5 My=1054, o= .84, X/Cqy= 110
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FiGURE 5.—Pressure variation just
downstream of the same rotor as in
figure 4. Note devclopment of a
semblance of a quasi-two-dimen-
sional pattern.
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at subsonic tip Mach numbers, while substantial fluctuations, com-
parable to the near-field values, are found to be present as soon as M,
exceeds unity.

CONCLUDING REMARKS

In this paper, we have discussed some of the aspects of the three-
dimensional aerodynamic theory of an axial compressor rotor. Our main
emphasis has been on the newly developed lifting-surface (distributed-
vortex) theory which forms the complement to the previously developed
(distributed-source) theory for blade thickness effects.

In the third section, we showed that the present theory contains many
aspects of the axisymmetric through-flow or actuator-dise theories, while
in the fourth section we gave examples of the type of additional informa-
tion that the three-dimensional theory offers.

It may be recalled that in reference 1 the relationship between three-
dimensional and quasi-two-dimensional cascade theory was emphasized.
Not surprisingly, in the lifting problem just as in the thickness problem,
cascade theory, and corrections to it, can be derived readily from the
three-dimensional theory. The techniques involved are similar to those in
reference 1; details and some examples are available in reference 10.

We find, in short, for the purely lifting case, that quasi-two-dimensional
cascade theory is an excellent approximation, at least within and near the
blade passage, for uniformly loaded rotors, even in the transonic regime.
However, for a rotor with only moderate variations in spanwise loading,
we find that the wake-induced velocities have a surprisingly large effect on
the effective incidence of the blades. Much work remains to be done,
therefore, before the complete relationship between cascade theories
(and/or data) and the aerodynamics of three-dimensional compressor
rotors will be fully understood. Our expectation is that the present theory,
despite the limitations imposed by our assumption of small disturbances,
neglect of viscosity, etc., will be a useful key in relating all the various
approximate theories to the full three-dimensional problem. It has pieces
of each part of the puzzle.
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DISCUSSION

J. C. VRANA (MeGill University) : Do you find that, as blade number
is increased, the 3-dimensional solutions converge toward the infinitely
bladed 2-dimensional approximations, regardless of circulation dis-
tribution? Going now in the opposite direction (as I have been mostly
involved with low aspect ratios) would you agree that below a certain
number of blades (10 to 12) it becomes impossible to design them for a
prescribed variation of circulation (say 20 percent variation in circulation
from mean)?

McCUNE (author): With regard to the first question, the 3-dimen-
sional solutions converge, provided you are not in the transonie regime,
to the 2-dimensional caseade solutions in the limit of large blade number
and hub tip ratio approaching unity. This we showed for the thickness
case in 1956 (refs. 1 and 2) and for the lifting case in reference 9 of the
paper. On the other hand, for the “infinitely bladed” 2-dimensional
approximation, by which I take it you mean the axisymmetric through-
flow theory emphasized in the present paper, the 3-dimensional solutions
will converge to that 2-dimensional approximation as B— «, regadless of
regime. These are, however, formal mathematical results; I believe that
in almost any practical case 3-dimensional effects play a role.

Going in the other direction, the answer would have to depend on what
you mean by “impossible’”’. With present theory, insofar as it does not
include induced velocity effects, I think it would be impossible to correctly
design the blades, even for blade numbers as high as 40 or 80 (let alone 10
or 12), with 20 percent variation in circulation from mean. This is espe-
cially true in the transonic regime. While the theory presented in our
paper is limited by the linearizing assumptions, it is intended as a step in
the direction of making such design possible. We intend to pursue it. An
important step is to include thickness effects (ref. 1) since they induce
camber of themselves.
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Secondary Vorticity in Axial
Compressor Blade Rows
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A theoretical investigation of sccondary flow in compressor blade rows
is presented. Formulas for calculating secondary flows in annular cascade
blade passages are derived. The influence of the relative rotation vector
on secondary velocity perturbations, using recent developments in
shear-flow theory, is examined. A method of calculating the flow through
successive blade rows is given and a comparison is made with experi-
mental results,

The prediction of axial-flow compressor and turbine performance using
matheguatical modeling has long been a desired goal of turbomachinery
analysts. Mecthods available at present for designing compressors and
turbines are usually based on the assumption of inviscid flow. Several
attempts have been made to predict the performance of axial compressor
stages in which secondary-flow theory has been utilized (c.g., Horlock
(ref. 1) and Dixon and Horlock (ref. 2)3.

Horlock established that realistic estimates of the swirl angle distribu-
tions in the flow on and near the annulus walls may be made, provided
that the entering vorticity was known and the sccondary vorticities
traced through successive blade rows. With the flow angle distributions
known, the axial velocity profiles may then be calculated using three-
dimensional inviscid analysis. Dixon and Horlock applied a simple
secondary-flow theory to the caleulation of the flow angles and velocity
distributions through a compressor stage. Fairly close agrecment with
experimental values was obtained for the guide vanes. Comparison of
calculated and experimental values for the heavily loaded rotor was
rather poor and strongly influenced by “corner stall.”

In the present paper, recent developments in the theory of shear flow by
Hawthorne and Novak (ref. 3) are incorporated into a more accurate
three-dimensional flow model to remove some of the approximations of
references 1 and 2. It is now possible to calculate the secondary flow in an

173
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annular cascade of low hub/tip radius ratio and with comparatively few
blades instead of using a two-dimensional approximation. In reference 1,
secondary vorticity was calculated using the approximation derived by
Squire and Winter (ref. 4) and in reference 2 an approximation to a
formula of Smith (ref. 5) was employed. In this paper, secondary vorticity
has been determined more accurately by means of Hawthorne and
Novak’s analysis (ref. 3). It is assumed that the flow is inviseid in all
caleulations and the fluid rotation is prescribed by the flow at entry to
the guide vanes.

VARIATION OF VORTICITY ACROSS A BLADE ROW

An extensive literature has accumulated on the subject of secondary
vorticity in cascades and blade rows. Review papers are available by
Lakshminarayana and Horlock (ref. 6) and by Hawthorne (ref. 7). A
discussion of the relative merits and differences between some of these
theoretical treatments of secondary flow, although of great interest, is not
possible in a short paper.

Recently, Hawthorne and Novak (ref. 3) have considered the transport
of vortex filaments in a weakly sheared flow through a plane stationary
blade cascade. In their treatment, vortex filaments were transported by a
plane primary flow which was trrotational. They obtained an expression
for the streamwise component of vorticity at exit, which is responsible
for producing secondary flow, from the distortion and stretching of the
vortex filaments by the primary flow.

A similar result is obtainable for the flow through an annular cascade
for which the primary flow is irrotational. In this analysis, the stream
surfaces of the primary flow are not necessarily at the same radius before
and after the cascade (e.g., the annulus walls may be conical). Figure
1a shows the vorticity vectors lying on the development of a stream sur-
face upstream and downstream of the cascade. For the assumed inviscid,
incompressible flow, vorticity vector i, at inlet is convected through the
blade passage to become w, at outlet. The change in orientation of the
vector is caused by blade-passage-induced distortion of the primary flow,
which can be determined approximately.

At exit, the streamwise component of vorticity is

@wng
=————uw, tan B, ()
P2 €OS B2
where
— — W, ds
D= AF—
G FW 1+ W W,
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F1ure 1b.—Axial projection of blade passage showing passage and wake vorticity.

A_F= " (Sin B1+ coS Blwd)

Wn1
The integral [ ds/W , is taken around the surface of an airfoil. It represents
the difference in the transit time of a particle traveling from the leading to
the trailing edge of the airfoil when passing along the suction surface and
when passing along the pressure surface. The integral is not readily

evaluated, but may be approximated by an expression given by Smith
(ref. b)

ds_ T
W, W

(2)
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where W, is the vector mean of the inlet and exit velocities and T is the
blade circulation, i.e.

2
r= J—vlr (r1Ve—r2Ve) = constant

Using Crocco’s equation, grad I = WX o, where I is relative stagnation
pressure/density, a useful relation between the normal components of
vorticity is obtained

Wiwn = Wawne (3)

Substituting the preceding expressions into equation (1), the outlet
streamwise vorticity is found from

Ws2

a\, Wi d . W
cos fr="" (Sin B+ cos B 2)4-#1 S o sinfr (4)
T2 Wn1 pe ) W, W,

Wn1

By a fairly trivial extension, changes in density can be included in the
analysis so that it can apply to compressible flow.
For a flow at constant radius, r;=rs=r and equation (4) reduces to

on=on P 1<Smﬁ‘—sm by W /ds> (5)

W,
cosfB.  \cosB: cospBi pceospet W,

This is essentially the result obtained by Hawthorne and Novak (ref. 3)
for a plane flow in a stationary coordinate system. The streamwise com-
ponent of vorticity at inlet w. has been included in the above analysis
from the outset. It is most important to realize that wa, which is an
axisymmetric vorticity, directly influences the magnitude of the passage
(i.c., streamwise) vorticity wse at outlet and therefore contributes to the
secondary motion of the fluid.

The effect of the angular rotation vector @ on the production of
secondary vorticity is considered in the following section.

ROTOR SECONDARY FLOW!

The caleulation of the secondary flow in a rotor raises a fundamental
point concerning the effect of rotor relative rotation on the vorticity used
to determine the secondary velocities. Several writers (refs. 8, 9, and 10)
have proposed flow models in which the angular rotation vector Q is
subtracted from the absolute vorticity entering the rotor and have then
used the resulting relative vorticity to determine the relative secondary

1 The analysis of this section was carried out in collaboration with Professor Sir
William Hawthorne.
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flow. At exit from the rotor, the angular rotation vector is then added to
the relative vorticity, which now includes the rotor secondary vorticity,
to give the absolute vorticity at entry to the following stator row. It is
shown in the following that the relative rotation vector plays no part in
the calculation of secondary vorticity and only the absolute vorticity
is relevant,

Hawthorne (ref. 11) demonstrated that in the case of a general rota-
tional steady flow of an inviscid, incompressible fluid, the velocity of a
fluid particle is represented by ‘

V= grad ¢—t grad (&)
p
in which ¢ is a potential function, ¢ is the drift time of the particle, p, is
the stagnation pressure, and p is the density. In this flow, vortex filaments
lie along the intersection of surfaces of constant ¢ and constant stagnation
pressure, the latter being also stream surfaces.
By means of an extension of this theory, it can be shown that in a
rotating system of coordinates the relative velocity of the flow is

W= grad ¢—tVI—QXr (6)

where I is relative stagnation pressure/density.

In the theory of shear flow, Hawthorne (ref. 11) used a small shear
approximation to deal with the large disturbance type of flow such as the
secondary flow in blade passages. The flow is assumed to be composed of
a primary flow, fully described by a potential function ¢, satisfying the
boundary conditions on the walls and blade surfaces, and perturbations to
take account of the rotationality of the flow. The velocities induced by
rotationality are small, by hypothesis, compared with the primary flow so
that the associated vortex filaments are convected by the primary flow.

Writing,

d=¢otd1t+dot---
t=tyttit+tot-

where ¢1/ ¢, t1/1s are of first order of smallness and ¢s/ o, ta/f are of second
order of smallness, then, using equation (6), the relative velocity is

W= (Vgo—QXr)+ (Vor—tVI) + (Vo — VI )+ + - « (7

Bracketed terms in equation (7) are in descending orders of magnitude
from the left. The primary flow relative velocity is
Wp= V¢0——QXr (8)

and the velocity of the secondary flow, which is convected by the primary
flow, is
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W, = Vep— 14,V 9)

1t should be noted that & is the drift time of the primary flow. The primary
flow has zero absolute vorticity so that, to the first order, the vorticity is

o= curl W,=VIX Vi (10)

using equation (9). Thus, from equation (9), the fundamental point is
established that the secondary velocities within a rotor should be obtained
from the absolute vorticity resolved in the relative flow direction. &, the
relative rotation vector, does not enter into the calculation, except insofar
as it appears implicitly in VI.

SECONDARY VELOCITIES IN BLADE PASSAGES

Formulas for calculating the two-dimensional solution of the secondary
flow in cascade blade passages have been given by Hawthorne (ref. 12).
More recently, the more difficult problem of secondary flow in a stationary
annular cascade was investigated by Hawthorne and Novak (ref. 3) but
the final solution was not derived. This annular cascade analysis is
summarized below and is followed by a solution which can be adapted
easily to the computation of secondary velocities.

In the case of a weakly sheared flow, the primary flow may be assumed
to lie on cylindrical surfaces of constant radius and there is, therefore, no
radial component of vorticity. At outlet from the blades, only ws, the
streamwise vorticity, contributes to the secondary flow, the effects of waz
being found from axisymmetric flow analysis. Referring to figure 2, the
velocity perturbations induced by w.2 have components v,, v4, and v, and
the vorticity components are

dv,

Wy = Wey sin = ———

dr

119 ov,
wa=wn COS =" |- (rve) — PYy

Noting that v, =#.(r) only, and using the continuity condition, div(v) =0,
a Stokes’ stream function can be defined,

1y
V==

T r o6

vg=vztan oy — (11)
or
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Freure 2.—Vorticity and velocity
f perturbations in an axial pro-
% Jjection of a blade passage.
/ )
' / /
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After substituting vs, v, and we into w,s, the following differential equation
is derived,
O 19y 1% v d

V2¢=§+; 5-}-7‘—2 % =? E (T tan ag) — W2 BEC = F(T) (12)

Using equation (11), a mean value of vs can be derived and the mean flow
angle perturbation obtained,

N cos® ay (/¥ oy

Aag,=—
o 22V, J, or

de ©(13)
where V, is the primary flow axial velocity component, which can be
replaced with small error by V. (i.e., mean V), and N the number of
blades.

A solution of equation (12) must satisfy the boundary values ¢y =0 at
r=ry, r, and also at =0, 2r/N, 4n/N, etc. The Kutta condition at the
trailing edge is then also satisfied, as ve=v. tan a; at §=0, 2r/N, ete.

Hawthorne and Novak’s equations, as given in the preceding para-
graphs, are now solved. Writing

F(ry=F(r) i -4—sin ka0

n odd

and

Y= i ¥ sin k.0 (14)

n odd

equation (12) is reduced to
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dy, ldy,. k.2 4
drt r dr 7r? ‘p"_mrF(T) (15)

where k,=nN/2. The boundary conditions at §=0, 2x/N, etc., have now
been satisfied through equation (14).

Nondimensionalizing throughout (using r, and V) and solving for the
mean flow angle perturbation Aas,, using equation (14), gives

2
Aogs= —— COS2 o Z -y (16)

n odd T

and equation (15) becomes

1 k2 4 r
yn' = yn/_—2=—— L F(r)=@®&(p) (17)
P p nmw V

where
p="/T1, Yn=Vn/ (rV2), ya' =dy./dp, etc.

The solution of equation (17) must satisfy the boundary conditions
v,=0at p=p; and p=1. Solving equation (15) by variation of parameters,
the complete solutions for y, and y,” are

i /1 [(p)kn (p>—kn]
n=-t L [ g (L) (2 o d
y (1— %) J,, ? Pr Pn e

+P / (RpH-kn dp P / (Rpl kn dp (18)
(pbnp7n) / [( ) (P >—k]
2pyn’ = - td
Py (1—pikn) J,, Ph e
1 1
_p—kn / (Rpl'i'kn dp—pk" / (Rpl—k" dp (19)
o I

For a typical blade row in which, for example, N >30 and p,<0.9, such
that pp*»<1, a slightly more compact form of these expressions can be
obtained. By combining equations (16) and (19), the average flow angle
perturbation across the blade passage may be computed as a function of
radius. Another useful result is the radial veloeity perturbation #,, at the
boundary 6=0, 2x/N, etc. From equation (14)

’0,0=Z£ E knyn (20)

P nodd

where k,y. is obtained using equation (18).
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In the third section, it was demonstrated that in a rotating coordinate
framework, the secondary velocities relate to absoluie vorticity, not
relative vorticity. Thus, the solutions may also be applied to rotor rows,
replacing a, by the rotor exit flow angle 8; where required.

AMNANT N
il v

A
DOWNSTREAM OF T

MITDTIL AMY ) h l
AFRLAMA Y A LA r

The ealculation of the axial velocity distribution downstream of a blade
row really presents a difficult problem unless the flow can be reasonably
assumed to be axisymmetric. In the shear flow theory, the vorticity is
assumed to be weak and the secondary velocities are then small in com-
parison with the primary flow velocities. Thus, under these conditions it
would seem justifiable to assume that at entry to the following blade row,
the flow is steady, or nearly so, the vorticity being distributed circum-
ferentially.

Hawthorne (ref. 13) has shown for the nonuniform flow through a
cascade that, in the streamwise direction, there are three components of
vorticity downstream of the trailing edge plane. The first is the dis-
tributed passage vorticity w, already considered in the second section;
the second and third are the trailing shed vorticity and trailing filament
vorticity, both of which lie along the wake. Now, trailing shed circulation
is caused by a gradient in circulation along the blade length and it is easily
demonstrated that the contributions of both the primary and perturbation
flows are already included in the analysis.

Trailing filament circulation arises in the “wakes” from the cellular
motion induced in the blade passage by the secondary streamwise vor-
ticity. The contribution made to the net vorticity by the trailing filament
vorticity was shown by Smith (ref. 14) to be small for boundary layers
which are thin compared with the blade spacing but appreciable when the
boundary-layer thickness/blade spacing ratio is of order unity.

To show how the trailing filament modifies the distributed passage
vorticity, consider first the axial component of passage vorticity,

19 161},
(58 —w,2COSa2=;—( )——

Referring to figure 15 and applying Stokes’ theorem to the fluid element
of area (2nr/N) dr, excluding the blade wake, gives

(21)

where 7 is the averaged perturbation in tangential velocity and v,, is the
radial velocity perturbation at 6=0, 2x/N, etc. Again, applying Stokes’
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theorem to the fluid element, but this time including a blade wake, gives

1d
wza=—— (rTs) (22)

rdr
which is the axial component of the combined secondary and trailing
filament vorticities. Combining equations (21) and (22), w.4 can be found

N
W4 = ez COS 0ty Vry — (23)
xr
vy, being computed from equations (18) and (20).
Now,
dv,

ws=w,; tan ag= ——

dr
and it is deduced that

we4 = WzA tan a

if the primary flow direction is not changed by the secondary flow. That
this is so can be deduced from Crocco’s equation,

1/p grad p,=VXo

1.c., wne is of fixed magnitude and the head of the resultant vorticity vector
w4 must lie along the line AB in figure 3. A change in the axial velocity
perturbation v, must occur, consistent with the reduction of ws to wea.
This change in v, is assumed to be completed far downstream of the
trailing edge plane (i.e., as in actuator dise theory).

With the resultant axisymmetric vorticity known, the secondary flow in
the following blade row can now be determined using the components of
this vorticity resolved parallel and normal to the relative primary flow of
that row.

For computing axial velocity profiles, the flow angle of the primary flow
is added to the perturbation flow angle A, to give the flow angle in the
trailing edge plane. All variations in v, are assumed to occur downstream
of this plane.

PERFORMANCE PREDICTION OF A COMPRESSOR STAGE

A revised theoretical model for predicting the performance of an axial-
flow compressor based on inviscid secondary flow is now available. It is
assumed that the velocity profile upstream of the inlet guide vanes is
known and the primary flow (i.e., no secondary flow) efflux angles can
be found for each blade row from cascade data.
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Frcure 3.—Vorticity vectors traced through two blade rows of a compressor.

Referring to figure 3, the steps in the calculation of the flow are sum-
marized as follows.

(1) Using equation (5), the passage vorticity wse at exit from the inlet
guide vanes is determined, wa and oy being generally zero for this flow.

(2) With we known, the mean flow angle perturbation Aas(r) is
calculated using equations (16) and (19). This distribution is added to
the primary flow angle o (p), giving the total exit angle az(r) to be used
in the axisymmetric flow calculation.

(3) The axial velocity distribution downstream of the guide vanes
Va2 (r) is calculated using V.1 (r) and az(r) in an axisymmetric flow equa-
tion; e.g., equation (8) in Horlock (ref. 1).

(4) A modified axial component of the streamwise vorticity is cal-
culated using equation (23); in this calculation v,, is obtained from equa-
tions (18) and (20). The resultant vorticity wss can now be found, noting
that w.s, the normal component of vorticity, must remain constant. The
vorticity wss could also be obtained from the downstream solution for
axial velocity but this is less direct and is intrinsically less accurate, as
one step in the computation involves differentiation.

(5) Resolving w4 into components parallel (wzz) and normal (wrag)
to the relative flow at rotor entry, equation (5) is employed to determine
the absolute streamwise vorticity (wsg) at rotor exit. The streamwise
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vorticity at entry will strongly influence the magnitude and direction
Of W3R.

(6) The flow angle perturbation AB;, at rotor outlet is determined
from w,sr and added to the primary flow angle 83, to give the rotor exit
flow angle for determining the axial velocity distribution far downstream.

(7) Repeat the sequence, from step (3).

It will be noticed that at rotor (and stator) entry the streamwise
vorticity relative to the blades is, in general, nonzero. This was pointed
out by Horlock (ref. 1) who observed that the “conventional” direction
of secondary rotation may be reversed because of the streamwise vorticity
at entry. In inlet guide vanes, for which wy=0, the secondary rotation
may produce overturning of the flow at the blade ends. For rotors and
stators, secondary rotation produces underturning of the flow at the blade
ends because of the inlet streamwise vorticity. Experimental results and
theoretical calculations both show that this is a normal feature of the flow
through rotors and stators. It is worth observing that the net effect of
secondary vorticity and trailing filament vorticity is to produce a resultant
vorticity which remains close to the tangential direction. This feature
strongly influences the turning direction at the blade ends.

COMPARISON WITH EXPERIMENTAL RESULTS

Calculations based on the method summarized in the preceding section
are still rather limited in scope. So far, only the flow through a set of inlet
guide vanes has been determined but the results show a closer fit of experi-
mental data than the earlier attempt described by Dixon and Horlock
(ref. 2). The method of determining the secondary flow in reference 2
was of a more approximate nature and the theory was very much sim-
plified.

The test results relate to a low-speed experimental compressor with a
hub/tip ratio of 0.8 and with 60 inlet guide vanes having a blade outlet
angle of 60°. The spacce/chord ratio (s/I) was 0.943 at the mean radius
and the blade chord was constant (0.7 in.), so that s/l varied from 0.84
at the root to 1.05 at the tip. From this information, the primary flow
angle at outlet from the vanes was estimated, using the deviation angle
rule

s
6=0.179 K deg
where 6 is the camber angle of the vanes.
Figure 4 shows the axial velocity distribution at entry to the com-
pressor which was used in all the calculations. The exact form of the
velocity profile was not known and the equilibrium velocity profile
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F1Gure 4.—Auxial velocity distribulion at entry to inlel guide vanes.

described by Coles (ref. 15) was used. This profile gives a good match with
earlier experimental results by Horlock obtained on a similar compressor
entry. The velocity distribution V in the annulus wall boundary layers as
a fraction of the mainstream velocity Vi is

vV V., 8V,
VfKVll [ln( 1» ‘)+ In 94-24+1.(1— cos m)]

where K and II, are constants having values of 0.4 and 0.55, respectively;
Vo is a “friction velocity”’; 8, is the boundary-layer thickness; » is the
kinematic viscosity; and » is the distance from the wall as a fraction of §;.

The calculated distribution of a; based on the theory is shown in figure
5, together with the experimental values. Agreement between calculated
and measured values appears to be very good. The corresponding variation
in radial velocity perturbation along the blade wake (ie., at §=0) is
given in figure 6 as a fraction of the mean axial velocity, which indicates
the rather high velocity perturbation caused by secondary flow. The
radial velocity perturbation is of most use in determining the resultant
vorticity of the axisymmetric flow. Figure 7 shows the axial component of
the streamwise vorticity at outlet w,, together with the radial velocity
correction v,,N/xr, both in a nondimensional form. The difference be-
tween the two curves results in the net axial component of streamwise
vorticity. It is of interest to note that the radial velocity contribution to
vorticity predominates over the secondary vorticity toward the bound-
ary-layer edge.

The axial velocity distribution downstream of the guide vanes was
calculated using the flow angle distribution of figure 5 and the inlet
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velocity profile of figure 4. As the hub/tip ratio was high and the blade
aspect ratio (the ratio of blade height to distance between centerlines of
adjacent blade rows) was small (less than 2), the axisymmetric flow cal-
culations were based on simple radial equilibrium between blade rows.
The blade row was replaced by an actuator disc located at the midchord
position and interference effects from other blade rows were neglected.
Figure 8 shows the calculated axial velocity profile which can be compared
with an experimentally derived profile. Agreement between the curves
is very good except toward the hub where, as it turns out, the flow angle
prediction also differs from the experimental values.
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The calculation of the flow in the following rotor row using the pro-
cedure given in this paper has not yet been attempted. However, flow
calculations of the rotor have been made by means of a similar but less
advanced theory. A fairly crude approximation was used to determine the
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secondary vorticity and secondary velocities were obtained from a simple
two-dimensional model. Nevertheless, valuable conclusions can be drawn
from these results, which are presented here.

The rotor blades had the same space/chord values as the guide vanes
and comprised constant section blades (10C5/20C50 profiles) set at 50°
stagger. From experimental data available, it was noticed that at the
particular test conditions being considered the blades operated close to
the peak pressure rise. A primary flow angle at rotor exit was estimated
based on the maximum unstalled deviation of the blades. Figure 9 shows
the calculated distribution of the flow angle, 8s, at rotor exit, together
with experimental values. The results can be seen to be qualitatively
similar, the discrepancies between the two curves being due probably to
the approximate nature of the theory and the assumption of constant
boundary-layer thickness.

Figures 10 and 11 show a series of axial velocity distributions calculated
systematically for the rotor with prescribed conditions. In figure 10, both
sets of calculations, A and B, employed the previously calculated rotor exit
angles shown in figure 9. However, for curve B the measured total pres-
sure losses in the rotor were included in the axisymmetric flow calculation,
whereas for curve A they were ignored. Comparing these calculated
results with experiment, a very marked improvement in the accuracy of
curve B is evident. In figure 11, the measured rotor exit flow angle was

581 1
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-0—o0—o0-= EXPERIMENT

[1NS = CALCULATION -

82+ 4
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FLOW ANGLE, B, (OEG)

~—— /
‘
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Ficure 9.—Flow angle distribution at exit from rotor blades.
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Ficure 10.—Azxial velocily distributions downstream of rolor row using calculated
flow angle distribution.
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FicuRre 11.—Auxial velocity distributions downsiream of rotor row with experimental
Sflow angle distribution.

used in both ealculations, ¢ and D. For the former, the relative total
pressure losses were ignored and for the latter, they were included. It is
clear from curves C and A together that having the correctly calculated
flow angle distribution is vital for accurate performance prediction in
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compressors. However, it is evident from curve D that account must be
taken also of the ““losses,” at least in diffusing blade rows.

CONCLUSIONS

A comprehensive theoretical analysis is presented for calculating the
secondary flow through the successive rows of axial-flow turbomachines,
based on a known inlet velocity distribution. The controversial relative
rotation vector is shown in the analysis to be irrelevant to the calculation
of secondary vorticity. Application of the analysis to the inlet guide vanes
of an axial-flow compressor predicts an exit flow angle distribution which
is very close to the measured distribution. Subsequent calculation of the
downstream axial velocity distribution using the predicted flow angles
gives close agreement with the measured axial velocities. Thus, it is con-
cluded that for guide vanes, at least, the exit flow is fairly accurately pre-
dicted by assuming inviscid loss-free flow with no growth in boundary-
layer thickness across the row.

The prediction of flow through the rotor, which employed a simplified,
more approximate treatment than that given in the paper, showed only a
moderate agreement with experiment. The rotor was heavily loaded and
relative total pressure losses were significant. These calculations emphasize
the importance of the accurate prediction of both outlet angle and pressure
loss distributions in the caleculation of axial velocity distributions. It
should now be possible for a more accurate assessment of rotor outlet
angles to be made with the theory given in this paper.
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DISCUSSION

W. R. HAWTHORNE (Cambridge University) : The author’s solution
of equation (12) given in equations (18) and (19), although correct, is
somewhat difficult to evaluate. It is casier to reduce equation (12) to a
rectangular coordinate system by writing

r/Th= 2mz
A= €Xp (N >
and

2my

0:
N

Then the author’s equation (12) becomes
*y ﬂ-(@) _
2Ty ) F0 =6

with boundary condition ¢y=0 at y=0 and y=1 and at z=0 and
l=(N/2r) log. (r:/ms).

Writing
© 4 .
G(2) =G(2) Y — sin nwy
1,3,5 T
and
v= Z\Izn sin nwy
1,3
we obtain
A&, 4
Ve = G(2)
dz nw

By the method of variation of parameters, we obtain

l,b,, (z) — __‘1/n27r2

sinh #nl

l
[sinh nrz / G(t) sinh nr(I—1) dt

+ sinh nr(l—2) / G(2) sinh nrt dt]

0
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and

o __4/nm [cosh nw (1—2) / G(1) sinh nrt di
dz sinh nwl 0

1

I .- e
— cosh mrzj G(t) sinh nw(I—1) dt]

The author refers to an extension of my representation of velocity in
the steady rotational flow of an inviscid, incompressible fluid, namely
tVp,

p

V=v¢—

to a rotating coordinate system. To complete the record it is desirable to
give a derivation of the author’s equation (6), since it has not been
published elsewhere. If W is the velocity relative to a coordinate system
rotating with angular velocity Q, then Euler’s equation for steady relative
flow is

(W-V) W22 XW+@X (@Xr) =1 vp
p

where r is a position vector and p and p are pressure and density, respec-
tively. It may be transformed to

WX (VXWH2Q)=V [B'F%(W?—Q‘-’r?)]
p

where r is the radius from the rotating axis. The term
pr=p+ip(W?—@%) =pl
is better called the relative Bernoulli pressure to avoid confusion, since
stagnation pressure could be written p+3pW? The term
VXWH42Q= 0

is the absolute vorticity. Now Clebsch (ref. D-1) has shown that it is
possible to represent the absolute velocity in a three-dimensional flow as

V=V¢—1Vo

where ¢, ¢, and 7 are scalars which may be chosen arbitrarily. The relative
velocity may then be written

W=Vp—1Ve—QXr

and the absolute vorticity
w=VeXVr
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Now we choose =1, so that

Vo=VI=WXa
Hence
0=(WXw)XVr

=(W: V) o— (0 V1) W
The second term

@ Vr=VoeXVr-Vr=0
hence

W. Vr=1
or

ds

T= —
w
where the integral is taken along a streamline of the relative flow and s is
the distance along the streamline. If, at any instant, one of the surfaces
t=constant is identified, then, at a time ¢ later, the fluid particles will have
drifted a distance downstream such that

ds

t= —IZ’-

Hence, we may write
W=Vp—IVI—QXr

and
w=VIXVt

The author has adopted the approximation in which the stagnation
pressure gradients are small but the disturbance from the upstream flow
is large.

There is the possibility of some’ confusion in the use of the terms
“primary flow” and “secondary flow.” In all the methods given in the
literature on the secondary-flow approximation, the stagnation pressure
gradient, Vp,/p (or its equivalent, VI, in a rotating coordinate system)
is assumed to be small of O(e). We determine the components of vortici-
ties in the flow by considering their convection by a flow of O(1) for which
Vpo/p=0 (or VI=0) and which satisfies the boundary conditions. This
flow of O(1) has frequently been described as the primary flow. ‘

Writing the total velocity as

V = Vo+ v
where V, is the primary flow and v is O(¢)

VXV=VXV+VXv
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Now
VoX(VXV,y) =0

because the primary flow has no gradient of p,. Hence, the primary flow
must either be a potential flow, VX V,=0, or a Beltrami flow with

= VXVO=)\V0

where \ is a scalar which is constant along a streamline of the primary
flow. The only component of the vorticity wo is wo, in the direction of Vy,
such that wo./Ve=A=constant along a streamline. Beltrami flows are
found downstream of rows of twisted blades around which the circulation
varies along the span when the fluid is ideal and the flow upstream of the
blades is irrotational. For such a flow, we may define wy as the primary
vorticity and note that it may be O(1). Then VXv of O(e) is the secondary
vorticity. If the Beltrami flow is weak so that A is O(e), then we may
choose a potential flow as the primary flow and incorporate the velocities
induced by the vorticity wo, in the velocity v.

This result may be extended to flows in rotating coordinate systems by
noting that in the primary flow

Wox Wy = 0
so that
=AW,

where )\ is now constant along a streamline of the relative flow. When
A is O(e), it is possible to define a primary flow

W0= Vd)o—QXl‘

for which the absolute velocity is irrotational.

Hitherto, I have been discussing the definition of the primary flow used
in calculating the vorticity convection. Some confusion has, perhaps,
arisen because when considering the computation of the velocity com-
ponents through cascades, it has been convenient to split the flow into
two parts—namely, a flow which can be computed by axisymmetric
methods (L. H. Smith calls this the primary flow) and a flow component
which requires blade-to-blade analysis and in which the effects of the
passage vorticity are obtained from equations such as the author’s
equations (16) and (19). In thislatter calculation and in the axisymmetric
calculations, we assume that the Kutta condition is adequately satisfied,
in the latter case by using a blade element or potential flow theory.

For flows in which w,; =0 there appears to be agreement, supported by
experimental data, that the actuator disc or axisymmetric approach
combined with a passage vortex computation is satisfactory (Hawthorne
and Novak, ref. 3).
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When wa70 or in the extreme case when the approaching flow is a
Beltrami flow, some question arises as to the adequacy of the method
assumed for satisfying the Kutta condition in the axisymmetric or
actuator-dise computations. It is not obvious that the blade element
theory can adequately predict the outlet angle for such flows. Work is
proceeding on this point, which is of considerable importance in step (6)
of the sixth section of the paper. At the moment, all we can say is that
step (6) contains the best assumptions that are available.

The most rigorous attempt to satisfy the Kutta condition for the
secondary flows has been given by M. Gomi (ref. D-2).

J. H. HORLOCK (Cambridge University) : With Dr, Dixon, I have for
some years followed, and participated in, discussions between Dr. L. H.
Smith and Sir William Hawthorne on the problem of secondary flow in
stationary and rotating rows of blades. This introduction to the discussion
is an attempt to summarize the position, to draw attention to differences
in two approaches to the problem, and to pose some questions to which I
still do not know the answers. These differences and questions are illus-
trated by some simple flows, concentrating first on the secondary flows in
stators and later on the secondary flows in rotors. Much of the work
presented here is not my own, but is drawn from correspondence between
the four of us and notes of the discussions that have taken place.

A critical difference between the approaches of L. H. Smith on one
hand and of Hawthorne and Dixon on the other lies in their definitions of
secondary flow. Smith defines the secondary (passage) vorticity as the
difference between the actual streamwise vorticity leaving the blade row
(ws) and the “primary”’ vorticity that would exist downstream of the
blade row if there were an infinite number of blades (w,,). Hawthorne and
Dixon define the secondary vorticity as the actual streamwise vorticity
in the channel (w,). In my opinion, neither of these approaches is in-
correct for stationary coordinates—it is simply a question of definition.

Let us first summarize the various equations that have been derived
(table D-I) for secondary flow of an incompressible fluid, expressed in
stationary coordinates. We shall use the notation of Dixon’s figure 3 for
the flow through the stationary row, working in absolute velocities and
vorticities in the first instance, but using z instead of r (implying that
the radius of the machine is very large, and we can work in Cartesian
coordinates). Subscripts s and n mean parallel and normal to the absolute
velocity, respectively.

We shall consider the use of these equations in two flows through
stationary blade rows. In the first case there is no secondary vorticity at
entry (w,, =0, w,;0) and in the second case there is no normal vorticity
at entry (w», =0, w,,;#0; a Beltrami flow). We compare the Hawthorne
equation (D-3) with the Smith equation (D-5) in each case.
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TasLe D-1.—Equations for Secondary Flow (Stationary Coordinates)

Equation

Reference and
notes

— Ws 1
vev <V)“ Rz

[CF7)

[2va(p)] (V-9 v

—wg = —2ewn,

8T s =wgepo COS a2
dV|

(D-1)

(D-2)

ds o cos az
14
e [ ‘/ 2
w52=< p")x(wo)
p

6= (m,—w,o)z COS a2

_ Vilva dﬁ
T\ Ve T dn
dVy Tva dI‘v

ér,=-V
"dr V 2

dn
dn2

Tva=actual (primary + secondary) circulation
I'v =primary circulation
n=distance normal to axisymmetric streamline

sin @z  sin o)
X -
COS a] COS o2

(D-3)

(D-4)

(D-5)

(D-6)

Hawthorne (ref.

13)—general
equation
Squire and Winter
(ref. 4)—small

deflection

Hawthorne (ref.
13)—we =0

Hawthorne and
Novak (ref. 3)
—wy =0

L. H. Smith (ref.
5)—general

L. H. Smith (ref.
5)—special
case with

dny=dns
dVi

Way = ="

dz

The first case is as follows:

av,
Wy = —

dz

Hawthorne’s equation (D-3) may be written as

av, <V1/ v,

d
o= — _s)__ (o sin al)-i-—
dz
Smith’s equation (D-6) may be written as

vV dz dz

(a Z—l sin az> (D-3a)
Ve
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T
_% Vv E’i__i_” (D-6a)

== Vv 274

The first two terms are clearly equivalent. Smith also shows that in
the primary flow

dTly d
- dz __Ud (V91 Vﬂz)
o (0w
= —g¢g | Ssln aq 1 oy az
and since
dpol_dpa2
dz dz
dVs_V2dVs_cos ey dV,
dz Vi, dz  cosoy dz
so that
dTy ) av, . VidV,
>v_ crr Jirrt D-
iz a(sm - sin v, dz) (D-7)

which establishes the identity of the other terms in the equations.

It is important to note here that in Smith’s primary flow for this
example there is no streamwise vorticity, so that there is no econflict in
the definition of the secondary flow in this case.

Let us now examine the second case

wy, =0 w,, finite

Consider this Beltrami flow moving through a cascade of twisted flat
plates that receive the flow at zero incidence and do not deflect it at all.

We cannot use Hawthorne’s equation (D-3), which was derived for
ws, =0, but the general equation (D-1) shows that with no change in
velocity, (V-V) V=0 and

Wap = Wey

Thus, on Hawthorne’s definition, the secondary vorticity at exit is equal
to that at entry. It is from this total secondary vorticity that we may
calculate the total flow velocity perpendicular to the vorticity vector.

From Smith’s equation, since Tys=Ty=0, 3T.=0; so, on Smith’s
definition, there is no secondary flow (w,—ws)2=0. However, primary
vortieity (w,)2= (w,)1 exists, so that there is vorticity ws,= (w,,)1 along
the streamline in the total flow, as in Hawthorne’s calculation.
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This example illustrates the important difference in definition of
secondary flow.

It appears then, from these examples, that the expressions given for
secondary flow through stators are entirely consistent, provided the
difference in definition is appreciated.

We now try to make a similar comparison for a rotating blade row and
again consider a number of examples to which the various approaches
must provide a solution. Equations now available are presented in table
D-II, with W now the relative velocity.

We may at this stage note that A. G. Smith has simplified his equation

to the form
2 .
ww ww VI sin vy
—)—\=)= 2— d
(” >2 <” )1 '/1 P w? ®

220 vI
+/; ~u—/;-p—cos6ds (D-12)

where 6 is the angle between VI/p and @ and is usually nearly /2, so that
the second term may be considered second-order for the purposes of this
discussion; vy is the angle between (VI/p) XW and the direction of
curvature of the relative streamline, which is also approximately =/2;
and e is the relative deflection. Thus

€R
G)-G)-[o2s o
W/, W/ 0 p W2
But VI/p=W Xa; thus, if the absolute vorticity perpendicular to the

relative stream line is wg,, and the velocity changes little in a small
relative deflection of the flow, then

Wwey— Ww; = —2eRme (D—l4)

The present paper argues that the perturbations in the relative flow
arise as a result of the absolute vorticity &, but L. H. Smith again argues
that the vorticity that should be used is the difference between the total
absolute vorticity and the absolute vorticity in the primary flow (&—ao).
This argument may be illustrated by a statement of the various velocities
and their curl.

Velocity Curl
Absolute primary flow Vo VX Vo=a0
Disturbed total absolute flow V= Vo4 o=VXV=a+d
Disturbance flow (absolute) V—Vo=% @'
Relative primary flow Wo=Vo— QX7 VX Wo=ao—28

Disturbed total relative flow WZ' = 17:o+17’ —OxF VX W_= @o— 204’
Disturbance flow (relative) W—Wo=2v' UX(W—Wy)=d'
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TasLe D-11. Equations for Secondary Flow (Rotating Coordinales)

Equation Reference and
notes
A. G. Smith (ref.
= ow 1 vI = 2. (VI
W) —=— — WeW+—=|o.{ —
wog-g[{Fprleorgfo()] |
(D-8)

where subscript w indicates resolution along the lines of the
relative velocity, but w is still the absolute vorticity.
ww =VIXVty (D-9)| Dixon (present
paper)—pre-
sumably for
w1=0 only
(potential flow
at entry)
where, from Hawthorne’s discussion of the present paper,
dse
to W (D-10)
L. H. Smith (ref.

Tva dr)d_m o-10| 5)

(ww —wwo) = (Wmm V—V:’-*_;i;] an
where wry, is the absolute vorticity, resolved normal to the
relative streamlines at entry.

In his derivation, Smith employs the Helmholz laws to determine how the absolute
vorticity changes as the flow passes through a blade row, which may be rotating or
stationary. He defines the secondary vorticity as the difference between the actual
absolute vorticity and the absolute vorticity of the primary flow. His reason for using
the difference between two absolute vorticities to obtain flow perturbations in the
rotating coordinate system is illustrated in the paragraphs following Equation (D-14)
of this discussion.

Thus, the disturbance flow is calculated from &' =&— @, the difference
between the total absolute vorticity and the absolute vorticity in the
primary flow.

In Dixon’s example in the paper, the primary flow is potential, so that
@o = zero, and both Dixon and L. H. Smith give the same answer.

We again consider a number of examples of flows through rotors in
order to establish whether the various approaches give the same result.

We shall first consider A. G. Smith’s example of uniform flow at the
entry to a rotor.

If the entry flow is axial and uniform (V,=constant, w;=0), then

2 2 2
"(2)-2ee (M55)-(3)-0
p p 2 2
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It is then evident from A. G. Smith’s equation that no absolute vorticity
ww (resolved in the relative direction) can be developed along the stream-
line, even if the relative flow is deflected. The Hawthorne/Dixon equa-
tions imply that no absolute secondary vorticity (w) can be generated
since VI X Vty is zero, and the primary flow is potential.

Consider the rotor to be made up of helical plates which do not deflect
the flow and have no lift or circulation.

Both A. G. Smith’s equations and the Dixon/Hawthome equations
show that the absolute vorticity (ww) doesnot change along the relative
streamline in this case. ww is zero at entry and at exit. The primary flow
also has zero vorticity ww,=0and the difference wy— ww,=0.T here is no
secondary flow.

L. H. Smith’s equation shows that ww = ww, is zero since I'vy =Ty =0.

We now consider a forced vortex flow entering a rotor; the entry
tangential velocity is everywhere equal to the blade speed, but the entry
axial velocity is uniform. The entry vorticity is in the axial direction,
so that

By, x28=0
p
The relative velocity and absolute vorticity vectors are parallel—a kind
of rotating Beltrami flow. The Dixon/Hawthorne equation cannot
strictly be used in this case since the entry flow is not potential.

Consider next this flow moving through rotating flat plates, aligned in
the axial direction, operating at zero incidence with zero circulation and
zero deflection. A. G. Smith’s equations give the absolute vorticity
ww =202 as unchanged. However, the primary flow also has vorticity
wew = 2%, so the difference ww— ww, is zero, and there is no secondary flow.
(Note that 2Q is subtracted from ww here, not because it is the curl of
the blade speed but because it is the vorticity in the primary flow.)

L. H. Smith’s equation (15) also gives ww—ww, as zero although the
primary flow has leaving vorticity 29.

The discussor’s tentative conclusions are

(1) The equations of Hawthorne and L. H. Smith are consistent for
flow through stators, if account is taken of the different definitions of
secondary flow.

(2) The Dixon/Hawthorne equation (10) refers only to perturba-
tions of a primary potential flow,

(3) A. G. Smith’s equation accurately describes the change in total
absolute vorticity resolved along the relative streamline.

(4) To determine the secondary flow in rotors, either L. H. Smith’s
equation or A. G. Smith’s equation may be used, as long as the primary
vorticity is first subtracted from the absolute vorticity in the latter case.
The secondary perturbation flow is calculated from &w— aw,.
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B. LAKSHMINARAYANA (The Pennsylvania State University):
The sccondary flow approximations (namely, small shear and large
disturbance) are inadequate for application to annulus wall or hub wall
boundary layers. The Bernoulli surface rotation and viscous effects tend
to reduce the development of secondary flow. This was indicated by B.
Lakshminarayana and J. H. Horlock in reference D-3 where they ade-
quately demonstrated that Bernoulli surface rotation and boundary-layer
growth through the blade row should be taken into account for accurate
prediction of secondary velocities and outlet angles, especially near the
wall. In view of this work, it is somewhat surprising that the author was
able to predict the outlet angles accurately (fig. 5) ignoring these effects.
The radial or spanwise velocities plotted in figure 6 indicate that the
distortions of Bernoulli surfaces in the author’s inlet guide vanes are not
negligible. The author’s conclusion that the outlet angle predictions are
good is based on only two experimental points inside the annulus wall
boundary layer (fig. 5). It would be useful if the author could provide a
few more data points, especially near the wall, and indicate whether the
predictions are good in this region.

With regard to the rotor secondary flow, the components wsr and wuer
at the inlet to the rotor (fig. 3) will vary through the boundary layer due
to change in relative flow direction. This effect has been neglected in this
paper, thus leading to inaccurate estimation of the streamwise vorticity
downstream and the resulting perturbations. Inclusion of these effects is
essential if accurate prediction near the wall is sought. T have illustrated
this effect, quantitatively, for an isolated rotor with axial entry and
neglecting the contributions to the downstrecam streamwise vorticity of
the wake vortex sheets.

Using A. G. Smith’s equation (eq. D13 in the discussion by Horlock),
the streamwise vorticity in the relative flow direction can be written as

wwy .
Q2= sin 81— 2e cos B1

h

where Q is the inlet absolute vorticity for axial entry of the absolute flow.

If A8 is the change in relative flow direction at any location inside the
boundary layer and e-+Ag8 is the corresponding turning angle of the
relative flow, the following expression can be derived on the assumption
that cos AB=~=1 and sin A=A

Ww, .

g = sin B1,— 2€, €08 B1,4- AB(r) sin B1,[2e,4+2488(r) —¢]

where subscript o refers to free-stream values and ¢= cot S,. The last
term in the equation represents the error in neglecting the change in 8
through the boundary layer. AB(r) can be derived from the known
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absolute velocity distribution in the boundary layer. For example, for
¢=0.5, ¢=25° and at the location where the absolute velocity is 60
percent of the free-stream velocity, the effect of neglecting this effect
results in 20 percent error in the estimate of ww,/Q at this location. The
magnitude of this error depends on the values of ¢ and ¢; the error is
largest for low-speed, large-turning or high-speed, low-turning blade
rows. A similar correction can be incorporated in the author’s general
equation (5).

Thus the author’s poor predictions for the rotor (fig. 9) may be due to

(1) Neglect of the variation in wse and wyer through the annulus
wall boundary layer

(2) Tip clearance effect, which has a tendency to underturn the
relative flow (This effect has been neglected in this analysis.)

(3) Boundary-layer growth through the rotor

S. L. DIXON ({author): In the discussions presented by Professors
Hawthorne and Horlock, the main point at issue is the effect of the
streamwise vorticity entering a blade row on the secondary motion
generated at exit. The extreme case of a Beltrami flow passing through a
blade row poses some presently unanswerable questions on the flow angle
leaving the blades. In this paper, I have been concerned with weakly
sheared flow in which vorticity is convected by a primary potential flow.
This potential flow could convect a Beltrami flow provided that, in the
notation used by Hawthorne,

Wos

)\=W=0(e)

Horlock has considered a forced vortex flow entering a rotor with a
tangential velocity equal to the blade speed and having uniform absolute
velocity in the axial direction. For this “rotating Beltrami flow,” the
primary flow has vorticity O(1) and there is no transportation of second-
ary vorticity—at least not in the sense of the paper. The vorticity is an
tntegral part of the primary flow. We could replace this flow by a primary
potential flow convecting another flow whose vorticity is 22. However,
the theory is not valid for flows in which the vorticity is O(1) and should
not be applied to such an extreme case.

More light may be thrown on the way Beltrami flows behave by an
extension of some analysis due to Hawthorne (ref. 11). We note that for a
Beltrami flow in rotating coordinates

0=\W (D-15)

where X is a scalar. By taking the curl of both sides of equation (D-15)
and noting that div W= curl =0, we find

VW4 VAXW=—xcurl W (D-16)
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If we consider the special class of flows where A=w/W =constant, then
VA=0and

VPW = —Acurl W= —A(0—2Q) (D-17)
Using equation (D-15) in equation (D-17), we get
(V24-A2) W =20\ (D-18)

For the special case in which ©=2Q (Horlock’s “rotating Beltrami
flow”), equation (D-17) gives us

V*W=0

for which the only solution is W=constant (i.e., no secondary flow).
When 029, equation (D-18) may be solved provided sufficient bound-
ary conditions are known.

Professor Lakshminarayana has rightly mentioned that boundary-layer
growth effects should be included in the method. In addition to this, 1
would include the changes in outlet angle due to flow separation. However,
at present no reliable analytical method for predicting these changes is
known. Whenever such a method becomes available its inclusion should
significantly improve the accuracy of the predicted axial-velocity profiles
after diffusing blade rows.

It is no longer possible to obtain any further experimental data from
the original source.

The rcason why directional changes of the vorticity vector induced by
the vorticity itself have been neglected in the analysis is bound up with
the nature of the approximations made in the secondary-flow theory.
Hawthorne (ref. 3) has indicated that for small vorticity the primary flow
may be assumed to remain on eylindrical surfaces of constant radius. If
there is a distortion of thesc surfaces of O(e), the effect on the vorticity
components is O(e?) and may be neglected. The analysis given in the
paper is based on the assumption of small vorticity, so that it would
be incorrect to attempt the higher-order approximations suggested by
Professor Lakshminarayana.
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The Effects of Rotation on Boundary Layers
in Turbomachine Rotors:

James P. Jounston

Stanford University

The boundary layers in turbomachine rotors are subject to Coriolis
forces which can (1) contribute directly to the development of secondary
flows and (2) indirectly influence the behavior of boundary layers by
augmentation and/or suppression of turbulence production in the
boundary layers on blades. Both these rotation-induced phenomena are
particularly important in the development of understanding of flow and
loss mechanisms in centrifugal and mixed flow machines. The primary
objective of this paper is to review the information available on these
effects.

Prediction of the behavior of the fluid boundary layers in the rotors of
a turbomachine is largely based on information derived from experience
with stationary systems. Nevertheless, when viewed from stationary
(inertial) coordinates, rotor flow is periodically unsteady, and when
viewed from rotor attached (rotating) coordinates, although the relative
flow is steady,? Coriolis and centrifugal accelerations must be included in
the dynamic equations of motion (see Appendix T). No matter how one
tries, dimensional analysis (see Appendix II) shows that a rotation
parameter, in addition to the standard parameters—>Mach number,
Reynolds number, specific heat ratio, ete.—is required to fully specify
gross flow conditions in a rotor. There is then no assurance that stationary
flow results will provide an adequate basis for rotor flow analysis. In-
vestigation of the important effects of rotation on boundary layers is the
main theme of this paper.

' The present study was conducted under National Science Foundation Grant No.
GK-2533.

* Unsteadiness due to pressure fields of adjacent stators and stationary blade wake
effects are not considered in this paper.
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The most appropriate rotation parameter depends on the particular
application. The well-known Ekmann and Taylor numbers (see Appendix
II) are sometimes useful, but in turbomachine applications we have found
the rotation number, Ro=2wL/U, which expresses, in a general way, the
ratio of Coriolis to inertial forces in the relative flow, to be most useful.
Ro is the inverse of the well-known Rossby number, Ros=Ro™!, of geo-
physical applications. For example, in consideration of the general
circulation of ocean basins or the earth’s atmosphere an important char-
acteristic is Ros<<1 and Ro>>1. However, for rotor flows, the opposite is
generally the case, Ros>1 and Ro<1; that is, Coriolis accelerations in
rotor boundary layers are generally small, but, as will become evident, not
always unimportant. ;

Probably the most significant rotation number for a boundary layer is
formed from 3, a boundary layer thickness, and a characteristic relative
free-stream velocity, U,. In these terms Ro becomes, with the further
insertion of rotor parameters,

208 Upip O

RonZ2 gt
B TUL

In most applications wip/ U, is limited to a range of magnitudes from 10
to 1. Thus, the maximum value of Ro is roughly

b)
(RO)max=20 —

Ttip

In turbine rotors, boundary layers are very thin, 6/, <107%. Hence
(R0) max <1072, and neglect of rotation effects is probably justified. At
the other end of the spectrum arc the layers in centrifugal compressors
and pump impellers, where §/7¢i, may be as large as 10~ and (R0) max<l
indicating the relatively large influence of Coriolis forces. In most applica-
tions, values of Ro<10~! are more common. However, it has already been
pointed out by Dean (ref. 11) that one cannot hope to understand the
fiuid dynamics of centrifugal rotor flow without an understanding of the
effects that arise from system rotation.

Rotation manifests its influence on rotor boundary layers primarily
through its effects on (1) secondary flow, and (2) stability, in the broadest
sense. Lach effect is considered briefly in the context of a radial-flow com-
pressor, or pump, impeller passage.

Figure 1 illustrates a typical impeller and shows some characteristic
relative velocity profiles inside, but near, the impeller exit plane. Profiles
of this type have been shown experimentally a number of times (refs.
20, 16, 14, 33, 15, and 25) and may be inferred from other experiments
(refs. 13 and 1, for example). The real relative velocity profiles always
appear to be grossly different from those expected on the basis of inviscid
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Ficure 1.—Centrifugal impeller flow. Dashed arrows indicate secondary flows.

theory and normal boundary layer methods. It is common to find a thick
wakelike region? near the blade trailing (suction) surface. This wake may
result from more than one cause—certainly the deceleration of the trailing
surface boundary layer contributes to the wake. However, secondary
flows that arise from local layer growth and inlet total head deficits on
the hub and shroud feed “tired” fluid into the trailing surface layer and
thereby enhance the growth of the wake.

Secondary flow in the hub and shroud layers in the straight radial
section of an impeller is a direct consequence of rotation. These low-speed
layers are driven toward the trailing (suction) surface by the primary
blade-to-blade tangential pressure field required to balance the Coriolis
acceleration in the high-speed, relative, through flow. The qualitative
aspects of secondary flows in centrifugal impellers are well illustrated in
the visual studies of Senoo, et al. (ref. 42).

Although little work has been published to date on the effects of rota-
tion on laminar boundary layer stability and the consequences of the
stabilizing effects of rotation on turbulence, the idea that rotation can
affect stability is not new; e.g., the classic study of G. I. Taylor (ref. 45)
in 1932. Of more direct interest are the pioneering studies of Trefethen

3 The consequences of the wake-jet effect on downstream flow and stage losses are
discussed in references 11, 26, and 41.
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(refs. 47 and 48) on laminar, transitional, and turbulent flow in long tubes
that rotated about an axis perpendicular to the tube axis. In addition to
noting the importance of secondary flows, he recognized that the trans-
verse pressure gradients induced by Coriolis acceleration could affect the
process of transition to turbulence by a mechanism similar to those
operating in horizontal shear layers with density stratification.

The basic stabilizing mechanism is relatively easy to understand for a
simple shear layer in a plane that rotates about an axis perpendicular to
the plane of flow (fig. 2). A mean pressure gradient, dp*/dy, is required to
balance the local mean Coriolis force, 2pQi. Assume that a fluid particle
is perturbed in the y direction to an adjacent layer (layer 1 to 2, fig. 2)
while retaining its original mean velocity. The particle will be dynamically
out of balance with the local mean pressure field at layer 2 and will tend
to be accelerated away from its equilibrium layer, layer 1, if © is a positive
number. In this crude sense, the flow is said to be destabilized by rotation.
If @ were negative, the particle would tend to return to its original position
and the flow would be stabilized by rotation. From arguments of this type,
one may derive a local profile stability parameter,

=20
" da/dy

(1)

Positive values of S indicatc stability and negative values instability.
More exact reasoning, based on analogy to flows with mean streamline
curvaturet and horizontally stratified shear layers with vertical density
gradients where centrifugal or buoyancy forces produce normal pressure
gradients, led Bradshaw (ref. 7) to conclude that the proper local stability

FiGtre 2.—Pressure and ve-
locity profiles in plane rotating
shear flow.

\—-l—j CORIOLIS FORCE

4 See the classical inviscid stability analysis of Rayleigh (ref. 40) for curved flow.
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parameter for plane rotating shear layers is the gradient Richardson
number

. —20[(d#/dy) —20]
Rim == o = S(1+8) (2)

where Ri¢>0 indicates the tendeney for rotation to stabilize, and R <
to destabilize, the flow. The term

di -
20— —= abs ‘
ay £ab (3)

is the absolute vorticity and should appear in a parameter of this type.
Flow with zero absolute vorticity, whether rotating or stationary, should
be neutrally stable to transverse perturbations (ref. 40). In conclusion,
it must be recognized that this stability criterion takes no account of
viscous effects which may increase, or decrease, the stability of the fiow.

For our centrifugal impeller flow, figure 1, the trailing (suction) side
boundary layers should be stabilized by rotation as Ri>0. Conversely,
on the leading (pressure) side they should be less stable than in similar,
but nonrotating, flows. If the main core of the flow is induced from an
isothermal, stationary atmosphere, it will be irrotational, £,,.=0, and
neutrally stable even though S <0 in this region. In real flows, the shear
layer separating the trailing side wake from the main flow (jet) should be
more than normally stable because Ri>0 in this region.

The consequences of these stabilizing effects on centrifugal impeller
flow are incompletely understood, but Dean (ref. 11) has clucidated them
in part. In the stabilized, trailing side layer and the wake-jet shear layer,
transition to turbulence may be inhibited and/or the normal turbulent
mixing processes reduced in magnitude and effect. On the leading side the
opposite effects can occur. The stabilized trailing side layer, under an
adverse streamwise pressure gradient, may incur premature separation
as a result of reduced turbulent stress levels. The reduction of mixing
effectiveness in the wake-jet shear layer may contribute to the sometimes
rather stecp velocity gradients.

The computation of real flows in real centrifugal impellers is not
possible today, in part due to lack of knowledge of the quantitative cffects
of rotational stabilization and in part due to the complex geometry of the
blade passages. The basic theory of secondary flow in viscous boundary
layers is known® for rotational flows as well as stationary flows, but the
geometric complications (e.g., corners) and the interaction of the growing
layers with the core flow, especially if stall occurs in a blade passage,

8 The exception is turbulent layers in corners. Theory for three-dimensional thin
turbulent layers on essentially flat walls is currently developing rapidly.
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make direct application of theory problematical. Only for very simplified
geometries and conditions has progress been made in the quantitative
aspects of the problems. The remainder of this report will deal primarily
with these simple cases in the hope that some better understanding of the
phenomena may be attained.

ROTATION-INDUCED SECONDARY FLOWS

It is relatively easy to understand the qualitative behavior of rotation-
induced secondary flows. However, the quantitative calculation of such
flows starting from the boundary layer equations is generally not simple.
In many cases, sufficient understanding may be gained from use of
inviscid secondary flow theory. For example, in centrifugal rotors the
major secondary flows often result from shroud boundary layers generated
in the inducer section and/or other axial velocity profile nonuniformities
(primary vorticity) that enter the impeller from upstream. When such
effects are present, the streamwise (secondary) vorticity that develops
downstream in the rotor depends to only a negligible extent upon local
viscous effects.

It is not the intent of this paper to review inviscid theory in detail.
Kramer and Stanitz (ref. 30) and Smith (ref. 44) develop the basic theory
for application to incompressible fluids in rotating coordinates while
Howard (ref. 24) extends it to simple compressible fluids. Application of
the theory to real rotor flows appears to be rare, but there are useful
exemplary calculations in references 30 and 44 and some attempts at
prediction of recal flows in centrifugal impellers in references 24 and 25.

In strictly axial-flow impellers, inviseid and viscous theory shows that
coordinate rotation has no effect on the development of secondary vor-
ticity in end-wall boundary layers. End-wall sccondary flows develop due
to the pressure field caused by turning the relative flow. However,
secondary (radial) flows may develop on axial rotor blading as a con-
sequence of coordinate rotation. In the latter case, because the layers
generally start thin and grow in the chordwise direction, the full equations
rather than inviscid theory should be employed.

The simplest case of rotation-induced secondary flow is the radial
outflow in the boundary layer on a rotating disk. The laminar solution is
well known, and since the classic stability and transition studies of
Gregory, et al. (ref. 18), increasingly sophisticated solutions of the tur-
bulent problem have become possible. The references to this problem are
too numerous to list here, but useful solutions of the turbulent disk
problem start with von Karman’s paper (ref. 27) in 1921. A recent study
on this topic, Cham (ref. 8), compares a variation of Head’s entrainment
method for solution of the three-dimensional turbulent boundary layer to

~
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experiment. In comparison to the laminar flow solution, the most striking
feature of the turbulent disk flow is the relatively small values of the
sccondary radial flow velocities.

Axial Rotor Blade Boundary Layers

Closely related to the simple disk flow problem are problems concerning
boundary layers on axial-flow rotor and propeller blades. Because un-
stalled, axial rotor blade layers remain very thin, it has usually been
assumed that the radial, secondary flows developed therein may be
neglected. One of the first examinations of this rotational effect appears
to be that of Banks and Gadd (ref. 2) who considered laminar and tur-
bulent layers on rotating, helical surfaces, and the limiting case of sectors
of flat circular disks, in an attempt to study viscous flow effects on ship
propellers. Lakshminarayana (ref. 31) and Horlock (ref. 23) have recently
reported work in progress for similar geometries. Figure 10 in reference 23
gives some calculated results for a segment of a disk where the boundary
layer grows from its leading edge. It is shown there, as for full disk flows,
that the secondary skewing of a turbulent layer is much less than that of a
laminar layer. Similar results in reference 2 confirm this conclusion and, in
addition, it is pointed out that unless the tangential flow tends to separate,
or the tangential velocity profiles become quite distorted as a result of
axial (chordwise) adverse pressure gradients, the radial flows will be very
small for the turbulent case. For normal blade chord lengths and non-
separating turbulent conditions, the conventional neglect of this effect
may indeed be justified.

On the other hand, if the flow is separating, or close to two-dimensional
stall, the radial secondary flows may be important. Banks and Gadd
(ref. 2) note the possibility that, as the chordwise profiles distort, the
deveclopment of larger radial flows leads to a chordwise component of
Coriolis force® that may be capable of “bucking” the adverse, chordwise
pressure gradient and perhaps cause delay of two-dimensional, profile
separation compared to an otherwise equivalent nonrotating flow. This
rather surprising idea appears not to have been pursued too far in turbo-
machine flow rescarch, although the authors of reference 2 say that the
experiments of reference 22 on propeller lift coefficients tend to confirm
this conclusion. It is believed that further work on this phenomenon
could be justified. Experimental work would need to be done in a rotor
as there appears to be no way to model the effect in a stationary system;
i. e., a cascade.

s Believed to be the “coupling’”’ effect mentioned by Horlock (ref. 23) as now under
study.
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Radial Passages, Tubes, and Ducts

Compared to axial flow rotors, blade passages in centrifugal impellers
are more nearly like long ducts; that is, passages whose lengths are at
least several times greater than their hydraulic diameters. As a con-
sequence, boundary layers tend to be relatively thick compared to passage
sectional dimensions and the secondary flows developed therein of eon-
siderable importance. In this section, we shall briefly review some basic
results on flow in long tubes and ducts that rotate steadily about axes
perpendicular to the main flow, z, direction (see fig. 3). Most studies that
are of more than qualitative value have confined consideration to very
long ducts where the flow is fully developed, or nearly so. The recent
study by Moore (ref. 37) is a notable exception and will be discussed at
the end of this section.

Laminar flow in long, rotating ducts has been analyzed for two limiting
cases: (1) very small rotational speed (Ro<1) and (2) large rotational
speeds (Ro>>1). The latter case (see refs. 5 and 6) is of little interest in
turbomachine applications, but the former, studied by Barna (ref. 3)
and Benton (ref. 4), is of interest. For case (1), when the channel rotation
number, R0.£2wD /i, or tube number, RosQwd/dx, is small, the experi-
mental results of Trefethen (refs. 47 and 48) on round tube flows and the
recent work by Moore (ref. 36) on turbulent flow in rectangular ducts may
profitably be reviewed.

As shown in references 3 and 4, the fully developed, laminar flow in
round tubes is a small perturbation on Hagen-Poiseuille flow for Ro<1.
Counter-rotating, secondary flows develop above, and below, the plane
which divides the tube and is perpendicular to the axis of rotation. The
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F1GURE 3.—Rotating rectangular channel.
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additional dissipation engendered by the secondary motions results in an
increase of the friction factor, f. To first order, the ratio j/fo (friction
factor to the zero-rotation friction factor) was found to be simply related
to the parameter Rex\/Roqs. Experimentally, Trefethen (refs. 47 and 48)
essentially confirmed this result, but best agreement with his data that
span the range 2102 < ReyA/Ro, <3 X 10° fits the formula

A

)%= 0.20 (Rex\/Ro4)**

The data become nearly tangent to Barna’s linearized theory for
Reyv/Roa=3X10% Clearly, the secondary flows generated by rotation
can significantly affect laminar friction factors in long, round tubes.

In most rotor flows the small rotation condition, Ro<1, should hold,
but Jaminar flow is unlikely because of the high Reynolds numbers.
Furthermore, passages are generally rectangular rather than round.
Turbulent friction factors for round tubes are presented in references 47
and 48 and by Moore (ref. 36) for rectangular ducts (fig. 3) of aspect
ratios: ASAb/D=1%:1, 1:1, 4:1 and 7%:1. These results show that for
values of Ro.$0.05, which are typical in practice, the rotation may
increase friction factors by ~20 percent at most. Moore’s results for
AS=1:1, as one might expect, were consistent with those for round tubes.
However, the uncertainty in the data is too high to allow recommendation
of formulas for f/f,.

Moore’s results (ref. 36) and similar related experiments (refs. 21 and
35) contain measurements of mean velocity profiles, wall shear stress, and
turbulence, u”, profiles measured at the duct center plane (see ¢ in
fig. 4) in addition to friction factor data. Only the wall skin friction
coefficient, ¢;, data at the symmetry plane will be discussed. These data
were obtained by the Preston tube method for a range of Reynolds
numbers, Re,=1.3 to 3.9 10* and rotation numbers up to Ro,=~0.05 for
each of the four channels. The data are plotted in figure 5 as ¢;/(¢r)o
versus channel aspect ratio. Channel trailing (suction) side wall stress
is seen to be lower, and leading (pressure) side stress higher than the
no-rotation stress at the same aspect ratio and Reynolds number. The
effect of rotation decreases with increase of aspect ratio, but at all aspect
ratios except 1:1 on the trailing side, increasing rotational speed increases
the deviation of ¢; from its no-rotation value.

As pointed out by Moore (ref. 36), these trends appear to be primarily
associated with the secondary flow patterns developed in the channel.
Figure 4 indicates typical qualitative secondary streamline patterns for
ducts of low and high aspect ratio. Clearly the flow of cnergy-deficient
fluid from the end walls to the trailing surface and the return flow near
the channel center plane should be more important at low than at high
aspect ratios. End wall regions are a less important fraction of the flow
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F1GURE 5.—Skin friction coefficient versus channel aspect ratio; data of reference 36,
figure 18.

field and further removed from the center plane at high aspect ratio. In
the limit, as 4 S— =, secondary flow theory would result in the prediction
that ¢;/(¢;)o=1 independent of channel rotational speed. Moore’s results
(those of fig. 5 and others) are clear proof that rotation-induced secondary
flow plays a very important role in the fluid dynamics of turbulent passage
flows, particularly in ducts of low aspect ratio. However, the effects of
stability must also be considered. It is my belief that at AS=7%:1 the
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effects noted by Moore arc dominated by the stability of the flow and
hardly influenced by secondary flow except near the duct end walls.
Demonstration of this conclusion will be discussed in the scction on
turbulent channel flow—experimental results.

The only known complete study of the effects of secondary flow in a
impeller passage is that of Moore (ref. 37). He conducted low-speed, air-
flow experiments centered on study of the developing side-wall turbulent
boundary layers in a rotating, radial, two-dimensional diffuser of 15°
included angle between the leading and trailing sides. Boundary layers
were thin at channel inlet on all walls, and the core of the flow was irrota-
tional in stationary coordinates; i.e., £as=0. In addition, he computed
the end-wall and side-wall layers using a known turbulent layer method’
modified to include the rotation-driven secondary flows. His procedure
included a simple momentum transport theory for the corner regions and
simultaneous computation of the core flow. The results indicate that
sccondary flow from pressure to suction side significantly alters the
development of all boundary layers. The pressure (leading) and end-wall
layers are thinned and the suction-side layer thickened even though the
potential core flow region imposes more adverse pressure gradient on the
pressure-side layer than on the suction-side layer. A large “wake’ region
develops downstream on the suction side. It appears to be fed by the end-
wall cross flows and has little or no backflow. In addition, the wake shear
layer scems to be unusually quiescent with little mixing as might be
expected from the stabilizing influence of rotation.

The agreement between theory and experiment in this case (ref. 37) is
quite reasonable and leads one to hope that one may eventually apply
three-dimensional turbulent boundary layer theory to more realistic
impeller design problems. Of course, in many real situations the inlet
conditions and channel geometry will considerably complicate the situa-
tion (see the introduction to this seetion).

BOUNDARY LAYER STABILITY AND TURBULENCE

To limit discussion, the remarks of this section will be confined to flows
that are incompressible, steady and two-dimensional in the time mean,
and in which the mean relative velocity lies in planes perpendicular to
the axis of system rotation. Three-dimensional fluctuation and steady
perturbations that do not arise as a consequence of end walls must, how-
ever, be allowed. In addition the mean flow will be assumed parallel, or

7 Similar to the Moses method (see ref. 49).
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nearly parallel (boundary layer), shear flow (see fig. 2). The Cartesian
components of velocity are

u=q+u
v=0+v
w=w+w

Here i< and 8~ )/dx<d (" )/dy are the boundary layer assumptions.
w=0 and (" )/82=0 limit the mean flow to be two-dimensional.
The time mean boundary layer equations obtained from equations
(22) and (28) and these assumptions are
du, _ou_ 1op* %@ 14(—pu
g By 2%, _+_(_u (4)
or ay p Ox Ay p oy
in the a-direction, and

19p* a(v?
oga= —1oP* () (5)
p 9y Oy

in the y-direction. The time mean continuity equation is

au av

E)x ay (6)

If p.* is the value of p* at a planc y=a where v?=1,", cquation (5)
can be integrated at any z-station to obtain
1—. 1 v —
——p*=——p.*+2Q / @ dy+ (v —v."?)
p p s

This equation is then differentiated with respeet to  and substituted into
equation (4) to give

da _ou_  1dp* Y 9u dv,”
i R Y / I Gy —
uax ay p dx + . 0F y dzx
w2 o 19
+d:c+ +——( pu’v') (7

which reduces the mathematical description to two-equations, (6) and
(7). For a boundary layer, p,* and v,” are presumably given functions of
z in the free stream, or at a wall. For turbulent flow, additional input is,
of course, required to describe v and u’v’

Before proceeding to the discussion on fully turbulent and relaminarizing
flows in rotating channels, it will be useful to review briefly some laminar
flow stability results obtained by linearized small disturbance theory.
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It is hoped thereby to demonstrate the pertinence and utility of the
Richardson number and other rotation parameters.

Laminar Stability

The stability of plane, rotating, laminar shear flows has been examined
by several investigators (refs. 10, 34, and 39) and is currently under
investigation by our group (ref. 50). All this work utilizes linear stability
theory and hence the results do not purport to predict laminar-turbulent
transition.

In an early effort, Conrad (ref. 10) investigated the stability of the
Blasius boundary layer on curved or flat rotating surfaces. He recognized,
as did Mellor (ref. 34), that the system rotation and wall curvature terms
that enter the linearized stability equations (Orr-Sommerfeld type) have
no effect on the growth or decay of pure, two-dimensional disturbances
such as Tollmien-Schlichting (T-S)® waves. However, the stability of the
flow to longitudinal vortex cells of the Taylor-Gértler (T-G)* type is
affected by rotation. Conrad assumed disturbances of the T-G type and
obtained a solution that was unstable to cells of all wave lengths, A, but
most unstable to those of A— . Considering only layers on flat rotating
walls, the Reynolds numbers required for instability were found to be

Re.; = i_s—:
ROa
where the thickness 6 in the parameters is the 99 percent boundary layer
thickness of a Blasius layer. It is now known that this solution is valid
only for | Ro; |<<1, as terms required for complete solution were dropped
before linearization of the stability equations. A leading side flow corre-
sponds to positive values of Ro; and may be unstable to T-G disturbances,
but a trailing side flow is stable as shown by the solution above where only
imaginary Reynolds numbers result when Ro; is negative.

Recently, Potter and Chawla (ref. 39) have investigated the stability
of the Blasius layer on flat rotating walls using a general disturbance
perturbation containing both T-8 waves and T-G cells. Their work com-
plements and extends Conrad’s work, although they did not examine the
pure T-G cell problem.

We have found a simpler problem for which the T-G disturbance
solution is completely known for all values of Ro: the simple Couette flow
between flat, parallel walls, one of which is sliding at speed U (see fig. 6).
The exact analogue of this problem is the thermal instability problem of
Bénard as solved in reference 9. From that solution, the most unstable

8 For brevity, the abbreviation T-S will be used for Tollmien-Schlichting waves
and T-G for Taylor-Gértler cells.
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FiGure 6.—Couetle flow between WALL SPEED
rotating channel walls. U .
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T-G cell has a wave length A=2.02 (2D) for which the critical Reynolds
number (Re22DU/») is

(Re) 41.3 41.3
€)erit = = —
‘" VRo(1—Ro) ~ —Ri

where Ro£2Q(2D)/U. For this flow the local profile stability parameter,
the gradient Richardson number, is a constant as Ro=—.S and hence
Ro(1—Ro) = —Ri. The flow is always stable for R7>0, and tends to be
unstable for Ri<0. For the particular condition where Ro=—S8=3%, R¢
obtains its minimum value of —}, for which the minimum value of the
critical Reynolds number becomes 82.6. At all other positive values of
Ro, values of Re larger than 82.6 are required for instability.

We (ref. 50) have also examined the stability of laminar, fully developed
flow in a rotating channel (fig. 7). The mean profile is parabolic and unaf-
fected by rotation in this case (sce the section on turbulent channel flow—
theoretical considerations). The linear stability equations contain all
rotation effects in a gradient Richardson number term, but, as da/dy
varies with y, the Richardson number is not a constant for the flow. With
the assumption of T-G cell disturbances, numerical solution has yielded
a minimum critical Reynolds number of (Re).:=88.7 at a channel
rotation number of Ro.=0.5. The Reynolds number is defined here as
Re=2D1i,,/v. The critical wavelength of the cell was computed as
A=1.28D. The equations show that complete stability must occur for
Ro.23, in which case the gradient Richardson number is greater than or
equal to zero at all points in the flow.

As already pointed out, rotation does not affect stability of the flow to
purely two-dimensional disturbances such as waves of the T-S type. If
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I'—U" Ficure 7.—Fully developed, laminar flow
n a rotaling channel.
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rotational speeds are very high, the Taylor-Proudman theorem indicates
that three-dimensional disturbances are not possible. For example, T-G-
type cells should be highly damped for large values of Eo. Hence, one
might conclude that, even though two-dimensional disturbances may
amplify in a rotating shear flow, the three-dimensionality required for
breakdown of the flow to turbulence may be inhibited by rotation. If Ro
is large enough, true turbulence may never occur in rotating flow. Cer-
tainly, one can expect to see a significant effect of rotation on the laminar-
turbulent transition. Linear stability theory provides at least a guide and
some feeling for the important physical parameters such as the gradient
Richardson number which may, in part, control the transition process.

Turbulent Channel Flow—Theoretical Considerations

Under the conditions stated in the introduction to this section, the
appropriate boundary layer equations are (6) and (7). If, in addition, the
flow is fully developed between the parallel side walls of a channel where
the end walls are very far apart (b— «, fig. 3) then #=0 and 9i/9z=0,
ete. From equation (7) we obtain

dp* dr :
—— =—=constant 8
dr dy stan ®)
where the total fluid shear stress

di _
T=vp 3§+(—pu'v') (9)
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Equation (8) shows that r is a linear function of y as it is in stationary
coordinates.? However, as will become evident shortly, the linear -
function is not generally symmetrical about the channel centerline, and
we can expect | 7z |, the trailing (suction) side wall shear stress mag-
nitude, to be less than | 7z |, the leading (pressure) side wall shear stress
magnitude (see fig. 8). For small Ro,, experiments (ref. 19) on turbulent
channel flow indicate that the slope of the = function is not affected by
rotation and hence the channel pressure drop is dependent on Reynolds
number alone, even though the wall stresses depend on rotation. In this
section, qualitative explanation of these phenomena will be attempted.

Our approach is to start from the equations for the rate of generation
(evolution or advection) of components u”, v"%, and w” of the turbulence
energy, 2¢”%, and Reynolds stress, —pu'v’, as one follows a mean stream-
line; i.e., the equations for

D (uiu) \9(w'us) | a° (ui'ui’)
T

Dt = ot o (10)

in their special form for channel flow. Townsend (ref. 46) derived these
equations for zero rotation and they were extended by Halleen and
Johnston (ref. 19) to rotating flows. The extended equations differ from

F1oure 8.—Shear stress disiri-
butions in fully developed chan-
nel flow; solid line for turbu-
lent or mized flow; dashed line
also valid at all @ with plane
laminar flow.

TRAILING
SIDE
=3
LEADING \’[_‘rn
SIDE +Yy ! (2D-Yy)
+’7 +7
-T

9 If the flow is laminar (v’ =v' =w’ =0), r is symmetrical about y =D, and equations
(8) and (9) give a symmetrical, parabolic %@ velocity profile which is independent of
rotational speed.
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those of Townsend only by an additional rotation-induced turbulence
production germ. The total, general rate of production of turbulence
term is

_ ot
Py= (— ) Yy (—wgary Y T (11)
0T ar; ~ 7 T :

fi and f; are the fluctuating parts of the Coriolis acceleration term (see
eq. 24). Hence, the rotational production terms are those in the square
set of brackets. The full equations are shown as (12) in table I, as are
their special forms for fully developed channel flow, equations (13)
through (17).

First, consider equation (13) for u” and equation (14) for »2. For
positive rotation Q and stress —u'v’, production of the streamwise com-
ponent w” is inhibited by rotation, whereas production of the transverse
component »”2 is enhanced. This set of circumstances occurs near the
leading (pressure) side of the channel. The reverse situation holds near
the trailing (suction) side where —u’v’ is negative (see fig. 8). Although
the rotation Q does not appear explicitly in the turbulence energy equa-
tion (eq. (16)) that is obtained by summing equations (13), (14), and
(15), the fact that it affects the production rates of the components of
¢ shows that rotation plays a role in the establishment of the turbulence
field.

The direct influence of rotation on turbulent stress —pu's’ is seen in
equation (17), the equation for —u'v’. Bradshaw (ref. 7) indicates that
the effects of rotation are best illustrated by taking the ratio of (minus)
the rotation production induced by u” to the production induced by
v” This ratio, called the stress Richardson number, is

Ri _u—,z —20 _
WIS (dajdy) —29 v

S
S+1

5%

(18)

[}

Except for the factor w2/ v, which in a boundary layer is roughly equal
to or less than 4, Ris is equal to a flux Richardson number obtained by
forming (minus) the ratio of total production of »2 (eq. (13)) to total
production of u” (eq. (14));i.e.,

—20 S

RS = Gajay)—2a 541 (19

Both these ratios, in a sense, express the ratio of —u/s’ production due to
rotation to that caused by absolute vorticity, Za.s. Hence, in a region
where 41, =0 all production, if any, is caused by system rotation. Close to
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the walls, in the inner layers where
da

dy
one can conclude that Ris=48S, Rif = §, and in addition the local stability
parameter, the gradient Richardson number, Ri=S. Hence, in the wall
layers, production of turbulent stress is enhanced by rotation where flow
instability (R7i<0) is indicated and reduced where stability (R:>0) is
indicated by rotation.

These conclusions do not prove that shear stress magnitude will pe
greater near the leading side of the channel than near the trailing side.
However, the demonstrated tendency of rotation to modify stress pro-
duction in localized regions of the flow indicates that some excess, or
deficit, of — pu’v’ may occur in the layers where production is greater, or
less, than that occurring under equivalent zero-rotation conditions.

> 20| or S«1

Turbulent Channel Flow—Experimental Results

At Stanford, we have been studying the effects of rotation on turbulent,
fully developed flow of water in a long channel of high aspect ratio,
AS=7%:1. The first results were reported by Halleen and Johnston
(ref. 19). These consisted principally of dye flow visualization of the wall
(sub)-layer structure (e.g., see ref. 29), measurements of wall shear stress,
primarily by the Preston tube method, and measurement of the mean
velocity profiles at the channel centerline (see ¢ in fig. 4). Recent work
includes continued analysis of these earlier results and extensive new flow
visualization work using the hydrogen bubble technique (ref. 50).

The results to be discussed were obtained far enough downstream in the
channel (z/D=58 and /D=68) so that the flow was quitc close to
fully developed. Reynolds numbers, Res, from 5X10?, where fully tur-
bulent flow is barely maintained at zero rotation, up to 6 X 10* were used,
and a range of rotation numbers, Ro,, as high as 0.2 at low Reynolds
number and 0.08 at Re,=6X10* were achieved in these studies.

Early in the program, the visual studies of the wall layers showed that
the flow in the central regions of the wide (2b=11 inches) side walls was
not significantly affected by secondary flows from the narrow (2D=1.5
inches) end walls. Hence, the conclusions and results to be discussed
below are felt to be essentially independent of end-wall effects.

The two principal conclusions of the visual studies® are

(1) Rotation suppresses turbulence production on the trailing (suc-
tion) side of the channel as anticipated. At sufficiently high. Ro,, complete
laminarization of the trailing side wall layers was observed.

1 See Fluid Mechanics Research Film No. J-1, by Halleen and Johnston, Engineer-
ing Societies Library, New York.
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(2) On the leading (pressure) side, it was difficult to observe the
predicted increase of small-scale turbulence, but a new, large-scale struc-
ture in the form of Taylor-Goértler-like cells with their axes aligned in
the mean flow direction was seen to appear at higher rotational speeds.!!

Some of the evidence for these conclusions and some other observations

arc presented below.

Figure 9 shows a sequence of photographs of hydrogen bubble time-
lines generated on a wire mounted very close and parallel to the trailing
wall and perpendicular to the oncoming mean flow (left to right). The
Reynolds number was fixed at Re,=1.5X10% and each picture represents
conditions at successively higher Ro. values. As Ro, increases, the trailing
wall layer structure progresses from a fully turbulent streak structure (see
ref. 29) at Ro,=0 to a partly laminar structure at Ro.=0.107.

Visual data of this type, and the earlier dye studies, allowed the con-
struction of a flow regime map for the trailing side (fig. 10). In the region
below the band of points, the flow was judged to be fully turbulent, but
for Ro. values at, and just above, the band the wall layer is so stable that

Ro L - 0 82
F1GURE 9.—Hydrogen bubble time lines on channel trailing side, Ren=15000, by D. K.
Lezius in 1969. (ref. 60).

11 T-G-type vortices have been observed in other turbulent flows such as cases with
wall curvature (refs. 28, 38, and 43).
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Ficure 10.—Wall-layer flow regime line on trailing side—circles from dye studies (ref.
19), open points stationary observer, closed points rotaiing observer; cross points from
film scenes of H, bubbles by D. K. Lezius in 1969. (ref. 50).

it could be called “laminarized.” For very large Ro, the wall layers on the
trailing side were completely laminar.

Figure 11 is an attempt to qualitatively illustrate the leading side flow
regime. In the early work (ref. 19) the existence of the vortex cells was
deduced from the observation of regions of dye concentration (re-collec-
tion) near the center of the channel. The dye was injected slowly and
uniformly along a spanwise slot at the wall, swept in the wall layers toward
the region adjoining two cells, and then ejected away from the wall to
form the region of re-collection above the cells. This vortex cell structure
has been confirmed in recent hydrogen bubble pictures. It should be noted
that these cells are not stationary in time and space onee formed, but they
shift sideways, disappear, and reform in an irregular way if the flow is
viewed for a sufficient period of time.

Mean velocity profiles from reference 19 are shown in figures 12 and
13 for Re,=~6X10* and figure 14 for Re,=2X10%on the trailing side. The
considerable reduction in velocity gradients on the trailing side, and
increase on the leading side, as rotation number increases is evident. As
will be shown shortly, these changes are not just due to rotation-induced
changes in shear stress, but also result from changes of mixing length
(or eddy viscosity). At the lower Reynolds number (fig. 14), the shapes
of the trailing side mean velocity profiles for Bo.=0.111 show no resem-
blance to the standard turbulent Jaw of the wall profile. At the highest
Ro., the profile is nearly like the parabolic shape characteristic of laminar
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Ficure 11.—Longitudinal large vortex siructure near leading wall; from reference 19.

T Tg % TEFBE T 1
3 § ° ZAD
og A -+ 0.9 oAa
o
o a °§9&
N —+0.8 o
oD A 006
. _
ond - 107 o8
oA (u)max o
ab
oA T 0.6
Fa
—+ 0.5
TRAILING % LEADING
| ] ] | | | ] ]
O 02 04 06 08 1O 12 L4 L6 18 20
y/D
KEY: POINT  Ro; Rep x/0
o o} 57,200 68
a 0.044 57,700 68
A 0.083 60,400 68

FiGURE 12.—M ean velocity profiles; rotating channel flow data of reference 19.



230 TWO- AND THREE-DIMENSIONAL VISCID FLOWS

28
I T 11 [ T 14
KEY: POINT  Rg. Re, abb 28
o) 0029 57,500 A AT
24 - o 0058 58,400 a a®%.
a o©
o 62 0.083 60,400 g o 24
20l 77 4 o
P %9%20
~
is 16—
TRAILING
1] 16
+
-3 o NOTE: Ur
! I BASED ON
LEADING LOCAL PRESTON
T TUBE DATA =312
] | 1 11 ] | | |
10 20 40 100 200 400 1000

Nt = Mueso

Froure 13.—Mean velocily profiles; rolating channel flow dala of reference 19; lines are
5.8 logip n*+5.0 fit to data at Ro.=0.

«*°

x X"

L, o p 8o

A AL -
o—g_ﬁ_eo—
o L | | J
5 10 50 100 500
’7+= 7 UV

Ficure 14. Mean velocity profiles on trailing side of rotating channel, Re,=20 000,

x/D =68; data of reference 19.

flow. This is further confirmation of the trailing side “laminarization”
noted in the visual studies.

The Preston tube measurements of wall shear stress expressed as the
ratio of wall shear velocity to zero-rotation wall shear velocity are plotted
against rotation number in figure 15. Moore’s data (ref, 36) for his 75:1
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F1Gure 15.—Ratio of wall shear velocily to zero-rotation wall shear velocity; open symbols
from reference 19, closed symbols from reference 36.

aspect ratio channel are also presented and appear to be in fair agreement
with the data of reference 19. Since it has been shown that rotation
changes the turbulence structure significantly for the Halleen.and Johnston
data, and that end-wall secondary flow was probably not significant in the
region of measurement, the results of figure 15 bear up the previous con-
clusion that, at the higher aspect ratios, Moore’s results reflect the effect
of structure change rather than secondary flow.

An interesting feature of figure 15 is the apparent leveling out of the
leading side u, values above some moderate value of Ro.. This effect is
believed to be a reflection of the onset of the large-scale longitudinal
vortex structure on the leading side of the channel, but the matter is still
under investigation.

The experimental data of Halleen and Johnston (ref. 19) are sufficient
for the determination of the distribution of mixing length, I (or eddy
viscosity), distribution for the channel. Mixing length was determined
from these data, using the definition of

Y

'S aa)dn)

where the r-distribution for fully developed flow (fig. 8) was assumed to
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fit between the measured values of wall shear stress. did/dy was deter-
mined graphically from the measured mean velocity profiles.

The zero-rotation mixing lengths, l,, are plotted in figure 16. At
Re,=2X104, it became evident from comparison of results at z/D =158
and z/D =68 that the flow in the channel was probably not quite fully
developed. Hence, the results shown in figures 17 and 18 were only plotted
for points of 5 less than ~0.04 ft, where the shear stress distribution
assumption was felt to be valid.

The ratio I/l is plotted as a function of gradient Richardson number,
Rz, with Ro, and Re, as parameters in figures 17 and 18. The only data
shown are for, the case where the whole channel flow was turbulent.
Furthermore, no data points for n* less than ~50 were included, as these
points lay in, and close to, the wall layers which could be partially laminar.

These figures show clearly that mixing length (and eddy viscosity) is
reduced near the trailing wall (fig. 17) and increased near the leading wall
(fig. 18). Although the accuracy of the results is not better than 410
percent, it is believed that, at least near the trailing side, the separate
influence of the global parameter Ro. as well as the local variable Rz can
be seen.
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F1GURE 16.—Zero-rotation mizing length profiles from data of reference 19.
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stde of channel; from data of reference 19.

For small R7, Bradshaw (ref. 7) suggests that a ‘“Monin-Oboukhov”
formula of the type

l—= 1—BR: (20)
l
might be useful to represent mixing length in flows with body force
stabilization. This formula is plotted in figures 17 and 18 for values of
B8=2, 4 and 6. Values of 8 from 4 to 6 may be acceptable for very small
Ri, but the uncertainty in the data is too high to draw a firm conclusion.
The Monin-Oboukhov type of formula was originally developed to
represent ! in density-stratified, atmospheric, turbulent shear flow for
regions of approximately constant Ri. In nearly normal, turbulent
boundary layers, R7 is not a constant and the use of this simple representa-
tion for most cases of practical interest will be, at best, a crude approxi-
mation.
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Ficure 18.—Miring length raiio versus local gradient Richardson number on leading
side of channel, from dala of reference 19.

Concluding Remarks

If the results of this section are to be employed in new boundary-layer
computation methods, much remains to be done. To date, the ideas have
only been used qualitatively in practice. For example, the two-dimen-
sional, turbulent boundary-layer calculations shown by Litvai (ref. 32) for
trailing side flow on a centrifugal impeller blade do not account for the
effects of rotation on structure. His calculated results disagree with his
measured results in a manner that tends to show that the experimental
boundary layer remains transitional or laminar far downstream of the
normal transition point. Qualitatively, this effect is to be expected from
the results of this section. The influence of rotation on mixing in the shear
layer above the trailing side wake region in Moore’s recent experiments
(ref. 37) on a rotating radial diffuser has already been quoted as a specific
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qualitative example of the stabilizing influence of rotation on turbulence
(see the section on radial passages, tubes, and ducts).

The successful inclusion of effects of rotation on turbulent structure in
turbulent boundary-layer theory is most likely to be achieved in methods
that attempt solution of the differential equations rather than momen-

greater ease of interpretation of the physical phenomena in the former
methods. In the differential methods, direct use may be made of the
equations for the components of Reynolds stress (e.g., table I) and/or
simple equations such as the Monin-Oboukhov type of formula for mixing
length may be employed.
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LIST OF SYMBOLS

English Letters
AS Aspect ratio, b/D

b Half depth of duct between walls perpendicular to @

¢ Skin friction coefficient, 7,/ (p/2) U?

D Half width of duet between walls parallel to ©

d Diameter of round tube

d Hydraulic diameter

€ Rate of viscous dissipation of turbulence cnergy, ¢”2 (sec eq. (16))
Ji Rectangular components (1=1,2,3) of Coriolis acceleration

vector (see eq. (24))

i Triction factor for tube or duct flow

L Characteristic spatial dimension

l Mixing length, \/r/p/ (dit/dy)

Py Total rate of production of turbulent energy and/or stress
P Static pressure

p* Reduced static pressure, p—w??/2-®

q"” Instantaneous turbulence energy, (w2+4v"24w'2)/2
Re Reynolds number, UL/»

Re; Boundary layer thickness Reynolds number, U .8/
Re, Tube or duct Reynolds number, #,d,/v

Ri Gradient Richardson number, S(1+.8)

Ro Rotation number, 26L/U
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Ros Boundary layer rotation number, 206/ U

Ro, Channel (rectangular duct) rotation number, 20D/
Rog Round tube rotation number, wd/%n

Ros Rossby number, U/wL

T Radial distance from axis of rotation

Tiip Impeller tip radius

S Local mean profile parameter, — 2%/ (84/dy)

U Characteristic relative velocity

U, Free-stream relative velocity

u,v,w Components of relative velocity in z, y, z coordinate directions
Us Rectangular components of relative velocity (=1, 2, 3)
at Wall shear normalized mean velocity, 4/u,

Ur Wall shear velocity, \/7./p

Utip Impeller tip speed
x,y,2 Rectangular Cartesian coordinates used where Q along z axis
Zi Rectangular Cartesian coordinates (¢=1, 2, 3)

Greek Letters

8 A parameter (see eq. (20))

b Boundary layer thickness

7 Distance normal to a wall

7t Law of the wall coordinate, nu,/»

A Disturbance wave length

v Kinematic viscosity

Zabs Absolute mean vorticity for two-dimensional shear flow,
20— (8a/dy)

P Fluid density

T Fluid shear stress, »p(du/0y)+ (— pu'v’), in two-dimensional
shear flow

Tw Wall shear stress

d Scalar potential for conservative body force

Q Coordinate rotation vector for case of Q along z axis

Q Rectangular components of Q(¢=1, 2, 3)

w Coordinate rotational speed (magnitude)

Superscripts and Subscripts

! Fluctuating component of a nonsteady quantity; i.e., u=u+u

- Time mean value of a quantity

m Mass average across flow of a quantity

0 Quantity evaluated at zero-rotation condition with all other
conditions and parameters held fixed

T Wall value of quantity on trailing (suction) side

Wall value of quantity on leading (pressure) side
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APPENDIX 1

Equations of Motion in Steadily Rotating Coordinates

The continuity equation and the dynamic equations of motion for a
fluid in motion relative to observer coordinates rotating at a steady rate
2:(dQ;/dt=0) about an axis fixed in inertial space will be displayed and
discussed briefly for the general case and the case of constant density and
constant viscosity Newtonian fluids. Cartesian subscript notation, in-
cluding the repeated dummy index convention to indicate summation,
will be used. However, the general vector notation will be used, where
convenient, to increase understanding. For example, the system rotation
vector is Q;=Q, and the fluid velocity vector, relative to the rotating
system, is denoted by u;=u.

The continuity equation in the rotating system is no different than in
inertial coordinates,

dp 0

L= (ou) =0 21

at +(~):cj (Pui) ( )
For constant density fluids, it is

(9 .
Ji]=0 or v-u=0 (22)
ax;

The dynamic equations of motion contain two additional inertia terms,
the Coriolis and centrifugal acceleration terms. The Coriolis acceleration
vector is

f=2QXu (23)
or, in Cartesian tensor notation,
f=f,' = 2e¢,-k9,'uk (24)

where e is the unit cyclic coefficient. The centrifugal acceleration
caused by system rotation is QX (QXr,) where r, is a position veetor
originating at a fixed point 0 on the axis of rotation. If r is defined as the
radial distance from the axis to any coordinate point z; in the rotating
system, this term is expressed as

ar d(w?r?/2)

QX (QXr) = —wr —=

25
6:1:,' ax; ( 0)

2 e;;x=0 unless i=jk; e;;,=1 if ijk in cyclic order (1231...); e;jx= —1 if 45k in
anticyclic order (3213._._)).
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where w is the constant magnitude of Q. Using this equation, the dynamic
equations of motion are

Du,_*_ft 6(w“’72/2) 1 ap

955

X,
ail)i p 6x1+ + X

(26)

where

is the acceleration of a fluid particle relative to the rotating coordinate
system; p is the fluid static pressure; X; the sum of all externally imposed
body forces; and &;; is the deviatoric stress tensor. The left-hand side of
equation (26) is the absolute acceleration of the partlcle with respect to
inertial space.

It is noted that the centrifugal acceleration term is the gradient of a
scalar potential, —w??/2. If all body forces are conservative, and if the
fluid may be assumed of constant density, it is convenient to define a
reduced pressure

p*gp—g Writd (27)

where & is the scalar potential of the body forces X;= —8®/dx:. A single
term, dp*/dx;, can then replace three terms in equation (26). Further, if
we are dealing with a Newtonian fluid of constant kinematic viscosity, »,
equation (26) reduces to the rotational form of the Navier-Stokes equations
for constant p and ».

Dui 1 ap* 62?“

— fi= —_—
Dt =T 0 T anae;

(28)

Euler’s equations for constant density are obtained by setting »=0. The
primary advantage of using these forms which utilize p* rather than p is
to show, for constant density flow, that the rotation-induced centrifugal
term plays no essential role in determination of the u; field in flows with-
out free surfaces where boundary and initial conditions are specified in
terms of conditions on u; (no slip condition, etc.). Equations (22) and
(28) form a complete set in the variables u; and p*.
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APPENDIX II

Elementary Dimensional Analysis

All considerations in this section assume that p and » are constant;
hence equations (22) and (28) are used. Assume that L is the relevant
scale size of the flow field, U the relative velocity scale, and w the dimen-
sional rotary speed of the observational coordinates. If each term in
equations (22) and (28) is appropriately nondimensionalized in terms of
L, U, and w so that

di=Uu;  p*=pUp*
Zi=Lx; i{=Lt/U
ﬁ,': in

where hatted variables are dimensional, then equations (22) and (28)
become, when normalized

Ju;
—= (29)
ax;
and
ou; du; 1 ap* 1 oy
U —t+—— enQur = — — 30
at + J631:,-_*_Ros T dx; Re ox;0zx; (30)

Re=UL/v is the Reynolds number and Ros= U/2wL is the Rossby
number which expresses the ratio of inertial to Coriolis accelerations.

If Ros>>1, Coriolis effects should be small, but if Ros<1, the inecrtial
acceleration terms in equation (30) are generally neglected. If both
Ros<1 and Re>>1, the geostrophic approximation, pressure terms are
said to just balance the Coriolis accelerations;i.e., Du;/Dt and 9*u./ (9z,0z;)
may be neglected in equations (30) and (28).

Many other methods of normalization exist in the literature of rotating
flows. The normalizing definitions, depending on how they are to be used,
lead to various useful parameters and simplifications of the basic equa-
tions. I'or example, if equation (30) is multiplied by Ros, another param-
eter, B =Ros/Re=y/2wL? representing the ratio of viscous to Coriolis
forces, appears. The inverse of the Ekmann number is a special form of the
Taylor number, Ta= E-'. Only in certain very special cases may rotating
flows be characterized in terms of a single dimensionless parameter. The
Ekmann boundary layer (ref. 12) is an example where E is the single
controlling parameter, rather than E and Ros. In turbomachines, we have
generally found Re and the Rotation number, Ro= Ros™!, to be the most
uscful. For cxample, Ro is convenient in presentation of results, since
Ro—0 as w—0 whereas Ros— =, and the case of Ro< 1.0 (or small Ro)
is the most common situation.
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DISCUSSION

J. GRUBER (Technical University of Budapest) : First of all, I should
like to congratulate the author on his excellent paper dealing with some
extremely important problems in the field of turbomachinery. His state-
ments concerning the Coriolis forces which influence the stability of the
boundary layer seem especially valuable. According to his statements,
the rotation modifies the law of the wall. The experiments carried out in
the Laboratory of Fluid Mechanics of the Technical University of
Budapest support these findings (refs. D-1, D-2, and D-3). The de-
veloping turbulent boundary layer on the blading of a centrifugal impeller
has been studied, and the research has been extended to the law of the
wake too.

In my opinion, the feasibility of accurately measuring the wall shear
stress will have a definite importance in further research, and therefore
I have two questions in connection with the author’s paper:

(1) Does the author intend to repeat the wall shear stress measure-
ments with the Ludwieg method, applying a flush-mounted, quartz-
coated, heated film probe, in addition to the Preston tube method?

(2) Did the author consider extending the law of the wall for a
stationary flow to a rotating case as follows?

1Z+=Z_,=F [(%) @?)]

(The designations are the same as those of the author.)

P. G. HILL (Queen’s University): The writer would like to express
appreciation for the comprehensive and valuable review Dr. Johnston
has given of Coriolis effects in channel flows.

The effects of rotation on channel flow are difficult to discern and
categorize, not only because of instrumentation problems, but especially
because of the problems of designing a controlled experiment. In general,
the boundary conditions (e.g., relative rotationality of the inlet flow) are
naturally affected by rotation, so that as the rotational speed of the
experimental channel is changed, the problem itself is altered. The effect
of rotation on separation, for instance, could be as strongly dependent on
change of inlet boundary condition as on either the secondary flow or the
stabilizing/destabilizing mechanism. Such effects could of course be
understood by the results of inviscid flow calculations if they occurred in
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isolation. However, in channels of low aspect ratio with thick boundary
layers, there is generally a strong interaction between these mechanisms.

Adding somewhat to the general problem of sorting out what is going
on is the difficulty of deciding when secondary flow may be neglected. In
constant-area channels at high aspect ratio (e.g., 7:1) it appears, as Dr.
Johnston has noted, that secondary flow is negligible at the midplane for
quite large values of the rotation parameter. However, for diffusing flows,
even at high aspect ratio, this is probably far from realistic. At aspect
ratios typical of centrifugal machine impellers (i.e., of order unity) there
seems little doubt that secondary flows are very important, if not
dominant.

The significance of the work of Moore (ref. 37) in this connection
appears to be in demonstrating that (albeit with a very approximate
model) stationary flat-plate, three-dimensional boundary-layer tech-
niques can provide a physically realistic description of the flow without
direct inclusion of the effects of Coriolis force on turbulence quantities.
Although this result suggests that secondary-flow effects are dominant, it
does not rule out the possibility that the effect of Coriolis force on turbu-
lence may have a significant effect on separation and mixing losses in
impellers. The effect of Coriolis force on turbulence production has been
shown in a most interesting way in the film by Johnston and Halleen and
commented on in this paper with respect to the turbulent energy equation.
It would be of great interest if the author would give his views on the
need for, and possible means of, incorporating these effects into turbulent
boundary-layer calculation procedures.

A. S. MUJUMDAR (Carrier Corporation): Litvai and Preszler (ref.
D-3) have recently published some data on the velocity profile of the
turbulent boundary layer on rotating impeller bladings which indicate
that the law of the wall holds in the case of a rotating system as well.
Using the conventional notation, the law of the wall may be expressed as

ut=Alogy*t+B (D-1)

The constants A and B were correlated in terms of a rotation parameter,
Q, defined by

Q=2w(ut)? (D-2)

where  is the rotational speed. The major effect of rotation was assumed
to be confined to 4.

The effect of rotation on the slope in the universal velocity distribution
was determined by considering the turbulent boundary-layer flow as a
damped, forced vibrating system. The stabilizing (damping) effect of the
Coriolis forces was regarded as essentially a change in the spring constant
of the system. After a series of approximations, the authors derived the
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following formula for the slope of the logarithmie velocity profile:
A=A4,(14aQ)1 (D-3)

where A4, is the slope in the absence of rotation and a is a constant which
may be determined experimentally. In spite of rather large scatter in the
data, equation (D-3) indicates the correct trend; ie. for @>0, which
corresponds to the suction side of the blade, the slope of the velocity
profile is steeper. The converse is also true.

It may be noted that the data are limited to very low rotational speeds,
the maximum shaft speed being only 18 rpm.

J. MOORE (General Electric Co.): Dr. Johnston has given a stimu-
lating description of the studies of simplified flows which sheds some light
on the flows in turbomachine rotors. It is, however, sobering to read
Dean’s description (ref. 11) of the real situation in centrifugal impellers
and compare the unknowns with the mostly qualitative explanations.

Dean has provided several observations of rotational effects for quanti-
tative explanation and prediction.

(1) A relatively quiescent wake on the suction (tralhng) side of an
impeller passage, which may contain as much as 20 percent of the through
flow.

(2) The relative absence of turbulent mixing between the wake and
the rest of the flow, which flows as a “jet”” along the pressure side.

(3) The violent turbulence generated on the pressure surface of the
blades above design incidence.

(4) Blades operating at —25° incidence without any steady pressure
side stalling.

These observations, as well as Dean’s overall description of separation
within the passage, provide challenges for the boundary-layer predictor.

Moore (ref. 37) has made a start towards predicting the occurrence
and development of the “wake” and has shown that three-dimensional,
integral boundary-layer techniques can give a quantitative description of
the secondary-flow effects on all the boundary layers. It may well be,
however, that ‘“separation” within an impeller passage is not always
governed by secondary flows, and it certainly seems to be often three-
dimensional. But one can say that, if the flow in an impeller ever knows
about the Taylor-Proudman theorem, it does so near the wall in the wake
on the suction side.

The quantitative description of Coriolis stability effects by Bradshaw
(ref. 7) is an encouraging start towards the solution of the differential
equations. However, as Bradshaw points out, the linear Monin-Oboukhov
formula applies only for the inner layer of the boundary layer which ends
at u,y/v=200. Certainly the absence of turbulent mixing between the jet
and wake occurs in the outer layer, and Dean’s pressure side observations
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may also be outer-layer phenomena. It seems that the Coriolis stability
effects in the outer layer (in particular the ‘“wake’) should receive more
experimental attention.

One hopes that more studies of simplified flows will be undertaken to
shed light on these still dimly lit phenomena.

JOHNSTON (author): Of the various points raised in discussion at
least two require some additional comment. Both of the following remarks
relate to the effects of Coriolis stabilization on two-dimensional turbulent
boundary layers. The first, prompted by Professor Gruber’s and Mr.
Mujumdar’s discussions, concerns the law of the wall for the inner, fully
turbulent parts of the layer, whereas the second is made in connection
with Dr. Moore’s comments on the outer layer and the turbulent free-
shear layers that occur on the edge of separated regions.

Dimensional analysis gives the general form of the law of the wall.
Professor Gruber presents it in the form

wt=F (n*, ) (D-4)

O+ is the wall-layer rotation parameter (F=Qv/%,*) and n* is the dimen-
sionless distance from the wall (n*=nu,/»). ©, and hence Q*, is negative
for trailing (suction) surface layers and positive for leading (pressure)
side layers. The data of Gruber, Litvai and Preszler (refs. D-1, D-2, and
D-3) and that of Halleen and Johnston (ref. 19) suggest that @* is higher
than its zero-rotation valuc for given 5+ when QF is negative (suction
side) and vice versa for positive Q@ (pressure side) conditions; see figure
13, for example.

The wall layer parameter @* may be related to the stability parameters
S and R: by application of basic definitions, e.g.

_ 20 20l
au/an  V't/p
If it is assumed, as is commonly done in the wall layer region, that fluid

shear stress r equals the wall shear stress, 7,=pu.?, equation (D-5)
becomes

(D-5)

lu,
S=—20t = (D-6)
14
Furthermore, in the turbulent part of the wall-layer region the zero-
rotation mixing length [, is approximately xn where x=0.4 is the Karman
constant. Thus equation (D-6) reduces to

l
S= =20+ 0 (D-7)

0
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By assuming that a relation such as the “Monin-Oboukhov’’ formula
(eq. (20)) holds for the turbulent law of the wall regions, it is now seen
from equations (D-7) and (2) that @** is directly related to S or Rz and
at least two empirical constants K and 8. This relationship can be ex-
pressed in the explicit form

Ri=S=—2«Qtn+ (D-8)

for the limiting conditions of very small rotation effects; i.e., when
Ri= S and l/ly=1 or, alternatively, when [@+]«1. Note that this limiting
case is independent of 8, whose value is not yet well established.

Two specific forms for the turbulent region law of the wall have been
proposed for rotationally stabilized flows: that of Bradshaw (ref. 7) and
that of Litvai and Preszler (ref. D-3).

Bradshaw used the “Monin-Oboukhov’’ formula and the assumptions
r=1, and Ri= 8 (small rotation effects) to obtain the formula

ut= ! In y+4-B—280ty+ (D-9)
K

He found that this form fit Halleen’s data quite well for n*<500 with a
value of 8=~4 for S>0 (stable conditions) and 8=~2 for S<0 (unstable
conditions). The values of @* were small, in the range from 0.003 to
0.012, for all the data he used (that shown in fig. 13) in checking equation
(D-9).

The formulation by Litvai and Preszler (ref. D-3) is presented by
Mujumdar in his discussion. It may be recast in the form

12*"=1 (14++S)2Iny*+B (D-10)
K

if one notes that «, the turbulence frequency used in reference D-3, may
be expressed as ya=91w/dy. v is a dimensionless factor of proportionality
that allows « to equal 9i/d7, the local scale of turbulence frequency in a
shear layer. v should be of unity order of magnitude and, as we shall try
to show, should be closely related to the factor 8 of equation (20). The
formula shown above seems much more satisfactory than the original as
all parameters and variables are now dimensionless and S, the stability
parameter, appears explicitly.

The formulas given in equations (D-9) and (D-10) may be directly
compared for the case of small rotation effects if the term (1++S8)!2in
equation (D-10) is expanded in a binomial series and terms of order
(vS)? and smaller are neglected. When equation (D-8) is used to replace
S in the expanded result, equation (D-10) becomes

12+=£ In y*+B—~4Qtyt In 9+ (D-11)
K
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Since the rotation terms in equations (D-9) and (D-11) are small, the
resulting fit of available data to either expression would be equally good
if v were taken to be a constant. The ratio 28/y= In 5+ is not too far from
constant (3.9 to 5.3) over the range of 4+ values (50 to 200) where data
are normally expected to fit a turbulent law of the wall. Furthermore,
for the range of probable 8 values (2 to 4, according to Bradshaw), v is
seen to be close to unity in value. Finally, there are still too few accurate
velocity profile data to attempt to formulate more accurate law of the
wall equations than those reviewed here. In fact, the need for a better
formulation is not yet established.

I should like now to discuss briefly some new, preliminary observations
that bear directly on the questions raised by Moore concerning the
importance of Coriolis stabilization on the outer layers of turbulent
boundary layers, and on free-shear layers in particular. In either case the
magnitudes of the Richardson numbers can become quite large as d%/dn
becomes small near the edge (or edges) of a shear layer. In particular, the
value of Ri may be very large and positive in the free-shear layer sepa-
rating the trailing side wake from the through-flow jet in separated
centrifugal impeller flow (see Dean, ref. 11). The high degree of stability
implied by such large positive Richardson numbers might indeed com-
pletely suppress turbulent transition in the wake-jet shear layer.

We have recently tried to examine the stability of the mixing layer
formed over the separated flow that forms behind a backward facing step
placed in our rotating channel apparatus. The low-speed (~1 ft/sec)
water flow was observed using the hydrogen bubble technique with the
generating wire placed in the free-shear layer and close to the step.

With positive @ and thus negative (destabilizing) Richardson numbers,
the mixing process was turbulent in the layer and qualitatively the same
as at zero rotation; that is, two-dimensional, Kelvin-Helmholtz waves
formed right behind the step and rapidly degenerated into fully three-
dimensional turbulence a short distance downstream of the step. However,
at the same unit Reynolds number, with the direction of rotation reversed
so that @ became negative and the Richardson number positive (stabiliza-
tion) there was clear visual evidence that breakdown of the two-dimen-
sional Kelvin-Helmholtz waves was severely retarded. At high negative
rotational speeds, no ordinary turbulence was noted within the observable
region of the shear layer that extended 3 to 4 inches downstream of the
step.

In conclusion, our new observations tend to confirm those of Dean
(ref. 11) and Moore (ref. 37) and lend credence to the idea of a quiescent
wake mixing layer in separated centrifugal impeller flows. The full
implications of these very preliminary investigations are yet to be appre-
ciated. There certainly must, in addition, be important outer layer effects
of rotation on unseparated turbulent boundary layers as pointed out by
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Moore in his discussion. Much more research will be required to untangle
these phenomena.

Finally, T wish to thank all the discussors for their gencrous and
interesting comments and I am sorry that space does not permit comment
on all points raised in discussion.
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Prediction of Turbulent Shear Layers
in Turbomachines

P. BRADSHAW

Imperial College, London

Turbulent shear layers in turbomachines differ from turbulent bound-
ary layers on airfoils in at least seven important respects.

(1) Stronger three-dimensional effects

(2) High rates of heat transfer at comparatively low Mach numbers

(3) Larger camber

(4) Stronger accelerations and changes of direction

(5) Lower Reynolds number

(6) High free-stream turbulence

(7) Interaction of two shear layers

We have been working on several of these problems as part of an ex-
ploration of the limits of boundary-layer theory. The objects are to ex-
tend boundary-layer prediction methods to the special cases that we
call real life and to use these special cases to test hypotheses used in
simpler flows more severely than existing experimental data for the
simpler flows permit. Results of the work are presented as part of a dis-
cussion of turbomachine problems.

Most present-day prediction methods for turbulent flow, such as those
discussed at the 1968 Stanford meeting (ref. 1), refer to rather idealized
cases, although several of the methods have been extended to compressible
or three-dimensional flow to make them more directly useful to the air-
craft industry. Moderate three-dimensionality of the mean flow does not
seem to have much effect on the behavior of the turbulence, which is itself
always three-dimensional, and there is now adequate evidence that the
effects of compressibility on turbulence are small if the density fluctuation
is a small fraction of the mean density (but see ref. 1a).

In turbomachine boundary layers, three-dimensionality is more pro-
nounced and density fluctuations due to heat transfer can be much larger
than those due to high Mach number. These are obvious and important
effects; however, there are several more subtle phenomena to be found in
turbomachines and I believe that we ought to take notice of them even at
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this early stage. The list of ‘“‘special effects” given in the abstract is
obvious enc:gh—the subtlety is in the way they modify the behavior of
the turbulence.

To show that I am not wasting your time with academic trivia, table I
shows the conditions under which some of these special effects produce a
10-percent change in surface shear stress or in distance to separation.

The amount of heat transfer or three-dimensionality needed is rather
large, but the quoted values of camber, Reynolds number, and free-stream
turbulence are typical, or even conservative, figures for turbomachines.
Several of these less obvious special effects may occur simultaneously;
with good luck they may cancel—with bad luck they will not.

A few recent references have been inserted in this published version,
but the text is otherwise that presented at the symposium.

TasLE 1.—Strength of Special Effects Needed to Change Surface Shear Stress or Distance
to Separation by 10 Percent

Special effect Order of magnitude

Swecpback (with given chordwise pressure

gradient)_________________________ _____ =45 deg
Heat transfer_____________________._______ T,/T=07
Longitudinal curvature (camber)___________ 5/R=1/80 or 35 degrees turning angle

Rotation (component about spanwise axis)._| 95/U =1/80

Low Reynolds number (C; compared with
Schoenherr value) ______________________ U.8/v =650
(U wz/v 3X10°)

" Free stream turbulence (small scale)________ 3%

Free stream unsteadiness (large scale:
wb/2xU=0.1)______ .. ___._ 309, (changes mean C; by 10 percent)
3.5% (minimum C; 10 percent below

mean Cy)
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THREE-DIMENSIONAL BOUNDARY LAYERS

If we postpone discussion of flows near streamwise corners and edges
where several different Reynolds stress components contribute to the
acceleration of the fluid, we can pose the problem of three-dimensional
boundary layers as, “What is the direction of the Reynolds shear stress?”
People who use mixing-length or eddy-viscosity concepts in three-
dimensional flow implicitly assume that the answer is, “The same as the
direction of the mean shear” (components dU/dy and dW/dy, where y is
the direction normal to the surface). Figure 1 shows the directions of the
velocity, shear stress, and mean shear in a mildly three-dimensional
boundary layer with about 3.5 degrees of crossflow (ref. 2) relaxing back
to a two-dimensional state. Note that the difference between the direc-
tions of shear stress and of mean shear is comparable with the mean
crossflow angle, except near the surface where the flow is in local equilib-
rium and the mixing-length formula, with [=Ky, is expected to hold.
This mild three-dimensional flow can be predicted to within the rather
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FiGURE 1.—Measured directions of velocity vector (circled points), shear siress (squared
points), and mean shear (triangular points) in the boundary layer ona 45-degree swept
wing.
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poor experimental accuracy by an extension (ref. 3) of the boundary-layer
caleulation method we developed at the NPL (See fig. 2; the calculations
are somewhat more plausible than the experiments.)

A more strongly three-dimensional flow investigated by J. P. Johnston
(ref. 4) shows some very curious effects: the boundary layer is initially
two-dimensional, but on application of a strong pressure gradient the
shear stress vector, far from following the mean shear vector, actually
yaws in the opposite direction. It is very hard to reconcile this with any
of our current ideas about turbulence, but the hot-wire measurements of
shear stress are not infallible. All we can safely conclude is that the pre-
diction of three-dimensional effects stronger than those normally oc-
curring on a moderately swept wing must be treated with caution. For
practical purposes, many two-dimensional or three-dimensional flows
subjected to sudden pressure changes can be predicted by using the
mixing-length formula in the inner layer and Bernoulli’s equation in the
outer layer.

EFFECTS OF STREAMLINE CURVATURE ON TURBULENCE

Several experiments (refs. 5, 6, and 7; see also the paper by J. P.
Johnston in this session, and for a recent review see ref. 7a) have shown
that longitudinal surface curvature, or a component of rotation in the
direction of the mean vorticity vector, can have a large effect on turbu-
lence, quite apart from any extra terms that may appear in the mean-
motion equations. Since Professor Johnston is dealing with the case of
rotation, I will confine mysclf to curvature effects. Roughly, the analysis
for one can be applied to the other by reading ¢ for U/R. Highly cambered
airfoils, particularly turbomachine blades, can suffer appreciably from
curvature cffects. (“Suffer”’ is the word, because turbulent shear stress is
reduced on convex surfaces, leading to premature upper-surface separa-
tion, and increased on concave surfaces, leading to greater lower-surface
drag and heat transfer.)

I drew a first-order analogy between the effect of centrifugal or Coriolis
forces and the effect of buoyancy, relying on the experimental fact that
the correlation between the velocity fluctuation v and the density fluc-
tuation p’ in a heated shear flow is very strong, so that there should also
be a strong correlation between the separate effects of the fluctuating
centrifugal force 2Uu/R and the fluctuating buoyancy force —gp’. A
first-order formula for the effect of curvature, suggested in reference 8 on
the basis of the Monin-Oboukhov meteorological formula, is

U/lgieo=1—PRz (1)
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Fi1cUure 2.—Calculations for the boundary layer of figure 1 (same notation).

where the “apparent mixing length,” 1, is defined as \/(r/p)/(8U/dy)
and is not ascribed any physical significance; R1=2(U/R)/(dU/dy) is a
first approximation to an equivalent Richardson number; and 8 is a
constant, equal to about 7 on a convex surface (R7>0, stable conditions)
and about 4 on a concave surface (unstable conditions). Typically, in the
outer part of a turbulent boundary layer on a convex surface,
I/ly=1—405/R. Thus, taken at face value, the analogy suggests that
turbulence might die away altogether (‘‘relaminarization’”) at values of
3/R typical of highly cambered blades; however, this crude analogy can
scarcely be expected to work if the turbulence structure is radically
changed by strong body forces, and we need something better for turbo-
machine blades. Relaminarization has been observed by Halleen and
Johnston (ref. 6) in a rotating flow; also, Patel (ref. 4) commented that
his velocity profiles on a highly convex surface were similar to those he
found in relaminarization (ref. 10), but this effect can be explained by
the Monin-Oboukhov formula.

In a study of rapid distortion of turbulent shear flow, my doctoral
student, Mr. I. P. Castro, has made some measurements in the mixing
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layer of an impinging jet. It can be seen from figure 3 that the growth of
the shear layer is retarded by strong (stabilizing) curvature. The quantity
plotted is a rather arbitrary gecometrical width (corrected for slight three-
dimensional effects) and not a true mass flow, so that its behavior in the
region of strong distortion should not be taken too seriously. The sur-
prising thing is that the growth rate returns to normal rather quickly.
(There is a hint of an overshoot in growth rate, so that things may be more
complicated than they seem; see Discussion and ref. 10a.)
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Froure 3.—Flow in deflecled mizing layer. C, is lotal-pressure coefficient, (P-p.)/
Pop.); “Width” is distance between points where Cy, is 0.8 and 0.1.




PREDICTION OF TURBULENT SHEAR LAYERS IN TURBOMACHINES 257
BOUNDARY LAYERS AT LOW REYNOLDS NUMBERS

Coles (ref. 11) has shown, by a painstaking analysis of data, that the
velocity defect law in a constant-pressure turbulent boundary layer,

usually written as
U.,—U
-1(%) @

Ur

depends on Reynolds number if U,,6/» <5000. (Roughly, U.z/»=2.5X 10¢,
a high Reynolds number by turbomachine standards.) There remains a
small probability that this “Reynolds number” effect may, in fact, be
caused by disturbances arising in the transition region but, in any event,
Coles’ correlation seems to be a universal one, valid for different transition
positions and transition devices.

Coles’ analysis relies on the constancy of K in the “mixing-length”
formula in the inner layer

aU/dy=+/(r/p)/Ky (3)
or, more specifically, on the constancy of K and A in the logarithmic
veloceity profile

U 1 uY ]

—=—11 A 4

u, K [og( v >+ “

Recently, Simpson (ref. 12) has suggested, on the basis of his measure-
ments in transpired boundary layers, that K may be a function of
Reynolds number. Simpson’s results could be explained almost equally
well in terms of Coles’ suggested defect-law behavior; however, incon-
trovertible evidence of Reynolds number effects on the inner layer velocity
profile in pipe and duct flow has been presented by Patel and Head (ref.
10) and merits some discussion.

The changes in the logarithmic law found by Patel and Head can be
correlated in terms of an inner-layer parameter, the dimensionless shear
stress gradient, ar+/dy* = (v/pw,*) 3/3y, which has been used by several
workers to correlate relaminarization effects in accelerated flows. Even at
the lowest Reynolds numbers at which turbulent flow is possible, the
values of 87+/0y* found in a constant-pressure boundary layer are very
much smaller than those associated with inner-layer changes in pipe flow.
Therefore, Patel and Head’s measurements actually contradict Simpson’s
suggestion and imply that the inner layer in a low-Reynolds-number
boundary layer follows the usual logarithmic law if the pressure gradient
is small. It follows that the defect-law changes observed by Coles are
probably real and necessarily caused by viscous effects in the outer region
of the boundary layer. In order to predict low-Reynolds-number boundary
layers we need more data on these viscous effects, although both Herring .
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and Mellor (ref. 13) and I (unpublished) have inserted an empirical
Reynolds number dependence into the specification of shear stress in the
outer layer. (The change in total shear stress is many times larger than the
viscous shear stress in the outer layer.)

The photographs of a smoke-filled boundary layer at low Reynolds
number published by Fiedler and Head (ref. 14) suggest that the inter-
face between the turbulent and nonturbulent fluid has more large-scale
irregularities than at high Reynolds number. There is no evidence for
instability of the viscous superlayer but, since the defect law in a pipe or
duct seems to be independent of Reynolds number everywhere outside
the viscous sublayer, it seems that the Reynolds-number dependence of
the defect Jaw in a boundary layer must be associated with the presence
of a free boundary.

In the analysis of Patel and Head’s measurements mentioned above
(carried out by Dr. G. D. Huffman of Allison while in our department,
ref. 16a) it was found that the detailed profiles could be well represented
by the mixing-length formula (eq. (3)) with the van Driest mixing-len< .h
specification

1=Ky[1— exp (—\V/7/p y/vA+)] (5)

with A* a function of d7%/dy™*, chosen to optimize the fit. This seems to be
a satisfying demonstration of the wide applicability of inner-layer simi-
larity ideas and strongly supports the view that viscous effects in the inner
layer depend only on the local turbulence Reynolds number, \/7/p y/».
There is just one difficulty: the values of A+ in the pipe and in the duct are
different for a given value of 87t/dy*. It can be seen from figure 4 that the
values of A* that give the best fit to Patel and Head’s duct measurements
agree fairly well with the empirical relations suggested by several authors
for other plane flows. The pipe measurements stand apart. The only
possible conclusion is that transverse curvature affects the viscous sub-
layer even when the sublayer thickness (to y+=30) is less than 10 percent
of the radius. The sense of the difference between pipe and duct indicates
that concave transverse curvature (as in the streamwise corner between a
blade and a hub) tends to suppress the Reynolds stress in the sublayer.
One hopes that the effect of transverse curvature is confined to the
viscous sublayer. If curvature also affects the inner layer (30y/u, <y <0.2R,
for instance) then the coincidence of the logarithmic laws in pipc and duct
(at high Reynolds numbers) takes a great deal of explaining. However,
it is very difficult to see why transverse curvature should affect the viscous
sublayer and not the fully turbulent flow. The small amount of data on
the axial flow over a cylinder (convex curvature) shows that the effect on
A™ s of sign opposite to that in a pipe, as one would expect; the effect may,
however, be smaller. Again, the inner layer seems unaffected by curvature
as such.
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FIGURE 4.—Variation of best-fit value of Van Driest parameter At (eq. (5)) with dimen-
sionless shear-stress gradient. Data of Patel and Head (ref. 10) for pipe (circled points)
and duct (triangular points).

FREE-STREAM “TURBULENCE”

The word “turbulence” appears in quotation marks because the un-
steady free stream in a turbomachine consists partly of true turbulence
and partly of nonrandom fluctuations caused by the relative motion of
the blades and their wakes. The boundary layer bencath any unsteady
stream with typical wavelengths large compared to the boundary layer
thickness can be treated by simple extensions of calculation methods for
steady flows. If one ignores streamwise “history” effects on the turbulent
shear stress in steady flow one can evidently ignore timewise history
effects of similar magnitude in unsteady flow. However, it is more satis-
fying to analyze the effects of unsteadiness by extending a steady-flow
method that takes streamwise history into account. As an example, the
calculation method we developed at NPL uses an empirical equation for
the rate of change of turbulent shear stress along a streamline, expected to
be valid if that rate of change is not too large compared to the rates of
production or dissipation of turbulent energy. Exactly the same equation
can be used in unsteady flow (ref. 15) simply by noting that the rate of
change of shear stress along a streamline now contains dr/dt as well as
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spatial derivatives. The equation is again expected to be valid if the total
(temporal and spatial) rate of change of shear stress along a streamline
is not too large compared to the rate of production or dissipation of
turbulent energy. The equations for steady and unsteady flow are identical
if we use the notation D/Dt for rate of change along a streamline. Of
course, the numerical calculations are more difficult in unsteady flow, but
no new physics is required. The same simple extension could be made for
any other method using a differential equation for shear stress. Figure 5
shows some calculations by the NPL method for the simple case of an
unsteady flow over an infinite plate (independent variables y, ¢ only).
This graph is included to show that time-dependent flows can behave
rather unexpectedly. Both flows have the same value of U/t as seen by
an observer moving with the free stream but the pressure rise to separation
is very different. Dr. V. C. Patel of the Lockheed-Georgia Company
has programmed our method for two-dimensional unsteady flow (in-
dependent variables z, y, ¢: see ref. 15a).

If the wavelength of the free-stream fluctuations is of the same order
as the wavelength of the boundary-layer turbulence, rates of change of
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F1Gure 5.—Comparison of calculations for time-dependent and space-dependent boundary
layers with the same free stream acceleration. Solid curve: time-dependent, U =TU,.; exp
(—0.25 U, st /1). Dashed curve: space-dependent, U=U,s (I — 0.25 z/1).
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shear stress along a streamline may be large; the above-mentioned ecal-
culation method then fails, like all others, and we have to consider the
effects of the free-stream fluctuations on the turbulence structure. At
present, we have no quantitative ideas about what happens. Qualita-
tively, we can see that free-stream fluctuations will further distort the
irregular “superlayer” boundary hetween the houndary-layer turbulence
and the external stream, leading to increased entrainment, so that there
may be some similarity between the effects of small-scale free-stream
turbulence and viscous effects in the outer layer at low Reynolds numbers.
(Coles’ paper shows that the two produce similar changes in the mean
velocity profile.) We need more data. For recent work see refs. 16a to
16e, D-18 and D-19.

INTERACTING SHEAR LAYERS

A problem which is harder to solve than that of free-stream turbulence,
but perhaps easier to study, is that of interaction between two turbulent
shear layers. Examples include the flow near the centerline of a wake or
jet or in the entrance region of a duct; the effect of a wing or blade wake
on a slotted flap or a following blade, respectively; the wall jet; and the
boundary layer in a streamwise corner. The last-named is a three-dimen-
sional problem and, on a fundamental level, much harder than the others,
although it may be easier to cope with empirically than the blade-wake
problem because fewer parameters are involved.

As an example, let us look at the simplest problem, the flow near the
centerline of a “two-dimensional” duct. As the growing boundary layers
on the two walls approach the centerline, occasional tongues of turbulent
fluid from one boundary layer, bearing (say) a positive shear stress, will
cross the centerline and enter the negative velocity gradient of the other
boundary layer. The turbulent fluctuations in the tongue will be atten-
uated because the rate of production of turbulent energy (shear stress
times velocity gradient) in the tongue will be negative. As the boundary
layers continue to grow, the number and intensity of these “frontier
violations” will increase, significantly altering the turbulence in the outer
part of each boundary layer. Not only will the turbulent intensities and
shear stress be changed, but typical eddy length scales and structural
coefficients like the energy diffusion coefficient, ¢/ (¢%)*2, may also
change. The effects of the interaction on the turbulence seem to penetrate
as close to the surface as 0.2 of the half-width of the duct and, of course,
the interaction eventually stops streamwise change altogether. In an
asymmetrical flow (such as a curved duct or a duct with one rough and
one smooth wall (ref. 17)), there is a region in which the net shear stress
and velocity gradient have different signs and so the net rate of production
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of turbulent energy will be negative. This phenomenon has attracted some
attention, but it is merely an overt sign of what goes on in secret in a
symmetrical interaction.

The main question to be answered is, “Does the interaction seriously
change the turbulence structure?”’—meaning the dimensionless properties
like the diffusion coefficient mentioned above, rather than dimensional
quantities like the intensity. If each of the boundary layers that meet to
form a duct flow continued to behave like a boundary layer (with an
effective thickness somewhat larger than the half-width of the duct) then
we could calculate the flow development by using ordinary boundary-layer
methods on each, predicting the two shear stress profiles separately (but
combining them in the mean motion equation). We cannot possibly hope
that matters are as simple as this, but (refs. 17a and 17b) the effects of the
interaction on the turbulence structure are small enough for multiple
shear layers to be treated as separate layers, slightly modified by their
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neighbors, rather than as one impossibly complicated mess. A simple
piece of evidence for this is shown in figure 6. Here we have plotted the
total-pressure deficit on the centerline of a duct, compared with twice the
total-pressure deficit that would oceur at the same distance from the
surface in a boundary layer growing unimpeded (ie., we are adding
together the total-pressure deficits in the two boundary layers, pretending
that they do not interact at all). Of course, the two curves in figure 6
diverge eventually because the boundary layers do not continue to grow
unimpeded, but at least we can see that nothing very spectacular happens
to the shear-stress-producing part of the turbulence when the boundary
layers meet. A similar behavior was found by Knystautas (ref. 18) in
interfering jets. My doctoral student, Mr. R. B. Dean, whose results are
shown in figure 6, is now looking at the details of the turbulence in the
interaction region of the duct (ref. 19).
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DISCUSSION

J. H. HORLOCK (Cambridge University) : As usual, Mr. Bradshaw
has provided a stimulating contribution in his excursion into turbo-
machinery fluid mechanics. At Cambridge, we are fortunate to have close
collaboration with his group at Imperial College, so we have been given
early warning on several of the points he raises and have had early
opportunity to use his latest ideas.

Mr. Bradshaw’s special points about boundary layers in turbomachines
are not equally important for the thin boundary layers growing on
successive profiles and the thicker annulus wall layers growing con-
tinuously through the (axial) machine. It appears, mainly from calcula-
tions, that three-dimensional effects on profile boundary layers are small
(see ref. D-1), but they are obviously large in annulus wall layers, and
this is where the main emphasis of our work at Cambridge lies. Camber
effects on turbulence structure are large on profile layers but small on
wall layers (§/R is small). Strong accelerations apply equally to both, but
rapid changes of direction are more important near the annulus walls,
Low-Reynolds-number effects apply to the profiles but not the walls and
high free-stream “turbulence” to both types of layer. I should like to
comment on several of these effects in more detail.

(1) I think that the interaction of the “inviscid” secondary flows
(which are controlled largely by entry shear and blade geometry) with
the viscous regions are probably more important than the “isotropy” of
eddy viscosity or mixing length. Perkins (ref. D-2), studying the three-
dimensional boundary layer just outside a corner boundary layer, finds
the isotropic eddy viscosity concept quite reasonable, but I am bound to
say that in our three-dimensional integral methods of calculating the
annulus boundary layers where we use the Prandtl-Mager model for the
crossflow (thereby avoiding the use of mixing length or eddy viscosity)
it is the crossflow that is poorly predicted (Horlock and Hoadley, ref.
D-3).

(2) The camber effects are undoubtedly important, but in direct
measurements of shear stress in three-dimensional boundary layers
developing over cylindrical hubs of diffusers Hughes (ref. D—4) finds no
evidence as yet that shows g is as large as 7. Hughes has also devised an
experiment in which we can compare directly shear stresses with and
without Coriolis effects.
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(3) Rapid accelerations worry us a great deal in our boundary-layer
calculations. Applying the integral method of reference D-3 to the flow
through a set of inlet guide vanes of large camber, we find that the stream-
wise boundary layer (assumed to be described by a Coles profile) is
subject to such an enormous acceleration that the value of = becomes
negative. This is not an unknown phenomenon in conventional aero-
dynamics, but if # < —1, then the method loses validity. Surprisingly, the
negative = profiles compare reasonably well with experiment, with a
“hump”’ in the velocity profile. At present, Marsh and Daneshyar at
Cambridge University are planning an experiment in which we can
provide rapid acceleration, but not through turning the flow—simply by
measuring the wall boundary-layer flow through thick uncambered
blades. We are thus attempting to separate the acceleration from the
three-dimensional effects due to turning.

(4) The Ry effects are intriguing and undoubtedly relevant to profile
boundary layers. However, I think the main problem relating to these
layers is the question of transition, especially in an unsteady environment
or one with high free-stream turbulence. At Cambridge, Evans has shown
that when the latter is increased, Thwaite’s prediction of the laminar
separation point becomes pessimistic.

(5) In our group, Daneshyar and Mugglestone have also programmed
the unstecady Bradshaw method and we look forward to comparing
results with Patel. We have also developed an unsteady version of the
integral method described in reference D-5 for comparison with the more
accurate Bradshaw method. This is a general point of some importance.
Our philosophy is that it is unlikely that the Bradshaw type of calculation
will be used dircctly in turbomachine work because it requires even
further complications in these real situations (effect of body forces,
unsteadiness, three-dimensionality, etc). We feel that simple integral
methods may still have uses if they compare reasonably with Bradshaw’s
method in some trial situations.

(6) The interaction of the shear layers is a new one which I have not
thought of before, but obviously of importance in turbomachines, particu-
larly in the effect of a blade wake on a following row. Our only con-
tribution here is the work of Perkins referred to above. Here, the lesson
appears to be that if the Reynolds stress distributions can be described
with fair accuracy (by correlation of experimental data) the overall
parameters such as displacement and momentum ‘“‘areas” may be pre-
dicted and the nature of the secondary flows explained.

I should like to congratulate Mr. Bradshaw on his stimulating paper and
look forward to further contributions from him in this area. Perhaps I
might emphasize once again that boundary-layer phenomena in turbo-
machines are also closely related to ‘“inviscid” phenomena such as
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secondary and tip clearance flows, but it is very useful to have a new
“viscous” recruit to the internal flow area.

H. McDONALD (United Aircraft Research Laboratories): In addition
to the seven points of difference between conventional airfoil boundary
layers and those encountered on the blades of turbomachinery listed by
Mr. Bradshaw, 1 would like to add two additional points, one on transition
and one on separation, and comment upon the low Reynolds number
remarks made by Mr. Bradshaw as point (5).

First, experimental evidence obtained by the Pratt & Whitney Division
of United Aircraft (ref. D-6) shows clearly that at the low Reynolds
numbers typical of turbine blade operation the effect of the high free-
stream acceleration on the suction side is to inhibit the transition to
fully turbulent flow, in spite of the very high levels of free-stream tur-
bulence induced by the upstream combustion process. In figure D-1, a
typical result from reference D-6 is reproduced, illustrating the foregoing
remark, and it can be clearly seen that over most of the chord the bound-
ary layer is transitional. It is apparent from figure D—1 that some means of
predicting the behavior of transitional boundary layers must be evolved
before the heat transfer to the suction side of a turbine can be predicted
to an acceptable level of engineering accuracy.
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Second, as a result of the low Reynolds numbers commonly encountered
in turbomachinery, boundary-layer separation occurs very readily. Con-
ventional separation near the trailing edge usually occurs without re-
attachment of the boundary to the airfoil surface and often such a
separation generates large increases in the loss level. Near the leading
edge, separation is usually followed by subscquent reattachment, forming
a separation bubble, probably with comparatively little change in the
overall loss level. Sometimes, in a poorly designed, highly loaded airfoil,
separation can occur near the gauge point. Separation bubbles can, of
course, give rise to unexpected Reynolds number effects and, in addition,
usually play havoc with boundary-layer prediction methods. Since, with
an arbitrary, prescribed pressure distribution, the boundary-layer equa-
tions of motion are, in fact, singular at a point of zero wall stress, the more
accurately a prediction procedure treats the boundary-layer cquations
the more likely it is to fail at a separation point. The only rigorous course
of action appears to be to use the full Navier-Stokes equations in the region
of the bubble. Recently, a study has been completed at United Aircraft
Research Laboratories utilizing a finite difference procedure for com-
puting the Navier-Stokes equations in the region of the bubble (ref. D-7).
These calculations have shown a considerable upstream influence of the
separation process. Future work in this area will involve incorporation of
a turbulence model into the procedure.

Concerning the direct effect of Reynolds number, the structure of the
low Reynolds turbulent boundary layer has been evaluated recently at
United Aircraft Research Laboratories from the equations of mean motion
(ref. D-8) using Coles’ velocity profile (ref. 11). It was found that the
disappearance of the wake component as the Reynolds number is reduced,
observed by Coles, is consistent with a large increasc in normalized cddy
viscosity or mixing length, (At Ry=>500 the normalized mixing length was
double what it was at Ry=>5000.) Use of a normalized eddy viscosity or
mixing length which does not vary with Reynolds number causes the skin
friction to be underpredicted by about 10 percent. The variation of eddy
viscosity derived from Coles’ profile was in fair agreement with the
suggestion of Herring and Mellor (ref. 13).

Finally, although the blade profile boundary layers seem amenable to
treatment by modest developments of conventional boundary methods,
the annulus boundary layer secems particularly troublesome. In addition
to being strongly three-dimensional, as Mr. Bradshaw points out, the
annulus boundary seems capable of interacting strongly with the “free”
stream and distorting the inviscid flow by an appreciable amount. As is
well known, this coupling between the annulus boundary layer and the
inviscid flow results in both displacement thickness effects and secondary
flows, and it would be mandatory to take these effects into account in any
stage loss calculation procedure based on boundary-layer theory.
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G. L. MELLOR (Princeton University) : Professor Bradshaw’s paper
is an interesting one and I find myself in general agreement with the
conclusions expressed there, I will, therefore, attempt to add a corrobora-
tive point or two.

(1) Mr. Ronald So of our laboratory has just completed some inter-
esting measurements on wall curvature illustrating the dramatic effect of,
for instance, 6*/R~>.01; going from a flat surface to a convex surface, the
Reynolds stress in the outer 60 to 70 percent of the layer is virtually
“turned off”’. First indications are that this effect appears to be quantita-
tively deducible from a Prandtl-Rotta type boundary-layer model.

(2) Mr. Luc Bissonnette of our laboratory has also completed
measurements of an axisymmetric boundary layer on a rotating cylinder.
We find that the simple eddy viscosities differ by about 30 percent in the
axial and circumferential directions.

(8) Characterization of the inner viscous layer is functionally equiva-
lent using either Van Driest’s formula (eq. (5)) or the one we used,

Ve x4

v x+(6.9)*
where »,=—u"v'/(93/dy) and x=u(y/v)\/7/p. When Van Driest’s
function is mapped onto ours or vice versa, the detailed distributions do
differ in what one would think to be an unimportant way. However, in
the case of wall suction or blowing it appears that A* in Van Driest’s
equation must be adjusted as a function of blowing rate, whereas out
formula does not seem to require adjustment. This must currently be con-
sidered fortuitous; however, I mention it since the same situation might
prevail with regard to the effect of a+/dyt.

Speaking in general terms, it is my feeling that the most important
turbulent boundary layers in a turbomachine are the annulus wall layers,
which probably defy description even in terms of the seven attributes
listed in the author’s abstract.

J. M. ROBERTSON (University of Illinois): This review, and espe-
cially the quantification embodied in table I, indicates serious additional
problems imposed on boundary-layer type flow analyses when turbo-
machinery applications are involved. For several years we have had a
number of these under study, as motivated by machinery interests,
together with the unlisted one of the turbulent near wake of blades. The
present remarks pertain to items (3), (5), and (6) of table I of the authors’
listing.

The discussion of streamline curvature effects suggests an increased
likelihood of separation on convex surfaces due to a reduction in turbulent
shear stress. A study of the boundary layer on the upper surface of a
simulated turbomachinery blade by Dr. R. C. Hansen (ref. D-9) indi-
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cated turbulent separation much ahead of the locale predicted by analysis.
It has been supposed that the breakdown in analysis may be due to a
variation in pressure across the layer under appreciable streamline
curvature, as such variation is not ordinarily included in boundary-layer
analyses. Other studies in our laboratory (refs. D-10 and D-11) of flows
approaching turbulent separation have evidenced such a breakdown in the
basic boundary-layer premise of constant pressure across the layer. An
experiment, in which the turbulent layer developed along a flat plate is
sent along the outer surface of a circular cylinder, has been set up to study
this occurrence under more controlled conditions. Although only pre-
liminary measurements are available, it is found that already at the point
of tangency a pressure change of 0.050U2/2 occurs across the layer.

A low-Reynolds-number defect in frictional formulation is suggested in
table I. To this writer, this appears to be a matter of what C; formulation
is employed; a local friction factor formulation drawn from the Schoenherr
average C, relation does not seem too appropriate. The 1953 relation of
D. Ross (ref. D-12)

C;= (4.443.8 log Rs) 2

where Ry=0U/» has been well verified for flat-plate boundary-layer flows
and agrees with Cole’s tabulation within a few percent. For adverse-
pressure-gradient flows, the Ludwicg and Tillman formulation in terms of
Ry and H(H =6*/6, ratio of displacement to momentum thicknesses) is
almost universally accepted; however, several years ago our calculations
suggested that this yielded poor valucs at low Reynolds numbers. The
predictions were checked in the flat-plate case where H is well established
(refs. D-12 and 1D-13) as a unique function of Rs. The Ludwieg and Till-
man formulation was found to be 19-percent low at Ry=300, about the
smallest turbulent-layer Reynolds number to be expected. In the spirit of
the Ludwieg and Tillman formulation, the following expression was
developed to circumvent the error.

_exp [1.8(Ho—H) ]
" (4.4+3.8log Ry) 2

!

where

0.40
Ho= 1094 G5 Tog Ka—1.0
is the flat-plate turbulent-layer shape factor (ref. D-14) formulation
based on a large number of observations (refs. D-12 and D-13).

For some time, we have been studying the effect of free-stream tur-
bulence on the turbulent boundary layer. This has the effect of increasing
the lateral momentum transfer, thus making the velocity profile more
uniform over most of the layer; the shape factor H is thus reduced in
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magnitude, while G'(G =45/, ratio of layer disturbance thickness (locale of
0.99U) to momentum thickness) and C; are increased by the turbulence.
In an attempt to quantify these occurrences beyond the rather scattered
data available in the literature, we have been studying the turbulent layer
on a flat plate downstream of various turbulence-producing grids (up to
10-percent turbulence intensity). Comparison of the changes in the
boundary-layer parameters versus those expected in nominally low-level
turbulence indicates appreciable changes at intensities up to about
5 percent and then some leveling off. The author’s estimate of a 3-percent
turbulence level producing a 10-percent increase in C; is rather well
verified; at this level, the shape factor H is reduced by some 4 percent.

A.S. MUJUMDAR (Carrier Corporation): I just wish to point out a
few recent papers that would complement the excellent review made by
Professor Bradshaw.

Chin, Hulschos, and Hunnicutt (ref. D-15) have reported on their
experimental investigation of the effect of latcral curvature on the char-
acteristics of turbulent boundary layers, while Willmarth and Chi (ref.
D-16) more recently considered the effect of transverse curvature on wall
pressure fluctuations and the turbulence microstructure. From the
spectral and cross-correlation measurements of reference D-16, it appears
that the turbulence structure of the boundary layer, primarily that of
the viscous sublayer, is affected by the transverse curvature. An inter- .
esting analytical study of the effect of longitudinal (streamwise) surface
curvature on the turbulent boundary layer has been reported recently by
Dr. Neal Tetervin (ref. D-17). Although his equations do not give
accurate quantitative results, they show that if the concave curvature
increases the shear sufficiently, separation is delayed despite the boundary
layer thickening. The converse is also true; i.e., convex curvature hastens
separation cven though the boundary layer is thinned. An important
indication from his calculations, which is of special interest to turbo-
machine designers, is that when the curvature increases in the streamwise
direction, separation is hastened on a surface of concave curvature and is
delayed on a surface of convex curvature.

Regarding the effect of free-stream turbulence on turbulent boundary
layers, there has been some work in this area since the pioneering work of
Kline et al. Kestin and his co-workers at Brown University (ref. D-18)
and Junkhan and Serovy (ref. D-19) at the Iowa State University have
made some valuable contributions in this area.

BRADSHAW (author): I am grateful to the discussors for their
comments. In particular, Professor Horlock’s second paragraph clarifies
the relative importance of the different effects I mentioned, and all of the
discussors mention additional effects.
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The paragraph numbers below refer to the numbered list in the Abstract.

(1) The effects of anisotropy of eddy viscosity in three-dimensional
flow may well be negligible in flows dominated by pressure gradients or
viscous inviscid interactions (see the last sentence of the section on three-
dimensional boundary layers) ; however, if the Reynolds stresses outside
the local-cquilibrium inner layer are important, anisotropy of eddy
viscosity is likely to be important also (see figure 2).

(3) Further work on curved flow by my student, Mr. Ian Castro,
agrees with So’s work mentioned by Professor Mellor. Figure D-2 (also
see figure 3) shows the response of u? in a suddenly deflected shear layer.
The maximum §/R is about 0.025, about the same as Professor Robertson’s
and roughly one-third of So’s. It is notable that the decrease in u? (taken
as the maximum value at a given station and measured in the direction of
the local mean velocity) lags behind the increase in curvature. If the
subsequent increase of u? above its initial value is genuine (and it does not
seem to be caused by large-scale unsteadiness of the shear layer), one 18
led to suspect that the recovery of the turbulence from its partly damped
state rescmbles laminar-turbulent transition, in which intense well-
organized disturbances appear. I hope the experiments mentioned by the
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Fieure D-2.—Deflected shear layer (Castro); see figure 3 of paper.
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discussors will help us to represent curvature effects more accurately in
shear-layer calculation methods, but I wish to point out that the partly-
stabilized state (/R of order .01) is more important for blade and airfoil
calculation than the ‘“turned off’” state, and the latter may not throw
much light on the former. Incidentally, I gather that Professor Horlock’s
student, Mr. Hughes, has now found =6 to 7 in a flow with an effective
8/R of about 0.007.

(5) I agree with Professor Robertson that one can find abetter C; law
than Schoenherr for low Re; the point is that Schoenherr is based on the
log law and the defect law, and so a failure of Schoenherr implies a failure
of the log law or the defect law, which merits investigation in its own
right.

As mentioned in the paper, I am fairly confident that, at least in
moderate pressure gradients, it is only the outer layer (defect law) that
alters, owing to viscous effects.

Dr. J. E. Green of R.A.E., Bedford, has also deduced mixing length
and eddy viscosity in the outer layer from Coles’ low Re profiles; his
results agree with Mr. McDonald’s in showing large changes.

Figure D-3 shows the final results of Dr. David Huffman’s data
analysis for strong negative shear stress gradients (or pressure gradients) ;
transverse curvature affects the sublayer behavior for a given dr+/ay+.
This result is qualitatively independent of the sublayer model used, so
replacement of Van Driest’s formula by Professor Mellor’s formula would
not collapse the curves, though it would be interesting to see if the duct
(flat surface) results were better represented by the latter formula than
by Van Driest’s formula with constant A+,

Of course I agree that, as Professor Horlock and Mr. McDonald say,
transition is an important low-Reynolds-number effect; I said nothing
about it in the paper because I had nothing to say. The effect of tur-
bulence changes at low Re on fC’ s dx, integrated from the leading edge to
where Res=5000, is about the same as a change in transition Res from
400 to 300—not negligible compared to the actual uncertainty of transi-
tion position.

(6) Professor Robertson’s measurements of the effects of free-stream
turbulence are very welcome (not only because they confirm my rough
estimate). I hope he or others will look at the effects on the turbulence
structure of the shear layer itself. In this connection, the latest measure-
ments in a duct entry region by my student, Mr. Bruce Dean, show that
the “non-interaction” (superposition) hypothesis works quite well for
w?, as well as for total pressure P (figure D—4). The difference between
this curve for “non-interaction” C, and that shown in figure 6 results
from a change in cur method of extrapolating the boundary-layer growth
from data upstream of the interaction region; this is surprisingly critical.
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I don’t think “non-interaction” can be trusted too far (in its simplest
form it would imply no effect of free-stream turbulence) but it is a useful
