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Computer Solutions of Wu’s Equations for
Compressible Flow Through Turbomachines

D. J. L. SmiTH

National Gas Turbine Establishment
Hampshire, England

Two computer programs, known as Matrix Through-Flow and Matrix
Blade-To-Blade, for analyzing the meridional and blade-to-blade flow
patterns are described. The numerical solutions are obtained by finite
difference approximations to the governing Poisson-type differential
equations for the stream function. Solutions for several turbomachines,
giving flow patterns and velocity distributions, are included.

The flow through a modern gas turbine or compressor is an extremely
complicated three-dimensional phenomenon. The flow has strong gradients
in the three physical dimensions—axial, radial, and circumferential—as
well as time and viscosity effects. The observation that the low problem
was not easily amenable to numerical solution led early investigators to
search for a design system having ease of application. The computational
difficulties were resolved by making approximations which permitted the
use of two-dimensional techniques. These approximations were based on
two flow models,

(1) Blade element flow
(2) Axially symmetric flow.

The blade element approach assumes that the flow in the blade-to-blade
or circumferential plane can be described by considering the flow around
blade profiles formed by the intersection of a cylindrical flow surface and
the blading.

Axial symmetry assumes that an average value can be utilized to
represent the state of the fluid in the blade-to-blade plane.

On the basis of these two flow models, several investigators developed
analysis and design methods for the axial-low compressor and turbine.
In the case of the compressor, one of the earliest design methods appeared
in Howell’s classic papers in 1945 (refs. 1 and 2). Using the blade element
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44 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

flow model, Howell correlated experimental linear cascade data to es-
tablish a limit that has to be placed on the allowable deflection in any one
blade row and determined empirical rules for the deviation and flow loss.
In estimating the overall performance of the compressor, the flow is
analyzed along a “mean’ or “reference” diameter and the gas state is
estimated at planes between adjacent blade rows, making use of the
axially symmetric flow model. Similar methods were developed for the
axial-flow turbine and, of these, the method of Ainley and Mathieson
(ref. 3) is one of the best known. These relatively simple, albeit one-
dimensional methods for analyzing the overall properties of the flow field,
developed when the digital computer was in its infancy and the develop-
ment of methods suitable for hand desk machines was one of the prime
goals, are still, in principle, used widely throughout the aircraft industry
and are likely to remain in use for some time.

More recently, with the advent of the large, high-speed digital com-
puter, techniques (refs. 4 and 5) have been developed for analyzing the
subsonic fluid motion in the meridional or hub-to-tip plane of axial-flow
machines at stations other than the mean diameter (which was used in
the early days) both inside the blade rows and in the duct regions. Similar
methods have been developed for centrifugal and mixed-flow impellers by
Hodskinson (ref. 6) and Wood, et al. (ref. 7). In parallel, several in-
vestigators (refs. 8, 9, and 10) have been working on the problem of
generating a computer solution for the subsonic blade-to-blade flow with
allowances for radial acceleration imposed by the eurvature of the stream-
lines in the meridional plane and for the effects of Coriolis forces.

The purpose of this paper is to present an outline of two advanced
computer solutions that have been developed at the National Gas Turbine
Establishment (NGTE) for the meridional and blade-to-blade flow
patterns. Solutions for several turbomachines, giving flow patterns and
velocity distributions, are included.

MATHEMATICAL ANALYSIS

The mathematical analysis is based on the earlier work of Wu (ref. 11)
who developed a general theory for the three-dimensional, inviscid,
steady flow through an arbitrary turbomachine. The equations of motion
are satisfied on two intersecting families of streamn surfaces known as the
first kind, S1 (blade-to-blade), and the second kind, S2 (meridional), the
complete flow solution being obtained by an iterative process between the
flows in the two stream surfaces.

Stream Function Equation for S1 Surface

In the real blade-to-blade flow, the S1 stream surface would be twisted.
To permit computations of the potential flow in the blade-to-blade plane
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of a stationary or rotating blade row, Smith (refs. 10 and 12) assumed
the stream surface was a surface of revolution.

The shape of the S1 surface is obtained by rotating a streamline in the
meridional plane (fig. 1) about the axis of rotation.! In order to analyze
the flow through any type of turbomachine, it is convenient to rotate the
7,2 axes through an angle 8. Using x and ¢ as the two independent. vari-
ables, the continuity equation and the equations of motion can be mani-
pulated to arrive at a Poisson-type differential equation for the stream
function.
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where the stream function ¢ is defined by
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and the velocity components W, and W, are related by
W,=—Wztan A (3)

Equation (3) is the geometrical condition that the flow follows the stream
surface. The derivatives in equations (1) and (2) are those which Wu

BLADE F1GURe 1.—Meridional plane.

STREAMLINE

AXIS OF ROTATION

! For two-dimensional cascade flow the stream surface is a cylinder.
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refers to as special derivatives taken on the stream surface, and the
integrating factor b is proportional to the local thickness of a thin stream
sheet whose mean stream surface is the S1 surface considered.

Stream Function Equation for $2 Surface

To analyze the flow in the meridional plane of an arbitrary turbo-
machine, Marsh (ref. 4) developed a matrix through-flow method. Inside
the blade rows, the flow is analyzed in an S2 stream surface and for the
duect regions between adjacent blade rows, the flow is assumed to be
axially symmetric.

As in the case of the S1 surface, the r,z axes (fig. 1) are rotated through
an angle 6 and x,y are the two independent variables. In a manner similar
to the S1 solution, an equation for the stream function can be derived.

oy o
5;—2+5?—/;=f(x,y) (4)

where the stream function satisfies

% =—rBoW,
or
’ (5)
E
iid =rBoW,
Y

The integrating factor B in equation (5) is proportional to the local angu-
lar thickness of the 82 stream surface and in the through-flow analysis it
is assumed to be proportional to the width of the blade passage. In formu-
lating the stream function equation—equation (4)—the viscosity terms
were omitted in the equations of motion but the entropy terms were
included, and Marsh introduced the effects of irreversibility into the flow
calculation by defining a local polytropic efficiency for expansion and
compression.

For the flow to follow the stream surface, within the blade rows, the
three components of velocity are related by

Wo=~W, tan \— W, tan u (6)

In the duct regions there is no change of angular momentum along a
streamline and the circumferential velocity satisfies the relationship

rV 4= constant (7



COMPUTER SOLUTIONS OF WU'S EQUATIONS FOR COMPRESSIBLE FLOW 47
NUMERICAL SOLUTION

The equations for the stream function—equations (1) and (4)—are
nonlinear, but they can be solved iteratively using finite difference
techniques. :

Finite Difference Approximations

In conventional finite difference analysis the domain is covered with a
square or rectangular grid and a five-point star is used since this leads to
a simple approximation for the Laplacian operator. However, for an-
alyzing the flow in the S1 and S2 stream surfaces such a simple grid is not
accurate enough, owing to the irregular boundaries of the flow domain
giving rise to boundary finite difference stars with short limbs and con-
sequently a large truncation error. A good example of this, in fluid
mechanics, is the recent blade-to-blade method developed by Katsanis
(refs. 8 and 9) in which the flow domain is covered with a square grid.
It is clear that the truncation error is significant since the boundary
condition of zero velocity normal to the blade surfaces is not satisfied.

In the NGTE methods, use is made of the powerful software of present-
day digital computers by adopting an asymmetric finite difference grid.
The grid (fig. 2) consists of straight lines normal to the z direction, each
line having the same number of equally spaced grid points. In the case of
the S1 surface, the blade suction and pressure surfaces form curved grid
lines, and for the 82 surface, the inner and outer annulus walls form
curved grid lines so that there are no additional difficulties for grid points
close to the boundaries. The spacing of the straight lines need not be
uniform and where necessary can be varied locally (in the blade leading
and trailing edges, for instance) in order to obtain a detailed picture of
the flow.
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To formulate a finite difference approximation for the Laplacian
operator having an error of k2, where k is the local grid spacing, equations
(1) and (4) were modified by adding the term E(3y/dx) to both sides.
Thus, for the S1 surface the stream function equation becomes

Py 18 S i
o a¢2+E Flzg)+E
or
E}
VY+E a_*qu(x,d,) (8)
X

where E is a function of the grid spacing in the z direction and is zero for
uniform spacing. The operator V¥+E (dy/dz) is approximated by a
ten-point star for the interdependence of the function values at neigh-
boring grid points. To maintain an overall accuracy of order k%, the
derivative dy/dz is also approximated by the use of a ten-point star.

Boundary Conditions

Considering first the S2 surface, the boundary conditions are relatively
simple. At inlet to the turbomachine, the flow conditions are known;
therefore, the stream function distribution is defined for the first straight
line of the grid. The inner and outer annulus walls form limiting stream-
lines, so that for grid points on the walls the stream function is known.
For the far downstream boundary, it is assumed that the shape of the
exit duct is such that the stream function distribution is the same on the
last two straight lines of the grid.

The blade-to-blade problem—S1 surface—poses quite complex bound-
ary conditions. Far upstrcam of the blade row the gas state and flow angle
are known and it is assumed that the flow is uniform. The gradient of
stream function is defined, therefore, for the first straight line of the grid.

Thus, from equation (2)
3
<—¢> = _Q Ad tan a,
ox u Tu

where A¢=2x/N and N is the number of hlades in the row. For the blade
region the suction and pressure surfaces form, by definition, limiting
streamlines so that for grid points on the blade surfaces the stream
function is known. Upstream and downstream of the blade the locations
of the streamlines are not known until the problem is solved. For these
regions, the boundary condition is that there is a circumferential perio-
dicity of the flow. The final condition is that for the far downstream
boundary. In a real blade-to-blade flow the circulation, and consequently
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the outlet flow angle, is largely controlled by viscosity. In a potential flow
model a criterion has to be adopted for fixing the circulation. In the
method developed at NGTE, it is assumed that the flow is uniform and
the flow angle is known far downstream of the blade row. These conditions
fix the gradient of stream function on the last straight line of the grid

B N A N VP PN 3- 3
WiiiCa, 110N cquatxun (2), i3

(6_:#) = Q A¢ tan ay
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Solution of Banded Equations and Convergence

By making use of the finite difference approximations and the boundary
conditions, the modified stream function equations—equation (8) for the
S1 surface—can be written in matrix form:

[M]-[¥]1=[q] (9)

where [¢] and [¢] are column vectors formed by ¢ and ¢ at each grid
point and [M ] is a band matrix of the influence coefficients of the finite
difference approximations. The method of solving equation (9) for the
stream function is to solve for a given vector [¢], to correct [¢ ] using the
new flow pattern, and then to repeat the cycle of caleulation until the
solution has converged to a specified tolerance. Since the matrix [M] is
“banded,” only the band of nonzero elements is formed and stored in the
computer and a very efficient direct method (ref. 13) is used to solve
equation (9) for a given vector [¢]. This method is better than the
alternative indirect or relaxation method, as used by Katsanis, for the
simple reason that it is very stable numerically.

Numerical stability can be a major problem with any iterative method.
In the matrix through-flow and blade-to-blade methods, the iterative
process has been made stable by introducing a relaxation factor R; thus,

'/’p=¢p—1+R(¢’_‘//p—l) (10)

where

¥ calculated value for the pth iteration
¥p  value taken for the pth iteration
¥p-1  value taken for the (p—1)th iteration.

Additional stability was obtained in the through-flow method by limiting
the percentage change in ¢ between successive iterations, a restriction
which is automatically removed as the solution converges. For the blade-
to-blade method, the stability was further improved for compressible flow
by adopting a ‘“marching’”’ process of increasing the inlet Mach number
gradually to the required value.
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When the stream function is known, it is possible to calculate the
products pW,, pW4 and pW,. To calculate the density and hence the
velocity components a tabular method, as developed by Wu, is used in the
through-flow method. For the blade-to-blade problem, an alternative
method, suggested by Gelder (ref. 14), is used. In this method, the cal-
culation of density is allowed to lag the stream function calculation by
one iteration. This has the effect of improving stability and for com-
pressible flow, the relaxation factor R—equation (10)—is a function of
the maximum Mach number.

BLADE-TO-BLADE FLOW PATTERNS

Eight examples are given to illustrate the use of the blade-to-blade
computer program.

(1) Impulse turbine cascade

(2) Seventy-degree camber blade

(3) Axial turbine rotor tip section

(4) Axial turbine rotor root section

(5) Axial turbine stator blade

(6) Turbine stator cascade

(7) Three-dimensional flow past turbine stator blade
(8) Radial cascade diffuser

Impulse Turbine Cascade

The first example is the incompressible flow past a 112-degree camber
blade in cascade. The blade profile (fig. 3) is an impulse-type turbine
blade having a pitch/chord ratio of 0.59 and 101 degrees flow deflection.

-L (a) 112 DEGREE CAMBER BLADE >i1.17o
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Ficure 3.—Blade profile-exact B\

solulions. (b) 70 DEGREE CAMBER BLADE
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The velocity ratios are plotted in figure 4. (Velocity ratio is defined as the
ratio of local surface velocity to far downstream velocity.) Also shown is
an exact solution obtained by Gostelow (ref. 15). The matrix solution is
in very good agreement with the exact solution.

Seventy-Degree Camber Biade

This blade profile (fig. 3) has a pitch/chord ratio of 0.9 and 70 degrees
of camber. The two-dimensional, incompressible velocity distribution for
—70 degrees of incidence is compared with an exact Gostelow solution in
figure 5. In general, the matrix solution is in excellent agreement with the
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exact solution. It is noticeable that the main discrepancies are in the
region of the blade trailing edge on the suction surface. For this region,
the exact profile coordinates are a long way apart and it is probable that
errors in interpolating the coordinates for the matrix solution have caused
the discrepancies. There seems no reasonable doubt that complete agree-
ment would have been obtained if the exact airfoil shape had been more
fully defined. This example shows that there is no problem in analyzing
high-incidence flows. The streamline pattern, calculated by the matrix
method, is shown in figure 6. It may be seen that the leading edge stagna-
tion point is well round on the suction surface.

Axial Turbine Rotor Tip Section

This example of two-dimensional, incompressible flow past a rotor tip
section is given to illustrate the type of detailed flow pattern that can be
calculated. The blade section is typical of a high pressure ratio turbine
stage and is formed by a parabolic camber line and an analytical thickness
distribution (ref. 16). Initially, the profile was designed so that the blade
inlet angle was equal to the gas inlet angle of 18 degrees, a condition often
referred to as zero geometric incidence. Figure 7 shows the blade profile.
The surface velocity distribution around the blade leading edge is plotted
in figure 8. It may be seen that it has the undesirable characteristic of a
high peak on the suction surface. Such effects have been found by Hall
(ref. 17). This is due to the large induced incidence which can be seen
from the streamline pattern in figure 9a. The high suction peak was
reduced by effectively drooping the nose of the blade (fig. 7) by 10 degrees
so that the profile was operating at — 10 degrees gecometric incidence. The
resulting velocity distribution is shown in figure 8 and, from the streamline
pattern (fig. 9b), it may be scen that the induced incidence was consider-
ably reduced. These results serve to show that computer methods can be
very powerful in analyzing detailed aspects of the flow which would prob-
ably be very difficult to find experimentally.

Fi1GURE 6.—Streamline patlern for leading
edge of 70-degree camber blade.

i
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ZERO INCIDENCE

FigUure 7.—Turbine rofor tip sections.

Ficure 8.—Velocity distributions for
turbine rotor tip sections.
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Axial Turbine Rotor Root Section

This blade section is typical of a high pressure ratio turbine stage. The
basis for the design is the same as that of the previous example. The gas
inlet angle was 48.9 degrees and the blade geometry at inlet was chosen so
that the geometric incidence was zero. At outlet, the blade passage was
adjusted to satisfy the gas outlet angle of —63.9 degrees by the empirical
rule of Ainley and Mathieson (ref. 3). The blade surface velocity for two-
dimensional, incompressible flow (fig. 10) shows that a detailed solution
can be obtained in the region of the leading edge stagnation point. A
particularly interesting feature of this blade section is that, according to
the Ainley and Mathieson rule, the deviation? is 2.87 degrees negative.
The velocity distribution for the trailing edge region is shown, enlarged,
in figure 11 for an outlet flow angle of —64.15 degrees—a difference of
only 0.25 degrees from the Ainley and Mathieson value. It is seen that on
both the suction and pressure surfaces there is a rapid rise in velocity as
the flow passes around the trailing edge. At the blade cutoff points, the
velocities are equal, a criterion often used for fixing the outlet flow angle
(ref. 18). Also, if the two surface velocity distributions are extrapolated
then the loading at the blade trailing edge is zero, thus satisfying Preston’s
theorem (ref. 19) that equal and opposite vorticity should be shed from

Fiaure 10.—Velocity distribution for 151
turbine rotor root section. VELOCITY
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2 Deviation is the difference between the fluid and blade outlet angles.
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the two blade surfaces. The streamline pattern is shown in figure 12. It
is seen that the flow leaves the trailing edge smoothly. This example
shows that, applying existing velocity distribution criteria, the potential
flow model gives an outlet flow angle in good agreement with well-
established empirical rules, although it is perhaps surprising to find that
the deviation is negative.

Axial Turbine Stator Blade

This example of two-dimensional, compressible flow is for the mean
diameter section of a stator for a NASA turbine (ref. 20) operating at the
design mass flow. The theoretical and experimental distributions of blade
surface Mach number are compared in figure 13. In general, the computed
Mach numbers agree well with experimental data. As mentioned earlier,
Katsanis has developed a similar blade-to-blade method. In his recent
paper (ref. 21) mention was made of an attempt to analyze the flow past
this blade. He found that it was not possible to obtain an exact solution?
and he had to resort to an approximate solution.

Turbine Stator Cascade

This turbine cascade was fitted with blades having the same profile as
the mean diameter section of the second-stage stator blades of the turbine

3 The term ‘“‘exact” has been used as meaning a numerical solution from the com-
puter program.
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Ficure 12.—Computer output—streamline pattern for turbine rotor root section.

described in reference 22. Two compressible flow solutions for the blade
surface Mach number distribution are compared with experimental

data in figure 14. The computed Mach numbers agree well with experi-
mental data for this example.
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Three-Dimensional Flow Past Turbine Stator Blade

The flow through the two-stage turbine mentioned in the previous
example has been analyzed using both the blade-to-blade and through-
flow programs. The results of the through-flow analysis are presented in a
later section of this paper.

Two matrix blade-to-blade solutions for the flow past the second-stage
stator blades were computed. The first solution was for two-dimensional
flow (i.e., cylindrical stream surface of constant thickness) and the outlet
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flow angle was calculated from the Ainley and Mathieson empirical rule.
The second or quasi-three-dimensional solution is a refinement in that the
stream surface thickness was varied. The variation of thickness was
determined from a solution for a meridional flow pattern using the
through-flow program and the outlet flow angle was determined by
applying the condition of zero trailing edge loading.

A comparison of observed blade surface Mach numbers with the
theoretical calculations, for the mean diameter section, is shown in’ figure
15. The most striking point here is that when some of the interactions
between the meridional and blade-to-blade flow patterns are introduced
the quasi-three-dimensional solution is in good agreement with experi-
mental data. As mentioned earlier, this mean diameter section has been
tested in cascade. The cascade Mach number distribution shown in figure
14s corresponds to the turbine flow conditions given in figure 15. By
comparing the cascade and turbine results, it may be seen that the three-
dimensional flow effects are significant on the peak surface Mach number.

Radial Cascade Diffuser

To illustrate the types of turbomachines to which the matrix blade-to-
blade method can be applied, the last example is a radial cascade diffuser.
The initia) calculations were made for incompressible flow with the cascade
operating at zero geometric incidence and the outlet flow angle equal to
the blade outlet angle (i.e., zero deviation). The theoretical velocity
distribution is shown in figure 16. The peak near the trailing edge is due to
the potential flow model picking up the rapid change in blade surface
curvature in this region. In real flow, such peak velocities would be
removed by the presence of boundary layers. By extrapolating the suction
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F16URE 16.—Velocity distribution for a
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surface velocity distribution from 90 percent of the way along the surface
(i.e., just upstream of the rapid acceleration in the trailing edge region),
it is seen that the condition of zero trailing edge loading is not satisfied.
By increasing the outlet flow angle such that the deviation is 4.5 degrees,
it is seen that the loading at the trailing edge satisfies Preston’s theorem.

MERIDIONAL FLOW PATTERNS

In this section, four examples are given of meridional flow patterns
obtained from the matrix through-flow program.

(1) Two-stage axial-flow turbine

(2) Single-stage axial-flow turbine

(3) Low pressure ratio centrifugal compressor
(4) High pressure ratio centrifugal compressor

Two-Stage Axial Flow Turbine

This turbine (ref. 22) is the one referred to in the previous section. In
applying the matrix through-flow program, the effects of irreversibility
were taken into account by assuming that the local polytropic efficiencies
were constant throughout the flow field. From the comparison of the
experimental and predicted profiles of axial velocity at the turbine exit
shown in figure 17, it is seen that the through-flow theory gives a fair
estimate of the axial velocities. Recent work by Gregory-Smith (ref, 23)
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F1GURE 17.—Axial velocity profiles far 4001
downstream of two-stage turbine.
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on annulus wall boundary layers shows that it should be possible to
improve the predictions in the region of the end walls.

The turbine was fitted with static pressure tappings in the annulus
walls. Figure 18 shows comparisons of observed pressure distributions
with the theoretical calculations. The static pressure ratio is defined as the
ratio of local static pressure to turbine inlet stagnation pressure. The main
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point to note is the presence of an inverse pressure gradient in the region
of the second-stage stator blade—static pressure on the inner wall greater
than that at the outer wall—which was successfully reproduced by the
through-flow analysis. An alternative to the through-flow method is what

is known as the streamline curvature duct flow method (ref. 5). Frost
LS Iy DI 1S I, ) g,

(ref. 24) has found that this method, which is widely used throughout the
aircraft industry, did not predict the inverse pressure gradient. This
example serves to show that when calculating the detailed internal
aerodynamics, the flow inside the blade rows must be analyzed if a fairly

accurate solution of the flow pattern is required.

Single-Stage Axial Flow Turbine

This single-stage, lightly loaded turbine was designed and tested at
NGTE (ref. 25). In the initial through-flow analysis, no allowance was
made for annulus wall boundary layers and the local polytropic efficiencies
were assumed to be constant throughout the flow field. The predicted
velocities (fig. 19) at turbine exit were in fair agreement with the observed
values. Some measure of improvement in the region of the outer annulus
wall was obtained by Herbert et al. (ref. 26) by allowing for the blockage
caused by the boundary layers on the annulus walls. Improved matching
of the experimental and predicted velocity profile would require a detailed
boundary-layer analysis along the lines suggested by Gregory-Smith.
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Low Pressure Ratio Centrifugal Compressor

This centrifugal compressor was designed and tested by a firm in the
United Kingdom. The results shown in figure 20 are the experimental and
theoretical distributions of static pressure ratio along the shroud. The
static pressure ratio is defined as the ratio of local to inlet static pressure.
In performing the initial calculations, the values of local polytropic
efficiency were assumed to be constant throughout the flow field and the
slip factor equal to unity. The solution, although giving the correct trend,
is in poor agreement with the observed pressures. By assuming a non-
uniform distribution of local polytropic efficiency and a slip factor of 0.91,
the matching between experiment and theory was improved. This example
shows that if a scientifically based model for the flow loss can be formu-
lated then the through-flow theory might eventually be used to provide a
quantitative picture of the flow pattern.

High Pressure Ratio Centrifugal Compressor

This example of a centrifugal compressor has been included to illustrate
the use of the through-flow program at the design stage of a machine. The
initial and modified (final) hub-shroud profiles are shown in figure 21.
The only difference between the two impellers is that for the modified
machine, the inducer extends beyond the leading edge of the splitter
vanes, thus giving a deeper inducer section. The relative Mach number
distributions along the hub and shroud profiles are shown in figure 22. It
will be seen that the severe velocity gradient in the region of the inducer
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leading edge for the original impeller is to some extent alleviated in the
modified impeller. This example demonstrates the effects of modifications
that are possible within the limits of the same inlet and outlet areas and
overall length of the machine. A new design may, of course, permit
variations on all these factors and the use of a computer method helps in
choosing the best combination.

CONCLUSIONS

Computer solutions for the meridional and blade-to-blade flow patterns
in turbomachines have been described. The theory is based on the earlier
work of Wu (ref. 11) and the numerical solution is obtained by finite
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difference approximations to the governing equations. The main con-
clusions are the following.

Blade-to-Blade Flow

(1) Comparisons with exact cascade solutions show that the blade-
to-blade program gives an accurate solution for incompressible flow.

(2) Analysis of turbine rotor blade sections shows that detailed flow
patterns can be obtained which would probably be very difficult to find
experimentally.

(3) A comparison with experimental data for a turbine stator blade
shows that the method gives a good estimate of high subsonic flow. This
analysis demonstrates that the asymmetric finite difference grid developed
here is an advancement over the conventional square or rectangular grid.

(4) An example of a two-stage turbine illustrates that the three-
dimensional pressure distributions can be predicted quite well.

Meridional Flow

(1) The matrix through-flow theory has enabled significant advances
to be made in calculating meridional flow patterns. An analysis of a two-
stage turbine shows that the theory gives a good estimate of annulus wall
static pressure distributions.

(2) An example of a centrifugal compressor shows that small modifica-
tions to the impeller can have significant effects on the flow field. This
analysis demonstrates that computer methods can help in selecting the
“best’’ geometry.

(3) A simple calculation of annulus wall boundary layers for a single-
stage turbine enables the through-flow predictions to be improved by
allowing for the blockage caused by the boundary layers.

(4) Improved matching between experimental and predicted flow
profiles depends on finding a better loss model and an accurate solution
for the boundary-layer development along the annulus walls.
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LIST OF SYMBOLS

Q Mass flow
7,2, ¢ Radial, axial, and circumferential coordinates
14 Absolute velocity

7 v wralanidey
W locit

Relati vE VEiOTivYy
z,y Coordinates with tilted axes
A\, a, ¢ Flow angles

¥ Stream function

Subscripts

d Far downstream of blade row
u Far upstream of blade row

z z-component

] y-component

) Circumferential component,
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DISCUSSION

T. KATSANIS (NASA Lewis Research Center) : Mr. Smith has shown
that approximate three-dimensional solutions for flow through a turbo-
machine can be obtained by a combination of meridional and blade-to-
blade solutions. This is fairly well known. However, we have here a fair
number of examples showing both the strengths and weaknesses of these
methods in applications.

Limitations of the method should be clearly stated. It appears that the
flow must be absolutely irrotational, steady relative to the rotating blades,
and nonviscous, and that the flow must be complete subsonic. There must
be other assumptions. Certain advantages are stated for the method and
the program, but the basic assumptions and limitations are not specified.

The author should specifically state how his method differs from those
currently available. For example, a nonorthogonal mesh is used, but the
corresponding finite difference equation is not given. Another example is
equation (8), where a term has been added, but no explanation of its
significance or why ¢(z,¢) is not also a function of 3y/dz.

Some comments must be made on one error. This is the statement that
the boundary condition of zero velocity normal to the blade is not satisfied
in references 8 and 9. This statement is not true. Further, the statement
is made that finite difference stars with short limbs leads to large trunca-
tion errors. It is true that the standard finite difference equation for
unequal spacing has a larger truncation error than with equal spacing.
However, this does not mean that the error in the solution will be larger.
In fact, with a rectangular mesh, there is theoretically no loss in the
aceuracy of the solution due to an irregular boundary. This has been
amply demonstrated by extensive use and experimentation with the
programs of references 8 and 9.

Mr. Smith does not discuss the reason for the use of iterative or relaxa-
tion methods for solving matrix equations. There are two main reasons,
one being the numerical stability which can be controlled by using a
suitable rigorously calculated overrelaxation factor, which assures
numerical stability with an optimum rate of convergence. The other
reason is economy of storage, which is not shared by most direct methods.
Certainly numerical stability cannot be improved with a direct method.
The advantage of a direct method would be in reducing the computer
calculation time. This reduction in computer time could conceivably be a
real advance, provided that storage requirements are not significantly
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increased, and that, as indicated, numerical stability is achieved. I would
be very much interested in seeing a comparison of computer times for Mr.
Smith’s program with the times for a method using optimum over-
relaxation.

M. D. WOOD (Cambridge University): The paper indicates the
magnitude of the recent advances made in calculating fluid flow in turbo-
machines. The examples given show that compressible flow in turbine
configurations can be predicted to a high degree of accuracy. However,
as soon as compressor-type machinery is considered, the position is not so
satisfactory. No one is really surprised, because the influence of boundary-
layer growth and separation in compressor flow is likely to introduce
effects which are of dominant importance. These effects are only recog-
nized in the Wu equations through the presence of losses, and in general
even these losses represent average or “smeared” values taken over
appropriate computing planes.

It is clear that there are few shortcomings in the equations of motion
which Wu manipulates—the shortcomings are only in the simplifications
we impose in order to obtain quick gains in current predictive accuracy.
I therefore suggest that we should now have the courage to involve our-
selves in combining the currently developing detailed calculations of the
viscous effects in turbomachinery with the typec of basic Wu program
described by Mr. Smith. To take examples, we can see how boundary-
layer separation in blade corners will lead to warping of stream surfaces.
This warping can, in principle, be incorporated in the Smith-type pro-
grams. Again, incorporating the predicted development of the boundary
layer on blade surfaces would give better understanding of the ‘slip”
factor for use in investigations of centrifugal compressors. Finally, in-
clusion of the turbulent diffusion effects between adjacent fluid layers
would lead to more realistic representation of the fluid forces in the Wu-
type equations.

Although this sounds like a daunting program, it is no more daunting
than the thought, 10 years ago, of putting Wu’s equations on a computer.
Perhaps the author would put my hopes into perspective by explaining
what he intends to do next.

A. 8. MUJUMDAR (Carrier Corporation): As pointed out by Dr.
Katsanis, since the program itself is apparently the major contribution
made by the author, it is unfortunate that it cannot be released for
publication. Any comparison with the generally available Katsanis
programs must, therefore, remain one-sided. The overrelaxation pro-
cedure using proper grid spacing and an optimized overrelaxation factor
should yield numerically stable results for well-guided geometries. As
suggested by Wilkinson (ref. D-1), the maximum relative velocity change
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between successive iterations should be taken as the criterion for con-
vergence rather than the maximum streamline deviation chosen by
Katsanis.

Since reference 12 in the author’s paper is not readily accessible, may I
suggest that the finite difference analysis and the numerical scheme be
included as an appendix to the paper when it is published. To my knowl-
edge there is no ‘“‘conventional” finite difference scheme to solve the
Poisson-type partial differential equations; a number of variations are
possible.

Referring to figure 15 of the paper, could the author explain why the
two-dimensional matrix solution appears to give better agreement than
the three-dimensional solution with the experimental data for the pres-
sure surface.

Finally, I wish to bring to the author’s attention the experimental
study of the flow in the blade passages of a radial turbine reported by
Glenny (ref. D-2), which may be used to provide further checks for the
computer code.

R. C. DEAN (Creare Inc.): I'm a little bit disturbed by perhaps the
implications that you suggest about the use of potential analysis in
centrifugal compressors. In my experience, the potential analysis usually
considerably overpredicts the pressure rise in the wheel and underpredicts
or predicts a low relative Mach number at the discharge of the impeller.
We have found this through several comparisons between these solutions
and data. The potential analysis you are suggesting implies, I think, that
the flow follows the blading. I think it is very misleading to think that
such a solution would work toward the back of the impeller. The important
physics of the flow are not included in the analysis.

L. MEYERHOFF (Eastern Research Group): I have a number of
questions.

(1) Do you have any convergence criteria?

(2) Are you able to predict the number of iterations for the con-
vergence criteria?

(3) How do you determine the trailing edge flow angle?

(4) Did the addition of the E term referred to in your paper still keep
the equations set up by Wu, exact? It is not clear whether the equations
are still exact after you add these E terms.

(5) Do you know of any analytical proof of the truncation error for
the overrelaxation referred to in your paper?

SMITH (Author): The author thanks the five discussors for their
review of this paper.

First, taking the specific points raised by Dr. Katsanis, the purpose
of this paper was to present numerical solutions for several turbomachines
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to indicate the magnitude of the recent advances made in ealculating the
fluid mechanics rather than a detailed account of the mathematiecs of the
flow models. The limitations of the methods and the finite difference
approximations have been published in references 4 and 10.

On the question of boundary conditions, I have perhaps not made my
point clear. In Dr. Katsanis’ method (refs. 8 and 9) the flow domain is
covered with a rectangular or square grid (fig. D-1). To obtain the blade
surface velocity at points such as A, the circumferential component of
velocity, W, is obtained from the relationship

and the resultant surface velocity W is determined so that there is zero
velocity normal to the blade; thus,
W,

W= p— (D-1)

where 3 is the local blade surface angle. For points such as B the meri-
dional component of velocity, Wa, is obtained from the relationship

_1w
" bor 9¢
and the resultant velocity is given by
W
W=—- (D-2)
sin B

I agree with Dr. Katsanis that these relationships ensurc zero velocity
normal to the blade. However, a restriction is placed on the resultant
velocities; equation (D-1) is limited to | 8 | <60° and equation (D-2) is
limited to | 8 |230°. This, I feel, implies an error in the derivatives of the
stream function or the stream function values and when the condition
of zero normal is imposed gives rise to an error in the resultant velocity.

|
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Ficure D-1.—Square finite difference grid.




COMPUTER SOLUTIONS OF WU’S EQUATIONS FOR COMPRESSIBLE FLOW 71

Turning to the problem of the solution of the matrix equations, I must
admit that I have no experience of iterative or relaxation methods. The
method I have adopted is a direct method developed by the National
Physical Laboratory (NPL), England. This approach, which removes one
possible source of divergence, has proved to be very stable numerically
and, as T pointed ont in my paper, only the band of nonzero elements are
formed and stored in the computer. In the recent blade-to-blade com-
puter program, the storage requirements have been further reduced by
making use of magnetic tapes as backing store; if the width of the band
matrix is W, the core store required is approximately 8W?2 There is a
further point concerned with the basic techniques of the method of
solution. Unlike “conventional” direct methods, the NPL procedures do
not “invert” the matrix on every iteration; the solution is obtained by a
backward and forward substitution process. The matrix equation to be

solved is
(M]-[v]=[q]
The first step is a decomposition of the matrix [M J; thus

LL]-CU]-[¥1=[g]

where the matrices [L] and [U] are lower and upper triangular band
matrices, which are only computed on the first iteration. The solution is -
then obtained by (1) a process of forward substitution, solving for [Z]
from

CL1-[2]=[q]

and (2) a process of backward substitution, solving for [¢] from

LUl-lvl=[2]

The direct method provides an exact solution for the matrix equations
and so it could be argued that, since the overall process for finding the
stream function distribution is an iterative procedure, it is not necessary
to obtain an exact solution on the earlier iterations. It may well be that
the best approach is a relaxation method on the earlier iterations, making
no attempt to reduce the residuals to zero on each iteration, followed by a
direct method on the final iterations.

In answer to Dr. Wood, I would ‘agree that we should now have the
courage to extend the type of calculations I have described to include
viscous effects. However, as is inevitable with an advanced calculation
procedure, my experience of the use of the matrix methods has shown
that, for the computer programs to become basic design tools, effort is also
required in generating supporting programs for preparing geometric input
data and graphical display of output data. This is one aspect I intend
to examine.
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I am grateful to Mr. Mujumdar for drawing my attention to experi-
mental investigation of a radial turbine. With regard to the solutions for
the turbine stator (fig. 15) I am unable to provide an explanation for the
two-dimensional solution being in better agreement with the pressure
surface experimental data than the three-dimensional solution.

I agree with Mr. Dean that, in the case of centrifugal compressors, some
of the important physics of the flow are not included in the analysis.
However, I feel that, even with the assumption that the flow follows the
blading, the computer tools can help the designer in selecting the best
geometry. If a boundary-layer analysis of a potential flow velocity dis-
tribution indicates, for example, separation in the inducer of a centrifugal
compressor then I am sure Mr. Dean would agree with me that the
designer would modify the geometry to overcome this problem. A number
of examples illustrating this point are given by Dallenbach (ref. D-3)
and Ball et al. (ref. D-4).

In answer to Mr. Meyerhoff, it is difficult to establish a unique con-
vergence criterion. The criteria I have adopted are

ToL=¥=¥= (through-flow method)
p—1
lﬁ —_ ‘pp—l
TOL=—F7— (blade-to-blade method)

It has been found that TOL can be reduced to 0.001 in 15 iterations for
the through-flow method and 0.0001 in 10 to 30 iterations for the blade-
to-blade method.

The calculation of the flow angle is a problem I have avoided by as-
suming it can be determined from existing empirical rules for the devia-
tion. Clearly this is unsatisfactory, as I have indicated by the turbine
example of figure 10. In a real flow the circulation is determined by viscous
effects, particularly for compressor-type machinery as illustrated by
figure 16. This is one aspect of turbomachinery fluid mechanics that
demands research.

The addition of the E(8¢/dz) does not change the basic Wu equations.
This term was added to keep the width of the band matrix to a minimum.

Finally, on the question of the truncation error for conventional finite
difference analysis, which Dr. Katsanis alsc raised, I can perhaps best
illustrate my point by considering a square grid. For such a grid a five
point star (refs. 8 and 9) is adopted to represent the Laplacian operator.
Consider a star near to a boundary (fig. D-2) with one irregular limb. It
will be supposed that for the star center, point 3,

af A\ &
(@)ﬁ(a“;;ﬁ)f,,%“"f"” (D-3)
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BOUNDARY

Figure D-2.—Five-point star with one
irregular limb.

where T is a truncation term and @y, a; are the weightings. The function f
can be expanded as a two-dimensional Taylor series about the point 3 at
which the function has the value f; and derivatives fi ., fs.y, fs.22, €te.
Substituting the Taylor series expressions into equation (D-3), it follows
that

Soatfom=a1 (fa_hfs.z+§f3.u—§f8,uz+ e )

h? h?
+a» <f3'—hf3.u+§—f3.w_‘6_f3,m+ . )
+asfa

k2 k?
+-a4 <f3+kfs.u+2—fa.w+6—fa,m+ ce )

h? h?
+a’5 (f3+hf3,z+2_f3.zz+6_f3,zn+ P )

+T’

Since f is a general function, it follows that the coefficients of f and each
of its derivatives may be equated on each side of the above equation.
There are five disposable constants a;(z=1(1)5) and so only the coeffi-
cients of f, fz, f,, fz= and f,, may be used in order to make the finite differ-
ence approximation independent of the low-order derivatives. From the
coefficient equations, it is easy to show that the solution for the weightings
is

Q=
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2
(DR
_2(y+1)
BT e
—— 2
! (v+1)vh?
1
a5=ﬁ
where y=k/h.
The truncation error is
’ h(72_1>
=mf3,uw+0(h2f3.ww) (D-4)

It is seen, therefore, that as the irregular limb gets shorter (i.e., v de-
creases) the truncation error increases.
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