N75 11179

A Note on the Influence of Axial Velocity Ratio
on Cascade Performance'

M. B. WiLsoN

California Institute of Technology

R. Man1

University of Massachusetts

A. J. AcosTa

California Institute of Technology

A thin airfoil quasi-two-dimensional potential flow theory has been
used to analyze cascades with axial-flow contraction. Attention is
centered on the flow turning of a lattice of foils as measured by the
deviation angle. The influence of both axial-flow acceleration and
foil thickness on the deviation angle is summarized in plots that
should be useful for design purposes. It is shown that the effect of
axial-flow contraction is larger when the foils are relatively far apart
than when they are close together. The influence of axial velocity
ratio across the cascade changes markedly with the stagger angle.
These effects are essentially unaltered due to foil thickness.

Design of axial-flow compressors and fans relies heavily on experimental
data and simplified empirical rules (see, for example, ref. 1). Concurrent
with experimental research, there have been strong advances in theoretical
two-dimensional potential flow solutions of cascades (e.g., ref. 2). Within
the limitation of assumed two-dimensionality, these theoretical solutions
should be very useful in the interpretation and correlation of test data for

! All graphs, tables, equations and conclusions presented in this revised paper have
been corrccted from the earlier version presented at the symposium. The work pro-
viding the basis for this paper was carried out under Department of the Navy Con-
tract Nonr 220(59).
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102 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

design purposes. In an actual turbomachine design, of course, there is
always a three-dimensional character to the flow, and one of the inter-
esting consequences of this complication is that there is a change in the
axial-flow velocity through the cascade. Recent theoretical calculations
by Mani (ref. 3) contribute to the possibility of more rationally predicting
the potential flow performance of a lattice of airfoils under conditions of a
varying axial velocity. A survey of Mani’s work appears in reference 4;
reference 5 describes the computer techniques used in obtaining numerical
results.

The purpose of this note is to outline some further results of computa-
tions using Quasi-two-dimensional theory (QTD) and to present these
numerical data in the form of graphs and tables useful for design. Primary
emphasis is placed on the influence of axial velocity ratio (AVR =Vay/Vay)
on cascade performance although, as will be seen later, wide ranges of
most of the other cascade variables have been considered. In addition, we
include some comparisons between existing theoretical results for two-
dimensional cascade flows and the present results. The curves presented
in the main body of this note are supplemented by the tables of data
given in the appendix.

THE QUASI-TWO-DIMENSIONAL CASCADE

The problem under consideration is that of the irrotational incom-
pressible flow through an infinite cascade of airfoils spanning a channel
whose width A(z1) changes slightly along the extent of the blade (figs.
1 and 2). Because h(x;) is a slowly varying function of x; only, the flow is
very nearly two-dimensional (hence the term ‘“‘quasi-two-dimensional”).
In the study of plane cascades, the basic flow disturbed by the airfoils is
represented by the vector mean V.. of the inlet and outlet flow velocities.
In the case of varying axial velocity, for reasons explained in the dis-
cussion of this paper, if Va; and Va, denote the axial velocities at the
cascade leading and trailing edges and Vi, and Vi the corresponding
tangential velocities, the mean velocity representing the basic flow through
the cascade (fig. 3) has an axial component 3 (Va4 Vae) and a tangential
component V., +31AV.(1+a/2E), where AV,=V,,— V. and a and E are
contraction parameters shown later in figure 4.

Cascade and Flow Parameters

Performance of a cascade system is usually represented by the amount
of flow turning exerted by any one blade Ag=81—p: as a function of all
the remaining cascade and flow parameters. To some extent, performance -
is also indicated by the resulting circulation I' about an airfoil. In strictly
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M F1GURE 1.—Schematic of flow
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plane flow, the circulation is a direct measure of the lift exerted on the
blade.

Figure 2 defines the various parameters of cascade and flow geometry.
The notation adopted here differs slightly from that used by Mani in
references 3, 4, and 5; it coincides more with Lieblein (ref.1) and Mellor
(ref. 2). In figure 2 all angles are indicated in their positive sense.

The inlet and outlet flow angles are

i ; 61 .
! 2

0.
Br=A—3+5*

and the angle Ag through which the flow is turned is
AB=73(01140,) +1—o* (2)
In the work to follow, the camber line is symmetric so that 6;=6,.
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Ficure 2.—Definition sketch for the cascade and flow paramelers.

Basic Equations

The quasi-two-dimensional (QTD) flow analysis is modeled after the
approach and method of solution for plane flow cascades described in
reference 2. There are several notable features of this theory that can be
briefly mentioned here. The principal feature is that the governing equa-
tion of the strictly three-dimensional flow is reduced to a two-dimensional
equation. This simplification can be made only because it is assumed that
the channel width h(z;) is a slowly varying function. Beyond this, for
simplicity, a channel contraction shape is adopted which minimizes the
requisite calculations yet retains the essential features of the problem. In
the present work there is the additional (but not essential) simplification
that the thin airfoil approximations can be used. These same approxi-
mations have, in fact, been used before for plane cascade flow analysis
with good effect (ref. 2) and are believed to be equally useful in the
present case.

The key notion in this work is that all relevant quantities can be
averaged over the channel height and that any errors that result are much
smaller than the effect being sought. This idea is well known, as is indi-
cated in reference 4, and rough estimates of the error involved can even
be made (ref. 3). The flow is assumed to be an incompressible, potential
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Figure 3.—Velocity vector diagram.

flow. There will be, accordingly, a velocity potential ¢(z,y,2) having
velocity components u(z,y,2) =d¢/dz, etc. We define the following
averages

1 h
@(21,51) =z /o e(x,y21) dzy
(3)

h
d(xl,yl) =m . u(x;,yl,zl) dzl, etc.

It may then be shown (ref. 4) that

__ 99
U=
62:1

> (4)
99

i=—
6y1

and that a quasi-two-dimensional stream function ¥ (2,3:) can be defined
by
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In terms of the averaged flow quantities, the full three-dimensional flow
field equations become

M) 95
A‘”+h(ycl) or
; (5)
R (z) 89
AJ_h(xl) 6—.’01_0

where h’(x1) =dh/dx;. Fundamental solutions of these equations corre-
sponding to source and vortex flows are clearly dependent on the channel
shape through the function h'(x1)/h(z1). The principal feature of the
quasi-two-dimensional flow theory developed in reference 3 is that it takes
explicit aceount of the fact that the velocity fields of sources and vortices
should be calculated on the basis that these singularities themselves are
modified by the lack of two-dimensionality.

Even from the equations quoted above for the average potential ¢
and stream function ¢, it is clear that a good choice for the channel shape
h(x;) is one for which the function &’ (x,)/h{x:1) is as simple as possible.
For this ratio equal to a constant, —a (a contraction), the result is an
exponential channel shape h(x;) =heexp (—ax1). A more realistic choice
is one which gives a contraction effect and also constant stream velocities
far upstream and far downstream. For purposes of the calculations in this
report, a channel shape is chosen with a central contraction

b (1)

Wy =~ e[Hoate) ~Hoz—a)] (6)

where Ho(z;) is the Heaviside unit step function. This channel is sketched
in figure 4a and can be conveniently termed a finite exponential channcl.

Calculations of the fundamental source-like and vortex-like singularities
of equation (5), even for the case of a finite exponential channel, are very
complicated. It is only for the case of small contraction parameter « that
the velocity components used for these computations can be approximated
to the first order in «; i.e., that the z;-component of a unit vortex in
axially accelerated flow can be expressed in the form

1 751

_51: (x12+y12) Fati, (7)

Uvortex =

where u,, is a correction term for the non-two-dimensional character of
the flow. Details of the calculations of all the necessary velocity com-
ponents are contained in reference 3 and are summarized in reference 4.
They all have the same form as equation (7), where the resulting formulas
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are linear in . This points to a feature of the final results of the computa-
tions described in this note: they can be extended by linear extrapolation
to any arbitrary but small a.

The problem is nondimensionalized by putting the chord length c¢=2.
The extent of the contraction (2a in fig. 4a) is denoted by E. In the com-
puter computations it is necessary to keep the ratioc E/2cos A>1.0.
Figure 4b indicates the nondimensional channel geometry in the z,~z
plane.

The axial velocity ratio is computed using the axial velocity com-
ponents Va, and Va,, measured at the leading edge and trailing edge,

respectively. From the continuity equation, we have

AVR=_=.—_=eZa cos A (8)

[~ C COS A —]
—C/2 cos A Q| C/2 cosh
X,
~ag

- hoe

hoeax, |
hee®?
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F1GURE 4a.—Channel shape for a central contraction.
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FiGurE 4b.—Nondimensional coniracting flow problem, with a finite length exponential
channel and airfoils of chord length ¢ =2.
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Hence, for the special geometry chosen, the contraction parameter « is
related to the axial velocity ratio by the formula

1
CcoSs A

In (AVR) (9)

Airfoil Sections

The principal geometrical features of any airfoil section are the camber
line function y.(z) and the thickness distribution yu(z).

From figure 2 we see that the camber angle 6 is a convenient index for
describing the camber line. This is especially true of a symmetrically
cambered foil for which /2 measured at the leading edge is identical with
8/2 measured at the trailing edge. Now, for design purposes it is often
useful to be able to preseribe the seetion lift coefficient Cb of an isolated
airfoil in terms of the camber angle. Two simple camber line functions
are of special practical interest: the parabolic arc and the circular are.
They are shown schematically in figure 5, indicating how the camber
angle 6 is measured for cach one. From thin airfoil theory, the section lift
coefficient due to camber for the parabolic arc is (ref. 6)

[} ] 1
= Il — ... 0
Cs wtan2 1r2<1+120+ ) (10)

Using the Joukowski transformation, the section lift coefficient for a
circular arc camber line at an angle of attack o* is (ref. 6, p. 69)

Y

K
D TN
-1 I Ji'—l 1

u
(2]
Parabolic _Arc Camberline Circular _Arc Camberline
Ye _px dye __ %
=A, fhut/ S S—
dx c dx 'CSC % - xz
where: A, = -7,"— where: 8=8(Cp)

FI1GURE 5.—Parabolic and circular-arc camber lines.
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_,_sin (a*+6/4) .
Co=2m cos 8/4 (11)

Putting o* =0, the lift coefficient due to camber for a circular arc is
[/} 8 1
Cb=27rtan7ﬁ1r:(1+;302+...) (12)
4 o\ L 26] /

Clearly, for reasonably small camber angles, 8, these lift coefficients are
nearly the same.
It is convenient to prescribe the camber-line slope in terms of a poly-
nomial
dy.
e _ Aot Ao+ Aga? (13)
dz
The present calculations use a parabolic symmetric camber line with
Cy(6) from equation (10), so that in equation (13)

Ap=A,=0
(14)
4=-2
™
and
Cy .
6=2tan™* — (parabolic arc) (15)
T

A circular arc camber line could be only approzimately represented by
equation (13). The camber angle 6, given Cs, is determined from

C .
§=4 tan~! — (circular arc) (16)
T

The present computations were performed using a thickness distribu-
tion yu(z) of a symmetrical Joukowski airfoil. The thickness slope is

d i .
Wan_ (0.77) - <tan ¢ _2sin <p) a7
dz c 2
where 2= cos ¢.

One of the direct results of the QTD analysis is the determination of the
coefficients in the thin airfoil vorticity series

N
v(z) =a, tan g—{— > an sin (np) (18)

n=l1
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For purposes of the calculations, the number of terms N in this series was
limited to 5. This is used throughout. However, a higher number of terms
might be better, especially for the larger values of the stagger angle A and
for the larger solidities o.

The total circulation (measured positive counterclockwise; see fig. 1b)
for both the two-dimensional and three-dimensional calculations is
given by

ax
I‘¢=1l' <a0+2—> (19)

For the two-dimensional cascades, a lift coefficient can be calculated
directly from the circulation. Correcting for the sign of I'; from equation
(19), the lift per unit span is

L= —‘meI‘g
Then

L T,

CL = =
oVaic 1V.c

Wi

This is nondimensionalized using ¢c=2 and V,=1. Hence the lift coeffi-
cient for an airfoil in the two-dimensional cascade system is

CL=—P1 (20)

Values Used in Present Computations

The results presented in this note have been calculated for a range of
stagger angles and solidities with a thickness ratio of 0 and 0.1 and for
mean angles of attack of 0 and 0.1 radians. The camber parameter C, was
taken to be unity and the contraction parameter o was taken to be 0
(two-dimensional) and 0.1. The extent of the contraction was always 1.1
times the axial projection of the blade. It was found sufficient to use five
terms in the vorticity series. The resulting calculations required a 15-
second execution time (per each solidity and stagger angle combination)
for the two-dimensional case and 48 seconds for the quasi-three-dimen-
sional case on the IBM 7094 computer.

RESULTS: EFFECT OF FLOW ACCELERATION ON FLOW
TURNING

In this section, the main results of this note are presented in the form
of nondimensional plots of the deviation angle. As mentioned previously,
the calculations were performed assuming parabolically cambered airfoils
with a prescribed section lift coefficient C. Computations illustrating the
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effect of foil thickness (t/c) are presented only for ¢=1, using the sym-
metrical Joukowski thickness distribution discussed earlier.

Throughout the ensuing discussion the term “flow turning” will refer
to the change in the flow angle A8 = (8+-7) — &*. This conforms to the usual
convention and is the one adopted in references 3, 4, and 5. Comparisons
made between two- and three-dimensional flows assume a given inlet
condition; so the incidence angle ¢ can be thought of as constant at a given
A and ¢. Hence it is actually (—6§*) that measures changesin Ag.

Flow turning through a cascade with accelerating flow is influenced by
two factors: the magnitude of the circulation Tsp about the blades and
the increase in axial velocity. It has been pointed out (refs. 3 and 4) that
the reduced circulation caused by axial-flow acceleration weakens the
ability of the cascade to turn the flow, but the speed-up in axial velocity
tends to make the flow more axial, and hence acts to increase the flow
turning in compressor cascades. The final balance between these effects is
complicated and appears to involve all the parameters of the cascade
and flow geometry.

Zero Thickness Cascade Blades

Flow turning represented in terms of the nondimensional deviation
angle 6*/6 can be described as a function of the stagger angle ), the solidity
o, the particular choice of camber-line function y,(z), and the inlet flow
conditions represented by 8y (or, better, by the incidence angle 7).

Figures 6 and 7 are graphs of the change in §*/6 due to accelerated
flow divided by the quantity (AVR-1), plotted two different ways for
convenient use. An important feature of these graphs is that the values of
8*/6 appearing in the quantity A[6*/6]= (8*/6) (2D)— (6*/68) (3D) have
values of two-dimensional minimum loss incidence from Lieblein (ref. 1,
Chapter VI). This was accomplished by first establishing the minimum-
loss-incidence angles from figure 138 of Lieblein’s report. For each of the
cight stagger angles N (see the section on the quasi-two-dimensional
cascade) and the prescribed camber angle §=35.314°, the appropriate
incidence angle ¢ appearing in 8;=\+46/2+7 was determined by inter-
polation. The incidence angles found in this manner are referred to as
i2P). From the computer results, values of (§*/6) (2D) and (6*/6) (3D)
are known at two different values of the mean angle of attack a. (one
block of calculations at a,=0 and another at a,=0.1). By assuming a
straight-line variation of 6*/6 between the two «. values, the angles
1P can be cross-plotted on the same graph to obtain (5*/6) (2D,i£le)
and (8*/8) (3D,i&”) by interpolation. Note that this means that the
plane flow 6*/0 is compared with the accclerated flow 5*/8 at the same
inlet condition; namely, minimum loss incidence. From figures 6 and 7,
it is clear that the effect of flow acceleration (AVR>1) is larger when the
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FiGure 6.—Effect of flow acceleration on the deviation angle ratio at minimum-loss
incidence 12D,

foils are relatively far apart (¢—0) and that the influence of flow accelera-
tion is diminished as the foils are brought closer together (o increases).
The character of the change in §* due to AVR>1 is also altered as X
increases; i.e., A[6*/6] has a steeper curve for the higher A values. It also
changes sign for A<0 (compare the case of A=—15°). In the case of
A=0° extremely small values of A[4*/6] were obtained and, from a
practical design point of view, it would be best to assume A[§*/6]=0
for A=0°.

The mean angle of attack a. is not a constant in figures 6 and 7, but
varies with the appropriate minimum-loss-incidence angles i&".

Several things should be kept in mind concerning the minimum-loss-
incidence angles i&: (1) they were determined experimentally by
finding the minimum points on the curves of total pressure loss coefficient
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Ficure 7.—Effcct of flow acceleration on the deviation angle ratio at minimum-loss
incidence im @D,

versus incidence angle ¢ and (2) the experiments that formed the basis for
figure 138 of Lieblein’s work were performed with NACA 65-(Ay,)-series
airfoils, and the results were referred to equivalent circular-arc camber
lines.

The impact-free-entry operation of an airfoil is a useful reference
condition in design. Large velocity peaks on either foil surface of zero
thickness blades are avoided by locating the forward stagnation point
exactly at the leading edge. This simple impact-free criterion is not
applicable to nonzero-thickness blades with rounded leading edges, but
it seems reasonable to apply it to zero-thickness airfoils in a cascade.
This was first done by Weining in his approximate theory of a two-
dimensional cascade of cambered airfoils (see ref. 1, Chapter VI). For
thin airfoil theory, impact-free entry corresponds to arranging the inlet
flow angle 8; so that the coefficient ay equals zero in the vorticity series
(eq. (18)). The incidence angle ¢ leading to the condition ac=0 can be
referred to as an impact-free incidence, 4,,=0. Values of this parameter
for two-dimensional cases using the present theory were determined by
interpolation. Figure 8 is a plot comparing the experimental values of
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FiGURE 8.-—Comparison between experimental minimum-loss-incidence angles (Lieblein,
ref. 1) and potential theory impact-free incidence.

impact-free incidence 7,,%» =0 using the QTD theory with a=0. Both
are for zero-thickness airfoils. The two sets of curves are seen to agree
only somewhat at high values of A, and disagree completely for the lower
and minus values of X\, It is for this reason that we chose inlet conditions
corresponding to values of the experimental minimum-loss incidence

iZP in presenting the curves of A[§*/8] in figures 6 and 7.

Mutual Influence of Thickness Ratio and Flow Acceleration

To study the effects of thickness, a limited number of computations
were carried out for a 0.1-thickness-ratio cascade of parabolic-arc camber-
line airfoils of unit solidity and a camber of 35.314°. A range of stagger
angles from —15° to 75° was considered. The mean angle of attack was
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assumed to be zero. Both quasi-two-dimensional and plane flows were
considered, with «=0.1 and E=2.2 cos \ for the quasi-two-dimensional
flows. Thickness, in general, tends to increase deviation angles. In table
III of the appendix, we present values of the parameter 5*/6(t/c=0)—
6*/6(t/c=0.1) for both plane and quasi-two-dimensional flows. The table
shows that, in quantitative terms, the effect of thickness in increasing
deviation angles is practically identical for plane and QTD flows. Based
on these results, it seems reasonable to suggest that the results of figures
6 and 7 will be directly and quantitatively applicable to finite-thickness-
ratio cascades as well.

SUMMARY

Flow turning is an important aspect in the design of a compressor row,
and it is known that changes in axial-flow velocity through the row can
modify cascade performance. In this note, figures 6 through 8 summarize
some results concerning the effects on the deviation angle of both axial-
flow acceleration and changes in foil thickness. These curves are presented
in a fashion that should be useful for design purposes.

The curves of A[6*/6]/(AVR-1) versus ¢ and A in figures 6 and 7
combine both experimental and theoretical results. Two-dimensional
experimental values of minimum-loss-incidence angles from Lieblein were
cross-plotted with potential flow results for §*/4 from the QTD theory in
order to generate values for these graphs. In these two figures, the mean
angle of attack a. is not constant but varies with both X and ¢.

All of the results presented here pertaining to the effects of axial velocity
ratio on cascade performance are valid for small contraction parameter
a=In (AVR)/2 cos \. Whatever trends are evident can be thought of
as being linear in terms of this parameter, since the present QTD cal-
culation is essentially a regular perturbation expansion in «. This fact is
useful in extrapolating the present results to other small values of the
contraction parameter.

We should emphasize that the effects displayed in the graphs of this
report are to be taken as trends since they actually apply to a finite
exponential contraction and not necessarily to an actual contraction.
Also, we have not made a systematic exhaustive numerical study of all
the variables at our disposal. For example, variations in the extent of
contraction, the camber angle, and the camber-line function are not con-
sidered here. However, before further calculations of this type are under-
taken, it would be very desirable to have experimental results available
from cascade experiments in which the contraction effect and flow geom-
etry are well defined.
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LIST OF SYMBOLS

AVR

Ao, Ay, As

Qo, A1, . . . , AN
Cy

c

E

h

)

Ten 2y G650

2P

QTD

8

t/c
Vay, Vap

Vi, Ve

Vo
x! y} 2

2D
3D

o
Qom

@D) _GD)
am ) am

(2D) (3D)
Qmgy =0y Omag=0

pm
B1, B2

v(x)
T,

Axial velocity ratio=Vay/Va,

Coefficients of the camber line slope (eq: 13))

Coefficients of the vorticity series (eq. (18))

Section lift coefficient due to camber

Chord length of airfoil

Extent of cascade blades along the z; direction (fig. 4b)

Width function of channel = (x;)

Incidence angle (see fig. 2)

Incidence angles for impact-free entry (for t/¢=0), for
two-dimensional -and three-dimensional cascades,
respectively

Incidence angle of minimum-loss operation (2D cascade)

Quasi-two-dimensional; refers to the spanwise averaged
three-dimensional flow developed in reference 3

Spacing between foils in a cascade (see fig. 2)

Thickness/chord ratio

Axial flow veloeity components at the leading edge and
trailing edge, respectively

Total velocity at the leading edge and trailing edge,
respectively

Mean total velocity, 4 (Vi+ V)

Coordinate system with z, taken along the axial direction
(cascade axis)

Refers to plane flow cascades, h(x;) = constant

Refers to three-dimensional (QTD) cascades; for the
present calculations, a constant contraction parameter
a=0.1 was used

Contraction parameter, exp (2a cos \)

Mean angle of attack of V,. (see fig. 2)

Mean angle of attack corresponding to minimum-loss
incidence for two-dimensional and three-dimensional
cascades, respectively

Mean angle of attack corresponding to impact-free entry
for two-dimensional and three-dimensional cascades,
respectively

Mean flow angle, A a.

Inlet and outlet flow angles, measured with respect to
the cascade axis

Vorticity distribution (eq. (18))

Total circulation (positive counterclockwise) ; we also use
T'=—T,for parts of the discussion
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A[5*/6]
ATP[6%/8]

AFD[8*/6]
5*

A

g

6

Change in 6*/6 due to axial-flow acceleration,
8*/6(2D) —5*/8(3D)

Change in 6*/8 due to thickness change for two-dimen-
sional cascade, 6*/6(f/c=0)—58*%/6(t/c=.1)

Same as above for three-dimensional cascade

Deviation angle (see fig. 2)

Stagger angle, angie of foil chord with axial direction

Solidity, ¢/s

Camber angle, 3(6,46;) (see fig. 2)
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TasLe 1I1.—Values of Parameter [6*/6 (t/c=0)—3*/8 (t/c=0.1] as a Function of
Stagger Angle \ for a Parabolic Arc Camber-Line Atrfoil Cascade!

Parameter for Parameter for
\ degrees Q.T.D. flow T.D. flow

— 15 el 0.000 —0.001
O el —0.011 —0.012

15 e —a —0.025 —-0.025
30 oo —0.040 —0.041
- YD —0.0575 —0.057
60, o ieee- —0.076 © —0.075

[ T —0.106 —0.107

1 In the quasi-two-dimensional case, @ = 0.1 and E = 2.2 cos M. Also, &, =0, 6 =1 and O =
35.314° fcr both cases.
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DISCUSSION

J. H. HORLOCK anp J. P. GOSTELOW (Cambridge University):
We have followed the work of Mani and Acosta (and now Wilson) with
considerable interest over the past few years since, at Liverpool and
Cambridge, we have been working on the same problem of axial velocity
ratio effects.

On the analytical side, two approaches to the problem have been
described in the discussion of reference 4, referring to papers by Pollard
and Horlock (ref. D-1), and Shaalan and Horlock (ref. D-2). Briefly,
the first approach was to place strip sources across the blade pitch and
solve the potential equations for the flow past thin airfoils in two dimen-
sions. (This is somewhat similar to the approach of Smith, described in
the first paper, in which he allows for the flow in the §2 plane in his
solutions for the S1 plane.) The second approach made the initial assump-
tion that meridional flow through the midspan section of the blade was on
gently inclined planes, and a potential equation

W) 3 _

Ve =
¢+h1(xl) o

was derived for the flow near the center line. Solution of this equation was
again obtained by using local sources S=—(hl/h)(d¢/d2) varying
linearly across the pitch, No allowance was made for the modification of
the induced velocity due to restricted length of singularities. Essentially,
the problem solved was two-dimensional, but one in which fluid was
introduced uniformly at all values of Z in order to increase the axial
velocity.

Hawthorne (ref. D-3) has since argued that neither the Mani-Acosta-
Wilson nor the Pollard-Horlock-Shaalan approach is strictly valid. If the
Mani-Acosta-Wilson approach is more realistic than the Pollard-Horlock-
Shaalan solution in its allowance for spanwise variation in singularity
strength, then the effects of trailing, or shed, vorticity should also be
included, downstream of the blades. Hawthorne has solved the problem
for closely spaced blades using the type of analysis developed by Honda
for shear flows (ref. D—4).

Another approach is that of Norbury (as yet unpublished) who con-
siders the radial flow through “ring” airfoils. The bound singularities are
then uniform but circular in shape, rather than infinitely long straight



"124 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

lines (Pollard-Horlock-Shaalan) or lines of finite length (Mani-Acosta-
Wilson). -

Shaalan has recently provided a summary design manual similar to the
current paper. It allows for axial velocity ratio effects and is based on
reference D-2. A summary of Shaalan’s calculations is given in figures D-1
and D-2 for 20° and 30° camber. We doubt the validity of the thin airfoil
analysis, especially for cambers higher than 30°. Also shown is Howell’s
rule for deviation (ref. D-5), based on experimental cascade data. We
expect this rule to be valid for 1.1 <AVR <1.2. We have replotted these
calculations in figure D-3 (at zero incidence, not minimum-loss incidence,
which would be roughly —5°) for direct comparison with the Mani-
Acosta-Wilson calculations.

We would commend the use of the parameter A[6*/6]/(AVR—1) to
designers. This is a logical dimensionless group which adequately repre-
sents the observed linear dependence of deviation on camber (Howell)
and of deviation on axial velocity ratio (Pollard and Gostelow, ref. D-5).

}

Figure D-1.—Shaalan’s pre- b
diction for 20° camber. a®—
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CAMBER=30° 9 __ ) -
go P S 10 0 qum.: .D 2.—Shaalan’s pre
i | T T i diction for 30° camber.
az® -5 +5 15 25

| T T —T
- 15 25 35 45 55

T T T T T

(S} 1.26

61 (5/C1= 075

! f
= %
s 25 35 a5 =5

The experimental evidence available is that of Pollard and Gostelow
(ref. 13), Heilmann (ref. 14) and Masek and Norbury (ref. 15). Pollard
and Gostelow used 10/C430 C50 airfoils at 36° stagger, with solidities of
unity and 1.15. This resulted in the empirical rule

Ad*=5*3p—d%p=10(AVR—1)
giving
A[*/6] 10
AVR—1 30 0%
Heilmann tested a NACA 65-(12A2 I8b)10 cascade with 25.5° stagger
for minimum-loss incidence and a solidity of 1.5. The slope of the experi-
mental results gives

A—[6‘;‘:/—0—]‘=~i-0.15

AVR-1
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Ficure D-3.—Effect of axial velocity O4r
change on deviation angle ratio.
POLLARD AND GOSTELOW
[} o A=36°
031
o2 HEILMANN
0)=255°
~
=3 N
5 ;g‘ Ol ~
< SHAALAN A=30°
Nu‘,o
o -
-0
-0.2 L 1 s 1
05 10 R+
SOLIDITY

AMasek and Norbury tested a specially designed compressor cascade
with 35.5° stagger and a solidity of 1.2. The slope of their experimental
results, for both zero and minimum-loss incidence, gives

A[5*/6]

AVR—_1_ +0.31

We understand that the thin airfoil potential theory used by Mani-
Acosta-Wilson for airfoils of finite thickness neglects perturbations of
chordwise velocity and of velocity gradient in the equation for source
distribution. This may well result in erroneous prediction of lift and
deflection. It would be of interest to see the presentation of pressure
distributions from the Mani-Acosta-Wilson analysis, for comparison with
Shaalan’s predictions and with experimental results and for calculation
of the biade boundary layers. A disadvantage of all thin airfoil theories is
that the Kutta/Joukowski condition again results in erroneous prediction
of lift and deflection. Real blading usually has a rounded trailing edge.

It seems that there is much more work to be done. The changes in
A[5*/6]/(AVR—1) for off-design incidence have not been assessed
either theoretically or experimentally. There may or may not be a signifi-
cant change in this parameter as incidence is increased. Our own limited
evidence is contradictory. The designer also needs information on the
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relationship between loss coefficient and axial velocity ratio. This will
need a substantial effort with both experimental work and viscous flow
calculations.

B. LAKSHMINARAYANA (Pennsylvania State University) : I have

cairied out an approximatc analysis for the prediction of the change in
deviation angle due to change in axial velocity through the cascade. The
predicted change agrees qualitatively with those of the authors and
Pollard, Horlock, and Shaalan’s theory (refs. D-1 and D-2) and is in
good agreement with values measured by Pollard and Gostelow (ref.
D-6), Heilmann (ref. D-7), and Schulze, et al. (ref. D-9).

The change in circulation associated with change in axial velocity is
given by:P~!

AT = 8[(V., tan g1— V., tan B') — V., (tan 8;— tan Bz) ]
=SV, (tan 82— AVR tan ;') (D-1)
where 8;' =B:— As* and B is the outlet angle for AVR=1.

Ad* = Boq* — 03a™*
For small values of Aé*,

tan 8y’ = (tan B;— A%*) (1— As* tan Bz) (D-2)

Substituting equation (D-2) in (D-1) and neglecting the second-order
term (Ad*)?,

AT/SV.,= (1—AVR) tan Bs+AVR As* sec? i (D-3)

With regard to change in circulation (AT), mutual interaction of thick-
ness and axial velocity changes should be small and this has been demon-
strated by the authors (table III). Thus, the problem reduces to com-
putation of AT for a cascade of cambered plates.

The circulation distribution for a cascade of symmetrically cambered
(parabolic or circular) plates is given by (ref. D-10),

v(z) =KV .[2a(14 cos 8) /sin §+8(G/c) sin 8] (D—4)
where
K is the cascade influence coefficient (see fig. 282.1 in ref. D-10 for values)
a=1+6/2

(G = maximum camber
z=(¢/2) (1— cos ), the coordinate transformation

b-1 All primed expressions such as 831, V! refer to values with AVR 1 and V.
refers to axial velocities.
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The change in circulation distribution due to axial velocity change
(with V; and 8, held fixed) is given byP~*

dy=2KV,, Aa(14 cos8)/sin 8
4+ KAV ,.[2a(1+ cos 8) /sin 64-8G/c sin 6] (D-5)

where AV, for a cascade (which corresponds to the change in free-stream
velocity in the case of an isolated blade) varies from zero at the leading
edge to its full value at the trailing edge.

For small changes in axial velocities, the maximum change in V.. can
be approximated by

(Va') 2= V2222V n(AV )1 (D-6)

where V., is the vector mean velocity for a cascade with AVR>1 and
TE refers to values at the trailing edge.

Using the cascade relationships for V.. and V.’, equation (D-1), and
the approximations indicated in equations (D-2) and (D-3), the follow-
ing expression can be derived

AT
SV,

(AVm)TE__l_ V::
Ve, 8Vn

{(1+AVR)2—4— [(14+AVR) tan . +2 tan ;31]}

(D-7)

In equation (D-7), second-order terms such as A8*? and ATAs* have
been neglected.

Similarly, the trailing edge of the blade will have an incidence change
(for small Aarr) given by

tang’ 1 (tan Bt Aarg) (14 Aarr tan 8;)

tan 68, " AVR tan 8
Hence,
1—AVR tan 8,
= D-8
*TETTAVR sec? by (D-8)
If AV., Aa, and AV,, vary linearly with z, it is clear that
1—AVR
o= lZAVRIAD By ) (D-9)

2AVR sec?f

D-2 The analysis is based on the fact that each infinitesimally small blade element
in the cascade sees a different change in angle of incidence (Aax) and velocity (AVa)
due to change in axial velocity. The values vary from zero at the leading edge to full
value at the trailing edge; hence, dv, Aa, and AV, are all functions of z or 8.
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1— cosf

AV = (AV.)1E 2

(D-10)

Substituting equations (D-7) through (D-10) in equation (D-5) and
integrating the expression between =0 and x =c, the following expression

is derived for total change in cireulation
AT Va 1—AVR tan 8 (G oz) (AV,,.)
=IIK ———— ———+0Ke | —+- D-11
SV ROV AR sees o)\ v ) (DD

Substituting equations (D-3) and (D-7) in (D-11) and rearranging,
the following expression can be derived for the change in the deviation
angle due to axial velocity change

As*

AVR AVR-1

= cos? B, | tan B,

<1’IKa[(G’/c)+(a/4)]cosﬁ,,.[(AVR+1)’—4:|_ 211 K¢ tan 8; )
AVR—-1 AVR cosBnsec?B

8+ MK (a/4)+ (G/¢)] cos B[ (AVR+1) tan 8;-+2 tan 81 ]
(D-12)

Equation (D-12) provides deviation values which are better than those
of either of the two theories (see discussion of this paper by Horlock and
Gostelow) for the cascades of Pollard and Gostelow (ref. D-6), Heilmann
(ref. D-7), and Schulze (ref. D-9) as shown in table D-1.

It is not clear why the approximate theory developed above has better
agreement with experimental values than the theories developed by the
authors and Pollard-Horlock-Shaalan (refs. D-1 and D-2). One possible
source of error may be the numerical method. The numerical solution
adopted by the authors is not capable of predicting extremely small
change in angles. One way to overcome this is to solve directly for the
perturbed flow, as shown in this discussion, rather than to solve for the
entire cascade flow.

It should be emphasized here that all the theories, including that of the
discussor, are strictly valid for small changes in AVR (possibly for
0.9<AVR<1.1) and small flow turning. At higher values of AVR and 6,
the three-dimensional effects are important and the flow cannot be con-
sidered quasi-two-dimensional.

+
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TasLE D-1.—Comparison Between Predicted and Experimental Values of
A(6*/8)/(AVR-1)

Predicted
Cascade Parameters Experi- | BL (M/A/W | P/H/S
mental (refs.
value D-1 and
D-2)
Pollard and Gostelow
(ref. D-6)
10/C430 C50__ . ... A=36° o =1.14
B1=>52°50, B =31°
G/c=0.065, K=0.8
0=30° a=16°50" 0.330.42| 0.13 0.09
Heilmann
(ref. D-T7)
NACA 65(12A.1,)10. .. | A=25.5° ¢=1.5
B81=45° B2=19°
G/c=0.073,
K=0.65

0=31° «=19°30" 0.15 ] 0.18 0.062 0.04
Schulze, et al.
(ref. D-9)
NACA 65(11)10__ . _____ Xx=40.5° ¢=1.00
B1=52°30%, B;=35°
G/c=0.06, K =0.87
6=28° a=12° 0.37 | 0.49 | 0.175

WILSON, MANI, anp ACOSTA (authors): In view of the spirited
discussion of our paper at the symposium, a thorough review was carried
out of all aspects of the calculations. As a result, a rather subtle but
important error has been uncovered in our procedure of evaluating
deviation and incidence angles once the circulation has been determined.
We regret this error®— deeply but, as this closure demonstrates, once this
error is rectified, our results for deviation angles are in much better agree-
ment with those of other investigators.

Having obtained the total circulation T' around each airfoil, we as-
sumed previously that the row of infinite vortices would contribute
tangential velocities +=T/2s on the downstream/upstream side, where
s is the transverse spacing between adjacent airfoils. This result is indeed

D-3 These corrections have been incorporated in the final version of the paper pub-
lished in these symposium proceedings.
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true in the two-dimensional problem. It has turned out to be erroneous to
0(a) in the quasi-two-dimensional problem. We have calculated anew
these tangential velocities by summing the fundamental solution v, spelled
out in Appendix 1 of reference 4 of our paper. The correct result was
found to be that the tangential velocity (due to the vortices) downstream

is
—T «a
— - E
2s <1+2 )

where « is the contraction parameter and E is the extent of contraction,
The tangential velocity due to the vortices upstream is

T @
—{1—F
2s< 2 )

Note that the difference of these tangential velocity contributions is still
T'/s (as it should be), but the contraction introduces an asymmetry
whereby the downstream contribution is enhanced by a factor 14- (o/2) E
and the upstream contribution is reduced by a factor of 1—(a/2)E. We
thereby calculate the inlet flow angle with the equation

an gy 5 Oban) HAAV 1= (2/2) E]
an = (1—acos \) cos (A am)

and the outlet flow angle by

tan g S0 (M am) —3AV[1+(a/2) ]
an ﬁz-—
(14 acos A\) cos (A+an)

where AV, is still T'/s.

As can be readily appreciated, correction of this error has the effect of
decreasing (at fixed mean angle of attack) both incidence and deviation
angles. Two sets of computations were performed with the corrected
equations to demonstrate the vastly improved agreement of our results
with those of other investigators.

First, in figure D—4, we plot the §*—i curves for a zero-thickness,
parabolic camber line cascade with A=45° ¢=125 6=35.314°,
E/2 cos A=1.1,and a=0.1. Dr. L. H. Smith of General Electric Company,
Cincinnati, Ohio, referred our paper originally to his colleague, Dr. D. C.
Prince, Jr. Dr. Prince performed computations based on a finite difference
method and kindly supplied us with results for the effect of the contrac-
tion on the 8*—1 curves, based on his program. Dr. Prince was among the
first to express strong reservations about our results, indicating that the
deviation angles may sometimes increase (due to speeding of the flow).
The figure is largely self-explanatory, and it is seen that our corrected
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F1Gure D—4. — Deviation angles for parabolic camber airfoil.

results are in much better agrecment with those of Dr. Prince. Our
analysis predicts a drop of around 0.7° due to axial acceleration, while Dr.
Prince’s estimates are closer to 1° to 1.1°,

The second set of computations pertains to calculations carried out by
Professor Lakshminarayana in his discussion of the paper. He considers
two cases: first, a cascade with A=36° and o =1.14 and, second, a cascade
with A=25.5° and ¢=1.5. By interpolation from our new (corrected)
figure 7, the following results were obtained:

The table follows the notation of Professor Lakshminarayana’s dis-
cussion.

It is seen that the agreement with Professor Horlock’s results is now
much better. A discrepancy of even 0.04 in the value of the predicted
parameter with #=35° and AVR =1.15 corresponds to a discrepancy in
A* itself of only 0.21°. Considering that these results have been
derived by interpolation, the agreement seems satisfactory. Professor
Lakshminarayana’s predictive procedure, of course, would appear to fit
the experimental data the best of all. Perhaps most important, corrected
results of the present paper seem to fall in line with those of other in-
vestigators in that deviation angles would appear to be always reduced
due to axial acceleration for decelerating (A>0) cascades.

It is worth emphasizing that, in all these corrected calculations, the
value of T used was the same as obtained previously. No errors were
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TaBLE D-I1.—Comparison Between Predicted and Experimental Values of
A(3*/6)/(AVR-1)

Predicted
Cascade Experi-
mental BL WMA, WMA, P/H/S
value old, new,
erroneous | corrected
Pollard and Gostelow___ . 0.33 0.39 —0.05 0.13 0.09
Heilmann______________ 0.15 0.16 —0.13 0.062 0.04

found in the basic theory itself; namely, in the singular solutions or the
setting up and solving of the integral equation.

All graphs, tables, equations, and conclusions presented in this Jfinal
version of this paper have been corrected from the earlier version.

In conclusion, we wish to express our sincerest gratitude to several
individuals, notably Drs. L. H. Smith and D. C. Prince, Jr., and Professors
Horlock and Lakshminarayana, for their sustained interest in our work.
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