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Past effort in computational techniques in internal flow systems has
been concentrated on two-variable problems. This paper establishes a nu-
merical method for the solution of three-variable problems and is applied
here to rotational flows through ducts of various cross sections.

An iterative scheme is developed, the main feature of which is the addi-
tion of a duplicate variable to the forward component of velocity. Two
forward components of velocity result from integrating two sets of first-
order ordinary differential equations for the streamline curvatures, in
intersecting directions across the duct. Two pseudo-continuity equations
are introduced with source/sink terms, whose strengths are dependent on
the difference between the forward components of velocity, When econ-
vergence is obtained, the two forward components of velocity are identi-
cal, the source/sink terms are zero, and the original equations are
satisfied.

A computer program solves the exact equations and boundary condi-
tions numerically. The method is economical and compares successfully
with experiments on bent ducts of circular and rectangular cross section
where secondary flows are caused by gradients of total pressure upstream.

The presence of secondary-flow losses is well known. When a shear flow
passes through a bend with a vorticity component directed toward the
center of curvature, a secondary flow exists, transverse to the mean flow.
The vorticity is produced by a velocity gradient in the flow approaching
the bend. This velocity gradient may be produced by viscous losses up-
stream and by nonuniform work being done on the fluid. The losses in a
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136 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

secondary flow are due to the energy contained in the transverse flow,
much of which is not recovered. (The presence of secondary flow may also
cause subsequent parts entered by that fluid to run partly “off design.””)

This attack on the secondary-flow problem solves the fully three-
dimensional flow equations. The equations of three-dimensional fluid
flow are intractable to analytic solution, even with the inviscid and steady
flow assumptions. Until now, they have defied numerical solution due to
the insufficient core size and speed of the past-generation computer and
the lack of a numerical technique. The development of this three-dimen-
sional method of solution was stimulated by the success of various
two-dimensional numerical methods. The method is an extension of the
two-variable streamline curvature method (refs. 1 and 2).

Although the method as presented is restricted to enclosed ducts, it is
also possible to include repeat boundary conditions, thus enabling solu-
tions of the turbomachinery blade passage flow to be obtained.

DEVELOPMENT OF THE THREE-VARIABLE METHOD

To economize on time and effort during the initial development of a
three-variable method and to facilitate a clear understanding of the
mechanisms involved, attention was restricted to incompressible flows
and a simple geometry, for which experimental data was available (ref. 3).
The geometry is shown in figure 1. It consists of a rectangular duct which
turns through any number of degrees on constant mean radius R..
Coordinates z and z are fixed in each plane of cross section and y is meas-
ured along the centerline.

An Eulerian approach to the equations is used, since the Lagrangian
method, which is used in two-variable streamline curvature methods, is
excessively complicated in three variables. It requires the storage and
manipulation of expressions for two interacting families of stream surfaces
and their interaction with the boundaries.

Basic Equations

Continuity
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Momentum
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F1GURE 1.—Geometry of the duct.
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These cquations may be verified by considering a simple change of
independent variables, r=R,+z and ¢=y/R,., which yields the well-
known inviscid fluid flow equations in eylindrical polar coordinates. The
components u, v, and w are physical velocity components normal to the
local coordinate surfaces, and the static pressure p is understood to
include the specific volume 1/p, which is constant. The term 1/R,, is zero
outside the bend region, corresponding to infinite radius of curvature.

Manipulation of Equations

Following usual streamline curvature procedure, the u and w velocity
components are replaced by new dependent variables A and

where

U=\ (5)
and '

w=puv (6)

(Most authors use tan \ and tan g, but thisis not necessary for the present
analysis.) The ““in-plane” components u and w, which are expected to be
relatively small in an enclosed duct, are expressed as fractions of the
dominating velocity component », normal to the planes of cross section.
No approximation is here implied, but the transformations (5) and (6)
are singular when v is zero, a condition which must be avoided. Using
(5) and (6), equations (1) through (4) become
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Bernoulli’s equation is also derived from equations (8) through (10).

)\aP-}-—l‘ §£+ QB—O (11)
1+z/R. dy * 9z

where the total pressure
P=pt+Rr(14 230+ u) (12)

The five equations (8) through (12) are not independent, as Bernoulli’s
equation is linearly dependent on the three momentum equations. One
equation must be omitted, and (9) is selected since it is identical with
(11) in the trivial case A=p=0.

Still adhering to the two-variable streamline curvature method, the
dv/dy terms are eliminated from equations (8) and (10) with the aid of
(7) to obtain

[ 1 A N 142 ) ]
” o, o1ty —x—“]=-—p (13)

1+x/R dy 9z R.+x 9z dx
and
1 9 a A (2N d
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However, p is related to »* and P by (12). Using this equation in (13)
. and (14)

1 N 1422
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There are now four equations, (7), (11), (15) and (16), for the four
dependent variables A, g, v, and P. Boundary conditions are required to
close the system.

Boundary Conditions

It is necessary to appeal to the physics of the problem to obtain the
correct boundary conditions. Some of these are obvious: A =0 at the walls
given by r=-constant and p=0 at the walls given by z=constant (the
no-flow conditions). Upstream conditions are easily come by: straight
shear flow where the static pressure is constant and either » or P is speci-
fied at the inlet cross section. However, the conditions downstream are
not so evident, being complicated by the presence of secondary flow. Two
different downstream boundary conditions have been tried, both of which
are sufficient to close the system of equations and boundary conditions
from a numerical or computational point of view. The first condition is
IN/dy=0u/dy=0; the second is dv/dy=0. The latter is a little more
symmetric and converges faster, but both produce near-identical flow
fields except over the last few computing planes. If, far downstream, there
is a uniform swirling flow pattern, repecated at all subsequent planes of
cross section, both boundary conditions are correct.

Method of Solution of the Equations

The extent to which the two-variable procedure may be followed has
now been reached. Examination of the equations indicates the following:

(1) Bernoulli’s equation (eq. (11)). Given values for Aand p through-
out the flow field, P may be calculated from the starting values at the
inlet cross section,

(2) The momentum equations (egs. (15) and (16)). Either of these
may be integrated for » when )\, u, and their derivatives are known.

(3) The continuity equation (eq. (7)). Assuming that » is given
throughout the flow field, this equation may be integrated for \ if u is
known or for u if A is known.

These integrations will be for linear, first-order, ordinary differential
equations with nonconstant coefficients. Bernoulli’s equation is written
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DP/Dt=0 along a streamline to fit this classification. It is inconvenient,
though, to have two equations, either of which may be solved explicitly
for v, and only one equation to solve for both X and w. Two methods of
solution have been tried.

First Method of Solution

A pattern similar to that proposed by Wu (ref. 4) was followed.
Separate sets of two-dimensional solutions were sought, with an iterative
procedure connecting them as shown in figure 2. This did not work.
Alternating between one set of two-dimensional solutions and the other
is not sufficient to produce convergence since neither solution ‘realizes”
that it is not the same as the other. The information conveyed between
the solutions is not sufficient to produce convergence.

Although Wu’s proposals differ in that his two-dimensional solutions
are calculated on S; and S, stream surfaces using two stream functions,
the method follows the pattern suggested by Wu. A few variations on this
method have also been tried, but without success. This suggests that fora
method to have any chance of success it must “know”” about the “error”
or difference between separate two-dimensional solutions, »*—w»? for
example, and act on this information until the error is reduced to zero.

Second Method of Solution

Let the result of integrating equation (15) in the z-direction be v7,
and the result of integrating equation (16) in the z-direction be »*. The
error »*—v° is related to a static pressure difference by equation (12).
Physically, this pressure difference will change the curvature of the
streamlines, and thus A and u must be influenced by v*—v=. The best choice
seems to be the replacement of the continuity equation (eq. (7)) by the
two equations,

] z R z\ 9
2 [(1+R—m) " J*@*(”E)& () =Br—v)  (17)

and

9 [(1 +i) o |+ 274 (1 +,1> 9 () =Brr—r)  (18)
ax R. d 0y \ R./oz
where 3 is a constant. In these equations, the right-hand sides represent
source/sink terms and each reduces to the continuity equation (eq. (7))
when v*=v*. One additional equation and one additional unknown have
been introduced and now (17) is integrated directly for N, (18) for u,
(15) for v*, (16) for v#, and (11) for P. In (17) and (18), v* and v* are
selected appropriately to make the boundary conditions for the velocity
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integrations explicit. The essential feature of these equations is that when
v*=1v* they reduce to the physically correct equations.

START

Calculate P
from 11

A

Calculate v
from 15

A

Calculate A

from 7

Repeat until
converged

e
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I
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Repeat whole process
until converged

v

END

Ficure 2.—Iterative procedure for Method 1.
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Revised Boundary Conditions

Although the boundary conditions described are sufficient to determine
a solution, they do not lend themselves to an easy integration of the
equations in their present form. First, (17) and (18) are first-order
equations; each requires only one boundary condition for A and g and
there are two for each. Second, (15) and (16) also require one boundary
condition each for v* and v* and there are none. This matter is rectified by
the requirements that two boundary conditions may be satisfied by each
of the first-order pseudo-continuity equations (egs. (17) and (18)).
These requirements are found as follows. Equations (17) and (18) are
integrated, first with respect to z from z=— 1X across the duct to z=3X
and then with respect to y from y=0 at the inlet to some station ¥/,

to yield
1/2X ¥’ 1/2X z ]
/ v* dz+ / / (1+—>— (w0*) dz dy=0 (19)
—1/2X o Jo1x R..) o2

and

1/2X y! 1/2X T a
/ vt do+ f / <1+—)— (u0*) dz dy=0 (20)
—1/2X 0o Y-112x R,/ 0z

where the 8(»*—v7) terms have been omitted, and the boundary condi-
tions A\=0 at = 21X have been incorporated. Alternatively, a repeat
condition, A (—1X,y,2) =A(3X,y,2) and v*(— 1X y,2) =v*(3X,y,2), yields
the same results. The requirement (19) is used as a boundary condition
for equation (15). The procedure is repeated with the roles of z and 2
interchanged to obtain a similar requirement for the other pseudo-
continuity equation and a boundary condition for (16).

In general, sets of coupled partial differential equations cannot be put
into explicit form, so it is necessary to select one variable in an equation
and guess or assume values for all others. Each of the variables must
take its turn as the unknown in one of the equations. When all variables
have been found, the equations are solved again and this iterative pro-
cedure is continued until convergence is obtained.

Iterative Scheme

Figure 3 shows the iterative scheme. Each block represents the integra-
tion of the appropriate equation for the unknown variable throughout
the entire flow field. In each integration, the most up-to-date values are
used for all other variables. This scheme is chosen for its simplicity and
because it also simplifies the boundary conditions of (19) and (20).
Between the calculation of u and the next calculation of X, v remains
unchanged; hence, on subtracting equations (19) and (20)
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1/2X 1/2X
f vdo= [ vede 1)

—1/2X —1/2X

This is the boundary condition used for v*. Similarly, the boundary

condition for v is
1/22 1/2Z
/ vt do= / v* dz (22)

—1/2Z2 —1/2Z

The right-hand sides of these equations are known from previous cal-
culations.
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Bernoulli
P from 11
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First l&omentum
v from 15

¢

First Paeudo-Continuity
A from 17
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Second )Aomentum
v from 16

¥

Second Pseudo~Continuity
u from 18

A

e

Test (vx -v%

l Converged
END

Ficure 3.—Iterative procedure fof
Method 2.
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Uniqueness

These boundary conditions for the velocity are not of a familiar type,
and the existence of a unique solution must be explored. Equation (15)
is like the equation

d
iz vr=0v?g(z)+f(x) (23)
x
A solution is sought, subject to the condition
1
/ vdz=Q (24)
0
If two solutions, »; and v, exist then
d
— (viP—w?) = (0’ —v?*) 9(x) (25)
dr
subject to
1
/ (1—v2) =0 (26)
(1}

The solution of (25) is
ni—vl?=FE exp </ g(s) ds) (27)
0
where E is determined by (26) as follows

exp (/: g(s) ds>

1
E / dz=0 (28)
0 v1+02

The further restriction that v>0 is necessary for uniqueness. Now, the
integrand of (28) is always positive; whence E=0 and v;=2v..

Stability

Theoretically, it is only possible to perform a stability analysis for
trivial flows where the total pressure is constant, but the resulting eriterion
is found to have general application. A straight flow without shear is
considered, where v*=v*=V and A=u=0 is the required solution. Small
perturbations from this trivial solution are examined and the following
stability criterion is obtained

{l—r [1 +2 (0.63 %)2]}2+E (0.63 %3—/)2r6]2< 1 (29)
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where X is the duct width, Ay is the grid spacing in the y dir-ction, and
r is the relaxation factor on the velocity.

A computer program has been written in FORTRAN IV to solve the
problem as outlined. An experiment with a 5-inch by 5-inch 90° bend on a
15-inch mean radius, where the velocity varied across the duct from about
30 feet/second to 80 feet/second atb inlct, was simulated. The results, in
the form of P, contours, are presented for comparison with experiment.
The small diserepancies can be accounted for by the presence and separa-
tion of the boundary layer. Otherwise, an adequate prediction of the flow
is obtained.

Comparison With Experiment

Numerieal computations have been carried out for the experiments of
Joy (ref. 3) for ducts of rectangular cross section bending through 90°
and subject to substantial inlet total head variations across the duct.
A comparison has also been made with ducts of circular cross section
(Eichenburger reported in ref. 5). The theory presented in this paper is
directly applicable to the rectangular duct but requires modification to
the circular geometry although the equations are of a similar form.

In figure 4 the total pressure contours at inlet to the duct are presented.
In figures 5, 6, and 7 the computed contours are compared with experi-
ment at three stations down the duct.

Station 1 6 inches upstream of the bend
Station 2 30° of turning
Station 3 60° of turning
Station 4 90° of turning

The duct is 5 inches by 10 inches in cross section with a mean radius of
15 inches. For consistency with Joy, the total pressure contours are
labelled as velocity contours computed on the assumption of constant
static pressure. Similar comparisons are shown for the circular-cross-
sectioned duct in figures 8, 9, and 10. The duct is of 6 inches diameter and
30 inches mean radius.

In general, the experimental contours are predicted by the theory.
For the circular duct, the agreement is particularly good except in the
immediate vicinity of the wall where the viscous forces in the boundary
layer are dominant, causing reductions in total pressure. The discrepancies
in predictions for the rectangular duct near the inside of the bend are
probably due to the occurrence of separation of the boundary layer near
Station 3.

A measure of the convergence of the numerical procedure for the
rectangular bend is presented in figure 11 showing good convergence
after 58 cycles. This procedure took 14 minutes on an IBM 360/65.
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LIST OF SYMBOLS

P Static pressure

P, Total or stagnation pressure
u, v, w Velocity components

z,y,2 Coordinates

8 Strength of source/sink distribution
o Flow directions as defined
p Density
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FIGURE 5.—Velocily conlours in rectangular duct; comparison between theory and
experiment.
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Figure 6.—Velocity contours in reclangular duct; comparison belween theory and
experiment.
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Figure 7.—Velocity contours in reclangular duct; comparison between theory and
experiment.
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Ficure 8.—Total pressure contours in circular duct.
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Figure 9.—Total pressure contours in circular duct; comparison belween theory and

experiment.
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F16uRE 10.—Total pressure contours in circular duct; comparison belween theory and

experiment.
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DISCUSSION

H. MARSH (Cambridge University) : The authors have successfully
solved a major problem in the calculation of internal flows, namely the
three-dimensional flow in a duct. Until recently, it has not been possible
to solve this problem due to the lack of adequate computing facilities. It
would be interesting to know the computer storage requirements for this
program.

Two methods of solution have been examined, but only the successful
second method is described in detail. The first method is similar to that
proposed by Wu (ref. 4). Until now, this has been considered a viable
method for calculating the full three-dimensional flow field. The authors
have investigated this technique and have found that they could not
obtain convergence. This negative result is extremely important and it
deserves a more detailed discussion. Smith (ref. D-1) has described the
methods which are available for calculating the two separate two-dimen-
sional flow fields. Until now, it has been assumed that by alternating
between the two solutions, the full three-dimensional flow field might be
calculated. It would be helpful if the authors would give more details of
the basis for their conclusion that the first method of solution does not
work.

In the second method of solution, the error v*—v* is related to a static
pressure differcnce, but it is not clear why this term should have any
physical significance. The replacement of the continuity equation by two
equations with source/sink terms is a numerical technique which is used
in order to obtain a convergent solution. It is therefore unlikely that the
intermediate values of the error v*—v* have any physical meaning.

In the derivation of the boundary conditions, the authors have omitted
the source/sink term but have not discussed this point. Perhaps they
would outline their argument for neglecting these terms. It is possible to
argue that any convenient boundary condition can be used, provided that
it approaches the true boundary condition as the solution converges.

This is a major contribution to methods of flow calculation and the
authors must be congratulated on their presentation in this paper. If this
work can be extended to include compressibility, then it would provide a
single comprehensive technique for calculating inviscid three-dimen-
sional duct flows.

W. R. HAWTHORNE (Cambridge University): I agree with what
Mr. Stuart says. I think the work of Rowe (ref. D-2) should be referred
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to in this excellent paper which seems to me to be a substantial break-
through on three-dimensional and secondary flow caleulations. But I also
want to raise the question of getting the right downstream boundary
conditions. It isn’t clear from what the author was saying how and where
the boundary conditions were established. Were they established at 30°,
40°, or down the bend? In one case, he showed a section 1 foot downstream
from the bend. How far downstream could you go before you get the
right downstream conditions?

STUART axpo HETHERINGTON (authors): In reply to H. Marsh,
we would like to state the following:

(1) The computations were performed on an IBM 360/65 and re-
quired between 120 000 and 180 000 bytes (depending on whether the
program was overlayed or not). Typical execution times were 10 to 14
minutes CPU.

(2) The conclusion that simple alternation between two separate
two-dimensional solutions does not produce the required three-dimen-
sional flow field is based on our failure to make such methods produce
identical fields for the axial velocity from both two-dimensional solutions,
in the absence of the 8(v*—v?) terms in equations (17) and (18). For test
computations with 8=0, convergence has not been obtained, and over a
considerable portion of the flow field (about half), near the start of the
bend, the sccondary flow turned in the wrong direction. This even
propagated upstream where no secondary flow is to be expected.

(3) We agree that physically no terms 8(v*—v?) cxist. The argument
for the usc of such a term as a numerical device is as follows: Physically,
fluid will tend to flow from high pressure toward low pressure regions until
the pressure gradient is balanced by acceleration. Now, an imbalance may
exist between the pressure gradient of one two-dimensional solution and
the acceleration or curvature terms of the other (since these balance their
own pressure gradient, which is not neceessarily identical to that of the
first solution). This imbalance between respective pressure gradients is
related to »*—v?, which term or “error” is used to change A and p ac-
cordingly in the psendo-continuity equations (17) and (18).

(4) The neglect of some terms B(v*—v*) in the derivation of the
revised boundary conditions is justified as follows: In practice, the pseudo-
continuity equations (17) and (18) arc solved with additional source and
sink terms 8%(y,z) and S*(z,y) to allow for the effect of the terms omitted.
Now, it must be shown that these terms vanish when convergence is
obtained. If the two solutions v* and v* converge (remember that these are
both the axial velocity, and not components in the z and z directions),
then subtracting equation (17) from equation (18) yields, at most

87(y2) =8(zy) = (y)
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Integrating equation (17) or (18) over a plane of cross section yields

dQ
1@ [ demt

where @ is the mass flow. Since Q is constant, f(y) =0= 8= 8-,

(5) Inits present form, the method has been extended to compressible
flows (Mach number less than 0.98) and the computer program can
handle the following problems:

(a) Bent rectangular ducts

(b) Bent circular ducts, including S-bends

(¢c) Three-dimensional flow through a turbomachinery blade
passage specified by random points, including rotors.

Arbitrary values for total temperature, total pressure, and static pressure,
varying across the inlet section may be specified as input data to the
program. Future work in the Department of Mathematics at the Uni-
versity of Aston will attempt to extend the method further, to include
viscous and turbulent flows,

As regards the right boundary conditions mentioned by Sir William
Hawthorne, we would like to offer the following reply.

The computing mesh is usually extended two or three planes further
downstream of the region of interest (there being expense involved in
using too many), but from the calculations we have done, the condition
downstream does not have much effect two or three planes upstream
(i.e., about three pipe diameters) of where the downstream boundary
condition is applied. The flow fields for the two different downstream
boundary conditions described were within 0.1 percent of being identical
two planes upstream of where the conditions were established.
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