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This paper describes some features of a flow that produce acoustic 
radiation, particularly when the flow is turbulent and interacting 
with solid surfaces such as turbine or compressor blades. Early theo- 
retical ideas on the subject are reviewed and are shown to be inade- 
quate a t  high Mach number. Some recent theoretical developments 
that form the basis of a description of sound generation by supersonic 
flows interacting with surfaces are described. 

At high frequencies the problem is treated as one of describing the 
surface-induced diffraction field of adjacent aerodynamic quadrupole 
sources. This approach has given rise to distinctly new features of the 
problem that seem to have bearing on the radiating properties of 
relatively large aerodynamic surfaces. 

At low speeds, for fixed geometry, the acoustic power output from 
turbomachinery increases in proportion to the square of mechanical 
power. This variation obviously cannot be continued to indefinitely high 
powers since the acoustic loss would soon exceed the available cncrgy 
supply. The mechanism of fan noise gcncration must therefore change its 
character a t  high speed, and the critical point seems to  be reached when 
the blade tip speed exceeds the sonic velocity. 

Observationally, the change becomes apparent in several distinct ways, 
one of the most striking being the appearance of the “buzz-saw” phe- 
nomenon, a noise characterized by multiple harmonics of the disk rotation 
frequency. At  these high speeds, shock waves form, and the radiation 
field can hardly remain linear. On the other hand, it seems that the 
essential features of buzz-saw noise can be explained on the basis of linear 
theory alone and that nonlinearity is essential only in effecting minor 
modifications of amplitude. The first part of this paper sets down the 
central points of the arguments leading to  a prediction of the buzz-saw 
phenomenon from purely linear theory. 
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The second part of this paper outlines some ideas on how the sound 
problem changes fundamentally a t  high speeds because of an inevitable 
wavelength contraction to  a condition where the wavelength cannot be 
large in comparison with surface dimensions. This noncompactness makes 
the high-speed problem quite different in nature from that with which we 
are familiar a t  low speed. The radiated power is seen to  be a decreasing 
function of jet power, for given geometry. At high speed, the noncompact 
sources are not so clearly related to the unsteady (or even steady) lift on 
thr surfacrs, so thrre must hr some doubt as to the relevance of attempts 
to eliminate the unsteady forces to the high-speed fan noise problem. 

SOURCES OF SOUND A T  DISK ROTATION FREQUENCIES 

The sound of an N-bladed fan is not always confined to harmonics of 
the bladc-passage frequency NQ. There is, inevitably, some residual 
component at the disk rotation frequency that can be attributed to the 
fact that the blades are not positioned in a completely regular array around 
the supporting disk and cannot support identical aerodynamic loads, 
both because of the slight irregularity of support and because of slight 
geometrical variation from one blade to  another. It is known that, when 
blades travel a t  supersonic speeds, buzz-saw noise a t  harmonics of the 
disk rotation frequency becomes very intense and can become the domi- 
nant sound. By precisely what mechanism is this low-frequency sound 
generated? Is the mechanism essentially nonlinear, and why is the 
mechanism relatively stronger a t  supersonic speeds? On the basis of linear 
theory it is obviously not directly attributable to variations of blade size, 
incidence, or camber. Each of these effects produces an irregularity in the 
time history of the sound field that is harmonic on the fundamental 
rotation frequency of the disk but random on the blade frequency. How- 
ever, these effects that bring about variations in loading from one blade 
to another are virtually independent of blade speed; thus the relative level 
of disk frequency noise to  blade frequency noise arising from this cause 
would be independent of speed, a feature distinctly contrary to observa- 
tions of the buzz-saw phenomenon. On the other hand, the variation in 
phase caused by slight circumferential variation of blade support can, on 
the basis of purely linear theory, induce an effect consistent with observa- 
tion. This effect becomes more important a t  supersonic speeds because 
the frequency spectrum then contains much energy a t  very short wave- 
lengths; on this short scale, the slight positional irregularities appear very 
significant. This effect can be quantified as follows. 

Consider an N-bladed disk rotating a t  an angular frequency a. The 
pressure field generated by the motion will be at  harmonics of this fre- 
quency because, when all effects of turbulence are discarded, the field is 
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repeated on each rotation of the disk. If the geometry were ideally precise, 
the sound field would also be repeated at  intervals corresponding to  the 
blade-passage frequency. We denote this hypothetical time history of the 
field a t  any point by g ( t ) ,  and this signal could be Fourier-analyzed into 
discrete frequency components: 

g ( t )  = cGne inNQr  (1) 
n 

Now suppose that the blades are identical but are positioned in a 
slightly irregular way around the disk circumference. The time history 
might then be denoted by g ( t + e ) ,  where e is a small stochastic function 
of time on the interval corresponding to disk rotation but is exactly 
repeated every period. The signal g ( t + e )  can be expanded in a Taylor 
series about e = O ,  and, for sufficiently small e ,  the real signal can be 
represented by 

I 
1 
I 

, 

s ( t + e )  = g ( t )  + d ( t >  ( 2 )  

g ( t )  is periodic a t  the blade frequency, but thc second tcrm is not, bcing 
periodic a t  intervals of disk rotation frequency only. Consequently, the 
real signal is made up of the discrete frequency part of the ideal case, plus 
a sinall subharmonic part, smaller by a factor of order 

than the nth harmonic of the tone a t  the blade-passage frequency NO. 
The frequency nNO is the ratio of the amplitude of g' to that of g. At 
higher frequencies, the expansion of equation ( 2 )  fails and the situation 
becomes quite different. The spectrum  CY) can thcn bc obtained by thc 
Fourier transformation. 

The phase factor, n N O ( t + e ) ,  is now a rapidly varying function of t ,  so 
that the integral may be evaluated by the method of stationary phase 
to  give 

G, exp [ i ( t p+2mr /O)  (nl\-O-a)+inNeO] 
S ( a ) = l  c c c (nNOe"/2r)'/2 (5) 2 r p  n m 

where 

intcrval (0,2r/O),  and e ,  e" are evaluated a t  the stationary points t,. 

signifies summation over all stationary points occurring in thc 
P 
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The sum over m forms a delta function so that 

(Note that e tmRfp  = constant.) 
This spectrum is a srries of discretc components a t  harmonics of the disk 

rotation frequency Q and is utterly independent of the blade-passage fre- 
quency. Furthrrmore, the levels of the discrete tones are independent of 
the harmonic number, a fraturr often observed in buzz-saw situations. 
It scems paradoxical that it is only when the basic waveform contains 
high enough frequencies that n NQe is large that the low-frequency spec- 
trum can become significant. This fact is a reflection of the need that the 
waveform possess sharp corners, necessitating high frequencies in the 
spectral decomposition before small errors in phase in g ( t + e )  can mate- 
rially affect the wavrform. Where this is so, the phase variation is random 
enough for there to be no blade-passagr frequency harmonics in the 
spectrum, and the sound is composed of harmonics of the disk rotation 
frequency alonr. The spectrum is the characteristic of that measured if a 
definite interval of white noise is repeated harmonically, as it would be 
in a short loop of taped noise continuously playing on a recorder. That 
spectrum is an infinite series of equal-strength tones of the loop frequency. 

The most significant effrct of supersonic motion is that “sharp-cornered” 
shock waves arc formed, making the basic FouricL synthrsis of the wave 
contain very high frequencies. This effcct, coupled with slight phase 
variations due to irregularities of blade positioning, can cvidrntly bring 
about the array of low-frequency tones that constitute buzz saw. 

The essential elemcnt of the buzz-saw phenomenon seems to be a phase 
randomization of the clementary blade-passage signals. This effrct is 
inevitable because of slight manufacturing imperfections leading to errors 
in circumferential positioning. It is also an cffrct that can arise from 
nonlinear effects resulting from bladrs of slightly varying geometry, for 
the higher prcssurc rrgions would tend to travel relatively faster than the 
lowamplitude signal to induce phase variations away from the rotor disk. 

SOURCES OF BROADBAND SOUND A T  HIGH SPEED 

Random broadband noise in any turbomachine is caused by some form 
of turbulence. Steady flow distortions causr broadband noise only in- 
directly by bringing about turbulmce in some part of the machine. The 
inlet flow into the machine may be turbulent, so that the aerodynamic 
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loading of the blades is made stochastic, and sound of continuous fre- 
quency content is then inevitable. Sound generated in this way can appear 
rclatively discrete only if successive blades experience nearly identical 
loading histories, as they would if a large sausage-shaped turbulent eddy 
were being absorbed by a fan over a significant fraction of a disk revolu- 
tion. Ffowcs Williams and Hawkings (ref. 1) show that the bandwidth 
of the blade-passage tone generated in such a situation is the reciprocal 
of the number of blades subjected to the distortion field of a single eddy. 

At low speeds the random noise is due almost entirely, apart from small 
(in air) displaced inertia terms, to the unsteady forces on a blade. These 
forces can be computed by the method of Sears and von IGrrnBn (ref. 2 )  , 
a method which regards the flow as incompressible. The motions bringing 
about the unsteady forces are virtually dccoupled from the small sound 
field a t  low Mach number. At higher Mach number, the coupling is 
immensely improved, and it is no longer possible to determine the blade 
loading independently of the sound field; neither is the blade load itself 
the source of the field. The computation of the field centered on the blades 
is then properly posed as a diffraction problem, where the incident field is 
specified with the object of determining the scattered waves. Of course, 
once conditions are known on the bounding surfaces, the linear radiation 
field is determined. 

Miles (ref. 3) gives many relevant references and describes the field 
induced by a thin supersonic aerofoil entering a sharp-edged gust. This 
solution can serve'as the Green's function to generate the scattered field 
for arbitrary two-dimensional incident flow. At first sight, quite a diff went 
viewpoint must be taken of the sound generated by turbulence arising on 
the rapidly moving blading, but in fact recent developments bring the two 
situations very close together. We consider here blading that moves in a 
uniform stream. 

It is known that in coordinates moving with the stream sound is 
generated and propagates according to Lighthill's inhomogeneous wa,ve 
equation 

Tij is only nonzero effectively in a confined region of space where tur- 
bulence is present. The boundary conditions under which equation (8) is 
to be solved usually take the form of a constraint that the normal velocity 
in the fluid is equal to  that of the bounding solid surface, together with a 
radiation condition. The noise problem is then posed as that of finding the 
solution to equation (8) with T,j,  a specification of the driving turbulence, 
known. 
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It is troublesome to have the boundary conditions specified on a moving 
surface, so there is some benefit to  accrue from a selection of a new co- 
ordinate system fixed relative to  the surfaces. Unfortunately, the wave 
operator is not invariant to a Galilean transformation, so the benefit of 
easily specified boundary conditions is bought a t  the expense of a more 
intractable governing equation. This difficulty can be overcome for 
steadily moving surfaces by the use of a Lorentz transformation that 
slightly distorts the geometry of the boundaries. However, if the surfaces 
are thin planes parallel to the flow, the complication in the Lorentz frame 
is minimal, and the high-speed surface problems can then be reduced to 
elementary low-speed examples. This scheme can be used, for example, to 
study sound diffraction from a thin-walled pipe, with flow on both sides 
of the wall. It is also the scheme by which Berman has been successful in 
posing the general aerodynamic noise problem for steadily moving sur- 
faces. The results of this approach reproduce the conclusions reached by 
I'fowcs Williams and Hawkings for steady motion (ref. 4). However, their 
results are applicable to arbitrary motion, so they are more suitable as a 
basis from which to discuss the issues arising in turbomachinery noise, 
where rapid rotary accelerations are inevitable. 

The solution to equation (8) can be written in a useful form as long as 
all source distributions are compact. That is, all surface and eddy sizes 
must be very much smaller than any wavelength in the radiation field. 
That solution is given in equation (7.4) of Ffowcs Williams and Hawkings 
(ref. 4) : 

Q;, is the integrated stress tensor, ui the surface velocity, Vo the volume 
displaced by the surfaces, and P, the force exerted by the surface on the 
fluid. The field is driven by a dipole system of strength equal to the body 
force excess over that required to  change the displaced momentum and 
by a quadrupole made up in part by the integrated turbulence stress 
tensor and in part by the surface Reynolds stresses. I 1-M, I is the 
Doppler factor by which the length scale in the sound field is reduced 
because of source motion a t  Mach number M ,  toward the field point x. 

At low speeds, the dipole term is dominant, as can be seen from the 
usual estimating procedure of setting the force proportional to pU2L2 
(t being a Characteristic source length) and the integrated Reynolds 
stress to pU2L3. The source radiates a field of wavelength A, and the 
operator a/dxi changes the magnitude of the differentiated quantity by a 
factor of order A-l. According to  equation (9) )  the magnitude of the 
quadrupole field is, therefore, 



I SOURCES OF SOUND IN FLUID FLOWS 431 

I while that of the dipole-induced field is 
I 

XO is the wavelength emitted by the source a t  rest, and X=Xo 1 l-M, I is 
the wavelength at convection Mach number M,. 

The quadrupole is negligible evidently only as long as L/X<<l, as it 
always is in the regime where equation (9) is relevant. Then, the dominant 
source term is the force exerted by the fluid on the surface, and the job of 
quieting a low-speed fan is essentially one of reducing the level of the un- 
steady forces on the fan surfaces. Not so when LIX < < 1,  as is inevitably 
the case because of the Doppler contraction and the tendency for the 
wavelength to vary inversely with fan speed. The. general solution to 
equation (8) was rewritten by Ffowcs Williams and Hawkings in a form 
suitable for the noncompact distribution, and for the special case of 
steady high-speed motion this equation becomes 

a2T,, c dG dr 
47rc2(p-p0) ( x , t )  = ar2 r 

(12) 

where the suffix r is the tensor component in the direction of radiation 
(in a frame moving with the fluid) , C! is the surface r = constant, r is the 
curve of intersection of 0 with the boundary surface S ,  m is a unit vector 
normal to I' in S, and 8 is the angle betwxn the surface normal and the 
radiation direction. r is a time variable. 

The usual dimensional analysis of this equation shows that both the 
noncompact quadrupoles and surface dipoles radiate fields of comparable 
magnitude, of order 

where r is the coherent radiating lifetime of a source. For steady fields, 
this lifetime is infinite and leads to  the shock fields of steady supersonic 
flow. For the broadband noise, however, the time is the inverse frequency 
L / U ,  so that at high speeds the broadband noise amplitude is 
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This is initially the same magnitude as that of the steady pressure waves 
radiated from a blade in rapid supersonic motion, but the steady field is 
not subjected to the same geometrical spreading law. 

Equation (12) makes it clear that the fluctuating force on the blade does 
not appear explicitly as a source term. In place of the surface stress we 
have thr  Reynolds stress gradient, which is the same term as that respon- 
sible for volumr sound. Also, the lifetime of thc sourc(L appears directly 
in the field strength, so that the random field would be quieter if the 
turbulent eddies were made to lose their coherence more quickly. 

A point that is perhaps worth making also is that at  the high supersonic 
speeds the noise srems to increase in dirrct proportion to thrust and that 
the noise per unit power is a decreasing function of speed. 

The differences that feature in the high-speed noise are due entirely to  
the inevitable contraction in wavelength to a point where sound is no 
longer easily distinguishable from the driving unsteady flow. Then the 
process of attempting a specification of surface conditions in the absence 
of sound, follo\i ed by a prediction of the sound ficld from these estimated 
boundary values, fails. The problem has become inevitably one of diffrac- 
tion, where both surfacc loads and the radiated sound must be estimated 
together. This procedure is only in its early stages in the study of aero- 
dynamic noise, but already effects are being predietrd quite contrary to  
the qualitative idcas onc gathers from rxtrapolating known results for 
compact source distributions. The most readily measured property of 
noise is th r  variation in energy level with increasing spred. Compact 
quadrupolrs and dipoles have a U8 and li6 variation, respectively, while 
both have a li2 variation in the noncompact condition. Away from these 
limits, one can observr a very wide range of vrlocity indices resulting 
from the scattrring of the quadrupole field by noncompact surfaces. No 
doubt this work is relevant to the broadband noise inside fan systems 
whrrcvrr the fan chord exceeds the radiated wavelength. However, the 
ideas discussed here have yet to be applied to that situation. 

REFERENCES 

1 .  FFOWCS WILLIAMS, J. E., AND D. L. HAWKINGS, Theory Relating to the Noise of 
Rotating Machinery. J .  Soirnd I'ib., Vol. 10, No. 1, 1969, p. 10. 

2. SEARS, W. It., AND T.  VON KLRMLN, Aerofoil Theory for Non-Uniform Motion. 
J. Aeron. Sci., Vol. 5, 1038, p. 379. 

3. MILES, J. W., T h e  Potential Theory of C'nsteady Supersonic Flow. Cambridge U. 
Press, 1959. 

4. FFOWCS WILLIAMS, J. E., A N D  D. L. HAWKINGS, Sound Generation by Turbiilence 
and Surfaces in Arbitrary Motion. Proc. Roy. SOC. (London) ,  Series A, Vol. 264, 
1969, p. 321. 



SOURCES OF SOUND IN FLUID FLOWS 433 

DISCUSSION 

J. VRANA (RIcGill University) : It is intrresting to note the comment 
by Dr. Ffowcs Williams that nonlinearity need not be invoked to explain 
the occurrence of combination noise. Let us face it, the nonlinearity is 
there; that is the way shock waves propagate. 

In  thinking about the phenomenon, I was intrigued by the small effects 
of attempts to  make the blading as uniform as possible. Could the 
bunching of shock waves be an inherent instability of certain flow fields, 
where, for instance, a shock displaced slightly forward would “lose” more 
expansion Mach waves behind it than it gained in front (speaking in the 
2-D blade-to-blade terminology of the compressor designer), therrby 
increasing in strength and moving further forward to a new stable posi- 
tion? Blading imperfections would then merely act as triggers for this 
departure from periodicity. 

T. G. SOFRIN AND G. F. PICKETT (Pratt & Whitney Aircraft): 
Professor Ffowcs Williams has presented a linear theory explaining the 
generation of tones at  harmonics of enginc rotation frequency. Although 
he shows that these tonrs may be produced by small circumferential 
variations in shock spacing, thc lack of a mechanism to account for 
evolution of greater proportions of extra tones with increasing distance is 
a significant limitation. The probe data outlinrd in our paper clearly show 
that small circumferential variations in shock spacing are amplified 
because of the nonlinear nature of the propagating shock waves, and we 
contend that this is the dominant factor in the distribution of the power 
in the direct rotor field throughout the harmonics of engine rotation 
frequency. 

FFOWCS WILLIAMS (author) : ah. Vrana suggests an interesting 
possibility, and I know that some people have been working on the 
stability of the shock train although I haven’t myself. I think it’s quite 
likely that it has an important bearing on this problem, but if this is just 
simply an instability issue, I can’t really see why the experiments 
show that the signature is exactly the same every time the disk goes 
around. Your commrnt about the nonlinearity being there anyway: Of 
course it’s there. But it’s certainly not necessary to “buzz saw.” YOU 
could get buzz saw for vanishingly low amplitude at  supersonic speeds. 
That was the point I was making. 



434 UNSTEADY FLOW AND NOISE 

The information given by RIr. Sofrin and Ah-. Pickett is a very con- 
vincing account of the observation that, in their rxprrimcnt, nonlinear 
effects are very important. They are likely important in all real engine 
situations where buzz-saw noise is observed. The point I make, however, 
is that buzz saw is also inevitable for arbitrarily small amplitude. The 
linear theory I describe shows how blade spacing errors will account for a 
buzz-saw phenomenon, but I have no doubt that, in the experiment 
reported, the main phasing errors were induced by nonlinear effects. 
However, nonlinearity is not essential to the occurrence of buzz saw. 


