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ABSTRACT

A metal-oxide-silicon (MOS) capacitor-type particulate sensor was

evaluated for use in atmospheric measurements. An accelerator system was

designed and tested for the purpose of providing the necessary energy to

trigger the MOS-type sensor. The accelerator system and the MOS sensor

were characterized as a function of particle size and velocity. Diamond

particles were used as particulate sources in laboratory tests.

Preliminary tests were performed in which the detector was mounted

on an aircraft and flown in the vicinity of coal-fired electric generating

plants.
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1.0 INTRODUCTION

The primary objective of this research effort was to construct, test,

and calibrate a sensor to count microparticles from roughly 1 to 10 microns.

Typical applications were considered to be the sensing of particulate

matter from solid propellant rocket exhausts (alumina), particulate matter

in the upper atmosphere of concern from supersonic transports,,and emissions

from stationary sources such as power plants and from dusty environments

such as rock quarries and coal mines.

The microparticle sensor is a capacitor-type sensor where the

impacting particle initiates a temporary short through the dielectric of

the capacitor. The large current density through the shorted region of

the capacitor raises the temperature in the region about the impact so

that the material (dielectric, particle, electrode) in this region is

vaporized. With the short circuit removed, the capacitor recharges.

From penetration theory one expects that the microparticles at subsonic

velocities will cause a discharge upon penetration to some fraction of

their diameters. To insure adequate penetration to initiate an electrical

discharge, the dielectric of the capacitor was chosen as thin as practical

with modern silicon-silicon oxide technology. Silicon technology was

chosen due to the sophistication and understanding available to achieve a

very thin, reliable, and reproducible dielectric. Typically, the final
o

capacitor is approximately 1000 A, thermally grown silicon oxide film on
o

low resistivity (less than 1 ohm-cm) silicon wafer with a 500 A aluminum

electrode which is impacted by the microparticle.

The major problems encountered during this research effort were

(1) obtaining a well-defined and reproducible particle source, (2) reducing



unwanted and random sources of particles from the system, and (3) accelerat-

ing particles to a velocity necessary to initiate a discharge. Much of the

early effort was devoted to development of particle selection techniques.

Well-defined polystyrene microparticles and organic particles were used;

however, they would not initiate a reliable discharge. Our experience has

shown that either density or hardness near that for alumina and diamond

will initiate discharges. However, the major effort and probably the most

significant result is the design of a microparticle dispensing system which

provides a range of small particles with a degree of reproducibility

unobtainable prior to this effort. Only through detailed design and

analysis could the influence of factors such as unwanted microparticles

throughout the system be identified.

Finally, it should be pointed out that the sensor designed .and tested

in this research effort will count microparticles with a diameter greater

3
than 2 microns and a density near 3.5 gm/cm . The capacitor-type units

were compared with a commercially available unit for counting microparticles,

and the counts compared favorably and well within experimental error.



2.0 CALIBRATION PARTICLE SELECTION

Diamond particles were chosen for the calibration source mainly :f or

two reasons: (1) their hardness properties and (2) their narrow size

distribution. Through previous experience with polystyrene, organic

crystals, and alumina microparticles, the hardness of the particle is

an important factor in obtaining reliable discharges of the impacted MOS

capacitor. The narrow size distribution property was important in order

to obtain a meaningful calibration of the MOS sensors for different size

particles.

The diamond particles were obtained from the Geoscience Instruments

Corporation and were purchased in the following size ranges: 0.25 y,

1.0 y, 3.0 y, 6.0 y, 9.0 y, and 15.0 y. Shown below is a size distribu-

tion table for these particles.

Average size

Distribution

0.25 y

(0.1-5)

l y

(0.5-2)

3 y

(2-4)

6 y

(4-8)

9 y

(8-12)

15 y

(12-20)

Also shown in Figures 1, 2, and 3 are distribution curves for the 1 y,

3 y, and 6 y particles, respectively.

2.1 PARTICLE DISPERSION METHOD

The method chosen for dispersion of the diamond particles was to

suspend the particles in isopropyl alcohol and to spray them into a

sampling chamber with an atomizer. The suspension method was chosen

because of the difficulty encountered in dispersing dry particles due

to coagulation. Also, this method allowed much more accurate control

of the number and uniformity of the dispersed particles.
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2.2 PARTICLE SUSPENSION PREPARATION

Isopropyl alcohol was used for the suspension fluid because it is a

volatile fluid with a comparatively high viscosity. As a first step in

preparing the diamond particle suspension fluid, a particle background

level in the isopropyl alcohol was determined by spraying the fluid into

a sampling chamber with an atomizer driven by filtered nitrogen and

sampling with a Climet Model 250 particle counter.

Although the particle size distribution was very narrow, a sizeable

number of smaller than nominal size particles in a given range were present.

The method used for separating these smaller particles from the particles

in the size range of interest was as follows. The settling velocity in

isopropyl alcohol was calculated for the particles in the size range of

interest. The particles were weighed out and placed in a glass container

with a known volume of isopropyl alcohol. These were thoroughly mixed

until they were uniformly distributed in the solution. The time for the

particles of interest to settle to the bottom of the container was deter-

mined using the height of the saturated fluid in the container and the

calculated settling velocity of these particles. After the particles of

interest had settled to the bottom of the container, the fluid containing

the still suspended smaller particles was carefully siphoned into a

graduated cylinder. This volume of fluid (isopropyl alcohol) was replaced

by clean fluid. This procedure was repeated once in the case of the 6 y

and 9 y particles and twice for the 3 p particles. This was necessary in

order to obtain a solution of particles which would contain mainly the

particles in the size range of interest. Shown below is the method used

for determining the settling velocity and the settling time for the parti-

cles of interest. Also shown is a table containing the calculated settling



velocities of various sized diamond particles in isopropyl alcohol. The

settling velocity, V , is given by
s

v =
s 18n

where p = density of particle

g = acceleration due to gravity

d = diameter of particle

n = viscosity of suspension fluid.

In air, 1-y spherical particles of unit density have a settling velocity

V = 3.49 x 10 3 cm/sec .
s

In isopropyl alcohol, the settling velocity of the diamond particles may

be obtained by introducing the ratio of the viscosity of isopropyl

alcohol to air and the particle density where

_2
Viscosity of isopropyl _ 2 x 1Q poise _ OQ in~2TT• • j_ f ~ i ~ -L.uyy x J.UViscosity of air - , „„ ,,,-41 1.82 x 10 poise

and

Density of diamond = 3.5 ,

yielding



= (3.5)(d
2)(3.49 x iQ 3 cm/sec)(60 sec/min)

S 1.099 x 1Q~2

= (d2)6.67 x 10 3 cm/min .

Particle size (y)

V (cm/min)
S

0.5 y

0.0016

1 y

0.0066

3 y

0.06

6 y

0.24

9 y

0.54

15 y

1.5

Settling time =
_ height of fluid (cm)

V



3.0 DIAMOND PARTICLE DISTRIBUTION SYSTEM

Due to the more rapid settling velocity and aerodynamic properties of

the diamond particles, the Environmental Research Corporation fluid atomi-

zation generator, originally planned to be used to disperse the particles,

would not efficiently disperse the large particles. Because of this, a

particle dispersing system was designed which overcame these problems

and would dispense the large diamond particles. An illustration of this

system is shown in Figure 4. The isopropyl alcohol solution containing the

suspended diamond particles is stirred by a magnetic stirrer to maintain a

uniform suspension of particles and is then fed by a combination of gravity

and venturi action to the nozzle in the sampling chamber. By using the

gravity feed technique, one is assured of getting the large particles into

the chamber. The venturi-type atomization nozzle was fed by nitrogen fil-

tered by a 0.45-y filter at 30 psi. The nitrogen flow rate through the

nozzle was measured by a wet test meter to be 21 liters/minute. The high

velocity stream of nitrogen through the venturi nozzle caused the isopropyl

alcohol solution containing the suspended diamond particles to be sprayed

into the chamber in a fine mist. The alcohol evaporated before striking

the opposite wall of the sampling chamber, allowing the particles to settle

by gravitational action to the bottom of the sampling chamber where they

were simultaneously sampled by the Climet Model 250 particle counter and

the MOS vacuum nozzle particle accelerator. An additional 0.45-y filtered

nitrogen source of 18 liters/minute was added to the chamber so that the

total nitrogen input was approximately a factor of two greater than the

combined sampling rates of the Climet and the vacuum nozzle particle

accelerator. This technique insures that a slight positive pressure re-

mains in the sampling chamber, thus eliminating any effect from the

surrounding atmosphere.
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4.0 CLIMET PARTICLE COUNTER

The Climet Model CI-250 particle counter was used as a reference

during the calibration of the MOS particulate sensors. The Climet particle

counter is a portable, solid-state, optical instrument operating on the

light-scattering principle. The air or gas containing the particles to be

sampled is pulled into the instrument by a vacuum pump at a rate of

2
14 ft /hr. The large sampling rate is to insure that all the particles

in the sample will enter the instrument. The sampling air stream is

2
divided so that 1 ft /hr of the sample is pulled through the optical

counting chamber. Any particle which enters the counting chamber causes

the light to be scattered. The scattered light pulse, which has an

amplitude proportional to the size of the particle, passes through a lens

system and strikes a silicon photocell. The electrical pulse from the

photocell is fed to a comparator circuit which is controlled by the

particle size range switch on the instrument. Any particles which are

equal to or larger than the particle size range switch setting produce

pulses which trigger the comparator circuit which in turn drives the

digital counter. The counting time is controlled by selecting a 36-second,

a 360-second, or a manual mode of operation. The accuracy of the instru-

ment is illustrated in Table 1. A picture of the instrument and a block

diagram are shown in Figures 5 and 6, respectively.

The instrument was modified for use in this study. It was found that

the large particles (75 y) would not reach the counting chamber through

the normal plumbing. A plastic pipe was inserted directly into the chamber

and positioned in a vertical manner so that particles would fall directly

from the source to the chamber.

12



Table 1. Particle Counting Statistics and Accuracy of Climet

Number of
particles
counted

99,999

10,000

1,000

100

10

1

Percent error

50% proba-
bility

±0.213

±0.67

±2.13

±6.7

±21.5

+ 200
- 70

95% proba-
bility

• ±0.63

±2.0

±6.3

±20

+65
. -60
+300
- 90

99.7% proba-
bility

±0.95

±3.0

..±9,5

±30

+ 100
- 75
+500
-100

Standard
deviation

of counts, 3

316

100

31.6

10

3.16

1

13



Figure 5. Photograph of the Climet Particle Counter.
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5.0 MOS SENSOR FABRICATION

The MOS particle sensors are basically MOS capacitors fabricated by

using standard integrated circuit processes. The basic structure of the

MOS sensor is a silicon substrate acting as one "capacitor plate," a

thermally grown SiO- layer acting as a dielectric, and an evaporated

aluminum film acting as the second capacitor plate. A cross-section of

the unit is shown in Figure 7. The silicon substrate material is p-type

0.1 y-cm, 1-1-1 oriented, 1-1/4-inch diameter wafers polished on one

side. Following is a description of the MOS sensor fabrication process.

The first step in the fabrication process was to prepare the silicon

substrate and grow the SiO~ film. The silicon substrates were cleaned by

employing standard silicon cleaning procedures which included heating the

substrate in solvents and acids. The oxidation step was carried out by

loading the substrates into a quartz oxidation tube of an oxidation fur-

nace which was at 1100°C, with 2000 cc of dry 0. flowing through it. The
o

time of oxidation was varied in order to produce SiO~ films of 700 A,
o o o o

1000 A, 1200 A, 1500 A, and 1800 A.

The next step was to anneal the substrates containing the SiO~ layers

at 200°C in a vacuum of 25 in. Hg for 30 minutes. The wafers were then

placed in the aluminum evaporation system on evaporation masks which con-

tained a 50 x 50 array of 15-mil diameter holes on 20-mil centers. A
o

standard aluminum evaporation cycle was carried out which produced 500 A

thick, 15-mil diameter dots of aluminum on the SiO» surface.

The next step in the fabrication sequence was to etch the SiO_ from

the lapped back side of the wafer by positioning the wafers, aluminum

side down, and placing crystals of ammonium bifluoride (NH.F-HF) on the

16
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Figure 7. Cross Section of MOS Sensor.
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lapped wafer surface. A few drops of D.I. H_0 were placed on the crystals,

and when the SiO- was etched away, they were rinsed in D.I. HO.
o

The next step was to evaporate 500 A of aluminum on the etched back

surface of the silicon wafers. After this step, the silicon wafers were

scribed into 100 x 100 mil square chips containing approximately a 5 x 5

array of 15-mil diameter dots. These 100-mil chips were eutectically

bonded to 12 pin gold-plated TO-5 headers by scrubbing the chip in a

random motion on the TO-5 header at 450°C. The eutectic bond formed was

mechanically strong and produced a good electrical contact between the

silicon chip and the TO-5 header.

The next step was to bond 1-mil gold leads from eleven of the 15-mil

aluminum dots to the posts on the TO-5 header. The twelfth post was

bonded to the base of the TO-5 header and served as a common contact for

the eleven 15-mil diameter MOS capacitors. A photomicrograph of the com-

pleted MOS particle sensor is shown in Figure 8.

18



Figure 8. Photomicrograph of MOS Sensor.
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6.0 VACUUM NOZZLE PARTICLE ACCELERATOR

The purpose of the vacuum nozzle particle accelerator is to accel-

erate the particles to a velocity sufficient to produce counting on the

MOS particle sensor. A sketch and a photograph of the accelerator are

shown in Figures 9 and 10, respectively. The vacuum nozzle particle

accelerator was chosen, as a means of obtaining the necessary particle

acceleration, because of its simplicity of design and compact size.

The design criteria are given in the Appendix. The particle acceleration

tube was added to the vacuum nozzle particle accelerator in order to pro-

vide sufficient distance, and thus time, for the 6 p and larger diamond

particles to reach a velocity sufficient to produce counting on the MOS

sensor. The TO-5 MOS particle sensor was mounted into a standard 12-pin

TO-5 I-C socket which positioned and aligned the sensor in front of the

particle acceleration nozzle. The alignment of the MOS particle sensor

was found to be a very important factor during the design of the vacuum

nozzle particle sensor. The 0.5-inch nozzle-to-MOS sensor distance was

chosen in order to prevent small, soft particles of insufficient mass from

producing counts and from accumulating on the MOS sensor surface, thus

lowering the counting efficiency of the sensor. In operation, a vacuum

pump was connected to the vacuum port on the vacuum nozzle particle

accelerator, and the vacuum nozzle pressure was measured at the vacuum

port. A plot of the sampling rate versus the vacuum nozzle pressure is

shown in Figure 11.
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Figure 10. Photograph of Vacuum Nozzle Particle Accelerator.
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7.0 MOS ELECTRONICS

The MOS particle sensor is, in effect, a MOS capacitor having the

silicon substrate as one plate, the SiO_ film as the dielectric, and a
o

500 A film of evaporated aluminum as the other plate. A DC bias, sup-

plied by a battery, is placed across the MOS capacitor through a 1000 Q

resistor. When a particle strikes the MOS sensor with sufficient momentum

to cause damage of sufficient magnitude in the dielectric, the capacitor

discharges through the dielectric. The capacitors are connected in

parallel to obtain large counting areas with the added benefit that the

parallel connection provides added charge, hence current density, to burn

away the aluminum in the damaged area. The time for this clearing opera-

tion is on the order of nanoseconds as shown by the rise time in Figure 12.

The battery then recharges the capacitor through the 1000 fi resistor and

thus reestablishes the electric field across the capacitor as shown by the

fall time of the pulse in Figure 12. A portion of the recharge current is

fed to a Fairchild vA-710 comparator circuit. Since there is a variation

in the amplitude of the recharge pulses, which depends upon the applied

bias and to some extent upon the impact event, this circuit is necessary

in order to supply constant amplitude pulses to the HP 25456 electron

counter. For most instances, the amplitude of the discharge pulse is

approximately 25 :percent of the applied bias. A schematic diagram of the

MOS readout circuit is shown in Figure 13. Shown below is a sample cal-

culation of the capacitance and maximum counting rate of the MOS sensors.

C(pf) = 8.85 x 10 2

24
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Figure 12. MOS Discharge Pulse.
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Figure 13. Schematic Diagram of the MOS Readout Circuit.

26



where K = 3.2 for SiO,

d = dielectric thickness in centimeters

A = area in cm .

-3 2
For a 15-mil diameter MOS unit, the area is 1.14 * 10 cm .

-5

With

a thickness of 1000 A (10 "' cm), the 15-mil diameter MOS capacitor has a

capacitance of 32.3 picofarads. Assuming that eleven units are connected

in parallel, as in most instances, the total capacitance, C , is 355 pico-

farads. Thus the RC time constant for recharging the impacted sensor is

RC = (1 x J3) (355.1 x 10 12 f) = 0.355 x 10 6 sec .

Allowing one RC time constant for each counting event yields

P 0.355 x 10 6 sec
= 2.8 x 10 maximum counts/sec .

Below is a table showing the effect of SiO thickness on the MOS

capacitance and maximum counting rate.

SiO thickness

700 A

1000 A

O

1200 A

C

46.1 pf

32.3 pf

26.9 pf

CT

507.1 pf

355.3 pf

295.9 pf

RC

0.51 ysec

0.36 ysec

0.29 psec

f

1.96 x io6

2.77 x IQ6

3.39 x io6

27



8.0 DATA-GATHERING METHODS

The calibration procedure was carried out by simultaneously sampling

from the particle generation system with the vacuum nozzle particle accel-

erator and the Climet Model CI-250 particle counter acting as a reference.

The calibration setup is illustrated in Figure 14.

At the beginning of each set of runs, the background of the system

was checked by using isopropyl alcohol in the particle dispensing system

and sampling simultaneously with the Climet particle counter and the MOS

sensor in the vacuum nozzle particle accelerator. In general, the Climet

would indicate a background count which the MOS would not. The back-

ground for the Climet could then be subtracted from the Climet counts

obtained from the runs made with a particle-saturated solution to obtain

the correct number of counts to be used as a standard for comparison with

the MOS counts. Each time a run with different size particles was made,

the dispensing system was completely cleaned and the background was

checked.

The three basic types of data taken were (1) threshold data,

(2) variable pressure data, and (3) variable bias data. In addition, a

preliminary evaluation as an environmental monitoring instrument was con-

ducted by mounting a MOS unit aboard an aircraft and flying through the

emissions from power plant smoke stacks in Virginia and North Carolina.

The variables examined during these series of tests were dielectric (SiO )

thickness, particle size, particle velocity, sampling rate, and MOS bias
o o

voltage. The three dielectric thicknesses investigated were 700 A, 1000 A,
o

and 1200 A; and the diamond particle sizes investigated were 1 y, 3 y, 6 y,

and 9 y.
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8.1 THRESHOLD DATA

The threshold data were obtained to determine a mass-velocity rela-

tionship for particle counting by a MOS sensor with a given dielectric
o

thickness. Threshold data were obtained for the 700, 1000, and 1200 A

silicon oxide thicknesses and for 3-, 6-, and 9-micron diamond particles.

With the MOS sensor biased at a given voltage, the threshold for counting

was determined by starting with the MOS vacuum nozzle particle accelerator

velocity at zero and then slowly increasing the nozzle pressure, thus the

particle velocity, until the MOS sensor began to count. For each set of

conditions—bias, particle size, and SiO- thickness—the counting thresh-

old nozzle pressure was obtained ten times and then averaged. The

nozzle pressure was converted to a particle velocity using the theory in

Appendix A. The graphical representation of the theory used is displayed

in Figure 15 where the ratio of nozzle pressure to atmospheric pressure

is along the horizontal axis and the particle velocity is along the verti-

cal axis. The V ~'s are the exit velocities. The family of curves
P3

3
represents different particle diameters of density 3.5 gms/cm (diamond).

The particle diameter-mass relationship for diamond is shown in Figure 16.
o

The threshold data for MOS sensors with 700, 1000, and 1200 A Si02

dielectric are shown in Figure 17. In each case the electric field in the

dielectric was 2.2 x 10 volts/cm. The diameter of the particle associa-

ted with the threshold was assumed to be 3, 6, or 9 microns depending upon

the particle distribution chosen for the particular experiment. By collect-

ing a sample upon a slide inserted in the bottom of the sampling chamber

and observing the slide under a microscope, the large particles observed

in each case were near 3, 6, or 9 microns.
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8.2 VARIABLE BIAS DATA

Variable bias data were taken to determine the effect of an electric

field upon the threshold of counting for the MOS sensor. Observing the

threshold for several bias voltages with each particle distribution and

with each thickness of SiO. resulted in the data included in Figure 18.

The straight lines represent a theoretical interpretation of the data to

be discussed in a later section.

8.3 VARIABLE PRESSURE DATA

The variable nozzle pressure data were taken to determine the count-

ing efficiency of the MOS sensor relative to the Climet instrument. In

addition, the particle size selectivity of the MOS can be inferred assum-

ing a correlation between the instruments exists and assuming a consistent

model for the operation of the MOS can be discerned. A typical set of

data is shown in Figure 19. These data were obtained by varying the

nozzle pressure and noting the MOS particle count. At least five separate

observations at each nozzle pressure were averaged to obtain each data

point shown in Figure 19. Each observation was for a 36-second sampling

interval. For each sampling interval a Climet reading in either the 5- or

2-micron range was obtained. For the particular range the instrument

counts all particles about that setting. Since the volume of air sampled

by the Climet and the MOS in the 36-second interval differed, a correc-

tion factor to obtain a meaningful comparison was introduced. Basically,

the average of the Climet counts was multiplied by the ratio of the volume

of air sampled by the MOS to the volume of air sampled by the Climet. In

addition, the MOS counts were corrected for the fact that the active area

of the device is only a fraction of the area intercepted by the sampled

air stream. An example of the area effect can be seen in Figure 20, where
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Dependence of Velocity Threshold
on Applied Voltage
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Figure 18. Dependence of Velocity Threshold on Applied Voltage.
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Figure 20. Photomicrograph of Impacted MOS Sensor.
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the number of 15-mil dots that show a preponderance of counts is limited

to three or four units. Using simple geometric considerations as shown

in Figure 21, the average of the MOS counts at each nozzle pressure was

corrected. Through actual examinations of the surface of an impacted

MOS sensor, it was determined that somewhere between three and seven of

the 15-mil MOS units did most of the counting. Thus the MOS counts should

be multiplied by a factor between approximately 2 to 4. Numerous observa-

tions led to the use of the larger correction of 4. Using the above

procedures certainly limits the accuracy of the results; however, quali-

tative interpretation predicated on these results will be given in a later

section.

8.4 IN-FLIGHT SENSOR EVALUATION

The purpose for conducting the in-flight tests of the MOS sensors

was to determine the ability of these sensors to function as useful

instruments for environmental monitoring.

A Cessna 182 was chartered for use on these test flights. Two

vacuum nozzle particle accelerators were mounted on the wing spar. The

particle intake ports were aimed toward the rear of the plane to prevent

dust from the runway from damaging the MOS sensor during takeoff. A

triggering circuit, illustrated in Figure 22, was designed and used

with the normal MOS sensor circuitry in order to trigger a strip chart

recorder which acted as an event counter. The AC power for the vacuum

pump and the electronic equipment was supplied by two 12-volt wet cell

batteries and a 500-watt inverter. The MOS sensors used for these tests
o

were the 4 > < 4 array, 15-mil diameter dot type with 500 A aluminum con-
o

tacts. The SiO? dielectric thicknesses were 700 and 1200 A. A block

diagram of the equipment used for these tests is shown in Figure 23.
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Figure 22. Schematic of MOS Sensor Counting Circuit Used
in Flight Evaluation.

Two
12-volt

Diehards
parallel

12 vDC
500-watt
Wilmore
inverter

H-P
electronic
counter
5245L

±15 v DC
power
supply

Pulse
shaping
circuit

On wingspar

Vacuum nozzle
accelerator

I!

Figure 23. Block Diagram of MOS Sensor Counting System.
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Since the MOS particle sensors had individual lead-in cables and vacuum
o o

lines, either the 700 A or the 1200 A sensor could be easily switched

into the counting circuitry.

The MOS particle sensors were in operation during the flight from

the Raleigh-Durham Airport to Langley Field and on the return trip to

Raleigh-Durham. Three flights were made from the Langley Field over the

Yorktown area. The flights were made at altitudes ranging from 500 to

1100 feet. The particle counting rate was largest at 500 feet and

dropped off with increasing altitude. Particle counts were recorded

more than 2 miles downwind from a coal-fired power plant. The visible

plume from the source was approximately 1000 feet high; however, the

larger counting rate at 500 feet indicated that the larger particles had
o

settled out of the plume. Fourteen counts were recorded with a 1200 A

MOS sensor as the stack was approached from downwind at 1000 feet alti-

tude, with the highest fate of counting being approximately 0.5 mile from

the stack. At an altitude of 800 feet, an identical approach was made
o

toward the stack, and a total of 61 counts were recorded. When the 1200 A

MOS sensor was flown at 500 feet at right angles to the plume, 523 counts
o

were recorded. The counting rate at 500 feet with a 700 A MOS sensor was

of sufficient magnitude to destroy the sensor after a few seconds of

counting.

A light rain occurred between the second and third flights, and the

particle counting rate dropped off by approximately a factor of ten. The

rain droplets apparently condensed on the particles and thus cleaned the

air as the rain fell. No evidence of corrosion of the metal (aluminum)

contacts was observed, indicating that this anticipated problem did not

materialize.
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A flight over a North Carolina coal-fired electric power plant
o o

yielded data with both the 700 A and 1200 A MOS sensors that were very

similar in magnitude and altitude conditions to those recorded in

Virginia. A photograph showing the mounting arrangement on the wing spar

of the aircraft is shown in Figure 24.
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9.0 ANALYSIS

To facilitate calibration of other MOS units, a consistent model which

relates the experimental observations in the present effort will be

presented. The threshold data in Figure 17 suggest a rather classical

penetration relationship where

X = k m£ vn (2)
P

where X is the thickness penetrated by a particle of mass m and velocity v.

A reasonable assumption to explore is that penetration through the aluminum

electrode and the dielectric is required to initiate an electrical dis-

charge. However, two observations are not included in such a simple model.

First, it has been observed that the threshold is dependent upon the

applied bias. As voltage is increased, the threshold velocity for a given

particle mass decreases. For typical data in Figure 17 the particle energy

is near 10 joules while the energy stored on the capacitor is near

10 joules. Thus the electrical energy is between 100 and 1000 times the

kinetic energy of the particle. Thus the added particle energy as the

velocity is increased does not replace the reduction in electrical energy

with reduced applied voltage. Secondly, a rather unique feature of the

operation of the MOS units is that for applied voltages less than 7 volts,

a particle impact results in a short which will not clear. This lower

limit of operation is independent of oxide thickness at least for the units

used in this study.

Another factor which will be useful in characterizing the operation

of the MOS sensor is the inherent electrical field strength for the silicon
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oxide. In numerous observations the units would .spontaneously discharge
r. _>

when the electrical field was between 3 and 4 * 10 volts/cm. Detailed

studies of electrical breakdown in SiO_ report values from 10 to 10

volts/cm. At the lower values it is generally recognized that small

defects in oxide are responsible for the discharges. The electrical

discharges are indistinguishable from the microparticle-initiated dis-

charges and clearly must be avoided. Thus the range of operation is

bounded on the lower end by the non-clearing events at about 10 volts/cm

and on the upper end by the spontaneous electrical discharges at about

3 x 10 volts/cm.

Although the present understanding evolved in a rather circuitous

manner, the penetration-type relationship involving mass-velocity sug-

gested that a well defined penetration was required. The voltage dependence

of threshold suggested that penetration to a depth where the electrical

field in the unpenetrated oxide exceeded the field strength for breakdown

should be considered. A simple illustration of the geometry of the pene-

tration is shown in Figure 25. As the particle penetrates to depth X ,

' .« i
it is assumed that aluminum is carried along to provide electrical coht-i-".

nuity such that the applied voltage appears across X,,. When the depth of

penetration is such that the field in X exceeds the field strength of the

oxide, a discharge will occur. A rather tenuous assumption of a field

strength near 10 volts/cm could be used to proceed. However, the data in

Figure 18 Can be used to infer a value for the field strength. Assuming a

penetration relationship for threshold of particle-initiated discharges

where

X = k m£ vn (3)
P
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Geometry.
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and a field strength for discharge events (E,) where

the dependence of threshold velocity upon applied voltage is given by

V = - Ed k i v + Ed(X1 + X^ . (5)

Without attempting a detailed fit to the data, a value of E = 4 x 10

volts/cm was used. Partial justification for the choice was the observa-

tions of spontaneous discharge near 4 x 10 volts/cm. While field

strengths near 10 volts/cm have been reported, the impact event may

damage the unpenetrated region resulting in a lower field strength. In

any event, the value of 4 x 10 volts/cm provides a reasonable lower limit.

After assuming a value for E,, it is straightforward to find X for the

mass-velocity relationship in Figure 17. Since the data were taken at

equal applied electric fields of 2.2 x 10 volts/cm, the ratio X /X- is

given by

X2 4 x IQ6£• _ ^ -1-" _ i o— - 7- - 1.8 .

3 2.2 x 10

Therefore,

Xp - Xl + X2 - X3

(7)

47



o

The thickness of the aluminum electrode was 500 A in every case. The pene-

tration threshold with an applied electric field of 2.2 x 10 volts/cm for

the three SiO» thicknesses is given in Table 2.

Table 2. Particle Penetration Threshold for
Various Silicon Oxide Thicknesses
with Electric Field of 2.2 x 106

volts/cm

SiO, thickness
V
X2

700 A

1000 A

1200 A

Penetration thickness
X
P

810

940

1030

Using the penetration thicknesses in Table 2 to obtain a fit to the data

in Figure 17 results in

X = 8.5 x 10 4 m°-54 v (8)
P

where X is in centimeters, m is in grams, and v is in centimeters/second.

This linear dependence of penetration on velocity has been previously

observed for impacts at low velocities.

Using the results in Equation 8 and a value of E , = 4 x 10 volts/cm,

a set of theoretical curves have been drawn in Figure 18. Some adjustment

in E^ may result in a better fit; however, the adjustment would appear to
T .~*'" * -

* "" * i«. A , ' f

be less than 10 percent based on the data for 6-micron particles. * However,

the 9-micron particle data are a bit high and suggest a slight increase. "•; ',

It should be pointed out that the data were taken on a .number of units,

and any variations in "the field strength.- from' unit to unit will influence
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the results. Therefore, some of the scatter in the data may result from

variations in electrical properties. As mentioned earlier, the particle

distributions are not sufficiently characterized to provide precise analysis;

therefore, the theoretical curves are considered reasonable under the

circumstances.
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10.0 DISCUSSION

The calibration data in Section 8 and the analysis in Section 9 can

be combined to provide an interpretation of the counting efficiency of the

MOS relative to the Climet and to provide an estimate of the minimum

particle diameter counted by the MOS. With a given bias on the MOS, the

impacting particle must penetrate well into the oxide to initiate break-

down. For the MOS particle accelerator analyzed in Appendix A, the

velocity of the impacting particles is dependent upon the particle diameter.

Thus at a given nozzle pressure, only particles of a certain diameter or

greater will achieve the penetration threshold for discharging the MOS

capacitor. The accelerator is essentially a mass selector in terms of

threshold since an increase by a factor of ten in mass results in less than

a factor of three change in velocity for a given nozzle pressure in

Figure 15. If all particles impacted with identical velocities, the mass

selectivity would be very precise. However, the threshold of penetration

is approximately equal to the square root of the particle kinetic energy;

thus a range of particles will have the same threshold of penetration for

the MOS unit. Since the particle mass varies as the cube of the diameter,

the threshold of penetration in terms of particle diameter will have a

much narrower range. For a given nozzle pressure in the range of interest,

0.7 < (Po/P ) < 0.95, the particle velocity decreases approximately as the
j atm

inverse square root of the particle diameter, or

Vp
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Thus the threshold penetration varies essentially as

2
X *> (m v ) * d (18)
P P

or directly proportional to particle diameter. This simply means that as

the nozzle pressure is increased, the threshold will be determined by the

largest diameter particles present in the sampled air volume. This

assumes that the pressure is increased slowly enough that the relative

occurrence of the particle diameters does not influence the measurement.

Another way of stating this assumption is that over the observation time,

all particles of various diameters in the sampled volume of air should

impact a MOS capacitor.

The counting efficiency observed for the 6-micron particle distribu-

tion shown in Figure 19 can be explained in terms of the threshold of

penetration dependence on particle diameter. As the nozzle pressure is

increased, a threshold at 5 inches of mercury is due to the largest

diameter particle in the particles sampled. By direct observation of par-

ticles collected on a glass slide, this particle diameter is near 6 microns.

The Climet reading for particle diameters greater than 5 microns is used as

a standard, and the MOS counts 65 percent of the greater than 5 micron par-

ticles at the threshold. As the nozzle pressure is increased, the MOS

counts not only particles greater than 5 microns but also particles less

than 5 microns in diameter, hence an efficiency greater than 100 percent

since the 5-micron range on the Climet is used as the standard. Changing

to the greater than 2 micron range on the Climet, an increase in nozzle

pressure continues to increase the counting efficiency. This increase is

due to the fact that the particles are distributed in diameter and as the
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nozzle pressure is increased, smaller diameter particles reach the threshold
? ~t

of penetration and initiate a capacitor discharge. The fact that the MOS

counted only 70 percent of the Climet counts may be due to either one of

two possibilities: The precision of the data must surely be in question

considering the uncertainties in the conversion factors used to provide a

meaningful comparison between the Climet with the MOS, or there could be

30 percent of the particles greater than 2 microns which do not achieve

the threshold of penetration. Assuming the model is consistent, the

smaller particles near 2 microns would constitute the 30 percent not

counted. Using the data in Figure 15 and interpolating the velocity for

a 2-micron particle at 19 inches of mercury indicates that the threshold

of penetration is achieved; thus the 30-percent difference may simply be

due to the lack of precision in correcting the data.

The lower limit for counting with the MOS unit designed and employed

for these calibration studies can be inferred. The airstream velocity

is approximately 2900 cm/sec at 19 inches of mercury which is the maxi-

mum achievable velocity for the present design. Assuming the particles
o

could be accelerated to this maximum velocity, the 700 A SiO~ unit would
o

count all particles greater than 1.4 microns in diameter, the 1000 A SiO«

would count all particles greater than 1.5 microns in diameter, and the
o

1200 A SiO_ would count all particles greater than 1.6 microns in diameter.

Since the particles do not achieve airstream velocity, the lower limit is

somewhat larger than the above values; however, smaller than 2 microns.

To provide a test of these conclusions, a distribution of small particles

which contains no particles greater than 2 microns was impacted against the
o

1000 A MOS units. The nozzle pressure was increased to 19 inches of mercury;

however, the MOS unit did not count. Climet readings were used to determine
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the particle size distribution. To insure that the MOS counter would

count, a distribution containing greater than 2 micron diameter was

impacted. The MOS unit did respond to the distribution containing greater

than 2-micron diameter particles.

Regarding the observation that polystyrene particles do not discharge

the MOS sensor, classical penetration theory would include the effect of

the density of the particle and the density of the target material. In

fact, two particles of density p1 and p. impacting identical targets at

identical velocities would result in ratios of penetration given by

V

Thus less dense particles penetrate less than the denser particles. Part

of our observations may be simply explained by the density of the particles.

However, in some instances with large organic crystals (̂ 10 microns) which

did not initiate discharges, the density of the particle does not account

for the failure to initiate a discharge. These observations suggest that

hardness must also be considered. We propose that brittle particles

absorb some of the energy of the impact by shattering at impact, thereby

reducing the energy available for the penetration. However, to validate

the observation and the explanation will require further study.

Finally, the shorting of the capacitors observed in this study when

the applied bias is reduced to approximately 7 volts and threshold of

velocity should be considered. For the different particles, they must

achieve the penetration threshold X regardless of particle size. At

7 volts the threshold penetration is approaching complete penetration;
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hence the discharge is not initiated by dielectric breakdown but by leak-

age through a damaged dielectric. It is possible that the lack of a

sharp rise time for the discharge precludes the rapid rise in local

temperature, hence the lack of vaporizing the aluminum carried through

by the particle. In any event, the unpenetrated dielectric which is

assumed to be damaged and leaky rather than insulating increases by 30
o o

percent from a 700 A SiO- film to a 1200 A SiO film. Considering the

lack of precise control of particle velocity and size which impacts the

unit with near threshold penetration, it is unlikely that a 30-percent

variation when shorting is the ultimate observation can be established.

In conclusion, it is unlikely that data can be obtained with sufficient

precision to see the 30-percent variation. However, the range from 7

to 8 volts as the applied bias which will result in shorted MOS units has

been repeatedly observed.
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11.0 APPLICATION

In this report we have reported on the design, testing, and calibra-

tion of a MOS particulate detector. Numerous variations in detector

housing, in the MOS capacitor geometry, in the particle sampling tech-

nique, and in the calibration procedures have resulted in the final design.

We do not claim that the design has been optimized for every application;

however, we consider the unit on which the report is based to be near an

optimum design for detecting particles with a diameter between 2 and 10

microns.

Since the design of the particulate detector is to a large extent

empirical, one can only conjecture about the design of a detector for

particles greater than 10 microns and less than 2 microns. However, we

are not aware of any fundamental reasons why a detector cannot be designed

to operate outside the limits of 2 and 10 microns. The point is that for

a detector to count particles with diameters from 2 to 10 microns, one

should start with the unit described in this report. If the application

is outside the 2 and 10 micron limits, from this report one can infer only

a few factors pertinent to the design.

The major factors to consider when applying the results included in

this report are:

(1) Geometric factors

(a) The housing design should replicate the illustration in
Figure 19. In particular, the dimensions of the particle
accelerator tube and the nozzle to MOS sensor spacing
should be maintained.

(b) The MOS fabrication should follow the procedures in
Section 5.0. Specifically, the aluminum thickness should
be 500 A and the Si02 thickness should be 700, 1000, or
1200 A. Aluminum dot area and spacing are critical;
however, some variation can be considered since calibra-
tion for efficiency will account for these variations.
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(2) Particle Sampling

The volume of air sampled will depend upon the nozzle pressure
as shown in Figure 11. The nozzle pressure must be adjusted
to insure that the particle you wish to detect achieves suffi-
cient velocity to initiate a discharge. For example, if a
9-micron particle is of interest, one finds in Figure 16 that
the diamond microparticle has a mass of approximately 10~9
grams. From Figure 17, the threshold velocity for a 10~9 gram
particle impacting a 700 X oxide and 500 A" aluminum electrode

- is approximately 2,000 cm/sec. (This assumes a field of
2.2 x 106 volts/cm in the oxide.) In Figure 15, a particle
velocity of 2,000 cm/sec can be achieved with a nozzle pressure
of 0.95 atmospheres. Thus the vacuum line should be reduced
below this level for reliable counting.

(3) Calibration

(a) It has been inferred that particle hardness is important
in the discharge process. To date most data have been
obtained with alumina or diamond dust. For other dust
environments, one should perform controlled laboratory
tests with known (qualitatively) environments including
the particles of interest.

(b) The MOS capacitor may short after extended use. A short-
ing test such as a current or voltage measurement across
the MOS unit should be included in the counting circuit.
A threshold of acceptable performance can be established
on the basis of d.c. or average values which would pre-
clude the observation of the transient discharge.

(c) The counting rate should be less than 10-̂  counts per
second. Even at this rate the MOS capacitors may degrade
in a relatively short period of time. In most of this
work we have considered 10 to 100 counts per second as
acceptable counting rates which provide minutes to hours
of continuous sampling without seriously degrading the
response of the detector.

(d) The threshold dependence on the voltage of the MOS capaci-
tor will influence counting. One should be sure to use an
applied voltage such that the field in the oxide is in
excess of 2.2 x 106 volts/cm.

(e) Counting efficiency will depend upon the ratio of the
active (electrically connected) MOS capacitor area impacted
to the total MOS area impacted. Although we find the fac-
tor of 4 (multiply counts by 4 to obtain actual count) to
be a reasonable number for 15-mil dots on 20-mil centers,
one should impact the sensor and then examine the impacted
areas under a microscope to obtain assurance. Alignment
errors can result in larger variations. One should remember
that the entire area of the MOS array is the same order as
the area of the nozzle outlet. Alignment must be carefully
examined.
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APPENDIX

GAS AND PARTICLE FLOW CHARACTERISTICS
FOR SUCTION TYPE PARTICLE ACCELERATOR

USED WITH MOS DETECTOR

By J. C. Mulligan
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NOMENCLATURE

A flow area

a defined as intercept of linear velocity distribution in z

b defined as slope of linear velocity distribution in z
2

C defined as 18*yg/d *p

C specific heat at constant pressure

C, specific heat at constant volume
b
D nozzle diameter

d particle diameter

f friction factor for tube flow (=0.02)

f isentropic flow function (in ̂T /g /AP )
w o °c o 2
g gravitational constant (32.2 Ib -ft/lb^-sec )

k specific heat ratio (C /C )
P n

K particle to gas velocity ratio (V /V )
C O

K9 particle to gas velocity ratio in nozzle section

K_ particle to gas velocity ratio in straight section

L length of straight section

L,, fictitious length necessary to achieve M = 1.

m mass flow rate

m mass of particles per mass of gas (Ib particles/Ib gas)p m m
M Mach number

P static pressure

P atmospheric pressure (=P.)

Q volume flow'rate

R gas constant

T temperature

V velocity

z axial distance from inlet

Starred quantities - gas dynamics reference values

e density

u absolute viscosity

u as unit microns

Subscripts

g - gas

p - particles

o - stagnation state
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Subscripts continued

i - inlet or stagnation conditions

e - exit

1 - upstream station

2 - throat station

3 - straight section exit station
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I. INTRODUCTION

The analyses and computations presented here are concerned with the

description of the flow characteristics of two vacuum type particle

accelerators which have been used in a series of experiments utilizing

an MOS type impactor for atmospheric particulate detection. The accelerators

are essentially vacuum driven nozzles which accelerate sample air and

particulates to a high velocity. The high velocity mixture is subsequently

stagnated on the sensitive portion of the MOS impactor, at which point each

of the particles generates a discharge which is ultimately counted in the

MOS circuitry. In order to understand the important mechanisms occurring

in the impaction process and to properly interpret the results of the

experiments, it was necessary to know the actual velocities of the particles

at impact under experimental conditions. The task of the work presented

here, therefore, was to analyze the two types of nozzles which were used

under vacuum conditions and to make estimates of the actual gas and particle

velocities which were attained under experimental conditions.

Before gas dynamic type calculations could be carried out on the nozzles

used in the experiments, it was necessary to investigate the accuracy which

could be expected from a purely gas dynamic computation involving a particle

laiden gas. This was done and is the subject of section II, p. 60.

The first nozzle configuration used in the experiments was a converging

nozzle, designed essentially to accelerate the gas-particle sample to a

velocity sufficiently great to discharge the detector. A description of

this device and some calculations of its characteristics is included in

section III, p. 62.

It was realized that this rapid acceleration of the gas-particle mixture

tended to accelerate the smaller particles more than the larger ones, thus

tending to eliminate the larger particles role in detection. A combination

of converging nozzle and straight tube was then used to provide a slower

acceleration over a longer distance. This configuration tends to accelerate

the larger particles significantly more. An analysis of the gas dynamic

characteristics of this configuration is included in Section IV, p. 66, and

a particle dynamics analysis is included in Section V, p. 70.
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II. EFFECTS OF PARTICLES ON GAS DYNAMICS

The objective of the material presented here is to show that when

particle concentrations are as low as they are in atmospheric air, gas

velocities can be computed from gas dynamic computations by neglecting

the presence of particles.

For internal flows, the conservation of mass of the gas phase is

m = p V A (1)
g g g

and the conservation of linear momentum for the composite medium is

dV dv

m -r-- + m -r-- + A = 0 (2)g dz p dz dz

Assume that the ratio of the velocities of the particles and gas is

K, i.e.

K = V /V = const. (3)
P g

This can be proven to be approximately true for nozzle flows (see

ref. 1). Substituting equations (1) and (3) into equation (2) yields

dV
[1 + m K) + -^ = 0 (4)

uz p dz

where m is (p /p ) and p is the "partial" density of the particles.
r sr O c

Thus, m is Ib particles/lb gas. Now, this is the one-dimensionalp m m
momentum equation of gas dynamics when

pf = p (1 + m K) (5)

Also, p = p R T = p'R T/(Hm K) = plR'T where
6 g & 66 P 56

R' = R /(I + m K) (6)
8 g P
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Thus, it can be shown that if K = constant, the gas dynamic energy equation

can be used in its homogeneous form when we replace unprimed by the following

primed quantities:

C + m C (T -T )/(T -T )
C' =
P 1 + m K2

P

C' = C' - R' (8)
b p

K' = C'/C (9)

These primed quantities are known as "pseudo" properties in two phase

flow theory. Equations (5) through (9) show that when m is small the

flow characteristics of a nozzle are the same as if the particles were

absent altogether, an assumption which is valid for the relatively dilute

particulate concentrations in atmospheric air. Thus, particle sampler

flows can be treated first from a gas dynamic point of view and secondly

from a particle dynamic point of view. This is the computation approach

which has been used here.
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III. VACUUM NOZZLE CHARACTERISTICS

The purpose of the computations presented in this section was to

first define the theoretical flow characteristics of the given nozzle

and secondly to estimate actual gas velocities for the given nozzle

with measured sampling rates. The computations make use of classical

gas dynamic theory and procedures as presented in references 2,3,4.

A description of the nozzle follows, along with the essentials of the

compuations.

The vacuum nozzle is a converging, conical nozzle with an inlet

diameter of 0.225 inches, an exit diameter of 0.060 inches, and a 60°

taper. A vacuum pump is used to establish a vacuum pressure at the

exit area while the larger area is exposed to the sample gas at atmospheric

pressure. The inlet area is assumed to be much larger than the exit area,
2

the latter of which is 0.00283 in . The stagnation density at the entrance
3

area is taken as 0.075 Ib /ft , the stagnation pressure at 14.7 psi and

temperature of 70°F. The exit pressure, established by vacuum pump, and

measured flow rates are as follows:

P = 13.5 in. Hg. Vac.; 17.5 liter/min.

P = 10 in. Hg. Vac.; 16.2 liter/min.

P = 2 in. Hg. Vac.; 7.8 liter/min.

A. Theoretical Flow Characteristics of Given Nozzle - In order to

calculate the exit Mach number, M , the flow rate, Q, and the exit

velocity, V , it was necessary to make the assumption that the nozzle

behaves as an ideal (isentropic) expansion device from atmospheric

conditions to the prescribed exit conditions. The pressure ratio P /P.

is first computed and M determined from gas dynamic tables. The

quantity m/RT /g '/AP is determined from Fig. 6-4 of reference 3, noting

that P = P.. The quantity /RT /g '/A P was computed to be 712.0 for the0 1 ^ ' o c e o
experimental conditions (T -T.), and m subsequently calculated. The

density ratio p/p was determined from the gas dynamic tables and p, Q and V
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then calculated. Note that the Q evaluated at both inlet and exit

conditions is given. A summary of the computations are shown in the

following table.

P (in.Hg.Vac.) P /P.
e ° e i

13.5

10

2

0.

0.

0.

549

666

933

M m/RT /g '/AP
e o C

0.

0.

0.

97

785

315

0.

0.

0.

68

65

34

i

9.

9.

4.

m

55(10)

13(10)

77(10)

P/P0

-4

-4

-4

0.

0.

0.

65

75

95

V
e

.0487 33.3 21.5 998

.0562 27.5 20.6 823

.0712 11.4 10.8 341

The flow rates, Q are given in liter/min, the mass flow rate m is Ib /sec and

the exit velocity given in ft/sec. The flow rate Q. should correspond to

the experimentally determined sampling rate. A plot of Q. and V versus

P /P. is shown in Figure A-l. Comparing the Q. (liters/min.) with the measured

values, it is seen that the theoretically predicted flow rate is approximately

25% larger than measured. This was expected since inefficiencies in a simple

nozzle such as that used in the experiments are normally of this order.

B. Actual Velocities of Given Nozzle for Measured Flow Rates - The

actual velocities at the nozzle exit section which correspond to actual

measured inlet flow rates were computed. From the measured Q and the inlet

density, m is computed. From this m and again the inlet conditions, the

flow function m/RT /g'/A P is computed. This function is tabulated in
o L e o

reference 4 versus M . Thus, with this M the Q can be determined from
e e xe

p/p and thus V . Note that this procedure does not require an isentropic

computation and therefore it Q. is actual, then V should be a good estimate.

A tabulation of some computations are as follows.

Q. m m/RT /gr/AP M e/e Q V
i ~ o C o e o e e

17.5 7.75(10)~4 0.552 0.56 0.86 0.012 610

16.2 7.18(10)~4 0.511 0.50 0.885 0.0108 550

7.8 3.45(10)~4 0.246 0.21 0.978 0.0047 239
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The flow rate Q. is in liters/min, m in Ib /sec, Q in ft /sec and V
i in e e

in ft/sec. Note that the actual exit velocity is only about 60% of that

predicted theoretically, again an expected result. A plot of the

actual Q.^ and V are also included in Figure A-l.

66



24

23

22

21

20

19

18

17

16

15

14

13

(V&Q Theory)

O L = 5.625"

X L = 10.00"

V&Q Experi-
mental

L = 5.625"
f = 0.02
Isentropic nozzle

Q. L=10.00"
1 * f = 0.02

Isentropic nozzle -

L=5.625"

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

P3/Patm

Figure A-l. Nozzle Flow and Velocity versus Nozzle Pressure.
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IV. CHARACTERISTICS OF NOZZLE AND STRAIGHT TUBE COMBINATION

It has been recognized that even though a simple converging nozzle

is sufficient to accelerate the gas, it may not provide a long enough

flow path to allow time for the acceleration of entrained particles.

Thus, it was thought that an additional length of straight tube attached

to the exit of a converging nozzle would facilitate the acceleration of a

greater percentage of the larger particles. A sketch of this configuration

is shown in Figure A-2. The nozzle exit, Station 2, and the straight tube

were of an 0.062 in inside diameter. Two lengths were used in the

experiments, 5.625 inch and a 10.0 inch section. Again, the nozzle inlet

diameter was large in comparison with the throat diameter. As before,

a theoretical analysis of this nozzle configuration and computations of

actual characteristics were carried out. A summary of some experimental

data is as follows:

P
e

18.5

14

4

P is in inches of
e

A. Theoretical

L2 = 10.0

P /P.
e 'i

0.382

0.533

0.867

Hg. , and Q

in.

Q Pi e

12.6 19.

11.8 15

6.8 10

4

. in liter s/min

Flow Characteristics of

L2 = 5.625 in.

P /P.e i

5 0.35

0.50

0.666

0.867

. sampled.

Given Combination

Q
i

13.25

12.6

11.1

7.2

- Assi

isentropic flow in the nozzle section and friction flow in the straight

section, the computation procedure is of a trial-and-error nature. The

Mach number at the exit station, 3, M., is first assumed and the friction

length fL-j/D read from the Fanno tables of reference 4. The actual friction

length fL /D is then computed and added to fL,,/D to form the friction length

corresponding to station 2, f(L_+L )/D. Then M is read from the Fanno tables

for this friction length, along with P_/p*. Since M., is known, P,/Po can
P P P

be calculated from (̂ |)/(P3/P*) and P2/Patm calculated from (̂ ) (̂  ).
3 atm
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Brass nozzle

62-mil I.D. smooth copper tube

Intake 1 2 3 Exit

L = 5.625" or 10.00"

Figure A-2. Nozzle and Straight Tube Combination.
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From P /P , M is determined from the isentropic tables and compared with£ 3. cm 2.
the previously computed M . Using this procedure, the following data was

generated. Noting also that m = AP f /A.T /g = f /712 and the flow function

f is read from the isentropic tables of reference 4 for each M_.
W £.

Case

1

2

3

4

5

6

7

P

0

0

0

0

0

0

0

3/Patm

.35

.50

.666

.867

.382

.867

.867

5

5

5

5

10

10

10

L2

.625

.625

.625,

.625

.00

.00

.00

fL2/D

1782

1.82

1.82

1.82

3.24

3.24

3.24

M3

1.0

0.72

0.51

0.23

0.81

0.57

0.23

M

0.

0.

0.

0.

0.

0.

0.

2

43

42

375

254

354

336

205

P

2

1

1

1

2

1

1

2/P3

.50

.77

.38

.10

.40

.73

.12

P /P
2' atm

0.875

0.885

0.913

0.956

0.916

0.920

0.975

JS* m(10)J ^i

0.464 0.652 14.8

0.448 0.63 14.2

0.404 0.566 12.8

0.29 0.407 9.18

0.39 0.548 12.4

0.376 0.528 12.0

0.231 0.325 7.35

In the above tabulation, m is in Ib /sec and 0. = m/0.075 is convertedm i
to liters/min. Some additional computations of velocities were made and are

tabulated below:

Case

1

2

3

4

5

6

7

Ql p2/patm Q2

.87(10)~2

.84(10~2

.755(10)"2

.542(10)~2

.73(10)~2

.705(10)~2

.433(10)~2

.9094

.9170

.9347

.968

.9395

.9445

.9803

.958(10)

.916(10)

.808(10)

-2

-2

-2

.56(10)~2

.777(10)

.747(10)

.442(10)

-2

-2

-2

V2

487

467

411

285

396

380

225

v2/v*

.4729

.4522

.3999

.2770

.3830

.3682

.2182

M3 V3/V*

1.0

.72

.51

.28

.81

.57

.23

1.0

.7508

.5447

.3043

.8343

.6051

.2506

V3/V2

2.

1.

1.

1.

2.

1.

1.

11

66

36

10

18

64

15

V3

1030

775

560

314

863

623

259

In this table Q.. and Q are flow rates evaluated at stations 1 and 2
3respectively in ft /sec. The density ratio was taken from the isentropic

tables at M and V computed from Q2/
A2' The velocity ratios with the

starred reference velocities were taken from the Fanno tables at M and

M» and V_ subsequently calculatedin ft/sec. In all of the computations,

a friction factor f of 0.02 was used and checked against Reynolds number

as being representative. The results of the computations are illustrated

in Figure A-l.
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B. Actual Velocities of Given Combination with Measured Flow Rates

The computations presented here are the results of the calculations

of the actual exit velocities for certain measured flow rates. As above, a

trial- and-error procedure is necessary. The governing equations are

V3 » M3(l + ̂  M3
2)"1/2 AgcRT1 (11)

and

f = m(712) (12)
w

From a measured Q. and a known p., m is determined and subsequently

f . Then, f (P /P_//k is computed from measured pressures and M,

determined from equation (10) by trial-and-error. Subsequently, V,
3

is computed from equation (11). A summary of the computations are

included in the following table.

Case m W A. ^3 ^3

1 .587(10)~3 1.0 '.92 960

2 .558(10)~3 0.672 .65 705

3 .491(10)"3 0.443 .44 487

4 .369(10)~3 0.256 .25 280

5 .557(10)~3 0.879 .82 869

6 .552(10)~3 0.623 .60 654

7 .301(10)~3 0.209 .21 235

In this table m is in Ib /sec. and V0 in ft/sec. These values are shownm -i
plotted in Figure A-2 along with the theoretical results. The experimental

Q- is lower than the theoretical for L_ = 5.625 in. but in essential

agreement for L~ = 10.00 in. This is also true for the V, plot. This is

believed due to the reduction of losses in the nozzle reaction which occur

when the velocities in the nozzle section are reduced by adding additional

length on the straight section. Computed values of V« were not included

as they can be adequately estimated from theoretical values shown.
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V. PARTICLE VELOCITIES IN NOZZLE AND STRAIGHT TUBE COMBINATION

It can be shown (see reference 1, p. 211) that the ratio of particle

to gas velocity in a duct is a constant when the axial variation of the

gas velocity is linear. That is,

p
— = K = constant (13)
Vg

when V = a + bz where z is axial distance from duct inlet. This result,
O

of course, is valid for low particle Reynolds numbers and Stokesean drag.

The velocity distribution in z in nozzle and straight duct flows is here

approximated to be linear. Although this isn't entirely correct, it is

a good approximation for most nozzles and ducts and especially for the

problem under consideration here. Thus,

Vp = KV (14)

and

z

'Zl

dz

(15)

Equation (15) is developed from the particle momentum equation incorporating
2

:es drag law. C.. = 18-y /d -p

A. Entrance Nozzle (K = K?)

2
Stokes drag law. C.. = 18-y /d -p where d is the particle diameter.

(1-K )
Vp = Cj-jrf- * + Vp(z=0) (16)

where V (z=0) = 0 and V = K -V . Now,) using this latter ratio

(1-K ) V (0) (1-K )
V = C f- z + -| = C -£-+- • z + V (0)
6 x v ^9 0 °K2 2. i

72



Now, assuming V = V (0) + bz, it can be seen that
g 8

b =
C1(1-K2)

or, taking the positive root,

+ /C-L + 4bC

2b
(18)

and
V -V (0)

IHD (19)

Knowing V and z , b can be determined and thus K . From K~, then

V can be calculated. From the entrance nozzle V (0) = 0 and V_(0) = 0.
C (1-K ) 8

Thus, b = V / z 2 and Vp = K2-i~2-
2-z.

Thus,

VP = Cl T
(20)

where GI = 18 yg/d pp and z2 = 3/32 in. = 0.0078 ft.

Computations were made for three particle sizes. These, along with some

property data are listed below.

d = 3y = 1.18(10)~4in.

= 9y = 3.55(10)~4in.

= 5.91(10)~4in.

= 2.5(62.4) = 210 Ib /ft~m
= 0.042 Ib /hr.ft.

C^ = 1.38(10)"4/d2 sec"1

d

Cl

1.18(10)"4

0,993(10)4

2.36(10) 4

.248(10)4

3.55(10) 4

.1095 (10) 4

5.91(10)"4

0.0395(10)4

in.
-1

sec

The computations are summarized in section C, p. 73.
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B. Straight Tube (K=K.J

A similar type of analysis is carried out for the straight tube.

However, K for the tube is larger in magnitude than K_ for the nozzle.

Thus, at station 2 V can have two values depending on the value of K

used to compute it. A correction is applied to avoid this difficulty.

The particle velocity is given by

Vp = Cfl--i- (z-z2) + Vp(z2) (21)

and the gas velocity by

(1-K,)
V = C f- (z-z ) + V (z )/K (22)

g x ^ . ^ r z j
K3

Again V = V (z.) + b(z-z_) where b = (V -V _)/z,-z,). Thus,
g g 2 2 gJ g2 J i

(1-K )
V (z,) + b(z-z-) = C. T~ (z-z.) + V_(z_)/K.. (23)
g z z j . ^ z r z j

K3

Now, if V (z ) is placed equal to V (z2)/K3 then as before

(1-K )

3 1

This however would produce a V (z») which is too large because K« is

larger than K«. Also, Vp(z,.) would be too large by the same amount

because the distribution is linear. Fortunately, this excess in Vp in

the straight section is known and can be subtracted from the final result

Thus

Vp3 - K3-Vg3 - (K3-K2)Vg2 (24)

where b3 = (Vg3-Vg2)/ (ẑ ) and

-C.. + /C 2

(25)

The straight tube computations are also summarized in the following section.
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C. Computations of Particle Velocities

The following is a summary of the computations outlined in

sections A and B.

d=3y

p

0

0

0

0

0

0

0

d

P

.

^

.

m

.

,

.

3/Pi

.35

.50

.666

.867

.382

.533

.867

=9y

3/Pl

35

50

666

867

382

533

867

V V
2 3

480 960

450 705

375 487

260 280

400 869

380 654

200 235

fl

.1095 (10) 4

.1095 (10) 4

.1095 (10) 4

.1095 (10) 4

.1095 (10) 4

.1095 (10) 4

.1095 (10) 4

(z2-0) (z3-z2)

0.

0.

0.

0.

0.

0.

0.

K3

.63

094

094

094

094

094

094

094

K2

.125

.732 .129

.837

.954

.14

.167

.728 .146

.807 .142

.893 .188

5.

5.

5.

5.

10.

10.

10.

625

625

625

625

00

00

00

VP2

60

57

52

43

.8

.5

.5

58.4

53.9

37.6

VP3

363

244

147

62

399

274

79

1025 6.12(10) .993(10) .912

545 5.75(10)

239 4.80(10)Z

42.5 3.32(10)̂

563 5.1(10)4

.993(10)* -945

.993(10)4 .985

,993(10)4 1.0

.993(10)4 .942

329 4.85(10) .993(10) .973

42 2.55(10)4 .993(10)4 1.0

d=15y

3.95(10)'

3.95(10)'

3.95(10):

3.95(10):

3.95(10):

3. 95 (10) :

3. 95 (10) :

K, V
P2 VP3

.454 .0771 37 255

.56 .0795 35.7 179

.693 .0867 32.5 110

.856 .103 26.8 0

.554 .0842 33.7 294

.641 .0862 32.7 208

.845 .117 23.4 52

K V V
_2 p2 P3

.33 157 596

.338 152 392

.364 136 245

.417 109 128

.354 141 585

.362 137 404

.47 88 129

In the above tabulation V and V- are the gas velocities in ft/sec., the
-1 —1z's are in inches, b,. and b~ in sec , C.. in sec and the particle velocities

in ft/sec. These latter quantities were computed by means of equations (24)

and (20) and are plotted in Figure A-3.

The accuracy of the above calculations is difficult to assess. Predicting

particle entrainment in gas streams is a difficult problem. It is believed

that the above computations at least establish a lower bound for the exit

particle velocities. In all probability, the actual velocities will be of

the order of the above estimates or slightly greater. The scheme used in

the above computations should at least be accurate than a prediction based

on a constant, average gas velocity, a computation which might be considered
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Figure A-3. Particle Velocities as Functions of Nozzle Pressure.
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a first estimate procedure. A more sophisticated procedure than that used

above for making the computations is certainly not evident.
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