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EFFECTS OF LEADING-EDGE SWEEP ANGLE AND
DESIGN LIFT COEFFICIENT ON PERFORMANCE OF A MODIFIED
ARROW WING AT A DESIGN MACH NUMBER OF 2.6

By Robert J. Mack
Langley Research Center

SUMMARY

Nine wing models were tested in the high-speed section of the Langley Unitary Plan
wind tunnel to study the effects of the leading-edge sweep angle and the design lift coeffi-
cient on aerodynamic performance and efficiency. The models had leading-edge sweep
angles of 69,449, 72.659, and 75.96° which correspond to values of the design Mach-
number —sweep -angle parameter (8 cotA)pgg of 0.6, 0.75, and 0.9, respectively. For
each sweep angle, camber surfaces having design lift coefficients of 0, 0,08, and 0.12 at
a design Mach number of 2.6 were generated. The wind-tunnel tests were conducted at
Mach numbers of 2.3, 2.6, and 2.96 with a stagnation temperature of 338.7 K (1500 F) and
a Reynolds number per meter of 9,843 X 108,

The results of the tests showed that only a moderate sweeping of the wing leading
edge aft of the Mach line along with a small-to-moderate amount of camber and twist was
needed to significantly improve the zero-lift (flat camber surface) wing performance and
efficiency. Maximum lift-drag ratios and minimum drag-due-to-lift factors were found
with wings having a (8 cot A)DES of about 0.75 and a design lift coefficient near 0,08,
Comparisons of theoretical predictions with experimental results indicated that the theo-
retical calculations provide good estimates of lift, drag, and pitching moment when the
wing surface is mildly cambered and twisted. For wings with severe camber and twist
and a high degree of leading-edge sweep, theoretical calculations give good estimates of
lift, fair estimates of pitching moment, but poor estimates of drag.

INTRODUCTION

Theoretical supersonic wing analysis and wind-tunnel investigations (refs. 1 to 3)
have shown that high aerodynamic efficiency can be obtained by using camber and twist
on wings with subsonic leading edges, that is, leading edges swept aft of the Mach line.
This high efficiency is realized with highly swept wings because the thickness drag is
reduced and the drag-due-to-lift penalties associated with flat wings of that planform are



minimized or avoided. Subsequent studies, such as reference 4, showed that these cam-
ber and twist benefits are also present at speeds somewhat higher and lower than the
design velocity. The study of spanwise shearing (raising or lowering the leading edge
while preserving chordwise slopes) in reference 5 indicated that the efficiency of cam-
bered and twisted wings could be improved still further and that desirable self-trimming
characteristics could be incorporated with a minimum of trim drag.

The highly swept wings that can use camber and twist to advantage do not have the
subsonic performance and efficiency traits that are inherent with wings of larger span
and higher aspect ratio. Therefore, a compromise wing planform incorporating features
of a good supersonic and a good subsonic wing is usually employed. Since compromise
is necessary, it is important to know the features which give good supersonic as well as
good subsonic performance.

The most important supersonic wing design parameters are thought to be the
leading -edge sweep angle which determines whether the leading edge will be subsonic or
supersonic at design Mach number and the design lift coefficient which determines the
severity or degree of warping of the camber surface. Supersonic linearized theory and
design methods currently available provide a rational design and analysis procedure, but
do not sufficiently account for real flow phenomena so that optimum design parameters
may be chosen,

Recently, the relationship between the leading-edge sweep angle and the design lift
coefficient for a design Mach number of 2.6, which is in the range of current interest for
supersonic vehicle cruise, was studied analytically and experimentally., Nine wings were
built. The wing models had leading-edge sweep angles of 69.449, 72.65°, and 75.96°,

For each sweep angle there were three models with camber surfaces that would theoreti-
cally give design lift coefficients of 0, 0.08, and 0.12 at a design attitude. The results of

the wind-tunnel tests, an analysis of the reduced data, and a comparison of experimental

results with theoretical predictions are presented in this report.

SYMBOLS
A aspect ratio
b wing span
c . chord
c mean geometric chord



CLa

Cm

L/D

[ ad

root chord

drag coefficient

. lift coefficient

at @ = 00, per degree

pitching -moment coefficient about 0.25¢

lift-drag ratio, Cp /Cp

Mach number
body radius
wing thickness

distance along longitudinal axis

y distance along spanwise axis
z distance normal to XY-plane
a angle of attack
g=(m2_)/2

BcotA =tan (900 - A)/tan u

A

increment
angle between root chord and wing reference plane
leading -edge sweep angle

Maéh angle, sin-1M-1



Subscripts:

A arrow wing

B body; that is, wing fairing to house strain-gage balance
BAL strain-gage balance

DES design condition

F flét wing

le leading edge. .

MAX maximum

mc moment center

o] zero-lift condition

T wing tip

w warped wing; that is, cambered and twisted wing

MODELS

All nine wings used in the wind-tunnel tests were developed from the basic arrow
wing planform shown in figure 1, The wing tips were removed at the 90 percent semi-
span station because previous reports (refs. 1 and 2) had shown that this region experi-
ences flow and aeroelastic deformation which degrades performance. A Mach-angle
slanted tip shape was incorporated into the planform design to eliminate tip effects and
thus p'reserve the optimum loading in that region. The reference area for all models
was 1935.48 cm?2 (300 in2),

A three-loading optimization program (ref. 6) provided the theoretical camber
surfaces for the three families of wings. Each member of a family had a leading-edge
sweep angle of 69.440, 72,659, or 75.960 which corresponds to a value of (B cot A)pES
of 0.6, 0.75, or 0.9 at a design Mach number of 2.6. These idealized camber surfaces
were modified to eliminate the root chord singularity, usually found in sharp-apex opti-
mized wings, and to obtain the advantages of semispan shearing (ref. 5).



However, the method of shearing used on these wings differed slightly from that
reported in reference 5. The camber surface of a wing with a design lift coefficient of
0.12 was modified and sheared until a practical surface was achieved. Then, the camber
surfaces for wings with design lift coefficients equal to 0.0 and 0.08 were obtained by
linearly proportioning the Z-ordinates for the camber surface of the wing with a design
lift coefficient of 0.12. The lift coefficients of the wings were checked by using a com-
puter program based on the method outlined in reference 7 to analyze the modified cam-
ber surfaces. Although some loss in design lift coefficient was noted, it was not large
enough to warrant a redesign step.

Circular-arc, sharp leading-edge and trailing-edge airfoils of approximately 3 per-
cent thickness were superimposed symmetrically about the camber surface ordinates to
form the wing shapes. The thickness-chord ratios were chosen so that all the wings
would have about the same thickness-to-length fraction along a line connecting the 0.667
chord stations of the original arrow wings. This constraint, which induced a structural
similarity, gave thickness-chord ratios of 0.03, 0.031642, and 0,03354 for wings whose
(Bcot A)pgpg were 0.6, 0.75, and 0.9, respectively. Additional thickness was faired
about the root chord to provide volume for a strain-gage balance. Figure 2 shows a gen-
eral schematic of the final designs. Tables I and II give values of the significant dimen-
sions of the models and the nondimensionalized ordinates of the camber surfaces.

TEST CONDITIONS

Tests were conducted in the 1.22- by 1.22-meter (4 by 4 foot) .high-speed section
of the Langley Unitary Plan wind tunnel., Mach numbers of 2.3, 2.6, and 2,96 were used
with a stagnation temperature of 338.7 K (1500 F) and a Reynolds number per meter of
9.843 x 108, To insure turbulent flow over the wing surface, a number 50 size grit was
applied along a 0.16 cm (0.0625 in.) wide band 0.32 ¢cm (0.125 in.) behind and normal to
the leading edges. Force, pitching moment, and base preSsure data were measured and -
recorded at each Mach number. Strain-gage accuracy and test-data repeatability estab-
lished data limitations as follows:

Cy, + 0.003
Cp * 0.0003
Cm + 0.001

Measurements and calculations were made in U.S. Customary Units and converted
to SI Units. Values are given in both SI and U.S. Customary Units.



DISCUSSION OF RESULTS

Wind-tunnel data from the nine wings at Mach numbers of 2.3, 2.6, and 2.96 are
shown in figures 3 to 11. The data were corrected to zero base drag conditions. " No
corrections were made to account for grit drag since this was assumed to be negligibly
small and well within the accuracy limits of the instrumentation.

These data were analyzed for two purposes. First and more important, this study
shows the effects of the leading-edge sweep angle and the design-lift-coefficient varia-
tion on the aerodynamic performance of slightly modified arrow wings. Secoﬁd, the
study compares the theoretical performance of the wings with the wind-tunnel perform-
ance of the models.

In figure 12, the lift-curve slope at zero angle of attack and the longitudinal stabil-
ity derivative at zero lift are shown as functions of the Mach-number —sweep -angle

parameter BcotA. The agreement between the theoretical and experimental data for
both the lift slope and the longitudinal stability derivative is reasonably good over the
range of sweep angles and Mach numbers used in the tests.

A comparison of predicted and measured lift coefficients at design attitude is made
in figure 13, The modifications to the optimized camber surfaces produced wings for
which the lift coefficient at design attitude and Mach number is close to, but not equal to,
the design lift coefficient except for the flat wings where the design lift coefficient is
zero. These modifications which were made to obtain practical wing camber surfaces
are seen to be minor. -

The experimental results from these models which were built from modified camQ
ber surface ordinates show good agreement with the theoretical predictioné. This agree-
ment indicates that the computer programs, based on references 6 and 7, provide good
lift estimates in the test Mach number range.

The pitching-moment coefficient at zero lift is examined in figure 14. -Good agree-
ment between predicted and measured values is not found. Since the predicted and the
measured values of the stability parameter 8Cy,/8Cy, agree reasonably well as shown
in figure 12(b), satisfactory pitching-moment estimates can be expected, especially in
the range from design lift coefficient to lift coefficient at (L/D)MAX.

When properly applied, camber and twist reduces the drag due to lift and/or the .
trim drag of a wing. Supersonic drag is composed of wave or form drag, skin-friction
drag, and lift-induced drag. Within linear theory assumptions, wave drag and skin-
friction drag are independent of lift and are fixed once the planform and thickness are
set. Therefore, the aerodynamic efficiency is improved by reducing the drag-due-to-
lift factor. | -



The usual measure of drag due to lift is ACD/ACL2 which is calculated from

acp/acp?=(Cpw - CD,F,O)/CLZ

where Cp w is the drag coefficient of the cambered and twisted wing at some CL;
value and ,CD,F,o is the drag coefficient of the flat wing with the same planform at
zero lift, The drag due to lift ACD/ACL2 for the nine wings at a Mach number of 2.6
is shown as a function of design lift coefficient in figure 15, Each of the data curves
reaches a minimum near a design lift coefficient of 0.08.

In figure 16, several curves are presented for ACD/ACL2 as a function of the
Mach-number —sweep -angle parameter (Bcot A)DES- The topmost curve is the experi-
mental flat-plate <ACD/ACL2 = Ci‘1a> line through the points in figure 15 for which
CL,DES = 0. Below it is the curve passing through the minimum points on each
(8 cot A)DES plot in figure 15. The bottom two curves show the theoretical values of
ACD/ACL2 for both the wings as built and for the ideal wings having a three-loading
optimized camber surface.

The theoretically attainable camber and twist benefits are represented by the gap
between the flat-plate ACp /ACL2 (the topmost curve) and the optimum-wing
ACD/ACL2 (the bottom curve). In theory these benefits are substantially realized, but
. in the wind-tunnel tests they vary from a minimum at (8cotA)pgg of 0.9 to a maximum
of about 46 percent at (8cotA)pgg of 0.75. ' -

‘A more direct method of evaluating the ability of theory to predict drag is to com-
pare the drag polars. Figure 17 shows theoretical and experimental polars of the nine
wings at a Mach nu.mber of 2.6. The wave and skin-friction drags are assumed to be
identical for wings with the same (B8cot A)DES' Then the theoretical polar values can
be calculated by adding the total wave and skin-friction drag value, which is the measured
drag of the flat wings at zero lift, to the theoretical drag-due-to-lift contribution,

A comparison of values for the ”predicted and measured drag polars shows that
theory predicts the drag of the flat wings reasonably well, but as the design lift coeffi-
cient increases, the correlation between theoretical predictions and experimental results
becomes increasingly poor. If the curves showing the theoretical values predicted for
the cambered and twisted wing were shifted along lines of constant Cp, a better agree-
ment between theoretical data and experimental results would be obtained. However,
there are no justifications within linear theory for such a shift. A similar lack of meas-
ured and predicted polar correlation with wings designed for maximum efficiency at a
Mach number of 2.0 is found in figure 7 of reference 1,

The most important factors in the evaluation of aerodyhamic efficiency are the lift-
drag ratio and the conditions at which it occurs. In figure 18, (L/D)pax is shown as



a function of Mach number, Mach-number —sweep -angle parameter, and design lift

coefficient.

Figure 18(a) shows the performance of the three supersonic wing families across
the test Mach number range. In general, the behavior of each wing is similar to that of
its counterparts at the other two sweep angles. At the design Mach number when the
design lift coefficient was 0.08, the cambered and twisted wings were superior to the flat
wings, but when the design lift coefficient was 0.12, only the wing with (8cotA)pgg = 0.6
was superior.

The flat wing performance, as shown in figure 18(a), is virtually independent of
Mach number except for that of the wing with (B cot A)DES equal to 0.9. When all the
flat wing data are grouped together, as shown in figure 18(b), a peak is found near a
(B cot MpEs of 0,75, Maximums on the curves for the camber and twisted wings show
shifts toward lower values of (Bcot A)DES' Thus, a peak (L/D)MAX can be main-
tained while increasing the leading-edge sweep angle if the design lift coefficient is also
increased.

However, camber and twist cannot be applied without restraint. A third plot, with
(L/D)pax @s a function of -CL,DES’ is shown in figure 18(c). The curves indicate that
only a small-to-moderate amount of camber and twist is necessary to improve the effi-
ciency of a flat wing, Increasing the camber surface severity beyond what is needed to
obtain a CL pEs o©f about 0.08 results in a decreasing (L/D)MAX and, as is shown in
figure 15, an increasing ACD/ACL

Although maximum lift-drag ratio is the major factor in evaluating wing efficiency,
it is also necessary to know the lift coefficient, the émgle of attack, and the pitching
moment at (L/D)MAX. In figure 19', these quantities are shown as functions of CL,DES
at the design Mach number of 2.6. The lift-coefficient curves are well separated and
almost parallel, whereas, for the most part, the angle-of -attack and the pitching-moment-
coefficient curves are two narrow bands across the CL,DES range. In going from a
CL,DES of 0.0 to 0.08, where the (L/D))jax appears to peak, the available lift
increases about 12 percent and the angle of attack decreases about 2.50, Thus, aerody-
namic efficiency is increased by reducing, though not necessarily eliminating, the flat-
wing lift component.

A comparison of predicted and measured maximum lift-drag ratios is shown in
figure 20. The theoretical results in this study and in reference 1 indicate that the high-
est levels of (L/D)M Ax Should be found when the wings are severely cambered and
twisted. However, the experimental data from both studies demonstrate that moderate
warping, or enough camber and twist to obtain a CL pes ©f about 0.08, produces the
more efficient wings.



CONCLUSIONS

The effects of varying the leading-edge sweep angle and the design lift coefficient
were studied in wind-tunnel tests on nine wing models. The experimental data were
analyzed and compared with theoretical calculations. The following conclusions were
drawn from this study:

1, Flat wing maximum lift -drag ratios increase as the leading edge is swept aft of
-the Mach line. A peak value is reached near a (Bcot A)DES of 0.75 at the design Mach
number of 2.6 as well as at the two off -design Mach numbers of 2.3 and 2.96.

2. Maximum lift-drag ratios of the cambered and twisted wings peak at (Bcot A)pES
values which are less than 0.75. Moreover, the value of (8cotA)pgrg at which the max-
imum lift-drag ratios occur decreases as the design lift coefficient is increased. At a
design Mach number of 2.6, these ratios are found between design lift coefficients of 0.04
and 0.08.

3. When the wings are cambered and twisted for a design lift coefficient of 0.08 at
a Mach number of 2.6, the available lift at maximum lift-drag ratios is about 12 percent
greater than the available flat-wing lift. '

4, For the Mach number range of the study, supersonic linear theory is capable of
providing good estimates of lift, drag, and pitching moment for flat-plate wings and for
wings with moderate camber surfaces. However, for highly swept wings with more
severely cambered and twisted surfaces, the theory faiIs to adequately predict drag
levels. ’

Langley Research Center,
National Aeronautics and Space Administration,
~ Hampton, Va., October 30, 1974,
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TABLE I. - DIMENSIONS OF THE TEST MODELS

(B cot A)DES of —

N 0.6
Ayjdeg . . . . . . Lo oo 75.96
AL e 1.101
b/2,em. . ... ... ... ... . ... 23.033
C,CIM v v v v e e e e e e e e e e e 52.08
e 76.926
Xy CM L o it e 80.01
XBAL? ST« v v v e e e e 63.500
XMAX €T - o e 97.743
Xpes CM o v e e e e e e e 46.147
X, CIL . L L Lot st e e e e e 92.314
Ymer CM .+ o .o 8.282
VEMAX) O v e e 20.815
t/e . e 0.0300

0

B,deg. . . . ... L 0

0.75

72.65
1.374
25,786
46.515
68.76
71.12
56.896
87.668
41.29
82.512
9.269
23.637
0.03164

C1. pDEs of -
0.08

6 .

0.9

69.44
1.647
28.232
42.415
62,738
66.04
52.07
80.195
37.702
75.286
10.162
26.187
0.03354

0.12
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Figure 2.- Wind-tunnel test model schematic.
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