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THEORETICAL PREDICTION OF THICK WING AND
PYLON-FUSELAGE~FANPOD-NACELLE
AERODYNAMIC CHARACTERISTICS

AT SUBCRITICAL SPEEDS

PART T - THEORY AND RESULTS

By J.R. Tulinius
Los Angeles Alrcraft Division
Rockwell International

SUMMARY

This report describes the theoretical development and the comparison of
results with data of a thick wing and pylon-fuselage-fanpod-nacelle analysis.
The enalysis uitilizes potential flow theory to compute the surface velocities
and pressures, section 1ift and center of pressure, and the total configuration

1ift, moment, and vortex drag. The skin friction drag is also estimated in
the analysis.

The perturbation velocities induced by the wing and pylon, fuselage and
Tanpod, and nacelle are represented by source and vortex lattices, quadri-
lateral vortices, and source frustums, respectively. The strengths of these
singularities are solved for simultanecusly including 211 interference effects.

The wing and pylon planforms, twists, cambers, and thickness distributions,
and the fuselage and fanpod geor ztries can be arbitrary in shape, provided
the surface gradients are smooth. The flow through nazcelle is assumed to be
axisymmetric. An axisymmetric center engine hub can also be included. The
pylon and nacelle can be attached to the wing, fuselage, or fanpod.

The wing can have both leading and trailing edge plain flaps of either
the full or partial span type. Subcritical compressibility is accounted for
by means of the second order correction developed by Labrujere.
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INTRODUCTION

In order to improve the cruise efficiency of V/STOL aircraft with fan-
pods, pylons, and nacelles it is necessary to locally shape the configuration
to minimize component induced adverse pressure gradients which cause premature
shock induced separation. The wing-fanpod juncture must be contoured to
minimize fanpod on wing interference. Alsc, the nacelle and pylon must be
located such as to minimize pylon and nacelle interference on the wing and
fanpod. If the surface velocities and pressure coefficients can be computed,
with all interference effects included, then the optimum location and shape
of the pylon, fanpod, and nacelle can be determined,

In this apalysis the surface velocities and pressure coefficients are
computed for a thick wing and pylon-fuselage-fanpod-nzcelle combination. The
wing and pylon induced flow fields are represented by source and vortex
lattices. The source lattice induces flow due to airfoil thickness and the
vortex lattice induces flow due to 1ift, The flow induced by the wing and
pylon thickness can be computed directly since the source lattices are placed
on the chordal planes, which allows the source strengths to be defined by the
local slopes of the distribution of wing and pylon thickness. The wing and
pylon vortex strengths, however, must be determined simultaneously along
with the quadrilateral vortex strengths for the fanpod and fuselage and the
source frusium strengths for the nacelle.

In order to determine the wing, pylon, fuselage, and fanpcd vortex
strencths and the nacelle source frustum strengths a system of asrodynamic
influence equations is developed and solved. The equations are developed by
computing the amount of velocity induced by each of the vortices and source
frustums, of unit strength, normal to the surface of each component at a
series of control pointes. Tais set of Ianfluence equations is reduced in size
by constraining the strengths of the vortices in the chordwise direction by a
vorticity series. The equations are then solved by partitioning the matrix
into two sets of equations: 1) that due to the vortex strengths, which is
overdetermined, and therefore solved by a least squares technique and 2) that
due to the source frustums. Both inversions in the solution of these two
sets of simultanecus equations are done by Householder's procedure, The
program has options which allow the smaller interference influence matrices
to be neglected in the solution, in order to save computer time. If these
influence matrices are to be neglected they are neither computed nor manipu-
lated in the solution of the influence equations.

In this analysis advantage is taken of the similarities hetween the
source and vortex induced flow fields. The influence equations for the source
and vortex lattices have been formulated in terms of the same expressions.
This permits the velocity induced by the source lattice and that induced by
the vortex lattice to be computed and summed simultaneously, saving approxi-
mately 50 percent of the computing time that would otherwise be required to
calculate the wing and pylon influence matrices. Also, since quadrilateral
vortices are used on the fanpod and fuselage, it was possible to neglect the
contribution of those vortices which are more than a given distance from a
control point. The induced flow from a quadrilateral vortex decreases rapidly
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as the control point is moved away from the vortex. This is due to the
cancelling efféctépf adjacent parallel sides., The induced flow decreases
proportionsl to (=-)° where A is the perpendicular distance between two
adjacent parallel "sides and T is the distance between the centroid of the
vortex and the control point. A similar effect i1s obtained in the spanwise
direction on the wing and pylon due to the cancelling effect of adjacent
trailing ortex legs. Because of these effects, limits were put into the
program vhich define the significant area of influence of & vortex element and
contributions are computed only for those contrcl points vhich fall within
this area of infiluence. The limits are given as input data, This concept has

produced a considerable savings of computer time with no significant change
in accuracy.
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LI5T OF SYMBOLS

A consistant set of units is assumed throughout this report excepi for
the skin friction drag equations derived in Appendix K, which assumes the
units specified in that appendix,

A

A

o

"By

o]

Ca
Cp
4
CL,

Cy

AS

vs

Aerodynemic influence matrix
In remental area

Angle of attack

Span

Pylon angle of cant or compressibility factor

Chord

Section drag coefficient

Total drag coefficient

Section 1ift coefficient

Total Lift coefficient

Section normal force coefficient

Section pitching moment coefficient

Total pitching moment coefficient

Pressure coefficient

Vorticity, ratio of specific heats, or pylon dihedral angle
Fanpod, fuselage, or root section vortex grid length or width

Freestream plus source lattice flow normal o component
surface

Influence function
Wing or pylon chordwise vorticity series coefficient

Pylon height
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Fanpod or fuselage polar angle measured from the X-Z plane
about the X axis. The positive direction is clockwise when
Jooking from the fanpod tail end to the nose.

Discrete vortex strength

Freestream Mach number

Unit vector normal to surface

Number of vortices and sources in chordwise direction on the
wing or pylon

Number of terms in the chordwise vorticity series on the
wing or pylon

2YW/oy or YP/y
Special spanwise load shape or JU,Aj%zxnﬁﬁ

Chordwise polar coordinate equal to COS 'I(l—ﬁx/c) or sweep
angle

Influence matrix due te source lattice
Surface source strength

Unit vector tangent to surface
Perturbation velocity in X direction
Total velocity

Freestream velocity

Perturbation vglocity in Y direction
Perturbation velocity in 2 di. -efition or width
Spanvwise source latitice spacing
Spanwise vorter lattice spacing
Camber line crdinate

Wing or pylon thickness



Aspect ratio bE/Sw

Flap deflection

Wing twist

Local sweepback angle of constant % chordlines
Velocity components in equations (129) thruagh (138)

Total surface perturbation velocity in chordwise direction
including 1ift and thickness interaction

Total surface perturbation velocity in spanwise direction
ineluding 1ift and thickness interactions

Chordwise component of perturbation velocity due to lift
Spanwise component of perturbation velocity due to lift
Chordwise component of perturbation velocity due to thickness

Additional thickness perturbation veloeity term which does
influence 1ift

Spanvwise component of perturbation velocity due to thickness

Additional thickness perturbation velocity term which does
infiuence 1ift



Subscript
B
BB
BF
BN
BP

BW

=y

H

&

3

2

R

T
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cy

=

Definition
Fuseluge
Fuselege on fuselage
Fanpod on fuselage
Necelle on fuselage
Pylon on fuselage
Wing on fuselage
Chord or camber
Fanpod
Flap
Fuselage on fanpod
Fanpod on fanpod
Nacelle on fanpod
Pylon on fanpod
Wing on fanpod

Source or vortex location im chordwise direction, inboard
lattice panel, or incompressible coordinate.

Preestream direction
Control point location
Fanpcd on nacelle
Nacelle on nacelle
Pylon on nacelle

Wing on nacelle

Fanpod on pylon
Nacelle-on pYlon

Pyion on pylon
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PW
Wr
WN
WP

WW

v
W
(Xp,¥YF, Zp)
(Xw, Y)
(Xp,Yp,Zp)
(XW’YWJZW)

(xB,YB,ZB)

Wing on pylon

Fanpod on wing

Nacelle on wing

Pylon on wing

Wing on wing

Ieading edge flap or span location index
Spanwise loeation of source or vortex
leading edge

Longitudinal direction

Nacell:, normal direction, chordwise lcad shape
Qutboard lattice panel

Pylon

lateral direction

Thickness

X direction perturbation velocity

Y direction perturbation velocity

Z direction perturbation velocity
Fanpod coordinate system

Nacelle coordinate system

Pylon coordinate system

Wing coordinate system _

Fuselage coordinate system
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THEORETICAL DEVELOPMENT

CONIFIGURATION REFRESENTATION

The theory discussed in this report is capable of predicting surface
velocities and static pressure coefficients, section loads, and total loads
and moments for a configuration cf the type shown in figure 1.

>\\,x
-

Figure 1. Thick Wing and Pylon-Fuselage-
Fanpod~-Nacelle Configuration

In general, the fanpod and fuselage can be arbitrary in shape. The
fanpod can be placed anywhere on the wing except at the wing tip. The fanpod
and fuselage do not have to have straight juncture lines where the wing and
pylon are attached. This ellows the fanpod and Tuselage to be shaped in any
desired manner, in the juncture region, to produce a favorable induced
effect on the wing and pylon. In order to do this the wing and pylon have
been divided into two sections: the basic wing or pylon panel and the root
section. The basic wing or pylon panel is assumed to be near planar.

13
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The root section is a transition region fran the basic panel to the juncture
line where the wing or pylon is attached.

The wing end pylon ecan be arbitrary in planform shape and can have any
desired twist, camber, and thickness distribution. The wing can have either
full or partial span leading or trailing edge flaps.

The nacelle is assumed to be axisymmetric and is atitached to the pylon.
A center engine hub can also be included with the nacelle, Also, different
mass {low ratios can be simulated by blocking different amounts of flow
going through the nacelle.

The perturbation velceity induced by the fanpod and fuselage is produced
by & grid of quadrilateral vortices on the external surface of the fanpod
and fuselage. A quadrilateral vortex is a line vortex of constant strength
bert into the shape of a quadrilateral. As shown in figure 2 vortex lines
are placed both collinear with and perrendicular to meridian lines. The
strengths of these lines are assumed fo be constant around each of the quadri-
laterals formed by the intersection of longitudinal and lateral grid lines.
The strength of any one vortex segment is equal to the sum of the strengths
of the two adjacent quadrilateral vortices. The direction of the circulation
due to a vortex segment ls defined by the right hand rule when applied sbout
the segment. The positive direction is assumed to be clockwise around the
perimeter of the guadrilateral when looking at its external surface.

Figure 2. TFanpod Quedrileteral Vortex Grid
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The flow induced by the basic panels of the wing and pylon is produced
by source and vortex lattices placed on the wing and pylon chordal planes.
As shown in figures 3 and 4 the bound vortex and source lines are skewed
and collinear with each other. The trailing vortex lines are in the free-
stream direction. The bound vortex and source lines are spaced at equal

increments of ©. or ©p , where ©. =ces [/ = 2CXu = X, 0 )/00 ] and

Gp= oS '[1-2¢%- Xp e )/%]. This type of spacing places more singularities
near the leading edge where the source and vortex strengths vary most rapidly.
The trailing vortex lines are evenly spaced.

Y amwa|
771

£,
/// N
F7 7]

a
g [

V200

=

N

T e e e o —— - ———

e T

Figure i, Wing Source-Vortex Lattice
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The flow induced by the wing and pylon root sections is produced by
quadrilateral vortices and skewed source lines. As with the basic panel,
the vortex and source lines produce flows which are antisymmetriec and sym-
metric about the mean camber surface, respectively. The antisymmetric flow
represents the solution due to 1ift and the symmetric flow represents that
due to thickness. The guadrilateral vortices in the root section are formed
by the intersection of lines egually spaned hetween the juncture line and the
basic panel, and lines spaced at equal Iincrements of &v or &» in the chord-
wise direction. The skewed source lines are collinear with the bound vortex
lines as in the basic panel,

p4 ZIFFFFF
el
[ 2:,’ L452, th/}l
) 4 rrp, 7 7

Figure 5. Pylon Source-Vortex Lattice

The pylon vortex lattice extends up into the nacelle in order to satisfy
the boundary condition of no cross flow throughk the nacelle. This is nec-
essary since the nacelle is assumed to be axisymmetric, which makes it
possible to satisfy the nacelle boundary conditions at only one lateral
station. These are satisfied at the lateral station closest to the surface
vhere the pylon is attached, to ensure the best possible representation of
the nacelle interference within the axisymmetric nacelle assumption.
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Figure 6. Flow Through Nacelle Source Frustum Representatlon

The nacelle induced flow is produced by a distribution of source frustums
as shown in figure 6. The frustums are distributed around the inner and
outer surfaces of a flow through nacelle cor over the external surface of any
desired axisymmetric shape. A center engine hut or other bedy used to block
mass flow can also be represented by source frustums along with the nacelle,

INFLUENCE EQUATIONS

Each of the skewed socurces, source frustums, quadrilateral vortices, and
skewved vortices induce flow at control points distributed over the surface of
the thick wing and pylon-fuselage-fanpod-nacelle configuration. Their
strengths are sclved for simultaneously such that the flow induced by them
plus the freestream, is a minimum normal to the configuration surface at the
control points. In order to obtain the singularity strengths a set of aero-
dynamic influence equations is developed by computing the flow induced normal
to the surface at each control point due to a unit strength of each singularity.
These are then multiplied by their respective unknown coefficients, summed
along with the component of freestream velocity normal to the surface, ang
set equal to zero at each control point., This resulis in a system ol equations
where the number of unknowns are egual to the number of singularities and
the mumber of equations are equal to the number of control points,.

The number of unknowns can be reduced by constraining the singularity
~irengths by a set of finite series. When this is done, the number of unknowus
socomes equal to the number of terms in the series times the number of series
used. 1In this analysis the skewed vortices on the wing and pylon and the
quadrilateral vortices on the fuselage and the fanpod are constrained in the
chordwise direction. Also, there is the option of constraining the skewed
vortices in the spanwise direction on the wing. When these sinmularity
strengths are constrained the aerodynamic influence equations described above
are linearly transformed such that the unknowns are then the coefficients
of the terms in the finite series. This results in a system of equations
which is overdetermined. The equations are solved using a least squares
technique.

18



WING ON WING

The influence of the wing on ltself is divided into two parts; the
infiluence of the vortices and the influence of the sources. The sources are
assumed to lie on =z plane and can therefore only produce velocity normal to
that plane at their respective locations. Because of this fact, the wing
sources cennot affect the strength of each other nor can they affect the
strength of the wing vortices. Their influence can therefore be omitted
from the wing on wing influence eguations.

The velocity induced by the wing vortices normal to the wing mean caumber
surface is given by;

Y - K
{ ;lw} = [wa.., lquxd -+ A/wy.ﬂ /?ﬂwrw -+ /L{\)_zw ﬁ"”"x‘.w}{ﬁ} (l)

Where Mo, , amip&Q“’are defined in the following sketch.

P,

ey Mo
z Hes

COHORDY L ¢rIgE ~ MEAN ORrTBER LIPE

The local anglego. is assumed small and the wing dihedrel zerc, so
that, Nw‘:f 80‘-'1-! I3 MA’YN': o and /Vwi_wq /

Therefore;

(e (] LB

Sinece: both <. and Awns,, are small the product [ 2% J[Aw-ixu_]
will be omitted.

Therefore;

Vit K
b=l f2) &

The elements of Awwsz, ere computed with equations for the velocity
induced by skewed and quadrilateral vortices, defined in Appendices C and D,
respectively.
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FANPCD ON WING

The fanpod is represented by a grid of quadrilateral vortices on the
Tanpod surface. The velocity induced by the fanpod quadrilateral vortices
normzl to the wing mean camber surface is given by

v LS
{ N‘Z } = [/U"'xw ﬁwp‘w 7 /L'{un IQWFYN o N’J?N lquaN -H_\/E} (l'-)

The influence matrices Aug , Awe , and sy, re defined as:
s -

[ ] <[t e, |+ Dot e, ] o

[Arey, ] 2] ey, ] (6)

[en.] Lot o, ] = [rovece] s, ] 0

Where o, is defined in the following sketch.

Ew JL

The engle wg.and the matrix A.._ are assumed small, so thet
COSE X = / , Swscisu Xgatz,o  and the producth L‘Sfﬁp'&.uj['/‘ﬂ’we‘ﬁ ]
is omitted.

Therefore:

{ee} < (o Jon, ] = [ ooe Jowee ] o, |
* [ Awey, B{f»z;} (8)




In agdition, sincef'?xw\] ,E‘?“’m\] , and [A“"’i’p] are small, the products
Lo J[4~5, ] ana E?“”;]E?*ﬁa[ﬁwg.] are omitted.
F

Therefore;

B} = [ Awn, [}

(2)

The elements of ANEZ’F are computed with equations defined in Appendix D.

FUSELAGE ON WING

The influence equation for the fuselage on the wing is analogous to
that for the fanpod on the wing. Therefore;

Var | = [ A J{2 (10)

The elements of A"'B‘?B are compuied with equations defined in
Appendix D.

PYLOK ON WING

The influence of the pylon on the wing is due to the vortex and source
lattices on the pylons. The velocity induced by these latiices normal to
the wing mean camber surface is given by;

{_‘%—JP} - [ Nn&“’ Awp"w 4 ﬂ)’dﬂa gﬂpfu 7 /u”*'-‘ud A’d‘%ﬂ ] {%

(11)

Where the matrices #wg,, Awr,, , anl /swsm , are due to the vortex

influences and the matrices Sm S and Swvr, , 8TE due to the
source influences, e T "
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The pylon can be rotated by an angle ¥ and positioned at any point
&z, %, ,%;) as shown in the following sketch.

ZA
2,
|4
¥
¥ s %) i
The influence mattrices A““F’?w , f‘]mom s Aurf_’?w y S, s wor | 2

and S,q,% are given by:
w

[ Ar] = [Ame] (12)
[Aem] = [oon ][] - | cosy [[ A ] (13)
[4e0,] = [eess] 2] + [ 2] o
[, ] = [0 ] (15)
[5m. ] = [oen ][5 ] - [eont]loed] e
[#. ] Qe[ o |+ [l ] an

1)

22



Since E@“wj s ["qm;’?;( , and [5»'&;7 are small, the products
E_ﬁ’dn]]:ﬂwﬂ'p] and E?P(N :_’![s,‘r,;] are omitted., Also, since the wing has no
diredral, nf, o F
w

Therefore;

{_‘é’\f} = { Ecosx\j[ﬂw‘f;J + Eﬁ""’ﬁ][ﬁ“"’ipj}{‘%}

+ { Eaasa’\][fwﬁ + Es”"";l[%fp_—,}{% (18)

The elements of Awr,_ , Awrm_ , SwR, , and Swk, are computed
with equations defined in Appendices B, C, and D. The port pylon influence
is computed by moving the control point to its image location on the port

side, computing the influence of the starboard pylon at that point, and then

changing the sign of the "Y" component.

HACELLE ON WING

The flow through nacelle is represented by a2 system of source frustums
as shown in Tigure 5. The velocity induced by the nacelle frustums normal
to the wing mean camber surface is given by;

{%,} = [ oy /‘gmwm # /1),.;& ﬁ»dm 7 Ay, o Bids ]{%} (19)

The influence matrices Awwy, , ﬁww , and  Awag are defined as;

[}I‘N,*J = [ﬂ,;,‘& dj (20)

] = - [artrad [, ] -

[ Ao, | = - [\G”O"E’”’J [’q“""rn] (22)
- (xai" );’.;D) coesy - ('?»ga. "aua)S/ﬂJJ}

Spp = TV 20l ) S0 )~ (B =%, ) COSY (23)

4 - [[oJlm] - [oseren [ ]f{8}
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Again since [ ®] and Ww,] are small, their product is omitted.

Therefore:
R - T a4 E’E}
{%:___} _-[COS( ¥ Qwru) ~IL wrﬂ)’,-u J{ % (25)

The elements of ’2W%m are corputed with equations derived in Appendix E.
The influence of the port nacelle is computed by moving the control point
to its image location on the port side, computing the influence of the
starboard nacelle on that point, and then changing the sign of the "Y"
component,

FREESTREAM ON WING

V"n’aﬂ = /\-}w v_m_‘x"’_. /u;.] %Y A Yoz }
= 4 Tt -+ o bed
{ v:a} {_ W L % g ™ (26)
where
MQR“’ =7 3 E%ﬁi =o 4 BT Eéﬁﬁ = O
Vs v Voo
Therefore;

@'ﬂ ) [\ ?““’\J{' } - (@%} (27)

WING ON PYLON

The influence of the wing on the pylon is due to the source and vortex
lattices on the wing. The velocity induced by these lattices normal to the
pylon mean camber surface is given by the following expression.

{8 = [ e o 2 bty A, [

[ S il By, o, {2 g

oh



Where /l,Jg‘P and /\ép are defined in the following sketch.

Xp
oo czﬂ%ffm CRMIGER 4 prli
-~

e
_
- BPe
NPE o
2e g Np
N
Pxp

If the local angle Z& is assumed small and the pylon cant zero,
then/%;-,v, F& s /%,P=o , and "‘3"&= A0 . .

{Yed - ([eaJ ] +[#]}%
¥ {E??P\I ] 0] %&J} {%} (29)

Since o8] , [/»‘m@p_] , and [%Pj are small, the products Epg,;“;ﬁn*e]
and “gs. -ﬂ-%?] are omitied.

Then considering the difference in orientation between the wing and
pylon conrdinate frames:

[oms | = “[\aos'y\][ Ao, | [=mv [ # e | (30)
EREE S S IR SN ) e
Therefore;

fd = {-[e=n[ma] + [l JHE
e Lemdlsmd + EtJfn,]] {2} (32)

The elements of the matrices APN,;, s /?puzﬂ ’ 5;--»)_’_, s and S,
are computed with equations defined in Appendices B, C, and D.
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FANPOD ON PYLON

The veloecity induced by the fanpod quadrilateral vortices normel to
the pylon mean camber surface is given by:

{w,,} [ﬂ,;, Foz * by, o+ iy A ]{ } (33)

After taking into account the difference in orientation of the pylon
and fanpod

L] =[] (34)
[/%a;,p ] = [Swy\][ %, ] + [\casf\][ ’5“’3,,) (35)
[ ] = Lol ] = [ooa]] 2] -

Therefore, since

(g} {Cmdm] - P
+ P :n:ﬂp,eap }{ } (37)

Since both #F&. and AP@F are small, their product is omitted.

{v’””} {[“-‘”J["’*' *[\s’”"\][’g’feﬁ]}{% (38)

The elemenis of /?v;:;,F and /%;EF are computed with equations defined
in Appendix D.

FUSELAGE ON PYLON

The influence equation for the fuselage on the pylom is anéiogous to
that for the fanpod on the pylon. Therefore;

(g - (D=l ]+ [ =38 o
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The elements of .ﬁka and fﬁzéb are computed with equations defined
in Appendix D.

PYLON ON PYLON

The influence of the pylon on itself is computed in the seme manner
as the influence of the wing on itself except for the influence of the
port pylon on the starboard pylon.

(4 - [ % 2o - kA, ]

R R R Y 2. I (o)

Both the source and vortex lattices of the port pylon contribute to
the starboard pylon. Only the vortex lattice of the starboard pylon
contributes to the starboard pylon influence eguations.

Since; Aé 288 1E =o y g = 0.0 20 [ BEPJ T_fﬁ&,,] , and [_%—Fj
are small

U« [~ oo J[ o, ] 4 [oor]m ]
i [/42%" :‘I}{%} ¥ j:- [\C.ose’\J[ SP%Y ]
+ o =5 [}

(41)

where 14;=F s Sz, 5 and 5;7;% are influences of the port
pylon onto the star%oard pylon.

The five level subscript notation in equations (42) through (k5)
indicates: Ievels L and 2) PPp influence of port pylon on starboard pylon;
Levels 3, b4, and 5) Xpp coordinate of vortex segment located on port pylon.
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[z ] = "Es’”’”\][”’”"”x,] ah ""”S""J[’q""gea,] (k2)
f =4
[#s,] = [eeordlAm,] - [= L% | (43)

- [\s,,uy\][s,—.ﬂ%] + [\ aas,l\ ]); 5},;,% j (k)

—

d

e
"

and

R AN ey =

1
A
| So—{

il

The elements of /4;’42.-,%,9., ’%g”ﬁ , ’%3?3 , “FBy , and 9’3% are
computed with equations defined in Appendices B, C, and D. The influence of
the port pylon is obtained by moving the control point to its image location
on the port side and then computing the influence of the starboard pylon
at that point, When this procedure is used, the sign on the "Y" component
of velocity must be chenged. This sign change is applied in equations (L42)

and (Lk).
NACELLE ON PYLON

The expression for the velocity induced by the nacelle normal to the
pylon mean camber surface is given by the following expression

o T T

Since the nacelle produceé an axisymmetric flow field, no contribution
to Ap., is obtained f:om the starboard nacelle on the starboard pylon.
However, both nacelles contribute to /‘Ip,v,,, and g, . Since ", and

. e o
A%y, 8Te small and since ﬂé’ =0 ; .

{tf = [ A, [{2] ()
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Where

[, ] = - Lol ]« [omr Lok ] 8)

and

n

L%, ]
[ 7% |

[\s”“CV“@)\][’g’”J“::«J (ko)

- [\ cosy- e)\][ﬁpﬂ%ﬁb] (50)

The elements of /%ﬂ!ayﬁbare computed from equations derived in Appendix E.
The influence of the nacelle on the port side is determined by moving the
control point to the port side and computing the influence of the starboard
nacelle at that point and then changing the sign on the "Y" component.

FREESTREAM ON FYLON

Yo Yo
P s b coh )

(51)
Where

74
R P L A

=

and You o o Si0 Y

Via

Therefore:

e} = [ Jfr v BT 2

WING ON FANPCD

The wing intiusnces the fanpod quadrilateral vortex strengths with the
flow induced by the wing source and vortex lattices. The component of this
flow normal to the fanpod surface is given by the following expression.

{1-/”-42"} = LAJF&: 4‘”@ 4-/"'.«-',;, (4ﬁ‘ﬂr‘ - fd&"" ﬂ"w‘?‘ ]{ f“-’i} (5 3)
Yo

' N
“ [ﬂ)’%— s Sy, ¥ e, Serg, %}
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vhere
[Aeme ] = [eesenflmn] - [orpoufime.] (54)
[ A, T = [ Ao | (55)

| Aomze | = ES’”F*”;\Lﬁfwij * [\a xg“’”:l[&"*“] (56)
[5, ] = [eosean ][5} = Do [ | (57)
IS5, 12 L5 ] (58)

[Smg, T = [ Jome, |+ [oonerion 5o (59)

Since EB@:’FNJ s [AFNX"’] s and [5'”"’4'..;] are small;
{bol = [T 2] - Do L20f[2] D Jln] + [ NERES
c(Brll] P ] [ T (o0

Also, since the product E%FJ[\?GCF”J is small;

= (Do D] - Dl I
H e T + Pdls] +Pa T3S @)

The elements of Asa, , “Fry, , and “erk, and of Zrwy, , Sew/y,

end SF”-E...: are computed with equations derived in Appendices C, B, and D.

The components of the unit vector normal to the fanpod surface are
computed from the coordinates of the vortex grid.
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=" P Pren T Ty, T, (62)
/VFY,:: = 7,;,:? - 7:;@2?‘, - -;7‘.;_.’2 7;,...,-";._ A ( 63)
and

/1/;?’:'-" /""-Nxﬁ-‘. ;?'):c‘. - ?;”).fq -:‘:JEF‘. (6)+)
where

Co (g =g » e, - "’Fs)/as*'mc (65)
Frige TBOR % e v, ) fas, (66)

. - (67)
/;&F.: ( Ky = Xz *Xe A )/As:,,__ (68)
T, B0 = Ve vy - ) /o5, (69)
and,
'7‘-’:-?“-' = ?(5}'3 - 2,.:} - Z& '—E; )/As‘-f,?- (70)
Also where;
45 =[(ch\’.=+x -Xe ) - B Y. - 2
4’5‘?‘, F ' F* F'g) -E C ‘rrz YF, + Yﬁ‘_ - YFT)
+ E?( 2-Fz-'- ?-r-‘, * 2‘*’4 - ?FB)Z ]I/Z (Tl)
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o

85 = -
ey )-—O{FB Xz, + XFq_ ~Xe, )1 + BC YF3 = '1’,:, + YF‘;_ ~ Ye, )

+ '@""( EF_’S_ 'E‘F.r + 2_%‘ - E_Fz )] 7 (72)

Where the indices refer to the corners of the quadrilateral vortex
as shown in the following sketch.

Ao

The ¢ gubseript indicates that the unit vectors are for the equivalent
incompressible fenpod obtained from the Gothert compressibility transformation.

FAWPOD ON FANPOD
The influence of the fanpod on itself is due to the velocity induced

by the fanpod quadrilateral vortices normel to the fanpod surface. This
component of velocity is given by;

Y - >
{ %} = ]:ﬁ/&F /a’.v’, ey, /qp:"—');: - /b;/::a.F e, ]{_é:: (73)

The elements of Aew,_ , As

¥ , and Aoy, are computed from
equations defimed in Appendix D. “
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FUSELAGE ON FANPOD

The influence of the fuselage on the fanpod is analogous to the
influence of the fanpod on iltself.

Therefore;
o - _ “z
fosl = [ s mm, oy 2ay ol ey 2 (T

Wnere the elements of A7es,, , ==, , and /ﬁE%a are computed with
eguations defined in Appendix D.

DYLCON ON FANPOD

The influence of the pylon on the fenpod is due to the pylon source
and vortex lattices, These lattices induce a velocity normal to the fanpod
surface which is given by:

foi = [ 4, ooty A, k2, 1S

(75)
+I—/b')="‘= SF?F %/‘%’25@ * f‘/éﬁsﬁz‘ 1{%}

vinen the difference in pylon and fanped ccordinate frame orientation
i5 taken into account,

(93 = {Dudlrm] + Do Dol ]
PeesyJ[ o T} + [ad{[eesnll#5.]
+ A= T HES + 1D d05% ]
+ £ ] { o] 5o, ] - [resn][ 5= ]
i J{fillon] « T HE oo

33



Tre elements of ﬂp@p s /4»'-73@ y e, Ser, , Sem, , and Sy
are computed with equations defined in Appendices B, C, and D. The influence
of the port pylen is computed by moving the control point to its imege
location on the port side, computing the influence of the starboard pylon
at that point, and then changing the sign on the "Y" component.

FACELLE ON FANPOD

The velocity induced normal to the fanpod surface by the nacelle source
frustums is given by:

=
{V,u . ﬁ,} - [ /\/& 'g“/“f\',: + /l/f%: /4;.7{},_ 7 /‘/,%“__ /’7;19.'_2,..- ]{—\i}
Yo g - (77)

The influsnce matrices ‘43"/"’.(; s /%’s,u& , aud ﬁpﬁJéF are defined as:

[t ]~ [ ] (78)

[ﬂ;ﬁk 1 - - [\ S0 (¥ Cr )\__l[ ,4,_.,9)@] (79)

]: /4,_7‘}2;] - - [\ oy - QFN)\IAFAJM] (80)
where

_ TR Jeesy — Cfgi'zfu,,)5-”‘)/
&5, = TRV L}%—&b)‘—;”"’y“ <;§—g%)eosa’ (81)

Therefore:

4 (o o] - [ JomcraciT o]
~ E“ ey, \ﬂ:\dos Cyn@F,;)][ ey ]} {%} (£32)
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The influence matrices /gqnﬁd and /Za%ﬁ,are computed with equations
defired in Appendix E. The influence of the port nacelle is computed by
moving the control point to its image location on the port side, computing

the influence of the starboard nacelle at that point, and then changing the
sign of the "Y" component.

FREESTREAM ON FANPOD

Vol = Loz lo %
(o} = { o, Your oo, e ndy Yoz ] (83)

Therefore;

CY RN N (DY e

WING ON FUSELAGE

The influences of the different components on the fuselage are computed
in a manner analogous to that for the fanpod. Therefore;

(] = [Pt L me,] [t o] * [\%J[’%&J}{E,Z}
RN CEN AL S PN O S

The elements of Aank,, Aan,,, By, Bk, S, , and San,

are computed with equations derived in Appendices C, B, and D,

The surface unit vectors C/%aa, Vo, ,ﬂé%B ) , (?Fs',,,,lu , Zgﬂ*
and (&,
and defind

s B, )

s Bry g ,3%%5) are computed the same as those for the fanpod
d by équations (47) through (55).

FANPOD ON FUSEIAGE

Vv, -
{%F } - [’%“B For, + Gy Tt e, B, ]{% } (86)

The elements of Az , /%ﬂ%ﬁ , and /%93&_are computed from equations
defined in Appendix D.

35



FUSELAGE 01 FUSELAGE

&“-'} = [/‘/3‘3 44)3% + f'JB,% /gz;aé - /”éaa = ]{%j (87)

Vo

The elementz o7 fﬁax . 58 , end f%g are computed from equations
s : sey 1B z -1 : *
defined in Apperiix DI

e

YION O FUSEIACE

(%27 - {{4]s] + Dal{dl=]
- feesv e [} + [t {Teose J[ o]
g dm]
iPrauJ{fml[om. ] - Pl ]

+[ e, \]{Eaasy:[%%] t I\S’” *\K%ﬁ -B} {%}

The elements of /ga?;p , /-?57%7 )y B, 573 52573/7 , and BR
are computed with equations defined ir Apnendices B, C, and D, The influence
of the port pylon is computed by moving the conirol point to its image
location on the vort side, computing the influence of the starboard pylon
a% that moint, and then changing the sign on the "Y" corponent.
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NACELIE OY TUSELAGE

% = (D J ] - Pow J=een] 2]
\,ua?s ][coscy,%,,);l[,% N]}{ } (89)

_[’( -5, ) cesy -—(?%_2,,,0‘)'5/,04/
¥, ) Serr & —(?%-Zv,) ¢es ¥ (90)

where

S

The influcnce matrices /z+, , and fékﬂkb are computed with equations
defined in Apnendix E. The influence of the port nacelle is computed as in
the case of the nacelle on fanpod.

FREESTPEAM ON FUSELAGE
~ N N P
o} - PP d0 ] P Ioml0)

WING ON NACELLE

The flow induced normal tn whe racelle surface by the wing source and
vortex lattices 1s given by the following equation:

Vuld = | A2 3
fad = [ syt -ty A, IS

+ [ﬂ}"’w 5:"""’}(” f A)""J;J Sy ]{%} (92)

After transforming the influence matrices to the wing coordinate system:
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teg = ADwedlmd - [t J{ Dovr Tl ]
N IR I LN SN KO et gl

+ Teesr ][ Som ]}}i }‘ (93)

The influerce metrices /‘?waw , Py, , and /-’w@ . are computed with
eguations defined in Apperdices € and D, and the matrices =, Sy, s
and S, are computed with equations defined in Appendix B. /ﬁ.uo,

Fio A .
Ay = - s A, and /'Jr,-rf Cos . vhere Sy, - is defined in Appendix B .

PYION ON NACELLE

The flow induced normal to the nacelle surface by the vylon source ani
vortex lathtices is given by the following equations.

{M@%? [j 24, /%wﬂ > /qd .]fji}

+ [/l/n&n, iz +/t/,u, ]{E‘}

(94}

After #ransforming the influence matrices to the pylon coordinate system:

1 - {Dadl] - Daedlon 13 )
Dl ] - Dol 1 )

(95)

whers

(4] - [omr] -] + BelonT}
+[\aosaﬂ { ):\wsy;]["?ﬂ%yp] * [\‘5”""\]{’9"”’% .—l}

e, |
[,
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[55,] = [ ]{-[srd5m] +[e=r] 5]}
iPer]ifemn[=5,] + [=]=2]} @

+[ Sz ]
: Yo
The influence matrices /Zuvg g, Sz | and Svp, _are due to

the port vylon and /%@, and 5,,,’?”:, are due to the starboard nylon. The
influence of the port pvlon is computed by moving the control point to its
image location on the port side, computing the influence at that point, and
then changing the sign on the "Y" component.

The influence matrices ﬁﬂ&"p and ﬁﬂﬂ%g are computed from equations
defined in Appendices C ard D, and the matrices =wg, and Sug, are
computed with equations defined in Appendix B.

FANPOD ON NACELLE

The flow induced by the fanped quadrilateral vortices normal to the
nzecelle surface is given by:

{%} = [/‘4{;‘, s, Ay, Fus, ]1’%.} (98)

After transforming the influence matrices /?u,fﬂ and /%%, to the fanpod
coordinate frame;

(e - {Dadlos] - Daed{ ol 2]
¢ [er JL D}g } (99)

The influence matrices A/\/Fx . /9"&,: , and /4,,;,5; are computed with
equations defined in Appendix D.
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FUSETAGE ON NACELLE

(4} - {Pudlam] - Dolfedlos.]
QEAESIITE

The influence matrices ﬁ,ygxg
equations defined in Appendix D.

(100)

s ﬁ,u.gxg , amd ﬁ”%g are computed with

NACTLLE ON MNACELLE

The flow induced by the nacelle frustums normal to the nacelle surface
is given by:

) = [ o oty 2, 5}

() = {- PorvmeJ 2o, |
+ [\CDS“}% \]{ [\5/”/5)\][53”55"9”MP ) ]E;ﬁamy” J
Do oo mnH o
+ [\cos,,ﬂ_ \]{ Ars ]} {%’;} (202)

where

_r]’( ),?L-},Ga)casa’ ~ (= _eﬂa)s"/,,))/
"()f\??-),%) s,y — ('?,}.—'?,.4,) S IP (103)
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The srcond subseript A/ and /4 refer to the port and starboard
nacelles, resmectively. The port nacelle influerce is computed by moving
the contral point fo its irage location on the port side, compuhine the
influence at that poirt, and then changing the sipn of the "7" component.

The matrices ’qﬂ/’ﬁ',a and ﬁvﬂw are computed with equations defined
in Appendix E.

FREESTREAM ON NACFELLE

{%ﬁ} b [\/% \]{%} * [\ "y \]{%} (10)
{% = [\COS%'\]{ l} + [\sa,ucz,,‘.\][\cos X\]{P’(} (105)

Combined influence equations

Yoo  eBr 4 Wgw 4+ Vg + Vg = O
Ve Vo Ve o Yo

\Wegr 4+ Ve o+ W 4+ M Yy = O
Vo Y o Yo Vo

Viwg g Viwe & M o+ Y 4 W = O
A oo Ve Voo Vio

Vips  + Wer  + Ybw o+ Y+ Voo — o

vz 4+ e 4 Y + Yo + Yw =
Vo Vo Ve e Yoo

Therefore, the discrete influence equation is;

— -—

;aés }iép /Z;vﬂ /iéF Egﬂﬂ Kﬂiw VE%

I N EVIR = I V3
- S N
Aws  Awe Awn Aum Auv 1B = g (106)
Fon Ao S e Fow || s
i Az ZJF Aw  Aue A f;/\z: e




CONSTRAINT EQUATIONS

The discrete matrix influence equation can be transformed to reduce the
nwsber of unknowns by letting the discrete vortex strengths on the wing and
pylon be defined by:

&, ,' e ." ’ .
T = wmsB [(TN)E + (FpaL )y = (%) g

Ve ] <’
> e ] (207)
A=s
Wnere £ , /5 , fc , and Au and K , ke 5 &, and & are defined in

Appendices F and @, respectively. Equation 107 cen he written in matrix
nobation as:

tap=[ 7} (oo

Mso, due to the definition of {F} in equation 51 of Appendix F,

()= [ Trofed = [ = o

The pylon vorteX strengths are constrained in the chordwise direction
only, therefore, they are defined by an expression of the form;

(=] = [} (120)

The form of the expression used to define the K's on the wing can be
either that of equation 108 or that of equation 109, depending on
whether just the chordwise variation of vortex strengths is constrained or
both the chordwise and spanwise varlations of vortex strengths are constrained.
If just the chordwise direction is constrained, the wing vortex strengths are
defined by;

SR -

£ both the chordwise and spanwise directlons of the wing sre coustrained;
Ko
-] = f -

4o



A matrix constraint equation for the Ffanpod and fuselage vortex strengthe
is derived in Appendix H. This equation has the form:

{“} [Ew ]{ } (113)

ter combining eqguations 110 , 112 , and 113 , the transformation
r"atrlx by which the discrete influence matrix is post multiplied, to ob%ain
the constrained influence metrix, is given by;

[red L2l e[ o]l o ]
o]l lo]le]lo] (114)
[elle][s]le]le]
lolledlellw]l<]
[ollellellTrd

Therefore, the constrained influence matrix is;

[ 7 S .

Ags Aor Asw P Aar Aag Par Pan Peelon B 0 © 6 o

Arg Aex A Are e e Aee B AemPrrs || © @80 © O

Az Awr Apirs Apir Aoy = {4ug Aoe /%«»a /anpﬂmj o © S, o O (115)
Arg Aer For Aom e Aoz e Aor oAyl © © O % O

ANB /9/%‘ 'Qﬂw /q,vp P »2’;03 /6/?1/}‘ /_";vw ﬁﬂ?ﬁvﬂil— o o o & /
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SOLUTION OF INFLUENCE EQUATIONS

To solve the constrained influence equation the unknowns are divided
into two sets; (1) those which define the strengths of the singulsrities on the
wing, pylon, fuselage and fanpod, and ,(2) those which define the source strength
of the nacelle. When this is done, the influence matrix eguation is perti-
tioned as follows;

Azs far A Agnifon [[5 ] [os)
Arg Ase Aew Am :AFAJ = vSE
Auwa A A 14-,.rp},4wfu a,| = |vs, (116)
fima Lor fon Pl fon ||am| [vsy
Avg  Awe Aur fész:é;;; E;: LE%Q

This matrix can then be represented by

/q..ﬂ ﬁrz <, Vs,
= (117)
ﬂz 4 fqz 2 62-‘: vsz
where

rﬂw nt HHP /gwﬁ'

/?/I = Ve N e (118)

E?F;J e Pep

r
P
1‘?,-2:" Aoy
11
s (119)
/:72 7 = [fgﬂw P /'??tvﬁ] (120)
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and

Pz = P (121}

The solution to equation 117 is then found as follows;

A, R, A, A, = v, (122)

oy @r ¥V Py By = T, (123)

Az:z' /9214, f‘ﬂz — /92;1 752 (lEh)
-.-I -

o ez My @, F Az, = &, A ve, (125)

Then after subtracting equation 125 £rom equation 122;
L4, _'q’z(’q?;f'qef)] <, = V5, — ’;/’2(’92: 751) (126)

Since [/3, ~4.2/%y A2, ] 1is not square, equation 126 is solved using
Householder's triangulation procedure discussed in Appendix A. This solution
will be denocted by;

=)
X, =[ A, = A (A7 2, 0] [os, ~ 2,2 (5 s, )] (127)

Bauation 127 is then substituted back into equation 123 to obtain «,.

-/
2, = % [V, -2, ] (128)
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SURFACE VELOCITIES AND PRESSURES

In order to compute the surface velocities, the component influence
matrices are multiplied by the components of the surface tangent unit vector,
in a scalar product, and then in turn post multiplied by the unknown coeffi-
cients obtained in the simultaneous influence eguation solution. This is done
for the influence of the wing, pylon, Tuselage, fanpod, and nacelle on the
wing, pylon, fuselage, and fanpod. The components of the surface resultant
velocity due to each of the configuration components are then summed to obtain
the total surface velocity at each of the control points. This velocity is
then substituted into the Bernoulli equation to obtain the surface static
pressures.

WING ON WING

The velocity ratio components on the wing due to the wing vorticity and
source density are given by the following expressions.

” t.(...‘_ R v - 4 Lo,
%WW — gl-/;f ko Moo {/7‘ /r‘f"ﬁn) ?ﬁ’ [‘ ""'r } ( )N-:/‘,Z_, ., a,,"?_,f,g
Vo {1-+(\-»tﬁnﬁ¢wxé%% * iﬁi i}ﬁ (129)

Vs — 25t (e, {1+ (oorde [ 2 - T 1 r (2

-
L)"“""a z, LB E

Voo '{_l = Lt +- r.ﬂf\-’z w)(d'zwt + j-z,:, 'Z}VL

(130)

Where the upper sigh is applied to the upper surface calculation and
the lower sign to the lower surface, also;

weo © Gug o GOV (131)
g =3 s
r7 = S8, A Sk)
= ', P ML los, o -
)"’"z"-, L {g; S G #* € S L (s ~ )
SrArECSy ~ J
~ L Lo, 2 /
S (S Se) % (132)
T - 2+ IR, =z £
B 2 [# 3 (oo oy - Eho g aorss [oomitl
w
+ 4 (tmw o ™ z—,@,ug{}:a’)( /—-t:os@,.,)]} (133)
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and

C%)ﬂ=52,- Sk = E

/!4' =
z JE..CB: tSwwzs,) * i o, [ S e
St T4 ~ Y b OV
St o, ] + oK [( cos o,
20 ) S
AE( - 83
~tosepYloe, LR [ r o, S0
F) &/ SIS ) idaiice

[caosg,., cos 8 )L O, 5”"“55’”“9a=>/+‘9 sz.«aea;]
Sfﬁflcgw ""@&.’

rnt L (S *&52 )
St LBy )

- 25w E o S al
. G SIONB,, 4 5 LOG,

SV E (S + S )

Sevils, __Gg)/j[z‘ﬁmf{

+
bl - oot Yoaesan)}

tEros,

(134)

* o . . 3
o’ K, . and T~ s, and the derivetives 2Fu, , SE, ,
- S T S,
éF%_- e\t-g . : .
5 —=  , znd are defined in Appendix J,
S7,, I
M %,
/ Kug, = X ) ( Kge = K
a ¢ b @y, £l (% A
z y,"%i{zz " [( 2 ) ] dx,,)“[

Bty Toug, = Ea

wale & T E
- el Wi, T SV,
= e (135)
el Y
ele

b7



,
&L it

Ko

{Z Z e [(on) - (o s  [H[2CE e ]

=

ana‘?‘ 7:"9 - £‘ -t

Crs (= v
C AN Eah_,_‘ 7:'__ — ‘F-TJ"
2 —_— LY ¥ LLL w“-‘.{_ ] l
Fece =3 (137)
W o~ X, Kotgy = Ky,
e 1) ) e [ ) - (et S,
Cya ‘jﬂw? P44 Y ”')z&'d

2

e =

(3

'y %y,
L
— Ev"‘" Yo 7’:‘1’1. # ‘E‘-“"""u ]7 {1 -0)
[t

a

See list of symbols for definition of these velocity components.
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/ /
= - = (139)

Etyy, = = = =

iy VX, # 72, (Y, - )? Kl F Ve,

/ . /
=13 — — —
ot Ry = Ty Y+ (g1 0T g B (150)
/ (o + Ry 75, ) + B, Ry # Xy o, ) } )

£, T T = = = = = 141

Mo, (X=X 7p,) ,[',.,‘ # T, S (g #0)? m (

and

¢ L
-—

£ = 7= = — —r——3%
.z,wax.'l- CX"";.' - Y"i /"""‘LJ \/(XN;' "'7;,‘-‘__).:"‘ ()ZJH/JT- K.;L‘ ~ }';.“;:?-

/ ( ?wf- "-"T""t' 730":.) B E¢7z' < Z’L * ,‘7""’4' 7“‘-"a;.‘¢. )
} (1k2)
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vhere X, Frog = Hossy y Y o= T Ve Ty, = B EIVE
T s, - Hs
P S S
T =By Byt L 7/ ] R z

The indices ¢ and 2 refer to the chordwise and spanwise source line locations,
respectively.

The bracketed terms of equations 141 and 142 are seen to be identical
to the third and fourth bracketed terms of eguation 14 in Appendix C,
respectively. Because of this, the velocity due to thickness and the induced

velocity due to the bound vortex semgments can be computed simultaneously
saving a considerable amount of computer time.

t is noted that equations 139 and 136 are the same as equations 137
and 138 respectively, excent for 2 C/c ) /SMJ &:  heing substitubted in
for (¢ i'"'/.::Uc w);,» HAlso, the last tcrms 31" cauations 141 and 142 are
omitted when substituted into equations 137 and 138 .

TANPOD ON WIVG

The velocity induced tangent to the wing surface by the fanped quadri-
lateral vortices is given by;

\/er—'} )‘-_L,_‘T;:Mx ANF_‘ +J"§7:,”Y..; AWFT + —é"ﬁ:,h Awe, ]{%ﬁ} (1L3)
P w w (]

where

[;; MF.«,...J = f‘cosfxm \]}_—/‘?ﬂ.cm] + [\511-)«;“ \][/Jw»«: ?::] {1Ld)
[Awey,] = [ ey, ] (145)
[Aes,] == [ mmsms [[oome |+ [Seos e NIEZN (146)

4 Kw
S E
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[ =] 2 ; (107)
{H—(I-&fwn%w)(ﬁt“’? + ‘f'i‘wcfg



] Lo ]

since oK., is small;

v"’uF ——

Yoo

Also,

va} [_L. T""‘r ﬁu;:x + ,?7:.-1, ’,'th‘f-' - ..L _I:J,. ﬁh.u: ]{ } (151)

where

[ % J=Te] (152)

[ Vs \] ): £l+(_f +tﬁﬂz¢wxdd?f z di‘“')z.} = J (153}

énd
A -
[T“,T%\] = [ o \] (154)

Therefore :

{ TNF} [ i;-i-(r.,.tﬂﬂ,z;é Xdem: + c:!?;::)'r_];}z ]}: ﬁw,c ]{I‘g} (155)

The influence matrices Awsy, and Awky,. are caomputed with equations
derived in Appendix D.

FUSELAGE ON WING

The volin>ity induced tangent to the wing surface by the fuselage
quadrilateral vortices is given by:

{ \/ej} = [TB_?' -1:.;”,(” A“’wa + %TNHTN A""Brw + —'é" mei-h,AWB‘zw J{_\,{o} (156)
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—

Therefore, since 7;3,.,,}, = Gy, = O
wt

vw‘
{MB} !;ﬁﬂﬁvw%xiffﬁﬁﬂ}“‘J[’%m% JLE} (157)

I

[l I -
¢inen 7; = fuye o

{MWB} [E{H(Wmna g, (0 je":ﬁ pa jﬁ:) }'/1 \][ AWBYB ]{—E} (19)

Tre influ~nce matrices Aws-x and /&,Br are computed with equations derived
ir Appendix D. B z

FILON ON WING

The velority induced tangent to the wing surface by the prlon vortex
and source lattices is given by;

Yol - | LT A L i
() - [ s g - e )

(160)
+ [ m"x,,s“'@u * -1%1:]")’-;-5;%@ T"m S.WP ./ ir}
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where

[Am, ] = [ A
LA | = [omel]l A ] - [eosr[[Am, ]
[, ] = [eess [ pm ] + [sor ] Aem ]
[Fn] =] 5m, ]

[0 Fror L, ] - Dol =, ]

Bm}[MK[ 1 [l ]

Therefore:

et - | Froemermml{ Lo 1)
[ 2l
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(163)

(164)

(165)

(166)

(167)



since

< ~
[rmed < [Tox]

> /
g - [
[P ] = | Fooma g

Prn] - o]

« /
%?} o7 [3{1 + (1 +TAR G X d??‘“:f = z’%f}h \]{{ E‘SWJI\][ ﬁwp’”]

DL JHE + LDl

[eesr Jom, 1305 S

(168)

(169)

(170)

(171)

The influsnce matrices /%%, , /s, and /A, are computed from
aquations defined in Appendices C and D. The matrices Eiwzp, E;WWP ,

and :S;%E? are computed from equations defined in Appendix B.
#

HACELLE ON WING

The velocity induced tangent to the wing surface by the nacelle source

frustums is given by;

_Eé} [;; g Wl 7 WhnwﬁwﬂﬂJ

54

L
E

Torn Ao ]{Tfi }
* B
w A

(272)



since

[ Ao, | = [/-’:Lw,w :[ (173)
[ﬁw/\f)w ] = - [\S/N(J’- Rr \]I ﬁw’u).’-u] (174)
ang

~
[ﬁwﬂew] = - [ cosly - M)J[ ﬁwﬂm] (175}

then

gf} : £1+Cn+m~q§., dE""" o :3:") }7‘ ~ ke v, (176)

Also;

Vol = 1 Te A L LT, A {f'i}
{L\E} i [E‘ B i FEALL WIS W e W 1 52 (177)
then

~ o
} [ ggu</+r,9,u‘i¢.,)("’*~f * FE )‘}"2\] s’”s“""\j[’g"'"’yﬂ ]{Z} (178)

The influence matrices /ws o and ﬁw"’)ﬁ are calculated with equations
defined in Appendix E.
FREFSTREAV ON WING ‘

Expressions for the velocity tangent te the wing surface due tc the
Treestream were given in reference .

e 7
I B I WA Ustisiad ind =l L5t [ (179}
o [r#eerh [irre ea X T G207 J%
and
Vrh-’oo L Pt B {/_[/ f(/y‘t‘ﬁn)zﬂu,t d?"l"' ka Ziﬁ-:“)z]71 }
Vio [/*zaﬂzﬁ.,ﬂ'/*(fr‘z‘ed?%v)(d,w * eyt % {180}



WING O PYLCN

The velocity induced targent to the nylon surface by the wing source

w

and vortex lattices is given by the following expressions.

e

n []2 T, SP,,K +.-E-Tf=m e T 1;,%5-,; ]{ } (181)

where

; !
[ "’*P“] [ i; = (1 + TanZQ )(G’fﬁr + a’i‘ﬁc)j (182)
Eﬁ”rr] i \] (183)

Me,,‘.] [\ ~ } (184)

L] = [ ] (185)
| | z[\s”"*\][’%’“’w] e[ | (186)
o] Lo ][] om
[ 5;%] ) [ 5”‘”"‘»’1 (188)
[ =]l Lol o
[5rm ] ] soerJlmmn ] 1ol 0
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Therefore;

fo} = [ipeemmigreasrr< [ e 103
+ [S‘P“"x,‘, ]{%’;} } (191)

Yeoub = |1 TR ' = K
taf = [+ 4R, 40 ]

+ L T .
[ T';' 5—'13»1 + Ty Y?Sph"ﬁs + E !-R,- { } (192)
since

—%Tx.'r:- \] ) [ “ ~ ] (193)
. - s
[ 7?-"7'”’ \] [ {) *(7# fﬁd%xc;zz z ;f;:c) }’&j {19k),
and
o - [o
Tnerefore;

{Ww = 5 ;EP £ oz T 57 [/977,.; ]{—K—T
3{/1‘-(/:’»2“94: AL * gEre)t 1% < v Jle

FL= T3 (156)

The influence matrices Aery,, , Aew,. ,, and A}}:w? are compubed by
equations defined in Appendices C and D, "The matrices S, =
and ‘Jp,\; a.re computed by equations in Appendix B.
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FANPOD ON PYLOXN

The flow induced by the fanpod quedrileteral vortices tangent te the
pylon surface is given by the following expressions.

Yool — |4 T * {ﬁ
{f} - [? ?"‘prFFﬂP TR T:P""‘\".a- "??FY'P + 'JE;T";"'E? APF‘-‘P] Yo (197)

where

[’%F”P ] b [ﬂp”* ] (198)
] Do ] +[oei]

and
[/%ép] B} —[\ os ’}\t”_ P, 1 r ]:\s-,/u;\])-_ﬂp;gr __( (200)
Therefore;
Ve = ]:\ % g /d?p- Tooe 32 7E J[/? ]{ff
7 T L T Qe A )(TFE £ e )t fh e | 0a (201)
also;

_ — -,
{VTE 5T, Arfan F ok T Pemy v f T e ]{-.zf, (02)
or
‘/7:3 = [\ - d T 7 e 7 7R ][/?p,: ]{ﬁ‘} 20
S Bi1# (17 tear e )( T L el = e e (203)

The influence matrices Ao,

; d 4 I
equations defined in Appendix D.' ° &Fr" an e BT computed from
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FUSELAGE ON FYLON

The flow induced by the fuselage guadrilateral vortices tangent to
the pylon surface is given by equetions analogous to those for the fanpod
on the pylon.

Therefore;

v b / % }
Mewp o 7 2z
{-'V.;' ):@ s ttans qi,}( T * df:., )z}”- \][ ﬁpa*“a ]{ Yo (20k)

and

%
{ 7""3} )_;, £ +(/,nmfg,)c?3”’i‘fi“ JL o J{ 3 (205)

where

ECAREEN PR RN

The influence matrices /4725 s /ﬁzgy , and 16;5% are computed from
. . . . B =4 3
equations defined in Appendix D.
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PYION ON PYLON

The flow induced hy the port and starboard pyloas vortex and scource
latiieces onto the starboard pylon is given by the following equations.

fad = {2 (ool 12 Lrreigp [~ 52 TP2(5 o,
Yoo

I 4
[r#¢r remnide X T2 d"pr > e’_?we) 77

=~ i

. Er
+ ]:E-:T?Mx Arp + T "FMYPAWrP + % Ferg, APPa,, ]{v‘.}

-

1
+ EJ,:,.,,P%F e SRy b TRy A, ]{ (207)

Therefore;

zvf:fpp} - { ‘;f.:l‘ * (%)N-’-‘D{/-"‘ //f'z;'?ﬂ)?}: UP{ 4473':]} +<UP‘),J"

b e
V. /o z /& oz -
Zo [+ Cretmn™d )(ZF7 2 T2 )7 |7 }

e w3 F gy i L ]

Pl 3}

(208)
also;
Yep - % ay ?E)ﬂ-og-/*//rm'}#’[ﬁ: - %]}r(%)ﬂlcﬁa“}"ép"/
Vo [fv‘(/fc‘ﬂmzﬁ;.)(dx,, ko ;—f—;'i’f)z]”‘
¥ o
* [ﬁi e me T F T e § Ty ey, ][E}
A =T -
3 [E" 7}‘3}?' e +@ 7;":,)’},‘5_:??),? - ..L . .5-;>p?? ]{:‘Ea} (209)
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{w,} EECI Y A 3/ EIC T

[7 #Crremign X T = S )7 5]

+ o easrrm L Jiz)
+[ Nilis ]ZE} } (210)
where

(A2 =[] 5, |+ [eosr ]| 2=, |
NN SRR EN (22

where /PR, Apemg, , Srm, , 8nd Spg, are in equations (42), {k3),
(4h), and (h5)
where

4;7?’ £_ QoL OF,
(B)os™ &7 #5777

(213)
A,
it = the £ Swas A
V.’n’) _le )‘%- Ep? £~ J‘VP (21 )
35 Ak
T? ) s = Z'[,g b’?:(:s‘,u@pr@,p) — _%;h_,—._a £ Co7rérs, EZ‘ﬁfJ gfp“,
# (e AL~ ten o N cosen) |7 (215)
and e Ay~ A Yo
%, - Z 48 /Op_ Lsiuze) n L= Sond (s
CVﬂ)’d:’Iz/.-:‘,‘/”P—’ - ? d'?P 2 “ ) /UZ; A’?p Z(/‘-}"’_)
I‘{’P
S G T 417;:- Z( Z,; swuzuap/?{ z-.en/sé-,“g
Tt ) 5= 7
#*
+ (e, — ot X/ -coS ) (216)

vhere tan¢% . and ten 4  are defined in Appendix I

The slopes 52 , %r end 4% are determined numerically from the
spenwise variation of"ag the coefficients 4. , #4- , and 4., obtained in
the simultaneous solution of the influence eguations.
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The expressions for &z , 22 —-"V{PJ , and 2% are the same as for

the wing except that the §“bscr1ﬁ? 7 1is substituted for .+ . The equivalent
wing expressions are given in equations 135, 136, 137, and 138.

The matrices /%%, and Seg_ are due to the port pylon and are
computed from equations defined in Appendices C and B, respectively.
NACELLE ON PYLON

The flow induced on the pylon surface by the nacelles is given by the
following expressions.

W VL%, A 1z L [u;,,

where

/%WP] = [ o, 1 (218)

[ ﬂ,a/uyp ] = Eﬁﬂy\][ /%ﬁé,y ] + ]:\C'asa/;”___/%/“fs%] - [ﬁ*&k__\ (219)
and

E Porvsy, :} = - [\casy\][ ,4,,,,%] 4- Eﬁﬂy;l[ﬁpﬂ%:;l (220)

vhere /gy, and /3?%? are defined by equations (49) and (50), respectivelw
y

therefore;

8 [restermrm o [

Yo = |L T ¢ : 5
_f} [’Z’ Pl A?M,.P + e Ty AT—W‘.P -+ JF- T'F‘r%P A Lalad- 2 ]{ Vo (222)
then

~ /
v-p = - - 7 Ta
{T:{ [ 2§+ Crreanii, I G2 AR g%:, )2}/‘;\‘][ APNY—,: ]{_ﬁ’;} (223)

The matrices /;];w and /?p/g- are computed from equations defined in
Appendix E.
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FREESTREAM ON PYLON
The expressions for the velocity tangent to the pylon surface due to the

freestream are the same as for the velocity tangent to the wing surface due
to the freestream except for the substitution of the subscript # for w.

) oo J1 4 (b mn iAo G 2 e ) T

%P.-a —
L Lree [ e KT 252 T (22b)
and )
(OO 0% Vit S ncodic 28 T Sl I (225)
Vo Lt tman e 75" + Crtdonsde )i Tz 5;_2_'?‘: 3 ]-"/z

WING ON FANPOD

The velocity induced by the wing source and vortex lattices tangent to
the fenpod surface is given by the following expressions.

- £ [
+ [;‘z 7;"”.«;5‘;"5';‘ tE T, Ty - G ]{} (226)
and
7 - 7 ) - o
{ %“} ) [@z e ﬁFMF T E 7%-);:/4 e ?; 7;"3,: /9;,.%': .7 Z( Vo}
o
~ 7oy Sz 4 ] Z] 22
[zt e T *3 Efy‘,.—.- 5;—.:}: a &L 7;;.‘?’: Serz. [ ( T)
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Sinece the wing and fanpod coordinate frames are oriented the same
direction;

()
{ } [“”c. TFM F“wa r _-E TPM‘J’;: AFw‘fw - TF""% AF‘ ]{

T
< i = :H_ '\Z}
+ [’:IEL TF”A’FEFNK..) - T TFMY;: S-F"""I',.J v -E_T;:m""—'ﬁ‘ sz""’ (228)

The influence matrices 4e., , ;, Aewy, , and Frp, are computed
‘i1sing equations defined in Appendices C and D. Also; the influence matrices
FEW R 3 S, , 8ol Sk BTE computed using equations defined in
Appendix B.

The unit vectors 7%, and 7=, tengent to the actusl fanpod surface
are determined from the unit vectors 5;',,,‘. and 7=.., tangent to the fanpod
surface obtained by the Cothert transformation, in the following manner.

4 5:4'1-1';

7 = 7= —_le
T FM“'F.{ B SEpy (230 )
.A'S‘FM-
7= - L 7 -t
SR S - - (231)
_ A S,
7;”’3': 4 7;’"3#‘- As;,,:, (232)
T = Teg  SFCn (233)
= e as
Fr
— — 7"‘ /Jg;.-,.‘
7 =4 4 adaaks S
Cal R o (234)
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- = L=
'?F ? r-EF‘-, JS‘FT (235)
OS5, P
where a;’“" = are obtained as follows;
& Ay
z 2 2
Z;MKF > 7;»4# * 7’;"’3,3 =/ (236)

Then from equations 230, 231, 232, and 236;

F”‘ - 2
S / V7 w2 B 5 T * 3 T (237)
Simitarly,

F. o+ T e 7E o=/ (238)

er ;v--x= Fra’c .

and after substituting equations 233, 234 and 235 into equation 238.

Pak=y
Fr /‘/7_ Lo z v 7o 2 (2 )
As"’r‘ prxp Ll "'i ., = ZT . 39 A

FANPOD ON FANPCD

The velocity induced by the fanpod quadrilateral vortices tangent to
the surface of the starboard fanpod is given by the following expressions.

Ve - | L Tz K
{\Z} - [—_@—1 T;M"‘F Areee + 7% Iy Aee + :;;EM?F Aetes ]{é}

&7 Lo .
+ /% (240)

[z2 2 = =
Z? = Z;‘:"'"KF :1‘- /mx‘ g v Frg e,
E

4
E"E,:AFF‘-’F ]{i}
AJF?'/%O

+ (2h1)
& \/@ T ‘é’f,c F’E‘z :
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and

‘TETTF AFFY; += ‘—;g

Viewb = | L TR e + 5
{h{a [TEZ Frxe i 2




where dg,, and a?,:r are the values of the surface vorticity along and
perpendicular to the meridien lines, respectively. The vorticity is determined
by dividing the average of the two adjacent vortex strengths by the average
perpendiculer distance between the two adjacent vortices.

The influence maetrices Aes, . , #rry. , and /7FFz. are computed with
equations defined in Appendix D. The components of the unit tangent
vectors 75 and 7. are computed from the vortex grid coordinates.

PYLON ON FANPOD

The velocity induced by the pylons tangent to the fanpod surface is
given by;

V. ! = Z
’;F?’:% = [?T;:Ma’: AF"XF + %7}”# AF?‘)’F + -'é'_ 17:”-?-9 AFp?F ]{ %}

. EE»J
+ 7‘2'5'- !FN‘FGSFF,(F + = TFm.rFs;—'P‘,F + J'%T;”?; Sen - ]{Vd’ (211'2)

Sem ] %ﬁ} (243)

where

] <[]

[/? __] [5,,\,,,/][,4 ‘] [daﬁa’i‘[ﬁ; ] (245)
)—_’4 ”’%r] i D""’sb’lﬂ_ﬂ"’?p] * T.\S””’ \]Lﬁf"”ap] (246)

[fﬂﬁj [ ] (2k7)
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[‘SFPTF ] - [\S"W \:”: S*’T’YP] B [\ aps”)\]—_ 6“”%] (218)
[g”"zs] - ansyﬂ 5"7%] * [\5”"’ ‘][5"%—-] (249)

The influence matrices ﬂFJ‘?gF, s /‘?F;g‘,p , and é’mzp are computed with
equations from Appendices C and D. Also: the influence matrices

5},‘,} » and <. are computed with equations from Appendix B.
= =

S%y

NACELLE ON FANPOD

The velocity induced by the nacelle tangent to the fanpod surface is
given ty;

VMF,\, — _!_ T A ._'.. /4 0—;:
{v.a} );;- g ket g Tree A £ oy Aoy, ) o (250)

[
Ve, = (L Te A LT ] =
{_}fﬁf} [@"- R + B Fry, AF’MYF + %— ETEFAFN@F Yo (251)

vhere

[ ﬂF"%:] = [ ’qﬁ”ﬁ’w] (252)
E ,QF,,;# ] - [\S//JC Y“@Fﬂ)]): /4’.:/«1)”] (253)
I ﬁ’m;?;] == I\COSO’“ ‘9P"J:J[ ﬂ"‘ﬁw] (25h)

The influence matrices A,  and /Z=,
from Appendix E. g %

Wl

are computed with equations
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ne components of the freestreanm velceitly tangent to the surface of
z0d are given byv:

vl = IN \
(- D Jord + Do o} o

and

Vel — f\T , N (

{-Z-} [ Fr"‘l-‘ . COS e + IFr.*F . iS/No(: (256)
WJ U3 N FUSELAGT

velocizy induzed by the wing source and vortex lattices tangent
useiage surface Is given Tty the foll cwing expressions

4
v | ’ < =
{ ”"Bv"j; ) [Eﬁ TB‘“‘XB ABN“N * B E”TEABNY T T%M%AB ?”]{T’;) (257)

v = L T {

— ay

The influence matrices f%wxw, ﬁ’awm , and /‘fiav'-'gw are computed using
2quations cerfined in Appendices ¢ and D, Also the influence me*rices Sy
:,3,\,), . and ﬁwﬁw re computed using equations defined in Appendix B. ~ %
w
The unit vecotrs { TBum, NPE Temy,) and ( Tz Ter
TET ) are computed in the sar‘e madir 25 thofe for the "an%od. s
g



FANPOD ON FUSELAGE

The veloeity induced by the fanpcod guadrilateral vortiess tangent to
the surface of the fuselage 1s given by the following equations.

Vin .
BF [ = | L A YA { g
‘—-—'vw } ):.Q'z. EM"’B /43,;.:!,_: + 7 7’3;4% ﬁaﬁ,‘,ﬁ_ + = 75—:.,‘,23 /93,:-‘3): ] v (261)
amd
Vo = ‘I—-,,TB-; Age + J_T‘.BT Age + L e Al: ]{.ﬁf (262)
Ve BT e T B T Py B TTeg” By |10 ’

where the influence matrices /‘73,-.,,, ' /%/-3‘,‘__ , and /3;,:;2 are computed
with eavatiors derived in Apnendlx D. ~
FUSELAGE OV TUSETAGE

The veloeity induced by the fuselage auadrilateral vortices tangent
%0 the surface of the fuselage is given by the fcllowing expressions

Y,
""'53 iy i kg

6)Bm /‘/oa

+
Zi / e 2 - L —Z
? € /Bﬁ?(-;z:f’%?’gﬁ* %M_:

=,

Y,
et = | LT A L k
Z‘& } [E-z By Bl F B ETrBABETB * _‘éTBTéBAEB?‘B ]{‘i} (264)

YBT'/Voo
eﬁﬁs + T8 +T"—"

7' 5

Where x’m and }’.57- are the values of the surface vorticity along and
perpendicular to the meridian lines, respectively. The vorticity is deter-
mined by dividing the average of the two adjacent vortex strengths by the
average perpendicular distance between the two adjacent vortices,

The influence matrices 435.# 3 /4738’, , and /%;_3 are computed with
equations defined in Appendix D. 3 =
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PYLOY ON FUSELAGE

The velocity induced by the pylons tangent to the fuselage surface
is given by;

v
(265)
+E1TB%SB% + 5 ey, o+ ® g5, ]{%}
ana
f\éﬂ?} [ B A, + TRy Asz + L By, B7 ]ZKF'}
| (266)
T, Sem, + 4T S+ 4 oSy, %]
wners
[’43313] = [,437%__. ] (267)

1

[ Aar, ] ):-sm:a’ ][/%sp ] [Gas yﬂ; 1 (268)
):A’zzga] = E‘aosY\ [ B, ] [ﬁﬂb’ [/% ] (269)
[SFP J : [55”%] | (270)
[53? Ismxt\ = ] [""’SV‘} ga?e-:l (271)

[%*3 ] = [\ cos a’\l\l 5{3‘?*?‘] + [\5',/«) a’;}j_‘&p%] (e72)

The influence matrices /&7%_ , /785, and ~Zzz,_ are computed with
equations from Appendices C and D. Alsn, the influencé matrices

>
SBP), , and %%P are computed with equations from Appendix B. P
P

T0



NACELLE ON *USELAGE

The velocity induced by the nacelle tangent “u the fuselape surface
is given by;

G S I €L =
{ BN} ~ [-@LE%AE")XB + ™ -FBMT HBNTB - 7 J'EM A'Br" tl{ } (273)

=
and
Vo § = | S Ta,. A L T 4+ LT {
{ LZO T P By T BT\[BA?N‘,B T 13 %B‘J } (274)
where
" A | =
L B’*B:{ y ’43'%1 (275)
o e
r ﬁ&vr ] - -[ Sfﬂ{y‘@aﬂjl /')&Jfﬂl (276)
=2 L

- T }
[Csy%ﬂ\_ 2 (277)

The influence matrices 5%;& and gz, are computed with equations
from Appendix E. Yot

—
3
10)
t
[T—

FREESTREAM ON FUSELAGE

The components of the freestream velocity tangent to the surface of
the fanpod are given by;

V, N ™
Gl Jeod  oded

VA ~ ~
{%} = ['/grxa \]{@s«b} + [ “!%T% \J{s:,aaeg} (279)
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COMEINED WING VELOCITY EQUATIONS

When the velocity induced by 2ll the configuration commonents is summed;
the following expressions are obtained.

in the chordwise direction,

__:}] {‘"WB}' {:wqu} {\Qﬂww:} + ZWWWN? %qwﬂ
o o } (280)
and in the spanwise directicn

- bl D d 183 ) 0 (%)
TF {Q%,,} and {g_\\%u} are defined by;

{.OV‘M ):{1+(1+rfsw¢,)(dch__ da.,d)} ]{ VNM}

- (e82)
e,
d
‘a\lrhr w: w : w
[Z! + (1 tam cﬁw)(j?w * jf(w ) ]fz\]{ % r}
(283)

Y F =B (7 wﬁﬂq,,xs_""x_:a r %;:; S 7%3 }
Z/ 7"‘279/\12¢”J]

Then, the velocity components in the chordwise ard spanwise directions,
corrected for compressibility by the method of Lebrujere, are given by;
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{Vmw} - { B, oS P # (B _d_‘f»_wé o5, ~& él-"ws,,ug{, aosgi,)///,_,zz“sg'w

LB} # U+ ooy J(Seee £ T2 P 72

(281)

+(/ ,.A_V\@ﬁ)sjﬂ'%;ﬂ A%"-S/ﬂ;éw aas,éw}

{&‘f} - { BaeoSgSing, + (B 24’4 s gecsd, - ?—-—&‘5/,‘:'%‘,)// pleosd

2y b \2
[87+ (In ooty N32r £ G55 77

(285)
# (/7 %)5"’¢wc"55¢o ” %ﬁos:;éw}
where
Em = / /—/”23&95?¢"’ (/— %.fzcdas,;éﬂr) 56
24
and wnere
G/~ 15050
072- = -G (/S5 ) ) (287)
ks (
and
T M7 o/
Ay
¢ = Fig) [1E (5T - (288)
br R 2
' GV (1t M =) () T FOR <, 0/
6= /(5G] s R [ (289)
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CHRDBITED PYLON VELOCITY EQUATINS

The sum of the wvelocity, induced by 2ll of the configuration components,
on the pylon is given by:

{_P_f.“} = {Vm?vat} + {VMF?} + {V w} + {VMP.?} +{V’mp¢:}
In the chordwise direction, and
{_"E} = ["Tm} ( Tw} {VTW] + {‘i&'} + | Voo (201)
Vo e Yo
it ZAVMP and f%} are defined Dby:
-—V;‘ L Voo

0‘/”\ ]
F’ I[l-i-(l-!—“r:ﬂwdlp) (G %) }’z\]{‘v’m

2 2 )y P e O 2 (292)
[)
— {/fm/ug,g‘/,‘(ﬁm,u#cm = 67??) ]/a}
Lt~ emidg T
and s
T'P '?'17 dgp T ? Ve
{ } E{I'f‘(/*tﬁﬂ ) (G £ 55 )T z\]{_"%}
(293)
- 2 %
- g, 57 Z?r(/ff/a/ug,)(g?;’rr d:?._)‘zj’/z}}
F oo ZoordPl, T
then, the velocity componerts in the chordwise and spanwise directil ons,
corrected for combressibility by the methed of Laebrujere, are given vy;
7 z A Oy R
VMP} {BN eos G, (B '—4"”(1 S?é,,"/?"‘fs.vm;gaas P)/L//"/Z,zdﬁ?fév
[ B+ oy, )(d""r 7‘-;(_,_3 e 27 %
* (294)
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and
[!7?} =i ﬁudos‘#vﬁ}mg,f(?z‘dﬂps/%cosg' -~ %5./”2#’)/// __/zglc@s’%
% B # (Vruenig )(STr 2 e LT

AV (295)
Al (/7“ ——M)S/ﬂ%aas;é, ot %—Paas #5}

where Bv 1is defined the same as on the wing except that #- is used
insvead of & .

COMBINED FANPOD VELOCTTY EQUATIONS

The sum of the veloecity induced on the fanpod surface by all of the
components is given by;

e (Yo ] o {om ] s (o] o [ Ve v (] (296)

alog the meridian lines and

[(&)-03 U] + 07 + %3 1% o

perpendicular to the meridian lines.

COMBINED FUSELAGE VELOCTITY EQUATTONS

The stﬁn of the velocity induced on the fuselage surface by all of the
components is given by; ‘

Pl ) e - ] D) 1] oo
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along the weridian lines and

B IRCIRLE R SR -

perrpendicular to the meridian lines.

The compressibility correction for the fuselage and fannod is that
due to Qothert and is already included in the above equations. Due to the
assumption of axisymmetric flow for the nacelle, no velocities or pressures
are computed on the nacelle,

The surface pressure ccefficient is then computed at each of the
contrel point locations using the following expression.

2. 72 E2L a7 Y )2 1 )7 Ao
e, = ym;,j[f z fz,,[/ "(;@)"(v;)]} "/] (300)

where ) 1is the ratio of specific heats.
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SECTTION AND TOTAL TOADS AWD MOMENTS

The section loads on the fuselage and fanpods are computed by summing
the products of the surface pressures and directed incremental areas at each
longitudinal ctation,

The section drag is given by;

(5w =~ Zzmm, Z 7 D%k (301)

Wava

and the section 1ift by:

/
Cow \_ . L AA
) Azl (%), Z: 2 2%

Wavgs. (302)
where ¢ is indexed over all subareas at the longitudinal station k, and
> 2 A,/
& ¢ (303)
is the fuselage or fanpod reference area.
The fuselage or fanpod total 1ift, drag, and piteching moment are
computed as {Tollows.
C
oy
¢ = 2 (e (305)
X
= A7
e, ( e RN (306)
and
Z BAy, =Ko BA ]cp
X e 0
G, = ’42‘3 Z L ¢k, Lk (307)
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T™e section loads and moments on the wing and pylons nre computed brr
the following equations at a series of span siations.

The section lift is gmiven by;

Gt co’ (7 g5
- I _ .
Cave. 2L dJS = (Cz - % =g sy g (508)

the section drag by;

o c AR
Coe. | Z& ASLE IC%’ CRNX, — G TRV2, J=d ¢ (309)

and the section moment by;

CmC e r7 45
— X— - St
Cavs. = Zoa f ( L‘E')(% %)= Py JP (310)
Wwhere
) TS F a—;{“"_ c‘f& ™ &
T/ o =
/I~ (F ZF- S5 +g)z>a Xy
ana
-~/ X
52{-_— cos (/— 2% )
SOTE; Y ois egunl to 90 degrees on the wing,
me section center of pressure 1s given by;
Cm &
X = — Cavé.
(% )y e (312)
4 a,a
Cave.

The wing and pylon total loads and moments are computed by numerical
Intepraticn of the section loads.

In addition to the drag computed from equations 301 and 309 , the
nrogram also computes the skin friction and vortex drags for the complete
configuration. ”he equations for these calculations are given in
Mopendices J arnd Y.
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EXPERIMENTAL COMPARISONS

Two configurations were run te demonstrate successful program operation:
Case I - The wing-body configuretion shown in figure 7 was run at 0.4 Mach
number and zerc and four degrees angle of attack. Case I comparisons are
shown on figures 8 through 27. Case II - The V/STOL lift fan transport
model (less tail surfaces) shown in figure 1 on page 13 was run at 0.5 Mach
number and at zero and three degrees angle of attack with and without the
fanpod. Case II comparisons are shown on figures 28 through 57.

WING-BODY CONFIGURATION

The wing-body configuration run as Cese I is defined in RM L5S1FOT.
Comparison of results from the program with data are shown in figures 8
through 27. Figures 8 through 12 show comparisons of pressure coefficients
at zero degrees angle of attack at the 20, 40, 6G, 80, and 95 percent semi-
span wing stations.

Figures 13 through 16 show both the body alone and wing-body pressure
coefficients at the 45, 75, 105, and 135 body roll stations at zero angle of
attack. These figures show the increment in pressure induced on the fuselage
by the wing thickness.

Figures 17 through 21 compare results of the program with data at the
20, ko, 60, 80, and 95 per.snt wing semi-span stations for four degrees
angle of attack. TFigures 22 through 25 show both the hody alone and wing-
body pressures at the L5, 75, 105, and 135 body.roll stations at four degrees
angle of attack. These figures show the pressure induced on the body due to
thickness and 1ift of the wing.

Figure 26 shows the comparison of theoretical to experimental span load.
Filgure 27 shows the comparison of theoretical to experimental lomgitudinal
loading on the fuselage with the wing at four degrees angle of atback.

All of the results for Case I are considered to be in excellent agree-
ment with the test data.
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WING DETAILS

AIRFOIL SECTION
(PARALLEL TO PLANE OF SYMMETRY) NACA 65A006

1l -ﬂ
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Figure 7, Wind Tunnel Model.
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V/STOL LIFT FAN TRANSPORY

The wing-tody end ving-body-fanpod configurations run as Case IT are
"afined In NA-T2-17-2.% Compariscns of pressure coefficienus at zero and
trres lepgrees angle of attack were made for the wing-body, the wing-body-
Taapod, and the difference between the wing-vody-fanpod and the wing-body.

Figures 28 through 32 show comparisons between data ond the program at
the 20, 33, 60, 75, and 95 pervenl semi-~span wing stations, 2t zero deprees
aungle o0 attack, for the wing-body confipguration. Figures 33 through 37
snow analogous comparisons for the three degree angie of attack case.

]

Bigures 38 through 42 and figures 43 through 47 show comparisons between
duta and the program at the 20, 33, 60, 75, and 95 percent semi-span ving
stations for the wing-~fuselage-fanpod configuratiocn at zero and three degrees
angle of attack, recpectively. The 33 and 60 percent semi-span wing stations
sre just inboard and outboard of the fanpod, respectively.

The comparisons Jor the upper surface are guite improved over that for
the previous program. However, the lower surface comparisons are still not
in very good agreement. This difference could be due to either thickness
effects of a high wing configuration, vaich can only be properly accounted
for by a surface singularity approach, or due to o wing-fuselage Jjuncture
interference problem in the analysis, It is believed to be the former of
these two situations, because the problem does not occur in Case I which is
8 mid-wingz configuration.

The increments in the wing pressures due to the fanpod are shown in
figures 48 through 52 for the zero degree angle of attack case and in figures
53 through 57 for the three degree angle of attack case. These comparisons
are not as good as expected. The three degree angle of attack case is
considerably poorer than the zero degree angle of attack ccse. Also, the
comparisons are worse right at the junctures. Both of these situations could
be indicating boundary layer effects, since the boundary layer would be
taicker at the higher angle of atiack and right in the juncture.

%
Reference 36
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APPENDIX A.
NUMERICAL PROCEDURES

Discussions of the prime numerical procedures used within the program
are given in this appendix. There are essentially three such procedures;
(1) straight line interpolation and extrapolation, (2) controlied deviation
interpolation, and {3) Householder's simultaneous equation solution.

For straight line interpolation and extrapolation about two given polnts
(X1, Y1) and (Xp, Yo);

Y=« ¥, 4+ 1-«}Y, (l)
Where

X=X,
o = A’-,_-X, (2)

The slope gf for this case is given by;

= (%) (3)
where
dg'ﬂa—a) (1)

To the case of the controlled deviation interpolation method (CODIM)
parabolae are used to curve fit a set of four given points (XN-1, ¥YN-1),
(X, Yn), (Xj+1s Ywe1), and (¥w+2, Yn+2) to obtain interpolated Y and Z%
values fir X< X <Xy, « Only that information, relative to this method,
which is necessary to judiciously pick input points will be discussed here.
A complete derivation is given in reference (20).

One parsbola Py is fit through (Xy-1, ¥n-1), (Xw, Yy), and (Xy+l, Y1)
The other parsbola Pp is fit through (dy,Yn), Xw+1, YN+1§, and (Xy+2, IN+2).
This curve Fitting process involves the solubion of two sets of simultaneous
equations. IT,

P=AxX s B X e (5)
and
Bm A FH Nt : (6)
Then
- =1
A{ "xﬂ-t X;\J-—’ ! yﬂ—,
2
SO ol B | IR (7)
2
< Hptes Ko s ! T
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=
A A Ao 7 pA~
- i
Bz S | Awrws Xn)v—p / xJﬂr ( 8)
<y Krag  Xwez ) Vs

The interpolated values of Y and 3 » between Xy and Xy+) are defined by
either P1, P2, or a linear combination of P; and Pp. The amount of P; and P2
used 1g the linear combination is determined by comparing both of the
parabolee to the straight line.

s = ol Yru’-:'—f + (l‘ﬁ)YN (9)
Where

_ Yires = Yoo
o= er'f-,r — Xt (10)

The parabolsa which has the least deviation from the straight line is
given the greetest weight. The weighting factors Ej and Ep are determined
as follows;

£ =/7-5/ (12)

£, /72?"5./ (12)

The weighted expression for Y in the range Xy < X €£Xu.: 1is then;

= E,F A ()& F

= 1
Y HE, F(1-et) E, (13)

gy

The derivative —- in the range Xy < X € X,u., is then;
‘:T’}’ = 3’_.:/13 — Mfgl_—i o° Forz PO (1)
where
A= KEE F (i) E, P (15)
DEE, £ (i~e) & | (16)
And then
IR ey r A5G - D # o) S w5y ZF (17)
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Therefore;

g2 . o« oE, o :
ax TRk TR T ax e m T (
—I:l Fore X:XM
L ]
Y = oE, B +{(1~t)E, P,
-DC—E, + (1-o¢) Ep FOIe X < X < Xu, (19)
?'3 Va4 X =Ky,
and
a7
dx FOoiE X=X
(20)

a7
dx

In the case of an end interval Xy.] § X< Ao

7';_"':'5-7" K(‘PZ—S)

yhere

VLR /
K=4 = T et
and

7 Yor = Yues
’ X = Xpumt

1)

Yoo T Youey

M‘Z = X/\J'—XN,A/

T XI"‘ X <X’\-"-l

Fer X=X,

; P is set equal %o ;

(21)

(22)

(23)

(2k)

A similar procedure is followed for the other end interval Xl S XS Xowe
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Householder's method for solving simultaneous equations is used in the
solution of the aerodynamic influence equations. The method is applicable
to hoth square and rectangular influence matrices. In the case of
rectangular matrices it is not necessary to least square the equations first,
since Householder's procedure least squares and triangularizes simultaneously.
Also, the influence watrix is triangularized by means of orthogonal
transformation matrices, which preserve the conditioning of the matrix. The
combination of these two advantages, along with & reduction in the number of
required computer operacions, greatly improves the numerical accuracy and
stabllity of the solution over that of the standard Gaussian reduction method.

A complete, but rather abstract, derivation of the methed is given in
reference (21 ). The actual computer subroutine used in the program was
developed by L. V. Andrew at NR. The method in the subroutine has been
altered from the original to allow the operation on a single row of the
watrix at a time. This reduces the required core allocation necessary to
triangularize the matrix.

A derivation of the method, developed by the writer, will be given hers
in order to described the basic philosophy of the method.

If [A7 is the rectangular influence matrix, the upper trisngle is given
by
"] =Twiray (25)

where [w] is the combined orthogonal transformation matrix used by
Householder to triangularize [ A }.

The relationship between Householder's triangularized metrix ( = )}
and ‘that obtalne& by Gaussian elimingtion of the least squared influence
matrix {4} (A}, is

lel=LTA ITal <[ JInIT”T = fopey (26)

where (e} is the triangular matrix obtained by Geussian Elimination of
(A ][A] The matrix _‘[T] is the Gaussian transformation matrix used to
triangularized [A) (A }. And, (7] is a diagonal matrix with the same
diagonal as [12]. It can be seen from equetion {22) that a nonsquare matrix
must be least first, before applying the Gaussian transformetion (T7].

Where as, the Householder transformation matrix {w) can be applied

“irectly. The least squared matrix [4) [A) is usually more ill-conditioned

.zan [A), and therefore, less accurate results are obtained.

In the Householder method [w] is equal to the product of N+l individual
orthogonal transformation matrices, where n equals the number of unkowns,.
There are N+l traasformations because the augmented influence metrix, made up
of the influence matrix itself plus the boundary condition metrix, added on
as the last column, has N+l columns. Each transformation results in reducing
all elements below the disgonal to zero for one columi. 'The columns are
reduced from left to right.
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The individual transformation matrices [w] are defined by;

[wl., =(Iz] - 2{ul, {u} ) (27)

where {T) is a unit diagonal matrix and {u]., is a column matrix defined by
the unit vector4.~@.-«4.5%.)k. The vector &, is defined by the mth column
of A7 where the elements on rows less then m are replaced by zeros. The
unit vector 7, is defined by a column matrix [~} with all zeros except

for the mth. row, which is equal to one. The constanis ., and e, are
defined as,

Ay = J 2}/ (28)

Ay = 2 (5, For) (29)

It can be shown that { 4-) is reduced to //@m7/f*-f.fajis premultiplied
by ey -ziuy s Also, that the first m-1 rows of

LW L Weman T oo L, T[4 (30)

remsin unchanged by the mbh transformation. The result after m
transformations is then zeros below the diagonal for the first m columns
and /f2, 3/, lfeR [ - el /y tE2d ./, A421../ oo the diagonal. The
elements above the diagonal have been defined by the m preceding
transformations and will remsin unchanged for the N+1l-m remaining
transformstions .

(5T - 2ften Pl ) fam] = i3/ E0 (31)
B w (e e ) e o Fem) = (ERmd = o f ] s, (32)
s = /A }/ | (33)
and

= 7t Coto - s Pore) OZ = STt (o = famd T (34)
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remain to be proved. It is helpful in tue derivation of equation (31) if
tne vector identity

/T 2l s ) s = Fr, (35)
is observed from the following vector disgram.

e N, —
2, &, ),

7. 00 /5

Then from equation (35);
o[y £ Z s (B ) == e (36)

S PN e - L. W 3
/Ry A Z oy by By = L (37)
Tnerefore;

= i - e —
o 15, = (8,8, = 2 &y Yoo ) Pors (38)
where  &v» Zm and /46,7, are dyadics. The unit vector Z.. is in the

direction of & -

Equation {38) can then be written in matrix notation as follows;
(fz7- 2 fu] Ju]. )], = ffal. /], (39)

wiich is equal to equation (31). 1In matrix or tensor notation it becomes
evident that the dimensions of {aj,_u {7 and fei  are not limited to three.
-l

L4 (L0)

and

Wl = 2§20 ] 3] ‘ (b1)
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Then if equation (31) is premultiplied by‘{ém}r

£t o} = 2} it St J i} = et

And substitubing <., and ., into equation (L2},

- F D = et famf ]

or

/um = ,/Z—;n-ﬂ (‘*:rﬂ "f%}?"’n'ﬂz.

In vector notation eguation (44) is seen to be equal %o;

/Mnﬂ =/Z°Jm(dm “%;;”.Eof?)

Also, if equation (44) is substituted back into equation (32)

$tm] = Jotalotrn g Y }) $Ornf = oty E2]

Therefore;

/ﬁg 7= gza“&?" 'm02;;Q7 —
A V2 s (s~ 2 3 T 0 })

or in vector notation

T Rt
5N dmvd"’”%

P —
Lorr V2 (Olps = Uy’ s
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APPENDIX B

SKEWED SOURCE INFLUENCE EQUATIONS

FINITE SOURCE LINE

The potential for a finite source line can be obtained from the
integral of the potentlal produced by a distribution of ithree dimensional
sources placed along an axis. An expression for the potential in an incom-
pressible flow Tield will be derived first, the partial derivatives tzken
to obtain the perburbation velocity, and then the velocity expressions
transformed by the Cothert similarity rule to obtain suberitical compressible
velocity expressions. The poiential for a three dimensional source is given
by:

A%, 6, 8) === [(X=x§ +Cy-YF+ (g~ a)j (1)

vhere (%, Y, & )and (X, Y., &) are the locations of the point being
influenced and the source, respectively. The prime indicates the local
coordinate frame shown in figure B-l. If a distribution of constant

strength sources is placed along the X axis, the potential of these sources

represent that of e finite source line and is given by the following integral
expression.

v UZX)
Ly L T (2)
P58, 30 j’ L(x- X-) + g 2]

where G'CX,) is the source strength per unit length along the X' axis from
Xa-s toX' =5

— . . — 2 2 —
Iet & = XK= X_ and h = Y * 8 , then for A 7 O

d( (xij ~-= __,—

x*s

(3)

TG L, [ (K- 5) + J(x- s)w‘gfa;‘

[ CX+5) # X t+s)+ YT+ &
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The perturbation velocity «  parallel to and those ¢~ and w ' perpen-
dicular to the source line are obtained by taking the partial derivative of
equation (3) with respect to X, , y, , and #, , respectively.

%

oe THD St # (K5 [CaimTe i 8]
T ms) # (X5 S e e AT

2 2 2ep 45 (1{')
/,,L(xé:,ts)/[CA;'f s) + y'r gt

(%+5) 7'-[(!(‘;'1‘ s) - )5‘1& %7”2

o TR N/I%=-5) # y*e 27"
;o N z = =y
A A R R (2 R

+ . Y-S T 7z
- y/Fexesf+ xir 87 } (5)
(X +3) # [CtS) -y VA

ey a/Ra-sY e % BT
= 2 (‘\g_s) *Z-((g,-s)z*. g_zr ﬂ"/z

;_zsj/[(xa}s)zf- wr 27"
Gl w gesrey e gy ©

The flow produced by a finite source line is axisymmetric, therefore,
equations (4}, (5), and (6) can be reduced to just two veloeity components.
The component «* parallel to and that 2~ perpendicular to the source
line are then defined by:

¥ 7 (X.)

«'= g (cosg - cosg ) m
s R \
are S8l e U B o 8
Pyaye ( A A E-) (8)
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where g% and g; are defined in figure 1.

s (%, %,2) *s
Figure 1. Finite Source Line

Equation (8) is seen to be the same as that derived from the Biot-Savart
relation in reference 8 for a finite vortex segment. The influence
functions for the velocity %, due to a finite source line, and that for
the velocity perpendicular to the plane containing ¥ and f,§ s due to a
finite vortex segment, are therefore identicel.

CRANKED SOURCE LINE

In general the source lines will be cranked to follow the constant
percent chord lines of the wing, as shown in figure 2. Since this is a
plenzr analysis, all of the source lines will lie on the chordal plane.

The strength of each source line segment is equal to the integral of the
distributed source density over the panel it reprzsents. Each source line
segment is divided into two spanwise sections; the inboard or port half
denoted by ¢ and the outboard or starboard half denoied by © . If there
is a crank in the source line it occurs at the midpoint of the segment. The
panels or source line segments are equally spaced in the spanwise direction.

In the chordwise direction the lines are placed at equal increments of &

2
vhere ® = cos'(/~ zX/c)

The expressions for the velocity induced by a single cranked source
segment due to the inboard half ( e!, 7' ) and the outboard half (<&, ")
are obtained directly from equations (7) and (8) end figure 3 .
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Figure 3. Cranked Source ILine Segment
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k3 UJ(&J z
“ T4 [»/&x - %) - ymm:é/*[" SETA R

/
ST e g T g -ar _}

(10)
Equetions (9) and (10) were cbtained by noting thet Equations (4)
and (7) reduce to:
o 0 TCXY/ L L

wew= (7 ) (1)

Also;

e TCRY), / {

o ¢”-‘ z Z T
J[CA;-X,) ~(Y- y)esmg ] + (Ea- BJ(rr2sng)
Y= Y el XXy TAN G = gLl P TAAIE)
VG ) pmam g/ w LYY g (58]
B Al RS Nk sk
NAC ARV CY~¥)w (2~ ) _:)2

(12)

o TR X2, ~ = {

7 JCGr k) = (Y- eand ] (-8 r TaE)
- ¥ #+ (=) TAVE
SR+ () #(3a)
— Y% ACX=R)TRVE - gl £ E)
VI8~ g mmg] 4L Y=y~ 4] L2 2T

(13)
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The following volues of 4 and A, vere substituted into equation (8)
to obtain equations (12) and (13).

b= [l 2) (- prang]Eosts « (g -2) (2k)
/‘,; :Jf(xé-'x,) - (j;- Z)rﬂﬂ;g{].éas?é & ng_ 2_:)?— (15)

The velocity components in the prime coordinate frame shown in figure: 1
are obtained from the following relations.

&=a" (16)
?J’"r: Vﬁ:os h's (17)
w's 1;-*5‘//0 ¥ . - (18)
Therefore;
‘e ozt
“r (19)
w = iy
(20)

. YL -y At b~ Cx- XD T

v R =

Lik 1)~y Jemm 4"+ (7 - g Jr cmarg)

(21)
e T~ YT ¢h =507
N T E3) ~Cy-yIpang ]+ (2~ ot AV ) (22)
.o ¢ E - 2 2+ TRV
H’f.'-' _—_"—“‘:—'_‘-z——
L(x-n) - (Y-‘)’)E‘Afuﬁ;]% (Z-B )+ TrVY) (23)
w2 ~EW !+ TS
"t/ZC.V—x) Cp-yIemig] ¢ (82X !+ eI )

(ah)
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Then using the following transformstion equetions the velocity component
in the freestream direction < , that in the spanwise direction =~ ,
and that perpendicuier to the chordal plane w are obtained for a single
cranked source line segment

’ ' .
©TAEHE ~ - TRV E ~ o

_
J i eRTE N a7 (25)

—t

Lot WAV G ‘U TRRE
I . X £ (26)

[ 4+ ToAH W2

w = y\.{ -~ ;,Vo’ (27)

SOURCE STRENGTH

As mentioned above the source strength in a planar anglysis is only a
funcsion of the local symmetrical airfoil surface grodient. This is due to
the fact thai sources connot produce a velocity component perpendicular to
the chordal plane zt locations otl r then their own. Also, in order to
satisfy continuity the source strength must be equal to the mass flux emitted.
Therefore, the locel chordwise source density is;

G;(XJYS)::ZWCXJ‘G) (28)

The discrete zource is assumed caepable of representing a linearly
varying source distribution in the same way that a discrete vortex represents
a linearly varying vorticity distribution. Therefore, let G (X,Y)
be defined by the first two terms of a Taylor series expansion about the
location of the discrete source.

S X

Wnere the subseript s on ¢ indicates lines of constant source density
parallel to the discrete source line.

X, %) = aztx, ) + (X-X)

Also, by equation (28)

S WX, )

WEE ,Y) = wix,Y) + (X ~X) Tx

(30)
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The discrete source strength OCX, ¥) i1s obtained by integrating
equation (29) over the panel in the chordwise direction.

z
T, ) = S 0 (X,y)cos ¢ dx
o

il

[[Q'('i,\’) + (X=X i——c—xi-zz* ]Co-.-:—r ¢ =4
(31)

Ze S/
where 4= 2% SV s is the panel chordwise length and ©@.=cos [/-2¢5~ el
The ces ¢  term appears due to the faet that the integration is being taken

in the chordwise direction rother than perpendicular to the discrete source
line.

PFoamex,y) 39:¢K%, %)
CCx,g) = Iq‘;cﬁv\'s)j + 5 -——4—;(——}:“ - X;-? -—-—"J"é—‘]dasgﬁ

(32)

since x = and @A, %) = 2 wWilX, ¥);

z

T, ) = Sila, ) feos p = 2w, w)d

V2t Cnn’d (33)

If the source strength is divided by the freestream veloc:xty md the
boundary condition for no flow through the airfoil surface ——(a‘s, %)= C %
is substituted into equation (33) the following expression for sourcs
strength per unit freestream velocity is obtained.

z7e J(EER) (55T gy
Nt g TTF dx

(%,%2

&

(3%)

vhere A/ equals the number of source lines per chord.
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COMPRESSIBLE VELOCITY RATIO EQUATIONS

The final expressmns for the compressible perturbation velocity ratics
are obtazined by transforming the coordinates and perturbation velocit ,1es by
the Gothert similarity rule and by substituting eaquations (9), (10), (12),
(13), and (34) into cquations (19) through (27). Also, the contribut ions
to the velocity ratios at an influence point ( X, , v, , 2, ) by all the source
line segments at (%5, % , 2, ) are algebra 1cally swed for ¢'eg 2z A

and L=y 2 A

J

A
%C’S’/‘t?ﬂg):z,{/z@a {Z; Zc[(& % - (.’c, x‘,)] <’§,.’ . [

¢ s

E‘“ﬂ()g"’ g“ gLX‘-‘J 2) 7‘;(&&'—’ };‘) N ﬁz('ga ;’;;,, g’ 'gl'-’ f)
2,1 )

z

ACIE P, {J .
(35)

LA, R, e y) - ECRLE R R ]}

E%4,3) = ZNg@{ZZC[(“’ - [FEe o]

‘E;( %;J E" %J g" ;:{‘) 7;(){"7 X‘) + E‘:’o();.) g.‘ -%J z‘y i)
%)

E(xg %,2, % X)X, ) + ELXA VB X, ¥) ]}

(36)
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w _ Koo~ Xeg ) (KT Xes,
Vl%.%.50 aw'y? {2 2 [ o) - (B 2] d”’(%é[

(37)
where: X= 'E/igj.s 3 9; = }3,/5, 3 -E-Tg = %/i 2 -’?:,-': &/{s y,
-q'- ‘ = :4
Re il o e gowd s Tedemd o 2o [0+ CFRAST ond
=7 (EAVBN %
I+ (EZedy %
Also; define 2:":: '\;-’?s‘-; Y: = }?;- 5’;:_ 3 anil 3::?3
Then for 2 # ©
& (X, Y 2 X %)= - e
“~ 827378 2 TS C)""‘,x.z:_‘)qu-(?r'-l.)zwﬁ E
y)
VA AR AT
(38)

149



/
SR =B v (=) * 2

&.,C fgz.?z' 2%, %y %) =

- /
N (39)

LFAT) ~ (R Y7, )%,

73 Ll

*~ (7 + X7 IR B
Ko Y7 )[R- 5 J  FET[F T+
— v, » X7, 5
- ¥ = N 0
(- 55)/X + yir E° (ko)
5058, 5,%,2) = (R= R NT *AL) ~ (R~ Fm )
[X-5z 5+ &7 R E
" (7 # R OB &°
(X~ 95 )X~ ) r 8RR T+ T
— Y, & X7, ( ll-l)
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w3

N’ﬂl

(43)

g ;‘?‘L CZ " K“*'z;n.) a i 7‘?..
[~ 375+ §27/CEr ) e (1) &
- (P+Rz)7% 3
(X ‘Z’Z-;JZ‘C = n) ét.‘rgz“ X por @
+ S2LhLPXED)E, (k2)
(=SB iw 5 =5
_ g (irii,) - F&
IZ-pnfe §BTSCK -7 ) F CL~0T# 8
- (7 # AL )E
(R BZ)J (R~ ST ) e BB R+ yr B
+ %- c Z 7‘ 77":'.-. ) Ol
(X=X ) Rir X°r &
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As discussed in reference 2 the form of the influence equations (ho)
through (43) are such that F; cannot be set equal to zero to obtain the flow
on the surface of the wing without losing a substantial poriion of the
solution. This problem is due to the singular nature of these eguations.
Equations (42) and (b43) will not be discussed further here since ""T;;cg,;,o)ugfcg,g,o).

The first and third terms of equations (40) and (U41) cause no specisl problem
as § -~ o . However, the second termsin thc'—:.e equations do contribute
nonzéro Tinite values to £ v X, LA o) and VCX ¥, e ) at the tips
and at span stations vhere kinkc- or cranks occm' in the source lines. It 1s
suggested in reference 2 that the influence equations be 1ntegrated in the
freestrcon direction before letting & ~= o . This integration wes discussed
in detail in reference 2 for the semi-infinite sheered source lines with
¥ = % = & . The same procedure used there to account for kink, crank, ond
tip effects vhen ¥ = o  will also be used here.

if equations (38) through (41) are specialized to the case of % =&
and the second terms in equations (U0) and (k1) are replaced by expressions
derived in references 2 eand 6 , the i‘ollov:l.ng expre.,sa.ons are obtained
for &/(K, 7, ,o_,,p':,‘_, %), GlR,%,0,%,%), &.5,%,0, x.%J), end

CX:J ;,)OJ e 4,0

"E"'z({?);éJOJ ';’1.'.) E{.J = ! = b — !
SR AT (G 1) A A (4h)
"c(%J%/ o)""’s-’y) _-: = / - /
(K-Z )+ (8 ~2 T PR (45)
¢, 7 %, 7 / 7t AT z° * 27
EL4,%,°,%,8) = AN <% «qu rE L+ R%D
TXR) ((SRE RS e (L) SR E

L MBY(268C, ~ 122 /80 7)) L0057 Z - 73':/
2”0‘\[(52:5”""} - Xy &,)2 [o(,sc v‘/P:f“/]
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£ 5,0, 8,80 = L (RERE) -F (R * R
CE-iz) | S - rcr-1F [Jrri

Ec'&"' Z}._
4 MEB4( 08 ¢ r122/897/) o3/ B, — T, /

2 /() (o) [ovsc.r fosil]

(¥7)

The third terms in equetions (46) end (47) are only evaluated when
/Ber/ < .s57 ¢ vhen <& =4 , where 3 is
the number of the panel aft of the leading edge on vhich the velocity is
being computed, and when <& is at a span station where a breek in a source
iine occurs. When these conditions are not z2ll met the third terms are set
equal to zero.

The expressions for the velocity components given in equations (35), !'36),
and (37) can be represented by the product of source influence matrices and
the source strengths. I

(e} = I
7}‘ -]

= = Jfg) "
E} = [ s, ]{E } (50)

@ [
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vhere the elements of =x , =y g and Sg are computed from

/ —- S T - -
5= ([ fe5te ] - [t ] o

5= g [t ] - [en s s
and
Se= Zg {5 —45,) (53)
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#PPENDIX C
SKEWED VORTEX INFLUENCE EQUATIONS

The velocity induced by a skewed vortex in the plane of the wing can
be derived from the Biot-Savart law. The expressions for the velocity
relative to the wing coordinate frame will be derived for the incompressible
case first and then modified by means of the Goethert transformation to
account for compressibility. For the general skewed planar vortex shown
in figure C-1the total velocity #  induced at point § is the vector sum
of the velocity induced by the four vortex segmenis o5 s%v, va, 9o e

A
Kw
. =N
A
Jw
Py

. g
0‘5"’3‘)"1) AW

(PRI BEIE srsFe codinkosp )

A
K
-\ é- "
i KW 1_2 T
A P 20
o~ - v
dw
-~

¢2,0,0) LW

wing qpey)

Flgure C-l. Skewed Flanar Vortex

The Biot-Savart law is given by the following expression:

= ad f“—;-"m/é‘o’é )
187 = Zrym |
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where /:’77 is the perpendicular distance from the vortex segment to the point
Q, and € 1is the angle between the vortex segment and the line from the
point Q to the increment of vortex segment being integrated. The integral
is evaluated around the complete closed path oo A' V A =0, The direction
of the induced velocity is given by the following unit vector.

Exh
T 7l (2)

/\-—
A= JERT

The contribution from segmenterA' is derived as follows.

K -— = [ ’, _7/\5‘( 2L
Feom® = "”’W COSCo) — Ccos (/80w oo &P =2.2%) (3)
where
X"-.-.-. /\3 — Xy

13
'T?&" 13 My 1% (%)
?ﬁ":— ?5" ?V
since
Cosce) = /

Xt it .
R s tomg o (gt s
vhere g is the sweep of the port side of the skewed vortex.

COS (18D = c0RH) = — O Cor DY = —

and

Ag‘(am,@:{ z* ] __{ g% 4 pom z}k’,“,
VOGP e 0% £ o= Co™ B )t T°

then:

> = £ 7f b i ,:sz-’f ~(5+ 4K
St Ty asp)™ o @Y L s d e a)” +7] " w AT T R
(5)
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The contribution from segment A'V is determined similarly.

. K (ool e 1)
Frv ™ 47fext o o) T im0

% Z:'aS(qv?"J — COSUED ~ Py /5'(4?!;’»')
2

where

¥t e b (KT gt d | e,
[oorr 21 fxr poon S Cgta gy S v 2% ]2

COS(Es'Y) =

¥ ¢ xXtrmmvd:
Jeanre, :‘-://’% i ;—/"?p’- ?‘U""

OS8O~ Pv7') =

and

Aeva‘v) = - Z); 28, - emrdg by — (o) é‘.«j

ZE o ¥, )? % 3i‘%m7";_ Y 27 ¥z
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therefore;

V3 ot p I e b o B
R e ) R S A

—L- -
gA’V -

(7

ff‘r‘ X‘z‘:q/r)/; .
“"[ P T 2%°7% 2%, — Fovrrd 5 ~ (- grremd )E,

The expression for the contribution from segment VA is analozous to

that of A'V. The angle ¢  1is the sweep of the starboard portion of
the skewed vortex.

K g% o x¥ematd

AT 2 Uy N e ” Sy A L

(8)

# e o, - AZ

g¥ e epud ~o. 00~ Eanrief)

- = -~ 7 (278, - Peencd, T, -g*_gvfr,q,u.ﬁsa),;‘f?
(g o Bt ¢ yheg, ) 2
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The velocity induced by the semi-infinite treiling vortex Aee is analopous
to that of == A'. Therefore;

o
. £ i = oy tenld +f 4 27 (9)

= = -y -7 7+ ( -f.-y_”. pA 9
Bawo ™ g J gk sty o BT (Ler™sppmeis ) gt =g ) v 2 G o7 )

If the Goethert transformetiion is made and the coordinates
nondimensionalized in terws of the semi-width of the skewed vortex, the
following expressions for the nondimensional induced velocity ratios
are obtained.

%—:_:,; ('V%)Ea} = - (""7;4,)&-'-;. s oo e (¥ita ) E s
o g, B A 27T 4 B Vo AT i, B (10)
where
2 » 2y ) (Zy + Zg
Ea - E.z[ ;2:2 Cad ¢€2;J]
gz ) (Ze#) CLy + I3 ) TmntFic _ (T #I5 Yewrs - ]
E’V" == r,rc::? __7:7:'2_— - ?2'2 7232

(1)

£ zj'(:'f'—f)izl ) Co'sr )z, v)) (K9 eand X #5)
wd 7?‘2 72;2 Z_z

,"'j '5‘,9/1}59;4'.)@ *ri})_/
E’Z
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and

;‘.?:,"?‘:’2?7"“’)27‘?'7

yzz =Z?x’-7’z'ezugg§,-)2 7 (o, 741,_,_37

k4
7yt = ekt oS s s £1)]

7=l 2]

X'+ gy

Z =
T [z P Cptas st 0 2T %

Y iy A (o B, )

IZ“ . 4 2 ey
VLT T W Ly

- - I X emd,
3" p . 7
[x ?7‘ 3 2”1 ?.7/2

g’ K T Fr
.2: - Z,
& EXI'Z,}_ 702 7}_ ?,'Z "i’

G TR G — (7 i, )
[(x’-z‘~.qm¢{,£ Yorlgti e ?‘7]"2

&
i

X' = 2o B
4
[Of'— i ) (g0 ST 4 Z'f//z

S
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T
The nondimensional coordinates (x', Y', Z ) are defined as follows.

y XK — Xy ‘_ YE -_..__..-..Y"' ?-'—- —‘&—-—-——'? ikl
X = 7= 5 - Gy
B Ao J T (13)

M@@:?MMﬁ , AT

The equations for the velocity ratios can Le simplified for the following
conditions. -

1) if Rge or ﬁ% equal zero, then the terms in which these
quantities appear can be neglected.

2) ir g, = @, ‘then the third and fourth terms of E_,_ and Ey
can be replaced by

v E-:r

—_—

(Tt T Jtmorog
=

and

(T G WX~ gt )

- =2 ' £ w
2
where ¢ = ¢L.£. = ¢9(_' and R = 322 = R32
It should be noted that the condition @,y = @o, 1is satisfied at

every span station except where there is & discontinuity in the rate of
change of leading or trailing sweep.
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The equations can be specialized to that used in near planar lifting
surface theory. 1In that case Z' is assumed small enough that only the upwash
is considered in the determination of the wing vorticity. The influence
function E, then becomes:

’ " /! ’\;é.‘.
R e i 1] e A 1
B Y- ZG-CX Lot ) v Cgtr ) T T e T DAL RS ¥

/ G X BIGhy  (1rTanT ) g x?eﬂé,-,;j?
— [/ - Lot 03T
(K- ears G ) (JCreng, Jor Cy'+r0* T Fxtey’ T
(k)
d G rX ot For o Xy - (/ﬁraaf,é,‘y
(X'— g'enrid,) [X’z" ff'zjé [CXLrﬁNﬁ;d-jzg-cgr,.,)"]ﬂz

The third and fourth terms in E, can be neglected when (x' - y' tan @, )
or (2! ~ y' tan $,;) equal zero respectively. Also, when Boo = Po; the
third and fourth terms can be replaced bhy:

At Srxtanf e #EAYD e R R (o rnFE) /Z
(e gremmrd) ([t szamd P b lyins ST (X tmrs 422 (g0 T

vhere § = ¢

&é = ¢05_
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The components of velocity induced by the skewed vortices can be written as

the product of vortex influence matrices and the vortex strengths.

£} =1 ~ [
&) =1~ &

where the elements of % 2y ,and

2
L e

’@“¢r%?
Ly

Ay Z erg. 7

and
£
Az = $7 %, F
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(15)

(16)

(1n)

are computed from

(18)

(29)

(20)



Appendix D

QUADRILATERAL VORTEX INFLUENCE BQUATIONS

The Blot-Savart law can be used to calculate the influence of a finite
vortex segment on a point in three-dirensionel space. The incremental
change in induced velocity atv a point in space due to an incremental change
in length of & finite vortex is given by the following expression.

Kcosg ad
dq v (1)

where;
K = Vortex strength

h = Perpendiculor distance from the vortex segment
to the point in spzce.

5!5 = Angle between the line formed by h and a line
from the field point to a polnt on the vortex segment.

g = Velocity induced by the finite vortex segment per-
pendicular to the plane formed by h and the vortex
segnent. :

A vector expression for Q can be determined from figure (D-1):

&
D X Y POINT ON VORTEX
ds (*¢,%%,24) AEZGMENT
C!L-JY‘:J.Q.‘Q ?

:"‘ oy

At

PO
¥}

‘ (xg-'?gafg:) POINT BEING

INFLUENCED

Figure D-1. Velocity Induced by Finite Vortex Segment
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The magnitude of the velocity 5’ induced at ( Xs , Y , S ) by the
vortex segment 5 is given by the following equation after equation (1)
has been integrated from ¢ to & .

JF/ = dmg (oS- cosw) (2)
where
5.5
_ ER
CosS ¢ = /5'///‘-'?,

=
The wvector # is determined such .that it satisfies the conditions of
being perpendicular to £ and equel to the vector sun 4 = & -aF
vhere "a" defines the length of R .

Since;
heR-es (3)
and
g =0 (1)
then
552 %5 —a¥F. F=p {5.)
therefore;

&= | | (6)
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After substituting "a” into equation (3), h is defined es;

.;-t s _ 2 '.‘:? f—ad
A2 ﬂ—-:_s._—s- s (1)
Also, a wit vector £ in the direction of 53' is seen to be equal to;

(82

I-Uﬂ.

BAS

T r1
g~ 1z x3/

The magnitude and direction of g ave then expressed in terms of the
coordinates of the control point { X, , ¥ ., % ) ond the end points of
the vortex seguent { %, |, y,. , 2. and ( x,‘ s ¥, 8 ) IF G T
and K are defined as um.t vectors in the x , , , and a directions

respectively, then;

YU

S=% -5 = (K-5)0 s, y-y )7 M- E

. . ) (9)
=3 -@ = CA’,--X,)Z‘ *‘K’;"éj.'f‘ 7“'5(?:"?;) e

and
X =5-5 = (4-5)0 15y STENES 4 W0 (10)
The value of "a" is then expressed as;

(1)

= 2
a= B2 j - C"i"’;JCR’.ngNp(Y;—%m;-);-J-t-pz@,-%)cz,‘-?,;)
5 ¢

=2 SF B Y- 0 SHE 220"
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and the components of h by,

20;-.&:3 OG- gX -+ (2, ‘isx'?;t -?"Jﬂcx;.-xﬁ)
=% )T o+ (YR e (R 2 )R

A= &) — Cx-

CRy-9pXAp %) + CH-BX o -1+ (o, -, ) (B2 BT

hY = (};-— Y;) - ol
=2 3+ BV VST +(8,-2, ) B

(12)

= - - Ye-Va XY ~Ye) B )R -2,
hy = (-2)- !&4 Ay MKk +ACTp Y XY~ 2, =g 0T - 2)
? ¥ ’ (G -K JE FeC Ye-Yo )" FOCZ -2 icg? - ?‘-:.')

The magnitude of 7 is found by substituting 4 =/47 = /47 *4 + 4}
and the following expressions for 2os o ond eces 7 into eguation (2).

(X5 ~ xc')(xi'&;)-f-ﬁz(ﬁc “V Yo~ Y ) +,_Bz(£,:-f,:)(%5-iﬂ,f)

Lot I =
Vo5 = %0+ B B legm e VOt %)% Bre-1p e B2~ %)
(13)
P B o (XgmX)(Kg ~ Xpd+ B ve-Te) (Y- 0p) + B2 25~ 2:(Z5-Zp)

Voxex: P B, 24 B 8-,V axg)*+ Bvs-vp rp 2, zﬁ’Jar

The conponents of the vector 5 gre then given by the multiplication of

the camponents of equation (8) by /, 2'/ .

g = IFUCG-p X3 -2.) ;(?, ~2, )~ )] 7
/Zxs

_ Sy -4, T-F) = (B- B X K-l ]E
Iy - /sz§/
(1%)

(P~ 3 Xy=10) ~ (=1 J00s Ao ) T&°
xS/

4]

S
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whers

N r4
[R5/ = [t sy Xa-2) - (25X -5 )]

# - X )z ~Tp) = (B~ XA -«;’,J];

Z - %
74 (“‘:& :X&'%’) -{xn ‘J;-){;;‘..‘T‘,)]:;J ¢
(15)

The velocity induced at a control point by 2 vortex segment is then given
by equation (1k). Since a curved vortex can be represented by a nurber of
streight segments, this equaetion can be used to compute the induced flow
produced by a vortex of erbitrary shape.

The components of velocity induced by a quadrilateral vortex can be
written as ratios camputed by the product of influence matrices and the
vortex strengths.

ef =]~ ]G} o
i< » Jf59 (a7)

and

24 = PR3 ,
{%} [ “ ]{z,} (18)
where the elemei i8 of #x , 4, , and Az , are computed from the'
Tollowing equations.

i

- Z_ ??[6’05'.?-005@7((};‘"%X&‘E')“(?ﬁ"})(ﬁ'ﬂ'):z (19)
N = 4:77‘;}"//7?,\”'5"/

_ ’jgfﬁécaszg—-ccgsﬂngTZU%f‘ﬂklfﬁi“%%)”‘CEk"E:X?Q -X) 7 (20)
Ay = ¢t )BT/
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and

A= S Bleos B -cosa X -4 XY = %) = Cf =5 XX~ %0 ] (21)
ST/El FxS/

The ¥ sign indicetes that the contributions from all of the sides of the
quadrilateral vortex are summed.
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Appendix =
SQURCE FRUSTUA INFLUENCE EJUATIONS

The flow through nacelle is represented by a distribution of source
frustums on the surface of the nscelle. The expressions for the velocity
induced by 2 source frustum are given in reference 22. If the nacelle is
defined by & series of points { X/, , Y, =By ), and these points represent
the ends of the frustums, then the midpoints of {he frustums are given by;

xz. = KXo F X8 (1)
L5
Z
vz, = Yige, + Y ) (2)
z

The surface lengths of the frustums ere defined by;

2 Y
as; = [CX,, — XEP + Ly, = YI ) ] z (3)

and the Xu component of the vector nomel to the frustum surface is
given by;

T 5 0

The Y, component of the frustum norial vector is given by;

ey, = X (5)
- [ £ o5 ol
ﬂj};‘} 85 < “nig

If the points being influenced are denoted by (X2.,¥2;), then the

veloclity ratios induced by a frustum  of unit strength at (XZj, va;)
in the X ond Y, directions are given by; 4

E{E‘)‘,J_ =-¢ Sds" F.. 95 (©

2

170



and
(%) - f”
Gy "25- ke 9% (7)

raspectively.

Where, from reference 22;

o= / Y XB - A E LK 1) (8)
i (reem e(RE -G8 [ve, + vt (X — g RT

and

2y~ Ij 7 k[xac--) > E (Ke) Y& -y = O - .r.,_f.'j

2 Vgl Stz x 5T @ ) Cram v T P ©)
Also where;

Xy= Xl + 5500850, (10)
;= Yl + S;Srax,, (11)
and S; is the surfece distance measured fram ¥4 ,Y1;)  along the J&&

frustum. K;) and E(ke; ) are camplete elliptic integrals of the
first and second kind, respectively. Vhere,

2¢y )02 ) ]'&
K5 (12)

Ky = L Oreor Y, ) +lxee- %%

For the specisl case where (X%, S 8D and (X%;,y®) ore the some
point;

v,
_‘Ex) = WS, 3 =,
( s WS Ky + St/ oS o, [zs;. + (g vén

rsmiuy )E ] (13)
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and

(.\f‘:ﬁ = ~21r - 2 ("5/:024 S¢)s,
7 et COS ,,. oy + Lz 3.) 2
3
=, X
—(3+ 38y -2 Ssvn)zad,g‘. - Zﬁfﬂlxﬂt,)%
(14)
- 4S:
where = zve; £ .08
for S;708 , set S; =.08 and use;
( VY,.J J - — Z 5y
-—\Z.—' ':i = =27 COSQ‘L,‘_ + z(ﬂ‘/}‘\) d”‘. + -&‘; & .) <
(- s; z =3
c3+3.3-—:-—8- - BB ‘fﬁ;‘,_zd_a—l,‘_)t{‘v")-z-—-“
LLl, AS‘:
— 2 ’g:.‘. ds‘ -2 J g-‘- a’-’-‘{- -

(16)

where
Ez/z ~ o8yz,;

ds; =

a5,
o ot
74 z O )(2‘.

t

2L = ? -1“.03}’2"
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The velocity ratios in the ¥y and Yy directions are then given by:

3= [ = J&} 0

and
i O o
{%} [ r ]{*\z} (18)
where the elements of <, and ‘Sr are;
v
5, < T/ﬁ'
- (19)
and
- YY-J
= =
(20)
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APPENDIX F

WING AND °YLON VORTICITY SERIES

A nodified double Fourier series suitzble for representing the loading
component of vorticity over a thin wing in subsonic flow will be derived in
this section. The series will be general encugh to represent the loading
over a wing of arbibtraery planforn, twist and canber, and with leoding and
trailing edge fleps. The boundary conditions of zero net load at the wing
tips and trailing edge are satisfied by zll the terms in the series.

A series appliczble to wings with continuous spanwise variations of
leadirg and trailing edge sweeps and chordwlse veristions of rmean camber line
slopes was first developed by Blenk (12). The series wes derived by coubining
the expression for the spanwise varistion of circulation developed by Betz (13 )
with the expression for the chordwise variastion of vortieity developed by
Birnbaur (14). The expressions by Betz and Birnbaus were derived by means of
thin wing section and lifting line theory, respectively.

The general expression derived here will be developed in the same way
as that by Blenk. An expression such as Blenk's will be derived first and
then modified to represent planforms of arbitrary shape and wings with
leading and trailing edge flaps. Even though the expression will be derived
for a thin ¥ing in & uniform flow it will be applicable to a wing-pylon-fanpod-
necelle combinatizi if the induced flow from the fanpod and nacelle is smooth
and continuocus and if the coefficients in the series are determined such that

the boundary conditions over the wing, pylon, fanpod, and nacelle are
satisfied simultaneocusly.

In thin airfoil theory, where the cauber is assumed smell enough to
replace the singularities on the mean carber surfzece by singularities in e
reference plane, the veloecity induced by ¢ chordwise distribution of vortiecity
¥ (x) is given by the following expression.

, frE. XX d,&(
V(%) = = 3+ P KXo — X (1)

Where X is measured from the leading edge and x, is the location of the point
being influenced. To satisfy the boundary condition of zero net flow through
the mean camber surface of the airfoil, the sum of the normal components of
velocity dve to the freestreem end the distribution of vortieity is set equal
to zero. The following constraint equation results.

(2)

o
Vilto) + Yl = -SE) =0
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where =« is the airfoil angle of sttack and :E;,’%‘ is the slore of the mean
camber surface. Substituting (1) into (2) gives;

€ y(x)da
/ — -4
oyt S ',;;‘:‘;"" = Ve (== F%), (3)

o

This equation can be transformed into polar coordinates using;

x= S (/- toss)

to obtain
T Be) Svns _ . &z
%5 = e s
2 ), CPS© - losS (4)

and solved for ¥&®). Tne flat plste solution is alrezdy known fran the
Joukowski transformation of the flow over a rotating circular eylinder such
that the Kutta condition is satisfied. This solution is given by;

V(&)= 2% A, COT s (5)

where 4, 1is a congtant. It can be shown that 4> not only equals « for a
flat plate bubt also equals o in the case of on airfoil with camber vhich
is symmetrical about x=§.

In general the distribution of vorticity over a carbered zirfoil is a
combination of a term such as in equation (5) 2nd an infinite series which
can eccount for any arbitrery deviation in vorticity sbout the co7®% temm.
A series which satisfies the Kuttsz condition and when cozbined with the
Qo7 s 2 term is sufiicient to represent the vorticity over eny caubered
eirfoil is the following infinite series.

Yoy =2V 2 T VE (6)
N

~

If equation (6) is substituted into equation (1)

o0
T oS @ 2. Ay S e
_.L-f —_— ce

v

(]
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% (o, is cbtained.

and integrated the following expression for \20

Ve
_\_;;(9,) - Ay Cos AE (8)

ML

Since equetion (6) and equation (8) aore Fourier conjugetes, equation (7) ean
be inverted to obtain a general integral expression for Y,¢e) in terms of
any arbitrary X% (s, ) which satisfies equation (8).

Wa

ir Ve
Yoy = T (1 _eiZ2TE ae, (9)
2 Ll o5 @ — Cosg,

This expression cen be used to reduce the requirement of en infinite
series, to represent the vorticity over airfoils with discontinuous free-
strepm slopes such as in the case of leading or trailing edge flaps, to
that of a finite series. This is done by representing the net pressures
due to 2 smooth camber end angle of attack by a combination of ¥¢e) 2nd =
finite form of Y¥,¢e) such that;

=i
Vo)== ¥ie) + ¥ o) = zzefﬂacpr&.{z *+ Zf?,us‘fﬁ’"’@j 10)
! o (

then adding to this expression additional temms evalusted fronm equation (9)
for distributions associated with leading and treiling edge flaeps. It should
be noted that both ¥ ¢e) and ¥ (¢e) are needed to represent smooth cambers
which are nonsymmetric sbout A= &/, , even if =¢ equals zero. This is beceuse
the anbisymmetric sine terms in equation (10) contribute to the value of 4.
For the same reason both ¥te) and ¥ ¢e) elong with the additionsl terms
from equation (9) must in general be used to represent either leesding or
trailing edge flap deflections.

The relation between the sine terms, ~ , and 4, is derived in reference (15)
and repeated below

(Py=2) S 2 Crly -1 ) .
. ﬂ?ﬂn (11)
'90 = = 5 P

This relation demonstrates the dependence between the terms in equation (10).
This dependence could cause the intluence matrix, eventually to be inverted
to solve for the coefficients 4, and 4, to be illconditioned. In the
limit a5 /- o it can be shown that corep = 2 s v o for o<e< 7
wiich would make the influence maotrix singuler. "This can be avoided if the
influence is considered over the complete range os os.~>~— as done by

Vegner (15).
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Due to the finite ncture of the series in equation (10) ond the con-
venience to be derived frem its use, equetion (10) and its nodification to
account for fleps will be used here. It is thought that the zbove nentioned
. problems can be minimized by judicious selection of the points where the
boundary conditions are to be satisfied.

The specicl chordwise terms needed to zccount for trallz.ng edge flaps
can be derived by setting —I-L-Ca.,) o for ossk<say and %ca‘,) =&, for
$;< & s 7 in equation (9) 2nd integrating over the chord. Vhere o is the
trailing edge flap hinge location and Sy the deflection

n

Y’c =)

-
2 Sy SV Py
7 Je, CPSE — coso, (12)

tH

**lﬁ

sy ECE =&, )
£06,. 2
[ /v’ Co+5,) /-/@;

/S'MJ-*‘-(G’ > Ru)
fEer fto -y {13}

nte) = 2%t so0,
7"

A similer expression can be obtzined for leeading edge flaps by setiing

Y e-g, foros®.<ce ad ¥ = o for @k<®,s 7, where & is
“éﬁe legding edge {lop hinge locctlon and S. the deflection. After
evaluating eguation (9) the following expression is obtained.

2 nSn 5 ,,u.._ (&5 Pu)
2P,
Ce /s‘”u-ﬂ (o~ Fucd (1k)

nie) =

The subscript k is used to indicete o leading edge flep or droop, both
can equally well be represented by equation (1lkt).

All the expressions derived thus far have been for a two-dinensional
airfoil. A set ol representative spoowise Tunctions, to represent the span-
wise variation of circulation over & lifting line, will be derived ait this
point. These functions will then be combined with the chordwise terms to
represent the variztion of the loading component of vortiecity over a finite

1ifting surface.
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In 1ifting line theory the induced vmoc:.‘.: - due to the spanvise veri-
etion of circulation is given by the Tollowing expwession.

&y (dﬂ/c/ , )
L oy (15)

’

This expression can be transfon:ed into polzr coordinstes by letting

gy=2m vhere a7 = dasp-

I
277'6 S. C /d¢) g (16)

wig) = - Cosg

A series which satisfied the bnounlary condition of zero circulaiion
at the wing tips ond is sufficienily genmercl to ropresent any spanvise
variotion of circulation is the foliowing sine series.

<0
HB)= 2L, O BaoSitwd (x7)
iz
If equation (16) is rultiplied through by sin and equation (17)
substituted in for ,7¢g ) the following convenient integral equabion is
pbtained.
o )
N @) sivg < i "Iy LT 47
. ¢ = 7 cos cos
% b # - # (18)
since:
(19)

) =
GGt = g v e e

and that after suos‘c:.tu‘c:.ng equation (19) into equation (18) and integrating
it is observed that 5 ( P8, ) 2nd « cg)5,~¢@ ore Fourier conjugntes.

-a o
(.77'5-,,,)#'2;“"-3--\:00'5””§l = Zw B ,Svt v d (20)

w A
-E‘C'{f');s'”-';:{ ,—J @sﬁg - gosgﬁ &2,
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Tt is also observed frau equetion (20) that

= W By St i & ic a2s A
W)= 3 SBEZLTE = G r 7l ? (21)
- w=1 =

which demonstrates that equation (17) is sufficient to represent any spanwise
variation of twist.

Since;g%(ﬁm%v\{,h)and %5.(4)5:mv¢  are Tourier conjugates, eguetion (18)
can be inverfed and a general intepgrel eqguation obtcined Tor celouiating the
spanvise variation of circulstion due to discontinuous rates of change of
induced veloeity such as obteined vhen the spenwise variation of leading or
trailing edge sweep is discon%inuous or pariiel spun Cleps are deflected on
the leading or trailing edge. Wien these speciel spanwise expressions forv
eirculation are added to equation (17), the infinite series in that equution
can be reduced to & finite number of terms.

When eguation (18) is inverted the followving integrel egquation is
obtained.

oy r7ES T swgl Bt AT
9?( =7 cos 4 — cos g ’

Z 6 e (e2)

I

This eguation is then integratved with respect to ;5 to obtain a general
reletion for caoleulating the spemvise veriation of ecirculation due to any
arbitrary induced downwash distribution.

L (F) = - *‘fﬂ-ﬁgfﬁ) svvd Lot srnflE o8 ) oy
26, T4 SordZ (E ~B/ (23)

The type of dowmawash distribution due to leading end trailing edge Tieps
is known, however, it is not obvious what type of dowmwash is produced Ly
breaks in the leading or troiling edge. This can be determined by computing
the variotion in dowmwash, over the planforu of interest, produced by a vor-
tieity distribution vhich would produce o constunt downwash over a high
aspect ratio elliptic wing. Any variation in dowmwash, relative to the
constent distribution on an elliptic wing, can be assoeciated with the dif-
ference in planform shepe between the wing being cnelyzed and the elliptic
wing. In this way the extent aznd shape of the downwvash discontinuities due
to the breaks in the leading and trailing edge can be studied. It is only
necessary to account for the discontinuities in the downwesh distributions
by means of the special spanwise funetions because the smooth variations
in the downwash will be accounted for by equation (17).
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The special spanvise funciions necessery to account for these discon-
tinuities are then variations of eircuwletion which will produce dowmvosh
distributions with the same shape as the disconvinuous varicstions found
using the ebove procedure. + has been determined that if the discontinuous
devietions are represented by polygon.,.l dowwwnsh distributions, that the vari-
ations of circulation due to these downwash distribution caleulated frox
equation (23), do an acceptable job of accountinz for breaks in the leading
or trailing edge. Even though the discontinuities are of a logarithmic
type, the polygonal dowmwash distiributions are acceptable due to the presence
of the other terms in equation (17). Also, it is felt that the use of the
more simple polygonal functions is justificble because of the eventual
representation of the vorticity by a finite nuwiber of discrete vortices.

_ These polygonal dowmwash functions can be built up by superimposing two
basgic types of distributions. These besic distributions produce veriestion of
circulebion which will e called "M" or lilthopp functions, named after
Multhopp, who first derived the functions, end "P" functions because of the
polygonal nature of the dowmnwesh produced 'b" them. The special functions
necessary to zceount for fleps, leading edge droops, and allerons can also
Pe built up by different combinations of the hulthopp functions.

w The lMulthopp functions are associated with on induced downmwesh ratio
Val72) which is zero for -rg oy < —@4 and unity for #¥< 7 =, . Substitutim
this dowvavaslh distribution into equation (23) and integrating by parts the
following inbtegrel relation is obtained.

f‘isfm}é eos 4 j
E (P ‘. dd
(;;Z) =5 eas‘;f ‘%% s (d“#d)/ ‘( comg —dos (24)
The integral;

‘év‘
T sy = f (Lo ori o - T B

) Cosg ~ cosg (25)

vhich when evaluated gives

Sé“‘f,wev__-s% o, = cosp zoﬂf””ff‘_.__i’fl“—"i) ok iad (26)
, CSgd,~cosg 0 g (P &)

Therefore;

ff.ﬁ) W{“"S‘” meesd)Les, % -7 *{m}éj (27)
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Another type of Hulthopp function nescessary to bulld wp symetiric and
entisymetric loading functions is one in which the ratio £ () is equal
to one for -/g- s »¥ and equal to zerc for %f<x</ . For this downmsh
distribution the spanwise variation of circulation is best calewlated oy
transforming the coordinates such that;

I's
- -— 7 B0
Then equation (23) becomes;
¢ &'-2)
AN ‘ Vikind 23 Rt i
o ""”“,i-‘s"”é 496"”/‘5"0-‘ (v B2
(29)
AE 4 2% ’ £
Gus 4206, i85 [ (P Beosh gt
-— £z , -—-...-————-—'—-"" F) , 4
=y ﬂ‘{ 5,,‘)/<¢ = eoﬁe—¢0‘5¢ (30)
Since equation {30) is identical in form to equztion (24}, the Tollowing
result can be obtained in the same wey as eguation (27).
£y _ __ch gk toe, 5"""““‘5 "/ psﬂvéj? (31)
(3;,% P, cee ?5 cosd’) SrrIE (P p)

Then after substituting equation {28) into equation {31) the following
expression for the port wing panel is obtsined.

) CosL ) " .
), = # e pteconprcoe [LTEND | proug f ()

A symmetrical and an antisymmetrical lMulihopp funccion can be Tormed
by superimposing equation (27) end equation (32). The syrmetrical function
will be used wvhen the wing contour is symetrical about the plane of nitch
and the airplane is roiated in this plane. The entisyrmetric function is
used when the ailerons are deflected and the airplane is in a rolling
meneuver. The symmetrie Molthopp function is;
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s Lep S
Clsinr g (FH e )

7Y, P *) (eos g gosd) cos

2(cosg*reossitos, ! -/ feess Pt /,L ¢ :s‘nu,a?

a-s'-‘(,d"" &
(33)
The antisymmefric Mlihopn function is as follows.
" 1504 (P D)
2208, Y, = F Jeosgt eesg)Los, e 2 7
# cos fCB¥ e
— (o5 BT+ cosflloe, /j
CoSL (FF-g) (310

The "P" function is associated with a downwash distribution vhich is zero
for /g 5 » # and vardes linearly from zZero to wndty for ?-’<«?5- 7/ -
For this distribution equaticn (23) becomes;

S 2 f (’3"5*6 =eesd’y oy so, /!’”"sz’ ~#) /1,

e /= cesgr - Sr gl ) (35)

After inltegrating by parts;

)] aosJ* . e Jes £ CPE .sJ/ ‘o }
(sz,);, = - cosgy coog —cosg Lrrofe e bl s
4

6054155//0,0(196 5"’2‘?‘ -4 e

e T
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The integrel;
gl L)

£
h'v'f(é"d) = 2 4 &
fapsgs;mg!d&é, W%@ Faesegiie i X g ]

,51
" é{gaas‘zé co7f (g A dg

-ffosz,; aorgcj;o:-&djd,éj x7)

vhere,
s &)
L€05 28 COTH (F-p)IF — _j:eas 2¢ coTE(G+S)F = 2 cos z;ﬁzaé‘_j__;_,_},——”’;f 2

 tteg-agtanch ()

therefore;
) / oL SEp)
= - — l‘.‘ Z ) O z
hades )?’iv. 27 (i cos gl ZQCOS¢ cesg) L% S E PR
(39)
£ {2 ld“da-:v'gp”‘(.— s”.:f!’*) S — %ff"‘%ﬂv Z’?f

Then similarly the "P" function associated with the port wing panel is
derived by making the same cocrdinate transiformation 25 used in the
Madthopp function.

tet ¢ = 180-¢#, then;

. Pl . .

W Ll 'doﬁﬁ")s.n,#’za&e/b"”ilfé ~£) [ ad’ (%0)

(‘Z(p% ‘.— w A 7 - co$¢‘ / ’ 5/M§(¢I*éj
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Since equation (h0) is identicel in form to equation (35) its integral is of
the same form as equation {39).

I
P

ﬁ‘:é_?. = f’(-c.'a'sg}"_ casdjzddﬁ-e iﬂ;jic_i‘._.f—'{

25’y 27 Cr-aos o) st 5 CEFe gl

itz pieos g sty Sap — t bt 2" { (s1)

’
After substituting § = 180 - @ into equation (41) the following expression
is obtained

' 2 o= (F* i)
£08) ) oo L Seospe cospFiot o TS
(254),2 T 2 t-casgV ¢ # Losf et - g

Fzd 05 S0 D sraog

(k2)

As in the case of the Multhonp functions a symmetric znd an antisyvmmeiric
DY ) ‘ ¥
"P" function can be formed from equation (39) and equation (42).

The symmetric "P" function is Tormed by adding equations (39) and (42).

(st ( gFad)

7/ Y 4 z Ll
p(.p; ‘ﬁﬁ)ﬁ:_ uw 52'6'0.:;;5 —-L’osé)"%: £ ;:U/

* z cos L¢P n )
(losgFpaosd ) as [T TF
C ¢ ) eaﬂs-;,f(f""“ £/

(43)
+(4p’""aos FE s Fysvn ;ﬁ}
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The antisyrmetric "P" function is then obiained by subtracting equation (42)
from equation (39).

L)
_ . . 1 2, pe Vo dsd -&
P, ‘6'945 zr (/- Cosgt) izcos‘d o= ;é-m/i(ﬁ‘?,au

coS4(g*r &)
- (cos ™, a°5¢ﬁ‘”""e/c[5%§?7'*—?7 /
- Pz %’2‘] o

The sponwise veriction of vorticity necessory to rerresent polygonol
downwash distributions sre then built up by the superpesiiion of the ¢ &7/
and 7 #, #*) functions. The vroportion of each used depenrds on the locotion
of the break in the lifting line %, and the ranges Ry and Ry over vhich the
dowvnwash is affected. The range varies with the degree of discontinuity in
the sweep angle of ezch 1lifting line. In general, the chanse in sweep ongle
is not the same on the leading and trailing edges, in whieh case Ry and Ry
beccnies functions of ¥e . However, the specinl functions are calculoted for
constant values of Ri and Rg with the assumption that eny variation with x/c
cen be campenscted for by the other terns in equetion (17). This appecars
to be a safe assummpbion since the range has been observed to vary only slightly
about the velue .05{?—. The actuzl plot of the induced dovmvwash can be obtained
from the elements of the influence matrix.

The speciol functions which must be 2dded to equation (17) to account
for discontinuities in the variation of leading and treiling edpge sweep are
given by the follovinzg relations.

For 7 =o

(45)

/- -
Peg) = PP T~ BPLE) A+ LR o cos”R )
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For o</¢ /<%

i

PR = /- B Jr7CB T # & PUA T

73 E, /"’74-)
_[—'_________________Cf"' éizo _] FlE, B)

T + B, 7 _ ~ y
JRZ - LT reg Rt estas) g

For &. </ /5 (1-7)

) = (/- BR ) PCP eos Cgma)

a7

# (7,7 N iz ) PUS, cos (g v 72,)) (47)
For (i~ )5 /7 /<]
FAF) = (- 7y, +5 W V2 ) PLF, cos ey -7, ))
(48)

=1 £ (g ) f _779(#5, 2. )

These sane relations are used for both gyrmetric and antisymmetric loadings .
tme only difference being the use of #7(4 #*)s and Ped, #%)s for the
symmetric loading and A7¢@, #%)and P, ¢ )55 for antisymetrie Loading.

Also, equation (45) is elways zero for the entisymmetric loading.

The special spanvise Tunctions for flaps, leading edge droop and
ailerons are similarly developed. The function added to equation (17), in
eddition to the above relations, for fleps and lecding edge droop is as

follovs:

Pl e r7CE b))~ r7CH, B ) (k9)
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/5‘ and 44, are the inboard and outboard spenwise locations where the partial
span flap begins and ends, respectively. TFor ailerons, the specizl span-
wise function is the seme es equation (49) except that the antisjrmetric
Malthopp functions ore used instead of the symmetric. One specizl function
should be used for each flap or leading edge droop for which & and % are
different.

At this point all the necessary expressions needed to repre:ant both
chordwise and sponwise veriations in the loading component of vortleity have
been derived. The expressions have been derived from lifting line and Two
dimensional thin airfoil theory. Ilowever, they can be combined to represent
the vorticity over o lifting surface since their sheope is representotive of
the type of vorticity expected over a lifting swface. The amount of ezch
function is deterained by satisfying the toundary condition of no flow through
the mean camber surfaces of the wing at a series of points, called control
points. In the case of a 1ifting surface, however, the velocity induced
by the vorticity is computed using three dimensionel influence functions
instend of the two dimensional functions used in the derivation of the looding
expressions. These three dimensionazl influence funections ore derived in
Appendix C.

The cormbined general expression for the vortieity over a thin lifting
surface is then obteined by merging equations (10), (13), and (14) with
equotion (17) and the oppropriate versions of equations (45), (46), (u7),
(48), or (k9). After transforming the spenvise coordinate back to =y the
following expression is obtained.

AL
e, ) = 4‘2“"{5 COTS Yy ¢ [ L, SO

A=y

/57”'—*-’ (S~ &%)
g (50)

S L5 /é- (a#&‘)/j
S'/JV‘J{CQ )
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where, for a symmetric span load;

s BB e S L By
" » w
,;-'-: ,__,?Z z;—'dow”? + w:.cg:l,.,-z.,.&-t}p
T 2w = e B
o
=7t ;aﬂﬂ? T =i Bt
7ewer> A
£ = - Zanu i s (W "?v("Z)
s W2 Coth = By -t
74
: Zf Ay 727, T G Tely) (51)
E=yr + &
a ey W=l T *1)

end where A equals the total muber of spen loads, 7 equals the mumber of

special span funciions needed Lo account f‘or bro \.S in u‘ne lea.dln{, or trailing

edge and for flzps and leoding edge droop @nd shere the 7z )’sare the

specizl spanwise functions., The coefficienls &,u, R,., , X , and Ax~eore

the unknowm's to be campmuted such that the boundary conditionrs are satisiied.
Ir the loading on the wing is antisyrziebvric chonge the power on 7

from z¢w-r) to 2w -/ and use entisymmetr icPrinctione,

Since the pylon does not utilize a spaowise series or have flaps, the
vorticity is defined by & chordwise series only of the following type at

eacn span station.

Aty -f
Y(©,7) = 41;:%{5;497'9/2 ~ E ,f;ﬁ"x»dﬂ&}

e Yl

o~
W1
o

T

fn tals case F, and Fy are the unknown coefficients to be determine by the
solution of the influence equations.
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APPENDIX G

WING AND PY! O VORTEX STRLIGTHS

The expression tfor the vorticity over a lifting surface is given in
Appendix F by equation (50). The unknown coefficients of the vorticity series
are determined such that the boundary conditions of no flow through the
surface of the complete configuration are satisfied. This is done by setting
up and solving a set of simultaneous aerodynamic influence equations which
represent these boundary conditions. In order to set up these influence
equations it is necessary to sum up the velocit, induced at a series of
points by the vorticity. This summing process is in general the integration
of the product of the vorticity and an influence function over the entire
lifting surface for each of the boundary points.

In order to elimincte this anelyticel intesiation the continucus
vorticity distribution is replaced by a grid of constant strength vortices
as shown in figure U, This is in essence g numerical integreticn schene
which does an excellent job of representing the induced veloecities with o
mininum of numerical computation. The technique of representing the vorticity
over a lifting swrfate by constant strength vortices was used by Falkner in
reference 16 . Falikner utilized horseshoe vortices and obiained good results
for wings of lov or moderate sweep. Hovever, the number of vortices required
increases for wings of hipher sweep and eventuslly the representation
becames unacceptzble. This is because the bound segment of the horseshoe
vortex is perpendicular Lo the freestream rather than slong a line of constant
vorticity. Since lines of constant vortiecity itend to lie slong lines of con-
stant percent chord, the so-called bound portion of the horseshoe vortex has
been skewed to lie along coustant percent chord lines in this analysis. This
procedure should glsc produce a betiter representation of broken leading and
tralling edge planforms.

It can be shown that discrete vortices produce the same downwash, at
points half way betwesn the vortices, as a continuous distribution of vorticity
represented by smzll linearly varying distributions over regions equal in
length to the disbtance hetween the discrete vortices. Since eny distribution
of vorticity cen be represented by a set of linearly verying regioas, the
number of which depends on the rate of change of the gradient along the
distribution, it is reasonsble to use discrete vortices to compute the
induced wveleocity produced by a contimuous veriation of vorileity.

If the arbitrary vorticity distribution, as shown in figure G-1 , is
represented by both linearly varying vorticity distributions end by discrete
vortices the following expressions for downvesh at a boundary point midway
between the voriices are obtained.
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Plgure G-l. Vorticity Distribution

The downwash induced 2t x = O by two dimensional discrete vorsices at
x =—’§ and X = —‘23 equel in strength to /7 and /7 , respectively, is
given by:

ey Ad
‘L‘_JCO) = —-—'{T; Z/_Z_f, —_ 2{’)? = 2% (1)
Yo 27y 7 it

If the continuous voriiciiy over the intervals ~F<€ £<0© and @sxsf
‘is represented by Teylor series expsansions obout x =-%%2 gd x = %,
respectively, then

¥ () B’(“’-@J + (X + %) AL DI Jexso

N

vy = ¥(E) + (x-4) Yy (2) + - osxsd (2)

{i

IT these scries are truncaled after the first two terms, the vorticity is
represented by two lincer functions which produce the following doviwash
at x = 0,

. 3 Lyt
Wiy e L7 L (f e tiac il Flas ‘)]d-(
O 2#%8 iy X

Pred) + (x-L) vcd)]
.,t.f I" a’XJ?

€ A (3)
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Beod = - fin fTecki-vld) o £0ed) o £ty Jees, §
b I edy wr ()] ~ Tty e Y CEITER ()
since;

o
= f,[fc-if—")*(«fr“—é—')xé-{)fdx =lve-€y + £vie-£)] s -vef) 2’

(5)
= ¥-4) g
and

F4

G = f () wix-Lyrtd)Jox =Frcdi- LyedyTs w5 hrf

(6)
7= YL f
Therefore, after solving equation {2) for ¥ a f) and &"(‘p J at x =0 and
substituting into equation (U);
Yiey = E};—; E._,_,Déz'yc-j) YLy + vee) —ve-dy -yl v XCE) Jeos, ;,5

# 2 5o)-Pl-L) ~ o) » LT
(1)

~ryedy »otdyye §
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Then in teking the limit, it is observed that;

s / Ay _ o
Bioy= mio I¥Ced) -v5) ]

®
Therefore; from eguations (5) and (6);
‘ I7T =7
w R/ :
T (9)

which is the some result obizined from the discreie vortices.

Even though this zrpoent end others to follov in this section are
based on the two dinensionnl speciclized Biot-Saveart relstions it can be
shown that there is no loss of generelity and thet the above conclusion and
the relations between the chordwise variation of discrete vortex strengih
and the continuocus distribution of vorticity, represented by those vortices,
are valid for finite voriex segments and vortex grids such as shown in
figure 4, ifore genercl exrressions which give the indusad velocity due
to skewed vortices of Tinite length can be derived from dovmvosh relztions
given in Appendix €. Using these relations the Jdowmwash produced by the
bound portions of the discrete skewed vortic:r, r.iu a point nid-wzy between
them, is given Dby;

/ ¥4
Y= o JrIE, L) v )T la (£ ¢ Bl f (20)

SCran g 2 1) # X Earoge " 2o &

£, = -

o’ X[ZS:,QA);‘}_X)Z ,,_5'.:/-7/2 X/ (11)
L SCemPd ek XTA, _ gan 7

e X[isrmm g +x)% # 52]/’9, Va4 (12)

Where 5 dis hzlf the 4 distance between the ends of the bound vortices.
The sweep angles of the port and starboard portions of the bound voriices
are represented by ¢ and ¢, , respectively.
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i For a continuous distribution of vorticity the downwash at x = 0 is
- given by the prineiple value of the following integral.

. £
!"-'CD):. —_ ! j J)C-")[EH‘ ILE"_:Q]O’X
=f

2 27 v/, (13)

|
'

-Where the variation in sweep of the vorticity is represented by a Teylor

series expansion about x = 0, which is trunceted after the first two terus.
Therefore;

F g

Zay = Zoy + xTlo) =TT

(1)
and
o - X 7”'
) = Tty * X7le) = 7574 (15)

.where

T = zon) geo) i 7% = 2ot 0]
¢ = 73 .

After substitubing equntions (14) and (15) into equations {11) and (12)
the following influence [functioius sre obiained.

Pt (2R s s s57° 7 Zx
) = = > *7xy T sar (18)
SRX#+5F)* S P XNzx +57)2 57
2 ’
BLK +(2B-1) Ta S5 72 % X

—r—

- 2~ e P
R JBx g5 + ST X Jizr vor rer M A

r

vhere W=sS% -/ | Bosg e , Sl =seadia) | avo 3 =secglo)
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If equations (16) and (17) are substituted into equation (13) the
following integrals are obteined.

Weoy o - g (v BLAfERIE | RR X LCTBO%
o e L, Cprvsz)®+ st Ex s + 52
A a
” -
s & . s 5% _.__J?a'x - Ia’(a)[-fi
A(Bx ts7 ) + 5* XX #5250 7% J, X

72 f’(o) [ % L2 T F}Jx
:‘--;—-__‘- ..:-/J?dx-—;ﬂ_,l/a ZX x (4 /]

;{r x #+ (27 w)?” BT X A2B-1)%

VB X =T )5 'v/(?f,ﬁ' ST S

— P (" zyox- 2902
Miﬁ{;r@)x 75CEIX

r4 z
--————-——-—*-—5‘5: = ¢ i 'S; 7 Yo ’ Ly
Xfpx+rsT)?4s" X[px +5T )% 5" x 7 x 4 "'gj

7 A BT X 2R MIT T X rC2R -7,
- — S-[-i we)x +7H"5)«"}{ X oL, BEAICRT
gy, )L ¢ VB A STINS®  2xrs0)R e 5T

2 z
> s S + S5 + _7&-_ - 7
X(x T2 e 57 Xfgxwspisst X X
# 7;’] ol (18)

where 7# means to take the principle value of the integral.
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The integrals in =quation (18) are evaluated as follows;

z 7 _
z o | TRREAINX oy %
[

s S T

g
_‘/@/"572)24 s2 — =7 ;’96—/‘?} "5’4)"'1/(?-‘9"'5’:) £ Y -;_/

4 Uy BT X I ¥y T,
-Z—a=75_§ = *-—'“"[\/(?ﬂstsr)za-s?-
/ (BA+57;)2+57 [~ ’

(50 #5T) +SBlr 5T ) %"
—HBI-57)2r 5T — T% LO5 (2 -5 T) AR I-5T ) s

L o5 (2RI | YORAIT o [RLT) Y
¢ T dpf@rtsyyir s 7 Lezp-s70¢ )

N2 4 e (BIrsp) + 5l is T T r s‘/

3’{ D.] CzPo / J c, o
50 s 7 TR TS

-£
z adX
_gteys 5 K X,@JS’S,, ﬁwﬂ—(

L2 ) s*
'7 —PS x,/(?vx STk s? ), MhRxrST)

. X
TL ' o
E=ve | XJrx 157 )+ 5™
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s =57

z
% z
Z; z*.}’c’o)s:zaét/s‘?* '2 ‘f:‘ﬁ"gp/fs'fj A

s 5 BB 25 frlrsn) s s

}Z/ "LSJ./C_?‘/-STJ £ s®

Zoy = - X&) s;’za&,/ss:z

The integrals;
~&

“« £ro |, X

Z. = -'_yc'o) "/"' ey g’)’ " 3:(9)7‘ Eg“', ; j
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and
=&

. ox R
z -.::gcp)z-&-»q 7*-3’(0)7; —g&_‘:‘sj

)
Iy _ - €
=z 2 | (% = ovters 53 conef)

£gv logarithmically to infinity as €-~~o© . This is a2 consequence of evel-
vating the downwash ot 2 break in a line of constant vorticity. If the nore
cozplete planar influence eguation, equetion (11) of Appendix C, is used

in equation (10) an cdditional term is obteined in the limit =s 2 -~ o.

This lirmit is difficvlt to obtain becsuse of - end Zo- , however, it wes
noved in reference - that if the downwesh were conputed at s point on the
surfece of the ajrfoil instead of in the X = 0 plape, that the dowmwash at
Y = 0 due to the brezk in the constant vorticity Line would be approximately
proportion=l to the vorticity at that poini. It was further noted that the
dowawesh was not sensitive to the thickness ratio of the airfoil sectilon.

A nore complete study of the dovmwash at breaks in the vorticity lines will
be mede, using equation (ll) of Appendix C, at sone time in the future. The
results noted in reference 17 are not obvious vhen equation (11) is used
due to the complex noture of the intesrals involved. These integrals nay
have to Ye evaluated mmerically as in reference 1T,

From 2 physical point of view there is no reason to assume that the lines
of coastant vorticity will be discontinuous =zt any point on the wing eXcept
possibly at the leading edge of span stations vhere the sweep is disconiinuous.
It is therefore a result of not knowing the shape of the constant vortieity
lines a prioril, and the necessity of asswning shapes before they can be deter-
mined, which results in the singuler integrals Ii5 ani Igs. The actuzl shape
of the vortex lines used becomes less important as the size of the vortex
grid decrezses and there is no reason to assume that a set of pressures, for
which lines of constant vorticity ave aligned with the asswned voruex lines,
cannot be coaverged to afier a certein number of iterations. For these
reasons the exact behavior of the integrels Ii5 and Io5 in the lindit, as
(X,Y,2) —+(0,0,0) is only of academic interest at points other than the
leading edge.

The cemplete integrel in equation (18) will be evaluated here except
for Is5 and IO?-, vhich will be replaced by the values deierninzd numexrically
in reference 17 . However, the couparison between downwosh computed atv
(0,0,0) by integrating the conbinuous vorticity times the conbinuous influence
function and that obtained by numerically swming the downwash induced by
ecuivelent discrete vortices will be limited to the case vhere the lines of
constent vorticity ere continuous. For this case &, = 4 = o and
therefore I35 + Ip5 = O.

ow coniinuing with the evaluation of the integrals of equawion (1%,
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when the integrals associated with the downwash due to the vorticlty on
the inboard side of the continuous vorticity patch are substituted back
into equation (18) the following downwesh expressicn is obteined.

Wy = = S [ { sy~ & “"‘“’ Bty - 205 ]}/ P iSTI £ SF

S f—"”T){a» Y

7 5;:; Jz o)~ £ -z )]dac-:'é. /-3(,: - 7‘)/

s eoe, [ TR ST

SE - T RS SRS ) A st

B “ﬁ’ ) EERD) + 2 [ yee) - yc’{]f?e’&é / Gf-ST )t ber-su S+ ST /
+;§‘z@w) M?zw).——f-‘—%'—’—)[y(a) - a’(%)]_;é%/?f i) - LabesT = Y /
# ﬁ;‘;f"’) J2xte)- 3 2) - yed]- 2z xer -34S y(-;—’ﬁ’ £ f/
TS J’(o_)] (29)

Where Ijs has been replaced with 7 7 57 Me) fram reference 17.
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An expression similer to equation (19) can be given for the dowuwash
due to the starboard side.

[Jf:v(f)}” - r("*'z.'vc') r(lj_ijé'?ﬁsrﬁ,z =

w = -
%)

- ,-..6{ Dz e %ﬂ[wa)- re {{]j\/é}-szz)?,h s

(%) '
+ S e - vid) - ved)fece, [5cz 2 52))

5 F P+ fRr s et /

oy
’:_;’ T BT P -sT ) st /

— oIS Lo,

_2f 5( Zrvs) '
2 sz(o);gc'zg-/ D A S e 5L )]2"&%0‘3 /57 ) *Wi

"'é W) H(BB-1) — S(P’F Z;(a) 3»(!{/&569/(?/#-5 T),cy{’m"/Jz
%fzy@— ved)- y(;—’_)]% ?gyZa -3t gj-y:;f)jj% -53,77

"'7‘9’;5;'4"(0{/
' (20)

Equations (19) and (20) when added represent the total dovmwash at
x = 0 due to a distribution of vorticity, vhere the sweep of the constent
vorticity lines vary with x. The spen of the vorticity lines is arbitrury
in length and can be varied to determine the effect of grid aspect ratio on the
ability of discrete vortices to represent the dowmwash of continucus vorticiity
distributions. Also, the sweep of the port and starboard portions of the
vorticity patch chn be varied independently %o represent a kink or crank in
- the wing planform. Therefore, the ability of discrete vortices to represent
brezks in the leading and trailing edges cen also be checked with these

expressions.
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In order to obbtain the effects of grid aspect ratio and vortex sweep
on the accuracy of the induced downwash caleulation, when the continuous
vorticity is represented by a grid of discrete skewed vortices, eguations
(11), (x2), (19) end (20) will be specialized to the case “ere
Ty =To= 0, Ty =Ty =T, end the vortex grid aspect ratio */f is finite.
The downwash abt x = O due to two finite skevwed vortices at x = -F-and
at x = 4 1is obbained from equations (10), (11), end (12).

S - LS \FY iy
K et L JERTIE £ / JCE-7 + 7 (21)
Where 5@ = sec. ¢, reoed = Y% s and Ky and Kp are the strengths of

the discrete vortices at X =.- %4 and x = &, respectively.

1 =

f

h |

z.f

$0E,

d&
=

*/

Figure G-2. Skewed Vortiecity

If K3 and Kp are the absolute values of El and }?2, rgspectively, vhere

o e - p b e
;:.,j W) Ssdx= ¥ed)lEy oo z,*f*"”%d*ﬂ’d%)zfp
'’ 1/ . e

(22)
Then;
¥
w _m&r__é'__'ﬁil;_ AR 2 / (=)
WP Tonve L (G Vi S A
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Also, from equations (13), (19), end (20) the dovnwash at x = O due %o the
contimuous distribution of vorticity ¥(x) fromx=-¢ tox= f 1is

given by;

w - Ly_ ¥ty (2F+7)+ N2 +1+ 1 y T,

Wio) = X T)-¥(% ng‘g@e ,:.7-[ CzFer) # 1

Yo 47 § (2§-7) + Jiz €75+ 1 (ak)
- (Zf_rff—/_///?

It Is interesting to note that the downwash induced st X = 0 due to
two infinite skewed vortices, one st x = ~%2 and the other at x = %%,
and thet induced at x = 0 due to a continuous distribubion of infinite
skewed vorticity are egual. This is observed in the limit as ¢ o
in equetions (23) and (24).

For § = 0 the downvash ratio at x = O due to eguation (23) is,

yed)— ¥

W, =
Ko () = 7Y Cosg ’ (25)

and due to equation (24)
L) -¥E) 4. { D L06 Jzfer) £ SagiiTiT ]

Wio) =
% 41T Vi  Fro %%
3 Log /"(2 E-7) # /2 z
F e J §-T) 7
-
a¥

7 S Lfapirit) — Je5-T57 /]j? ~ (26)
3¢ Te |

af
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3’("%) ¥ %l b { HF~TI) T _ 202F-7) 7
E—ro \/(

v
W= Ty
ZE v = ) LzE-T0% + 7

Z + 2(2§ 7)) /(25 FTIZ 1
(2F+TD + Jegt7)%+ 7

~2 #2(2F-T) 25707+ ]

~E2F-7) * fzg-r) £ s |
(27)

ve-2y-y(L) (28)
T Yy oS

24
zo(o) =

which is the some es equation (25). It is also noted that for @ = 0 both
equations (25) and (28) reduce to that obtained for the two dimensional
cese in equetions (1) and (9).

Another interesting observation which can be made from eguations (19)
and (20) is that the downwash is independent of the vorticity, et the down-
wash point, when the lines of constant vortieity cre continuous. For the case
in which the lines of constant vorticity are not continuous, the additional
dowvnwash is seen to be proportional to the vorticity at the downwash point.

The ratio of equation (23) to equation (24) is shown in Tigure G-3 as
a funetion of grid aspect ratio for two sweeps. It is evident from this
figure that the simpler infinite aspect ratio expressions cen be used to
determine the strengths of the discrete vortices used to represent the
conbimious distribution of vorticity. 7These vortex strengths will be
determined such that the same downwash is obtained et points midway between
each vortex end the same circulation developed at each span stetion, when the
discrete vortices sre used, as would be obtained by anslyticelly integrating
~the influence of the codbtinuous vorticity.
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If 5 is allowed to approach infinity in equations (11) =nd (12),
influence functions for an infinite aspect ratio grid are obtained.

_ 7 S'//\Jﬂ' . ____/__ j ( ):
Ly, = COSE / X -X/ &G —x:) ~
/ 57'0?‘(’ -
Ey-do':' bl C@Sﬂa /X — ‘/ (/YJ_X(:J . (30.

The downwash at Xj due to a vortex Kj at X; is then given by;

. Swv B
WCX) = i Z/COS,@;L [(X ~X) I

/ -57"J,¢;: j
7 eéﬁp‘.[{x‘f—,{_-) + /X _..x‘ /] (31)

The downwash at Zj due to the distribution of vorticity ¥(x) between
X-& and X+& 1s similarly given by;

XtE / =sv .,

/ — . %
- ) = f B’CX){@S?« [c;g-—x; X =2/
X;-€

¢ rd S?/Ué?: -)?
+EEI§‘-[<"3"‘J /% —X/—] o/

(32)

Xewe = X¢

where &= >

The vortex grid is shown schematically in figure gk,

sl f22 tem Fed At fop

,’H ——— 1k e et g S

&

4
| !
(i+ + '{" + e e '*" + {I
.

=1 J-_::z J=3 J=d Jeal-z Jzak-t kA

Figwe @ -4. Schematic of Vortex Grid
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Equations (31L) and (32) are then summed over the chord to obtain the

total dotmwash at each j point.
following totel dowmwash at any j point.

Ky (/— syn7 ?f,:)

The discrete vortex pattern produces the

& {7+ S57] 5’50:)]

%(){’ {Z[ (-“:i“"'ij cos 4,

4»71/

oo (4 570 O]

[U“
* Z Z(%._g‘.)aosq.‘-

&= gt

A similer

CI‘:J -X:J) ces ¢0¢

Kol 2 sond G )
(X} ~X: ) Cos g,

/

(33)

expression cen be obtained for the total dowmwash at any

J point due to the continuous vortieity distribution.

S 16 Xu"')

Y (=57 F)

VoI # D T

i

‘C'?X —Ay ul

,e.rné, {Z

o=l

Cx,- -x) coOS Py

CX;—x) COS &

X Ll gs K - Yaos é 3[;
p glr; # o) gajcf,bﬁ}'/dﬂ;z:} }’6") - T )]} '.
) —C?J‘“X)eaz s"‘. a ] ( ) i
cujrt 73X ‘-t-"")

If the sweep of the lines of constent vorticity are held constant

over each of the grid panels, then;

FCA F X0 )

w / Ry o A L. 5/»*92] _b_’.fiLd_-‘i_
ECXJJ = I ZrZ_‘ [_— cos gy aosd,
=y ’ c.-NJ
Cx o+ N <
/A Seet é.c' s~ st F&] j ;!(x '} a’; j (35)
[ eosg.. Cos e X;
2Tk FCIX: —Xeu, )
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Equetion (33) can be put into a similar form as follows.

Wy Z /-:‘vau‘{"t /Ay
z"%)— 4;!,77‘]/ [ [ c.a-sd‘-‘_- aos?“p& 4‘-’ x

=/

tSdly ==t Gy
7~ ZZ GOSﬁ‘." a05¢‘n X & j (36)

Z=jts

The vorticity Y {(x) is defined in equetion {50) of Appendix A.
AL=Z
Yo, = 4*‘-"’ {F‘coré/ + E AR
A=

- £ Loe, /5'.ru—4c5+¢gr.l/
/s‘mz—fca-p,u

(31

/S’/rd-!'-e‘.'é? &)
+ £ L08,
/.;—Mﬂ: (& - Sn)
vhere © = cos (/- )

Therefore; ¥ (x) is a lipeocr codbinetion of A4 load shapes.

743

o= UKD £ G # Ylx) 2 ] HalKD (38)
Ny

There will be one set of K,:'s for each of these lood shapes, therefore;
~LF.

K= foo F e Ey *g*“»’z' (39)
£
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It is these A#4*% values of A which nust be determined such that the
downwash and section circulation are the same for both the discrete and
continunous loadings. Equabtions (35) and (36) will supply ¢Ak-s)4 Ade
equations. An edditional ~i equations can be developed from the condition
thet the section circulations due to the discrete and continuous loadings

agree.

The total section circuletion per freestrean {relocity for the discrete
vortices is; : ‘

/r,‘l:.

&=

The corresponding circulation retio for the continuous loadings is;

T =26l + 4 £ 4 £ sty v S5 | (b

where ©r and < are the leoding and trailing edge flap hinge locations
respectively. )

After substitubing equetion (38) into equetion (35) end equation (39)
into equation (36) the following equations are obtained respectively.

'
[-%:ijj I&Nuz 4”&[ §‘: ']IXN‘; o

Eo: 5 Ea[, 3 Eu 3 o ‘JEU‘{,-BJEJESE JEKG. (}-1-2)

Bor g Bri 4 Bioyooo g E%'?J,Eﬂ 3 Fe

. - ! .
e, = wmrl & L J ()
afx
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where

G =Lzt . £e2n ]
)

C o= gz. GGS%Z

_?‘ _[ 2 rEIEE Sy ]
‘ aos g, Cos &,y

I

_ FOG~X00) ¥, ¢ )cf')( ‘
f;)‘.zf Iw X/ X _‘ér;-</§

F1C LI

'Z:(":"' f.‘i-!)
ex)d X =
r _ylc_')__. — L _C,x;.

Jé {3"2 —Xes)

"é'(-";"a'w)
Z .= HLIIX &, 0)
, A =R

Rl

(T — Xer )

r g)u‘.‘ ’
Vs = :"&'j"')(‘ - E:‘,{CA:,,JQ)
ey ‘
e o E k)
Z X5 = e Ao T
F /
) — E:e‘-(f\;utl:._ J

ell
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Since the elements of the matrixZ@.J ave independent, equation (h2)
and equetion (43) are equal at the j poinds provided £Cxv, x4 )= £7% 5, 4e)
for all of the chordwise load sheapes.

Also, since the functions E¢x %, %;} obtained for each velue of 1 are
independent, thengq’ e IRECK A ) for all chordwise load shapes if;

!
ch') )‘ 3 * - .J _';fo(x".)’"h‘a 3-‘?—2‘ij)§ J‘—A\iCXj}’_

= - /
- e —— - . .
4 - nﬂJ.JKIL)KtL I .,kmu_s'“:) Kgl,.‘} "Ckl;

- )x N N XA,

A Iy M .
ZE: 25 % 4, (k)

. SYE .
re & g ke, ox 4

' The matrix equation (Lh) represents % ¥4 unknowns and (-4 ¥nd
independent equations. An additional A% eq_u,:z.tion.-. are obtaipned from

equations (39): (1*0): and. (hl)

[,: 1y+o, IJMN

. - - s » <, . -
K"t; K'U Kiea P 75X 5 T By Py

af. X e

(b5)

355 T3, HTE, @5//'@;_7
X AL

ﬁ" !

vk

\“v‘
Q

ze:v*]
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P ~ ~
Expressions for Z Enyr £ and Zﬁc‘- are then evalugted
ns follows. &=y ) &=,
f.§ G AT o = ¢ w, (7 ECor 9y saus s
& =T ) A 2ose ~aoma;
4 o

- 4&%:"[;‘ - j"’ AOSOIE
cp-sc? ~ 2OS,. A COSO - cpsE.-

rl

- ATkl £ (k&)
c
e a
E = ( BT zoy f" SIn VS Serd € e
ooy ~ X -2 T T a oS ® ~ coss;
ﬂ:l
- zé- zf- I COS(N1) & e r"”'asaso—uw)srdaf
N;/ coseo coso, - QOEL — dosSy
- 277'14.'.4 Z P :MJ(.ru-/Jcs_, L Sk ) S ]
ooy 5-/11.)@ =St QI
P
T &
- E £ GGS/JQ’:}-
A=y
(47)

~ ZS'/M-‘(Q

— z &)
Z E. = ORI L& ﬂ_gdoﬁe/:s‘;ﬂ-f(@ _ SV o
- < X X _— —— z Q’J
fer v S LQa AO0Ss — 6’05‘@
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since;

<
Z‘Z— oS AES - &) cos,um.‘@)]: Lo, s LS+ )
. s
-~ -~ ik lo -/
nsy

/ “ 7
E £ G2 to iz 7 oS G~

F i 4 2 AI;H bed ¢ ”) 5’//\)(90’;9
fer ¢ a - )y, (oS- coscy

oSO — OOS &

7

oS VS 5,

— 5’ ) e a’s]
2 "

E!
N

B & Ty 7
= E Sl S S ME FE
~zy ~7o ), CPS® -~ cosL; &

I\

-l
A S0 A i— T aos (er) ©
oy . © LosLH,.

5‘77'49-500,:: Jeo
- g
s CPSG - aPs oy

o
= 4”-%&&‘2 s gy TSI E, — SIS
¢ v

MMy 5,/‘_;@_

. BITHaE 4 Zﬂ Sr A CES S,
lad . ~J
Arzs

-~

= - 477'1&)6 - [ Sr A ) - e I -a-)
c | "
PO
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Lol
Z SIBE _ L) T osesEm
Y, 2
Pai7)
then,
o 27wl £
Z & = —_G_LZQ‘”-(&" 'Lé?"‘:‘]"[”-"(‘g-‘"e")']]
I 24

where ©O<{(®;.Lo,
RES ) 207 D Py ~ )< 27

Therefore;
/‘/‘- . .
ZE.: _ TGS LT FoR O€ &< &
— K e
L=/
and
L et Sy
‘E;"‘ = = FOE Giu &
t=/
Sinilarly;

M-
Zé;t' - -z;rz.,é {[r‘a gt )]+ 7~ tou~, ),Z;
(44

where agein o« (®, rtoy)< 27 AP DL~y VL 2T

Therefore;

Y B, = - Tmtalre) -
pe g z, ~ore CEERF &

ZE - LT W o I B : o2 B <RI
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After substituting equations (46), (47), (48), (49), (50), and (51)
into equations (B4) and (45) the following set of simultancons eguations is
obtained from which the discrete vortex strengbhs Koy 5 £u 5 K
and &, can be determined.

—OK:(/% JK':/IQS . ._) KJ“&‘J’J'/(/—J 3 x;‘/,z_a ’K;u/f%-]'

/ koxfro ) Finfpns -t "y K3y Ho 3 Fo3 it 5 Pt
W&y ~CEx] : : : : :

—— s —— v w— —

o= M‘ xﬂ,‘f.

/! s —COSEy 5 = COS S,

-
-

l,-cosg-, - e.i:S.‘z&)-J .-

ﬁq/&)z;a{/% J'. . . 3 I‘d"{.'?)"{'/j/._ _J’k;‘%/%_}‘&ﬂ;ﬁ/%

.

YT oS B &y 5 - (TR 5 - (T C)

mCOSCALTISy 5 ~ (- Gp) 3 =L FT-S) |

—&Xﬁ""

. . . (52)
[yrtratyymeonagy L Boees DG, 078 5 (7o)
s V¢ © gy o SIS STl |

Note, in equation (52) the ~4-/ column is-(7-%) foroses <oy and o

foreysoys 7

Also, the /2 column is -¢7 -a%) TOr @ g &) < <,
In equatior (52)

and zero for ®e<L.<c/7 .

£

Erefits ™ “ftre sla £ |

Ko = Foi e & 5 RSl Mo fRTE G 5

AT "':;u'_/zq = kﬁ:{'/‘”'b Ve %

Equation (52) is solved for the LYAVR 'S by premultiplying both
sides by;

-4

[P A N M
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The discrete vortex strengths are then given by;

&, p)= 27 LY, é:-// 2_[(“‘/%):«’%” > ("}‘}{g‘,)a;ﬂ

=y
‘. “E -
*ng%{o)&ﬂ ’ ’;‘_‘ (/:,.,‘-/%)ﬂ”w]ﬂza(w )
'

- Z [ C4) e (il Sy (“nsfis, )

WALy TR, 7 )

3

Z (M"/v )KZ..-W]’P C”Z)} (53)

Equation (53} is for symmetric span loadings, if the spen load is
antisyrmetric the exponent z(w-:) i1s replaced by =zw-; and the special
span functions <P, (~,) are computed such that they are antisymmetriec.

Since the pylon does not utilize a speawise vorticity series snd does
not have Tlaps, the discrete pylon vortex strengths sre given by;

1

o :
M) = eren [(Fog, )6 » F_ (Fn) & f (5)

where F, and Iy become the unknown coefficients to be determined from the
solution of the influence equations.
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Arpendix H

FUSELAGE AND YANPOD VORTEX STRENGTHS

The perturbation veloeity due to the fenped is represented by a vortex
grid on the fuselage surface. This grid is made up of a mmber of closed
circults of constant vortex strength which are in turn represented by a
number of constent strength vortex segments. The velocity induced by sach
of these constant strength vortices, at a point on or off the Tanpod surface,
is given by the algebraic sum of the velocity induced by each of the segments
malking up the closed clrcuit. The velocity induced by each of the segments

'is given by expressions derived in Appendix .D. The closed circuit can be

of any shepe, and can overlap in any arbitrary menner without changing the
total induced veloeity abt a point due to the vorticity distribution being
represented. It can be shown that there is o linear relationship between
the influsnce matrices of twq different grid mappings.

There is however, mmericel adventages to one mapping over another.
It is for this reason thet g quadrilatersl vortex grid with the smellest
possible grid size is chosen. It can be showm that the influence of a
quadrilateral vortex tends to damp out at a rate proportional to (&)™
where & is the vortex dimension parallel to ¥ and 7+ =/%/ is the

‘distance between the point being influenced and the centroid of the vortex.

Therefore; the smaller A 1is, the smeller the aree being influenced by each
vortex and the smeller the number of vortices vwhich need be considered es
contributing a significant amount of induced flow at each influence point.
This fact can be used to reduece the camputing time per case by Limiting the
vortices for which e contribution is caomputed to those for which (-4 Yis
larger then scme prescribed value. The vortices for which { £ ¥ is
smaller than that value should contribute such e snall emount that no
discernible change in the influence metrix is mede, if their contributien is
neglected. It is-therefore advantegeous to use a grid pabiern for which
the grid elements ere neerly square and es small as possible. This is
obviously not the cese for the standard horseshoe vortex whieh trails to
infinity behind either the wing, pylon or fanpod.

Another method for reducing the computer time per case is to constrain
the strengths of the quadrilateral vortices such that the mmount of each
constraint function, rather then the strength of each vortex, becomes the

unknowns in the problem. In this way the number of unknowns csn be Qrastically

reduced, thereby reducing computer time. The constraint functions, which in
this case are vorticity distributions, must be representative of the type of
spatigl veriation expected of the vorticity over the fanpod, and must be a
series for which end conditions, such as those at the nose end the base, =re
sabisfied. The series mist also be such that as the mmber of terms are
increased the boundery condition of no flow through the surface of the wing
and the fanped is betber sabisfied, in a least sguare sense.
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These vorticity functions can be continucus provided the surface
gredients are continuous. It will be assumed at this point chat the surface
gredlents glong meridian lines of the fanpod to be analyzed will be either
continuous or that special wvorticity funcitions will be added as part of the
program input to account for any surfece discontinuities. Under these
conditions the following modifiled Fourier series is sufficient to represent
the longitudinal variation of vortieity over arbitrary, but smooth, fanpod
gurfaces.

WP, 0) = o | £oi(4LE252) » £le(i5222) o gﬂgﬁ)s?ﬂm;é
Ay :
£ @) eosd £ 5@) ?“")j (1)
Lo e

W=2(No, +1)+}

where

B= cos™(r- 2 /e )

This series was used because of its general nature and its &bility to
represent the vortieity over both blunt and sherp ended bodies. One set of
"F" values is determined for each of the @ roll angles. That is, the
vorticity is only constreined in the longitudinal direction since the
neture of the vorticity in the laterzl direction is more uncertein due to
the presence of the wing and pylon.

The first and second terms represent the vorticity over a pointed nose
and tall respectively. These terms are identical to that used to represent
the vorticity over a flat plate ab angle of mittack. The sine and cosine
series is sufficient to represent the variation of vorticity due to comtinuous
longitudinel varistions of cross sectionel shepe. The last term in equation (1)
is a set of speciel functions which can be input to the progran to zccount
Tor vaeriation in vorticity due to discontimuous variations of cross sectionsl
shape or any other condition for which the standard terms are incapable of
representing. The sine and cosine series should be sufficienc For most
shapes provided enough terms are used. The speciel functions can, however,
reduce the requirement for a large muwiber of Fourier terms and thereby
reduce computer time. These special terms can be computed from eitvher
slender body theory or from exisyrmetric boedy theory such as used in the
Douglas-Neumamn program of reference 22.

Not 211, the terms need be used for every body shepe, however, if moxe
terms ere used than necessary the answer will be unaffected, since a least
sguared solution is obtelned for the influence equations. Camputing time,
however, can be saved by Judiciously picking only those terms necessary
to satisfy the boundary conditions.
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The type of solution can also be altered by using only certain types
of terms. For iastance, 1f it is desired to obbain a solubion for which
the flow leaves the body tangent to the surface, at the edge of the base,
such as 1s usually the case in a viscous flow for bodles at smell angles of
atback, rather than a solution for which the flow will negotiate the sharp
base edge and continue down the base to & rear stegnation point, then only
those terms for which the vorticliy goes to zero at the base edge should be
used. Foxeing the flow to leave the body surface vangentislly is similar
to the Kubta condition used to define the amount of circulation around an
alrfoil. The recsons for such a constraint are purely empirical in nature
and will only represent the physical nature of the flow at cerbtain angles
of atback. AL large angles of atback the £low would be expected to leave the
surface on the leewerd slde at some unknown forward longitudinel station.

The strength of the discrete vortex 7 used to represent the vorticity
over an incremental distance 4 =long e meridien line on the fanpod
surface is equal to the Integral of the vorticiby over the distance L.

Then [T can be written in matrix notetion from equation (1);
{r{ca)} = E"F ,[icca)\][ ¢ J{ gco:} | (2)
vhere : N
[ rrcosd L2222 L. sl e, e

L L]

e’ -

Pl =| - R

Y

and Ak.

14005y pecosdy Sind, S -, ETE,
—?;?‘;,T J :’-’ﬂﬂ‘i' J - A

i

is the muber of discrete vortices on the faupod in the chordwise

direction.

It should be noted that there is one equabion; such as equation (2),
for each roll angle. The discrete horseshoe type vortex strengths /7 can
be transformed into a set of equivalent gquadrileteral vortex strengths
by means of the following expression.

(e = [ = Jjr]

(3)
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where

/ 0 0o oo - o
/7 /7 o oo -- 0o
/7 /) o o o

The relationship betwreen the horseshoe and guadrilateral vortex
systems is best illustrated by the following schemabtic of the vortex grid

at 2 given laterel & stadlon. y
a ol .
: b >

9

&
i

¥
/.?\
| )

&
T

The guadrileteral vortex strengths are then writien as a function of the
unknown vorticity function coefficients F (@) by substituting equation (2)

into equation (3)

{K‘.CS',‘} =% I R ][\2-@{][ ¢ ]{%CW} (b

Since there is one equation, such as equetion (4), Por each roll engle o
the matrix equation for o< © < 360 is given by;

{5, [re],, {5} ]
b, | o L 1, {rewt(
€ e L{ gt o
where '
| (6)

[rie] [« T2.[ ¢ ]
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APPENDIX 1
CROSS FIOW DUE TO LIFT

The cross flow due to 1ift is a combingtion of thet due to the chordwise
cogponient of bound vortieity along constant percent chord lines and that due
to the trailing vorticity. The spanwise component of bound vortiecity is
given by egquation (50) of Appendix F.

2L S — L F S+ &)
= — g’,g‘eoresyz o ,..;E £y T e g & o5, m
=/

/s:w-f (o - d;n:)

The treiling vorticity is given by;

& = %g ﬁ— éis?n.f.g o (2)
o

therefore; the cross flow due to 1ift is then given by;

=} 3 P E L)
"_é.':zg i{{dﬂ?% # LTS G LOC, (RS,
(A Q"z =y z

(]

» .
o+ £ LG /S'/Mzégrcmj j_s”a@dcg - ?Fé' {gcaz‘ @
~ E o~ ) /
(3)
-3
*~ E £ svwmp “ F4¢96 /5‘#{(9*0/)
prey Yy
fﬁ)ﬂ’j(m
o~ &DG‘ z
« 5'}/!}1(& ) )/)tgﬁ)?’,
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where @ is the local sweep of the constant percent chord line.

The spanwise functions %
ia Appendix F. Their derivatives are given below.

A R

. -
ak _ _ __Z E A Ve E 2wt} G P
Woz

7, /"“? W=y

Ao
* Z Fow Ry
We Gk~ 1) "

Q Rl

Zrn-3
S _ _ 4 § o, Zewr=1) . S 2¢w=1) Cpwr 77
'?- 7 '0?: v/ ? W2
L
. ~ ARl
a0 T
s
WeGel Bt 1)
=R ALy
AFg 7 E Zew=1) . z 2w
_—F = — “,J-.-\; e /“'—‘_—'/__ z ZCMJ"/)G’(N '2
’2 .i// _?z wz/ ” Z W=z
Y%
hie)
Welnlo= 8y 1)
and
/‘.{.J_:f_; . : Ao o~
ho_ o .?.__.,_. E Zieyes ’?ZCM-') + Jremp? 2 20t tew 7
o -zt G| W=
e
o+ p 2N it
Z S
N2l =7, i )
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£ ,% , £ , end < for the wing are defined .
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The derivatives of the &¢=7)  functions for breaks in the leading
or trailing edges are obbtained from the following relations.

For g =o
Ml dMlm) 4 STm) |, L 97”3'?‘,’%) (8)
Jﬂz c&q.L =z, cﬁoz =, )

For adf)?qu"yz‘.

STolm) Smi=z, o) XPLR, 0)
- = - B P AR ARG R B J el Rt
B [(wgmo Xio) | SPC, 2,.)
N g ] ST
+l ».Z, zl. Jl} ’?J
For B 5/ /<{rR)
SFt -T2
.__w_ﬂ?‘i - C/-—Z _‘;_;?‘..)C"/;?‘) m
7 S
SPC2z 2, )
—]-72" W "?;I x
L B’ AL - ”z
P
- RNy T TR
i (20)
and for ¢r-m2)</ %% /<(
AR () { A'P{fﬁzog -2 )
= (/- o, Yk, I 4 ¢
Sy ¢ %" ‘X@) Sl
_.Z'} #,) fro ]m (ll)'
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Also, the derivative of PRw(=m) for partial span leading and trailing
edge flaps.

SRut) _ Sy, az ) o mMl7z,,) SR
S I B 37 (12)

vhere 74, , % , and -2, are the span stations vhere the bresk in the
leading or trailing edge occurs, vhere the partiel spen flap begins inboard,
and where the partial span flap ends outboard, respectively. The
derivatives OMtzp*) »~ and 72, 29/3~ used in equations (8) through (12)
are derived below. The varisble «* ' is a dummy variable. Since MU, ¢4 )
defined in equation (33) of Appendix A, is given as;

a

£ o [Tnr P &)
MR P = 7O Cosg) L% o )

e r(CODP aas;ﬁzaé%yf z;f“f.sw,ff}

where ﬁ:cms”? end ;;:"": aos-"z"?

(13)

&
:h____-_’_.!"]id:; &k - - ,z_;]__ (aos/d’f-— apsp’JZ%’arg‘(gf’{;ﬂJ * Qor (P f”-_’]
+(a05 g 4 gomp ) eI HFED) ¢ zoif CH ppl ]
y A eosd(PF e
+ 25 A"f’zz%e Sﬁ__ﬂvf(ﬂ':?_) * LG Ze"a'"s___—_—:;"( p=y // (1k)
P
then; ' i eo=g j
D P, %) : ’ \CCOSH - cosd )50 HF
Sm 27T { Sonit (PP ITS (P
(eesg¥ reosg) sev d Y Al /
¥ Gosi(FEd) aasicpieg) ST )
(15)
— g ffeos g_p’]
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amed ¢ . 5t (757 /_ "407?»'5} (16)
S e i

or

R i i

e A

27z -l ] (17)
-?-‘

T . L

—

The expression for A##% is given es equation (43) of Appendix A.

~/ *_ Y oo forEPE D)
?(f; 7 .‘)5 = Zir(/— cosgt) (eosg casyﬁ)za&e/g}dé 55 )
, ' z cos £ AT
+CC’?S¢5’F+ cos4) A%"/GL‘W
*(pTaosg* - =g s P j _ (18}
PG, ¢ ) p I i

Yo LOE, 3T
S¢ T zwlraosgy zcosg # e/ﬁ?n)(;g’&-é)

. . ’ x
s o PR o f
=iz f L OE,
i 4/5‘”1) B =

| | (29)
+~ 4(‘@0#- praos H5) aosyf}
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IPC 4, , * S7I P )

/ﬁdﬁ*“;s”xxﬁ'
—:‘-dasé‘{a‘s&'[s_”/,f =P

+ 2(pFeos pre i gh) co7 P f (20)

or

R/ .
S, %) / Z'r’z"df’;ée/? V7 i e i /

Sy T Tl "/,_,? L

sptene [T LT
_.,2..:2 -

R e =l = (a1)

Due to the singular nature of equation (21) specisl mttention must be

given to the case when #==%*., Ret turning to equation (20) and deterrzining
L 451)/_),,1 in the limit as af—a- Pl

Q'PC_@* 4)%) ﬁw / : S’/ﬁ-’(ﬁ"’f-— H-g)
é"l = Ewo  T{r-CasgH) fosﬁﬁ’pé‘?s},u (fg'-x—,c LT3
peos¢Fecios, [ZE A er)

St i)

*"chﬁ#egsﬁ'p"‘ Sifuﬁ’;) c:oz'('g;(:.\@,;. g‘)] (22)
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) 2=rnits — cordF s
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ASgt s, e s o / 2Ew e - corpts € / J?
7 ¥ z2eost s e p porpt e _/
(23)
let E=25
then;
P ¢¥, &F) / “
é”z_ = owCs- cosf,flﬁ_) -cesd 40'5‘9/57")2%'{/
* 2(Preos e o pt) o o7 FF 2l)
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TEE < suw ariese s
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Pt O (=27)

The Inbtegretion with respect to © in equation (3) is completed ws follows;

591;—'19 cot oy :s—m)aac/cs%r = Gﬂ aosg) de
o dql. < T 3. Cre €
3F

H

(B +rsrne :
T, e E) (28)
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Therefore; equation (3) becomes
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¥ * !
where TV ﬂ&.;. and ¢ He are the values of se~ d’“ at the leading
and treiling edge, respectively.
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The equetion for o & *  as obteined from reference 6 . In
reference 6 ‘the effect of leading and trailing edge breaks on the local
iscobars is given by the following expression for the local sweep of the
isobars.

~ n!ﬁ" | eos A, A, )~ COSIN . LOSYR, (-‘-"rzié)‘ ],?/z | (36)
2, = =
Cos ., €25/, ¢ “s’”o‘]
where
z ”J--"Lm N d‘ﬂ/d-—/l..m .
A= J ifer B ey e £ J¥ | -

The subscript & ipdicates values ot o break in either the lezding or
trailing edge. Also, & and ¢ are the sveeps of the constant percent
chord lines on the port and sterboard sides of the break, respectively. The
angle -A.. is the wvalue of sweep to vwhich the isobar line converges as the
effect of the bresk station dies in the spanwise direction. If & span
station is influenced by more than one brezk station the effect is cbtained

by interpolation.
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APPENDIX J
INDUCED DRAG

The vortex drag arises from the momentum trensported away from an
arbitrary lifting system by the trailing vortices and is given (25) by the
integral equation

=L (0 (g rd +8 ) dyaz 1)

-0 =l

This result is usually simplified by allowing the control surface to recede
indefinitely far behind the obaect. That is, a so called Trefftz plane
analysis is performed.

TFor thiz condition g:a and
D ‘ — T
P _5.5 (& + 47 )dydw (2)

For a plane potential wake, this latter result can be transformed (25) and
(26) by the use of Green's theorem %o

-

“8 5
2 2

Nl

-3
2

‘”’(Y) dr. (0 Lo J¥-y /vy (3)

This result is cast here into the following form by use of a change of
variable A?zLY-!-Jg)/b for mumerical purposes

y ‘rla 4 d 2
%—E%Sf f;z._-;("z)d'— ‘j*f'?l“’"f/f-z -z, /g dg (k)

o> "o

Solution of inmtegrals of thée type

z—=-;§;,£f £5)5'5) e /7574595 (5)
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with e numerically given function (%), § (47 ) continuocus

udied by Bmenton (27) and (28)

on the interval

(e t) , and §%o)= {'c1)= o have been st
+ion with the condition that the

using Fournier series analyses in conjune

integral I be a minimum in order to eliminate numerical induced inaccuracies.

The result for the current problem is
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APPENDIX K
SKTN FRICTION DRAG

Several well established semiempirical techniques for the evaluation
of laminar and turbulent flat plate skin friction at incompressible and
compressible speeds are used to develop a subroutine to estimate the viscous
drug of advanced aireraft using a component buildup approach, Specified
or Tlat plate natural transition point caleculation options are provided for
in conjunction with & matching of the momentum thickness to link the two
boundary layer sfates. TFor the turbulent condition, the increase in drag
due to distributed surface roughness is treated using uniformly distributed
sand grain results. Component thickness effects are approximated using
experimental data correletions for two-dimensional airfoil sections and
bodies of revolution.

Considerations such as separation, component interference, and discrete
protuberances (e.g. antennas, dreins, aft facing steps, etc.) must be
accounted for separately if present or judged to be significant,

In the following, a discussion is presented for a single component
evaluation in order to simplify writing of the equations and eliminate
multiple subscripting. The total result is obtained by a surface area
weighted summation of the various component analyses.

LAMTINAR/TRANSTTTON

A specified and flat plate natural transition option are provided in
the program, The principal functicn of the calculation is to provide the
conditions required to initialize the turbulent solution. 1In particular,
the transition point length and momentum thickness Reynolds numbers are
required.

SPECIFIED
X )

ﬁa}ﬂz»uiz 7 7:%9 . ét (1)

ey e ééé‘/‘?’mdc' ‘ (2)
wﬁere »

C* -_.-.’_/.M._. ._ZL.-; '

Mo TE (3)
Z %
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= J2 =8 (5)

Z
—/—'a

-8
_ T
M =22 NIC gl (6)

This solution is based on the laminar Blasius result (29, chapter VII)
in conjunction with Eckert's (30) compressibility trensformation. This option
. permits an assessment of the reduction in skin friction drag if laminar flow
can be maintained for the specified extent. It does not establish the likeli-
hood that such a condition will be realized in practice or to what extent
with the following exception.

FIAT PLATE NATURAL

"y = s T D% (7)
B, =/63 SprocTH (8)
272 = £ (7) (9)
A C N (10)

R grmy = ’[';z (%) Rtz

Srioory FovEr (1)
LY
o, =
YBon | Gl '/7%77?,9,‘; T (12)

237



These techniques have been taken from Schlicting (29, chapters XVI and
XVII). The functions of f; and fp which relate the effect of freestream
turbulence intensity as the difference between the transition and critiecal
Reynolds number and the effect of roughness on smooth flat plate tranmsition
are figures 16.2) and & flat plate normalized version of 17.28, respectively.

The flat plate natural transition option is an oversimplified description
of what actuslly takes place as a result of the neglect of pressure gradient
and ‘three dimensional crossflow vorticity effects.

TURBULENT

A smooth and distributed rough surface option have been provided in the
analysis. In either case, the solution is initialized by matching the
momentum thickness at the transition point produced by the laminar/transition
solubion. That is, an effective origin (commonly referred to as & virtual
origin) is established for the turbulent analysis.

SMOOTH

CaRyy = < R (13)
7oox = G 7y, /q: 5 G mPony £ /8 FOR mrownin) Gr Ty (1h)
8K = By Jo (15)
/=z ‘&,?ﬂn) > BX ’ (16)
%= 7 (27)

242 (Srri e # 5'/,1/'2?) ,
R AR
gr = Tk 29 L - a f (19)
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Xrar) = Frpa /72 (20)
=2 i s
B " %/‘/W  (e)
A= %‘i/‘ﬁf 7':’/; (23)
3 %/7‘_!2;/%2);3 iy | (2k)

r=.68 (25)
i e (=6)

The compressible ’curbulent flat plate method used here is that proposed
by Van Driest (31) based on the Von Karman mixing length hypothesis in con-
junetion with the Squire-Young formulation for profile drag (29, chapter XXEV)
as applied to a flat plate.
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DISTRIBUTED ROUGH

AX, = KXran | (27)
95 es Y -
€. = (487 Y. 2% g > e -:g*Mo;L) (28)
( 7%,()‘.7‘_, = Z f@ﬂzﬂd/%_ (29)
Xor T () S (30)
R #IX | (3L)
= (185 =
74/4.? éaé ‘;S* /(/;f ¥ z /-y ) (32)
I
G = G ”f— (33)

Ce = 174, (C,F /mapﬁ‘f/ F/ﬂaus—ﬂ) (34)

The turbulent flat plate method used here is that of Schlicting (29,
chapter XXI) which is based on a transposition of Nikuradse's densely packed
sand grain roughened pipe data., The effect of compressibility is due to the
reduction in density at the wall as proposed by Goddard (32). The selection
of the equivalent sand grain roughness for a given manufacturing surface
finish is made with aid of Table I which was taken from Clutter(3k).
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TABLE I
Equivalent Sand Roughness

Type of Surface k {inches)
Aerodynamically smooth ) 0
Polished metal or wood 0.02 - 0.08 x 1073
Natural sheet metal 0.16 x 1073
_Smooth matte paint, carefully applied 0.25 x 10-3
Standard camouflage paint, average application 0.40 x 1073
Camoufllage paint, mass-production spray 1.20 x 10”3
Dip-galvanized metal surface . 6 x 10-3
Matural surface of cast iron 10 x 1073

THICKNESS CORRECTIONS

The foregoing evaluations produce an estimate of the shearing forces on
a flat plate (at zero angle of attack) for a variety of conditions. As an
actual aircraft has a nonvanishing thickness, an estimate of pressure gradient
effects on skin friction and boundary layer displacement pressure drag losses
is required. A common procedure for accomplishing this and the one which
will be used here is based on nonlifting experimental correlations for
symmetric two dimensional airfoils and axisymmetric bodies. The following
relations derived by Hoerner (33, chapter VI) are used respectively.

Cy rala

g-;_zc—i- = /4K T sol%) (35)
4 3, o3

k:&f-;/f—/.S‘(%) r7(Z) (36)

Hoerner recommends Kﬂ_= 2 for airfolls with maximum thickness at
30 percent chord and K; = 1.2 for NACA 64 and 65 series airfoils. In this
regard, the best information available to an analyst for his particular
contour should be used. This is especially true for modern high performance
shapes such as the supercritical airfoil, ete.
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TOTAL VISCOUS DRAG

An airvecraft total viscous drag coefficient is estimated by 2 sum of the
preceding analysis over all components (i.e. wing, fuselage, vertical tail,
etc.). That is

¢, = Za,: .E_m ) K (57)

The component length used in the calculation of the skin frietion
coeflficient is the mean serodynamic chord for planar components or segments
thereof and the physical length for bodies and nacelles.
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SKIN FRICTION NOMENCLATURE

Ca section drag coefficient

Cp . dré.g coefficient

CDF: flat plate skin frictlion drag coefficient
Cr flat plate average skin friction coefficient
ox - Ma; " _r%?

Kg equivalent distributed sand grain height. .~
L | effective length - ft

geonetric length - £t

L/a .body fineness ratio

M: Mach number

Pr ' Prandtl number

r recovery factor ‘

R unit Reyrolds number, Ueofy,, ft-!

Ry 1 | Reynoldé number based on [ ]

R ' gas constant, l’?l6 £t l°R /sec

S surface area - £t2

T static temperature - °R

TT/Tm recovery temperalture ratio, 1+ I 'Z_;'_'- Meo

t/e airfoil thickness ratio )

U velocity, VJRE M - ft/sec

x lorgitudinal distance ;'rom beginning of component,ft
.Y . ratio of t?pecific heats |

8 bou“ndary layer momentum thickness, ft
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» Y F

zbsolute viscosity, 1bf-sec/ft?
kinematic viscosity, &/p ft2/sec
density, P/RT ,1bf- secg/f“t.4

turbulence intensity

SUBSCRIPTS
iteration ﬁumber
instability
component number
recovery
transition polint

free stream

SUPERSCRIPTS

' prdperty based on effective origin

Eckert reference tempersture condition

ahl
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