
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-699

Error Control in the GCF An Information- Theoretic
Model for Error Analysis and Coding

Oduoye Adeyemi

(NASA-CR-140852) ERROR CONTROL IN THE N75-12171
IGCF: AN INFORMATION-THEORETIC MODEL FOR
ERROR ANALYSIS AND CODING (Jet Propulsion
Lab.) 193 p HC $7.00 CSCL 17B Unclas

G3 32 03571

JET PROPULSION LABORATR RY

CALIFORNIA INSTITUTE OF TECHNOL Y

PASADENA, CALIFORNIA \2

October 15, 1974



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-699

Error Control in the 6Cf. An Information-Theoretic
Model for Error Analysis and Coding

Oduoye Adeyemi

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

October 15, 1974



Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration



Preface

The work described in this report was performed by the Telecommunications

Division of the Jet Propulsion Laboratory.

JPL Technical Memorandum 33-699



ACKNOWLEDGEMENT

This report benefits from many discussions with Howard Rumsey.

iv JPL Technical Memorandum 33-699



TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 33-699 1 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date

ERROR CONTROL IN THE GCF: AN INFORMATION-
THEORETIC MODEL FOR ERROR ANALYSIS AND CODING 6. Performing Organization Code

7. Author(s) Oduoye Adeemi 8. Performing Organization Report No.
O duoye Adeyemi

9. Performing Organization Name and Address 10. Work Unit No.

JET PROPULSION LABORATORY
California Institute of Technology 11. Contract or Grant No.
4800 Oak Grove Drive NAS 7-100

Pasadena, California 91103 13. Type of Report and Period Covered

Technical Memorandum
12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
14. Sponsoring Agency CodeWashington, D.C. 20546

15. Supplementary Notes

16. Abstract

This memorandum covers one aspect of the total effort to understand the
structure of data-transmission errors within the Ground Communications
Facility (GCF) and provide error control (both forward error correction
and feedback retransmission) for improved communication. The emphasis
is on constructing a theoretical model of errors and obtaining from it
all the relevant statistics for error control. Thus, no specific coding
strategy is analyzed, but references to the significance of certain error
pattern distributions, as predicted by the model, to error correction
are made.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Information Distribution and Display Unclassified -- Unlimited
Information Theory
Mathematical Sciences
Telemetry and Command

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 191



CONTENTS Page

Section I INTRODUCTION AND SUMMARY OF RESULTS 1

(i) Introduction 1

(ii) Summary of Results 4

Section II CHANNEL MODEL AND PARAMETER ESTIMATES 15

(i) Criterion for Choosing a Model 15

(ii) The Model and Its Variations 20

(iii) Estimation of Parameters 25

(iv) Curve Fitting and Goodness-of-Fit Test 32

Section III AUTOCORRELATION OF BIT ERRORS AND CHANNEL MEMORY 51

Section IV THE CHANNEL CAPACITY 56

Section V BLOCK-BIT STATISTICS 62

(i) Block Error Rate as a Function of Block Size 62

(ii) Distribution of. the Number of Errors in a Block-P(k,n) 63

(iii) Distribution of Distances between Extreme
Errors in a Block 72

(iv) Distribution of Errors in a Code Interleaved to
Some Depth t 83

Section VI BLOCK (SYMBOL) ERROR DISTRIBUTION 85

(i) Distribution of Error Symbols in n-Symbol Word 86

(ii) Symbol Gap Distribution 86

(iii) Correlation of Symbol Errors 95

(iv) Sync Acquisition and Maintenance Probabilities 100

(v) Conclusion 104

Section VII BURST DISTRIBUTION 111

(i) Distribution and Mean of Burst Lengths 117

(ii) Distribution of Errors. in a Burst and Its Mean 127

(iii) Block Burst 133

Section VIII CONCLUSION AND REMAINING PROBLEMS 139

REFERENCES 144

APPENDICES 146

JPL Technical Memorandum 33-699 v



List of Tables

Table Title Page

1 Source of 4.8 kbps data 2

2(a) Raw estimates of P and C for the 4.8 kbps high frequency data 27

2(b) Raw estimates of P and C for the 50 kbps wide-band data 29

3(a) Maximum likelihood estimates (MLE) of P and C for the 4.8 kbps 33

HF dataline

3(b) MLE of P and C for the 50 kbps W-B dataline 35

4(a) Curve fitting parameters for 4.8 kbps HF dataline 38

4(b) Curve fitting parameters for 50 kbps W-B dataline 39

5(a) MLE of P and C for the Red, Amber and Green groups and 42

overall channel; 4.8 kbps dataline

5(b) MLE of P and C for overall 50 kbps 42

5(c) Kolmogorov-Smirnov Test Statistics 49

6 Mk for k = 6 54

7 Autocorrelation r(k) for k = 6, High-Speed Circuit 55

8 High Speed (4.8 kbps) Channel Capacity 60

9 Wideband (50 kbps) Channel Capacity 61

10 HF circuit (4.8 kbps) Block Error Rate 69

11 W-B circuit (50 kbps) Block Error Rate 69

12 Group Block Error Rate 69

13(a) HF 4.8 kbps data. % of error blocks containing ;k errors, 70

P(2k,n) data P( k,n) model estimates, for block length

n = 1200 bits.

13(b) W-B 50 kbps data. % of error blocks containing zk errors, 70

P( k,n) data P( k,n) model estimates, for block length

n = 1200 bits.

13(c) Group estimate of % of error blocks containing k errors for 70

block length n = 1200 bits

14 Empirical (P(0,n)) and predicted (P(0,n)) thruput for the 71

H-F 4.8 kbps circuit. n = 1200.

15 Empirical (P(O,n)) and predicted (P(0,n)) thruput for the 71

W-B 50 kbps circuit. n = 1200.

vi JPL Technical Memorandum 33-699



Table Title Page

16 HF 4.8 kbps circuit. Proportion of error blocks containing 74

two or more errors and whose errors are confined to not

more than (i) 25 bits, (ii) 50 bits

17 W-B 50 kbps circuit. Proportion of error blocks containing 76

two or more errors and whose errors are confined to not

more than (i) 25 bits, (ii) 50 bits

18 HF (4.8 kbps) circuit. Values of k at which impulsive increase 77

in P(- 2) occurs

19 W-B (50 kbps) circuit. Values of k at which impulsive increase 77

in P(--I 2) occurs

20 Predicted distribution of errors in interleaved codes 77

21 Symbol error rate (Group Statistics) 88

22 Group symbol error correlation 97

23(a) Probabilities of failure to detect and of false detection 105

of sync for algorithm which looks at 24-bit prefix and

allows t errors. (H-F 4.8 kbps)

23(b) Probabilities of failure to detect and of false detection 106

of sync for algorithm which looks at 24-bit prefix and

allows t errors (W-B 50 kbps).

24(a) Probabilities of failure to detect and of false detection 107

of sync for algorithm which looks at a prefix of four

6-bit symbols and allows -t errors (H-F 4.8 kbps)

24(b) Probabilities of failure to detect and of false detection 108

of sync for algorithm which looks at a prefix of four

6-bit symbols and allows t errors (W-B 50 kbps)

25 Probabilities of failure to detect and of false detection of 109

sync for algorithm which looks at a prefix of length

n = 24, 30 or 36 bits and allows ;k errors.

26 Probabilities of failure to detect and of false detection of 110

sync for algorithm which looks at a prefix of n 6-bit

symbols (n = 4,5,6) and allows k errors.

27(a) Optimal guardspace, 4800 bps data 113

27(b) Optimal guardspace, 50 kbps wideband data 115

JPL Technical Memorandum 33-699 vii



Table Title Page

28 Mean burst length, 4800 bps circuit, G = 400 bits 127

29 Mean number of errors, K n' in burst of length n = 2400 133

viii JPL Technical Memorandum 33-699



List of Figures

Figure Title Page

1 Histogram for the 4.8 kbps high-speed data 15

2 Gilbert model 19

3 The five state model for the GCF 22

4 Gap distribution for Green error group 43

5 Gap distribution for Amber error group 44

6 Gap distribution for Red error group 45

7 Gap distribution (50 kbps circuit, BER = .51 x 10-4 ) 46

8 Distribution of errors in a block (4.8 kbps; Green-group) 65

9 Distribution of errors in a block (4.8 kbps; Amber group) 66

10 Distribution of errors in a block (4.8 kbps, Red group) 67

11 Distribution of errors in a block (50 kbps,line; 68

bit rate = .52 x 10 - 4)

12 Distribution of distances detween extreme errors in a 78

block (4.8 kbps; Red group)

13 Distribution of distances between extreme errors in a 79

block (4.8 kbps, Amber group)

14 Distribution of distances between extreme errors in a 80

block (4.8 kbps, Green group)

15 Distribution of distances between extreme errors in a 81

block (50 kbps; bit rate = .52 x 10 - 4 )

16 Distribution of symbol errors (averaged 4.8 kbps channel; 89

symbol length = 6 bits)

17 Distribution of symbol errors (overall 50 kbps channel; 90

symbol length = 6 bits)

18 Distribution of symbol errors (averaged 4.8 kbps;

symbol length = 8 bits) 91

19 Distribution of symbol errors (overall 50 kbps; 92

symbol length = 8 bits)

20 Distribution of symbol errors (averaged 4.8 kbps; 93

symbol length = 10 bits)

21 Distribution of symbol errors (overall 50 kbps; 94

symbol length = 10 bits)

22 Auto-Correlation of symbol errors (averaged 4.8 kbps; 98

symbol length = 6 bits)

JPL Technical Memorandum 33-699 ix



List of Figures

(Continued)

Figure Title Page

23 Autocorrelation of symbol errors (overall 50 kbps; 99

symbol length = 6 bits

24 Distribution of burst lengths (4.8 kbps line; Red group; 119

G = 400)

25 Distribution of burst lengths (4.8 kbps line; Amber group; 120

G = 400)

26 Distribution of burst lengths (4.8 kbps line; Green group; 121

G = 400)

27 Distribution of burst lengths (50 kbps line; G = 400; 122

error rate = .52 x 10 - 4

28 Distribution of burst lengths (4.8 kbps line; Red group; 123

G = 3600)

29 Distribution of burst lengths (4.8 kbps line; Amber group; 124

G = 3600)

30 Distribution of burst lengths (4.8 kbps line; Green group; 125

G = 3600

31 Distribution of burst lengths (50 kbps line; G = 3600; 126
-4error rate = .52 x 10

32 Distribution of errors in a burst (averaged 4.8 kbps line; 129

burst length = 2400bits, G = 400)

33 Distribution of errors in a burst (overall 50 kbps line; 130

burst length = 2400 bits, G = 400)

34 Distribution of errors in a burst (averaged 4.8 kbps line; 131

burst length = 2400 bits; G = 3600)

35 Distribution of errors in a burst (overall 50 kbps line; 132

burst length = 2400 bits; G = 3600)

36 Block burst (4.8 kbps line; Red group; guardspace = 135

10 blocks)

37 Block burst (4.8 kbps line; Amber group; guardspace = 136

10 blocks)

38 Block burst (4.8 kbps line; Green group; guardspace = 137

10 blocks)

39 Block burst (50 kbps line; guardspace = 10 blocks) 138

x JPL Technical Memorandum 33-699



Section I

INTRODUCTION AND SUMMARY OF RESULTS

(i) Introduction

This report covers one aspect of our total effort to understand the

structure of the errors on the Ground Communications Facility (GCF) and provide

error control (both forward error correction and feedback retransmission) on it

for improved communication. Here we are concerned mainly with constructing a

theoretical model of errors and obtaining from it all the relevant statistics for

error control. Thus no specific coding strategy is analyzed in this report,

although references are made in appropriate places to the significance to error

correction of the distributions of certain error patterns as predicted by the

model. The success of our continuing efforts in designing specific error correc-

tion schemes on the basis of this GCF model will be reported elsewhere.

Our model is based on the 4800 bps high-speed GCF dataline test run pro-

vided by J. P. McClure [1] in March 1973, although we show that the same basic model

is good for the 50 kbps wide-band data we analyzed earlier in [2]. Indeed all the

error statistics that are calculated for the high-speed dataline are also obtained

for the wide-band dataline. As shown in Table 1, the high-speed data set consists of

31 test runs on all the NASA lines between JPL and each of the outpost stations at

Goldstone, Florida, Madrid (Spain), South Africa and Australia. McClure [11 has a

detailed account of how the data were collected. There are two of the 31 test runs

in which no errors are recorded (Madrid-JPL, duration 102 minutes; Goldstone-JPL,

duration 146 minutes), but this perfect transmission is due to the line condition at
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Table 1. Source of 4.8 kbps data (adapted from McClure [1])

CTA 21 JPL DSS 51 South Africa
DSS 14 Goldstone DSS 61 Madrid
DSS 42 Australia DSS 71 Florida

Starting Time Duration Bit Error
Origin Destination Day Hour Min:Sec Rate, x10- 5  ) Group

42 21 298 02 214:31 1.30 0.340 Amber

21 42 298 02 214:30 4.50 0.351 Amber

71 21 298 23 178:51 1.25 0.401 Amber

61 21 299 04 102:06 O 0 Green

21 61 299 04 107:49 2.70 0.366 Amber

42 21 299 23 192:42 0.23 0.285 Green

21 42 299 23 192:14 0.36 0.300 Green

14 21 300 03 146:26 0 0 Green

21 14 300 03 146:50 0.18 0 Green

71 21 300 23 52:22 25.4 0.410 Red

71 21 301 o00 88:05 51.51 0.315 Red

71 21 301 01 24:36 2.36 0.186 Amber

61 21 301 02 222:16 15.1 0.388 Red

21 61 301 02 222:29 1.16 0.416 Amber

42 21 326 21 118:11 0.66 0.399 Green

21 42 326 21 118:10 1.13 0.342 Amber

42 21 326 23 44:58 0.02 0 Green

21 42 326 23 44:57 1.00 0.015 Amber

51 21 333 17 191:02 3.10 0.325 Amber

61 21 335 16 75:43 0.98 0.420 Green
21 61 335 16 75:27 2.56 0.374 Amber

61 21 335 18 99:51 2.30 0.324 Amber

21 61 335 18 99:51 2.48 0.154 Amber

42 21 335 21 170:12 4.02 0.271 Amber
21 42 335 21 170:15 6.49 0.323 Amber

61 21 340 16 76:00 0.51 0.277 Green
21 61 340 16 75: 3.97 0.392 Amber
61 21 340 18 100:36 1.63 0.405 Amber
21 61 340 18 100: 1.79 0.353 Amber

51 21 340 20 168:00 5.30 0.385 Amber
21 51 340 20 151:58 6.51 0.368 Amber

3986.0 min.
= 66.4 hrs.
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that time of day rather than a permanent feature of the lines between those sta-

tions. For example, the same Madrid-JPL link on another day (day 301) has one

of the worst error rates recorded in the 31 runs. We follow McClure in dividing

the different bit error rates obtained in the tests into Green, Amber and Red

-5
groups: the Green group consists of those with bit rates of less than 1 x 10-5

those in the Amber group have bit rates between 1 x 10- 4 and 1 x 10-5 , and in

the Red group are those with a bit error rate higher than 1 x 10-4 . Of the 31

test runs, only 3 are in the Red group, 7 in the Green and 19 in the Amber group.

(We discount the two error-free runs in the analysis.)

A rate-one code built into the GCF modems causes a fixed pattern of errors

after each random error on the channel. In the 4800 bps high-speed data these

fixed errors occur at bit positions 18 and 23 away from each random error. The

positions are 3 and 20 in the 50 kbps wide-band data. It is now being determined

whether to remove this fixed error-causing code or process the received data to

remove the errors after each transmission.

It is not the high bit error rate, however, that makes this type of channel

difficult to model. Rather it is the fact that the errors, when they do occur,

tend to cluster together. In other words, the channels display some memory. How

long or short a memory one should build into the model depends on the particular

channel and the ease of handling the analysis of a model with a realistically long

memory. On the GCF, the chance that a bit error will be followed by another bit

error, denoted by P(I11) in Table 1, ranges from a high of 42% to a low of less

than 2%, depending on the data-line condition and bit error rate. For example,

in the Green group, a long error-free transmission followed by a burst of errors

lasting only one second may have a high probability of consecutive bit errors

while another test run with burst of errors scattered through the whole duration

may result in high bit error rate and low probability of consecutive errors.

JPL Technical Memorandum 33-699 3



Before we summarize the results of the report, let us fix our ideas of a

burst. As definition we adopt an intuitive notion of determining a burst from a

sequence of transmissions on the channel as a sequence of bits beginning and end-

ing with an error, separated from the nearest preceding and following error by a

gap of no less than a given length, say G, called the guardspace and containing

within it no gap of length equal to or greater than G bits. From this definition,

it is clear that the length (in bits) of a burst depends on the guardspace G; the

longer the guardspace, the longer the burst length, some of the bursts at shorter

guardspace being combined into a single burst when the guardspace becomes longer.

For example, for G = 400, the first test run contains 322 bursts, the longest of

which is 6133 bits containing 141 errors. The same run for G = 3600 has only

100 bursts; the length of the longest burst is now 217362 bits containing 3550

errors. This is typical of the GCF data line; in the error mode, there are still

some good runs several hundred bits long but not long enough to allow more than

a few 1200-bit blocks to pass through error-free.

The histogram for the thirty-one runs of the high-speed 4.8 kbps data is

shown in Figure 1. The error-free gap lengths are represented on the X-axis and

their frequencies in the 31 runs, that is the number of times a gap of length X

appears, on the ordinate. For example, the number of consecutive errors (at X = 1)

is 17, 149, while the number of times gaps of length 100 : X 499 appear is 652.

(ii) Summary of Results

There are two broad classes of theoretical models that have been proposed for

burst noise channels: the Independent Gap Model (or the Pareto Model), which assumes

that successive gaps are approximately independent and suggests the Pareto distri-

bution for the gaps, and the Markov model, which combines Markovian property with
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Independent Gap property. The Markov model assumes that given that an error has

occurred on the channel, the length of the gap following the error is independent

of the length of the gap prior to that error bit. In general, however, when errors

may occurin more than one state of the channel, the Markov model does not assume

the Independent Gap property underlying the Pareto model. By looking at the graphs

of certain functions of the empirical gap distributions, we showed that the Pareto

model cannot be employed to model the errors on the GCF. Indeed, the Pareto model

performs well only on good quality telephone channels (only in the Green error

mode). Since our concern here is with the Red and Amber error modes, we have re-

stricted our choice of a model to the Markov class and succeeded in getting a five-

state model, diagrammed in Figure 3, that gives an acceptably good fit.

The five-state model we used has only one error state B which connects to

perfectly good states Gl, G2 , G3 , and G4 . Errors occur in state B with probability

one each time the process enters this state, consecutive errors occurring with the

indicated probability 0 < q < 1. The further away a good state is from B, the longer

the sojourn time of the process in that state. Long gaps indicate the process is

in the best state G1 and the short bursts of errors indicate transitions between

the error state B and G4o

A single state B in which errors occur with probability one is not really

acceptable, as close scrutiny would reveal, for it is well-known that the error-

causing mechanism on the channel does not reverse the bit each time an error occurs,

a fact which we seem to ignore in our model. We hasten to point out, however, that

a model using a state f in which errors occur with some probability 0 < h < I in-

stead of B can be made to be mathematically equivalent to our model by appropriately

increasing the number of good states and adjusting the corresponding transition

probabilities. Moreover, introducing such a state B would involve unnecessary com-

plications in the analysis.

JPL Technical Memorandum 33-699 5



A general method of getting maximum likelihood estimates (MLE) of the

model parameters from the raw estimates obtained from data is presented. This

method is applicable to any finite-state Markov process and hence to any Markov

model.

We consider the gap distribution a basic property of the channel because,

in our model, the process renews itself each time it enters the error state. In

other words, the occurrence of an error is the renewal event which wipes out the

memory of the past gap. That is why we judge the performance of our model by how

good a fit it gives to a function of the gap distribution as calculated from the

data. Sample graphs of typical fits in each of the three error modes are shown

in Figures 4, 5 and 6. Goodness-of-fit tests are performed for each of the

error runs, each of the Green, Amber and Red error mode channels, and for a

single channel obtained by combining all the error runs and treating each as an

independent sample from some basic common distribution. Since it is more impor-

tant, for purposes of error control, to have very accurate predictions of error

clusters when the gaps are short (high bit error rate) than during long inter-

vals of error-free transmission, we concern ourselves with just how good a fit

we obtain for gaps of 4000 bits or less. The results are very good indeed for

individual test runs. The Kolmogorov-Smirnov test predicts that in 99% of the

time the error of our prediction (the absolute difference between the model and

empirical values) should not be more than 3.6%. In the Red group, the maximum

error of our prediction is 2.3% (see Tables 4a and b). But the better the channel

(the lower the error rate), the less spectacular this agreement becomes. For

example, two of the 19 test runs in the Amber group fail this test only slightly

while the fits obtained in the two cases that fail the test in the Green group are

6 JPL Technical Memorandum 33-699



less than satisfactory; in this case, the bit error rates are 2 x 10- 7 and 9.8 x 10-6,

and the percentage prediction errors are 51.4 and 4.5, respectively. We then ask that

the errors not be more than 2.5%. The statistical test in this case says that about

85% of our test runs should have less than this percentage error. In the Red group,

the highest prediction error of 2.3% falls below the theoretical bound of allowable

deviation, while about 58% of the Amber group pass the test. The important thing

is that those test runs with high error rates all give acceptably good fit with

prediction errors of less than 2.5%.

The grouped channels (Red and Amber) give less excellent agreement with

individual data runs. Errors of up to 8% are recorded in the Red group and 14.5%

in the Amber. This fact is in great part due to the wide range of error rates

recorded in each mode: 15 x 10-5 - 51 x 10-5 in the Red and equally wide varia-

tion in the Amber. But the greatest revealing fact was obtained when we attempt

to fit a single channel to every one of the 29 error runs. The error is about 10%

in the Red, between 2% and 68% in the Amber, and up to 77% in the Green group. It

is therefore clear that the errors on the GCF do not follow a single distribution.

In other words, the channel performance is significantly different for varying line

conditions. It is now understood that this is caused by the varying load on the GCF.

When users come onto or drop off the channel, the characteristic of the channel

changes. A realistic model should incorporate the times between these changes and

the characteristics of the channel when the changes occur. A way of constructing

such a model is detailed. This and all the results mentioned above are presented

in Section II.

Section III is devoted to the autocorrelation of bit errors. This is the

probability of having an error k bits away following a given initial error, k 0. From

JPL Technical Memorandum 33-699 7



it we not only gain knowledge of significant error patterns but we also deduce the

memory of the channel in the different error modes. For example, in both the Red

and Amber groups the memory is very much longer than 1200 bits. It is only in

the Green group that the memory is just about 1200 bits (see Tables 6 and 7).

In Section IV, we deal with the capacity of the channel (the maximal rate

for which reliable transmission over the channel is possible). Since the capacity

of a burst-noise channel is always larger than that of a binary symmetric channel

(BSC) with the same bit error rate, which, at the error rate on the GCF, is large

enough (>0.996 for the high-speed circuit and > 0.997 for the wide-band), it is

clear that for purposes of error control the capacity does not present any problem.

The irony is that forward error-correction is more difficult than for the corres-

ponding BSC.

One group of statistics that turns out to be very important in estimating

the performance of block codes is the block-bit statistics. A block is defined

as a sequence of n bits for a fixed integer n. This group includes:

(a) the block error rate as a function of block sizes;

(b) distribution of the number of errors in a block;

(c) distribution of distances between extreme errors in a block;

and

(d) distribution of errors in a code interleaved to some depth t.

All these statistics are presented in Section V.

Discounting the outages (those times when the error rate was so high that

transmission was stopped) which McClure speaks about in [1], the block error rate for

a 1200-bit NASA-standard block length in the 4800 bps data ranges from a low of .021

of 1% during the Green error mode to as high as 1.8% in the Red group. An error

block is defined as a block having one or more bit errors. Tables 10 & 11 show the
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predicted and empirical block error probability for the HF 4.8 kbps and wide-band

50 kbps circuits. In both cases the predicted values are very close indeed to the

data values. There is also close agreement between predicted values of block

thruput and the empirical values calculated by McClure in [1]. The block thruput

refers to those blocks received error-free. For the Green group the empirical

value is 99.96%, the model value is 99.963%. For the Amber the values are 99.63%

and 99.79%, the Red group gives 97.71% and 99.34% respectively. The total average

empirical block thruput of 99.55% is close to the predicted value of 99.78% (see

Tables 14 and 15).

But it is the density of errors in the error blocks that is more important.

For if an error block contains only one error it is an easy matter to locate and

rectify that error with only a few changes in the present specifications on the GCF.

Even if there are more errors but they are all confined within a given length in

the block it is still possible to find a burst-trapping code that will correct all

of them. This is why we have calculated not only the distribution of errors in a

block and the proportion of the blocks with more than a given number of errors but

also the distances between the first and last errors in an error block. The pro-

portion of error blocks containing twenty-five or more errors is less than 25% in

most of the runs at 48 bps. Runs in which this proportion is more than 50% are

really badly hit for in them the proportion containing fifty errors or more is

equally high, so that the 3-bit maximum error correction capability which can be

achieved on the GCF even if all the 33 bits currently allowed for error detection

and correction in each 1200-bit block were used for error correction alone would

still fall short of correcting a large proportion of the error-blocks (TAble 13a

and b). Graphs of the distribution of errors in a block are provided in Figures 8,

9, and 10.
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The effect of the fixed error pattern introduced by the rate one code

built into the modem becomes apparent in the distribution of distances between

extreme errors (or of length of burst of errors) in a block mentioned earlier.

If we consider only those blocks with two or more errors, the proportion having

their burst confined to within exactly 23 bits is as much as 24% in the Red group;

in the Amber group there is a run with as high as 83% while a percentage of 98

is recorded in the Green group (Table 5). This explains why the empirical and

model values in this case are not as close as one has expected (Table 16) and

further impels us to remove this error-causing modem code so as to be able

realistically to assess the performance of the different error correcting schemes

that are now being considered for the GCF.

A rather effective way to correct burst noise is to interleave the coded

blocks to some depth t, say. Here the bits of each coded block are not trans-

mitted consecutively but are interspersed in such a way that they are transmitted

exactly t bit positions apart. For sufficiently large t, at the receiver, the

blocks appear to have been corrupted by random noise thus spreading out the

errpr clusters over many blocks. The trick is to thin out the errors in each

block to a sufficiently low number that a known error correcting code (e.g., a

BCH code) of high enough capability can be used to correct the resultant errors.

Taking t = 6 and interleaving each block so that the length of each block trans-

mitted separately is 200 bits we found that the proportion of blocks containing

few errors has increased thus decreasing the proportion with a large number of

errors. For example, in the Red group the proportion containing exactly one

error increased to 0.06 of 1% with only 0.0045 having four or more errors; these

proportions are 0.05 of 1% and 0.0006 respectively for the Amber group and propor-

tionately higher numbers for the Green group. The encouraging fact is that in each
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case the proportion of blocks with three errors or less is at least twice as

high as it is without interleaving. One therefore can expect better results

(higher proportion having fewer errors) when the depth of interleaving t is

increased thereby enabling us to correct a sufficiently high proportion of the

errors without significantly changing the present GCF standard specifications.

As opposed to the distribution of bit errors in a block found above, in

Section VI we concern ourselves with Block (symbol) Error distribution. In this

case a block is considered as made up of symbols, each symbol being a fixed num-

ber of bits. Because of the burst noise it may be more efficient to employ an

algorithm designed to correct up to a given number of symbol errors in a block

rather than one that can correct only bit errors. This is especially so in cases

where, although the number of bit errors in the block is higher than the error-

correcting capability of the code employed, the errors are all confined to within

only a few symbols.

Let us mention particularly the distribution of error symbols in n-symbol

word and the autocorrelation of error symbols. For the standard 1200-bit block,

if a symbol length of 6 bits is used, then the proportion in the Red group of the

200-symbol blocks that have 3 symbol errors or more is only 0.0061. Thus a code

having two symbol error-correcting capability will fail to correct in only 0.61

of 1% of the time. To achieve this efficiency an error-correcting code must be

able to correct up to 5 bit errors in the 1200-bit block. The proportions for

symbol lengths s = 8 and 10 and for all the different error groups are shown

in Table 21. Table 22 contains the autocorrelation of symbol errors for
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symbol lengths s = 6 and 10 bits. For s = 6 bits, the highest correlation

between an initial error-symbol and another 200 symbols away is 0.08, the least

is 0.0028 in all cases in the 4800 bps circuit where the symbol error memory is

longer than 200. This means that unless combined with forward error-correction,

a feedback retransmission scheme may be impractical on the GCF for error correc-

tion because occurrence of an error block (symbol) may cause a high number of

others to occur in quick succession thus causing a problem of buffer over-flow.

As an immediate application of the block-bit and symbol error distribu-

tions we find the sync acquisition and maintenance probabilities. The two strate-

gies we compare are both based on using a prefix sequence of 24 bits in each of

the 1200-bit blocks. These strategies are:

1. to accept sync if there are not more than 3-bit errors in the pre-

fix sequence

2. to accept sync if there is at most (only) one error symbol in the

24-bit prefix considered as four 6-bit symbols.

Our criterion of comparison is the efficiency of each of the algorithms in

reacquiring a lost synchronization within a frame of 1200 bits after it is lost and

of maintaining it once it is reacquired. It is found that the first algorithm

will lock onto the wrong synchronization in over 167. of the time although it will

hardly fail to identify the true sync sequence. On the other hand, the second

scheme will lock onto the wrong sync in less than 2% of the time and it is equally

as efficient as the first in not failing to identify the true sync sequence

(Tables 23a and b, 24a and b).

This conclusion is not surprising since the second algorithm takes advan-

tage of the burst noise by allowing up to 5 errors provided they all occur within

a single 6-bit symbol.
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To answer the question as to when the first algorithm is efficient, we

increase the prefix sequence to 30 bits and find that allowing up to 3 bit-errors

will falsely detect a sync in less than 0.5% of the time. In this case the

second algorithm provides ample protection against both types of errors.

Lastly, in Section VII we take up the important question of burst dis-

tribution. The fact that no good error correcting device can be constructed

without the knowledge of this distribution attests to its importance.

To understand the nature of the bursts we find out how long they are, how

dense the errors within them are and particularly how many 1200-bit blocks are

affected each time the channel enters into a burst mode. Specifically,we calcu-

late the

(a) distribution and mean of burst lengths;

(b) the distribution of the density of errors in a burst of given length

and the mean number of errors in such a burst;

and

(c) the block-burst distribution.

The last distribution is intended to give us an idea of the number of blocks that

are likely to be affected each time a burst of error occurs.

But before we answer the above questions we review two criteria of choos-

ing an optimum guardspace G since all the distributions depend on G. We agree to

call a G optimal for a code C (with desirably high rate R) if a high proportion

of the bursts (with respect to G) is less than the burst correcting capability

of C. The burst correcting capability of a code relative to G is the largest

integer, b, for which every noise sequence containing only bursts of length b

or less is correctly decoded. It is shown that a guardspace of 400 bits hitherto
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being used in [1] is not adequate. However a guardspace of 3600 bits seems to

work for both the 4800 bps high-speed and the 50 kbps wideband data. See Tables

27a and b for the bursts using different values of G.

In the 4800 bps circuit the mean burst length varies.from 41 bits in the

Green error mode to 340 bits in the Red with an average of 135 bits overall. The

high standard deviation of burst lengths (Table 28) is explained by the wide

variation in the bit error rate (0 - 10-3).

The error density in a burst is obtained for guardspace G = 400 and 3600

bits (Table 29). This density can be as high as 6% in the highest error mode;

in the 50 kbps circuit it can be up to 8% when G = 3600. As expected the mean

number of errors (and the ratio of bad/good bits) in a burst decreases with in-

creasing guardspace.

Using the standard 1200-bit block and a block guardspace of 10 blocks

there is as high as 5% probability of getting a block-burst extending to 10

blocks or more (when the channel is in the Red error mode).

Our opinion of this work is contained in Section VIII which also lists

a few problems indicating the line future investigations should follow.
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Section II

CHANNEL MODEL AND PARAMETER ESTIMATES

(i) Criterion for Choosing a Model

The histogram for the thirty-one runs of the 4.8 kbps high-speed data is

shown in Figure 1 below. The error-free (gap) lengths are represented on the

X-axis and their frequencies in the 31 runs, that is the number of times a gap

of length X appears, on the ordinate. For example, the number of consecutive

errors (at X = 1) is 17,149 while the number of times gaps of lengths

100 _ X 499 appears is 652. Actually a gap length as shown on the histogram

includes the position of the error bit that ends the gap. Thus to get the

number of gaps of length 500, say, we should read the ordinate at the point

X = 501.

29,483 1

17,149-

800-

700

600

z
w 5 0 0

0
w 400-
iL

300-

200 -

100

10 0 10 10 10 105  10
X--

Figure 1. Histogram for the 4.8 kbps high-speed data.
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The common feature of the 4800 bps high-speed and the 50 kbps wideband

data is the way the errors tend to cluster together. Long gaps of error-free

transmissions are followed by up to four seconds (or more) of sputtering errors.

Within these "bursts" of errors there are intervals of good data. The problem is

to construct a model for such a channel from which to derive statistics for error

correction (both forward error correction and feedback retransmission).

Two broad classes of models have been proposed for these channels depend-

ing on what have been considered their main features. These are the Independent

Gap or Pareto model and the Markov model. The Pareto model, so called because it

assumes that successive gaps are approximately independent, was espoused by Berger

and Mandelbrot in [3]. Pareto distribution was suggested for fitting the gaps.

Earlier on, a Finite State Markov Chain had been suggested by Gilbert [4] for

fitting the error sequence on such channels. The reason was that the gaps in

the data seem to combine the Markovian property with the independent gap property.

This class of models is called the Markov model. In the general case when the

error clusters are different for different phases of the channel and hence more

than one error state is used in the Markov model no assumption of independent gap

distribution is made (see the generalization of Gilbert's model by Berkovits,

Cohen, and Zierler in r5]). Up to now the choice of which model to use has not

been based on an explicit criterion.

We shall briefly review both models and give a criterion for deciding which

applies to a given set of data.

a. Independent Gap (Pareto) Models

Let (Zn) be the error sequence, i.e., zn = 1 if the nth-- bit is in error

and O otherwise. Let
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V(k) = P(okl1 l); k t 0 (1)

be the gap distribution where k is the gap length. Let

U(t)= Z V(k) .
krt

Thus

U(t) = P(gap of length k > t)

Berger and Mandelbrot in [3] provided evidence, from the data they used, that

successive gaps are approximately independent and suggested using Pareto

distribution t- V for the gap distribution. That isthey put

U(t) = t a ; 0< a < (2)

or

P(gap of length k < t) = 1 - t

-1-a th
with probability density function at . For this range of a the n-

moment a t n -  does not exist for any finite n. So t is restricted to

some interval O < 6 < t - L < m and (2) is reduced to a three parameter model

1 k<6

U(k) (k/6)-  6 5 k L (3)

O L <k
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It is convenient to use

0 k< 6

log U(k) = e log 6 - e log k 8 5 k L (4)

- O L <k

From (4) it is not difficult to calculate the average bit error rate,

PIF the block error rate, the ratio of error probabilities for two different

block lengths, etc. For example:

(1-CYa)6 '
P1 1-

L -a

It is also a straightforward matter to estimate the parameters of this model.

The best fitting straight line for k between 6 and L has slope a. The

intercept at probability one occurs for a gap length 6 ! 1 and L can be

estimated from relation (5), P1  having been obtained from data. See Sussman

[61 for further details.

But it is the shape of the graph of (4) between 6 and L that we shall

dwell on here. Within this interval log U(k) is always a straight line, so

that any channel whose empirical U(k) cannot be fitted with a straight line on

the log-log plot cannot be modelled by the Pareto distribution. For the GCF,

Figures 4, 5 and 6 show that log U(k) is convex for k : 2000 and then

becomes approximately a straight line. The interval of convexity of log U(k)

depends on the error mode; for the Green (low bit error rate) group k 9 150 and

it increases as we enter the Red error group. Thus we reject the Pareto model

for the GCF.
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b. Markov Model

Gilbert's original model shown in Figure 2 consists of two states G and

B. The channel alternates between the 'good' state G and the 'bad' state B accord-

ing to a set of transition probabilities as shown. Errors may occur only in

state B with some probability 0 < h < 1. Transitions between states G and B

plus the possibility of sojourn in either state (with probabilities Q and q,

respectively) generate the bursts. Occurrence of an error implies the channel

has returned to the state B and the process begins anew. Therefore successive

gaps are independent and the model has both the Markov and independent gap

property.

p

P

Figure 2. Gilbert Model

Gilbert showed, among other things, that

U(k) = ML + NJk; k 0 (6)

where M, N, J, L all depend only on the model parameters and 0 < L << J < 1.

Hence log U(k) is NOT a straight line for small to moderately large values

of k. For sufficiently large k, log U(k) behaves like cl + k log J, a straight
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line,where cl is a constant. This more closely resembles the shape of

log U(k) shown in Figures 4, 5 and 6.

We shall therefore construct a Markov model for the GCF. The mant modes

of the histogram (Figure 1) convince us that neither the Gilbert model nor its

two-state generalization Zierler, et al [5] can provide adequate fit for our

data. See also our earlier attempt in [2].

Let us now detail the procedure taken to construct a Markov model from the

histogram.

(ii) The Model and Its Variations

We want to choose a "natural" model suggested by the histogram in the

following way. Let us make the assumption that whenever an error occurs, the

behavior of the channel at the time is independent of how good the channel

was prior to that time. In other words the behavior of the channel each time

it enters the bursty state is statistically the same irrespective of how long

the time has been since it last showed this burst phenomenon. (In this report

as in Reference 2 we use the same definition of burst, i.e. as a sequence

beginning and ending with an error, separated from the nearest predeeding and

following error by a gap of no less than a given length, say G - the guardspace

and containing within it no gap of length equal to or greater than this guard-

space.) Each time the channel enters a burst, that is each time we observe an

error after a long gap, the length of the burst, the number of errors within it

and the distribution of these errors are therefore all independent of what had

gone on prior to the occurrence of this phenomenon. We can therefore represent

distinct groups of gap lengths by distinct states of the channel and indicate

the beginning of a burst by a return to a single error state from states repre-

senting long enough gaps. The short gaps and consecutive errors within a burst
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are then represented by transitions between this error state and those states

representing appropriately short gaps. We shall make this concept more precise

as we go along.

With respect to this "natural" way of constructing a model for the

channel it would be necessary to represent each mode of the histogram by at

least a state each of which connects to a single error state. We would there-

fore represent gaps of the following range of lengths corresponding to the

modes of the histogram by distinct states:

X = 1; 2 ! X 4h9, lO0 x 499; loo1000 X 499;

10,000 ! X 149999; 100,000 ! X i 499999 and X 0 106

a total of seven states for the channel. But there are a number of objections

to having so many states for the channel. These include the fact that a model

with so many states may be unwieldy to analyze and even if we succeed in

doing the analysis, such a model would be of very little practical use. A

model should not be more complicated to understand than the phenomenon

it is designed to explain!

The five state model we found to give acceptably good fit is shown in

Figure 3 below. State B is the error state which connects to the perfectly

good states G1 , G2 , G3 and G4 . The good states represent gap lengths

X 105 , ll00 < x ! 99999, 50 x l 1099; 2 ! X ! 49 (7)

respectively. These interval boundaries were determined from the histogram.

All errors occur in state B, consecutive errors occurring with indicated proba-

bility 0 < q < 1. Short bursts represent transitions between states B and G4 .

Varying gap lengths are represented by transitions between state B and G1 , G2,

G 3; the very long gaps indicating the process is in state G1.
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Cq

94

Figure 3. The five state model for the GCF

The model is not unlike four workmen with varying degrees of efficiency

Pl > P2 > P3 > Ph employed to maintain a system. We agree to call a workman

and his efficiency rate by the same name. Each time the system breaks down (in

state B) any one of the four workmen is called upon to do the repairs, workman

pj being called with probability c ; j = 1, 4. The probability is q that

the maintenance supervisor will not call on any one of the workmen immediately

the system breaks down. If he calls however, the length of time after the

repairs are done for which the system remains in working condition is propor-

tional to the workman's efficiency. In other words if workman pj is called

upon the chances are qj that the system will not stay in working condition

the next unit of time. Thus the lower the workman's efficiency the higher his

qj, j = 1, 4. (This analogy was suggested by E. C. Posner.)
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In terms of transitions, P. is the probability that the process stays

in state Gj; cj is the probability that the system moves from state B to state

Gj in one step while qj is the probability of returning from state Gj to state

B in a single step, j = 1, 4; q is the probability of remaining in state B. We

denote the one-step transition probability of going from state i to a state k

by P(kli). Thus

P(Gj G.) = pj

P(GjlB) = c j = 1,4.

P(BIGj) = q = 1 - p

P(BIB) = q = I - c

The physical explanation given above is not really acceptable as a close

scrutiny would reveal. For it is fairly well-known that the error-causing

mechanism on the channel does not reverse the bit each time an error occurs, a

fact which we seem to ignore in our model in which we allow errors to occur

with probability one each time the process reaches the state B. We hasten to

point out however that a model using a state B in which errors occur with some

probability 0 < h < 1 instead of B cai be made to be mathematically equivalent

to our model by appropriately increasing the number of good states and adjusting

the corresponding transition probabilities. Moreover, introducing such a state

f would involve unnecessary complications in the analysis.

Even then the five-state model rather over-simplifies the actual channel.

For instance we have assumed that it is possible to fit a channel with error

rate varying between 0 and 10-3 and exhibiting three distinct error modes by

a single stationary model. If the model performs well at high error rates

it cannot be expected to depict the channel in the Green error mode. For
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when other users of the GCF come onto or drop off the line, the characteristics

of the channel change significantly*. A realistic model must incorporate such

changes.

One such model can be obtained as a generalization of our five state model.

Instead of the pj, cj, j = 1, 4, being a fixed set of parameters we use

(m), c(m), j = 1, 4, m = (Red, Amber, Green)] . (8)

That is, we use a separate set of parameters for each of the error modes, much as

we have done in this study, but further incorporate the varying line conditions

caused by users coming onto and dropping off the line. The number of users on the

channel at any given time can be modelled by the Poisson distribution, P(%), with

some parameter X, and the times between changes in the line condition then follow

the exponential distribution. This means the line condition changes according to

the Poisson distribution, the times between these changes following the exponential

distribution. When a change does occur it can be to only one of the error modes

Red, Amber or Green. The parameter X of the Poisson distribution can be

identified with the mean rate of user arrivals or the mean number of users per

unit time. The estimation procedure for parameters in (8) is the same as is used

in this study.

Because of its simplicity we have decided to use the stationary five-state

model however. As a fitting model for the highest to moderate error mode (Red

and Amber) our results bear us out.

Before we talk about how good a fit the model gives to the data let us

take a look at the estimation procedure employed.

We are grateful to L. R. Welch for discussions leading to this understanding.
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(iii) Estimation of Parameters

In this section the procedure for estimating the model parameters pj

and cj, j = 1, 4 from the data will be reviewed and the method for getting

the Maximum Likelihood Estimates (MLE) indicated. For detailed analysis of the

MLE method the reader is referred to Appendix I.

Let j. = number of times the process enters state j, j = i, 4.

kji = the length of gap i, i = 1, 2. in state j, j = 1, 4.

S= the threshold to state j or the minimal gap length determin-

ing state j, j = 1, 4.

N = the number of errors in the run.e

N1 1 = cardinality of [x = 1] or the number of occurrences of gaps

of length zero in the run.

Then it can be shown (see Appendix 1) using the method of maximum likelihood,

that

k..-L k.
i=:l j1 j

i=l O J j

k= 1 - - +

, j = 1, 4 . (9)
c.
j N

e

N11
N

e
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The easiest way to understand the above expressions is to consider pj

as the proportion of time spent in state j as a fraction of the sum total of

time spent in j and the number of times the process enters j; c as the

number of times it enters state j as a fraction of the total number of times

it crosses state B.

The above estimates we call raw estimates because they are obtained

directly from the data using the gap length intervals stated in (7). These

estimates are shown in Table 2(a). Table 2(b) contains the raw estimates for

the 50 kbps wideband data for the same gap intervals used above for the 4.8 kbps

high frequency data. The reader is asked to refer to Reference [2] for a descrip-

tion of and histogram for the 50 kbps data.

Let us now indicate how the optimum set of model parameters are obtained

from these raw estimates.

Denote the probability of getting k error-free bits between a given

error and the one immediately following it (i.e., a gap of length k) by V(k):

V(k) = P(Oklil)

where (0 kll1 is the event that a given initial error is followed by a gap of

length k. Then

V(k) = P(0kl1 ) - P(ok+1 1 )

= U(k) - U(k+l)

where we have denoted p(ok 1 ) by U(k) and (okll is the event that a given

error is followed by at least k error-free bits. Also let us represent the

th
sequence of noise digits by z = (Zn in which z = 1 -if the n- digit is inn n

error and zn = 0 otherwise.
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Table 2 (a). Raw estimates of P and C for

the 4.8 kbps high frequency data

1 p .9999987 .9999130 .7890661 .9956507

^ .2048373E-02 .9611595E-02 .6137241 .5924525E-01

2 p .9999994 .9999866 .7843750 .0000000

c .1071429 .8928571E-02 .6160714 .0000000

3 p .9999998 .9999731 .6190476 .9979798

^ .1265823E-01 .6329115E-02 .5738397 .4219409E-02

4 p .9999986 .9999738 .7050070 .9942991

c .2223089E-01 .1404056E-01 .5721529 .6630264E-02

5 p .9999985 .9999675 .7701746 .9915816

c .404459E-01 .2872216E-01 .5709261 .3575616E-01

6 p .9999998 .9999557 .7037037 .9978564

c .1866252E-01 .1555210E-01 .5598756 .6220840E-02

7 p .9999993 .9999381 .7216154 .9977547

c .1331893E-01 .1979842E-01 .6054716 .1043916E-01

8 p .9999998 .9996789 .7849265 .9982025

c .6000000ooooooE-ol .4500000-o0 1 .5850000 .1500000E-01

9 p .9999998 .0000000 .9047619 .0000000

c .6666667 .0000000 .6666667 .0000000

10 p .9999998 .9978070 .7634730 .9950000

^ .7692307E-01 .7692307E-02 .6076923 .3076923E-01

11 p .9999998 .9999652 .7120360 .9934446

c .5980860E-02 .3588517E-02 .6124402 .1315789E-01

12 .9999999 .9992025 .5198413 .0000000

c .9433962E-02 .4716981E-02 .5707547 .0000000

13 p .9999999 .9878049 .5378705 .9967664

C .9459458E-02 .1351351E-02 .5689189 .5405404E-02

14 p .9999996 .9999225 .7606132 .9961320

c .1815431E-01 .1.966717E-01 .6142209 .2571861E-01
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Table 2(a) Cont'd.

15 p .9999981 .9999480 .7990319 .9978045

c .3760163-01 .6402439:-01 .6117886 .1626016E-01

16 .9999994 .9999822 .8977956 .0000000

S .3200000 .1333333E-01 .68oo0oo .0000000

17 p .9999996 .9998726 .7000611 .9971001

S .2729528E- 01 . 1736973E-01 .6091812 .7444169E-02

18 .9999998 .0000000 .6358382 .9915493

^ .2690583E-01 .0000000 .5650224 .1345291E-01

19 p .9999995 .9999472 .7892157 .9981061

.4699739E-01 .1566580E-01 .5613577 .3655352E-01

20 $ .9999985 .9999343 .8945498 .9974043

.1307693 .1461539 .6846154 .3076923E-01

21 p .9999991 .9998994 .6274128 .9959416

.3273322R-02 .409165kE-02 .5739225 .8728858E-02

22 p .9999973 .9998945 .8599168 .9978881

^ .8982038E-01 .6586826E-o01 .6047904 .5988024E-01

23 p .9999995 .9999318 .6606772 .9960402

S .3120125E-02 .5512219F-02 .5951118 .8840352E-02

24 p .9999992 .9999160 .8674912 .9953895

^ .2945302E-01 .2805049E-01 .7363254 .5329593E-01

25 p .9999992 .9999613 .7558528 .0000000

A .3018109E-01 .1006036E-01 .5875251 .0000000

26 p .9999982 .9999579 .7334171 .9961382

c .2268431E-01 .4190296E-01 .6014493 .1102709E-01

27 p .9999985 .9999592 .7450024 .9939882

S .1987930E-01 .1668442E-01 .5750799 .2094427E-01

28 p .9999992 .9999778 .5950413 .9983525

c .1706037E-01 .1181103E-01 .5787402 .1312336E-02

29 p .9999997 .9999112 .6872549 .9956168

S.1717557E-01 .9541985E-02 .6087787 .1335878E-01
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Table 2(b). Raw estimates of P and C

for the 50 kbps wide-band data.

1 p .9999995E+00 .9999342E+00 .6041746+o00 .9922753E+00

C .8959681E-02 .8461922E-02 .5191638oo00 .5475361E-02

2 p .9999997400 .9999660+oo .6134831E3+00 .9913206oo00

^ .6868917E-02 .17172307-02 .4922725Eo00 .8013736E-02

3 P .9999998E+00 .9999250+00 .60oooooE+oo .9951378F400
A

c .1130435E-02 .2608696-02 .44347833400 .2608696E-02

4 p .999999E+00 .00000003400 .8130353+00 .9677119+00

c .4597701E-01 .0000000E 00 .49425293+00 .1149425E-01

5 P .9999999- 00 .0000003+00 .6063218E+00 .0000000EO00

c .1923077E-01 .0000000E+00 .5269231400 .0000000+00

6 p .9999999E+00 .9999100E+00 .476851900 .981308E4 00

c .1310044E-01 .4366811E-02 .4934498r-00 .8733623E-02

7 P .9999999400 .0000000E+00 .5869565E+00 .9740260+00

c .2259887E-01 .0000000+00 .4293785E+00 .1129944E-01

8 p .9999999E+00 .000000E+00 .6193354+oo .ooooo00oo+oo0

c .1716738E-01 .0000000+00 .5407726E+oo .O0000000E00

9 P .9999999E+00 .0000000O+00 .5322581E+00 .9929078E+00
A

c .2016129E-01 .000000OO+00 .4677419E+00 .4032258E-02

10 p .99999983400 .9999595o00 .5989176+o00 .9962997-400

^ .9732362E-02 .8110300E-02 .5409570E+00 .3244120E-02

11 p .9999998E+00 .9999375E+00 .5638418E300 .9960806Eo00

c .5791504E-02 .5148005E-02 .4967825E+00 .4504506E-02

12 p .9999998E+00 .9998188+oo00 .8231986E+00 .9936668Eo00

.6577650E-03 .3617707E-02 .6534895E+00 .3341446E-01
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If we write the model transition matrix as

0 P2 0 0 1-p2
M =  O O P3 0 l-P3

O 0 0 P 1-p4

C1 c2 c3 c4 q

then the probability of getting the particular pattern of errors observed on the

channel P(M, z) is given by:

N -1e

P(M, z) = P1 U()U(L) f V(j) (10)
j=l

where P1 = theoretical bit error-rate.

A = number of the error-free bits before the first error

in the run.

L = number of the error-free bits after the last error in the run,

and here
th

L. = length of j-t gap, j = 1, N- 1. It is desired to maximize P(M, z)a e

subject to some restrictions. It is easy to show that:

1
1 A

4 c.

where c =1 + )
i=l i-p
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k-lU(k) = ipi- k 2 0 (n)
i=l

and

4k-1
V(k) = ( ci(1- pi) i

i=l

The set pi, ci, i = 1, 4, maximizing P(M, z) also maximize

N -1
M-l L-1 e ( 12

log log + log cipL + F, log ci(-Pi)pi (12)
P 1  i i j=1 i

pi is given by

- - +1 - L - L+1 N -
ciP ciP i  ci p cip i  e ipi

1 12+ +L + +C 2.
i 1 (1-p i )2 1  (1-pi)OL (1-pi) aL j=1 3 j

Pi - A - +1 - L +- 11
c.p. c.p. c.p. c.p. c1

1) 1 1 1- 1) 1 1 1 1 + 1p.
(+) + + (l) iP + + E(.+1) ip

(l-pi) 1  (1-pi)2a1 (-P I) L (1-pi)2VL j J 0j

and if
2

a -L 22
SiPi CiPi + ciPi

-, ~ (1-p al (1-p 1 )a'L j
C .

- - £+ - L - i 1 N-i -1 j
Cep. C.p. c.p Cip. e Cip.

(N +1) (+1) ciPi + ) i +(L+l)l ji + l E (.+1)i
ePi 1 (1-p i)2l (-)L (1-pi)2aoL  j= a

then -

Ci -

1-p
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where

ci(1-Pi) 4 p. 4 p.

S p. 1 1-p -p ii i= i i=l i

and

IjC1 = iPiJ i=1

To obtain the estimates pi and ci the raw estimates p. and ci in

(9) are used in (13)as first approximations for pi and c.. Using the p'

and c. thus obtained as initial estimates for pi and c., the above procedure

is repeated on a digital computer to give a new set of maximizing parameters,

ci and Pi . This iterative method is repeated until a degree of stability suffi-

cient for curve fitting purposes is achieved. See Baum and Welch [7j for further

details of this iterative method.

In general, note that it is possible for distinct transition matrices M

to yield the same z-process and thus the same P(M, z). Let us call all such

matrices equivalent. For example, as shown by Blackwell and Koopmans [8], any

two matrices M, M2  yielding the same V(k) are equivalent. It suffices for

our purpose therefore to find any one member M in this equivalence class, i.e.,

any transitions matrix M yielding a critical point of P(M, z).

Starting with the raw estimates in (7), two-hundred iterations on the

computer yield the maximizing parameters shown in Table 3(a) for the 4.8 kbps

data and Table 3(b) for the 50 kbps data.

(iv)Curve Fitting and Goodness-of-Fit Test

A basic statistic in our model is the gap distribution V(k) because the

process renews itself each time it reaches state B. In other words the

occurrence of an error is the renewal event which wipes out the memory of the
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Table 3(a) Maximum likelihood estimates (MLE) of P and C

for the 4.8 kbps HF dataline

1 p' .9999953950E+00 .9968072943E+00 .5717325689E+00 .9106591544E+00

c' .8981760809E-02 .6745001194E-01 .4203317556E+00 .1713520791E+00

2 p' .9999995475E+00 .9999917204E+00 .7619005941E+00 .0000000000E+00

c' .1047399680E+00 .1030998001E-01 .6742438692E+00 .0000000000E+00

3 p' .9999998554E+00 .9999535030E+00 .5459808331E+00 .8961057897E+00

c' .1299700189E-01 .1017617426E-01 .5091828334E+00 .3962966780E-01

4 p' .9999986050E+00 .9999567087E+00 .5519996996E+00 .9227811211E+00

c' .2665215750E-01 .1285778017E-01 .4786566726E+00 .8614839406E-01

5 p' .9999984313E+00 .9999198994E+00 .5999923080E+00 .9601877004E+00

c' .5125120746E-01 .2359833744E-01 .4627144092E+00 .1478188950E+00

6 p' .9999997989E+00 .9999390274E+00 .5425012681E+00 .9106503818E+00

c' .1905607045E-01 .2137889279E-01 .4755474738E+00 .7556629062E-01

7 p' .9999993455E+00 .9999282191E+00 .6780365331E+00 .9972714645E+00

c' .1504603869E-01 .1804396336E-01 .6435550889E+00 .1771507139E-01

8 p' .9999998185E+00 .9997777749E+00 .7532956976E+00 .9992440385E+00

c' .5989127950E-01 .3638922970E-01 .6622567025E+00 .2454708225E-01

9 p' .9999999229E+00 .0000000000E+00 .9130433718E+00 .0000000000E+00

c' .7500019813E+00 .0000000000E+00 .4565198227E+00 .0000000000E+00

10 p' .9999998558E+00 .9979309774E+00 .5581959110E+00 .8535666459E+00

c' .7636851511E-01 .4016395427E-01 .3200710332E+00 .2645899237E+00

11 p' .9999999010E+00 .9999315091E+00 .5970954356E+00 .9689291927E+00

c' .6033735685E-02 .7273912417E-02 .5537134181E+00 .5750297725E-01

12 p' .9999999537E+00 .0000000000E+00 .5454545438E+00 .000000000E+00

c' .1408451107E-01 .OOOOOOOO000000000E+00 .5377720829E+00 .OOOOOOOO000000000E+00

13 p' .9999999219E+00 .9006192752E+00 .5363738531E+00 .9979544427E+00

c' .9448104969E-02 .9756278883E-02 .5216192007E+00 .7212404850E-02

14 p' .9999995490E+00 .9992407306E+00 .6163191023E+00 .9081214215E+00

c' .2258593837E-01 .3780571254E-01 .4839834401E+00 .1401222301E+00
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Table 3(a) Cont'd

15 p' .9999981532E+00 .9999391884E+00 .7730621732E+00 .9987174063E+00
c' .4522522687E-01 .5680939256E-01 .6806276662E+00 .1750866214E-01

16 p' .9999996082E+00 .9999983751E+00 .9072722727E+00 .0000000000E+00

c' .2151236379E+00 .1138326308E+00 .6088191268E+00 .0000000000E+00

17 p' .9999996682E+00 .9999115533E+00 .6802853951E+00 .9991929634E+00
c' .2775160346E-01 .1144913912E-01 .6442882584E+00 .1370192609E-01

18 p' .9999998824E+00 .0000000000E+00 .5245536494E+00 .9819256259E+00

c' .2679576549E-01 .0000000000E+00 .4839356004E+00 .4972253088E-01

19 p' .9999994394E+00 .9990228370E+00 .5303564611E+00 .9310260595E+00

c' .5485257315E-01 .4249021311E-01 .4000401305E+00 .1380993112E+00

20 p' .9999986382E+00 .9999380983E+00 .9033324592E+00 .9993548564E+00
c' .1476422873E+00 .9198748428E-01 .6266307466E+00 .6663347228E-01

21 p' .9999990224E+00 .9996616399E+00 .5619055084E+00 .9640913984E+00

c' .4247087939E-02 .7602542515E-02 .5396837177E+00 .2670050566E-01

22 p' .9999978277E+00 .9998756379E+00 .8463196387E+00 .9990676567E+00

c' .1028148355E+00 .2779428687E-01 .6637432406E+00 .8503767638E-01

23 p' .9999992919E+00 .9992437394E+00 .5704438190E+00 .9266249133E+00
c' .4881179917E-02 .1105176014E-01 .5328776355E+00 .4625063032E-01

24 p' .9999991211E+00 .9991934723E+00 .8367628756E+00 .9732659686E+00

c' .3813345289E-01 .4954637321E-01 .6831363057E+00 .9331328594E-01

25 p' .9999991663E+00 .9974426078E+00 .6732643675E+00 .OOOOOOOO000000000E+00

c' .3647266453E-01 .1898180839E-01 .6358960597E+00 .OOOOOOOO000000000E+00

26 p' .9999980558E+00 .9999385496E+00 .5763860101E+00 .9029800511E+00

c' .2903556659E-01 .4430774668E-01 .4497416415E+00 .1321740257E+00

27 p' .9999982226E+00 .9996096551E+00 .5650661490E+00 .9504853272E+00
c' .2792114797E-01 .1840825642E-01 .4777731974E+00 .1027912530E+00

28 p' .9999992817E+00 .9999792257E+00 .5938876271E+00 .9991027533E+00
c' .2008279598E-01 .8168327315E-02 .5756273053E+00 .2493552415E-02

29 p' .9999997544E+00 .9999128595E+00 .6438181406E+00 .9932046896E+00

c' .1733256091E-01 .9945088923E-02 .6098647740E+00 .2528598892E-01
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past gap. Each gap is then an independent statistical sample from the distribu-

tion V(k), k C0. The occurrence of bursts is a direct consequence of the

form of the gap distribution. We shall therefore assess the performance of our

model by how good a fit U(k), k 0, a function of the gap distribution,

gives to the empirical U(k) - both from the wideband and high frequency data.

(Recall from (11) that

Sk-i U(k)
L cip i  U(k)

= C v(j)
j k

Figures 4, 5, and 6 are representative of fits obtained from the Green, Amber

and Red groups respectively.

For purposes of error control it is more important to have very accurate

prediction of error clustex when the gaps are short (high bit error rate) than

during long intervals of error-free transmissions. This is why we have com-

pared U(k) and (k) for 0 - k 4000.

Let F(k) and Fn(k) defined by (14)be the distribution functions

associated respectively with V(k) and ^(k).

k-1
F(k) = E V(j)

j=0
(14)

k-1
F (k) = Z; V(j)

j=0

Then
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IF(k) - Fn(k) = 1- ()- 1- V(j)
Sv()j=k j=k

= I(k) -(k)

Hence

max
p = o0or!UO(k) - U(k)j (15)

is the maximum absolute difference between the model and measured (empirical)

distribution functions in the range shown. For the Green group (Figure 4)

p =.035; for Amber (Figure 5) p = .015; and for the Red (Figure 6) p = .012,

which shows that the higher the bit error rate the smaller the p (the better

the fit). This is seen from the respective graphs.

Now write

Y(k) = U(k) - U(k); 0 k 4000 .

For a very good fit one would expect Y(k) to have very small mean, Y, and

mean-square-error, s . A zero mean would indicate that the U(k) is symmetrical

about U(k) and the small standard error as a measure of the deviation of U(k)

from U(k) indicates that the U(k) does not deviate too widely from U(k). For

the Green group Y = - .007, s = .003; for the Amber T = - .004, s = .002
Y Y

and for the Red . = - .001, s = .0008. p and T for all the 29 error-runs

are shown in Table 4(a) for the HF circuit and in Table 4(b) for the wide-band.

Because of the wide range of error rates observed in the sample runs

(0 - 10- 3 ) it is clear that there is no way of constructing a single channel with
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N INDIVIDUAL RUNS GROUPED RUNS OVERALL CHANNEL
p Y S p Y S p Y S

2464200 .022 -.0003 .002 .063 .003 .006 .107 -.015 .008

14430000 .012 -.001 .0008 .083 -.008 .007 .098 -.22 .007

63632400 .023 -.0005 .001 .076 -.003 .006 .091 -.022 .006

28970400 .049 -.005 .002 .120 -.036 .005 .101 -.02 .007

48342000 .029 -.003 .001 .055 -.017 .003 .040 .006 .007

5500800 .015 -.004 .003 .063 .015 .004 .079 .039 .005

51313200 .023 -.005 .002 .063 -.020 .004 .058 .004 .006

61706400 .015 -.0008 .002 .056 -.022 .002 .021 .002 .004

30902400 .025 -.004 .002 .081 -.044 .003 .065 -.021 .006

64060800 .018 -.001 .0006 .145 -.044 .005 .130 -.021 .008

28754400 .022 -.001 .003 .059 -.020 .005 .034 .004 .003

49009200 .o09 -.0005 .004 .135 .045 .006 .151 .067 .004

61592400 .011 -.001 .002 .048 -.013 .002 .033 .011 .004

34022400 .027 -.002 .003 .068 .010 .009 .054 .034 .005

12943200 .017 -.005 .009 .670 .195 .030 .686 .219 .029

7084800 .027 -.005 .008 .336 .089 .025 .352 .113 .021

28753200 .029 -.002 .003 .035 -.001 .018 .120 .022 .016

19392000 .073 -.002 .004 .050 -.017 .002 .035 .007 .006

48927600 .031 -.006 .002 .033 .009 .002 .059 .033 .004

43287600 .024 -.002 .002 .035 -.018 .002 .023 .006 .004

19036800 .023 -.001 .001 .118 -.026 .005 .103 -.002 .008

28974000 .030 -.001 .002 .067 -.028 .003 .042 -.004 .005

21888000 .012 -.008 .004 .033 .016 .003 .119 .078 .008
55360800 .035 -.006 .007 .038 -.006 .016 .126 .065 .011
12952800 .514 -.416 .013 .721 .243 .021 .770 .305 .022

55497600 .025 -.007 .003 .037 -.017 .008 .109 .045 .004

21592800 .045 -.007 .003 .200 -.084 .006 .147 -.022 .008
42288000 .025 -.008 .003 .654 .229 .019 .704 .292 .020
340272000 .035 -.004 .002 .167 -.069 .004 .129 -.007 .007

Table 4(a). Curve fitting parameters for 4.8 kbps HF dataline

Y = U(k) - O(k)

Y = Mean of Y, s = standard error of Y

p = Max IU(k) - U(k)j

O< k< 4000
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N INDIVIDUAL RUNS OVERALL CHANNEL

Y S p Y S
y Y

39198003 0.0046 -0.0007 0.0004 0.118 0.0079 0.0072

42681997 0.0053 -0.0006 0.0008 0.133 -0.0009 0.0071

62300445 0.0079 -0.0008 0.0005 o.188 0.0038 0.0084

51451345 0.0289 -0.011 0.001 0.031 0.0265 0.0042

46043171 0.022 -0.008 0.0008 o.144 0.0068 0.0082

41468126 0.015 -o.ooh 0.0008 O.167 0.0046 0.0085

44651211 0.0247 -0.006 0.0008 0.162 0.0086 0.0078

44301174 0.046 -0.012 0.001 0.153 0.0043 0.0082

51389935 0.011 -o0.004 0.0006 0.169 0.0077 0.0086

54343756 0.008 -0.002 0.0004 0.119 0.0085 0.0074

43441434 0.0195 -0.0007 0.001 0.155 0.00064 0.0078

52020411 0.079 -0.001 0.004 0.122 -0.0034 0.0051

Table 4(b). Curve fitting parameters for 50 kbps W-B dataline

Y = U(k) - U(k)

Y = mean of Y, S = standard error of Y

L = max !U(k) - U(k)I
kJL Technical Memorandum 33-699 34000
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transition matrix M which will give a good fit to each of the sample U(k),

k > 0. One thing that can be done is to construct a channel for each of the

Green, Amber and Red groups. By plotting averaged model U(k) for each of

these groups we shall get a better picture of what is happening at comparable

error rates. As raw estimates for the optimum averaged parameter set for each

t I
group we use weighted averages of the parameters pi and c. which gives the

1 1

critical points of P(M, z) in each of the samples in that group, weighted

according to the number of bits transmitted in the sample run. For example, if

N. represents the number of bits transmitted in sample j, j running over the
a

number of samples in that group, then

SN=N. ; i = 1, 4 (16)
i N j

is the averaged raw estimate of pi for the group and pij is the estimate of

Pi in sample j which maximizes P(M, z).

Now let

- 1kcip i

'lk 1-p.
S i (17)

Lk

, 1 1

Lki 1-pi

jk c 1jk
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where k=l, ... runs over the samples in the group and

j=l, ... , Nek is the number of errors in sample k.

£1k = number of the error-free bits before the first error in sample k.

Lk = number of the error-free bits after last error in sample k.

.th
2. J-- gap length in sample k.jk

Then if

l -Pi (l'Pi)
- k k - 1  - Ll Nejkl

c cp p. ek- c ip.
D 4 _1_+ + (- a.

lk lk +1 Lk Lk+1 N -1 L.

D2lkiPi ii LkciPi cii (1)i

k l-Pi)lk (l-p )2 (1-p () -p )2o k1 jk
Pi)'k (1-pi ) _k i Lk l-pi  j k

D = D1 + D2

the optimum averaged parameter set for that group is given by:

, D
2

2
-t 1

i ( Nk+n)D

iP ii l-p

Our notation here is as was used in (9), (10), and(ll). n is the number of

samples in the group. Two hundred iterations on the computer of expression (1)
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Table 5a MLE of P and C for the Red, Amber and Green groups

and overall channel; 4.8 kbps dataline

MLE (Optimum) Set for Group R (10
-3 ) (Red)

p .9999982928E+oo .9975858132E+00 .9114607347E+00 .5645880886E.00

c .6947437705E-02 .3811463333E-01 .1103252624E+00 .4707554813E+00

MLE for Group A (Amber 10 4 )

p .9999991048E+00 .9998733543E+00 .9278527620E+00 .5752459153E+00

c .3038593488E-01 .2886455315E-01 .1214899946E+oo .4658393836E+00

MLE for Group G (Green 10 )

p .9999996962E+OO .9165101985E+00 .5635646054E+00 .5635646054 E+00

c .9148175377E-01 .1450558925E+00  .9796649509E-01 .3254327807E+00

Single Channel (Parameters) for 4.8 kbps Data

p .9999989701E+00 .9987625506E+00 .9134863812E400 .5668315129E+00

c .2346445968E-01 .2937987288E-01 .1211068491E+00 .4617199786E+00

Table 5b MLE of P and C for 50 kbps Channel; Mk

for k = 6

p .9999997795E+00 .9027180023E+00 .9967973995E+00 .5138910937E+00

c .6226522694E-02 .2027754955E+00 .2531177075E-01 .3822078635E+00
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C,

-2

a u(k) = 0.36E-5 = -0.006

b u(k) MODEL P1 = 0.30E-5 S = 0.007

c u(k) GREEN (x 10
5 ) 

GROUP Pab = 0.035

d u(k) OVERALL CHANNEL ac = 0.038

Pad 
= 

0.126

-3
0 1000 2000 3000 4000

NUMBER OF BITS k -+

Fig. 4. Gap distribution for Green error group
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-1

b

-2 -

a .(k) P1 = 0.45E-4 
= 
-0.0008

b u(k) MODEL P = 0.43 E-4 S = 0.002

c u(k) AMBER (x10
-4
) GROUP pab =0.015

d u(k) OVERALL CHANNEL pac = 0.056

Pad = 0.021

-3 I I I
0 1000 2000 3000 4000

NUMBER OF BITS k

Fig. 5. Gap distribution for Amber error group
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(k) = 0.15E-3 Y = -0.0003

b u(k) MODEL P1  0. 146E-3 S = 0.002
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Fig. 7. Gap distribution (50 kbps circuit, BER = 0.51 x 10- 4)
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starting with raw estimates in (16) yield the stable parameter set for the 4.8

kbps and 50 kbps shown in Tables 5a and 5b respectively.

Figures 4 through 6 also show comparative plots of the function U(k)

for each group and the overall channel. As expected the overall channel does

not predict any particular group closely enough. On the other hand, the less the

spread among the values of the empirical bit error rate in a group, the better

the fit between the averaged U(k) and any given sample in that group.

Let us go back to the definition of p in (15)and use it to construct

confidence intervals for the distribution function F(k). What we want to do is

to construct a statistical test of the hypothesis that the true parent distribu-

tion G(x), x > 0 is F(x) against the alternative that G(x) 4 F(x) using the

metric p at significance levels o = 0.01, 0.05, 0.10 and 0.15. That is to say

we shall test the hypothesis

H : G(x) = F(x) (20)

at levels a given above. The empirical distribution function is Fn(k). Since

F(x) is continuous we shall use the Kolmogorov-Smirnov test statistic.

Kn = f sup IF(x) - Fn(x)l . (21)

Now we shall confine the supremum in (21) to the range of sample points k for

0 ! k ! 4000. Indeed we shall use equally spaced 2000 points in the range. Thus

our n = 2000 and K then becomes:
n

Kn = /n max IF(k) - Fn(k)l (22)
O'k2000
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It is clear that H°  is to be rejected if Kn  is too large. The

different rejection regions we shall use will be e. Since no tables exist for

n as large as 2000 we shall use the limiting form of the distribution of K
n

to get the cut-off points for the test.

Let

(X) P(/ p X) (27)

Kolmogorov showed, (see Darling [11]), that

$n(x) -.$(x)
n 2 2
S (-1)ke-2k (24)

Thus for large n, approximate confidence bands for F(x) are given by

F n + /(Yn , where 1 - (y)= e. Since Fn(k) converges to the true parent

distribution G(k) with probability one (Cantelli-Gilivenko lemma), (X ) is

thus the probability that the maximum absolute difference between G(x) and F(x)

is at most X.JAn when n is large enough. This statement is not true for small

n (see the modification of (%) by the error term D (x) = 1n()- (A) = 0(n-1/8

in K. Kunisawa, et al [9 ] for n as large as ours) but tables available for

small n do not cover values of n as large as 2000. Kunisawa, et al, further

point out that for a = 0.01 or 0.05 and the corresponding values of X , D (X)

are very small for n > 100. In any case the effect of the correction factor D (),

when $(x) is used rather than 0n(x), is to increase the rejection region N

thus forcing us to reject certain distributions F(x) which would have been
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accepted as not essentially different from the true G(x) had we used n().

Hence the use of the limiting distribution (X) makes the test of the hypothesis

H very conservative.

Using tables of O(X) by Kunisawa, et al [10] the metric p was calculated

for the different values of ce and corresponding X (see Table 5 (c)).

Table 5(c). Kolmogorov-Smirnov Test Statistic

0! 0(% c) X C P

0.01 0.99 1.628 0.0364

0.05 0.95 1.3581 0.0304

0.10 0.90 1.224 0.0274

0.15 0.85 1.138 0.0255

We now compare the values of p with those listed in Table 4a obtained from

each of the test runs using equation(15) and notice the following:

1. At level a = 0.01, almost all the test runs agree that the distribution

function predicted for each of them by the model is the true distribution.

In other words with probability 99%, the maximum absolute difference between

G(x) and F(x), p, is no greater than 0.0364. (Equivalently put, the error of

our estimate is at most 3.6%.) In the Red group each p is less than this

value showing that at level a = 0.01, F(x) given by the model is accepted

as the true parent distribution. Two of the 19 test runs in the Amber group

fail our test only slightly while also two of the seven tests in the Green

group reject the distributions our model assigns to them. The encouraging

fact is that the higher the bit error rate the smaller the p and hence the

more we are wont to accept the hypothesis H . Remember the emphasis in this

study is to model for very short bursts (associated with high bit error rates)

that cause decoding errors.
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2. Even if we allow as much as 15% (o = 0.15) probability against accepting

Ho, every one of the test runs in the Red group still accepts the model

F(x) as the true distribution. This fact gives us confidence to use our

model for predicting significant error patterns in the worst mode of the

channel. Notice also that we obtain good results in the Amber group.

3. The grouped runs and the overall channel, however, show poor agreement as

we have noted earlier. This is as should be expected owing to the wide

-3
range of error rates obtained on the channel (0 - 10-3). But the fact that

only ten of the test runs show errors of less than 6% indicates that the

error patterns on the GCF do not follow a single distribution. The

overall channel predicts the Amber error mode better than any other.

For example, no run in the Red group shows less than 9% error while the

Green group contains runs with as much as 77% disagreement with the averaged

channel. Any statistics calculated using a single parameter set will there-

fore not be valid for the different error modes and hence not reliable.

4. The conclusions for the 50 kbps data are even more striking. At level

c = 0.01 all the tests except one accept the model distribution as the

true distribution (see Table 4(b)).
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Section III

AUTOCORRELATION OF BIT ERRORS AND CHANNEL MEMORY

In the last section we presented the Maximum Likelihood Method for

obtaining the estimates of the model parameters and demonstrated how closely

our model predicts the pattern of errors on the GCF. While we consider

the gap distribution or the distribution of return times to the bad state,

V(k), k : 1, to be of fundamental importance in our model, there are func-

tions of this distribution which play a central role in our understanding of

the error patterns on the channel. Certainly knowledge of significant error

patterns is necessary for error correction. The way the bit errors and error

blocks are correlated should be known. In this section bit error correlation

will be discussed.

Denote by r(k), k > 1, the auto-correlation of bit errors. That is

r(k) = P(zk = l1zo = 1); k - 1 . (25)

By definition r(k) is the probability of having an error at time k following

a given initial error. Let

G i(k) = P(sk = Gilso= B); i 1, 4

(26)
B(k) = P(sk = BIso = B)

Then

r(k) =B(k) . (27)

The following recursions are satisfied:
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B(k + 1) = qT(k) + fD (1 - pi)G.(k)

i = i, 4.

G.(k + 1) = c.B(k) 4 p.iGi(k)

Equivalently,

(Gl(k+l), G2 (k+1), G3(k+l), G4 (k+l), B(k+1)) = (Gl(k), 2 (k), G3 (k), G 4 (k), B(k))M

(28)

where

Pl 0 0 0 1-Pl

0 P 1-P2

M = 0 0 P 0 1-P 3

0o o 0 P4  1-P4

C C1 C2 C3  q

is the transition matrix. Using the initial conditions

Gi(0) = O, i = 1, 4; B(0) = 1

we can write (28) as

(Gl(k+l), G2(k+1), G3(k+l), G4 (k+l), B(k+l)) = (0, 0, 0, 0, l)k+ I  (29)

Using the method outlined in Appendix II, for some selected values of k,

the matrix Mk+l was found. For example, for k = 5, and for each of the error

groups and the overall channels (both for the 4.8 and the 50 kbps data), M6 is as

shown in Table 6. Above method is not the only one available for finding the
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autocorrelation r(k). That method is developed specifically for use in

Section V for finding the autocorrelation of error-blocks and is presented

here only for comparison with the following more directly programmable method.

By definition

r(k) = P(Ol--k-j-2-----lll; j = 0, k - 1 (30)

The (k-j-1) bits indicated are any (k-j-l) binary digits. Hence we can write

k-1
r(k) = C P(O l1)P(Onl-k-m-j-3--111); rm=O, k-j-2

that is

r(k) = C V(j)r(k-j-1) (31)
j>o

subject to r(O) = 1. Call the above methods, Methods I and II respectively.

r(k), for k= 6 and for both methods, is shown in Table 7 for comparison. r(k),

for k = 1200, range from .0278 for bit error-rate P1 ~ 10 3 to 0.0000033

for P - 10-5 with value of 0.007 for the averaged (overall) channel. For the

50 kbps data, r(1200) = 0.0382; showing in each case that the memory of the

channel is longer than 1200 bits. It is only in the Green group

(PI - 0.3258E-05) that the bit correlation, at 1200 bits apart, of 0.3328
8 9E-05

is closest to P1  showing that in this group the memory is almost 1200 bits.
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Table 6. Mk for k 6=

Error-rate 10- 3

.9999899 .55E-06 .140E-05 .358E-05 .461E-05

.000143 .9863834 .001973 .00537 .006463

.004575 .024998 .6359246 .1539447 .1805568

.01347 .073556 .17742 .40545 .33009

.01874 .10204 .22498 .35689 .2973375

Error-rate 10-4

.9999948 .215E-06 .8068E-06 .182E-05 .230E-05

.3204E-04 .9992708 .0001141 .0002575 .0003256

.01626 .015445 .69563 .12573 .14693

.05634 .053509 .19305 .39236 .30473

.07814 .07420 .24742 .334208 .266023

Error-rate 10- 5

.9999984 .313E-06 .12hE-06 .412E-06 .74 7E-06

.0543 .66724 .02838 .094289 .15578

.16635 .219696 .084864 .2818996 .27923

.16635 .219696 .08486 .2818996 .27923

.22482 .27038 .06261 .20799 .23419

Over-All Channel (4.8 kbps)

.9999940 .255E-06 .9178E-06 .2089E-05 .2714E-05

.0002447 .9929 .oll00110 .0025 .003247

.01494 .01866 .6476 .1459 .17287

.04465 .05576 .19163 .39096 .31699

.06182 .07710 .24198 .33788 .28122

Over-All Channel (50 kbps Data)

.9999987 .328E-o6 .475E-07 .34 9E-06 .5866E-06

.00444 .66362 .0179497 .124576 .189414

.0001697 .004734 .981624 .00504 .00843

.01255 .3303 .050667 .293315 .31321

.01656 .394816 .066642 .246665 .275713
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Table 7. Autocorrelation r(k) for k = 6,

High-Speed Circuit.

Method I Method II

Red .297337 .297337

Amber .266023 .266023

Green .234194 .234876

Overall Ch. .28122 .281232
(4.8 kbps)

Overall Ch. .275713 .2757125

(50 kbps)
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Section IV

THE CHANNEL CAPACITY

For estimating the maximal rate for which reliable transmission over the

channel is possible we shall now calculate the capacity of the channel.

Following Gilbert [4], the capacity, C, of the burst-noise channel

is given by

C = - H (32)

where

H = lim Z P(zl,..., n+)logP(zn+ zl1,..., n

n- 0 z.=0or 1

As shown in Appendix III, H can be written in terms of U(k), k 0

as

CO JU(k+l) U(k+1) U(k+l) U(/+1) ,H -P F U(k) log U(k) 1 - U(k) log U(k) 33)

H is the entropy of the noise sequence z = {zn . Since

U(k) c ik-
i=l

k-1for large values of k, U(k) - 1  where pl is the largest of the p's.

Th fUU) (1)Thus U(k) - for sufficiently large k =k say. So that for all k k
U(56 Technical Memorandum 33-6990 0

56 JPL Technical Memorandum 33-699



we can approximate the sunimand in (33) by

ho = P log Pl + (I - pl)og(l - pl) ()

and H can then be written as

k -1
0 U(k+l) U(k+1) U (+) U(k4 1
H U (k 1 k (1 - U(k)1 7' 7(17- log /u < 77g

01
k

Using the fact that

k -1

) C U(k) E P(10k) 1- P(1)
k=k k=-r k= 0

o a

=1.- P C U(() .
k-O

We can approximate H by the finite sum:

k -1
0 oI (k+1 U(k 1 U(k+1) / U(k-1)

krO U() U(k) k o U(k)

k -1- h[ 1. - P 1 U(k)
k=O

and thus
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C = 1 - H 1 - H'

C was evaluated on the computer for values of k from 40 to 1200 in steps

of 20 and for both the wide-band and the high frequency model parameters. In

each case C converged (to six decimal places) for k 1000 while for many

of the runs k is very much smaller.

Table 8 shows the model values of C for each of the 29 error runs

of the 4.8 kbps high frequency data, the three groups Red, iber and Green and

for the overall channel. The lowest capacity is C = 0.9986 (the C for a

binary symmetric channel with the same bit error rate, C(BSC), is 0.996) and

the highest C = 0.9999984 (C(BSC) = 0.9999978). The capacity for the Red group

is 0.9994, Amber group C = 0.99992, Green group C = 0.999988 and the overall

channel capacity is 0.99988.

The capacity for the wide-band error runs is shown in Table 9. In

this case C ranges from a minimum of 0.9993 to a maximtun of 0.999997. The

overall channel capacity is 0.99991 which is only 0.003 of 1% higher than the

capacity of the average channel at high frequency.

At 4.8 kbps during the highest bit error phase (discounting the outages)

we can still transmit reliably at rates close to 0.9986 while the rate is 0.9993

for the 50 kbps. During the Green phase (at 4.8 kbps) the worst we can achieve

is 0.999983 while for the 50 kbps during the least bit error mode the worst is

0.999992.

We should remember however the recording problems, mentioned in [2],

encountered in the gathering of the wide-band data which have the effect of

increasing the error-free gap lengths at the end of each test run. These have
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the effect of lowering the bit error rate and thus increasing the capacity of

the channel based on wideband (50 kbps) data.

The calculations based on the 4.8 kbps high frequency data are thus more

reliable.
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Tablle 8. High Speed (4.8 kbps) Channel Capacity

P~i -Rate
Group ' C C (GROUP) C ( BS) C (BSC)/C

1 Red .506 -O .998580 . 995653 .997

.24LEO-3 .229 -03 .999576 .9994 .997853 .9983

.14 E.-03 .999716 .998576 .999

4 .111-0o .999978 .99986 . 999

4 .515-oh .99988 .9994 .99956

6 .303 h:-0 h .999 .99965 .99975

7 .105e -n04 .999977 .99987 .9999

8 .143 -04 .9999 .99952 .99963

9 Amber .16)4 ob .999965 .9998 .99984

10 .8q27 -05 .999985 .99992 .999895 .99991

11 .293-04 .99E-o .99994 .99976 .99982

12 .3931- 0o .99987 .99956 .99969

13 .119rE- .999969 .99985 .99988

11 .102 E- h04 .9997 .9999 .9999

15 .909E- o .99995 .99989 .99994

16 .21"E- 4 .9999 .99975 .99985

17 .23 -04 .99991 .99973 .9998

18 .229E- 04 .99994 .99973 .9998

19 .639E-04 .9998 .9993 .9995

20 .635rE- .9998 .9993 .9995

21 .353E-04 .99993 .9996 .9997

22 .141E-0o4 .99997 99983 .9999

23 .453E-05 .999983 .999943 .99996

24 Green .303E-05 .999989 .999958 .99997

25 .128E-06 .9999984 .999988 .9999978 .9999994

26 .332E-05 .189E-05 .999993 .99997 .99998

27 .329E-05 .99994 .999955 .99996

28 .162E-05 .999989 .999977 .999988

29 .439E-05 9999898 .999941 .999952

For the overall channel: P1 
=  .438E-04, C 0.99988

C(BSc) = 0.9996

C(Bsc) = 0.9995, c(Bsc) = 0.9996
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Table 9. Wideband (50 kbps) Channel Capacity

Overall Bit-Rate
Channel P1  C C(Overall) C(BSC) C(BSC)/C

.461E-O4 .99992 .99949 .9996

.347E-O4 .99994 .9996 .9997

.158E-O4 .99997 .99981 .9998

.354E-04 .856E-P6 .999997 .99991 .999987 .99999

.38E-05 .999992 .999950 .99996

.185E-05 .999997 .99997 .999977

.199E-05 .999996 .99997 .999976

.349E-05 .999993 .999953 .99996

.291E-05 .9999946 .99996 .99997

.19E-O4 .999965 .99988 .99981

.244E-04 .99996 .9997 .99976

.242E-03 .9993 .9977 .998

S= C(BSC) for overall parameter = 0.9996

C/C(Overall) = 0.9997
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Section V

BLOCK-BIT STATISTICS

A block of size n, (also referred to as a message) is defined as n con-

secutive bits of data. For the GCF, n = 1200. In data transmission a block

is considered as correct, in which case it is accepted, or incorrect, in which

case it is ignored or retransmitted. Thus the proportion of blocks to be ignored

after possible repeated retransmissions is a measure of the performance of the

forward error correcting code employed on such a channel. This is one reason

that the block error statistics is a very important group of distributions to

be evaluated on the GCF.

(i) Block Error Rate as a Function of Block Size

Let us start this section by calculating the block error rate. An error

block is defined as a block having one or more error bits. An unbiased estimate

of block error rate or of the probability of a number of errors in a 1200-bit

block from the data is obtained by supposing every bit in the test run is a pos-

sible beginning of a block. In doing this, each run is divided into consecutive

th
blocks 1200 bits long starting at the i-th bit of the run (i= 1,2,...,1200) and the

number Ni(k) of blocks containing k bit-errors is noted. We thus obtain, for each

i= 1,...,1200, a probability Pi(k,1200) = Ni(k)/N that a block in the subdivision

contains k bit-errors or kl Pi(k,1200) as the block error rate in the subdivision.

(N is the total number of blocks in the subdivision). Now average over all the

possible 1200 starting positions and take the probability P(k,1200) that k errors
1200

occur in a block of length 1200 to be 12 0_ Pi(k,1200) and E P(k,1200) to
i=l kl

be the block error rate.

From Appendix IV, the probability of no errors in a block of size n is

given by: 4
c.

P(O,n) = Pl E 1  pn-I* (35)
l-p

j=l
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Hence the probability of getting an error block is given by

P(error block) = 1 - P(O, n) . (36)

Remember that 0 < p < 1 for j = 1, 4. Hence in (35), Pn-l goes down to

zero as n becomes large. And hence P(O, n) goes down to zero for large n.

Therefore by (36) P(error block) goes up to 1 as n gets larger. This is as

should be expected: if the bit error rate is not zero, that is to say if it is

possible for error to occur on the channel at all, it will occur eventually. So

that any block that is almost as long as the total test run is sure to include

the error bit.

The empirical and predicted block error rates for n = 1200 are shown in

Table 10 for the 4.8 kbps and in Table 11 for the 50 kbps data. For the 4.8 kbps

data, the block error rate ranges from a low of 0.021 of 1% during the Green

phase of transmission to as high as 1.81 during the high bit error mode. The

predicted values are 0.0066 for Red, 0.0021 for Amber and 0.00037 for the Green

groups with overall value of 0.00156 for the averaged channel. The block rates

for the wideband data range between a low of 0.009 of 1% and a high of 0.12 of

1%. The predicted value for the overall channel in this case is 0.00073.

In both cases,as shown in the tables, the predicted and empirical values

agree very closely.

(ii) Distribution of the Number of Errors in a Block - P(k, n)

If a block is in error how many of its bits have been received in error?

What is the average probability of an undetected block error for block codes? To

answer questions like these we need to know P(k, n).

Appendix IV shows that

n-k
P(k, n) = Pl Z U()(k-l, n--1l)

1=0
where

P(j, t) = V(m)P(j-l, t-m-l) (37)
m=O
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P(O, n) = U(n)

Z cin-
1

i=0

and hence, for example

n-1
P(1, n) = P1 F U(£)T(O, n-£-l)

£=0

n-1

= P 1 Z ()U(n-2-1)
Z=0

P(k,n), for n = 1200 was evaluated for each of the 29 error runs on

the HF circuit. Figures 8, 9, and 10 are some of the graphs of the probability

of k or more errors in a block, P( k,n), k = 0,1,...,n, for block length of

n = 1200 bits as given by the data and the model for each of the different

error modes. To emphasize the effect of the wide range of the bit error rate

-3
(0- 10 ) on the block error distribution, the predicted P( k,n) by the overall

channel is plotted on each of the graphs (to same scale). For example, in the

Red group, of all blocks containing errors, 64.78% contain 25 or more errors

and 36.92% have 50 errors or more while the percentages are 9.26 and 0.77 respec-

tively for the Green group. The overall channel predicts 37.00% and 12.29%

for 225 and ;50 errors (see Table 13). Tables 14 and 15 show the proportion

of all the blocks that were correctly received compared to the expected pro-

portion for both the HF and WB circuits.

Some of the codes now being considered for use on the GCF can correct

burst of errors in a block if all the errors in the burst are confined to within

a given length apart. In other words, if the distance between extreme errors in a
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Table 10 HF circuit (4.8 kbps) Table 11 W-B circuit (50 kbps)

Block Error Rate Block Error Rate

P(blk Err) P(blk Err) P(blk Err) P(blk Err) P

1 .018 .018 .505E-3  1 .0012 .0012

2 .00068 .00064 .453E-5 2 .00054 .00046

3 .00041 .00027 .915E-5 3 .00034 .00029

4 .0025 .0025 .507E-4 4 .000078 .000078

5 .0028 .0028 .2997E-4 5 .00012 .000077

6 .00057 .00047 .935E-5 6 .0001 .00009

7 .0021 .0021 .431E-14 7 .000093 .00008

8 .00048 .00040 .298E-5 8 .000094 .000077

9 .00095 .000072 .795E-7 9 .00011 .00008

10 .00024 .00017 .156--5 10 .00054 .00048

11 .00043 .00039 .197E-4 11 .00056 .00049

12 .00013 .000081 .423E-5 12 .0049 .004

13 .00018 .00011 .63E-5

14 .0013 .0013 .2 ll,-4

15 .O054 .0053 .29)E-,4

16 .00069 .o0069 .17E-5 Table 12 Croup Block Error Rate

17 .00076 .00077 .129E-4

18 .00021 .00016 .45-5 Group P(blk Error)

19 .0011 .00097 .978E-5 Red .0066

20 .0035 .0032 .915E-5 Amber .0021

21 .0035 .0035 .22E-3 Green .00037

22 .0051 .0046 .21E-4 Overall .00156

23 .0024 .0025 .146E-3 HF
Channel

24 .0022 .0022 .23F-h Overall .00073

25 .0013 .0012 .229E--4 W-B

26 .0054 .0058 .638E-4 Channel

27 .0033 .0035 .63 4 E-4

28 .0015 .0013 .353E-4

29 .00066 .00054 .14E-4
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Table 13(a). HF 4.8 kbps data. Table 13 (b). W-B 50 kbps data,

% of error blocks containing >k % of error blocks containing >k

errors, P( k,n) data P(2k,n) errors, P( k,n) data

model estimates, for block length P(tk,n) model estimates, for

n = 1200 bits. block length n = 1.200 bits.

P( 25,n) P(>25,n) P(t50,n) P(t50,n) P(>25,n) P(225,n) P( 50,n) P(!50,n)

21.64 56.46 14.14 23.96 59.28 61.46 35.68 36.86

8.34 4.9 7.53 0.21 67.60 76.96 44.32 58.01

35.78 54.73 23.91 29.11 78.49 67.75 56.65 44.94

18.47 36.00 12.02 12.35 29.78 29.91 ?4.80 8.47

21.95 14.05 2.62 1.77 50.65 54.89 45.34 29.33

21.54 35.77 17.24 12.18 93.19 62.31 79.22 37.82

22.70 38.17 14.02 13.51 84.oo00 54.77 56.06 29.15

9.07 5.87 4.27 0.28 65.71 52.04 59.84 26.31

68.42 58.37 40.56 33.98

8.53 9.25 8.44 0.69 71.10 58.67 43.91 33.56

68.92 68.26 56.53 45.55 88.36 73.78 61.18 53.19

52.45 68.37 48.53 45.93 64.92 80.60 50.26 62.21

55.38 72.80 47.94 51.87

29.37 29.35 13.05 7.60

3.10 5.7 1.87 0.27

11.44 29.49 8.84 8.08 Table 13 (c). Group estimate of %

60.04 47.68 33.80 21.84 of error blocks containing Zk

13.40 12.44 6.23 1.28 errors for block length

4.23 0.02 1.97 0.003 n = 1200 bits

65.05 74.59 51.38 54.57

6.24 0.67 3.49 0.38 Group P( 25,n) P(:50,n)

59.45 72.58 39.48 51.21 Red 64.78 36.93

12.54 14.58 5.01 1.56 Amber 22.56 4.71

24.96 33.73 6.11 10.51 Green 9.26 0.77

9.16 15.60 3.76 2.22 Av. 4.8 kbps 37.00 12.29

25.52 32.56 14.49 9.86 Av. 50 kbps 74.94 52.57

21.00 46.37 15.50 20.73
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Table 14 rimpirical (P(0,n)) and Table 15 .mpirical (P(O,n))

predicted (P(O,n)) thruput and predicted (P(O,n)) thruput

for the H-F 4.8 kbps circuit. for the W-B 50 kbps circuit.

n = 1200. n = 1200.

Group
Group (0O,n) P(O,n) (P(O,n) P(O,n) P(O,n)

1 .982 .982 .9988 .9988

2 Red .99654 .9965 .9934 .99946 .99954

3 (x1O-3) .99764 .99745 .99966 .99971

4 .99959 .99973 .99992 .99992

5 .9975 .9975 .99988 .99992

6 .9972 .9972 .9999 .99999

7 .99943 .99953 .99991 .99992

8 .9979 -9979 .99991 .99992

9 .99957 .9996 .99989 .99992

10 .99982 .999894 .99946 .99952

11 Amber .99874 .9987 .99944 .99951

12 (xo1- 4 )  .9946 .9947 .99789 .9951 .996

13 .99924 .9992

14.9989 .999 Overall Channel P(O,n) = 0.99927

15 .99655 .9968

16 .99491 .9954

17 .99782 .9978

18 .99874 .9988

19 .9946 .994

20 .9967 .9965

21 .99855 .99867

22 .99934 .99947

23 .99932 .99936

24 .99952 .9996

25 .99991 .99993

26 Green .99976 .99982 .99963

27 (xlO-5 ) .99987 .99992

28 .9993 .9993

29 .99979 .99984

Overall Channel P(O,n) = 0.99785
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burst is not too long we shall be able to correct all of those errors even with-

nut the use of feedback. This is why it is important to know:

(iii) Distribution of Distances Between Extreme Errors in a Block.

Since any error correcting code will be able to correct at least one error

especially if it is the only one in a block, we shall find this distribution for

those error blocks with two or more errors.

Let p)k denote the probability of exactly k bits between extreme errors

in a block of length n given that the block contains at least two errors. Then

as sho-'n in the Appendix,

n-k-2
P 1r(k+1) Z (m)U(n-k-2-m)

m=0 (38)
k l-P(0,n)-P(l,n)

where r(k) = P(lk! o) is the autocorrelation of bit errors and P(O, n) and

P(1, n) are respectively, as found above, the proportions of blocks that are

received correctly and those that contain exactly one error.

As much as 1.75% of all blocks transmitted may contain more than two

errors (Table 16) (about 0.48% in the wideband circuit) while less than 0.09 of

1% (0.00 % for WB circuit) contain exactly one error in an error block which can

be so easily corrected. It would thus be essential to use a "burst trapping"

code on the GCF if a high proportion of the error blocks have their bursts con-

fined to a correctable length. The length of a burst of.errors in a block is the

number of bits between the extreme errors in the block whatever the density of

errors therein.
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Examination of the HF data shows that an average of only 16.4% of the

error blocks in the Red group have their bursts confined to within a length of

twenty-five bits (22% to within fifty bits) while in some runs in the Green group

almost all the bursts are confined to within a maximal length of 25 bits (Table 16).

However in every one of the test runs a high percentage (Table 18) of the error

blocks have all their errors at exactly a distance of twenty-three bits from

the first error in the block. This is the effect of the fixed error pattern

caused by the code built into the circuit modem. The code causes bit errors at

th rd
18-- and 23- bit positions after a random bit error. For example, in the Red

group, as much as 24.2% of all the bursts in the error blocks are due to this

effect; in the Amber group there is a run with as high as 83% while a percentage

of as high as 98 is recorded in the Green group. The smaller the percentage of

this fixed error pattern the better the agreement between the data and predicted

values of the error bursts.

A block length of 1200 bits is so long compared to the effect of the

fixed error pattern that the two errors caused by the modem code fall, in most

cases, within the block having the affected random error. Thus only few blocks

should contain exactly one error which may occur either at the beginning of the

block (within the first four bits) or at the end (within the last 18 bits). Other-

wise an error block would have at least two errors. This fact explains why the

empirical probability of exactly one error in an error block, P(l,n), is so

low (see Table 16).

In the wideband circuit these fixed error effects are not as pronounced

although there are some jumps as high as 22% in the block error bursts at

a distance of exactly twenty-eight bits from the first error in that block
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Table 16 HF 4.8 kbps circuit

Proportion of error blocks containing two

or more errors and whose errors are con-

fined to not more than (i) 25 bits, (ii) 50 bits

Group Group

Group P(l,n) P(k>2,n) P(k~ 51 P(k~551 P(k251 (k501 P(ks50! P(k!501

1 .34E-03 .0175 25.4 9.4 28 14.8

2 Red .42E-4 .0034 9.4 11 10.3 18.4 19.6 17.2

3 .33E-4  .0025 14.4 11.1 20.0 20.1

4 .68E-5 .00027 51.7 16.0 53 39.1

5 .11E-3 .0024 58.8 29.7 78.2 48.4

6 .22E-3 .0026 54.5 34.7 67.8 50.8

7 .20E-4 .00045 43.1 31.5 64.5 51.4

8 .8E-4 .002 42.8 25.3 61 42.1

9 .61E-5 .00038 15.1 11.7 16.8 20.0

10 .14E-5 .0001 33 13.3 41.6 24.1

11 .62E-4  .0012 27.7 26.6 48.2 42.2

12 Amber .59E-3 .0047 60.1 45.6 34.7 90.4 68.3 54.0

13 .38E-4  .00073 51 31.9 77.4 52.5

14 .79E-4 .0009 68.9 39.7 72.9 56.8

15 .91E-3 .0023 90.3 47.9 90.4 70.4

16 .83E-3 .0037 74.2 45.7 81.00 65.5

17 .16E-3 .002 52.5 20.6 66.3 33.7

18 .54E-4 .0012 27.9 28.4 40.5 46.4

19 .43E-3 .0053 47.9 42.2 80.5 64.3

20 .16E-3 .0034 43.4 27.4 62.6 42.9

21 .42E-h .0013 60.9 27.3 78.6 47.0

22 .164E-4 .00051 42.2 21.8 59.9 35.9
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Table 16 Cont'd.

Group Group
Group P(l,n) P(k 2,n) P(k 251 P(ks251 P(k251 P(k!501 P(k501 P(ks501

>2) 22 ) 22 ) 2% 2) 22)

23 .76E-4 .00057 67 51.0 91.4 76.0

24 .44E-4  .00035 70 47.4 88.4 69.5

25 .54E-4 .00005 99.9 74.3 100 93.4 70.2

26 Green .16E-4 .00016 18.8 41.7 48.o 59 60.3

27 .13E-5 .00008 3.53 16.4 47.0 30.1

28 .23E-3 .000oo6 95.9 54.8 99.96 79.6

29 .50E-5 .00016 37.3 23.8 55.4 36.6

Average P(k52512) = 46%; P(ks25jo2) = 24.2%

P(k50I~2) = 63.2%; P(k 501!2) = 38.9%
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Table 17 W-B 50 kbps Circuit

Proportion of error blocks containing two or

more errors and whose errors are confined to

not more than (i) 25 bits, (ii) 50 bits

Overall Overall
P(1,n) P(k 2,n) ( 251 P(k-251 P(k <251 P(k501 P(k<50! P(k-501

1 .24E-! .0012 6.4 19 36.5 33

2 .78E-5 .00046 19.2 10.9 22.8 19.6

3 .46E-5 .00029 4.5 17.7 19.5 31.3

4 .38E-5 .00007 4.6 28.2 10.9 44.o

5 .19E-5 . ,0008 25.1 24.5 8.6 27.8 43.0 13.3

6 .8E-6 .0001 3.4 20.8 7.1 35.2

7 .20F-5 .00008 4.6 24.3 10.0 39.5

8 .21E-5 .00007 31.5 27 33.8 46.7

9 .18E-5 .00008 24.5 23.6 30.4 39.6

10 .10E-4 .00047 15.7 20.8 22.7 36.9

11 .61E-5 .0048 3.1 13.3 10.8 23.6

12 .34E-4 .oo4 7.4 4.0 10.2 6.8
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Table 18

HF (4.8 kbps) circuit.

Values of k at which impulsive

increase in P(-- 2) occurs Table 19

W-B (50 kbps) circuit.

P(ki) Values of k at which impulsive

1 23 - 24.2 increase in P(--I2) occurs

2 23 4.95

3 23 9.1 k P(- 2)

4 20 10.1

23 39.4 1 - --
2 28 16.4

5 23 54

6 23 44.4 3 -- -

7 23 34.6 -- --

8 23 36 5 28 22.1

9 23 13.1 6 -- --

10 23 31.2 7

11 23 25.3 8 25 28.5

12 23 49.8 51 21.3

J23 28.1 10 28 12.4

13 124 10.2 11 -- --

14 23 55.8 12 --

15 23 83.0

16 23 65.7

17 23 46.7 Table 20

18 23 25.0

19 23 35.8 Predicted distribution of errors

20 23 35.9 in interleaved codes

21 23 38.8 Group Pt(O,n) Pt(1,n) Pt( 4,n)
22 23 27.4

23 23 56.5 Red .993860 .00059 .00447

24 23 59 Amber .99831 .00049 .00061

25 23 98.1 Green .99973 .00011 .00005

26 23 12.3 Overall .99813 .00038 .00092

27 46 40.4 4.8 kbps

28 23 89.8 Overall .99932 .000047 .00056
89.8 50 kbps

29 )23 17.9

(46 16.5
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(Table 19). Which explains why in this case the data and predicted values are

much closer (Table 17)-

In a seperate paper to deal with comparison of code performances on the

GCF, a strategy will be developed to correct for these fixed error patterns

before assessing the capability of any code on the channel.

A rather simple way to correct burst noise is to interleave the coded

blocks to some depth t, say. Here the bits of each block are not transmitted

consecutively but rather the bits of every t coded blocks are interspersed in

such a way that the once consecutive bits are transmitted separated exactly t

bit positions apart. When re-ordered at the receiver the blocks appear to have

been corrupted by random errors, for sufficiently large depth t. It is interest-

ing to observe the effect of interleaving on the distribution of block errors.

The random error effect is to spread out the bit errors among many more blocks

than would otherwise have been affected by the action of the bursty channel

alone on the un-interleaved blocks with the result that the number, and hence

the proportion of error-free blocks after the interleaved blocks are commuted

together again at the receiver, is lower than without interleaving. But the

error blocks now contain fewer errors. Thus if a code that can correct up to,

say, r errors in a block is interleaved appropriately, many more blocks than

otherwise would now be decadable. Hence a measure of performance of interleaving

is the percentage increase in the proportion of decadable blocks. This is the

main idea behind interleaving.

Suppose we interleave a block code of length N to depth t. That is

each of the blocks is divided into t sub-blocks as shown in (39).
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U1ut+1 ' uct+l

112 11t+ 2  • Uct+2N

- 1 (39)

utu2 t "' u(c-l)t

Each sub-block is seperately encoded and decoded before they are finally commuted

together again. Let X1, X2, ... , TX be the number of errors in sub-block j,

j = 1, 2, ... , t. By the time independence of our model (which in practical

terms implies that the channel is as likely to introduce errors say in the first

sub-block as it is in any other) it is not difficult to see that the X 's are

identically distributed. But they are not independent (because of the burst

phenomenon). Now suppose the interleaved code can correct up to r errors in

each of the t sub-blocks. Then we shall be able to correct up to a total of

rt errors in the whole block of length N if no one of the component t sub-

blocks contains more than r errors. Thus we should find the probability that

(X1 5 r, X2  r, ... , Xt  r].

First we find the distribution of the X's denoted by Pt(k,n).

(iv) Distribution of Errors in a Code Interleaved to Some Depth t

It is shown in the Appendix that

n-k
Pt(k,n) = Pt(1) E Ut(.1)Pt(k-l, n-A1-1) (40)

a =0

where
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n-l 1 -k

t(k-1, n-1-) = Vt(£2)Pt(k-2, n-1 2-2 )
2=O

ut(k) Pt(Ok l)
k

Pt(1) = bit rate

N
all calculated using the t-step transition probabilities. Here n - N is the

length in bits of each of the t sub-blocks.

Let us interleave each block to depth t = 6 so that n = 200 bits. In

this case for the Red group the thruput Pt(O,n) is as high as 0.99386 with

only 0.45 of 1% containing four or more errors. In the good mode (Green group)

the thruput is 0.9997 uith only 0.00005 containing four or more errors. See

Table 20 for the complete numbers.

As we remarked above the important distribution for evaluating performance

of interleaving is the probability of the joint events fX1  r, X2  r,

Xt 5 rl for the error correcting capacity r of the code employed. Details of

this and some other strategies of burst correction will be given in a seperate

paper.
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Section VI

BLOCK (SYMBOL) ERROR DISTRIBUTION

There are some error correcting algorithms in which a block is considered

as being made up of symbols, each symbol is a fixed number of bits. Such an

algorithm is designed, for example, to correct up to a given number of symbol

errors in a block. Because the errors on the GCF occur in clusters therefore,

it may be more efficient to employ this type of algorithm rather than use one

that is designed to correct only bit errors. Another reason for looking at

symbols instead of the individual bits will be demonstrated presently when we

consider the problem of acquisition and maintenance of synchronization on the

GCF.

But even without consideration of forward error correction it is almost

clear that dividing a block on the GCF into symbols of appropriate length is a

more efficient way to take advantage of the burst noise for feedback and re-

transmission. For in doing so, we shall need only ask for and retransmit the

symbols within each block that are received in error instead of having to re-

transmit the whole block. Retransmitting only the error symbols will particu-

larly be preferred in cases when, although the number of bit errors in the block

is higher than the error correcting capability of the code employed, the errors

are all confined to within only a few symbols.

For a symbol of length s let us first find the statistics we shall

employ to estimate the performances of the different algorithms designed for,

correcting symbol errors. Then we shall treat the problem of acquisition and

maintenance of synchronization on the GCF. Specifically we shall look at the

following statistics:
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(i) Ps(k,n): the distribution of error symbols in n-symbol word

pS(On) = probability of error-free n-symbol word

(ii) PS(0k 1): the probability of k error-free symbols following a

given error symbol,

Ps(0klll ) = the symbol gap distribution

(iii) RS(k) = P(symbol k in errorlinitial error symbol) or the corre-

lation of symbol errors.

In the sequel a symbol is considered to be in error if at least one of

its bits is in error. All the above expressions are derived in the Appendix V.

(i) Distribution of Error Symbols in n-Symbol Word

This is given by:

n-k

Ps(k,n) = Ps Y Ps(0 ll) Fs(k-l, n-1-l) (41)
L=0

where

n-k-2

Ps(k-l,n-A1 -l) = P (0 2111) P (k-2, n- 1 - 2 -2)

S2=0

(ii) Symbol Gap Distribution

The probability of k error-free symbols following a given error symbol

is:

cs (1-pi)

psO l) = ci(1 - p s )

Pi(1-P
)

1 1 p i(l-p
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(1-ps 
2

1 ) ipi pi(l-pi)

( l-p )

i i

Ps is the symbol error rate and P is the bit rate. For s = 6, 8 or 10 in1

a block of length 1200 bits, Ps(k, n) was found for the Red, Amber and Green

groups and the overall H-F and W-B channels (Table 21). If we use a code that

corrects up to two symbols say, the table shows the proportion of blocks that

would contain more symbol errors than the capability of the code and may have

to be retransmitted. For example, for symbol length s = 6 bits in the Red

(10 3 bit rate) group about 0.6% of the blocks would be in this category. To

achieve the same error rate we would have to be able to correct up to 6 bit

errors in the 1200-bit block if we use a BCH code and we would need to use

about 66 parity check bits to do it. At present only 33 bits are allowed for

error detection and correction capability on the GCF. So that even if we use

all the 33 bits for error correction alone we cannot correct more than 3 bit

errors in the 1200-bit block. For the same symbol error correction capability

the longer the symbol length, of course, the less the proportion of blocks left

uncorrected and the longer the parity check bits of the BCH code that will give

the same error probability (see Table 21).

As said in a number of places already our intention in this report is not

to present detailed study of appropriate coding strategies (including feedback)

for the GCF. This we intend to do in a separate paper. The above trade-off was

mentioned only to emphasize the importance (and efficiency) of symbol error

correction on the GCF.
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Table 23. Symbol error rate (Group Statistics). The proportion having at least three

symbol errors and the number of bit errors that give the same proportion in

a 1200-bit block considered as made up of symbols of length s = 6, 8 or 10 bits.

Number of Number of Number of
bit errors k bit errors k bit errors k
giving equi- giving equi- giving equi-

s=6; n=200 valent value s=8; n=150 valent value s=10; n=120 valent value

of PS(t3,n); of Ps(!3,n); of PsR 3,n);

Ps(,n) P1 PS3,n) & (P(k,1200) P p3,n) & (P(kk,200)) 3,n) P1 Ps(3,n) & P(k,1200))

Red .9935 .00066 .0061 6 .00073 .00595 7 .000779 .00586 8
(.0061) (.00596) (.00586)

Amber .99788 .000084 .00162 5 .932(-4) .00153 6 .00010 .00145 7
(.00165) (.00155) (.00146)

Green .999624 .966(-5) .00024 5 .11(-4) .00022 6 .12(-4) .00021 7
(.00025) (.00023) (.00020)

Av. 4.8 .9978 .000122 .00183 5 .000135 .00176 6 .000145 .0014 7
(.00183) (.00176) (.0017)

Av. 50 .99932 .976(-4) .000644 12 .00011 .000637 13 .00012 .000631 14
(.000642) (.000635) (.000628)
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Fig, 16. Distribution of symbol errors (averaged 4.8 kbps
channel; symbol length = 6 bits)
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Fig. 17, Distribution of symbol errors (overall 50 kbps channel;
symbol length = 6 bits)
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Fig. 21. Distribution of symbol errors (overall 50 kbps;
symbol length = 10 bits)
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(iii) Correlation of Symbol Errors

This section will not be complete without a word about the autocorre-

lation of symbof errors denoted by rs(k), k = 0,1,2,..., i.e., rs(k) = P(symbol

k in errorlinitial symbol error). For if the symbol errors are too highly

correlated then we may not be able successfully to shorten the buffers at the

transmitter and receiver since we may be forced to store for retransmission

many blocks that are in error because occurrence of an error symbol may cause

a high number of others to occur in quick succession. On the other hand if the

capability or the code employed for forward error correction can handle most of

the bursts when they occur it would be desirable to have high values of rs(k) for

small values of k, i.e., just as in bit autocorrelation we would want to have not

much longer bursts of symbol errors than the capability of the symbol correct-

ing code so as not to have a problem of buffer over-flow for a buffer of

"moderate" size. More detailed consideration of this problem will be studied

in another paper.

In Appendix V it is shown that (iii) is given by:

r (k) = 1 - (CQ'1 S(k S- U (42)

cPi(l-p )

pi(l-p)

where

c = (c1 , E2 , c3 , c4 )

M5x5 : transition matrix 
(Fig. 2)

R4x4 : metrix of transitions between 
the good states only

(obtained by deleting the last row and column of M)

S = M - (last column of M)

U = column vector (4 x 1) of l's

and
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I 1
1-p s-1  0

-p
1-p2 1-ps-1

Q -p3  l-

3 1-p1

0 1-P4

For s = 6, Table 22 displays values of rs(k) for k = 3, 200. It is seen

that the highest correlation exists in the Red (xl -3 error rate) group. In

this case it is more probable (0.57) for a symbol error to be correlated with

another three symbols away. This correlation reduces to less than 0.08 when

k = 200 the symbol error probability is 0.00066. In designing a feed-back and

retransmission strategy for the GCF note should be taken of the high symbol

error correlation in each of the error groups for k = 3 (and indeed for all

moderately small values of k) and of what we shall call a burst of block

errors in the next section. It is only in the Green (xlO 5 bit rate) group that

r (1200) = 0.00001 is closest to the symbol error probability (0.0000097) show-

ing as in the case of bit correlation that symbol memory is almost 1200. We may

further observe that as symbol length becomes longer (for example s = 10 in

Table 22) the correlation is weaker for small values of k. That is to say that

in a great number of bursts of errors on the GCF the longer the symbol lengths

the more likely it is that all the errors are contained within (i.e. affects)

only a single symbol. Obvious factt But no such general statement can be made

for large values of k except in the case of the Red error group where an error

symbol of length s = 10 bits is less likely to effect an error in another

symbol at distance k = 200 away (than in the case when the symbol length is

6 bits).
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Table 22. Group symbol-error correlation. The

probability starting with initial symbol

error (with probability Ps) of getting

another symbol error in position k = 3

or 200 for symbol lengths s = 6, 10.

rs(k) for s = 6 rs (k) for s = 10

k 3 200 P1  3 200 P1

Red .5722 .075 .00066 .554 .069 .000779

Amber .4841 .0028 .000084 .456 .0032 .0oooo10

Green .4031 .00001 .966(-5) .358 .000012 .12(-4)

Av. 4.8 .5304 .02 .000122 .51 .0155 .000145

Av. 50 .5643 .1054 .9 6(-4) .61 .087 .00012
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Fig, 22. Auto-Correlation of symbol errors (averaged 4.8 kbps;
symbol length = 6 bits)

98 JPL Technical Memorandum 33-699



0

0

0

3 -

z

z

( -2-

z

0

-3

-4
0 300 600 900 1200

NUMBER OF SYMBOLS k

Fig. 23, Auto-correlation of symbol errors (overall 50 kbps;
symbol length = 6 bits

JPL Technical Memorandum 33-699 99



iv. Sync Acquisition and Maintenance Probabilities

We are now ready to consider in some detail the problem of sync acquisi-

tion and maintenance on the GCF. Of course it is understood that all we can do

here is to exhibit the probabilities of each of a number of strategies that are

now being proposed for reacquiring synchronization once it is lost and for

maintaining it after it is acquired. The hardware problems are beyond the scope

of this workt

Specifically we intend to compare the performances of two strategies both

based on using a prefix sequence of 24 bits in each of the 1200-bit blocks.

1. The first strategy proposes to accept sync if there are not more than 3-bit

errors in the prefix sequence.

2. The second accepts sync if there is at most only one error symbol in the

24-bit prefix considered as four 6-bit symbols.

Our criterion of comparison shall be the efficiency of each of the

algorithms in reacquiring a lost sync within a frame of 1200 bits after it is

lost and of maintaining it once it is reacquired. Then we shall explore ways

of improving the algorithms.

Certainly if the 24-bit prefix of a block agrees exactly with the sync

sequence we would have no doubt but that we have acquired synchronization. It is

when this agreement is not perfect that we are forced to make a decision as to

whether the errors causing the disagreement are due only to the channel noise or

to the fact that the 24-bit sequence was not originally the sync sequence. At

the extremely high bit rate which will be in use it is not unacceptable to search

every 24-bit segment of the incoming data until one of the segments "looks

enough" like the sync sequence that we are reasonably sure that we have located

the start of a new block. How many errors in a 24-bit segment should we attribute

100 JPL Technical Memorandum 33-699



bit positions. And if we are told that the sync sequence contains some errors

all we can really assume is that any one of its bits could be the one in error.

So that each bit is as likely to be in error as any other bit and then it is as

likely to be in error as it is not. Thus we see that the probability of false

detection does not depend on the error rate of the channel. Hence to compute

this probability we can treat the prefix 24-bit sequence as composed of

independent equally likely bits.

We draw several conclusions from our tables.

1. Table 23(a): For n = 24, even in the worst (Red) error mode,

the algorithm for acquiring sync, once it has been lost, which looks

for a 24-bit sequence that looks like the sync sequence up to only

1 bit error would fail to detect sync less than 0.1% of the time within

one block after the loss of sync. And in only about 0.18% of the time

will this algorithm lock onto the wrong synchronization. However, the

algorithm that allows up to 3 errors in the sync sequence will lock

onto the wrong synchronization in over 16% of the time although it will

hardly fail to identify the true sync sequence. Table 23(b) tells the

story for the wide-band 50 kbps circuit.

2. On the other hand the algorithm which looks at the 24-bit sync sequence

as four 6-bit symbols and locks onto synchronization if not more than one

symbol is in error will lock onto the wrong sync in less than 2% of the

time and is equally as efficient as the first algorithm in not failing to

identify true synchronization. This algorithm is equally strong for the

wide-band channel (see Tables 24(a) and (b)).

We can explain our conclusions in 1 and 2 by the fact that we are dealing

with a burst noise channel which is very good indeed during the good modes (see

the high thruput in each case analyzed - Tables 23-24). When the errors do
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to the action of the channel noise and still be well protected against locking

onto wrong line sync? In other words how well must a segment look enough like

the sync sequence? For if we refuse to lock onto sync any.time the 24 bit

segment tested disagrees with the sync sequence we may miss acquiring the sync

because of the noise in the channel. We call such a mistake FAILURE TO DETECT

sync. On the other hand if our algorithm is not stringent enough, in a frame

of 1200 bits a 24-bit segment which is not the sync sequence might be accepted

as one. This mistake is referred to as FALSE DETECTION of sync.

Probability of failure to detect sync (Tables 23-26) is given, in the

case of the first algorithm, by

Pr(failure to detect using the bit count) = P(k,n) (43)
k>t

where P(k,n) computed in ( 37 ) is the probability of getting k bit errors

in an n-bit sync sequence and ko is the detection level for the algorithm.

For the second algorithm this probability is given by:

Pr(failure to detect using algorithm 2) = 3 Ps(k,n) (44)
k>t

where Ps(k,n) given in (41) is the probability of k symbol errors in an n-

symbol sync sequence. We present these probabilities for each algorithm and each

test run, each of the Red, Amber and Green error modes and the averaged high-

frequency end wide-band channels. To compute the probability of false detection

we use the fact that if our algorithm allows up to k errors in the sync

sequence then there are times we acquire sync that we are really choosing any one

of the other sequences of O's and l's that differ from the sync sequence in : t
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occur however they do so in bunches. The second algorithm uses this fact by

allowing up to five errors provided they all occur in only one symbol.

3. We increase the length of the sync sequence to 30 and 36 bits to see

when the first algorithm can be efficient (see Tables 25 and 26). At

n = 30 bits we can very safely allow up to 3 errors in the sync sequence.

This procedure will lock onto the wrong sync within one block of sync

loss in less than 0.5% of the time while it provides ample protection

against failure to identify the right sync sequence. Still for n = 30,

even allowing up to four errors will lead to wrong identification in

less than 4% of the time compared to 16% for allowing just one error at

n = 24. See the rest of Table 24 for the results for the Amber, Green

and the averaged channels. As expected the efficiency of the first

algorithm improves with longer sync sequence. Look at the case for

n = 36.

4. In the case when the sync sequence is taken to be 5 symbols (30 bits)

instead of four it is hardly possible to lock onto the wrong synchroniza-

tion with the algorithm that allows up to one symbol error. Within a

block of loss of sync this algorithm will not fail to identify the sync

sequence if there is one and will lock onto the wrong sync with about the

same probability (<0.0009). But to allow up to 2 symbol errors will detect

the wrong sync in about 5% of the time (see Table 26).

We designate by THRUPUT the probability that the sync sequence passes

through error-free and it is shown in Tables 23-24. Then the probability that

the sync is maintained once it is acquired which depends on the criterion for

sync acquisition being used is the thruput plus the probability of getting s t

errors in the sync sequence. This probability is very high indeed for each of
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the algorithms examined. Thus we have based our comparison only on their

strength of reacquiring synchronization within a frame of 1200 bits after it is

lost.

(v) Conclusion

For a sync sequence of length n = 24 bits the algorithm that allows not

more than one symbol error is preferred to the one that allows up to three bit

errors. By looking at symbols instead of individual bits we can reduce the

probability of false detection of sync sequence from 16% to less than 2% with

correspondingly lower probability of ever failing to lock onto the right sync.

We are even much better protected against ever making a wrong decision

if we allow the sync sequence to be up to 5 symbols long. In this case the

probability of ever making either type of error is less than 0.0009. To achieve

this reliability we cannot allow more than two bit errors in the 30-bit sync

sequence if we employ the bit count as our criterion of reacquiring synchroniza-

tion once it is lost.

It is therefore suggested that we look into the possibility of using a

sync sequence of 5 symbols so as to take advantage of the efficiency of the second

algorithm.
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Table 23(a). Probabilities of failure to detect and of false detection

of sync for algorithm which looks at 24-bit prefix and

allows <t errors. (H-F 4.8 kbps)

Detection Level

k 1 2 3 4 Prefix

Prob. of 
Thruput

false detect .00175 .021 .163 .9078

Red .00093 .00083 .00072 .00062 .99896

Amber .00012 .00010 .87E-4 .71E-4 .999858

Green .15E-4 .12E-4 .96E-5 .74E-5 .999981

Av. 48 .00017 .00015 .00013 .00011 .999806

1 .00229 .00189 .00152 .00118 .99728

2 .000024 .000019 .000014 .0000099 .999971

3 .000026 .000025 .000023 .000022 .999973

4 .00018 .00016 .00014 .00012 .999802

5 .00015 .000114 .000087 .00006 .999816

6 .000032 .000029 .000026 .000023 .999965

7 .00016 .00015 .00013 .00012 .99982

8 .000016 .000012 .000009 .000007 .999981

9 .44E-6 .88E-7 .14E-7 .19E-8 .999998

10 .77E-5 .61E-5 .47E-5 .34E-5 .999990

11 .66E-4 .61E-4 .55E-4 .50E-4 .999928

12 .1oE-4 .10E-4 .98E-5 .95E-5 .999989

13 .16E-4 .15E-4 .15E-4 .14E-4 .999983

PROB. 14 .92E-4 .78E-4 .65E-4 .52E-4 .999894

OF 15 .21E-3 .17E-3 .12E-3 .82E-4 .999734
FAILURE 16 .11lE-4 .39E-5 .12E-5 .28E-6 .999975

TO
DETECT 17 .49E-4 .45E-4 .40E-4 .35E-4 .999945

18 .14E-4 .13E-4 .12E-4 .10E-4 .999984

19 .45E-4 .36E-4 .28E-4 .22E-4 .999944

20 .60E-4 .23E-4 .73E-5 .19E-5 .999874

21 .62E-3 .60E-3 .56E-3 .53E-3 .999347

22 .14E-3 .8OE-4 .41E-4 .18E-4 .999789

23 .00044 .00041 .00039 .00036 .999542

24 .00015 .0001 .00006 .000029 .999795

25 .87E-4 .79E-4 .70E-4 .61E-4 .999903

26 .00028 .00023 .00019 .00016 .999679

27 .00025 .00022 .00018 .00015 .999707

28 .ool10 .98E-4 .92E-4 .87E-4 .99989

29 .49E-4 .45E-4 .40E-4 .36E-4 .999946
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Table 23(b). Probabilities of failure to detect and of false detection

of sync for algorithm which looks at 24-bit prefix and

allows 5t errors (W-B 50 kbps)

Detection Level

k 1 2 3 4 Prefix

Prob. of Thruput

false detect .00175 .021 .163 .9078

Av. 50 kbps .00015 .00013 .00011 .96E-4 .99983

1 .00013 .00012 .00012 .00011 .999862

2 .81E-4 .78E-4 .74E-4 .70E-4 .999916

3 .35E-4 .33E-4 .32E-4 .30E-4 .999964

4 .54E-5 .45E-5 .37E-5 .30E-5 .999993

PROB. 5 .67E-5 .65E-5 .62E-5 .59E-5 .999993

OF 6
FAILURE
TO

DETECT 7 .70E-5 .66E-5 .61E-5 .57E-5 .999992

8 .61E-5 .58E-5 .56E-5 .53E-5 .999993

9 .73E-5 .69E-5 .65E-5 .62E-5 .999992

10 .49E-4 .47E-4 .44E-4 .42E-4 .99995

11 .71E-4 .69E-4 .66E-4 .64E-4 .99993

12 .0011 .00096 .00078 .00059 .998706

106 JPL Technical Memorandum 33-699



Table 24(a). Probabilities of failure to detect and of false detection of
sync for algorithm which looks at a prefix of four 6-bit symbols
and allows !t errors (H-F 4.8 kbps)

Detection Level
k 1 2 3

Prob. of Prefix
false detect .0177 1 1 Thruput

Red .00079 .000546 .00029 .998974

Amber .0001 .63E-4 .29E-4 .999858

Green .12E-4 .96E-4 .26E-5 .999982

Av. 4.8 kbps .00015 .96E-4 .47E-4 .999803

1 .00186 .0011 . 4 4E-3 .997276

2 .193E-4 .12E-4 .44E-5 .999972

3 .27E-4 .227E-4 .16E-4 .999968

4 .00016 .00011 .623E-4 .999798

5 .00011 .586E-4 .225E-4  .999814

6 .31E-4 .225E-4 .13E-4 .999961

7 .00015 .00012 .68E-4 .999821

8 .13E-4 .791E-5 .30E-5 .999981

PROB. 9 x10o6  x10- 7  x10 8  999997

OF 10 .74E-5 .40E-5 .15E-5 .999988

FAILURE 11 .49E-4 .38E-4 .24E-4 .99994

TO 12 .75E-5 .69E-5 .58E-5 .999992

DETECT 13 -. 19E-4 .17E-4 .14E-4 .999979

14 .74E-4 .48E-4 .22E-4 .9999

15 .00018 .000 .38E-4 .99974

16 .85E-5 .19E-5 .18E-6 .999976

17 .40E-4 .32E-4 .18E-4 .99995

18 .12E-4 .834E-5 .53E-5 .99997

19 .34E-4 .18E-4 .68E-5 .999943

20 .46E-4 .1lE-4 .11E-5 .999875

21 .00059 .00051 .00038 .99933

22 .00011 .45E-4 .88E-5q .999786

23 .00040 .00033 .00023 .99955

24 .00013 .59E-4 . 1 4E-4 .999798

25 .784E-4 .61E-4  .35E-4 .99999

26 .00022 .00014 .63E 4 .99968

27 .00021 .00013 .65E-4 .99971

28 .96E-4 .82E-4 .624E-4 .99989

29 .44E-4 .351E-4 .22E-4 .999946
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Table 24(b). Probabilities of failure to detect and false

detection of sync for algorithm which looks at a

prefix of four 6-bit symbols and allows :t errors

(W-B 50 kbps)

Detection Level

k 1 2 3

Prob. of Prefix
false detect .0177 1 1 Thruput

Av. 50 kbps .00012 .79E-4 .36E-4 .999845

1 .00011 .95E-4 .72E-4 .9998686

2 .812E-4 .69E-4 .52E-4 .999908

3 .35E-4 .292E-4 .22E-4 .9999608

4 .11E-5 .611E-6 .26E-6 .999997
PROB.
OF 5 .89E-5 .782E-5 .63E-5 .9999899

FAILURE
TO 6 .39E-5 .33E-5 .261E-5 .9999955

DETECT
7 .47E05 .37E-5 .27E-5 .999994

8 .79E-5 .69E-5 .55E-5 .999991

9 .64E-5 .53E-5 .42E-5 .999993

10 .48E-4 .hlE-4 .30E-4 .999945

11 .55E-4 .49E-4 .40E-4 .999939

12 .001 .00072 .00031 .99867
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Table 25. Probabilities of failure to detect and of false detection

of sync for algorithm which looks at a prefix of length

n = 24, 30 or 36 bits and allows k errors.

Prob. of. Prob. of Failure to Detect

False
n k Detect Red Amber Green Av. 4.8 Av. 50

24 1 .00175 .00093 .00012 .15E-4 .00017 .00015

2 .021 .00083 .00010 .12E-4 .00015 .00013

3 .163 .00072 .87E-4  .96E-5 .00013 .00011

4 .9078 .00062 .71E-4 .74E-5 .00011 .96E-4

5 .9078 .00062 .71E-4 .74E-5 .00011 .96 E-4

30 2 .00051 .00092 .00012 .14E-4 .00017 .00015

3 .0049 .00082 .00010 .12E-4 .00015 .00013

4 .0348 .00073 .86E-4  .93E-5 .00013 .00012

5 .1901 .00063 .71E-4  .73E-5 .00011 .99E-4

6 .8371 .00054 .58E-4 .56E-5 .9E-4 .82E-4

7 1 .00045 .46E-4 .42E-5 .73E-4 .66E-4

36 3 .00013 .00091 .00011 .13E-4 .00016 .00015

4 .0011 .00082 .99E-4 .11E-4 .00014 .00013

5 .0075 .00073 .85E-4 .89E-5 .00013 .00012

6 .041 .00064 .71E-4 .72E-5 .00011 .00010

7 .182 .00055 .59E-4  .56E-5 .92E-4 .86E-4

8 .694 .00047 .48E-4 .43E-5 .77E-4 .71E-4

9 1 .00039 .38E-4 .32E-5 .62E-4 .57E-4
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Table 26. Probabilities of failure to detect and of false detection

of sync for algorithm which looks at a prefix of n 6-bit

symbols (n = 4, 5, 6) and allows !k errors.

Prob. ofProb.false f Prob. of Failure to Detectfalse
n k Detect Red Amber Green Av. 4.8 Av. 50

4 1 .0177 .00079 .0001 .12E-4 .00015 .00012

2 1 .000546 .63E-4 .64E-5 .96E-4 .79E-4

5 1 .00034 .00089 .00012 .14E-4 .00017 .00014

2 .044 .00066 .79E-4 .84E-5 .00012 .0001

3 1 .00044 .47E-4 .45E-5 .75E-4 .62E-4

6 1 .64E-5 .00097 .00013 .15E-4 .00018 .00015

2 .0010 .00076 .93E-4 .10E-4 .000oool .00012

3 .086 .00056 .62E-4 .61E-5 .97E-4 .83E-4

4 1 .00036 .35E-4 .31E-5 .59E-4 .48E-4
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Section VII

BURST DISTRIBUTION

From what has been said up to now it is clear that the single most im-

portant distribution on the GCF is the Burst Distribution. Indeed it is precisely

because of this reason that attempts are being made to design forward and feed-

back error correcting strategies that have the capability of removing these

bursts of errors for improved communication. The fact is that absolutely every

step must be taken to understand the nature of these bursts: how long they

are, how dense the errors within them are, and particularly how many standard

1200-bit blocks are affected each time the channel enters into this bursty mode.

These and related questions will be answered in this section.

But before we start, let us try to fix ideas of what exactly we shall

refer to as a burst of errors. We define a burst as a sequence of bits (a) be-

ginning and ending with an error, (b) separated from the nearest preceding and

following error by a gap of no less than some number, say G, called the guard-

space, and (c) containing within it no gap equal to or greater than the guardspace.

Immediately a number of questions spring to mind. For example, how large

must a guardspace be? Or for a given set of data what is the criterion for

choosing an optimum value of G? The fact is that since optimality of G can be

defined only with respect to a set of criteria which in turn are based on what

we consider important, a value of G which is optimal in one sense may necessar-

ily not be optimal in some other. We shall illustrate this point with two

examples:

1. Following Stern's intuitive reasoning in [151 the optimum G should sep-

arate the data into bursts with a density of errors which is much higher

than the "background" error rate. The background error rate is used here
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to ref-r to the error rate which would result i.f each sequence of bits

defined as a burst were called and replaced with a single bit error.

The proportion of bursts in a test, the density of errors in a burst

and the distribution of burst lengths all should not be too sensitive

to the G that is optimum. By consi.derin the variation of the back-

ground error rate with G alone it is possible to find a range of G

values that leaves the background error rate constant. Take as optimum

G any value in this range.

2. We are primarily interested in choosing as guardspace that G that will

divide the data into bursts a high proportion of which are less than the

burst correcting capability of the code employed on the channel. To be

more precise let b be the burst correcting capability of a code C.

By this we mean relative to the guardspace G, b is the largest integer

for which every noise sequence containing only bursts of length b or

less is correctly decoded. See Gallager [16]. So in this case we will be

interested in choosing a C for which b is maximal for the code C. If

1
for example, the capability of the code C is as high as - G i.e.,33
b = then using the relation

1> ++R (45)
b - -R

in F161, which connects the rate R, G and B, we see that the rate R,

cannot be more than 0.5. Which is too low of course. To achieve a rate

R of 0.9, b cannot be more than G/19. That is, the error correcting

capability of a code with rate R = 0.9 cannot exceed b = G/19.
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Table 27(a). Optimal guardspace, 4800 bps data

G = OO; b =133 G = 3600; b = 1200 G = 4800; b = 1600

# of # of # of
errors errors errors

# of # # max. in max. # of # # max. in max. # of # # max. in max.
burst b > b burst burst burst 5 b >b burst burst burst s b >b burst burst

1 322 151 171 6133 141 100 79 21 217362 3550 85 60 25 217362 3550

2 11 10 1 150 63 11 11 0 150 63 11 11 0 150 63

3 8 5 3 535 246 7 7 0 1158 9 7 7 0 1158 9

4 93 79 14 1077 126 89 87 2 6164 477 86 81 5 6164 477

5 122 90 32 654 27 109 103 6 7433 147 109 103 6 7433 147

6 23 18 5 565 272 20 20 0 884 14 19 18 1 4780 32

7 109 87 22 861 299 76 62 14 4787 15 66 47 19 12866 309

8 22 21 1 148 66 13 8 5 3667 12 13 10 3 3667 12

9 10 9 1 435 6 8 7 1 1615 15 8 7 1 1615 13

10 7 1 6 1740 70 5 3 2 5082 213 5 3 2 5082 213

11 1 1 0 47 22 - - - - - - -

12 8 4 4 570 164 5 3 2 2432 352 5 4 1 2432 352

13 28 20 8 868 17 15 11 4 6205 143 13 10 3 14291 248

14 214 201 13 1249 36 174 154 20 9268 33 167 149 18 15562 39

15 23 23 0 27 6 23 23 0 27 6 23 23 0 27 6

16 37 33 4 783 324 27 21 6 4559 51 26 20 6 5456 43

17 4 2 2 738 109 4 4 0 738 109 4 4 0 738 109

18 31 27 4 389 15 20 18 2 3654 24 19 17 2 6359 3

19 37 36 1 143 6 28 23 5 3760 12 26 20 6 4520 9

20 34 12 22 1347 537 21 17 4 8805 1117 20 15 5 8805 1117

21 29 5 4 305 28 18 13 5 4742 12 18 13 5 4742 12



Table 27(a) - Continued

G = 400; b = 133 G = 3600; b = 1200 G = 4800; b = 1600

# of # of # of
errors errors errors

# of # # max. in max. # of # # max. in max. # of # # max. in max.
burst ! b > b burst burst burst ! b >b burst burst burst <b >b burst burst

22 102 39 63 2506 535 55 33 22 13718 906 50 31 19 22459 979

23 47 37 10 5157 346 27 17 10 6178 367 27 18 9 6178 367

24 18 17 1 518 236 16 14 2 2126 12 16 14 2 2126 12

25 213 186 27 1265 444 183 169 14 14761 105 180 164 16 14761 105

26 109 87 22 1944 295 89 76 13 6355 162 86 72 14 1167 289

27 21 19 2 611 286 19 18 1 2464 6 19 18 1 2464 6

28 13 9 4 1758 211 11 10 1 5588 223 11 10 1 5588 223

0
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0 Table 27(b). Optimal guardspace, 50 kbps wideband data.

SG = 400; b = 133 G = 3600; b = 1200 G = 4800; b = 1600

# of # of # of
errors errors errors

# of # # max. in max. # of # # max. in max. # of # # max. in max.
burst b > b burst burst burst ! b >b burst burst burst ! b >b burst burst

1 34 17 17 473 248 30 27 3 378 80 28 25 3 7018 112

2 13 4 9 2008 681 11 8 3 4651 98 11 8 3 4651 98

3 15 6 9 302 193 12 10 2 3570 160 12 10 2 3570 160

4 2 0 2 161 23 2 2 0 161 23 2 2 0 161 23

5 3 2 1 210 95 3 3 0 210 95 3 3 0 210 95
6 2 1 1 266 61 2 2 0 266 92 2 2 0 266 92

7 2 1 1 176 90 2 2 0 176 90 2 2 0 176 90

8 2 0 2 346 142 2 2 0 346 142 2 2 0 346 142

9 3 2 1 319 65 3 3 0 319 65 3 3 0 319 65

10 21 9 12 326 143 19 18 1 3507 155 19 18 1 3507 155

11 17 7 10 687 160 12 9 3 3506 332 12 9 3 3506 332

12 100 50 50 13636 2361 27 16 11 70931 5603 26 16 10 124744 10477



So our criterion for choosing a G which is optimum for a code C

with rate R is to choose that G for which the lengths of a desired

1-R
proportion of the bursts are at most b bits where b ! 1R G. We cannot

allow G to be too large even though theoretically that would enable us to

correct all the bursts. The compromise is to find an implementable code having

a desired R and then a G giving a maximal b for that code and for the

frame size (or implementable multiple thereof) on the channel. For the GCF the

frame-size is 1200 bits.

We do not want to leave the reader with the impression that b can always

be used as criterion of the effectiveness of a code against burst noise. For

example, on a channel where long bursts containing relatively few errors are far

more likely than short bursts containing many errors one would prefer a code

capable of correcting the likely longer bursts at the expense of the less likely

short bursts.

As an illustration of the magnitude of G we are talking about I have

fixed a b = G/3 and then found the value of G for which a high proportion of

the bursts have lengths less than or equal to b. The results are contained in

Tables 27(a) and (b). In both the high-speed and wideband circuits a guardspace

of 400 bits is too short for identifying bursts. It does seem however that in

both cases a G of 3600 bits is adequate. For this value of optimal G the

bursts are longer in the 4800 bps data (maximal burst length is 217,362 bits)

than in the 50 kbps data with a maximal burst length of 70,931 bits.

We now find the average length of the bursts, the density of errors within

them and how many 1200-bit blocks are affected each time the channel enters a

burst. Specifically we shall calculate the
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(i) distribution and mean of burst lengths

(ii) P(k errors in a given burst of length n) and its mean

and

(iii) the block burst distribution.

i. Distribution and Mean of Burst Lengths

Let

L(n) = P(burst of length n).

Then as shown in Proposition 1 of Appendix VI, L(n) is given by

L(n) for n 0 (46)
L(n) U(G)L(n); n 1

where

min(G-l,n-2)
(n) = V(£)(n- ); n 2

2=0

L(1) = 1

and U(k), V(k), k 0 are given by (11).

Typical test runs give too few bursts to make comparison between the model

and empirical distributions realistic. For instance for G = 400, 15 of the 29

error runs at 4800 bps have less than 30 bursts each; for G = 3600 bits, 19 of

the runs each has less than this number. It therefore seems that the appropriate

burst distribution to compare with the data is a variant of (46) which is a func-

tion of the total length of bits transmitted in the particular run. Nevertheless
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comparative graphs of model and empirical distributions are plotted (typical

ones are shown in Figures 28, 29 and 31).

The mean burst length is given by

Z nL(n) = u(G) Z nl(n) (47)
nl ntl

1+VG(1)
= U(G)

(l-VG(1))2

and the variance is

U(G)R"(1) + U(G)R'(1) - [U(G)R'(1)]2 ; (48)

where

c.(l-p )

VG(1) = C i  p

G Pi

c. G G-
VG(1) = -- - p - G(l-p.)p 1

i i

and, R'(1) and R"(1) are' given by expressions (VI.13) and (VI.14) in the

Appendix.

The wide variation in burst lengths in each of the error runs (between 1

bit and the maximum lengths shown in Table 27(a) and (b)) explains the relatively

low mean burst lengths and high standard deviation in each of the error groups

(Table 28). It also explains why the (model) standard deviation is higher than

the mean, it being possible to have no burst at all in a run (indeed)
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Fig. 24. Distribution of burst lengths C4.8 kbps line;
Red group; G = 400)
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Fig. 25, Distribution of burst lengths (4.8 kbps line;
Amber group; G = 400)
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Fig. 26. Distribution of burst lengths (4.8 kbps line;

Green group; G = 400)
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Fig. 27. Distribution of burst lengths (50 kbps line; G = 400;
error rate = 0.52 x 10-41
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Fig. 28. Distribution of burst lengths (4.8 kbps line;
Red group; G = 3600)
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Fig. 29. Distribution of burst lengths (4.8 kbps line;
Amber group; G = 3600)
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Fig, 30, Distribution of burst lengths (4,8 kbps line;
Green group; G = 3600)
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Fig, 31. Distribution of burst lengths (50 kbps line; G 3600;
error rate = 0.52 x 10 - 4)
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there are two such runs without errors). The discrepancy between the data and

model mean burst lengths can be explained in terms of the modem fixed errors

we talked about earlier; note that the data values are therefore expected to

be higher than their predicted values (as Table 28 shows).

Table 28. Mean burst length, 4800 bps circuit, G = 400 bits

Data Model

mean mean standard

Group length length deviation

Red 389.0 340.0 402

Amber 94.0 70.0 82

Green 50.0 41.0 41

Average 4800 bps 185.7 135.0 177

As Tables 27(a) and (b) show, most of the bursts occurring are very short.

In both the 4800 bps high-speed and the 50 kbps wideband data, a high percentage

of the bursts is less than 133 bits in length (using a guardspace of 400 bits).

We note here also the effect of the modem fixed errors which, at this value of

G, gives a large number of bursts exactly 24 bits in length (each random error

causes errors in exactly 18 and 23 bit positions away from it) and containing

exactly three errors.

ii. Distribution of Errors in a Burst and Its Mean

Using a guardspace of only 40 bits it has been shown in [1] for the 4800

bps data that the ratios bad/good bits in the bursts average to 41%, 44% and 45%

for respectively the Green, Amber and Red error groups with overall average of

about 44%. Let us see here how the guardspace affects this error density in the

bursts.
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To do this we find the distribution of errors in a burst. Then by

Proposition 2 of the Appendix we have

P(k errors in a given burst of length n) =
T,(n)

where

0 if k = O, n O0; or k > n

Q(k,n) = 1 if n = k = 1 (49)

min(G-l,n-k)
F V()Q(k-l, n-k-l); n > k 2
a=0

and T(n) is given by (46).

The mean number of errors in a burst of length n, K n is given by

1 if n = 1 or 2
n = (50)

n3L(k)L(n-k+l)
k=l n 3

L(n)

'de pick an n = 2400 and plot the graphs of the probability of errors in a

burst of length n for G = 400 and 3600 bits and each of the error groups.

Typical plots are shown in Figures32, 33 and 34. The mean number of errors for

this length of burst and the bad/good ratio are shown in Table 29 which also

shows that the bad/good ratio decreases with increasing guardspace as should be

expected.
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Fig, 32, Distribution of errors in a burst Caveraged 4,8 kbps
line; burst length = 2400 bits; G = 400)
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Fig. 34. Distribution of errors in a burst (averaged 4.8 kbps line;
burst length = 2400 bits; G = 3600)
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Fig. 35. Distribution of errors in a burst (overall 50 kbps
line; burst length = 2400 bits; G = 3600)
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Table 29. Mean number of errors, K n' in burst of length n = 2400

G = 400 G = 3600

Group Kn  Density Bad/Good Kn Dnsity Bad/Cood

Red 239 0.01 0.11 132 0.055 0.058

Amber 254 0.11 0.12 36 0.015 0.015

Green 371 0.155 0.183 22 0.009 0.009

Av. 4800 bps 211 0.088 0.096 68 0.028 0.029

Av. 50 kbps 302 0.126 0.144 199 0.083 0.09

iii. Block Burst

Lastly we ask for the distribution of block bursts. By block-burst we

mean a string of blocks starting and cnding with an error block, seperated from

the nearest preceding and following error block by a gap (of error-free blocks)

of not less than the block guardspace and containing within it no gap equal to

or greater than the block guardspace.

If d = block guardspace, LS(n) = probability of a block-burst of length

n (each block is s bits long), then as shown in the Appendix

0 for n 0
L s  (51)
(n) Us(d)Ls(n); n r 1

where US(d) and lS(n) are as given in ( 152 ) and ( 153 ).

Taking S = 1200 bits and using a block guardspace d = 10 blocks we

find that there is 5% chance of getting a block-burst extending to 10 blocks or
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more in the Red error mode. This probability reduces to less than 1%i in the low

(Green) error mode. Graphs of this distribution for the different error modes

are shown in Figures 36, 37 and 38 .
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Fig. 36. Block burst (4,8 kbps line; Red group; guardspace = 10 blocks)

JPL Technical Memorandum 33-699 135



0 1

-10

U
0

z

0
Z

-20

-30
1 20 40 60 80 100

NUMBER OF BLOCKS IN A BURST, N --
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Section VIII

CONCLUSION AND REMAINING PROBLEMS

Although we have demonstrated that the simplified five-state Markov chain

(Figure 3) can be used successfully to model the errors occurring on the GCF

we still want to insist that a more realistic model should incorporate the

varying line conditions caused by users coming onto or dropping off the line

at different times. As indicated in Section I this can be done by placing

appropriate probability distributions both on the varying number of users on

the channel which causes the changes in line conditions and the times between

these changes.

In our model we have taken note of these line changes by dividing the wide

variations in bit error-rate into three main error groups: the Red, Amber and

Green modes. All statistics calculated for each group are valid for such a

group,as it has been shown in this study. That is why the emphasis has not

been on the averaged channel parameters for either the high-speed or the wide-

band circuit since they cannot be expected to depict all the three error groups

with any measure of reliability. Our success in modelling rather accurately not

only the individual test runs but also groups of runs gives us a lot of confi-

dence in all the predictions based on those model parameters.

Of course the problem still remains as to which of the Red, Amber or Green

group of statistics to employ at any given time. Our answer? You guessed right!

Be conservative, take a pessimistic view of the channel by using the Red-group

model statistics in designing all error correcting (and detecting) schemes not

only because of the protection it provides but also because this is the error
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group that our model depicts most accurately. In our model, the higher the

error-rate the closer the agreement between the model and empirical statistics.

This is as it should be since we are interested only in the bursty mode of the

channel.

Statistics, other than those displayed in these pages, exist for estimat-

ing the performance of all error correcting (and detecting) codes and for construct-

ing feedback (and retransmissior) schemes. Indeed work using some of these sta-

tistics has already begun.

We still want to think that the highlight of this study is not the con-

struction of the five-state Markov chain as model for the GCF. Rather it is the

development of the Maximum Likelihood procedure for estimating the model param-

eters using an iterative method. This procedure, as has been shown, is applicable

to any finite Markov chain.

It is hoped that the reader has not been left with the impression that all

the problems attendant to the model have been solved! Aside from the problem of

constructing a model with the fluctuating line conditions built into it along the

line sketched above, there are other problems of both theoretical and practical

interest that are not totally solved yet, We list a few below.

1. One difficulty we have with our model is finding a physical justification

for allowing only one error-state B in which errors occur with proba-

bility one. It is fairly well-known that the error-causing mechanism

does not reverse the bit each time the channel enters into a burst. Our

explanation was that a bursty state is represented by transitions between

states B and G4 , sojourn in either of them being allowed. A direct

way to model what happens in the physical channel would be to allow two

or more states in which errors can occur. Let errors occur in one of the
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states with probability 1/2 (given that the state is reached) to account

for those times when, in the midst of otherwise good transmissions,

random errors occur. The other error-state is the burst state in which

errors occur with some probability 0 < h < 1 to be considered as one

of the channel parameters to be estimated.

The problem is that the expression (84) for the capacity of the channel

is valid only for the case of one error state. Although (74) is true,

in general, the capacity cannot be evaluated directly from it. The

problem of finding analytic expression for the capacity when there is

more than one error state is still open.

Our attempt has been directed at finding bounds on the entropy H in

(74) by finding upper and lower bounds on the function h(zl,...,zn) in

(80) and showing that these bounds are close enough for large n.

2. Blackwell and Koopmans [8] showed that for a 4x4 irreducible aperiodic

Markov matrix M satisfying some mild conditions, the function P(M,z)

in (10) of the error sequence z = [Zn) can be fixed (the same) for

different matrices M. In the terminology of our model this means that

if we had used a four-state Markov model satisfying the specified condi-

tions it is possible to have different sets of Maximum Likelihood estimates

of the model parameters giving the same joint probability distribution,

P(M,z), for the same error sequence z. Then our interest in knowing all

such transition matrices becomes apparent. For two seemingly different

sets of estimates may indeed be equivalent or two different test runs may

be recognized as two samples from the same underlying distribution.
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Blackwell and Koopmans found a finite set of functions fl, ... fk

each defined on the set of all irreducible aperiodi.c Markov matrices M

such that M1 and E are equivalent (in the sense that P(M1, ) =

P(M2 , z)) if and only if fi(Ml) = fi(M). Such functions f they call

A COMPLETE SET OF INVARIANTS. For the 4x4 matrix there are only eight

quite-easily-checked such functions (probabilities).

Although the conditions for their result do not all apply to our case

there is enough structure in our model to enable us to find the complete

set of invariants. We shall return to this problem in a seperate paper.

3. The buffer problem in feedback retransmission.

To people familiar with digital communication this is not a new

problem. It has been considered in different forms by different people;

indeed a number of schemes are now being developed to reduce the buffer

sizes both at the transmitter and the receiver when feedback retransmission

method is employed for error correction on the CCF. We describe one such

scheme here.

Imagine we have, along with our channel, a reverse (feedback) link,

from the receiver to the transmitter, of low capacity available for our use.

Let data be transmitted along the channel at constant rate R, data being

supplied to the transmitter at rate RT < R. The receiver delivers the

received data blocks in sequence; each time a block is received with an

error in it the receiver sends to the transmitter through the feedback link

a request for retransmission. A copy of the error block and all subsequent

blocks received are stored in a buffer at the receiver until the error block

is retransmitted and received correctly. This is how the receive buffer
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fills up. Let T be the loop time, i.e., the time for a trans-

mitted block to reach the receiver and a retransmission request relayed

to the transmitter if the block is received with an error in it. It

therefore follows that all the blocks entering the transmitter, at

constant rate RT, after each block is transmitted will have to be

retained at the transmitter buffer for at least time T by which time

the transmitter will know whether or not the block has passed through

error-free. We asame the requested retransmission is done as soon as

possible after the request is received.

During long block-bursts when successive blocks are hit with errors

many blocks of the incoming data may have to be stored at the transmitter

buffer. On the otherhand at low block error-rate when only a few blocks

are received in error or when a single block is received in error after

repeated retransmission, the transmitter buffer does not need to store

more than just a few blocks while data is piling up high at the receive

buffer.

The problem is to find the distribution of the number of blocks that

will be stored in the buffers at the transmitter and the receiver, using

our model statistics for the channel parameters. Or equivalently, we may

fix a buffer length at N blocks, say, and ask the probability that the

number of blocks that have to be stored will exceed N.

While transmission is going on, good data are being delivered to the

user in sequence as they arrive at the receiver. If this cannot be done

because of requested retransmissions of blocks received in error, the user

can wait for a maximum of 8 seconds. After this time all the data in the

receive buffer, both good and bad blocks, are delivered to the user.

What is the block error-rate of the data eventually delivered to the user?
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Appendix I

In this appendix details of the maximum likelihood estimation procedure

used to obtain the optimizing parameter set from the data will be outlined.

The steady state probabilities of the finite state Markov chain (M.C)

with transition matrix M is given by ui, i = 1, 5 where

pl O 0 0 1-p
O P2  0 0 1-p 2

M = O O P3  0 1-p 3

O 0 0 P4  1-p4
c1  c2  c3  C4  q

and

c.u5
u.- ; i=1, 4i I i

1-p.

-1 (52)

u5  1 + --
i=l i

Since errors occur only in state B, the bit error probability is given

by

P = 
u5

The fact that
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S k-1
U(k) = iP i  k O

i=1

implies

h c.
2 - U(0) = 1
i=l Pi

Now let us show how to get a MLE of pi, say, from the data. Suppose,

as we did in (7), we assume that for the process to be in state G1  the length

of the gap is at least ko bits (G1  is the best error-free state). Then since

k
U(ko) = P(O ol1)

Z v(k) ; V(k) = P(okl1l)
kk

the conditional probability of getting a gap of length k k is given by

V (I, N k-l
(k) cp1

where

l1 (1-pl )  k -1

c =U(k ) U(k )= c1p 1

Suppose there are A gaps of lengths kl, k2 , ... , kQ such that

ki  ko, i = 1, ..., L. Then the joint conditional probability of getting the

2 gaps is given by:
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L 1
P(kl , k2, ..., kjIko ) = c pl

It is desired to maximize this probability. We see that

1 P(kl , k 2 , . k k = T 1

' - Pl 1

k k -1
1 1-P 1 1 -(1-pl)ko 1

i P0

o o
p1  L

±('P)(z k.-1

p1

if

11-p 1-p\ I k. =O
p1 )koj (pl 1

which implies

Sk.-2k
1 0

Pr 1 (53)

1 0148 Tek.-k +
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So in general

iL.1

.k --L.k.
j 1 1 1

Pi = . i = i, 4 . (54)
kji-iki+ (

Pnd because L. = number of times process enters state i,

c

i

N

where kji, ki, NI, and N11 are, as defined in Section on Parameter

estimation, given by:

k.. = length of gap j, j = 1, L in state i, i =1, 4

k. = the threshold to state i
1

N = number of errors in the rune

and N11 = number of gaps of length zero.

Suppose we are given a sample of size N of observations from a finite state

M.C in the form of an error sequence Z = ([Znn=1,N. Our aim is to determine

the transition matrix M from the sequence Z. The general form of the following

procedure was proposed by Baum and Welch in F7] but in that paper no mention was

JPL Technical Memorandum 33-699 149



made of a way to get the initial estimates with which to start their iterative

method. Our iterative method for getting the matrix M will use the p.i and

c. obtained above as initial estimates.

The probability of getting the sequence zl, z2, ..., zn (using the

structure in the 31 samples) if M is the transition matrix can be written as:

Ne-1

P(M, Z) = P1 U(I)U(L) [ v( j) (55)
j=l

subject to U(O) = 1.

(Our notation here is as used in the section on Parameter Estimation.)

Let Mo denote the true value of M. We would like to take as our esti-

mate M of M a value of M which maximizes P(M, Z). It is possible for

distinct M to yield this maximum (see Blackwell and Koopmans [8]). But we shall

content ourself with getting any one of such M.

Now, the M maximizing P(M, Z) also maximizes

4 Ne-1 -1
log P(M,Z) = log c p- + log5 cip + E log E ci(-Pi)P (56)

1 i= i j=1l i

subject to

C.

u(o) 1
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Put

ci(l-.i )
C. -

i Pi

and let

- A - L
c.p. c.p.
S11 . 1 1 *ai =  fi  = - (57)

i i i i i

Then (56) can be written as:

Ne-i

log P(M,Z) logl + logoL + E log' (58)
1 j=1l

C.

subject to the condition G: I .P i.
1-p

Using method of Lagrange's multipliers we have

V log P(M, = V G

where V is the differential operator. That is

A L
Pi i .

log P(M,Z) 1-p 1-P . Ne- Pi
log = , + - (59)

c i  P1 L L j j l-p
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and

-- 1 - i Lc i - L - .
P(M,Z) ci(-Pi)P i +i i Li(1-p i i + i i pi

S log -p 2  +2 +.
i P (1-pi )1 (-p j

-= i (60)
(1-pi)

(59)x c.i gives

X = N + 1 (61)

Dividing (59) x ci by (60) x pi we get

- -L - I j
ciPi c ip

(1-pi)al (1-pi)-L i (62)
- - £+1 - L - L+1 -i j  Pac p ci Pi  Lcip i  cip ci i i+ + + +

(l-p) 1 (+ p)2 (1-p iL (1-P )2YL J j00,1 (1-pi j j

Denote the numerator and denominator of the LHS of (62) by D1 and D2

respectively. Then from (62) we have

SD 2  (63)
i Di+D2

and
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D1
1 - P 

*i D+D2

Since (59) x c. using (61) is

(N +l)i

1  1-pi

we can write for c. using (63):
1

2

i (N+)(Di+D2)

The expressions for pi and ci in (63) and (64) are the ones to use to

iterate to get the optimum values of these parameters using as initial values

the raw estimates obtained in (54).

To get a single transition matrix M we consider the n runs as

independent samples from the channel with transition M. Then the joint proba-
n

bility P(M, Z) of getting the sequence zl, z2 , ..., ZN, where N = N. is
ja

the total sum of bits in all the samples, is given by:

N -1n ek-
P(M, Z) = P"n U(1)U() k) v (65)

k=l j=l

U(O) = 1 .
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The notation here is as used for equation(17). Our aim here also is to

maximize P(M, Z). Using the method of Lagrange's multipliers subject to the

condition

C.
i = U(o) = I-

Pi

we obtain

D2
pi D

and

-2

.= (66)

SNek1n)D

c.p
1 i

1 1-p i

where Nek = number of errors in sample k

lk - Lk N -1 - j k
n c ip i  ciPi ek ciPi

D 1 3= 1 + 23-ie+
k=1 )Lk j=1 Jk

Ik - 1k + N -1 jk
n lkCiPi  p Lki i c.p ek iP iD z lk i i  1 1i + Z

2 k=1 -p k (1-p )2k (1-pi)lk (1-p )2Lk j=1 jk jk

and D = +  2
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Appendix II

We shall indicate here the method used to find the n-step transition

matrix Mn of the channel M. Here also, as in Reference F[2, we shall follow

the method in Feller [17J.

Let X and Y be the right and left eigen vectors of M with eigen value

X 0, s That is

sMX = X (67)i

sYM = Y (67)ii

X = ; Y = (yl' Y2' "" Y5 )

5

Writing (i) and (ii) out we have:

s(1-Pi)
xi l-si x i = 1,

4 4
x = s Z cix i + sqx5 ; q = - c.

i=l i=l

sc. (68)
1

Yi = l-spi Y5

4

5 = s (l-pi)yi + sqy
i=L
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Since x5(Y5 ) is determined up to arbitrary multiplicative constant,

we may put x(y) = 1. (Note that x (Y5) + 0, for that would make x. 0

for any s; also that (i) and (ii) have the same eigen values. So it suffices

to find these solutions using (67)i). Then

4 (1-P ) (I 4
+ s c. (69)

i 1si=i -sp i  i =l

Substituting A = we can write (69) as:
s

4

L - ci [ (70)

which shows that X = 1 is a root. Removing this root we have left:

4 c.
E + 1 = 0 (71)X-p 

(i

or

il il (P 2P) 2+ X[ l(p2p3 +P2P4  3 P
4 (p 3 4 )

+ (1P 2+P1P+P 2  ) + PP2+Pp+PP

+ 3 1 2 1 2 P4 1 2 3 2 3

Cl  c2 c3 c4

pl 2 3P4 p2 1 3 4 P3 12P4 + PlP23)

= 0
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Hence X = O is another root; and if we write the cubic equation as

A 3 + 2 A %
AX + bX + cX d = O

standard method for solving cubics gives the three roots xl, x2 , x3  as:

1 1

x =-  (A - B) 3 + (B + A) +

x2  2 (A - B) + (B + A) + (B + A) (A- B) - (72)

S3 3 b

x = (A- B) + (BA (B + A - (A - B) - 3

where

2 ^2 A3
q 2 q pA B q +

3 ^2
bc 2b C b-T +-- p=c--; a=
3 27 3

b=- p- 1 ci]

c c2  c3
c =P (p2P3+p 2P4+P3P4) + (plP31+p P4+p3P4) + (PlP2+p1P+ P2P4)

1 2 3

C4
+ T(Plp2+plp3+P2P3)

c2 c3 P4
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So the eigen values of ( 67 )i are

% = i, O, Xl, x2 , x3

Now ( 68) in terms of X becomes:

(r) 1-Pi y(r) c
i -p ' I r-pi

X5 = 1 Y = 1

i = 1, 4 ; r = 1, 5 .

Let =(pk ). Then

(n) t (r) (r) n  (73)
Pjk t r j k r

r=l

where

15=t X(r)y (r)
1 =t r  x v

v=1

or

F 4 c. (1-p. 1
t =  1 + 2
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If we write

t = t l

r

and for r = 1, 3, tr = t Xr 
= xl, x2 , x3 then

r r

and

(n) Ck 3 t X

Pjk l 1-p o C(1= r-pj)( )-pS r=. r -j1rk

j,k = i, 4

t n

pj to + (1- p r r
j5 0 (r -p)r r j

t n
(n) Ck t + n

= I-F t + Ck ~ r5k 1-pk 0 kr (Xr-Pk)

p (n) t + t n
n55 o rr
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Appendix III

Proposition

The capacity, C, of the burst-noise channel is given by

C = 1 - H 74)

where

H =- lim D P(zI , ... , n+l)logP(z n+l[l, ... , zn)
n-- z. =0orl

Proof: The proof is by classical information-theoretic arguments. The mutual

information of the n-extension of the channel is:

I(Xn, yn) = () -Y H(YnXn) (75)

where X(Y) is the input (output) and H(-) is the entropy function. The

transmission rate is then

R = lim I(Xnyn) (76)n

and if p(x) is an input distribution, the capacity C is given by
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C = max R
p(x)

= max lim H (Y )  H(ynln) :7)

p(x) n-m

Now for additive noise, i.e. Y = X + Z, Z the noise sequence, we can

show easily that

H(ynJxn)= H(zl, ..., zn) (7/)

independent of Xn and that for p(xl, ... , xn) = 2- n achieves its

maximum equal to 1. But

H(z1,...zn)
lim = lim H(z nzl ... z-1) .
n~a n-m

So by (77), (78) ,,e have

C = 1 - lim H(znlz 1 , ..., Zn-1) 79)
n-co

=1- H

where H denotes lim H(znZl, ..., Zn-1) and
n-*n

H(znlZ,...,Zn-1) = - P(zl,...,n)logP(zn zl...,zn-l)
z.=Oorl

JPL Technical Memorandum 33-699 161



Now let us write H as

H = lim P(zl,...,z )h(zl,...,z n)
n- (zl,...,Zn 'z

with

h(zl,...,zn) = - P(Zn+1 lZl,...,z )logP(z n+zl'...,Zn). (80)
z +l=Oor1

If we assume that our model has only one error state B then we can show,

see Gilbert [4], that h(zl, ..., zn) can assume only (n+l) values

h(On), h(10n-l), h(lOn-2), ..., h(10), h(l) (81)

where 10 k , k = 0, ... , n1 is the event that an error is followed by k

error-free bits. Using (80) and (81) we can write

H = P(10k)h(10k) (82)
k=O

In terms of U(k) and V(k), P(10k ) is given by

P( 1 0 k) = P1 U(k)

and hence
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p(liok ) = Uk+l),
SU(k)

so

h( U(k log U(kl) U(k) og U(k)

and

S Uk l U(k+l) Uk1 U(+)_H = - P U(k log U(k + - U(k) log - U(k+) (

Note that H can also be written in terms of V(k) viz:

V(k) = U(k) - U(k+l)

H = - P1 V(k)logV(k) (85)
k=O

although we shall not use this form in our calculations.

JPL Technical Memorandum 33-699 163



Appendix IV

Block-Bit Statistics

Expressions for the following statistics will be given in this section:

(i) Proportion of blocks in error.

(ii) P(k,n): probability of k errors in a block of length n.

(iii) Pt(k,n): probability of k errors in n information digits

thon our channel sampled at every t - step.

(iv) P(k bits between extreme errors in n-blockj> 2).

We shall get (i) as a special solution to (ii).

(ii) P(k, n) = P0 10 21 .. 0 L- 10 ; 0 1 n - k

n-k 1 1 3 L L
E ' P(O 11)P 0 10 1 0 L-1 1 0  ; . = n-k
1 =0 j

Now

P 0 210 " oL- 0 o FOLii P(O2111)P "01 0. L- 10 L 1  (87)
n- 21- 1 1 2 = 0 1.- N- 2- 1 -

where N = n-k1-1. Denoting the LHS of (87 ) by P(k-l, n-11-l), we have:

n-k -k
1

(k - 1, N) = C V(2)T(k- 2, N - 2 - 1) (88)
2=0
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So from (C6 ):

n-k
P(k, n) = P1 Z U( 1Y)P(k - 1, n - 1 - 1) (9)

£1=0

n-k n-A 1 -k
= PI T U(1 )V(2)(k - 2, n-21- 2-2)

£ =0o 2=0

where

P1  i= lPi

Method of calculating P(k,n) from the recursion (89):

Note that ( 59 ) and ( 88) imply that it suffices to know, for every

k > 2,

[7(k-2, n-j), j = 2, ... , n-k+2; k < ni. (90)

That is, it is enough to know

(!O, n-j); j = 2, ... , n) . (91)

But

P(0, n) = U(n)

S n-1
= ciPi  (92)
T=1
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To find P(k, n) for k = 0, 1 observe that

4 c.
P(O, n)= L up u- =

J=lujPj ;Uj : l-pj u5

4 c. n-i
=P1 aj= P- ; u5 = P1 (93)

j=1 'pj

Hence P(error block) = 1- P(O, n). For k = 1 ( 86) becomes:

n-1
P(i, n) = P1  D U(L 1 )P(O, n - 1i - 1)

Ii=0

and using ( 92) we have

n-1
P(1, n) = P Z U(L 1 )U(n - 1 - 1) (94)

1 =0

(iii) Pt(k, n)

Given the matrix Mt - the t-step transition matrix, the problem

reduces to (ii) with M replaced by Mt . Let

Ut(k)= Pt(Okl)
(95)

Vt(k) = Pt(okl1l)
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be the gap statistics w.r.t. M . We want to find expressions in terms of M

for Ut(k) and Vt(k). Write

Gti(k) = Pt(Ok , s k = Gill 1 ) ; i = 1,

Then

Ut(k ) = Gt '(k) (96)
i=l

Let us write

Mt =(Pij)5x5

and M as the 4 x 4 matrix obtained by deleting the last row and column of M t .

Thus M are the t-step transitions between the good states only. Then

(Gt,l(k), Gt,2(k), G t,3(k), Gt4 ( k ) ) = (P51' P52' P53' P54 )Tk -  (97)

It is appropriate to note here that (97) is true in general whenever we are

interested only in a sequence of error-free transmissions starting with an error.

The only part of the original transition matrix to use is that denoting transitions

only between the good states. Thus in calculating U(k) and V(k) w.r.t. the

basic transition matrix M, we used the transitions between the good states

P1 0 0 0
P = 2 O% O

0 0 P3 0

0 0 0 P4

JPL Technical Memorandum 33-699 167



giving

P k-1 0 0 0
1k-

0 k- 0 0k--
-k- 2

O 0 P 0

O O O P-

If then

G (k) = p( k , k = G ill)

4

u(k) = D G(k)
i=1

we have

(Gl(k), G2 (k), G 3 (k), G (k)) = (c1 , c2 , c3 , c4)Pk-1

i.e.

4 k-1
U(k) = pk-i

i=l

Now

Pt(k, n) Ptl 0 10 21 0 L-110 L

n-k 1 L -1 L
E P (0o 1)Pt 21 0 -110 1 (98)

L k + 1L Tk+l

18J= n-k
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As for P(k, n) we find that

t (k-l, n- 1-l) = Pt 2 10 1 31 0 L10 1
. n- -1

n-I1-k

= Vt( 2 )Pt(k-2, n-l1- 92 -2)
A =0
2

and

n-k

Pt(k, n) = Pt(1) F Ut(Ll)Pt(k-l, n-A1-1)1i=0

(99)

n-k n-k-'1
= Pt(1) F, F Ut( 1l)vt(£2)Pt(k-2, n- 1- 2- 2)

S1=0 .2
= 0

where

Vt(1 ) = Ut(£ ) - Ut(£+l )

and

Pt (I) = Pt(B) = P1  (100)

To prove ( 100) note that since

HMt = 7M*M t - I = IMt l = - = f

where n = (ul, u2 , u3 , u4 , u5 ) is the steady state distribution for M, T is

also the steady state distribution for M t > 1. Thus
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Pt(B) = u5

= 1+
i=l 1-p

= P1

To evaluate (99) it is enough to know

Pt(O, N) for N = 0, 1, ..., n

But note at once that

Pt(O, N) = Ut(N)

(iv) P(k bits between extreme errors in n-block 2 errors):

Denote this probability by Pk Then by definition:

P(k bits between extreme errors and ' 2 errors in the block)
Pk P(t 2 errors in the block)

The numerator is equal to:
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k n-k-2
P(Ox 1-0--10 = P(OXl -- 1 0

Y ) ;  y = n-k-2-x
x=O

n-k-2
2p(oxl)P(zk+l=lizo=1)P(0 Ix1 k-1)

x=0

n-k-2

= P1r(k+l) P(OxllI)P(OY 1)
x=O

n-k-2

= Plr(k+l) D U(x)U(n-k-2-x)
x=O

where

r(k+l) = P(zk+l=llzo=l)

and

U(k) = P(okl) .

Also

P( 2 errors in a block) = 1 - P(O, n) - P(I, n).

That is

n-k-2

Pr(k+1) D U(x)U(n-k-2-x)
x=0O (101)

Pk l-P(O,n)-P(1,n)
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Appendix V

Block (Symbol) Error Distribution

It is desired in this section to find for symbols in a block all

statistics we have found for bits making up each symbol. In this section we

shall used symbol to mean a fixed number of bits and a block to be made up of a

fixed number of symbols. Specifically we shall find expressions, in terms of

channel parameters, for

(i) Ps(0kl1 ): the probability of k error-free symbols

following a given error symbol.

(ii) Ps(0k111 ): the symbol gap distribution.

(iii) Ps(k, n): the distribution of error symbols in n-symbol word.

(iv) Ps(On): probability of error-free n-symbol word.

(v) rs(k) = P(symbol k in errorlinitial symbol error).

Throughout this paper we shall assume a symbol to be in error if one or

more of its bits are in error. It is convenient to start with

Ps(o) = P(no symbol error)

where we assume each symbol is of length N bits.

pS(0) = P(O, N)

= PZ U(k)
krN

N-1cipi

i iPi
1 i -p

Therefore
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l = P(symbol error)

N-1
ciPi

= i- P1
1i 1-p

using

P1 1-+p

and

C.

C -1
Pi

we have:

N-1
r c. c.p

P1 1 1-P 1- iPi

i=1 i i=l Pi i -P

c. (1-pi)
P 1 (102)

Next let us find

k st

s(lok) = P(1-- symbol in error followed by k error-free symbols)

1 1 Nk+N-j
= P( 1------1 )P(O +N-j1)
j=N
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where the indicated j bits are the number of bits up to the last error in the

error symbol. Thus

1
p(lok) 2 ciNk+N-j-I

j=N 1i

P1 Nk+N-1

l i pN(1-p1 )
1 1-Pi)

or

s(10ok) = P Nk-l (10)
. i -p.

Putting k = 0 in (103) gives (101). Further

(i) pS(0kl1) = ps(lk

-i (l-p )
( N (104)

c(1-p )

pi 1-pi (ih

Hence

(ii) ps(okll) = ps(okll) - ps(ok+l 1 )

(1-p )ciNk-i i-pi

Ps (ok1) =1 (105)
c (1-p )

pi(l-pi)
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n-k t 1 A L L
n= (o 1)Ps 0 21 0-110 1 (106)

S=0---- n- 1-1

0s 1 n-k

E . = n-k

L k+ .

First we show that

pS( 1) = PS(10l) .

We can write

N-i
pS(ol1) = p (ONe+jl 4)

j=O N-j-I -

where the indicated (N-j-l) bits are the remaining bits after the first error

of the error symbol. Thus

N-1

pS (o0) = E p(oN +j1 )
j=O

N-1N-1 NL+j-l
= P 1 c.p.1. iij=O

N
P cN (1-Pi) s( )  (107)

P1 CiP -pi1 i 1 i 1- (

by (103).
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Now

s Z A Z] 1 n-k- 1 AI  A A 2
P 21...0 AL-11 0 A 11 n-k- 1 (0 21I1)p 0 A *0 L-110 1i

-n-A -1--- -P2=O - 1- 2-2

Denoting the LHS by Ps(k-1, n-A1-1) ,;e have

n-k- 1

Ps(k-1, n-.1l-1 ) = C PS(O 21 1)'s(k-2, n-1- 2-2)  (l08)
£2=0

Using this in (106) and because of (107) we can write:

n-k 1

ps(k,n) = P1 p PS(o 1l1)s(k-1, n- 6 -1) (109)

1 =0

That is, to evaluate Ps(k,n), we need only know

('s(k-2, n-j); j = 2, -'-, n-k+2; k z 2)

For k = 2 and any L

S (0, L) =- P(O, LI1)

= pS(o Li)

NL-1 (1-pi
c1p.

T (0, L) = i -Pi  (!0)(1-p)

i Pi(l-Pi)
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For k > 2, use (108 )to find P (k-1, n-11-1). The case k = 0:

PS(O,n) = Ps(O n)

= F pS(lok)
k n

N

pDk-1 1i by (W)= k P-2 eiPi by ().1 iPi -1-pkn i i

i.e.

Nn-1
ciPi

(iv) pS(On) =P1 i (Ii)
l i(1-p )

The case k 1 is included in (109).

We now find rs(k): the correlation of error symbols.

It is convenient to find

P(symbol k error-freelinitial error symbol) = Ps(Okllo)

and then use the fact that

rs(k) = Ps(lkll o )

1 - PS(0klo) (112)

Now let

c = (C1 , c2 , c3 , c).

M5x 5 = transition matrix.

R4x4 = matrix of transitions between the good states only

obtained by deleting the last row and column of M.

S = M - (last column of M).

U = column vector (4x1) of l's.
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Then

Ps(1o , Ok) pS1 --- k-1---o

where the indicated (k-1) symbols are arbitrary N(k-1) bits. Hence

N-(1  ) )(CRi-, )MN(k-1)SRN-IU

S(lo Ok ) = P - N- i -

(113)
1 (k-)N-

+P(-N )(0, 0, 0 , 0 1)MSR1U

where the indicated (N-i) bits are the number of bits up to and including last

error position in the error-symbol, i = i, N-1. The case i = 0, when the

last error in the symbol is in the last bit position is shown in the second term

on the RHS. So

N-1 i P-l MN(k)RN-lU
Ps(1 , Ok ) (cl, c 1' 2 c2 c) 2 -1 1)SR

i=l P _

0 p

+ Pl(O, , 0, O, 1)MN(k-1) SRN- 1 U

SPi(CO, 1)MN(k-1)SRNlU (114)

where
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1-p N
1

I-P1 1-p2

1-p 2

N-11-pN- 
1

1-p 3

N-i

1-P 4

Thus since

PS (lo,Ok )

Ps (Oklo) s
1

we have by (112) and (114):

rs(k) = I- - (Co, I)MN(k-1)SRN-u

P1

= - (CQ',1)MN(k-I)s R NU (115)
(1-p )

1 pi(1-pi )

Let us check (114) by putting N = 1 and k = 1, in which case the LHS

Ps(lo, Ok) reduces to P(10)

-k- then q); N(k-1) 1  N-i
If N = k = , then Q O; MN ( -  = I5x5; R I4x4; and so the RHS

becomes: Pl(0, 0, O, 0, 1)ISIU = P1 i ci = P(10).
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Appendix VI

Burst Statistics

a. Distribution and mean of burst lengths

b. P(k errors in a given burst of length n) and its mean.

c. Block burst distribution.

(a) Let L(n) = P(burst of length n); n Z 1. Then by definition

L(n) = P 0 110 21... 10 L10otlrl 116)
---- n-1

where

r, t G the guard space,

O .j G-1

j <n-2

Proposition 1

0 for n 0

L(n) = 117)

U(G)L(n); n r 1

where

min(G-l,n-2)
f(n) = C V(A)L(n-t-1); n ! 2

£=O

11) = 1 .

180 JPL Technical Memorandum 33-699



Proof: It is clear by definition that L(O) = 0. By (116)

L(n)= P[(O 10 21 ... 10 L10 1

= p[(O 1021 .. 1 0 LL11)P(Ot 1 ) . (118)
tG -- n-1 - -

Sp(otl 1 ) = 1 ci -1 = U(G) (119)
t G i

and if we denote

L(n) = P( 110 2 1 . 10 L1 11 1

----- n-1 -

min(G-l1,n-2) 1  A
SP(O lll)P(O 21 0 1 0 ll11)

Ai=0 - n- -2---

min(G-l,n-2)
= V(L)n--1) (120)

1=0

so that L(I) = 1, then substituting (119) and (120) in (118) gives (117).

The expected (average) burst length is given by

F nL(n) = U(G) F, nL(n) (121)
n>1 n>1l
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We shall find F nL(n) by the method of moment generating functions
nrl

(MGF)*.

Let us find the MGF of L(n). Define

V(e) if -< G- 1

G (0 otherwise

Since

T(k) = 0 for k < 0 we have

min(G-1,n-2)
I(n)Xn = X 2 V(£)X L(n-£-1)Xn' a - 1

1=0

= X vG(a)X L(n-1)X n - £-  ; n > 2 (123)
=o

and if we define

R(X) = E L(n)Xn ; VG(X )  VG ()X (124)
n=l 1=O

H(X) and VG(X) exist because (n) are probabilities and VG(A) is non-zero

only for finitely many ' s. Then simaning over n in (123) we get

We are grateful to Howard Rumsey for pointing out this elementary but powerful

way of generating the function "(n) from its recursion expression (120).
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R(X) - X = X VG(£)X Z (n- -l)Xn- a-I

1=0 n=+2

= XVG(X)R(X) (125)

or

R(X) X=f-xv (x)

= X(XVG(x)) (1.2)
j=O

Thus

2D nL(n) = U(G)R'(X)IX=1  (127)

and

1+X VG(X)  1+V (1)R'(X) (128)
S (1-XVG(X))2 X=1 [1-VG(1)]2

We shall need

"(x) (XVG(x)) [2XV G()+X2VG(x) ]+2(1+X2VG()) (1-xvG())(vG(X)+XVG(X))

(1-XVG(X))

giving

(1-VG(1)) (2VG(1)+VG ())+2(1+V(1)) (VG(1)+VG(1))
R (X) IX= VG())3 (129)
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in finding the variance of L(n). Thus, since

R (1) = n(n-l)L(n)
n>l

the variance of L(n) is given by:

U(G), n2 (n)- U(G) nr i(n)
n>1 n1

= U(G)R"(1) + U(G)R'(1) - (U(G)R'(1))2 ;

where

G-1

VG(X) = D v(')x
h=0

4 ci(1-P i) G-1

i=l i =0

c i(1-pi )(-(piX)
G

i Pi(-Pix )

so

c.(1-p )

VG(1) = _ c (131)
i Pi

ci.(l-p i )(i-((PiX)
G )-G(l-piX)(piX)G- 1

G i (1-p.X)2

so
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VG(1 ) F= i (1 _ G - G( - p )p G(2)
i l-Pi i 2 i G

ci(l-pi)i{2(1-(p.X ))-G2 (l-pX)2 (px)G2 -2G(1-hPX) (pX)- I
v,(x) = Ii (1-PiX) 3

so

_G) 2 2 G-2G-I

1c iPi 2(l-pG)-G2 (-Pi) Pi -- 2G(l-Pi 1-3pi
i (1-p) 2

(b) As in Ref. [2], we write

P(k errors in a given burst of length n) = Q(kn) (134)
t(n)

and state expression for W(k,n) in the following.

Proposition 2:

0 if k = O, n O; or k > n

Q(k,n) 1= if n = k = 1 (135)

min(G-l,n-k)
F, V(£)Q(k-l,n-£-l) ; n > k > 2
1=0

Proof:

P(k errors in a given burst of length n)

P(burst of length n with k errors) (136)
P(burst of length n)
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Denote the numerator by (k,n). Then by definition

Q(k,n) = P[O 10 2 *.. 10 LlotlOrl

where

r, t G; L k - 1; . = n - k

j-1
0 ! !. min(G-1, n-k- D a.)

3i=1

Thus by (118),

Q(k,n) = U(G)P(O 10 21 *. 10 " lll) (137)

4- n-l ----

Let

"(k,n) = P(O 110 21 ... 10 L1 11  . (138)
<4--- n-i

Since the (n-1) bits indicated must contain (k-1) errors we have:

-(ln) 1 if n= 1
0 otherwise

and

Q(O,n) a 0 for n t 0

and it is clear that

Q(k,n) = for k > n
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Hence for 2 k < n we can write from (.38)

min(G-l,n-k) V( )PO L
Q/k,n)= V( 1 )P( 1 10 1

1 =0 4 n-£1-2

min(G-l,n-k)

- 2 v()(k-1, n-1-1) (139)
=0

since the (n-£-2) bits indicated must contain (k-2) errors. Thus by (137)

Q(k,n) = U(G) (k,n) . (140)

Combining this with (117) and (136) we obtain

P(k errors in a given burst of length n) = n)

- (k,n) ; n 1 .

T(n)

Here also let us use the method of moment generating functions to find the

mean number of errors in a burst of given length. Denote this mean by Kn; n

is the burst length. So

n
Z k09(k,n)
k=2

n n k>2
L(n)

We know that

K-=

K2 
= 2

By definition of Q(k,n) we can write
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Q(k,n) = 2 VG(j)Q(k-l, n--l1) ]i)
A=O

where VG(1) is as defined in (12.? ). Note that (12) holds for all values

of k and n except for k = n = 1. So if we denote

Q,(y,x) 2 23 Q(k,n)yk xn

k=l n=1

= F 3(k,n)ykn + yx (1.43)
k>2 n>2

Q(y,x) is well defined since Q(k,n) are probabilities. We can write, for

all k and n

0 C IC n-1-1 k-1
Q(y,x) - yx = xy E E VG(a)x 2 (k-1, n--l)X y

k=2 =0O n=2

c. co

xyVG(x) C 0 Q(k-l, n--1)X -
I
-y

k=2 n= +2

= xyVG(x)Q(y , x)

or

Q(y,x) = lxyx 5)
1-xyVG(x)

Denote the partial derivative of Q(y,x) w.r.t. y by Q(y,x). Then

Q (y,x) = X 2
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SO

(l,x) = x

x= n=l (n)x by (124)

By (143), for a fixed n

kQ(k,n) is equal to the coefficient of the nth term of Q (l,x)
k>l

th 1 n 2
i.e. the coefficient of the n-- term of x n=l (n>] which is equal to

n
E L(k)E(n-k+l) (147)
k=1

Therefore by (141)

n
F L(k)1(n-k+l)

n k=l (148)
~n (n)

The variance of -(kn) is given by the coefficient of the th term of
L(n)

0 (1,x)
02K .+ R - K (149)

(n) n n

where

Q (y,x) is the second partial derivative of Q(y,x)
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w.r.t. y i.e.

2X2V (x)
Qy(y,x) = 3

(l-xyv (x))

and

2
2X VG(x)

Qyy(l,x) =
(1-xVG(x))

= 2VG(x) R3 (x) (150)

(c) Let d = block guard space and L(n) = probability of a block burst of

length n (each block is s bits long).

Ls (n) = Ps (O 110 21 ... 10 L10tl O rl

r,t > d ; 0 r L. d-l; Z~] 1. n-2 (151)

Thus

LS(n) = F PS[O 11 *.. 10 11 11)ps(otll)
tZd - n-1 i-

with

sd (l-p )

Sps(ot 1) = i i  s i(l-) (152)
t>d (l-p )

i 1 Pi (l - p i

= US(d)
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Put

iS(n) = pS( 1 **... 10 LIl
--- n-i -

min(d-l,n-2)
SvS ( )Zs (n- -1) (1.53)
A-0

so that s (1) = 1; where

vs(I) = ps(o0 1 1 )

iPi (1-p)

c pi(1-p )

Then we can state LS(n) in the following

Proposition 3:

O for n 0

(d)Ls(n) ; n 1
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