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ABSTRACT

Three moment method solutions are considered for treating the
problem of wire antennas in the presence of an arbitrary dielectric
inhomogeneity. In the first method, the current on the wire and the
electric field intensity in the inhomogeneity are treated as inde-
pendent unknowns, while in the second and third methods they are
treated as dependent unknowns. The third method is applied to the
problem of strip antennas in an electrically thin dielectric slab.
Numerical results are presented, and are in good agreement with
measurements and previous calculations.
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CHAPTER I

INTRODUCTION

A common antenna configuration is a strip conductor in or on
an electrically thin dielectric slab. Such radiating systems have
been in use for many years, and in 1955 an entire issue of the IRE
Transactions on Microwave Theory and Techniques was devoted to
microwave strip circuits.[1] The information presented was largely
experimental or qualitative. Using etching techniques antennas,
arrays of antennas, power dividers, impedance matching networks, and
phase shifters can easily and inexpensively be fabricated on a di-
electric slab. A resonant surface[2,3] can be made by etching a
periodic array of dipoles, slots, or other simple elements on a di-
electric slab. A simple and efficient microwave antenna can be
constructed by etching a rectangular conductor on one side of a
dielectric slab, while leaving the other side completely coated with
metal. This configuration is termed a microstrip antenna.[4,5]
Antennas printed on thin dielectric slabs can be flush mounted on
aerospace vehicles, and in this way maintain the aerodynamics of the
vehicle.

Despite the increasingly common use of radiating or scattering
systems printed on a dielectric slab, very little theoretical analy-
sis is available which is applicable to a wide variety of geometries.
Various authors have calculated the transmission line properties of
infinitely long strips on a dielectric slab.[6,7] Galejs[8] derived
a stationary expression for the impedance of a strip dipole in a plane
stratified medium. The design of microstrip radiators was discussed
in a recent paper by Munson.[5] The purpose of this dissertation is
to present a moment method solution[9] to the problem of antennas or
scatterers in or on a thin dielectric slab. The analysis has the
advantages that it is applicable to a wide variety of antenna geome-
tries, and that the presence of the slab introduces no new unknown
expansion modes. Unlike previous solutions, the slab may be of
finite or infinite extent.

Chapter IT outlines the moment method solution, based on the
piecewise sinusoidal reaction formulation[10], for thin strip antennas
in a homogeneous medium. In Chapter III, three methods are presented
to account for the presence of an arbitrary dielectric inhomogeneity.
These methods are sufficiently general to treat lossy and inhomogeneous
dielectric inhomogeneities. All three methods are exact in principle,
but approximate in practice. In the first of these methods, the cur-
rent on the antenna and the electric field intensity in the inhomo-
geneity are considered to be independent unknowns. The presence of
the dielectric inhomogeneity is then accounted for by increasing the
size of the matrix equation which describes the wire antenna in the
homogeneous medium. This method has the advantage of requiring a



minimum a priori knowledge concerning the problem, but has the dis-
advantage of requiring increased computer storage. In the second and
third methods, the current on the wire and the electric field intensity
in the inhomogeneity are'treated as dependent unknowns. The presence
of the inhomogeneity is accounted for by modifying the matrix equation
which describes the wire antenna in the homogeneous medium. Thus, no
substantial increase in computer storage is required. However, both
methods require that a reasonable approximation be available to the
electric field intensity radiated by a current element in the presence
of the inhomogeneity.

In Chapter IV approximations are presented for the field
radiated by a current expansion mode in the center of an electrically
thin dielectric slab. Thus, Chapter IV yields approximations to
specialize the third method presented in Chapter III to the problem
of a strip antenna in the center of an electrically thin dielectric
slab. The slab may be of finite or infinite extent. In Chapter V an
approximate relationship is presented to relate the impedance of a
strip antenna arbitrarily located in a dielectric slab to the impedance
of the strip antenna in the center of a dielectric slab.

Numerical calculations, and verification by measurements and
previously published results, are presented in Chapter VI for the im-
pedance of a strip dipole in and on a thin dielectric slab. Finally,
Chapter VII summarizes the results of this study and suggests methods
for improving the computations.



CHAPTER II

STRIP ANTENNA IN A HOMOGENEOUS MEDIUM

The moment method solution for electrically thin circular
cylindrical wire antennas in a homogeneous medium employing the
sinusoidal reaction formulation is given by Richmond.[10] Paralleling
Richmond's development, the moment method solution for electrically
thin and perfectly conducting strip antennas in a homogeneous medium
employing the sinusoidal reaction formulation will now be presented,
the motivation for considering this problem is that equations derived
and quantities defined will be useful when considering the effects of
placing the strips in or on a thin dielectric slab, i.e., the inhomo-
geneous problem. If one is solely interested in thin strips in a
homogeneous medium, the equivalent circular wire (refering to Fig.
2-1, r = w/2) can be used to give excellent pattern, current, scat-
tering, and impedance data.[11]

Figure 2-1 shows a perfectly conducting strip antenna of width
2w in the homogeneous medium (y,e). The strips are initially con-
sidered to have thickness t0. A local coordinate system (u,£,v) is
shown on the strip centerline. Let S denote the closed surface of the
strip antenna. The external source (J.-j,M-j) generates the field (E_,HJ
in the presence of the wire. When radiating in the homogeneous medium
(y,e) without the wire, this source generates the incident field
(f-i'Hi)' In this work the term wire will be used to refer to a long,
slender, metallic rod which may or may not have a circular cross section,
The scattered fields are defined as

(2-1) .Eg = E - E.

(2-2) H<. = H - Hr

All sources and fields are considered to be time-harmonic, and the time
dependence eJ^t is suppressed.

The sources (Jj,Mj) will induce the surface current density

(2-3) J^ = n x H

on the surface S. As shown in Fig. 2-1, n is a unit vector directed
outward on S. The sources (J_j,Mj) and J$ generate the field (E_,JH)
exterior to S and a null field interior to S when radiating in the
presence of the wire structure. With J$ flowing on S, we may replace
the wire structure with the homogeneous medium (y,e) without disturbing
the field anywhere.[12] Jg radiates the field (Es.Hg) in the homo-
geneous medium (y,e).
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Fig. 2-1—A strip antenna in a homogeneous medium.
Also shown is the strip cross-section with the
local u£v coordinate system.



Consider the limiting process as the strip thickness t0 goes to
zero. In this case the scattered fields are radiated by a surface
current which is the vector sum of the surface currents on the top and
bottom surfaces of the strip, and will hereafter be denoted Js. For
the strip antenna of zero thickness 3$ flows on the open surface of
the strips. This open surface will hereafter be denoted S.

Now place a test source with electric surface current density J^
and magnetic surface current density Mm on the surface S. The reaction
of the test source with the other sources is

(2-4) JJU. • I, - V H,)* = - JJU. • i, - V a,)*

where the integration extends over the surface of the test source.
Using the reciprocity theorem, Eq. (2-4) becomes

(2-5) ff J. - Emds + fff (J, • Em - M. . Hjdv = 0
J J 5 J J J ' ~"

where (E01,̂ "1) is the field of the test source radiating in the homo-
geneous medium, and the volume integration is over the source region.
Equation (2-5) is the reaction integral equation which was developed
by Rumsey[13] in 1954, and used by Richmond[10] and others.[14,15]

In general 0$ is a nonseparable function of u and a. Further,
Js is a vector function with £ and u components. For electrically
thin wires a number of approximations can be made concerning Jg, and
these result in a simplification of the integral equation. By a thin
wire it is meant that the strip width, 2w, is much smaller than the
wavelength, X, and the wire length is much greater than the width.
Other restrictions are that no wire passes within a few strip widths
of another, and that no wire is bent to form a small acute angle. In
this case the following approximations will be made:

A

1. The u component of J will be neglected.

2. J is a separable function of u and I.
o

Using the above approximations J can be written as

(2-6) ^ = £K(u) I(£).

K(u) and l(a) are functions which describe the transverse and longi-
tudinal distribution of current along the wire, respectively. King
and Harrison[16] suggest that for electrically thin and perfectly
conducting strips



(2-7) K.(ul •

where c-1 is a constant. This transverse distribution has the proper
lATcf singularity for a 360° wedge at both edges of the strip, where
d denotes the distance from the edge [17]. A second transverse distri-
bution which also has the proper edge behavior is

?
(2-8)

where c« is a constant and

(2-9a) p= w-u

w.

(2-9b) p' = w+u

The constants c, and c? can be evaluated by requiring

(2-10) f K(u) du = 1.
•'-w

Substituting Eqs. (2-7) and (2-8) into Eq. (2-10) yields q = I/TT
and C2 = 1/4/^w". For strip antennas in a homogeneous medium, this
author knows of no reason to prefer either of the distributions of
Eqs. (2-7) and (2-8), or any of a variety of additional possibilities,
and we choose to use ^(u). Inserting Eq. (2-7) into Eq. (2-6) yields

(2-11) J =
~ •

T T W - U

Using Eq. (2-11), Eq. (2-5) simplifies to

, eL r\n ,( %
(2-12) — M ' E"1 dud£ = V_w Jn iw I ? ?" ^

m

where L denotes the overall wire length and

(2-13a) (J-i • im - M,,' • if) dv



(2-13b)
E:=

^

In Eq. (2-13a) the integration is over the source region.

Equation (2-12) is the thin strip integral equation to be solved
for I (a). In this equation E™ and Vm are considered to be known. To
solve for the current, suitable test sources and expansion modes will
now be defined.

The test source is chosen as a filamentary electric dipole line
source with a sinusoidal current distribution. This choice has three
advantages:

1. The near zone fields are available in terms of simple closed
form expressions.[18]

2. The mutual impedance between two sinusoidal dipoles is
available in terms of exponential integrals.[18]

3. The piecewise-sinusoidal function closely approximates the
natural current distribution on a perfectly conducting thin wire.

A typical test source is shown in Fig. 2-2. It is a filamen-
tary V dipole consisting of two segments which in general have unequal
lengths and may intersect at any angle. The V dipole of Fig. 2-2 is
shown intersecting at an angle of 180° for simplicity. Note that the
dipole current is zero at the endpoints, rises sinusoidally to a
maximum at the terminals, and has a slope discontinuity at the
terminals. The functional form for the test source current distri-
bution is ;

(2-14) sinh Yd1 sinh

where a~\ is a unit vector pointing from £] to ^2> ^2 ""s a uni't vector
pointing from &2 to ^3* dl and ^2 are the lengths of the segments from
£, to &2

 and £? to £3 resPectivel.y> and

(2-15a)
otherwise



(2-15b)
8

otherwise

(2-15c) Y = ju)/~ile~

The test dipole has unit terminal current and is located on the £ axis
For ft(£) to have the advantages listed above, Y must be given by Eq.
(2-15c).

Fig. 2-2—A linear test dipole and its sinusoidal current
distribution. The endpoints are at &i and £3
with terminals at

For a typical problem Eq. (2-12) would be enforced for N test
dipoles located at different ,positions along the wire axis. In this
case, Eq. (2-12) represents a system of N simultaneous integral
equations with m = 1 , 2 , - - - N . We will use the notation that f_tm is the
mth test dipole which radiates the field (E.m»iim) in the homogeneous
medium (y,e). To obtain a system of N simultaneous linear equations
the surface current density, J$, will be expanded in terms of a set
of basis functions as follows:

N
(2-16) J ( u , £ ) = I I

^ n=l r



The expansion modes are electric dipole surface currents which are
simply related to the filamentary test dipoles by

(2-17)

The superscript c on Fgn emphasizes that it is a conduction current.
Note that F^p has unit terminal current and that the nth filamentary
test dipole is located on the center line of the nth surface current
expansion mode. Using Eqs. (2-11), (2-16) and (2-17)

(2-18) lU)-^ InFtnU).

Inserting Eq. (2-18) into Eq. (2-12) yields the following system of
simultaneous linear equations:

N

where the elements of the open-circuit impedance matrix are

<2-20> Z ' -

In Eq. (2-20) the integration extends over the surface of the two
segments making up the nth expansion mode. Equation (2-19) can be
written as the matrix equation

(2-21) ZI = V

where Z denotes the N by N impedance matrix, I is the current column,
and V is the voltage column.

If the equivalent radius concept is used then Eq. (2-20) is
replaced by [10]

mn = - If1 }Z = - £) ' *»*) d£ d<f)

where the integration is over the circular cylindrical surface p = w/2
in the range of the nth expansion mode f^. The expansion mode Fp is a
surface current given by



T°

where a = w/2. Fn(«,) exists on the surface p = a. Computer programs
are available to evaluate Eq. (2-22) and Eq. (2-13a) if the source is
a delta-gap generator or a plane wave. [14]

Zmn is the mutual impedance between the mth test filamentary
dipole and the nth surface expansion dipole. Since the test and ex-
pansion modes are not identical, the reciprocity theorem can not be
used to demonstrate the symmetry of the impedance matrix. However,
in practice the matrix will be considered symmetric. [10] The sym-
metric matrix requires that (N2+N)/2 elements be evaluated and stored,
as compared to N2 for the full matrix. As has been mentioned, the
longitudinal integration of Eq. (2-20) is available in closed form,
and computer subroutines are also available[18,19]. This author knows
of no closed form expression for the transverse integration of Eq.
(2-20), and thus, if the equivalent radius concept is not being used,
numerical integration is employed. For segments with one or two points
in common the transverse integration has an integrable logarithmic
singularity at u = 0. A 1A/TT singularity at u = ± w is present for
all evaluations of Eq. (2-20). Numerically these singularities can
be handled by using closely spaced points and integration formulas
which avoid u = 0 or ± w.

The effects of lumped loading may be easily accounted for in
precisely the same fashion as is used for circular-cylindrical
wires[10]. Briefly, Eq. (2-19) is replaced by

where Tmn is obtained from Z by simply modifying the diagonal
elements as follows

mm mm m

and Z denotes the impedance of the lumped load.

In general the excitation voltages of Eqs. (2-19) or (2-24)
must be evaluated using Eq. (2-13a). For the simple delta-gap model
of a voltage generator, Eq. (2-13a) reduces to

(2-26) V = v
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where vm is the complex magnitude of the voltage generator inserted at
the terminals of the mth expansion mode. According to this model V
is non-zero only if a generator is at the terminals of the mth
expansion mode.



CHAPTER III

STRIP ANTENNA IN THE PRESENCE OF AN ARBITRARY
DIELECTRIC INHOMOGENEITY

A. Introduction

In this chapter the equations of the previous chapter are
modified to account for a dielectric inhomogeneity. Figure 3-1 shows
a perfectly conducting strip antenna in the presence of a dielectric
inhomogeneity confined to the volume V. .The parameters of the ambient
medium are (y,e), and the volume V contains a dielectric with parameters
(y>e2)« The parameters e and e£ may be complex, and e2 may be a
function of position. We now have a known current distribution (Jj ,flj)
radiating in the presence of two inhomogeneities, the wire and the die-
lectric inhomogeneity. (E.>H) denotes the fields radiated by (Jj ,Mj)
in the presence of the two inhomogeneities. We wish to replace the
inhomogeneities by equivalent currents. As described in Chapter II the
perfectly conducting strips can be replaced by the surface currents 0$.
Using Rhodes'[20] volume equivalence theorem the dielectric inhomogeneity
may be replaced with the ambient medium and the equivalent volume electric
current density

(3-1) i= jw(e2-e)I

where \E is the electric field intensity in the dielectric inhomo-
geneity. J_ exists only in V, and is in general unknown since E is
unknown. The currents (J.-j,Mj), 0$, and J^ radiate the fields TE.»H)
in the homogeneous medium (y,e).

The reaction integral equation, Eq. (2-5), and Eq. (2-13a)
are modified by replacing Jj by Jj + J_. Thus, J^ is considered as a
source term, similar to J.j. If E_ is known or if a sufficiently accurate
approximation for E_ is available, the results of the preceding section
can be used directly by replacing Jj with J_j + J_. Unfortunately, a good
approximation to E. is generally not available. In this case at least
two approaches to the problem can be used. The first is to consider the
current on the wire and the electric field intensity in the inhomogeneity
to be independent unknowns, and the second is to consider the wire cur-
rent and £ to be dependent unknowns. The remainder of the chapter will
describe these two approaches. Two different methods will be presented
for treating the wire current and £ as dependent unknowns.

12
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Fig. 3-1--A strip antenna in the presence
of a dielectric inhomogeneity,

B. Approach 1 - The Wire Current and the Electric Field in the
Inhomogeneity are Considered to be Independent Unknowns

In this section it will be shown how the matrix equation (2-21)
is altered if the electric field intensity in the inhomogeneity, £,
and the wire current are treated as independent unknowns. As a first
step, the equivalent volume polarization currents defined by Eq. (3-1)
are expanded in terms of a set of M basis functions as follows:

(3-2)
N+M

J= I
n=N+l

Comparing Eqs. (2-16) and (3-2) the current on the wire is expanded
in terms of the N unknowns In (n = 1, 2 ••• N), and the volume
polarization currents are expanded in terms of the M unknowns In
(n = N+l, N+2, ••• N+M).

As was mentioned above, Eq. (2-5) is modified by replacing
J. with J. + J. and becomes

(3-3) IL E m ds m-[(J..+J) • E"' - M. • H!"]dv = 0
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where the volume integration extends through the source region and V.
Equation (3-3) mathematically expresses the fact that there is zero
reaction between the mth test source located on the wire axis and
the sum of the currents Js, J_, Jj, and Mj. Rearranging Eq. (3-3) so
that only unknown currents appear on the left hand side of the
equation yields .

(3-4) [[ J - Imds - fff J • E m d v = V m

where Vm is given by Eq. (2-13a).

Enforcing Eq. (3-4) for N test sources, described by Eq. (2-14),
yields the following system of simultaneous linear equations:

N+M
(3'5> „]>! 'n *•! • V- " - 1 . 2 - N .

In Eq. (3-5) the Zmn are given by Eq. (2-20) for m £ N and by

for n > N (and m <_ N).

Equation (3-5) represents N linearly independent equations in N+M
unknowns. In order to solve for the In we must obtain an additional
M linearly independent equation.

The additional M equations will be obtained by using the f^ct
that the sum of the electric field intensities radiated by J^ J^
Jj, and MJ in the presence of the homogeneous medium (v,e) is £ in
V, the volume occupied by the dielectric inhomogeneity. Denoting
£3, Ey, and !Ejj as the electric field intensities radiated by the

>sources Jg, J_, and (Jj ,Mj) respectively in the homogeneous medium
(y,e) we then have

(3-7) E^ + ^ + E.. = £ in V.

Now define a series of M vector weighting functions ^ (m = N+l, N+2,
••• N+M), and integrating over the volume V yields
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(3-8) {{} s
 + Iv - I) • J^ dv = - 11 [. E,

V V

m = N+l, N+2, ." N+M.

dv

If we denote Ecr, as the electric field intensity radiated by f£n
(see Eq. (2-16)) and E_vn as the electric field intensity radiated by
Gn (see Eq. (3-2)) then using Eqs. (2-16), (3-1), and (3-2) in Eq.
(3-8) yields

n=l

N+M
I

n=N+l III 1L dv-m

• - If fc m = N+l, N+2, •••• N+M.

Equation (3-9) represents the additional M equations in the N+M
unknowns I (n = 1, 2, ••• N+M). Equation (3-9) can be written as

(3-10)
N+M

= N+l, N+2,

where

(3-12) Z.mn ^vn . H dv-m

n = N+l, N+2, ••• N+M

(3-13) "JJJ* • H dv-tn n = 1, 2, N+M.
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Equation (3-5) together with Eq. (3-10) represent N+M equations
in the N+M unknowns In (n = 1, 2, ••• N+M). Equations (3-5) and
(3-10) can be expressed in matrix form as

(3-14) ZI = V

where Z denotes a square matrix, I is an unknown column vector, and
V is a known column vector. The elements of Z, denoted Zmn» and
the elements of V, denoted Vm, are given by different expressions
depending on the values of m and n. The matrix Eq. (3-14) is
symbolically shown in Fig. 3-2 where the matrix is divided into
four regions and the column vectors into two regions. In Table 1
these regions are defined and the equations to use for Z and V
are listed. m m

TABLE 1

Region Definition of Region

ZA l<m<N, l<n<N

ZB l<m<N, N+l<n<N+M

Zc N+l<m<N+M, l<n<N

ZD N+l<m<N+M, N+l<n<N+M

VAB l<m<N

V N+l<m<N+M

Zmn or Vm Glven By

Eq. (2-20) or (2-22)

Eq. (3-6)

Eq. (3-11)

Eq. (3-12)

Eq. (2-1 3a)

Eq. (3-13)

The above approach has the advantage that no a priori knowledge
of the fields is required, and the solution can approach the exact
solution for a sufficiently large number of basis functions. Mutual
interactions among various portions of the dielectric body and the
wire as well as surface-wave excitation are automatically included.
Further, if J^ is expanded in subsectional basis functions, the method
is not restricted by the shape of the dielectric body (i.e., by the
shape of the volume V). The main restriction is that the dimensions
of the i nhomogenei ty not be large in terms of the wavelength. For
example in a dielectric slab one wavelength square and less than 1/20
wavelength thick, one might divide the slab into 100 cells. If each
cell is considered to have three unknown field components, there are
a total of 300 unknowns representing the slab. Assuming a symmetric
impedance matrix, 45, 150 impedance elements would have to be eval-
uated and stored for region ZD alone. Thus, while this method does
have considerable advantage for electrically small i nhomogenei ties
and some two dimensional problems [21 ,22], it is limited by the speed
and storage capabilities of the digital computer being used.



17

I =

M

M
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o

Z
o
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UJ
o:

Fig. 3-2. Symbolic representation of the matrix equation II = V.

C. Approach 2 - The Wire Current and the Electric Field in the
Inhomogeneity are Considered to be Dependent Unknowns

In this section two formulations will be presented for treating
a wire antenna in the presence of a dielectric inhomogeneity, and
where the current on the wire and the fields in the inhomogeneity
are treated as dependent unknowns. Both approaches will account
for the inhomogeneity by modifying the impedance matrix which
describes the wire antenna in the homogeneous medium.

Equation (2-5) is an integral equation for the current J_s on
a perfectly conducting wire structure which is immersed in the homo-
geneous medium (y,e) and excited by the sources (J_i,M.i). Here
(jrm}Hm) denotes the fields of the test source radiating in the
homogeneous medium (y,e). If in Eq. (2-5) (Ej",̂ 11) is taken to be
the fields of the test source radiating in an inhomogeneous medium,
then Eq. (2-5) becomes an integral equation for Js on the perfectly
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conducting wire in the inhomogeneous medium, and excited by the
sources (0.i,Mj). Here the inhomogeneity is the dielectric volume
and not the wire. As before, with (Ej1!,̂ ) defined in this way,
Eq. (2-5) insures that there will be zero reaction between the test
source located on the strip axis and 0$ and (Jj.tli)- Clearly Eqs.
(2-13a) and (2-20) yield the elements of the voltage column and the
impedance matrix for the wire in the inhomogeneous medium with the
new definition of (im,!Hm).

The fields of the mth test source in the inhomogeneous medium
can be expressed as

(3-15) Em=

(3-16) Hm = j£ + H£

where (Eg1,]^) are the fields of the mth test source radiating in the
homogeneous medium (u>e), and (EB.HJS) is the perturbation in the
fields caused by the inhomogeneTty. Substituting Eqs. (3-15) and
(3-16) into Eqs. (2-13a) and (2-20) yields

(3-17) Vm- [i, - (4 '+E j ' ) -M ,

du

Thus, in the presence of the dielectric inhomogeneity, the matrix
Eq. (2-21) becomes

(3-19) (Z + AZ) I = (V + AV)

where the elements of Z and V are given by Eqs. (2-20) and (2-13a)
respectively, and the elements of AZ and AV are given by

(3-20) AZ • = - - , ' F. U) • j£ du* * rnn *ir —TM * * —-ji
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,m

If the equivalent round wire for the strip is used, then the
elements of Z are given by Eq. (2-22), and the elements of AZ are
given by

(3-22)

Clearly this approach is useful only if the fields of the test
source in the presence of the inhomogeneity, or a good approximation
to these fields, is known. One important example where this is the
case is an antenna in the vicinity of a dielectric half-space. For
this inhomogeneity exact expressions as well as many useful approxi-
mations are available for the fields of infinitesimal current sources
in the vicinity of the dielectric half-space[23-26]. Further, a
solution similar to that presented above has been used to find the
current distribution, impedance, and field patterns of antennas in
the presence of a dielectric half-space. [27]

Next a different formulation will be presented for including
the effects of the dielectric inhomogeneity, and where the current on
the wire and the fields in the dielectric inhomogeneity are con-
sidered to be dependent unknowns. This will be done by modifying
the expansion functions on the wire, and again will result in a
modification to the impedance matrix. All of the numerical calcu-
lations to be presented in Chapter VI are based on this method.

Figure 3-3 shows the nth expansion mode radiating in the
presence of the dielectric inhomogeneity. The field radiated by Fgn

is denoted by (l£n»H|Q)» and what follows assumes that a good
approximation to t0, is available. The equations to follow shed no
light on the generally difficult problem of determining Ejn, but
rather show how a knowledge of Ec can be used to find the current on
the wire. ~en

In the absence of the dielectric inhomogeneity the expansion
modes were the conduction currents F|0 defined in Eq. (2-17). In the
presence of the dielectric inhomogeneity the expansion modes will be

(3-23) F = Fc + Fp
w t-^i _ _ L

where

(3-24)
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Fig. 3-3--The nth expansion mode radiating in the presence
of a dielectric inhomogeneity.

The fields of the expansion modes defined by Eqs. (3-23) and
(3-24) each satisfy boundary conditions at the dielectric interface.
Thus, any linear combination of these modes will also satisfy
boundary conditions at the dielectric interface. The volume polari-
zation current fP exists only in the volume V. In the presence
of a dielectric inhomogeneity the expansion modes are made up of
two distinct parts. The first part is a conduction current given by
Eq. (2-17). The second is a volume polarization current confined
to the volume V and given by Eq. (3-24). The mutual impedance matrix
is modified by adding to each element

(3-25) AZ,mn • -ill -en —Em dv.

The current on the wire in the presence of the dielectric
inhomogeneity is given by the solution of the following set of linear
simultaneous equations

(3-26) <Zmn = V where m= 1 ,2 ,

Equation (3-26) can be written in matrix form as

(3-27) (Z + AZ) I = V
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where Z + AZ is an N by N impedance matrix, I is the current column,
and V is the voltage column. The elements of Z are given by Eqs.
(2-20) or (2-22), and the elements of V are given by Eq. (2-13a).
The elements of AZ are given by Eq. (3-25). Comparing Eqs. (2-21)
and (3-27) or Eqs. (2-19) and (3-26) it is seen that the presence of
the dielectric inhomogeneity introduces no new unknowns, and thus the
size of the impedance matrix is unchanged. The presence of the inhomo-
geneity is accounted for entirely by a modification of the elements
in the square impedance matrix.

It is interesting that Eq. (3-25) vanishes for two special cases.
First, as the volume of the inhomogeneity V approaches zero, AZmn must
also go to zero. Second, as &2 approaches e, Fjn goes to zero, and
thus so must AZmn. Thus, this formulation automatically reduces to
the correct limit as the volume of the inhomogeneity approaches zero,
or as e2 approaches e.

The obvious advantage of treating the electric field in the
inhomogeneity as a dependent rather than an independent unknown is
that no new unknowns are introduced, and the size of the impedance
matrix is not increased. If (ER.HPj) or E£n are known exactly, then
using the above equations, the presence of the inhomogeneity can
be treated exactly. Unfortunately, even good approximations to
(Efl.Hjj) or E^n are often not available. In treating antennas in the
presence of dielectric inhomogeneities by the last two methods, the
real problem is to determine suitable approximations for either
(EJQ,Hn) or Ê n. The next chapter considers the problem of determin-
ing E|n for a strip antenna in the center of an electrically thin
dielectric slab.



CHAPTER IV

STRIP ANTENNA LOCATED IN THE CENTER
OF A THIN DIELECTRIC SLAB

In the preceding chapter equations were presented to analyze
an electrically thin strip antenna radiating in the presence of an
arbitrarily shaped dielectric inhomogeneity. Referring to Fig. 3-3,
these equations were developed with the understanding that for the
particular inhomogeneity of interest a good approximation to E^n was
available. The purpose of this section is to present approximations
for E^n for the case of an electrically thin strip antenna located
in the center of an electrically thin dielectric slab.

A typical configuration is shown in Fig. 4-1. The strip antenna
is in the center of a slab of dimensions L] by \-2 by T. The strips
are in a plane a distance T/2 from either of the broad surfaces of the
slab. T is considered to be much less than a wavelength in either
the ambient medium (y,e) or the slab medium (y,e2)- E| is defined as
the electric field intensity of the nth sinusoidal electric surface
current dipole expansion mode, Fj of Eq. (2-17) in the presence of the
slab. We will be concerned with determining expressions for Efn for
field points in the dielectric slab. -en

Figure 4-2 shows one segment of ff . Also shown is the near-zone
region A defined by -en

max — u - max

-T/2 < v < T/2

region A.

Region B is the entire slab except for region A.

The surface current on the segment can be written as (see Eqs.
(2-1), (2-15), and (2-17))

(4-1) ^(u.a) = sinh Yd

22
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TOP VIEW

T/2
SIDE VIEW

Fig. 4-1—A strip antenna in the center of a
thin dielectric slab.
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REGION B

ONE SEGMENT

REGION A

TOP VIEW

,,
7////////.

SIDE VIEW

REGION A REGION B

Fig. 4-2--Definition of regions A and B.
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where I, or Ip, but not both, are unity. The equation of continuity is

(4-2) v • J^ = -jups

where ps is the surface charge density. Solving Eq. (4-2) for ps and
using Eq. (4-1) yields

v • J, K (u)
(4-3) p^)---^ --^ f'tw*)

where the prime implies differentiation with respect to a.

We will denote D^ove and ^below as tne electric flux density at
the upper and lower surfaces of the strip, respectively. From
boundary conditions at the surface of the strip

* ' b o v e + (-) '

Since the strip is considered to be in the center of the slab we have
from symmetry Pabove = -°below'

 and Eq' (4"4) becomes

and

v Ps(u,£)/2£2.

Using Eq. (4-3), Eq. (4-6) becomes

-v

Eq. (4-7) predicts that Eabgve is a function of the permittivity
of the slab, but not its dimensions. In fact Eq. (4-7) yields ^Qyg
for the surface current of Eq. (4-1) radiating in a homogeneous
medium with parameters (y,e£). This result suggests that to a
reasonable approximation Ejn in region A can be taken as the electric
field intensity radiated by F^ in a homogeneous medium with parameters/ \ ~en
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Next the problem of approximating E^Q in region B will be con-
sidered. Figure 4-3 shows the electric field intensity in a rectan-
gular dielectric cylinder illuminated at normal incidence by a plane
wave. The ambient medium is free space with parameters (yg»eo)> and
the cylinder has parameters (yo»4eo)« The incident electric field
intensity is one volt/meter. As seen in Fig. 4-3 the magnitude of
the electric field in the cylinder varies from 1.08 to 1.12 volts/
meter. Although not shown in Fig. 4-3, the phase of the electric
field is essentially that of the incident wave. Thus roughly a 10%
error would be incurred if the electric field in the slab were
approximated by the incident field.

For field points in region B the approximation will be made
that the electric field intensity radiated by an expansion mode is
the field radiated by the expansion mode in the homogeneous medium
(y,e). It is felt that this is a reasonable approximation for
electrically thin slabs whose density is not greatly different from
that of the ambient medium, and for field points somewhat removed from
the expansion mode.

In this section approximate expressions have been given for the
fields of the expansion modes in the dielectric slab. The expressions
given are not the most accurate available. They were chosen partly
because they are simple and quickly evaluated on a digital computer.
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Fig. 4-3--Calculated electric field distribution in rectangular
dielectric cylinder. The cylinder has infinite length,
zero conductivity, e = 4e0 and y = p0. The incident
field is a plane wave with normal incidence and unit
electric field intensity. The bistatic scattering
pattern is nearly circular. (This figure courtesy
of J. H. Richmond.)



CHAPTER V

STRIP ANTENNAS ARBITRARILY LOCATED IN
A THIN DIELECTRIC SLAB

In the preceding chapters the problem of a strip antenna in the
center of a thin dielectric slab was considered. The strips were
restricted to be in the center of the slab so that symmetry could be
used to proceed from Eq. (4-4) to Eq. (4-5). Figure 5-1 shows the
end view of a dipole strip antenna located a distance d from the top
surface of a slab of thickness T. The purpose of this section is to
present approximate formulas for the impedance of strip antennas for
0 <_ d <_ T. The strip antennas are restricted to be in a plane
parallel to the top and bottom surfaces of the slab. An important
special case of these formulas will be strip antennas on the surface
of a thin dielectric slab (d=0). The methods presented in this
chapter were suggested by Professor Ben Munk.

-STRIP

Fig. 5-1--The side view of a dipole located a distance d from the
top surface of a dielectric slab of thickness T.

Figure 5-2a shows the side view of a strip dipole radiating in
the homogeneous medium (y,e). The impedance of this dipole can be
thought of as being two impedances of equal value in parallel. The
two impedances are the result of the antenna radiating to the left
and to the right, and are equal from symmetry. Figure 5-2b shows
the two impedances, each of value 2Z° in parallel forming the
antenna impedance Z°. The notation being used is that zj is the
impedance of a strip antenna located a distance d from the top surface
of a slab of thickness T (see Fig. 5-1).

28
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22] 2Z

(a) (b)

Fig. 5-2—(a
(b

A strip dipole in a homogeneous medium and
An equivalent circuit for its impedance.

Figure 5-3a shows the side view of a strip dipole in the center
of a dielectric slab. Again the dipole impedance can be thought of as
being two impedances in paral lel . The two impedances are the result
of the antenna radiating to the left and to the r ight , and are equal
from symmetry. Figure 5-3b shows the two impedances, each of value
2zl,?, in parallel forming the antenna impedance Z|. .

Final ly, Fig. 5-4a shows the side view of a strip dipole off
center in a dielectric slab. The antenna impedance is s t i l l thought
of as the parallel combination of two impedances, but now the imped-
ances are unequal. Referring to Fig. 5-4b the antenna input impedance,
Zj, is approximated by the parallel combination of 2Z?d and 2Z2-U-d).

(5-1)
2Z2d 72(T-d)

Z' =
72d . 72(T-d)

Z^ and Zŷ " ' are the impedances of the antenna in the center of
slabs of thickness 2d and 2(T-d) and can be evaluated using the methods
of the preceding chapter.
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2ZT

^ 2Z T/2

(a) ( b )

Fig. 5-3—(a) A strip dipole in the center of a dielectric slab and
(b) an equivalent circuit for its impedance.

Equation (5-1) is a relationship between the impedances of three
different configurations. The conductor remains the same in all cases,
but the location and thickness of the dielectric slab changes. For
Eq. (5-1) to be a reasonable approximation the shape, but not magni-
tude, of the current distribution on all three antennas should be the
same. This w i l l be most nearly the case when the electrical lengths of
the conductors are identical. In a homogeneous medium the electrical
length is simply the physical length divided by the wavelength. How-
ever, an antenna in a dielectric slab is in an inhomogeneous medium,
and the electrical length is not clearly defined. The def ini t ion of
electrical length as a function of frequency for an antenna located a
distance d from the top surface of a slab of thickness T w i l l be taken
as
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2Z 2d

(a) (b)

Fig. 5-4--(a) A strip dipole located off center in a dielectric
slab and

(b) an equivalent circuit for its impedance.

(5-2) Lj(f) =

Here £(f) is the electrical length of the antenna referred to they
homogeneous medium exterior to the slab at the frequency f, and RA is
the electrical resonant length of the antenna located a distance d from
the top surface of a slab of thickness T referred to the homogeneous
exterior medium. According to this definition L\ = 0.5 at resonance.

The frequency dependence of Eq. (5-1) is now explicitly shown as
r\ i f\ IT j \

O -7^0ff \ - i L l l - Q l f f \
T ^ LA v f o ) Z-r j \ f ->)

(5-1) 7 * ( f ) = d z • '~cl . 3^-o; L j \ i - , j - —5-5-
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with the understanding that f - i > f o » and ^3 are r6^601 by

(5-4) Lfa) - L?(f2) ' 3%'hfj .

Since.Z?d(f) and Z^"ij~d^f) are considered to be known, R?d and
RT-d are kO°wn« afid L^d(f) and Lf^"a;(f) can be evaluated using
Eq. (5-2). Lj(f) is not known since Rj is not known. However, a
reasonable approximation is

(5-5) "d

An important special case of Eq. (5-3) is for the antenna on the
surface of the slab in which case Eq. (5-3) becomes

T 2Z°(f ) zf(f )
(5-6) Z ' ( f , ) = -2— £ - L=^ -

In the next chapter Eq. (5-6) will be used to evaluate the impedance
of a strip dipole on the surface of a dielectric slab.



CHAPTER VI

NUMERICAL AND EXPERIMENTAL RESULTS

A. Introduction

In the preceding chapters equations are presented to analyze
electrically thin strip antennas in or on an electrically thin
dielectric slab. In this chapter numerical results based on these
equations are compared with measurement and previously calculated
results. In Chapter III, three methods are presented for treating
antennas in the presence of a dielectric inhomogeneity. The calcu-
lations in this chapter are all based on the third method which is
summarized by Eq. (3-27). All measurements were made at The Ohio
State University ElectroScience Laboratory. As shown in Fig. 6-1 the
measurements were made with strip monopoles in a dielectric slab.
The monopoles were fed by a coaxial cable through a 2 ft. square
groundplane with its edges terminating in 6 in. diameter cylinders
to reduce edge reflections. The coaxial feed had an inner radius of
1/16 in. and an outer radius of 3/8 in.

r
L'/2

r A

DIELECTRIC SLAB

-STRIP MONOPOLE

•2' SQUARE GROUND
PLANE

o
-COAXIAL FEED

Fig. 6-1—Experimental arrangement for the measurement of the im-
pedance of a strip monopole in a dielectric slab.
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The numerical computations were made for a strip dipole
symmetrically located in a dielectric slab as shown in Fig. 6-2.
The dielectric slab is lossless, homogeneous, and isotropic. The
dimensions of the broad faces of the slab are denoted Li and L?,
and the slab thickness is denoted by T. The strip dipole has length
L and width 2w. It is center fed by a delta-gap generator and is
located parallel to and at a distance d from the top surface of the
slab. The slab has the permeability of free space and a permittivity
e^- All numerical data are for the dipole model.

B. Details of the Numerical Computations

Referring to Eq. (3-27), the computations required to determine
the current on a strip antenna in the presence of a dielectric
inhomogeneity can be grouped into four parts as follows:

1. Calculate the matrix Z.

2. Calculate the matrix Z and perform the
matrix addition Z + AZ.

3. Calculate the right hand side column V.

4. Solve the matrix Eq. (3-27) for the
current column I.

Computer programs written by Richmond[19] and based on the piecewise-
sinusoidal reaction formulation for electrically thin round wires in
a homogeneous medium[10] are available and are capable of performing
the computations illustrated by the flow graph of Fig. 6-3. A flow
graph for a computer program based on the piecewise-sinusoidal
reaction formulation for electrically thin strip wires in a
dielectric slab is shown in Fig. 6-4. Comparing Figs. 6-3 and 6-4
shows that to treat the presence of dielectric inhomogeneity with
Richmond's programs as a base, one needs only to calculate the matrix
AZ, perform the matrix addition Z + AZ, and store the result in the
computer array which originally held the matrix Z. The steps out-
lined by the flow graph of Fig. 6-3 are described by Richmond.[19]
Some of the details in the calculation of the matrix AZ will now be
described.

The elements of the matrix AZ are given by the volume inte-
gration of Eq. (3-25). In this equation £m is the electric field
intensity radiated by the mth sinusoidal test source in the homo-
geneous medium (y,e). As seen in Eq. (3-24), f£n is proportional to
E|n, the electric field intensity radiated by the nth sinusoidal
surface current expansion mode in the presence of the dielectric
slab. The region of integration is the volume occupied by the
dielectric slab. Simple closed form expressions and computer sub-
routines exist to calculate Em. This author knows of no exact
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LI
I

1-2

L'/2

/ 1

STRIP DIPOLE

DELTA-GAP
GENERATOR

-I U- 2w

1

T

Fig. 6-2—A strip dipole in a finite dielectric slab.
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DEFINE FREQUENCY AND
PARAMETERS OF THE

HOMOGENEOUS MEDIUM

I
DEFINE ANTENNA
GEOMETRY

CALCULATE IMPEDANCE

MATRIX Z

I
CALCULATE RIGHT HAND
COLUMN V

SOLVE THE MATRIX EQ.
ZI « V FOR THE
CURRENT COLUMN I

Fig. 6-3—A flow graph for a computer program for thin round
wire antennas in a homogeneous medium.
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DEFINE FREQUENCY AND
PARAMETERS OF THE
HOMOGENEOUS MEDIUM

I
DEFINE ANTENNA
GEOMETRY. SET ROUND
WIRE DIAMETER* 1/2
STRIP WIDTH

I

DEFINE GEOMETRY AND
PARAMETERS OF THE
DIELECTRIC SLAB

CALCULATE
MATRIX Z

IMPEDANCE CALCULATE IMPEDANCE
MATRIX AZ

PERFORM THE MATRIX
ADDITION Z + AZ

CALCULATE THE RIGHT
HAND SIDE COLUMN V

I
SOLVE THE MATRIX EQ.
(Z + AZ ) I - V FOR THE
CURRENT COLUMN I

Fig. 6-4--A flow graph for a computer program for thin strip
antennas in an inhomogeneous medium.
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expressions for Epn. However, in Chapter IV approximations for E^n
were presented. ~As shown in Fig. 4-2, the dielectric slab is divided
into two regions which are denoted region A and region B. In the near
zone region A, ||n is approximated by the field of the nth expansion
mode radiating in the homogeneous medium (y,e2). In the far zone
region B, E|n is approximated by the field of the nth expansion mode
radiating in the homogeneous medium (y,e). As seen in Fig. 4-2, the
size of region A is defined by the parameter Umax. Numerical experi-
mentation has shown that a reasonable choice for U is

Umax

Jw2+(T/2)2 if Jw2+(T/2)2 >_ 1.2w

1.2w if Jw2+(T/2)2 i 1.2w.

Since we are considering perfectly conducting strips, the £
components of the electric field should vanish at the strip surface,
and also be small for field points very near the strip^surface. It
was found that with the approximations being used the £ components of
FPjD and E"1 were both relatively large very near the conducting strip,
mis resulted in values for AZmn which were too large in magnitude to
obtain good agreement between theory and experimenter previous
results. This problem was overcome by setting the £ component of
FPn to zero for field points simultaneously in region B and in the
region |u| <_ w and \a\ <_ 1/2.

Referring to Fig. 6-2, for slabs with surface area L]L2 on
the order of a sixteenth of a square wavelength or more, the time,
required to perform the volume integration of Eq. (3-25) numerically
will be on the order of minutes on a typical highspeed digital com-
puter. If N expansion modes are being used, then depending on the
amount of symmetry in a given problem, Eq. (3-25) will need to be
evaluated between N and (N^+N)/2 times to find the current on a
given antenna at a given frequency. Clearly, prohibitive amounts of
computer time could be required to make a calculation of impedance
versus frequency. With the approximations being used, numerical
results showed the elements of the AZ matrix to be almost pure imagin-
ary (for a lossless dielectric) and also very nearly a linear function
of frequency. In all of the plots of admittance versus L/x to follow,
the elements of the AZ matrix were calculated using Eq. (3-25) at
L/X = 0.2 and at L/X = 0.5. Linear interpolation or extrapolation
was then used to find AZ at other values of L/x. This resulted in
at least an order of magnitude reduction in computer time in making
a plot of impedance versus frequency.
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.Before considering examples of dipoles in dielectric slabs,
we wi l l consider a dipole in free space. Figure 6-5 compares the
calculated and measured admittance of a circular cross section copper
dipole of length L = 6", and radius r = 0.025". The calculations were
made by d iv id ing the dipole into four equal segments. Referring to
Eqs. (2-16) or (2-18), this resulted in three unknown piecewise sinu-
soidal expansion modes. Figure 6-5 shows good agreement between
calculated and measured admittance. The discrepencies shown are
partly due to experimental errors such as instrument calibration
errors, room reflections, and reflections from the edges of the
groundplane. At resonance (f = 932 MHz) the groundplane is about
two wavelengths square. It was found that using more expansion modes
in the theoretical calculations did not s ignif icant ly improve the
agreement between theory and experiment. When the dipole is put in
a dielectric slab, the admittance w i l l be perturbed by a larger
amount than the difference between the calculated and measured
results of Fig. 6-5. Thus, it is felt that the free space theoretical
model and the measurements are sufficiently accurate to test the theory
presented in Chapters III and IV.

Four examples w i l l now be presented to demonstrate the abil i ty
of the theory to treat slabs of varying size. In these examples the
dipole wi l l be of length L = 6 i n . , width 2w = 0.1 i n . , and in a
slab of permittivity e2 = 2.55e0. The monopoles b u i l t for the experi-
mental models were copper and approximately 0.003 in. th ick. Figures
6-6 to 6-8 compare measured and calculated admittance for slabs of
thickness 0.1 in. and of increasing size. Note that as the slab size
increases, both experiment and theory predict that the resonant length
decreases and the admittance level increases. Comparing Figs. 6-5 to
6-8 shows, as expected, that the dielectric closest to the antenna
has the largest effect. Figure 6-9 shows the measured and calculated
admittance for a slab identical to that of Fig. 6-8 except that the
thickness T is increased to 0.256 in. Here it can be seen that in-
creasing the slab thickness causes a considerable shift in resonant
frequency and increase in the admittance level.

The next set of computations was made to compare with theoret-
ical calculations made by Galejs.[8] Galejs calculated the impedance
of a strip dipole in a plane stratified medium. He obtained a
yariational expression for the impedance in terms of inf in i te double
integrals. Galejs did not make any quantitative comparisons between
his results and measurements or previous calculations. His formu-
lation is more general than the one presented here in the sense that
he could treat electrically thin or thick slabs, or multilayered
dielectrics. It is less general in the sense that it would be dif-
ficult to apply his method to antennas other than dipoles, and his
method does not treat slabs of finite extent.
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• • MEASURED

DIPOLE IN FREE SPACE

0.6

Fig. 6-5(a)--A comparison of calculated and measured
conductance for a dipole in free space.
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Fig. 6-5(b)--A comparison of calculated and measured
susceptance for a dipole in free space.
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0.3 0.4
L/x

0.5 0.6

Fig. 6-6(a)--A comparison of calculated and measured conductance
for a strip dipole in the center of a dielectric slab.
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Fig. 6-6(b)—A comparison of calculated and measured susceptance
for a strip dipole in the center of a dielectric slab.
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0.6

Fig. 6-7(a)--A comparison of calculated and measured conductance
for a strip dipole in the center of a dielectric slab.
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o.o o.i 0.6 0.7

Fig. 6-7(5)---A comparison of calculated and measured susceptance
for a strip dipole in the center of a dielectric slab.
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Fig. 6-8(a)--A comparison of calculated and measured conductance
for a strip dipole in the center of a dielectric slab.
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Fig. 6-8(b)—A comparison of calculated and measured susceptance
for a strip dipole in the center of a dielectric slab.
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CALCULATED

• MEASURED

T « O.256

d.T /2

«2.55

0.6

Fig. 6-9(a)—A comparison of calculated and measured conductance
for a strip dipole in the center of a dielectric slab.
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O.O O.I O.2 0.3 0.4 O.5 0.6

Fig. 6-9(b)--A comparison of calculated and measured susceptance
for a strip dipole in the center of a dielectric slab.
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Figures 6-10 to 6-12 compare the impedances of strip di poles of
various lengths in the center of a slab of thickness T and permit-
tivity e2 = 2e0 as calculated by Galejs and the method presented here.
In these figures

(6-2) n = 2 in (2L/w) = 8.

The present calculations were made for a lossless dielectric while
Galejs' calculations were for a slab with loss tangent tan 6 = 0.03.
Figures 6-10 and 6-11 show that our calculations are in reasonable
agreement with those of Galejs for slabs of thickness T < 0.02A, and
for dipoles of length L = 0.4X and 0.5A. The agreement for the
reactance worsens in Fig. 6-12 for the dipole of "length L = 0.6X.
Note in Fig. 6-12 that the two solutions disagree even for slabs as
thin as 0.002X. Thus, the different reactances shown in Fig. 6-12 are
probably a result of differences in the free space models.

As a final example we will consider a strip dipole on the
surface of a slab of dimensions LI = 24 in., 1-2 = 12 in., T = 0.125 in.,
and permittivity e2 = 2.55e0. The strip dipole is of length L = 6 in.
and width 2w = 0.1 in. The admittance of this dipole can be calcu-
lated using the data of Figs. 6-5, 6-9, and Eq. (5-6).* Figure
6-13 shows reasonable agreement between theory and experiment for the
strip dipole on the slab surface.

*To use Eq. (5-6) the slab thickness should be 0.128 in. This dis-
crepancy in thickness should cause little error.
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Fig. 6-10—A comparison of the present theory with a previous calcu-
lation for the impedance of a dipole of length L = .4X
in the center of a dielectric slab.
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Fig. 6-11—A comparison of the present theory with a previous calcu-
lation for the impedance of a dipole of length L = .5x
in the center of a dielectric slab.
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lation for the impedance of a dipole of length L = .6x
in the center of a dielectric slab.
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Fig. 6-13(a)--A comparison of calculated and measured conductance for
a strip dipole on the surface of a dielectric slab.
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Fig. 6-13(b)— A comparison of calculated and measured susceptance for
a strip dipole on the surface of a dielectric slab.



CHAPTER VII

CONCLUSIONS

The purpose of this study was to develop techniques to
analyze electrically thin strip antennas in or on an electrically
thin dielectric slab. The methods presented are moment method
solutions and modifications of the piecewise sinusoidal reaction
formulation for thin wire radiators in a homogeneous medium. The
techniques are sufficiently general to be applicable to wire
antennas in the presence of an arbitrary dielectric inhomogeneity.

The analysis was begun by considering thin strip antennas in
a homogeneous medium. Next, three methods were presented for modi-
fying the.solution to account for the presence of an arbitrary
dielectric inhomogeneity. In the first of these methods, the current
on the wire and the electric field intensity in the inhomogeneity
were considered to be independent unknowns. This method has the
advantage of requiring a minimum of a priori knowledge concerning
these fields, but has the disadvantage of requiring increased com-
puter storage. For inhomogeneities which are not electrically
small, this increase in computer storage can become prohibitive.
In the last two methods, the current on the wire and the
electric field in the inhomogeneity are considered to be dependent
unknowns. These methods have the advantage of requiring very little
additional computer storage, but have the disadvantage of requiring
that a reasonable approximation to the fields radiated by a current
element in the presence of the inhomogeneity be known. For the
particular case of strip antennas in the center of an electrically
thin dielectric slab, such approximations were presented for use with
the third method. Thus, all numerical results presented are based on
the third method. It was shown how to relate the impedance of a
strip antenna in the center of a dielectric slab to its impedance
off-center in the slab. An important special case was a strip antenna
on the surface of a dielectric slab.

Numerical results were presented and compared with measure-
ment and previous calculations. The numerical computations were
restricted to dipole antennas, but the method is not limited to
dipoles. These results showed the ability of the theory and the com-
puter programs to calculate the impedance of strip dipoles in electri-
cally thin dielectric slabs of varying thickness, length, and width.

It is felt that the solution can be improved by considering
the currents on the wire and the fields in the dielectric to be
dependent unknowns over most of the slab, but independent over a small
volume of the slab. Referring to Fig. 4-2, this small volume might
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be chosen between regions A and B. In this way one might hope to
achieve increased accuracy and still be able to treat large slabs.

Using the general techniques presented here, for treating
antennas in the presence of a dielectric inhomogeneity, one should
be able to analyze the following problems:

1. Antennas or arrays of antennas printed on a dielectric slab.

2. An integrated radome and antenna system. This would require
the analysis of strips printed on a curved dielectric
substrate.

3. The microstrip antenna.[4,5] In analyzing the microstrip
antenna, one might choose to represent the antenna using,
a surface patch rather than a wire-grid model.

4. Antennas in the presence of the human body. This is a
problem of current interest and has applications to
analyzing personal communication systems.

Also the techniques developed should be applicable to other problems
involving dielectric inhomogeneities.
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