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TURBULENT HEAT-TRANSFER PREDICTION METHOD FOR

APPLICATION TO SCRAMJET ENGINES

By S. Z. Pinckney

Langley Research Center

SUMMARY

In connection with a research program on hypersonic air-breathing propulsion, an

integral method for predicting boundary-layer development in turbulent flow regions on

two-dimensional or axisymmetric bodies has been developed through use of the integral-

momentum, moment of momentum, and energy equations together with appropriate aux-

iliary equations. The method has the capability of approximating nonequilibrium veloc-

ity profiles as well as the local surface friction in the presence of a pressure gradient.

An approach is developed to the problem of predicting the heat transfer in a turbulent

boundary layer in the presence of a high pressure gradient. No provision was included

to account for a pressure gradient normal to the surface. The solution was derived with

particular emphasis on its applicability to supersonic combustion; thus, real gas flow

effects were included. The resulting integrodifferential boundary-layer method permits

the estimation of cooling requirements for s cramjet engines.

Theoretical heat-transfer results are compared with experimental combustor and

noncombustor heat-transfer data and show reasonable agreement. The theoretical heat-

transfer method is used to predict heating and thus cooling requirements for a sample

engine sized by estimates of vehicle drags at a range of altitudes and for Mach numbers

of 6, 8, and 20. These calculations indicate that in hypersonic engine design, certain

design concepts should be incorporated to account for the cooling requirements of the

resulting engines. The general design concepts imposed on hypersonic engine design by

engine cooling restrictions indicate that when engine cooling is considered, scramjets

are advantageous at Mach numbers of about 6.0 and above, that combustor pressures

should be kept at the minimum required for efficient combustion, and that the positive

pressure gradients in the combustor should be kept as small as possible. Also these

engine cooling restrictions require that combustor and nozzle wetted areas should be

kept as small as possible; analysis of the sample engine indicates that the use of fuel

injection struts provide a technique for reducing the ratio of combustor wetted area to

combustor entrance area. The analysis of the sample engine also indicates that the

operating Mach number range of an engine (relative to engine cooling requirements) can
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be increased if the fuel injection is designed to keep the combustion in the center of the

combustor and away from the surface.

The general design concepts imposed on engine design by engine cooling restric-

tions were utilized in the design of the Langley scramjet engine module. The resulting

Langley scramjet engine module is discussed along with its corresponding cooling

requirements.

The present heat-transfer method is used to develop a combustor or nozzle cooling

requirement correlation for a combustor whose local flow properties throughout the

combustor are computed one-dimensionally, a linear area variation and a given heat

release schedule being assumed. This correlation can be used to obtain reasonable

estimates of cooling requirements for a combustor of this type without a long calcula-

tion procedure.

INTRODUCTION

Generally, the engine selection for a particular flight application is based primarily

on the specific impulse (ref. 1); however, results from an early analytical investigation

on engine selection by Weber and MacKay (ref. 2) suggest that conclusions based on a

single parameter could be misleading. In particular, Weber and MacKay suggest that

the coolant requirements of a particular engine also may dictate the suitability of its

use. For example, at hypersonic speeds the local heating rates of the subsonic burning

ramjet could result in such large coolant requirements to maintain the integrity of the

engine that the use of fuel as a coolant would not be practical. Even though at the chosen

flight Mach number a lower specific impulse may be obtained with a scramjet than is

obtained with a subsonic ramjet, the lower coolant requirements of the scramjet may

necessitate its use. These considerations emphasize the importance of the cooling

problem in engine selection and design and consequently, the ability to predict the heat

transfer or thermal loading of an engine is a key factor.

The literature contains several detailed investigations of the engine coolant

requirements of both subsonic burning ramjets and scramjets. (See refs. 2 to 4.) The

heat-transfer predictions used to estimate the coolant requirements are generally based

on methods employing the flat-plate Reynolds analogy type of heat-transfer predictions.

(See refs. 5 to 7.) This method is inadequate where strong longitudinal pressure gradi-

ents exist, for instance, in the combustors of some ramjet and scramjet engines. Exper-

mental evidence (refs. 8 and 9) show that heat-transfer rates in the presence of high

positive pressure gradients are larger than those predicted by standard flat-plate

Reynolds analogy methods, and experimental heat-transfer data measured in a super-

sonic combustor (ref. 10) reveal that particularly in combustors, much higher heat-



transfer rates may be generatedby the higher turbulence levels than are predicted by
these methods.

In order to be able to analyzeheat transfer in high-speedcompressible turbulent
boundarylayers with a pressure gradient, a schemehas to be developedwhich accounts
for the effects of pressure gradient onall the significant parameters. (Seeref. 11.)
Considerableeffort hasbeenexpendedtoward the prediction of the turbulent heat flux
in flat-plate-type flows. Manyof the better knownmodified Reynoldsanalogytype meth-
ods for flat-plate flows are summarized in references 7, 12,and 13. Generally, these
methodswere developedfor use in turbulent boundary-layer integral-type techniques.
(See,for example, refs. 14 to 17.) Several of the finite-difference type methods(for
example, refs. 18to 20)as well as some integral type techniques (for example, refs. 21
and 22)approachthe turbulent heat-flux prediction through assumedrelationships
betweenthe eddyviscosity andthe eddyconductivity. These relationships are in the
form of a turbulent Prandtl number and do not directly include anypressure gradient
effects. In reference 11Alber and Coatsapproachthe problem of the prediction of the
turbulent heat flux for incompressible flow through the use of an appropr.iateeddy con-
ductivity model to determine a family of equilibrium enthalpyprofiles. The resulting
enthalpyprofiles are generatedin a manner similar to the approachthat Mellor and
Gibson (ref. 23)used in deducingthe general family of incompressible equilibrium veloc-
ity profiles. Through use of these equilibrium enthalpyprofiles, Reynoldsanalogyis
shownto be a function of the longitudinal pressure gradient in incompressible flows.
However, at present, the developmentof Alber andCoats (ref. 11) is applicable only to
incompressible flows.

In the present report anotherapproach is presented to the problem of predicting
the heat flux in a compressible turbulent boundarylayer in the presence of a large pres-
sure gradient. The resulting solution was derived with particular emphasison its appli-
cation to supersonic combustionandto estimating the cooling requirements for scram-
jet engines. The methodis basedon the fact that a pressure gradient distorts the
boundary-layer velocity profile and generatesa level of turbulence which differs from
that for a flat plate. Therefore, the local wall friction coefficient no longer is anade-
quateindex to the wall heat transfer. In conjunctionwith this fact, the similarity in
shapebetweena distorted nonequilibrium velocity profile and anequilibrium flat-plate
velocity profile at either a lower or higher Reynoldsnumberwas observed. The suc-
cess in heat-flux prediction for flat plates suggestedthe use, in the present method,of
Reynoldsanalogyin combinationwith the friction coefficient corresponding to the equi-
librium flat-plate velocity profile which is similar to the distorted or nonequilibrium
profile. In a severe pressure gradient, this usageof friction coefficient can result in
the use in Reynoldsanalogyof a friction coefficient which occurs at either a significantly
lower or higher Reynoldsnumber. Thus, the present methodassumesthat the corre-



spondingsimilar equilibrium flat-plate profile is associatedwith a level of turbulence
which results in its friction coefficient beingan adequateindex to the wall heat flux of
the actual boundary layer.

The basic integral methodusedis applicable to the prediction of axisymmetric
and two-dimensional turbulent boundarylayers and is similar to that of reference 14.
The resulting methodrequires the simultaneoussolution of the integral-momentum,
moment of momentum,andenergy equations. It includes the ability to approximate
nonequilibrium boundary-layer velocity profiles andalso includes the modified Crocco-
type relation for the enthalpy-velocity profile relation of reference 24. The present
boundary-layer prediction methodis somewhatmore complexthan the version of refer-
ence 14 in that provisions for real gas (which can include combustionproducts) andnon-
isentropic boundary-layer edgeconditions are included. The real-gas capability of the
integral boundary-layer equationsused in the prediction method includes terms which
accountfor the changein combustionproducts in a boundary layer but do not include
terms which actually computethe chemical reactions in the boundarylayer. In addition,
friction and heat-transfer coefficients are includedwhich are functions of the local
pressure gradients as well as the upstream history of the boundarylayer. Several
simplifying assumptionsare retained suchas a flat-plate shear stress profile andno
provision for a normal pressure gradient or wall injection. The validity of the present
methodis determined by comparisonswith the experimental heat-trasfer dataof
Hoydyshand Zakkay (ref. 25)and the experimental combustor heat-transfer data of
Billig and Grenleski (ref. 10).

The present heat-transfer methodis usedto predict heatingandthus cooling
requirements for a sample enginesized by estimates of vehicle drags at a range of alti-
tudesandfor flight Machnumbers of 6, 8, and 10. The results of theseengine-cooling
predictions suggestthat during engine design, certain designconstraints shouldbe
imposeddirectly as a result of the cooling requirements of the engine. The Langley
scramjet enginemodulewas designedby using these engine cooling designconstraints.
The Langley scramjet engine moduledesign is discussedalong with the cooling require-
ments of the engine, andthe effects of engine-cooling design constraints on engine
performance.

The present heat-transfer methodis also usedto developapproximate correlation
curves for making rapid estimates of cooling requirements for combustors. These
correlations are basedon theoretical heat-transfer calculations for a combustor
designedfor use on the Langley scramjet enginemodule. The combustor heat-transfer
correlation assumesthat the local flow properties throughout the combustor are com-
puted one-dimensionally by assuminga linear area variation and a given heat release
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scale combustors for flight Mach numbers of 6, 8, and 10 and for a range of altitudes.

SYMBOLS

A

Ac

Av

B

C

Cf

Cp

Cv

D

area

combustor wetted area

constant in equation (7)

constant in equation (Ii)

function in equation (16) that depends on local integrated value,_ of total

energy and momentum deficiencies

local friction coefficient

specific heat at constant pressure

specific heat at constant volume

function defined in equation (2)

E correlation function given by equation (13)

F constant (= 2327)in equation (20)

G

defined by equation (27)

gap between struts

H flow height through engine

enthalpy

constant in boundary-layer equations (I = 0

for axisymmetric flow)

for two-dimensional flow, I = 1
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ISp

J

L

M

Npr

n

Qf

Q_

qw

qoo

specific impulse

heat sink per kilogram of fuel

length of combustor

Mach number

Prandtl number as defined by equation (18)

number of combustor injection struts

static pressure

heat sink in fuel for • = 1.0

integrated total heat transfer for fuel equivalence ratio burned,

heat transfer 'to surface

free-stream dynamic pressure

4_

RA Reynolds analogy factor

R_ Reynolds number based on momentum thickness

body radius

T temperature

u velocity parallel to body surface and in direction of flow

V velocity normal to body surface

W flow width through engine

W Coles' wake function

coordinate in free-stream direction



y coordinate normal to body surface

Z Karman factor

F function defined by equation (23)

ratio of specific heats, Cp/C v

boundary-layer thickness

displacement thickness

momentum thickness

thermal conductivity (eq. (19))

defined by equation (29)

/_ viscosity

p density

T shear

fuel equivalence ratio burned

q_ energy thickness

defined by equation (28)

o_ angle between body surface coordinate and free-stream direction

Subscripts:

av average

aw adiabatic wall

inlet entrance
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L

L.S.

max

pr

S.C.

t

W

5

incompressible

local value

value of parameter at laminar sublayer edge

maximum

corresponding to the "similar" equilibrium flat-plate velocity profile

determined from flat-plate Spalding-Chi friction method

stagnation value

wall value

at the boundary-layer edge

based on momentum thickness

• J

%. , :

free stream

2

upstream body station

downstream body station

combustor entrance station

combustor exit station

ANALYTICAL METHOD

The present approach to the prediction of axisymmetric and two-dimensional tur-

bulent boundary layers in the presence of heat transfer and a longitudinal pressure gra-

dient utilizes a form of the integral boundary-layer equations that is similar to that

derived in appendix A of reference 14. The continuity equation is combined with the

momentum and energy equations and integrated across the boundary layer to produce

integral forms for the momentum and energy equations. In addition, another integral

equation is generated by multiplying the momentum equation by the normal distance from



the surface as a weighting function, combiningthe resulting equationwith the continuity
equation,and integrating across the boundarylayer to form the integral moment-of-
momentumequation. The assumptionsare made that Vw= 0, (dp/dy) = 0, and the body

radius is large relative to the boundary-layer thickness. The derivation of the integral

boundary-layer equations of the present method differs from that of reference 14 in that

the flow at the boundary-layer edge is not assumed to be isentropic. The integral equa-

tions are

Integral-momentum equation:

+ -_- du 5 1 dP5 I dr 1 du5 1 1 Zw Cf
dO+0 u5 dx + + - 2 cos wdx , p_ dx _---_/ dx + 5 - - (1)Psu8 2 cos w PsU8 2

Integral mome_t-of-momentum equation:

52- e D (2)
51

where

BCf dx
- d log e PsU5 2

;2-25(B + 1) cos w puy _ u d y
PsU55 5

- d log e puy u d y

y0 l  yJ0 d dY1 - _55)d J0 PsU6

u__ d _puy (i_u6) yP6U6 6 6

- (d log e PsU5

+ I d log e r)

_0-_ u ,_y/5 pu dY_dy-_)_0 _u_ _

S0PbU6 5 (1 - -_

1 dPs+ 2/_ puy dY/dlog e u51
PsU5 2 PsU5 5

)

f2 puy/x_©d 
PsU5 5 5

- I d log e r



Integral energy equation:

d loge-PSu6(ht,6 - hw)r_ qwdq_+q) =
dx dx cos wP6u6(ht, 5 - hw)

(3)

In equations (1) to (3), the following equalities are assumed:

(4)

and

- dy =
pu 5*

PsUd

pu l/ht, -ht \

where the thermal-boundary-layer thickness is assumed to be equal to the velocity-

boundary-layer thickness.

The turbulent boundary-layer predictions presented were generated through the

simultaneous solution of equations (1) to (3). The present method requires values of

0/5, and ¢ at the initial station as input.

to the end station of interest.

(5)

(6)

8,

The prediction then proceeds from this point

Auxiliary Relations for Turbulent-Boundary-Layer Solution

In order to obtain a simultaneous solution of equations (1) to (3) which is valid for

turbulent boundary layers, auxiliary relations must be developed for the boundary-layer

velocity profiles, the shear distribution across the boundary layer, local surface friction

coefficient, the local surface heat transfer, and the boundary-layer enthalpy:velocity

profile. In the present method, the flat-plate Spalding-Chi friction (based on RO, ref. 7)

is utilized as a correlating parameter in the auxiliary relations developed for the

boundary-layer velocity profile and for the shear distribution across the boundary layer.

Also, through a modified version of the Reynolds analogy which is valid in pressure gra-

dients, the flat-plate Spalding-Chi friction is utilized as a correlating parameter in the

auxiliary relations developed for the local heat transfer and the boundary-layer enthalpy-

velocity profile.

The velocity-profile relation given in equation (12) of reference 14 is assumed in

the present method for use in the "law-of-the-wall" technique applied to the wake regions.

10



This relation is a modified version of the equilibrium flat-plate log semilog type veloc-

ity profile of reference 26; the modification permits an approximation of the pressure
gradient effect on the velocity profile. The resulting velocity-profile relation is given
by

d i. \2/s.c.

The parameter w is Coles' wake function as given in reference 27. The parameter

A v is an unknown which must be determined by the solution of equations (1) to (3). The

subscript S.C. means Cf is determined from the flat-plate Spalding-Chi friction

method (based on R_). In a strong positive pressure gradient, Av increases (fig. 1)

and the actual surface Cf may decrease by several orders of magnitude. The use of

the flat-plate friction in equation (7) instead of surface Cf tends to limit the spread of

the calculated values of Av and results in much shorter computer times required to

iterate to an answer. For equilibrium flat-plate flow without heat transfer, the value of

the parameter A v as given in reference 26 is 2.0.

In the laminar sublayer region, a linear velocity profile is assumed from the wall

to the edge of the laminar sublayer. For flat-plate flow the correlation of the laminar

sublayer thickness (ref. 28) is given by

26 _w
Pw (8)

The laminar sublayer thickness as computed by equation (8) is believed to be controlled

by the turbulence in the turbulent section of the velocity profile. For flat-plate flow,

the friction coefficient (Cf)s.c. is an indirect measure of this turbulence. In a longi-

tudinal pressure gradient, the turbulent section of the velocity profile is distorted com-

pared with that of the equilibrium flat-plate velocity profile and thus the flat-plate fric-

(Cf) (based on local R 0) is no longer a measure of the turbulence.tion coefficient S.C.

Therefore, in order to utilize equation (8) to approximate the laminar sublayer thickness,

another type of friction coefficient has to be used. The determination of the needed pro-

portional friction coefficient resulted from the observation that there is a similarity in

shape between a distorted nonequilibrium velocity profile and some equilibrium flat-

plate velocity profiles. This observation suggested the use in equation (8) of the friction

coefficient (Cf)pr corresponding to the equilibrium flat-plate velocity profile which is

similar to the distorted or nonequilibrium profile. In a severe positive pressure gradi-

11



ent, this procedure results in the use of a friction coefficient which occurs at a signifi-
cantly lower Reynoldsnumber, whereas in a severe negativepressure gradient, this
procedure results in the use of a friction coefficient which occurs at a muchhigher

Reynoldsnumber. Another reasonwhy _(Cf)pr shouldbe a reasonableassumptionto
scale the turbulence in a highly distorted turbulent profile is indicated through the com-
parison of the shear distributions for the actual distorted profile and the similar equilib-
rium profile (fig. 2). The actual shear distribution across a turbulent boundarylayer
in a strong positive pressure gradient is shownin figure 2 to be zero at the boundary-
layer edge,peak in toward the wall, and decreaseto the wall shear values as the wall is
approached. The shear distribution for the similar profile follows the shear distribution
of the actual profiles until the peak shear is achievedandthen continuesonup to the
value correspondingto (C _ which is not much higher than the peak shear of the

fJpr

actual profile. Therefore, (Cf)pr is a good measure of the peak shear in the actual

profile and thus the turbulence in the actual profile.

The flat-plate expression for the laminar sublayer thickness altered through use

of the friction coefficient (C_ which corresponds to the "similar" equilibrium flat-
pr

plate profile is given by

26 _w

s =
5ICfT)pr pbup-_w51 1/2

The expression for the friction coefficient (Cf)pr as given by

C f)pr =

.OAv dw-

d(_j

20 + d_

2

(Cf)s.c.

Y=O.I
5

(10)

is obtained by differentiating the "law-of-the-wall--law-of-the-wake" relationship of

equation (7) with respect to y/6 first by using the equilibrium value of the parameter

A v and then second by using the value Av determined from the solution of the govern-

ing equations. Since the local velocity profile is assumed to have the same shape as

d(u/ub)/d(y/5) for the two derivates can be set equal (in thissome equilibrium profile,

case arbitrarily set at (y/5) = 0.1) and (Cf)pr of the equivalent equilibrium profile can

% _

be determined by using the resulting expression which is presented in equation (10).

12
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(This friction coefficient (Cf)pr is used in Reynolds analogy to determine heat trans-

fer.) Note that the resulting laminar sublayer thickness is the same as that for the sim-

ilar equilibrium profile.

The relationship assumed for the shear distribution across the boundary layer is

given in equation (14) of reference 14. This shear relationship was obtained by analyti-

cally fitting theoretical shear distributions derived (ref. 26) for flat-plate flow and is

given by

(  )s.c
(II)

with

B - 0.08534 log e E + 0.7855 (12)B+I

where

dU l

Y=0.95

(13)

The correlation of the parameter B given by equations (12) and (13) is discussed in

detail along with equation ill) in appendix B of reference 14. As pointed out in refer-

ence 14, the shear relation given in equation (11) has a maximum value at the surface

and for all "but severe pressure gradients the maximum shear does occur close to the

surface and does not deviate much from that for a zero pressure gradient. (See ref. 29.)

Therefore, for all but severe pressure gradient cases, accurate shear integrals are

obtained even though equation ill) does not give the correct values of (dT/dy) w and Tw

for a pressure gradient situation. In the severe pressure gradients encountered in

combustors, the accuracy of shear integrals predicted by using equation ill) is unknown

but because of the lack of a better method for predicting the shear integral, the present

turbulent boundary-layer prediction method uses equation (11).

In this analysis the friction coefficient used in the computation or the momentum

losses is determined through use of equation (9) for the laminar sublayer thickness in

conjunction with the predicted turbulent portion of the velocity profile (eq. (7)) and the

relationship for the friction coefficient as given by (ref. 28)

13
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Cf - (14)
169P5

Pw

The laminar sublayer thickness is computed by substituting (Cf)pr in equation (9)

which results in a laminar sublayer thickness equal to that of the similar equilibrium

flat-plate velocity profile. The friction coefficient is than computed from the flat-plate

expression given in equation (14) where (U/US)L.S. is the value of (U/Us) at (y/5)L.S.

as obtained from the law-of-the-wall--law-of-the-wake relationship given in equation (7).

The heat transfer is computed by using the same form for the heat-transfer coef-

ficient as that presented in reference 7 but with the input altered to account for the dis-

tortion of the boundary layer by a pressure gradient. The heat transfer to the wall is

controlled by the turbulence in the boundary layer. For equilibrium flat-plate flow, the

wall friction coefficient is a measure of this turbulence and thus the Reynolds analogy

correlation. A pressure gradient can either enhance or retard the turbulence depending

on the gradient. However, the boundary-layer velocity profile shape is still a measure

of the turbulence (fig. 2) and thus (Cf)pr (of eq. (10)) of the similar equilibrium flat-

plate profile is used in a modified Reynolds analogy to give for the heat transfer

qw (Cf)P r

Psus(haw _ hw ) 2Z

(15)

The parameter Z in equation (15) is the Karman factor used in the modified Spalding-

Chi heat-transfer method of reference 7 but __(Cf)pr is used for the friction coefficient

in the expression.

The enthalpy-velocity profile is assumed to be the modified Crocco-type relation-

ship developed in reference 24 and given by

(1 \ I_55 - _u_2_ haw - hw NPr I(_55) 2 /_-_5)41
h _ hw+ _hw/fu___2+ u + C u _ (16)

j z

The parameter C is an unknown that has to be determined by the solution of the gov-

erning equations and is a function of the local integrated total-energy and momentum

deficiencies. With the use of equation (16), integration of the boundary-layer profile

produces an energy deficiency equal to the upstream body surface heat transfer. For

use in the surface heat-transfer relation of equation (15) and the enthalpy-velocity pro-

file relation of equation (16), the adiabatic wall enthalpy was assumed to be of the form

14

',', rl _ ,,5' , ,, _ .. _ "' ' ¸i_i -
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_ 1/3 u52 (17)
haw=h5 +Npr 2

where the Prandtl number is given by

Cp/_ =. 4¥ (18)
Npr = K 97 - 5

The relation for the Prandtl number given in equation (18) is a result of the relationship

for the thermal conductivity of real air or a real gas presented in reference 30 and

given by

K = 0.25(97 - 5)/_c v (19)

Analytical Method of Solution

Substitution of the turbulent auxiliary relations into equations (1) to (3) produces

three ordinary integral differential equations with three unknowns. As in reference 14,

the unknowns consist of the parameter A v of the velocity profile, the parameter C

of the temperature-velocity profile, and the longitudinal boundary-layer thickness

change. The parameters that are required as input at the initial station are the momen-

tum thickness, the ratio of momentum to boundary-layer thickness, and the energy

thickness. In addition to the three parameters at the initial station that have been men-

tioned, additional input consisting of pertinent boundary-layer edge and surface condi-

tions is needed. For turbulent boundary-layer predictions in real air, empirical corre-

lations of hw, h 5, P5, and u 5 corresponding to the real air tables of reference 31

were obtained and are given by

where T is in degrees Kelvin, F

9(0.2262)T_ F (20)

is equal to 2327, and h is in joules per kilogram.

=0.00251 P5 __ 3.447

P5 2117[( h 1 /0.992

/ ,_ 1 \0.4014
/ n_F/

+ 0.00555_\33.7098 ]

0"00671 47.8803515.379 (21)

where P5 is in newtons per meter squared, h5 is joules per kilogram, and P5 is in

kilograms per meter cubed.

15
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(22)

where h 5 is in joules per kilogram and u 5 is in meters per second. Thus, for real

air, input distributions of Tw, TS, PS, and M 5 are needed in conjunction with _5,

?'w' and geometric inputs.

In a combustor or nozzle region, inputs of Tw, hw, TS, hs, Us, MS, PS, YS'

_'w' and P5 are needed as input in the computer program in conjunction with geometric

inputs. These relevant boundary-layer edge parameters in the combustor or nozzle

regions are generated through use of a one-dimensional combustor design computer

program developed for supersonic combustion with hydrogen as the fuel. The computer

program for calculating the static pressure and other flow parameter distributions in a

one-dimensional supersonic combustor channel was developed at NASA Langley Research

Center. Real-gas thermodynamic properties for mixtures of hydrogen and air reacted

to a specified degree are used for the calculations. Input to the program includes the

entering fuel and air states, the channel geometry, and the distribution of fuel injection

and fuel reaction with distance along the channel. Output consists of the state at each

point calculated along the channel, and line printer plots of selected parameter varia-

tions with distance. This computer program is available from Computer Software

Management and Information Center, The University of Georgia, Athens, Georgia 30601

under the computer program number LAR-11041.

In the simultaneous solution of equations (1) to (3), the enthalpy distribution across

the boundary layer is obtained by use of equation (16). A relationship between the local

density and local enthalpy in the turbulent boundary layer is assumed to be similar to

that of the perfect-gas equation of state

p_ F p (23)
F -lh

In the boundary-layer solution the coefficient of equation (23) F/(F - 1) is assumed to

vary across the boundary layer from the wall value to the stream value in proportion to

the local boundary-layer velocity

r-1 w + 5--55 5
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This assumption is not exact but gives high accuracy over most of 5. The value of

at the boundary-layer edge is determined with the computer program from

F 5

Psh5 (25)

FS= Psh5 -P5

Simply, the solution of equations (1) to (3) across a body surface element consists

of obtaining a first approximation of the values of Av, C, and 52/51 at the down-

stream body station of the element by use of the known parameters at the upstream sta-

tion. Then, by using successive approximations of the downstream body stations, values

of the parameters A v, C, and 52/51 yield successively better average values over

the element of the integral parameters 5", 0, and /_. With the resubstitution of the

revised values of the integral parameters into equations (1) to (3), successively better

approximations of the parameters A v, C, and 52/51 are obtained. This method of

successive approximations is continued until two successive calculations produce a

change in the downstream value of 5* of 1 percent or less.

More specifically, the actual solution of equations (1) to (3) across a body element

consists of first converting all derivatives in equations (1) to (3) to finite changes across

a body element. Upon doing this, expressions for the change in momentum thickness 0,

change in energy thickness q_, and the boundary-layer thickness ratio across a body

element are obtained from equations (1) to (3). These expressions are in terms of

boundary-layer edge parameters, body surface parameters, body geometry, and integral

parameters for the two body stations. The integral parameters include all the boundary-

layer profile parameters such as u/u 5, h/h 5, P/Ps, and T/T w. The body geometry,

all the boundary-layer edge conditions, and all the body surface conditions except the

surface heat transfer and friction are inputs to the computer program or computed in

the program. The surface heat transfer and friction are functions of the velocity profile

as given in equations (9), (10), (14), and (15). The boundary-layer density profile is

related to the enthalpy profile in the manner given by equation (23) and the boundary-

layer shear profile is a function of the velocity and enthalpy profiles as given in equa-

tions (11) to (13). Therefore, the solution to the expressions for momentum and energy

thickness change and the boundary-layer thickness ratio across a body element becomes

the problem of approximating the boundary-layer velocity and enthalpy profiles for the

two body stations. At any body station the boundary-layer velocity and enthalpy profiles

are completely defined if the values of the unknowns A v and C are known for that

body station. For the upstream body station, the values of 5, 0, and _ are known

either from the input to the program if it is the initial body station or the values have

been computed in the program. If the values of 5, 0, and _ for any body station

are known, the velocity and enthalpy profiles and therefore Av and C are determined

in the following manner. Assume two values of Av for the body station. For each
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value of A v iterate on an unknown C of equation (16) by computing successive val-

ues of 0/5 and q_/5 from equations (4) and (6) until the values of 5 are the same

when computed from 0/5 or q_/5 by using the known values of _ and q_. By use

of the results computed for each of the assumed values of Av, iterate on A v until the

computed value of 5 matches the known value of 5 for the body station. For the

first approximations of momentum and energy thickness change and boundary-layer

thickness ratio across the body element, the known velocity and enthalpy profiles for the

upstream body station are input for both body stations. If the values of 5, 0, and

for the upstream body station are known, the first approximations for 5, 0, and q_

for the downstream body station can then be computed. From use of the procedure

already discussed for obtaining the boundary-layer velocity and enthalpy profiles when

5, 0, and _ are known, the first approximation for the downstream body stations of

the pertinent parameters and profiles can be computed. This procedure is repeated

except with successively better downstream body station parameters and profiles being

used in the expressions for momentum and energy thickness change and boundary-layer

thickness ratio across a body element. Successive approximations are computed until

two successive calculations produce a change in the predicted value for the downstream

body stations for 5* of 1 percent or less.

COMPARISONS OF THEORY WITH EXPERIMENTAL DATA

The validity of the basic integral technique of the present method is demonstrated

in reference 14 where experimental and theoretical distributions of 5, 5", and 0 are

compared over broad Mach number, Reynolds number, and wall temperature ranges.

The conclusion is drawn that the method will predict these parameters within the limits

of experimental accuracy. Therefore, the validity of the newly developed modified

Reynolds analogy type heat-transfer method of the present paper remains to be deter-

mined by the comparison of theoretical heat-transfer predictions with experimental

heat-transfer data. For flat-plate flow, the present heat-transfer prediction method

reduces to the commonly accepted, modified flat-plate Reynolds analogy method of ref-

erence 7. Therefore, the comparisons of theoretical and experimental heat transfers

presented in the present paper are restricted to flows with a pressure gradient and the

data were taken from references 10 and 25.

Polynomial Flare Data

The configuration of reference 25 was an axisymmetric 42 ° turning angle polyno-

mial flare and the results are presented in figure 3. The experimental boundary layer

had a large normal pressure gradient. Because the present method does not provide

for a normal pressure gradient, the corresponding theoretical heat-transfer calculations
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were basedonwall static pressures. Also presented in figure 3 is a theoretical heat-
transfer distribution computedby use of the method of reference 32, which assumesthat
the turbulent and laminar Prandtl numbers are 1.0. It was surprising that both methods

predicted almost identical heat-transfer results althougha severe longitudinal pressure
gradient appearedto bepresent. Examination of the velocity profiles predicted by the
present methodrevealed essentially no velocity profile distortion from equilibrium flat-
plate flow. In figure 4 experimental velocity profiles are comparedwith a representa-
tive theoretical velocity profile; the theoretical velocity profiles computedfor all cases
lie within +0.015 (in u/u 5) of the one given in figure 4. A typical velocity profile dis-

torted by a strong positive pressure gradient is also given in figure 4. The values of

u 5 and 5 used to nondimensionalize the experimental data differ from those of the

theoretical calculations by as much as 5 percent and 24 percent, respectively. There-

fore, the experimental data were nondimensionalized by the same u 5 and 5 as that

of the theoretical predictions and essentially the same conclusion as to whether the

velocity profile distortion occurs resulted. It is concluded that the experimental veloc-

ity profiles do not deviate much from those obtained for equilibrium flat-plate flow and

that the use of the surface static pressures to determine boundary-layer edge param-

eters produced accurate predictions of the heat transfer, as indicated in figure 3.

Supersonic Combustor Data

The heat-transfer data of reference 10 were taken by use of the combustor config-

uration presented in figure 5. The combustor consists of an initial constant-area sec-

tion followed by a conical section. The fuel is injected from eight orifices equally

spaced around the combustor entrance. The combustor entrance conditions are approx-

imately a Mach number of 3.2, a static pressure of 53.2 kN/m 2, and a static temperature

of 780 K. But in order to compute local heat-transfer rates, distributions of PS, P_'

u 5, hs, hw, _w, and V5 are needed as input to the computer program. In order to

obtain these input parameters, a combustion heat-release rate and a combustion length

are needed as input into the computer program which is used for supersonic combustor

parameter calculations.

The quantity of fuel injected in the combustor of reference 10 resulted in an over-

all equivalence ratio of 0.5. Reference 10 states that most of the heat release occurred

within the constant area section of the combustor. On the basis of this information, two

cases have been computed that correspond to one-dimensional flow, an approximately

constant heat release rate along the combustor, and overall combustion lengths extend-

ing from the injector station to x-stations of 0.25 meter (case 1) and 0.325 meter

(case 2). The resulting values of boundary-layer edge flow parameters are given in

figure 6. A comparison of these two cases with the experimental wall static pressure
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and heat-transfer distributions should provide an indication of the effects of the length

assumption.

In addition to the length parameter the assumption of one-dimensional flow was

explored because the combustion probably did not occur uniformly across the duct. For

instance, the penetration and mixing data of reference 33 indicate that the fuel would not

reach the center line of the combustor within the constant-area section. It is possible

that most of the fuel burned to an equivalence ratio of close to 1.0 near the wall of the

combustor within the constant-area length and then the combustion products mixed with

the core flow further downstream. Therefore, a third case was computed in which the

combustion at the edge of the boundary layer reached an equivalence ratio of 1.0 at an

x-station of 0.325 meter; downstream of this point it was assumed that mixing occurred

and reduced the equivalence ratio to =0.5 at an x-station of 0.55 meter. In this case

iterations of area were performed in the solution for the boundary-layer edge param-

eters resulting from the combustion process (see fig. 7) in order to produce a longitu-

dinal pressure distribution approximating a faired curve through the experimental data

shown in figure 8.

The longitudinal static-pressure distributions for the three cases are compared

with the experimental data in figure 8. The data points in the constant-area region

where the combustion occurred indicate three-dimensional flow effects presumably

caused by discrete shock and expansion waves whereas the flow analysis is one-

dimensional. In the expanding area duct downstream of the x-station of 0.325 meter,

both cases 1 and 2 overpredict the experimental static pressure by about 20 percent.

As noted above for case 3, a pressure distribution close to the experimental data was

used.

A comparison of the theoretical and experimental heat-transfer distributions is

given in figure 9. Up to the station corresponding to an x value of 0.4 meter, case 2

again agrees with the data better than case 1; however, case 3 provides the closest

agreement. Beyond this station none of the three theoretical curves produced a slope

which agreed with the data curve. This lack of agreement relative to slope is related to

how quickly the distorted boundary layer reverts to a flat-plate type profile in a negative

pressure gradient, which, in turn, is controlled by the shear distribution relations of

equations (11) to (13).

Although the theoretical predictions of figure 9 deviated in various local details

from the data, it should be noted that the integrated total heat transfer for the three

cases differed from the integration of the data curve by a maximum of only 4 percent.

In contrast the integrated value for the reference flat-plate curve is only 52 percent of

the experimental value. Reference 10 also gives a total heat-transfer value determined

from a heat balance on the coolant fluid of 0.583 MW, which is 89 percent of the integra-
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tion of the local experimental values. The maximum spread between total heat-transfer

values for the three theoretical cases and the two experimental values is 13 percent and

the theory is concluded to be a satisfactory design tool.

ENGINE DESIGN FEATURES FOR REDUCED COOLING

A principal goal of the research program on integrated scramjet concepts at the

NASA Langley Research Center is the development of designs with an engine-cooling

requirement equivalent to only a fraction of the total fuel heat sink available. This goal

will provide the vehicle designer with a much broader range of approaches since he will

be able to use the excess heat sink for actively cooled vehicle structures and avoid

many of the problems of hot structures and the associated aerodynamic disadvantages.

(See refs. 34 to 36.)

The Langley program has resulted in the definition of a concept for an integrated

scramjet module, an early version of which is described in references 35 to 37 and

shown in figure 10. The engine concept is fixed geometry with sweptback sidewall com-

pression surfaces. An open area is provided upstream of the cowl leading edge for flow

spillage in the downward direction during inlet starting and low-speed operation. The

three fuel injection struts are swept at the same angle as the sidewall leading edges

since constant flow properties would tend to exist in planes parallel to the sweep. The

front halves of the struts contribute to the compression of the inlet flow and the rear

half contains installations of discrete fuel injector orifices. The expanding area com-

bustor permits operation over a wide Mach number range without thermal choking. Part

of the exhaust nozzle is included in the module; however, the aft end of the vehicle would

be used to expand the exhaust further. A new version of the engine was developed on

the basis of the results of extensive design studies in all areas, including general cool-

ing analyses which employed the present prediction technique and are described in the

following sections. These analyses were directed at evaluating the two principal meth-

ods for reducing engine cooling load: the reduction of wetted area, and the reduction of

heat-transfer coefficient.

Reduced Combustor Wetted Area

The scramjet combustor generally is subjected to higher levels of pressure and

temperature than the other engine components; therefore, it has the highest cooling loads

and particular attention to the design features is required. The wetted area can be

reduced if the length required for efficient combustion can be reduced. Since the

kinetic effects (ignition and reaction lengths) generally are second order, the problem

is reduced to minimizing the fuel-air mixing lengths. Mixing length is proportional to

the spacing between adjacent fuel jets; therefore, fuel injection is desired from many
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points in the stream by useof somedevice suchas fuel injection struts. This effect is
illustrated in figure 11where combustor wetted area Ac expressedas a ratio to the
combustor entrance area A3 is given as a function of the number n of fuel injection
struts. The mixing or combustor length L is assumedto beproportional to the gap
G betweenthe struts andthe total cross-sectional area of the struts is assumedto be
constant in order to handlethe required fuel flow internally. With these assumptions
the combustor wall wettedarea tends to be inversely proportional to n + 1; however,

the strut wetted area is directly proportional to I_" Therefore, the total wetted
area approachesa minimum value greater than zero as n increases. An installation
with three struts clearly has realized most of this techniquewithout requiring an

impractically large number of struts. Another obvious techniquefor reducing combus-
tor wettedarea is to develop configurations with cross sections which approacha circu-
lar or square shape.

ReducedHeat-Transfer Levels

The combustor designand operating conditions canbe madeto favor the mainte-
nanceof lower pressure levels in the combustor, generally with somesacrifice in thrust;
therefore, a trade-off can bemadebetweenperformance and cooling requirements. At
a flight Mach number of 6.(}, for instance, the scramjet canbe designedto operate with
either subsonicor supersonic combustion;however, supersonic combustiongenerally
will produce lower pressures in the combustor and less heat transfer. Theseeffects
are illustrated in figure 12,which presents the results of a Mach6 flight analysis for
an altitude of 34 200m (112000 ft) and anequivalenceratio of 1.0. Flow conditions
along the surfaces of the inlet (fig. 10)were determined by useof real-gas, swept,
planar shock theory. The flow conditions in the rest of the enginewere determined by
using conventionalone-dimensional thermodynamic engine cycle analyses. The subsonic
combustioncase clearly requires nearly three times the cooling for supersonic combus-
tion becausethe static pressure near the combustor entrance is nearly four times as
high. Sincethe use of supersonic combustionwould reducethe specific impulse by only
8percent, the trade-off is very favorable toward reducedcooling.

Scramjet combustors normally are designedwith an expandingflow area in order
to avoid thermal chokingat the low end of the speedrange. The rate of expansionand
overall area ratio in the combustor are prime factors in determining the pressure levels
and heat-transfer rates. This effect is illustrated by the results of figure 13for a
Mach 8 flight analysis for a cruise condition corresponding to an equivalenceratio of
0.75 andan altitude of 37 500m (123000ft). The larger area ratio of the combustor
(A4/A3 of 2.5) resulted in a 30-percent reduction in cooling requirement with a 4-percent
loss in specific impulse, again, a very favorable trade-off. This methodof reducing
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cooling load hasbeenevaluatedwith a more sophisticated combustor analysis for a
Mach 10 casedescribed in reference 34where a 20-percent reduction in heat load was

predicted for only a 3-percent loss in specific impulse.

The combustor cooling load also canbe reducedby avoiding adverse pressure
gradients in the combustor, as noted in the discussion of the present analytical method.
Ideally, the engineinlet shouldprovide the desired amount of compression, and combus-
tion shouldoccur at constantpressure. This goal is difficult to achieve for designs
where a wide operating range of flight Machnumber is required; however, it may be
approachedby matching as closely as possible the fuel injector design, location, and
operation to combustor designandflight conditions. (Seeref. 34.) The parameter Av,
defined in equation(7), provides a measure of the effect of pressure gradient on the dis-
tortion of the boundary-layer velocity distribution andtherefore the heat transfer. Typ-
ical values of Av are given in figure 1 for both mild and large positive pressure gradi-
ents. Another section of the paper showsthat heat transfer is proportional to Av2;
therefore, the virtue of keeping Av small by designingfor constantpressure combus-
tion is clear.

Another effective methodfor reducing the heat-transfer coefficient is to shield the
combustor walls from the high-enthalpy combustionproducts. With a fuel injector strut
arrangement similar to that of figure 10, it shouldbepossible to design the injectors so
that the heat release in the layer of air next to the walls is delayeduntil the flow is near
the combustor exit. This type of design shouldbe particularly feasible for cruise con-
ditions where the equivalenceratio is less than 1.0. The results of an analysis evalu-
ating this effect are given in figure 14 for anequivalenceratio of 0.75. The lower curve
assumesthat the heat load on the inlet a_d combustor walls corresponds to the flight
stagnationenthalpyand therefore the walls up to the combustor exit are not exposedto
combustionenthalpies. This technique could reduce the engine cooling load by amounts

up to 35percent at Mach 10.

COOLINGREQUIREMENTSFOR LANGLEY SCRAMJETMODULE

The configuration of the Langley engine shownin figure 10hasbeenmodified and
refined as a result of additional design studies andexperimental work in the inlet and
combustor areas. The revised design,as shownin figure 15, is described in detail in
reference 34. The cooling requirements have beenestimated by using the present pre-
diction methodfor a Machnumber range from 4 to 10, an equivalenceratio of 1.0, anda
free-stream dynamicpressure of 47.9 kN/m 2 (1000lb/ft2). A vehicle with a take-off
gross weight of 455 000kg (106lb) was assumed,andthe enginemodule inlet was
located 55meters (180ft) downstreamof the nose of the vehicle. The inlet was
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2.44meters high by 1.95meters wide (8 by 6.4 ft). The boundarylayer developedonthe
lower surface of the vehicle forebody was ingestedby the inlet. For simplicity, the
turning through the vehicle bow shockwas assumedto be constantat 8°. The nozzle
extendedalong the vehicle afterbody to a point where the effective exit area was 2.84
times the cowl capture area. Other assumptionsandinput to the analysis are discussed
in the following paragraphs together with the results.

Inviscid flow analyseswere conductedto determine the boundary-layer edgecon-
ditions. Inlet shockdiagrams were constructed by usingthe real-gas sweptshock
theory. Examplesare given in figures 16(a)and 16(b)for Mach numbers of 6.07 and 9.22,
respectively. For the upper surface and cowl, a representative pathwas selected in
these diagrams, andthe conditions along this path were applied across the width of the
inlet. The flow conditions in the combustor were predicted by using the one-dimensional
theory for specified mixing and reaction distributions with length as discussedin refer-
ence 34. Flow conditions throughout the nozzlewere computedby use of a conventional
two-dimensional real-gas characteristics method.

Someof the results of theseanalysesare given in figure 17which presents the
boundary-layer edgeMachnumber and static pressure andtemperature distributions
along the top surface of the enginefor two flight Mach numbers. The positions of the
entrance and exit of the combustor are indicated. The Machnumber drops a small
amountnear the combustor entrance andthen remains nearly constantthroughout the
rest of the combustor length. This type of distribution is a result of the design concept,
which utilizes a combinationof normal and axial fuel injection which produces a heat-
release schedulewhich closely matches the combustor geometry. (Seeref. 34.) The
net result is a generally decreasing static pressure along the combustor which is favor-
able to lower heat-transfer coefficients, as discussedpreviously. The heat release in
the combustor produces substantial increases in the static temperature, which in the
one-dimensional theory is uniformly distributed across the combustor. Heat release is
inherent with combustionand its effect on heat load has to be minimized by other factors,
suchas designing for short combustors with low wetted area. It is of interest to note
that evenwith the rather modest inlet contraction ratios of the Langley scramjet design,
very substantial adverse pressure gradients occur in the downstreamend of the inlet.

Someof the results of the analysis of the top surface are given in figures 18and 19
in terms of distributions of the boundary-layer displacement and momentumthicknesses,
andwall friction and heat-transfer coefficients. Initial values at station zero represent
the results of the boundary-layer analysis for the forebody of the vehicle. At the
entranceto the inlet the ratios of 5*/H I and 5/HI are approximately 0.05and 0.12,
respectively. The values of 5* and 0 decrease in general in the combustor because

the periphery or width increases in the expanding area channel. The value of the fric-
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tion coefficient increases substantially along the combustor andupstream end of the
nozzleprimarily becausethe Reynoldsnumber decreasesby over an order of magnitude.
However,whenthese effects are combinedwith the rapidly shrinking values of mass
flow per unit area in the expandingarea channel, the heat-transfer coefficient reaches
a peak value near the combustor entrance and decreases rapidly thereafter; this effect
prevents the cooling requirement from becoming excessive.

Heat-transfer coefficients were determined for all four walls of the engineand
were applied to the wetted surface areas given in figure 20,which also presents values
for a typical axisymmetric podfor comparison. The rectangular inlet of the Langley
scramjet has three times the wetted area of the axisymmetric inlet; however, since the
heat-transfer coefficients in the inlet are low, this is not a serious problem. The com-
bustor, which doeshave high heat transfer, hasmuch less wettedarea than the axisym-
metric configuration, and this is oneof the primary reasonsfor the low cooling require-
ments of the Langley engine. The total wettedarea of the Langley module is approxi-
mately equal to the poddedengine;however, for the integrated module installation a sub-
stantial amountof surface area, which is external to the moduleand on the vehicle after-
body, is wettedby the engineexhaust. In the present analysis this area has beenconsi-
dered to bepart of the engine;however, the heat-transfer coefficients are low over most
of this region (x values greater than 20meters in fig. 19)and regenerative cooling
might not be required.

The overall results of the analysis are given in figure 21 in terms of the total
cooling required for each enginecomponentrelative to the heat sink available in the fuel.
For comparison purposes the total engine cooling requirement for the typical axisym-
metric pod engineis presented in figure 21 for a Mach number of 6.0. For the Langley
scramjet moduleexcessheat sink is available over the entire Machnumber range con-
sidered. It is clear that the nozzle, which includes the vehicle afterbody, is responsible
for aboutone--halfof the total enginecooling requirement. As discussed in reference 34,
the nozzle design is very conservative andinvestigations are nowin progress which are
aimed at reducing the nozzle length andwetted area by as muchas 50percent. The
solid curves of figure 21 correspond to an assumptionof a constantwall temperature of
1110K (2000° R). Realistically, this condition is not possible with current fuel circuit
design technology;therefore, the effect of this assumptionwas tested by postulating a
variable wall temperature. An arbitrary temperature distribution ranging from a value
of 330K near the leading edgesof the inlet to a high of 1110K in the combustor to 500K
at the endof the nozzle wasassumed. As noted in figure 21, the net effect at the high
endof the Mach number range was to increase the total cooling by only about 15percent.
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CORRELATIONOF THE COMBUSTORCOOLING

FORA HYDROGENFUELED SCRAMJET

The use of the present heat-transfer methodto predict the combustor cooling
requirements of a scramjet engine results in a long complicated calculation procedure.
Thus, with a knownengine,the use of the methodto obtain combustor cooling require-
ments within a short time becomesparactically impossible. Therefore, becauseof the
favorable comparisons of experimental andtheoretical integrated total heat transfers
(fig. 7), andalso becauseof the relatively large range and quantity of theoretical com-
bustor integrated total heat-transfer computationsthat have beenmade(table I), it was
decidedto use combustor heat-transfer results from the present heat-transfer method
in an attempt to generatea theoretical correlation.

The desired combustor cooling correlation, as determined from dimensional anal-
ysis (details are presented in appendix), is given by the following relationship between
the various combustor flow parameters and combustor geometric characteristics:

where

1 - 2/A3_1/2 + A3
f(A_ 1 - ,, t_) A4 (27)

\A3/ A4 A 3 (A3_ 2
A---3 1 -2_44+\_44 ]
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By using the proportionality presented in equation (26), a theoretical correlation has been

generated for the combustor cooling predictions for scramjet engines with hydrogen

combustion and is presented in figure 22. In figure 22 the ordinate _ as given by the

left-hand side of the proportionality expressed in equation (26) is

/. 1/2 f\l _ -1 __(Pu)ILq_oA I ) 1/7, __ M_o2 \) 4

_P=Q_ + 2 / Av2 (28)
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In figure 22 the abscissa k as given by the right-hand side of proportionality expressed

in equation (26) is
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The range of engineparameters for which combustor coolant requirements were deter-
mined for use in the generation of the correlation curves of figure 22 is given in
table I. The theoretical heat-transfer results of table I were generatedby using the
present heat-transfer method;the local combustor parameters were computedone-
dimensionally by assuminga linear combustor area variation in conjunction with a heat-
release schedule. The effect of different heat-release assumptionson combustor cool-
ing requirements is also demonstrated in figure 22by two correlations, onefor fuel
injections normal to the stream (opensymbols) and the other for fuel injections parallel
to the stream (closed symbols). In figure 22 (andthus table I), the theoretical points
corresponding to %0= 16.8 kN/m 2 were computed by using heat-release schedules

similar to those observed for normal injection whereas the theoretical points corre-

sponding to q_ = 47.8 kN/m 2 were computed by using heat-release schedules gener-

ated from mixing correlations discussed in reference 34. In the range of geometry and

flow parameters covered, a reasonable correlation is obtained.

In order to utilize the theoretical correlation of figure 22 to estimate the cooling

requirements of a combustor, four pieces of information are needed other than the

engine and combustor geometries. These four pieces of information consist of knowing

the combustor entrance flow conditions, knowing the inlet entrance pu, specifying the

possible heat sink per kilogram of fuel, and having a knowledge of the value of Av that

should be assumed for the combustor being considered. Inlet and combustor entrance

flow conditions are easily generated through the use of one of the many cycle programs

that are generally available. In the course of conducting the combustor calculations

used to produce the curve of figure 22, it was found to be possible to have an average

value of A v over the combustor of 2.0. To keep the average value of Av of 2.0, the

present investigation found that particular emphasis has to be placed on producing a

combustor design which has a combustor area variation and fuel injection schedule

through the combustor that is coordinated to produce essentially no positive pressure

gradients. This type of combustor design results in keeping the boundary-layer distor-

tion at a minimum and thus combustor cooling requirements as low as possible. There-

fore, on the basis of the experience obtained during the present combustor heat-transfer

calculations, a value of A v of 2.0 is felt to be a reasonable assumption for use with

the curve of figure 22 to produce reasonable estimates for combustor cooling require-

ments if the combustor is designed to have essentially no pressure gradients. In con-

clusion, the use of the correlation to predict combustor cooling should be limited to com-

bustors with geometries somewhat similar to that of the Langley scramjet engine.
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CONCLUDINGREMARKS

In connectionwith research programs on hypersonic airbreathing propulsion, an
integral methodfor predicting boundary-layer developmentin turbulent flow regions on
two-dimensional or axisymmetric bodies hasbeendevelopedthrough use of integral-
momentum,momentof momentum,and energy equationstogether with appropriate aux-
iliary equations. The methodhas the capability of approximating nonequilibrium veloc-
ity distributions as well as the local surface friction in the presenceof a pressure
gradient. An approachis developedto the problem of predicting the heattransfer in a
turbulent boundarylayer in the presence of a high pressure gradient. Noprovision was
includedto accountfor a pressure gradient normal to the surface. The solution was
derived with particular emphasison its applicability to supersonic combustion; thus,
real-gas flow effects were included. The real-gas capability of the integral boundary-
layer equationsused in the prediction methodincludes terms which accountfor the
changein combustionproducts in a boundarylayer but do not include terms which actu-
ally computethe chemical reactions in the boundarylayer. The resulting integrodiffer-
ential boundary-layer methodpermits the estimation of the cooling requirements for
scramj et engines.

Theoretical heat-transfer results are comparedwith experimental combustor and
noncombustorheat-transfer dataand show reasonableagreement. The theoretical heat-
transfer methodis used to predict heatingand thus the cooling requirements for a sam-
ple engine sized by estimates of drags and at a range of altitudes for a vehicle between
Machnumbers 6 and 10. Thesecalculations indicate that in hypersonic enginedesign,
certain designconceptsshouldbe incorporated to accountfor the resulting cooling
requirements of the engine. The general designconceptsimposedon hypersonic engine
designby enginecooling restrictions indicate that whenengine cooling is considered,
scramjets are advantageousat Mach numbersof about6.0 and above,that combustor
pressures shouldbekept at the minimum required for efficient combustion, andthat the
positive pressure gradients in the combustor shouldbekept as small as possible. Also
theseengine cooling restrictions require that the combustor and nozzlewetted areas
shouldbe kept as small as possible; analysis of the sample engine indicates that the use
of fuel injection struts provides a techniquefor reducing the ratio of combustor wetted
area to its entrancearea. The analysis of the sample enginealso indicates that the
operating Machnumber range of an engine(relative to enginecooling requirements) can
be increased if the fuel injection is designedto keepthe combustionin the center of the
combustor andawayfrom the surface. The general design conceptsimposedonhyper-
sonic enginedesign by enginecooling restrictions were utilized in the designof the
Langley scramjet enginemodule. The cooling requirements of the Langley scramjet
enginemodulewere found to be such that excess fuel heat sink is available over the
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Mach number range considered. The nozzle design of the Langley scramjet engine

module is very conservative and investigations are in progress which are aimed at

reducing the nozzle length and wetted area by as much as 50 percent.

The present heat-transfer method is used to develop a combustor cooling require-

ment correlation for a combustor whose local flow properties throughout the combustor

are computed one-dimensionally by assuming a linear area variation and a given heat

release schedule. This correlation (calculations were made for Mach numbers 6, 8,

and 10) can be used to obtain quick and reasonable estimates of cooling requirements

for a combustor of this type without a long calculation procedure.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., October 17, 1974.
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APPENDIX

CORRELATION OF THE COMBUSTOR AND NOZZLE COOLING

FOR A HYDROGEN FUELED SCRAMJET

The desired combustor cooling correlation results from the following relationship

which is valid for a combustor's surface heat transfer:

Q_

(PsUS)Av(haw - hw)

cc CfRAAc (30)

The parameter Q_ is the integrated total heat transfer. With the use of a simple com-

pressibility type correction, as well as an approximate correction for the effect of a

pressure gradient on the heat transfer, the following proportionality is obtained for the

friction coefficient of equation (30)

Cf 1 Av 2 (31)
cc Cf, i __

I+V -'1 4
T M_2

The ratio of Av 2 over 4 is an approximate correction on Cf to account for the pres-

sure gradient effect on the heat transfer and is somewhat similar to that of equations (10)

and (15). In the theoretical correlation, average values of A v are used which are

obtained by adding the values of A v predicted at uniform intervals through the com-

bustor anddividing by the number of A v values. For a two-dimensional engine, the

local incompressible frictional coefficient is given by

1 (32)

Cf,i cc (q_oAI1/2) 1/7

It is also assumed that

and

ha w cc ht,oo (33)

fc /
(PsU )Av ( 6u )3 '63/

(34)
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APPENDIX- Continued

The proportionality presented in equation (34) is a result of attempting to account for the

effect of area change across the combustor or nozzle on the local mass flow per unit

area. The flow area distribution through the combustor is assumed to be approximated

by the linear relation with x as given by

A L = A 3 + L(A4- A3) (35)

where L is the total combustor length. The distribution of the mass flow per unit

area through the combustor is given by

A 3

L = k_6u6]3 A 3 + _(A 4 - A3)

(36)

The average mass flow per unit area weighted by combustor surface area is given by

_ IA WL+HL 3i2 (P6u6)3A3 x A dx
3+_ 4 -A

cc (37)Ac

where W L

be given by

and HL is the local width and height of the combustor and is assumed to

(A)1/2WL = HL = L

The combustor wetted area is given by

(38)

Substitution of equations (38) and (39) into equation (37) gives upon integration and

rearranging

and thus,

1 -21A3_ I/2 + A3

4(pSus) 3 \_44) A4

(PsUS)Av cc A 4 A 3 (A3_ 2

A--3 l - 2 A--4+ \A4)

(40)

, .,,.

.... !
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APPENDIX- Concluded

1 - 2_A3_ 1/2 A3
\A4/ + A--4

A3 1- 2_ +\A4j

(41)

The total fuel heat sink can be expressed by

Qf = (puA)iJ (42)

Substitution of equations (31) to (34) into equation (30) gives after rearranging

\

4 j
Q4) (PU)I(q°°A1/2)1/7 ii+y 21 . Moo2/) Av--_

RAAc ffA4_

AI \A3/Eo0u (  ,0-
(43)

The relationship between the total heat transfer Q_=I.0 to a combustor for fuel equiv-
alence ratio of 1.0 and the total heat transfer to a combustor for fuel equivalence ratios

less than 1.0 but greater than zero is assumed to be given by

cc Q_ (44)
Q_=1.0

Substituting equation (44) into equation (43) and assuming that the Reynolds analogy fac-

tor is constant gives after rearranging

(Pu)i(ci_A1/2)i/7(l y-1 4+-- Moo2 ) J
Q_ 2 _v2 cc 'I)Ac f(/A4_ (45)

AI \_A3/- hw)]3
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TABLE I.- COMBUSTOR COOLING C._SES

Symbol Moo q_, N/m 2 Fuel, 4, AI, m 2 A4/A 3 M I ht,_, MJ/kg Tw, K hw, MJ/kg H 2 heat sink, MJ/kg (PU)i , (kg/m2)/sec

C) 6 1.68 × 104 1.0

[] 6 1.o

6 .75

A 6 .75

6 .5

6

a 6

© 6

<> 8
d_ 8

d lO

% io

<_ lO
,_ lO

io

(5 io

<_ 1o

<_ 1o

d_ 1o

(_ i0 4.78 × 104 1.0

d i0

10
A i0

10

• 6

• 6

• 8
• 10

• 10

• 10

• 8

3.642 2.5 4.6 2.0315 1256 1.3420 14.29

I i

i
I

2,0

I
.75 7.809 2.5 5.7 3.2578

7.809 1.4 5.7 3.2578

7.432 2.5 6.56 5.3288

1.4

1.4

1.0

1.4

1.4

! 1.0

1.4

1.4 I

5.87 5.04 7.31 4.9254

5.87 3.526

4.19 5.04

5.04

3. 526

5.04 4.92

4.92

6.21

5.87

4.19

1

1.8355

1.8355

3.1447

7.31 4.9254

6.21 3.1447

1111 1.1745

40.95 222.44

40.82 264.22

40.82 264.22

36.7 253.70

P r

89.7 893.29

946.33

946.33

951.86

893.29

1
951.86

i
I
I

109.1

109.1

97.4

89.7

97.4

(Pu)3 , (kg/m2)/_ec Altitude, m Ac, m2 Fuel injection type

3.42 x 104 11.854 Normal

17.001

11.854

17.001

11.854

1
I 5.927

3.75 x 104 28.707

3.75 × lO 4 28.707

4.08 × lO 4 25.966

r

12.979

3.38 x 104 29.856

26.408

26.622

53.245

47.957

2.68 × 104 26.622

2.68× 104 61.519

3.08 × 104 26.622

3.38 × 104 29.856

26.622
26.622

3.08× 104 61.519

Parallel
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Figure 1.- Distribution of velocity profile parameter Av in a eombustor at Moo = 10.
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