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Part I

. SLOW GROWIH OF CRACKS IN A RATE SENSITIVE TRESCA SOLID
. o
Michael P, Wnuk
(Abstract)

_JThe paper proposes an extension of the classical théory of fracture
‘tO.ViSCOélastic and elastic-plastic materials in which the plasticity
- effécts‘are éonfined to a narrow band encompassing the crack front.

It 1s suggested that the Griffith-Irwin criterion of ‘fracture, which
‘réﬁuirés‘that:the energy rélease rate computed for a given Boundary value
pfoblem equals the critical threshold, ought to be replaced by.a diffe;ential
equation‘gdverning the slow growth of a crack prior to the omset of*rapid
propagation. A new term whicli enters the equation of motion in the dissipative
media is proportional to the energy lost within the end sections of the
crack, and thus it reflects the extent of inelastic behaviﬁr of a solid.

A concept of "

apparent’’ surface energy is introduced to account for
the geometry dependent and the rate dependent phenomena which influence
toughnesé of an inelastic solid.

Three hypotheses regarding the condition for fracture in the subcritical
range of load are compared. These are: (a) constant fracture energy

{Cherepanov), (b) constant opening displacement at instability (Morozov)

and (c) final stretch criterion (Wnuk).
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Slow Growth of Cracks in 2 Rate Sensitiwve Tresca Solid,

by

Michael P. Wnuk

Theoretical analysis shows that the amount of slow growth occurring
in a plane stress tensile specimen,‘subjected to a subcritical stress intensity
level, is affected by the following parameters:

(1) ductility and rheological sensitivity of the material,

(2) rate of loading,

(3) initial crack éize,

(4) geometrical configuration of the test.
Some of these factors were included in the earlier semi-empirical appreaches
oflKrafft et al. [3], Brown and Srawley [1l], and in the only-available éxact
treafment of slow growth under tearing mode of deformation due fo McClintock
(4], McClintock and Irwin {5] and Rice [6]. Here Rice's idea of a wniversal.
R~curve is re—examined. It turns out that the curve is universal, that is
independent of geometry and the initial crack size, only in the limiting case
of a rate-insensitive elastic-plastic solid; When time effects are accounted
for in the constitutive egquations of the matrix which contains the crack, the
"ur_iive-rsality" no longer holds,

" The governing equation which describes the quasi-static extension of the

crack under confined yielding condition is an integro-differential equation

derived in [8]:

R R A Ay =k

Vo, % ~ _8 Jo) + Jol&) =8\ 4 -
+ 3 ‘R {{JD(S)(D(S) 5) /eﬂ(‘/p(s) = 5 - s ds = R,

(1)




Here R denotes the length of plastic zone ahead of the crack fromt, Rb
is its value atlthe growth initiation, 4 is the dimension of the process
zone, ¥ 1is the normalized creep compliance. Both R and ¥ are functions of
time t, or equivalently, functions of the current crack length ¢, which is

tredated as a time-like parameter. Other relations are

£= A/R(t ~ 8t) , 8t = AJL , 2 = di/dt

p{s) = 1+ (e - s) dR/dR , &¥ = ¥(&t) - ¥{o)

The criterion for crack opening, which was employed in order to deriﬁe
eq. (1), is that of "final stretch"”, cf. [8]. In contrast to the COD
ériterion the final stretch condition is path-dependent ana thus it appears
to withstand Rice's criticism [7] of earlier work on this subject by Cherepanov
[21. Pbstulating this criterion in [8] we required that the amount of stretching
whichoccurs within the process zone during the time interval just prior teo
fracture ig a material constant. Such an approach assumes nothing abéut
-the current tip displacement and the length of the associated plastic zone.
In fact these two entities turn out to be functions of time and the loading
history.

| Itlshould be ﬁoted that the final stretch criterion coineides with

McCliﬁtock's critﬁfion of critical strain attained over the Neuber domain.
One may also ad%I;n the limit case of steady-state propagation, both the
COP and the final stretch criteria converge. The essential difference
between them becomes obvious, though, within the subcriticalrrangé of
applied stress intensity.

To make the problem mathematically tractable we assume further that

the length of the process zone ig small vs. the plastic zone size, i.e.



A/R <<l. Then eq. (1) reduces to

A

- : -1 &R
2 3 .zn(gﬁ) + A-[1 + CRG3R/5Q) ] % - AC(3R/3Q) ~ Rgy = R,

Here (dR/d%-2R/34)CA (BR/BQ)-l has been substituted for §¥(=BA/i); B denotes
the slope of creep compliance at time zero, Q is the loading parameter and

C = B/Q. To illustrate applications of eq. (2) we shall integrate it
numerically for the case of a crack contained in an infinite plate under
tension &; then R =(1/2)Q2(£)£ y Q = m@/2¥. Since the ratios R/A and £/A

are very large numbers, it is convenient to introduce the logarithmic function

and to cast the eg. (2} into the following form

a¥ A - (/23Y+ #em(3/2)0 - 0 exp(X - Y)

e L+ exp(1/2) (Y -X)
vhere

X = log(#/8), A= (R_/A) - log2
Yoy log(R/4), Y = Y(X)

Equation (3) has been integrated numerically for a certain set of initial
conditions, and the results are shown in Fig. 1.‘ The figure illustrates the
effect of rate sensitivity of the material andlthe rate of loading on the
shape of the R-curve. It is seen that not only the slope of the curve is
affected, but also pronounced changes In location of the ultimate instability
point are cobserved. Examples of integration of the equation of motion when
the visco-elastic dissipation is dominant, are shown in Fig. 2 and Fig. 3.

Such a case of a'

'creeping crack'" is considered in more detail in [9].
For engineering applications it is convenient to re-write the governing
equation (2) in terms of the ratios R/R, and 2/R, , where R, denotes the

2
steady-state limit of the plastic zone size, say R_ = wKwIBYz. The symbol



K_ denotes the maximum plane stress fracture toughness which would be attained
in an ideal case, when the conditions of the test are such that the prior to
failure slow growth is fully developed. Of course, the actual fracture

toughness K¢, 1.e. the value of K at which the rapid motion begins, is b;’acketed‘
by the initiation toughness KO and the maximum steady-state toughness K_.

Normalizing the plastic zone size and the crack length as follows
2,002
(5) R/R,=p , L/R,=1¢ , R, ="K /8

changes eq. (2) into

dp (Y2)rn(1/0) + cp2/t {2tp 2
6a) == = s ={1/20°C
(6a) 1z 1+ Co/{2%0 P =/
or

49 _ _4x2/Q%) - @?
(65) T = 2wa + co/2)

for a crack in an infinite plate, and

(12) do _(1/9)tnc1/p) + CpP{1 + (pz/co) tan(pt/to) 1/t [ 2pcsec(pz/co)
dg 1+ CD/JZpCsec(pC/Ca_‘

o
or

P =(l/2)12 zsec(pt/zo)

[ 2/Q%zsec(pt/zo)] =~ Q2[1 + (pz/zo)tan(pt/Lo) lsec(pr/zo)

Q. _
(7Y 3. = 2Qz(1 + CQ)sec(pz/zo)

for a crack traversing a panel of wicichb.The initial crack length is given
by 4 = Lo/R, and p denotes the initial crack length to panel width ratio ,
p = n£0/2b. The locus of terminal instabllity follows readily from eqs..

(6b) and (7b) if dQ/d% is set equal to zero. Then for a crack contained in

an infinite plate one has

- 2 2
(8) C?_ = 2/Q‘$' EXp (Q‘F)



while for a central crack in a finite width panel it is
(9) n [2/Q2fcfsec(pi;f/::0)] = sz[l + (prg/rytan(pie/c,) Isec(pze/Ty)

interestingly the rate sensitiﬁity C does not enter explieitly in the abowe
relations. It is present here, though, in an implicit way, since both the
critical load Qf and the critical crack size Cf are pronouncely affected
by the rate sensitivity. This can be seen only after the integration of
equations (6) and (7) is completed, see Fig. 4.

The effect of finite width on the amount of slow growth which takes
place prior to failure is illustrated in Fig. 4, where Q vs. ¢ curves are
shown for both infinite and finite plates at certain levels of loading rate
Q. Two diffgrent trends are observed: (1) the slow growth is enhanced when
the panel width staysacdnstant while the initial crack size is increased,
and (2) the slow growth is diminished when initial crack size is kept comstant
but the panel width increases, see Figs. 5 and 6 . |

In general the amount of slow growth beforerthe final instability sets
in turns out to be a function of (1) ductility, (2) rate-sensitivity, (3)
ra;e of loading (4) initial crack size, and (5) geometry of the test. Although
no closed form solutions are available at this time, the influence of the fore-
goingrfactors has .been investigated numetrically, and the results are gathered
in Figs. 5 through 8. The graphs were derived from a number of integrations
of the governing eq. (2) performed on an IBM 360.

It should be noted that for the case of fast loading, or equivalently,
for a rate insensitive solid (C+0), the equation (2) which describes the

R-curve degenerates to

d .
(10) g7

1

(1/2) %0 (1/p)



This has a closed form solution
(1) 2 -z, = 2{eilinp ] - eil tnpl}

X Lt
ei(x) =f—t-— dt

It is seen that the last equation supplies a universal relationshib, since
neither geometry nor the initial crack size are represented (the initial crack
length enters only in form of the difference ¢ —'co). Thus the shape of the
resulting R vs. L curve will remain unaltered by these factors. On the other
hand, the location of the terxminal instability point will depend on a specific
geometty of the test.‘ It is so, because the instahility state is determined

by the point of tangential contact between the R-curve and a member of the

family of curves originating at.(R=O,R=0) and representing the variation of
plastic zone size with crack length at certain fixed values of'lﬁading,parameter;
Slope and the shape of these curves will, of course, depend on the gecmetry

of the problem, and so will the position of the instability point.
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APPENDIX

A, Fracture Criterion and Slow Growth of a Crack in an Elastic-plastic Solid.

A local criterion of fracture is postulated by proposing that the sum
of work done at a fixed material point, which undergoes a deformation process
while it traversesrthe Neuber section of the plastic zone, is a material
property. Thus the crack will move onward if

t
(A1) J  slx ,tlalx ,1] dt = ¢,

t-6t T E
Here, S[xP,r] is the restraining stress at the control point P and time T,
while u [xP,T] denotes the time—rate of the displacement at the point P
and time 1, and perpendicular to the crack plane..iﬁmm increment &t equals
the time used by the crack front to pass throupgh the Neuber zone {of

characteristic length A) and thus it is related to the rate of crack growth

as follows

(A2) St = A/d
Such a relation wag used earlier by Glennie and Willis [Al] to desecribe a
plece-wise linear approximation of an accelerating crack. The material
property ¢, has a dimension of energy and it can be related to the threshold
fracture energy, i.e. the specific fracture energ& at the onset of crack
growth,

We assume further that the restraining stress is constant (=y) over
the Neuber domain and that the work ¢4 can be expressed as a product of ¥

and the initiation displacement u_, i.e, the tip displacement at which

0,

motion of the crack sets in. Under these assumptions criterion (Al) reduces

to the "final stretch" condition which reads



(A3) u(xg,t) = u(xP,t - 8t) =u, 8t = A/

o*
In other words the-increment of deformation generated at the point P, just
before an infinitesimal element located at this ﬁoint collapses, should
remain constant during the slow propagation stage. Thiscondition is not
identical ﬁith the COD criterion since it allows for a wvariable tip
displacement (note that there are no restrictions imposed on u(xP,t), but
only the increment, say AuP, as defined by the LHS of eq. (A3), is said to
be a constant). Of course, when the motion attains the steady-state limit,
i.e. when the length of the plastic zone R remains constant and the crack
runs fast enough to justify the quasi~steady approximation of Glennie and
Willis over the entire plastic zone, both criteria coincide.

Interestingly, the final stretch eriterion is identical with MeClintock's
condition of critical étrain attained over the Neuber domaln, provided

that one defines the strains within the plastic zone of a Dugdale crack as

follows

P
_ ARF
(A4) s(xl) =g, * a

{-|egrad u(x)[} , 0 < x <R

here ¢ is the yield strain, EE is the plastic component of the strain at
fracture and u(xl) is the displacement within the Dugdale plastic zome.

To show the equivalence of the final stretch criterion, as given by eq. (A3),

and the McClintock eritical strain concept, let us consider the case of a .

general in-plane loading mode (either mode I or II or both applied simultaneously).

For such a case the displacement which results from the appropriate boundary

value problem formulation is

_ M ‘ _x ARGy +JRGp-x]
(43) ulxy) =37 {ﬁR("P(R‘”-)‘X')] Tp'{jﬂ(xl) -JIR(xy - xq] /}
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Note that the coordinate Xy is used here as a time~like parameter, Since the
length of the plastic zone is a function of time, it will therefore depend on Xy
in an a-priorunknown fashion. To emphasize this point the symbol u(xl) will
be replaced by u = u(xl,R(xl)).

To apply the final stretch criterion we have to compute the displacements

at the point P at time t and time t - 8t. These two instances correspond

to x, = 0 and x; = A, respectively. TFrom (AS5) we have
- ~0) = AL = 4 Inea (4R -n}
u(t) u(xl 0) 'ITE R(O) —-E{ (a) - (H]_{l)x A
(A6) !

ey st - & rorcaoren - $inf 5

Applying the fracture criterion (A3) we arrive at

R+J[R - A
(A7) R+AdR \[[R(R—A)] + > RHH.R—TZ} .

where all R's are taken at Xl = A (or at the time v = t-dt). This is the
governing equation of motion relevent to the slow propagation stage in an
elastic-plastic solid, under the in-plane mode of loading (mode I or II}.
Equation (A?) describes the universal ”churve", which was earlier discussed
by Rice [6] for mode III, This curve is alsolequivalent to the "G«éurve"
introduced bf Brown and Srawley in 1964, [1].

Mote that the initial slope of the R-curve described by eq. (A7)

JRO/A JiRasny -11 >

JRo/8 +[[(Ro/8) -1]

is remarkably similar to the initial slope of the R-curve predicted for mode III

RQRO
(dRRR l[ (

(AB) l)]+“2 (

by Rice [6]

IIT R
(A9) (QE mode a

dﬂ,) = 5 - 1 - in (RO/A)
=R 4

If we introduce a parameter o (which equals the ratio of the plastic strain at
fracture to the yield strain E?/Eo)’ then both (A8) and (A9) can be re-written

as follows
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dR a(a + D +3 gofo—t Jo (a)
woy &t 2l [a
o - 4n (14 o) (b)
The graphs resulting from eqs. (a) and (b) above, and representing our solution
and Rice's are shown in Fig. Al. They converge for both small and large
values of the duetility parameter a.
In fact, within the range of practical applications, R will be much

greater than A, Equation of motion (A7) reduces then to the simple form

4R _ _ & (4R
(A11) Age = Ro - 5 an(7)

This form results also from McClintock's critical strain criterion of fracture,

if one defines the strainé as in (A4) and makes use of the condition

= = V = P
{Al12) E(Xl A) € where ef €, + s

To demonstrate this point let us combine (A4) and (Al2)

(AlB) - | grad u(xl)l = uO/A

¥ = A
1l

and let us compute the gradient of the displacement within the Dugdale

plastic zone, Since u = u(xl,R(xl)), we have

(Ald) | grad u(x Y= Bxi + gi.ggl
where
u Ry - [RGp) - x))
15 — = X1,
(A15) aR {R(x )+ J(R(xl) + Xl)}

fu _ &Y [R(EJ) =~ X7 ]
2R wE R<xl)
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Note that dR/dx1 can be replaced by -dR/d%, since x = & + X, = const.
Substituting (A15) and (Al4) inteo the critical strain fracture criterion
(Al13), and remembering that R/A >> 1, we get the equation of motion identical
with the equation (Al1) which resulted from the final stretch conditionm.

Eq. (All), describing the R-curve for an elastic-plastic solid, is a

first order linear differential equation and it can be integrated in a closed

form., The solution expressed in terms of A-units is

2Ro
A

2R,

1 4R
(Al6) L=k, = E)exp (2 RO/Ai]{ei [in Q_KEJ - _E_]}

while in terms of R, (= ﬂKi/ng) units it ist

] - et ftn GO -

. Rg : R
- = —] = el [in —

(AL7) -% = 2R, {el [in R*] el Bn & 1Y

ot
ei (x)‘=.f [e’/t] dt
-
- Indeed, we cbserve that the amount of slow growth predicted by eq. (Al7)
does not depend on either the geometrical configuration or on the initial

crack length. It is, therefore, a universal relation analogous to Rice's

[6] result for mode III.

+) To allow for the change from the A-units to the R ~units, or from the
micro to the macro—units, and to satisfy the boundary condition at the
steady-state limit R =R,, one has to incorporate another postulate regarding
the "opening stretch', namely
_ AY A
U.0 = TTE) 2 &n (43-*/'}—\)

This transforms the equation (All} into the simple form

Sl @



13

B, Deriviation of the governing equation of motion for a viscoelastic-

plastic solid;

Consider a viscoelastic matrix containing a Dugdale crack and described

by the constitutive equations

t Je ()
= i T
(B1) F (t) = j_'mGl (t - 1) _5.113__ dt
t 3
s {t) = {w G2 (t - 1) Z:T) dt

The displacement perpendicular to the crack plane shead of the crack front

is given by

. t .
(B2) u (%,t) = u° Got) + f ¥ (e - 1) v (x,1) dr
¥ y ¥y
(8]

where u®(x,t) is the associated elastic solution to a given boundary value
problém. The normalized creep funetion ¥{(t) can be readily related to the
relaxation moduli Gl(t) and Gz(t). The lower limit of the hereditary integral
in (B2) denotes the time at which a given point (x,y=0) entérs the plastic
zone. Consider now a moving crack whose front approaches a stationary control
point P located at x, see Fig. A2. For a general in-plane tensile loading

mode equation (B2) reads

™

uy(x,t) = % { \([R(t)(R(t)‘+ () - x]1 +

b OMD) - x (J’R<t)+ JIR(E) + 2(8) - x] )
(33) . 2 TATR() - JIR(E) + 2(r) - x
z(ﬂ—xxh(fgg) + J[R(T)+L (1) -x]) ;

2 JR(T) - I[R(T)'i‘ﬂ.(‘l’)—x], “t

+

t L)
e -0 {JIROED + 21 - 0] +
t
o]

where R denotes the current length of the plastic zone and xl is the distance

measured from the erack tip. To apply the final stretch criterion of fracture

we need to evaluate the difference
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AuP = u(gP?t) - u(xP,t - §t) =

o
u (xP,t) - uo(xP,t - 8t) +

(B4) t .
f g (T) uo(xP,t ~ 7)dt - j Y{(1) u’ (xP,t -8t — 1) dT =
t .

t . .
Au; +f -0 - ¥ (e-8t- D] w0 (x,1) dr+

[
o}

t .
+ f ¥t - 1) u ¢ ,T) dt
t-6t P

The first term on the RHS of the above expression, Au;, 1s known from the

elastie-plastic analysis presented in the preceding section

(B5) Aup = R + A J-[R(R-A)] + 2 (E;J_r ﬁi - i]L)

The second term in the final form of (B4) can be shown to Be proportional

to the second time-derivatlive of the creep coﬁpliance ¥ and therefore it

will be neglected as only the first derivative of ¥ is revained in the present
analysis., The only restriction imposed is that the change in @ due to the
shift of argument by &t is small, This means that the function Y does not
vary rapidly between time zero and &t, and that within this interval it can

be approximated by just the first two terms of the McLaurin axpansion

(B6) Y(st) = ¥(0) + ¥(0) 6t

(of courself may vary within the interval (to,t) but it is roughly constant

inside each &t sectiom),
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The very last term of (B4) is further reduced as follows

t
j ¥ {(t = THu° (XP,T)dT == L4 W(O) f { j—[R(T)(R(T) () + (1)) ]
t-8t t=-6t

(B7)

- m) 2(0)=2(5) (Jim + JIR(D = 20t + 2(1)]
} drt
JR(t) - JIR(T) - 20 + #(z )])

Note that the coordinate xP is fixed and equal & (t). All functions appearing

in the integrand of expression (B7), although unknown, can be represented by

the following Taylor expansions

() = 2(t-8t) + i = 8t
(1) = 2(t-6t) + & +» (1-t+5t)
(B8)
R(t) = R(t-8t) + R +» (1-t+st)
= R(t-8t) + R - &t

R(t)

where both £ and R are considered constant within the 8t interval. Inserting

the above expressions into (B87) produces

t » V
b0 w e o =
(B9) t-6t K
Eyv Oree-s0) I oo - ;_%%;‘5%)]

t-8t

_ A c(t-T) Jo(ry + Jlo(r) - 2 - (t=1) /R(t=6£) |
2R(t-§¢t) n (‘IP(T) - j[p(r) ~ % (t=1) /R(t-6¢) ) ) }'AT:

Here p (r1) denotes the ratio R (1) /R(t - 8t). Cogbining eqs.{(B%), (B5)
and (B4)(subject to the final stretch criterion) gives the following equation

of motion



16

j[R(R—~A)] + A——- +4

[n+ Ir
(s ) *

() + JIp(s) - s] _
‘W r? f {}’[gxs)(p(s) - s)] 2 Qn(fi(s) - J[p(s) 5/} 48 = Ry

(B10)

Note that §Y = ¥(&t) - ¥(0) and the current time 7 has been replaced here

by a dimensionless wvariable

=’-L'(t-T)
(B11) s s

The upper limit of the integral in (B10) is now defined as
A

R(t - 8¢)
while the function p(s) is given by

(312) £ =

{B1L3) "p(8) =1+ (e - 8) dR/d2

Summarizing this section we may say that the function R=R(%) is determined
Ey the non-~linear integro-differential equation (B10), subject to the initial
condition R.=R0 at 2=20. In order to make the problem tractable we shall
reduce the eéuation (B10) to a differential equation. This aim 1s achieved

€
by observing that for R/A >> 1 the integrand of the integral f { } ds

0
can be expanded into a series

(B14) { } =1+ 0(e)
where 0(e) denotes terms containing e ( =A/R) and being on the higher order
of magnitude. Retaining only the first term of (Bl4), and neglecting A vs. R

in the second and forth terms of (B10), reduces the governing equation of
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motion to the follawing form

4R A 4R R =
(B15) bgg t 5 () +¥R=R

This is the desired form of the differential equation which allows for direct
determination of the R function. Note that the LHS of eq. (B15) can also

be written in a more compact form
{B16) uP Au +u (xP,t—Gt)GW

Next, the increment &Y is related to the R function. We have

(B17) S¥ = ¥(St) ~ ¥(0) = ¥(0)St

Now, denoting the material rate sensitiﬁity ¥(0) by B, and recalling that
§t = A/i,wa may further write

- . dt dq -1
(318)‘ Y = BA/2 = BA a7 = BA 4 (%

But R depends on & in the following way
(BlQ) R=~R [2,Q()]
where @ = Q(2) is a function describing the applied load (or dimensionless

loading parameter). This generates

dR _ R | 3R d

{B20) g a’i"=-§—+ 2 a2
hence

49 _ dR a 3R, -1
(321) @ - G- &Y
and B

_ = dr 9R_ 3R, -1
22y T qt @ P
the,

Let us denote the ratio oﬁ&;ate sensitivity B and the rate of loading Q by a
letter C, and insert the result (B22) into the equation (B15). This gives

our governing equation of motion the following form
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-1
(B23) % . (-33) + ALl + CR (8R/5Q) ] “g‘%
- AC(R/30) "L R(aR/32) =R. , C = B/Q

aQ

Note that for C = 0, i.e, for a zero rate-sensitivity B or an infinite rate
of loading é, we recover the equation of motion valid for an elastic-

plastic solld, as shown in the preceding section by eq. {(All).

The other limit case follows from the equation

0 o
B2 + - =
(B24) AuP u (xP,t SE)ey u0

'if one considers a purely visco-elastlie solid. There plasticity effects
are neglegible and one may think of A and R as being of the same order of
magnitude (in other words the "plastic zone" shrinks to just the "process
zone"). Of course 4 is still sufficiently small to justify the guasi-
steady-state approximation, i.e. % = const. within the time interval Af

§t =A/%. Under these conditions the first term of aq. (B24) reduces

(825)  au = 24 WOt - se) = §u® (£ - 6t) = u° (r -50)

=g

This added to the second term glves

(B26) (1+6%) u® (t - st) = u,
or
(B27) ¥(se) R°.= R, (or RY)
or
¥EG° =G (or T

The superscript "o demotes an elastic field entity, while the subseript
"o" denotes an initiation level of the sawme entity ({a material congtant).
Since the propagation oecurs here at a certain steady-state value of R,
the initiation znd the eritical levels can be regarded equal.

Equation (B27) is ldentical with the Knauss-Dietmann equation given
for cracks moving in linearly wvisco-elastic solids [A7]. A somewhat
differeat result was obtained by Kostrov and Nikitin [A8], but their result

can be shown to converge to (B27) if one assumes neglegible plastic effects.



19

C. Comparison of 8low Growth Theories Based oo (a) Cherepanov's, (b)

Morozov's and {c) Wnuk's Criteria.

{a) Constant Fracture Energy Hypothesis (Cherepanov).

Three hypotheses are diacussed here. The flrst one was proposed by
Cherepanov [2]. The basic physical assumption made by Cherepenov is that
the total work done in separating two surfaces during an incremental growth
1s a material constent. This statement expressed in terms of elastic
field entities and with che assumption that the Dugdale model applies, reads

a

(c1) 4 f 1 du (x, Q) ,0)dx = 2 T80

3
(28

a

SIS (T . 4

€z ZY{ “aa)q*' (BQ)E Slax = I
ar

2,9 5. G .
(€3 Tig + o w ) { lx,QUe), 2 1dx + Wulezp) = &

{compare Wauk [§]). The above relation describes a slowly moving crack
within the subcritical range of the applied load Q. Symbol u denotes the
displacement perpendicular to the crack surface, L and a denote the half-
length of the crack and the half~length of an extended (Dugdale) crack,

respectively. Formula (C1) 1s valid for an elastic-plastic solid which oheys

the Tresca yield condition, and it does not account for the rate sensitivity.
An extension of the Cherepanov thecty was proposed for the visco-elastic
solids by Wnuk [A3]. The governing equation of motion for such a case is

cnly slightly different from (L1}, 2rd it reads

a 3 o . .
(c8) wif G ¢ &5 Riawveh - 5,
3 Q 2

Here u° denotes the associated elastic selutdion for the same boundary value
problem, ¥ is the normalized creep compliance function, & is the characteristic
dimension of the Neuber demain and JL the rate cof crack growth.

Let us briefly present cthe essential results pertinent to the small scale
yielding fange. The integrals involved in (C2) or {C4) are evaluated as

follows (R/R << 1):

a a -

S % dx = - f %5 dx = u(f) - wig} = wg) =(%)R(1,Q(z}

13 . |3

4 3u 3 9oy, BR(L,000) . &Y. 2 _ IR
©@  foqat gty G T G TR

Combining the above results in accordance with (C2} and (C4) and recalling

that ﬁ'c can be replaced by 2Y¥u, or 2Y{4Y/nE)R, we arrive at

2 d
(ca) R+3R%E%=R*

for an elastic-plastic solid, and

2 R e
@ R+ 2 g vash = g,

for a viscoelastic-plastic selid, Note that the rate-sensitivity and the
time-dependent properties of a selid are reflected in the latter expression
by the creep function V. Of course this function will depend on the propagation

rate L. To reduce the above forms to just onme equation
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which would contain only the sought—for function R=R(%), let us eliminate
the rates dQ/d? and d%/dt. This is done in two steps. First ¥Y(A/L) is

approximated by the first two terms of its McLaurin expansion

(C8) ¥ o= w(0) + ¥(0)A/L ,  w(O) = 1, ” (0) = B

|
and then d4/dt is replaced by Q(dQ/dR)_l. Since the R~function depends

explicifly on & and Q(2), we have also

dR 3R 3R dQ

sy PO R T)
hence |

0} -
€10 g = &8 gt
and
. _ . B ,dR _ 3R, AR, -1
(C1y ¥ = 1+5% (g - 5P G

Therefore, the governing equation of motion can be written for both cases as
2 drR 3R dR _ 3R, 3Ry~1, _
(c12) R+3R (- 1+a(, -59Gp 7} = R

where the parameter C = B/Q describes the time-dependent response of the
. material, Obviously, when C = 0, i.e. when either the rate¥sensitivity
B is zero or the rate of loading Q becomes infinite, equation (Cl2) reduces
to the equation (C6) which describes propagation in an elastic-plastic, rate-
insensitive material.

Let us 1illustrate applications of eq. (Cl2) for a case of a central
erack contained in a large plate {plane stress only is considered}. For
this configuratﬁ:: the plastic zone size R is the following function of 4he

crack length and)\loading parameter Q (= 7S /2Y, & = applied stress,

Y = yileld point)
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(c13) R = % 2 Q%)

\

2
Normalizing R and £ by R, (=ﬂKc/8Y2), and inserting

3R _ SR _ 1.2
(c14) 3 = 4Q md 5y = 20
into eq. (C12) produces
2, _ pyy. Ay (o _p -v2
(C15) ‘{,p+3p(dC L:)]‘{l-FC(R*) (dz: :) (2p7) }71
. 2
(crey R __2-8¢

d 2
¢ s ar+cy)
Here p=R/R;l t=%/R, and C0=(B/Q)(A/R*). The functions to be determined

from the above non-linear first order differential equé;ions are

£
It

R(%) _ from eq. (C15)

and

Il

Q = Qv from eq. (Clé)
We do not have an analogous treatment for a large-scale yielding rate-—
sensitive problem. However, if thé rate-sensitivity is absent, the governing

equation of motion, l.e. eq. (C2), can be shown to take on this form (central

crack configuration):

. 40 _ 2[1 - z(Qtan Q + in cos Q)
(cn dz z2[Q sec2 Q - tan Q]

for a plane crack, and

2.3 : 2,1/2
£°q’/3 . dq 1-(1-9%) _ _ 2
a-a@p? att a1t a=FQ

(C18)

for a penny-shaped crack. Of course both the above equétions reduce to a

common form within the small scale yielding range, namely

2
4 _ 3 2-Q7¢
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(b) Criterion of Comstant COD at Instability (Morozov).

In 1969 Morozov [A?] proposed that the suberitical growth ought to be
controlled by the COD criterion‘rather than a constant specific fracture
energy concept. Since in the subcritical range the tip displacement camnot
be considered constant (in fact it is a monotonic function of the load
remaining in equilibrium with a crack of a given length), one would only
require that the final value of the tip displacement, attained at the terminal
instability point, should be a material coﬁétant. This iz exactly what
Morozov suggested. In order to ensure a constant COD at the end point of the
stable groﬁth, he modifies the fracturé energy Si in such a way that the
terminal instability is always reached in accordance with the COD criterion.
Thus Morozov's 1%; becomes a function of geometry and the current crack
length. Let us denote this functionrby f%f where the letter "R" stands
for "resistance". A similar concept was proposed in 1968 by Wnuk [A4] and [AS5].

The function 'fg.is evaluated from the following equation

a
L
5R(s_a)= 2Y { uGrl) o

‘ a
(C20) = 20 {u(L,0) + 55 S u(x,) ax)
| 2

Q= chit

The expression contained in the bracket becomes a function of £ only, since
Q is eliminated through the use of the COD criterion. (This latter criterion
is applied to evaluate chit first). The next step, éccording to Morozov, is

to apply the energy balance equation which reads simply

a
(c21) 2f Y 6u (x,Q(2),2) dx =§R(£) 88
2
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Note that his operator § implies an identical operation as the one indicated
in eq. (C2).
To summarize briefly Morozov's theory let us write down the essential

results. First, the function f%k(l)for a plane crack is found to be
, -1
@ G =9 - ew 2701 temp@/) cos! fexp(-1/0)] - 13

and for a penny-shaped crack (compare Wnuk [A4] and [5])it is

(c23) §R= ff;{-fﬁ_—f}

Note that both expressions reduce to just Irwin's-f§ for a sufficiently
c
long crack (z>>1). Combining the sbove formulae with Morozov's criterion

for crack extension (C21) gives

dQ _ 2{F(%)-z(QtanQ + fn cos Q)J
(C24) Vi 2[q secZq]

for a 2D crack, and

3/2 i
(C25) dq _ 3(1-q2) { 6(r) -c[1~(1—q2)l/21 (1-a2) 1/2}
drg qcz ’

2
q=-Q
for a penny-shaped crack. The geometry dependent functions F(z) and G(z)
are given by the expressions inside the brackets of (C22) and (C23), resﬁectively.
No rate effects are included in either of the above equations. When the

plasticity effects are neglegible (z>>1 or Q+0), one can show that both the

equations (C24) and {C25) reduce to a common form

(€26) —?1—9- T < ¢ W
4 2
teQ

This equation, surptisingly, has a closed form sclution which was net menticned

by Morozov, and it reads
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2.2
o]

. - 2
(€27 @) =T[4z -t + g, 0
Obvicusly, the initial condition.Q(co) = QO is included in the above expression.
Due to the simplicity of eq. (C27) we may directly compute the load and the
crack length at the terminal instability point. Equating dQ/d; to zero we

get

A (€28) Qurit = (2 Tepse

2
. o

crit = %o [2 — Ry/Ry] » Ry =‘% %o Q
where R, is the plastic zone size at the onset of slow propagation and R,
is the value of R at the fully developeﬁ steady-state growth. Formula (C28)
appears to have some experimental support, cf. Sullivan and Freed [46].

We may add that somewhat unexpectedly the governing equation (C26) may also

be derived directly from the classical Griffith energy balance equation

(C29) U = 4y88

if the operator & is applied iIn the following sense

aU dq

(C30) 68U = {go U+ 24

} 82
With U = ﬂ%z‘ngE, Q=7 &/2Y and Ry = ﬂKi/SYz, the energy balance equation
(C29) supplemented by (C30) reduces to eq. (026).‘
To conclude the section on Morozov's criterion of fracture, we add
. visco-elastic properties into his model. For this purpose consider the small

.scale yielding range only, and apply Wnuk's [9] result for the "effective”

strain energy due to a crack contained in a visco-elastic solid

o M
(C31) | Uyp = U ¥A/D)
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Here, the associated elastic strain energy u° is(l/Z)R*'fa chz, and the
c
function ¥ can be approximated by 1 + ’ (o ﬁ/é, while { is replaced by

R*Q(dQ/dc)—l. Then, the balance‘of energy criterion

(€32) ¥ (a/2) s = 2 ﬁcaz

becomes

4 dQ 2 2 dg, _
(€3 g g @t e gy =2

This is a non-linear differential equation defining dQ/dg in terms of Q
and L, 80 that the numerical integration by Runge-Kutta method presents no
problem, If we omi % » however, the terms centalning (dQ/d;)z, then the

above equation simplifies.to a form remarkably similar to eq. (C26), namely

do _ 2 - Q2
(034)‘ a% WEaF T

Here, the constant C, encompasses the following group of parameters

B A
CO - Q Rx

The ratio A/R, can be roughly approximated by the quotient Rb/R*’ where R,
denotes the threshold value of the plastic zone size. Obviously, with

C,=0, we recover the rate-insensitive equation (C26).

® The test run on IBM 360 shows no appreciable difference in the shape
of the integral curve resulting from the complete equation {C33) and the

simplified one (C34).
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(c) Final Stretch Criterion (Wnuk)

The criterion of fracture proposed in this work and in [B] requires
that the amount of deformation ﬁhich occurs within the process zone during
the time interval just prior to fracture is a material property. The
deformation invclved here is identified with the increment of displacement

AuP produced at the control peint P, within the time 6t = A/L. - Thus we have
(Cc3s) AuP = u(xP,t) - u(xP,t - &t) = R0 (4Y/nE)

where the right hand side contains the material constants only. If the
viscoelastic displacements are substituted into the above expression and
R 1z considered small vs. the crack size, the equation (C35) takes on the

form (compara eq. (B23)):

6 dR Rg =g (4Rr/A) + R(BR/3%) ca- (3R/3Q)™E
(C36) dz = A + RCA(3R/3Q)~1

Here C = B/Q , and B ( =%(0)) denotes the rate sensitivity. In order to adjust

the right hand side of (C35) to the boundary condition at R(E=£crit) =Ry,

we have made an additional assumption regarding Ro’ namely
(C36a) R = é-ﬂn(&R*/A)
o] 2

With this substitution and upon normalizing both R and % by the steady-state

value of the plastic zone sizeipq. (C35) becomes

(csny L. azn(l/p) + cQ(ap/&c)(ao/am 1
| dz T + Cp(8o/oQ)-1
p = R/R*s L= R'/P\k

To apply this equation for a certain crack configuration, one has to supplement
it with the function R(Q,%), which is known from the stress analysis of the
corresponding Dugdale crack prdblem.. Let us illustrate this point for the

simplest case of a central crack in an infinite plate under tension & .
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We have here

o
|

1

E 5?,(1TG'/2Y)2, or

(C38) 1 9 .

p = '2' CQ ] Q = ﬂG/ZY

Hence we find the derivatives required in (C37)
3 ]

(€39 5= 2T, 3= =/

and we have

dg 1+ celjg‘g*g":"

(C40) . do_ 2 gn (1/p) + coZ/cJZZS’:

as the governing equation of the probiem. It can be readily transformed into
the (Q,z) plane. With the use of (C38) we obtain

d _ gn (2/Q%) - @2

(C4L) dz Qz (2 + ¢qQ)

This is integrated numerically for a chosen set ofthe initial crack length
Lo and the initiation (or threshold) load Qo. The curves generated in this
way, for various rate-sensitivities C, are then compared with those which
resulted.from Cherepanov's and Morozov's hypotheses. The graphs are shown
~in Fig; A3. One may observe rather pronounced differences between the three
theories described here, especlally for the pérameter C approaching zero
(i.e. fast loading, br neglegible rate-sensitivity). For large C all three
curves seem to converge. In the limit of infinite C the graphs reduce to

a horizontal line, which corresponds to a '"creeping crack", described in

more detail in [9].
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D. "Resistance" Function or Apparent Surface Energy.

- A brittle solid fractures when the elastic energy release rate jf}
attains the critical level, say\fgg, which in turn is related to the material
toughness and the Young modulué ( 15; = Ki/E). The Griffith-Irwin criterion
for brittle fracture simply requires that the equality -ff':ﬁc holds .

This sinple view complicates a little when we try to describe fracture
in inelastic solids such as elastic-plastic, or viscoelastic-plastic materials.

There the criterion for fracture (equation of motion) reads *

(O1) - R{1+%g—gg%}w(ali)=R*-

This equation can be cast Into a form resembling closely the classical
' < 5 e s .
eriterion J= » if we apree to modify its right hand side. Note first
‘ ¢
that the expression (R/R*) lﬁc is identical with the elastic energy release

rate “él . Now we can re-write (D1) as follows

(02) Fir+s B Py b -G o

or, finally

o» G- Ix

where the new function ?R is defined by (D2) and (D3)

‘ _ 2_&3 di o =1
(D4) -911 = ﬁc H1+34 S ¥/}

*) To focus the attention we consider here only the results based on

Cherepanov's hypothesis, therefore eg. (D1) is identical with equation (C7).



29

The function 19£ will be referred to as the "resistance'" function, or as
the "apparent surface energy.'" For én ideally brittle SOIid”fE.E fi, but
otherwise it is a geometry-dependent and a rate-dependent entity. We believe
that an experiment designed to measure the fracture toughness will in fact
record the "apparent toughness'", related to :§R by the well-known formula
Ky = (B ﬁR)UZ.

To illustrate possible applications of the proposed equation (D4},
let us consider a central crack contained in a large sheet subjected to
a remotely applied tensien & . Let us consider first an elastic-plastic
solid. The length of the plastic zone is then R =(l/2)E‘Q2, where

Q = 1€ /2Y and the derivative dQ/d2 can be found from the eq. {(C16)

' 2
4Q _32-0Q7% -1 =7
(D3) = {2 __5325____} R, s L= L/R,

(the rate sensitivity is zero for an elastic-plastic solid while ¥ = l).

Inserting (D5) into (D4) gives the resistance function
G .G 120 -
(v6) R 'fi 7@ -t

where the function Q = Q(z) has to be determined by integratioﬁ of (D5).

The curvéshég.vs. L will depend on the initial crack length and the threshold
level of the loading parameter Q, as shown in .Fig. A4. A similar equation
for a crack opened by a pair of wedging forces is discussed in [A3]. For

this configuration the equation analogous to (D3) is

2. 2
Q _ -1 3n7y onr
(B7) I Ry 2 [ @ 1]

Q = tB/2YR, , R = (R*/2w2)Q2/c
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while an analogue of eq. (D6) is
(08) f’R = ﬁc Q%/2n2¢

To conclude this section let us take a look at a visco—elastic solid
described by a Voigt element (Ez,Tz) connected in series with a spring

El' If all plasticity effects are neglected, equation (D4) glves

— .
(D9) JR = i/?(&/z)

which for our model will read

: E . -1
({D10) 15R = f% {1+ E% [1 - exp (—A/ETZ)]}

This defines the rate dependence of the apparént €i, often measured in
experiments which involve a crack propagating through a visco-elastic medium.
The graph constructed according to (D10) is shown in Fig. ASa.

The above relaéion can be generalized for any visco-elastic solid; if
instead ofigR va. the propagation rate one plots :%R vs. the current crack
length, Then, for a central crack configuration, it may be shown that
Y(A/£)=(€ihiffith/ Gimplied)z (20/1). The resistance function is proportional
to the reciprccal of ¥(A/%), therefore

(D11) ﬁR = in(%;o)

where n 1s the square of the ratio of the applied stress to the short-time

Griffith stress. A graph resulting from (D11) is shown in Fig. ASb.



Part II. Dynamic Crack Represented by the Dugdale Model
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Dilatational wave speed

Shear wave speed

czlcl

Rayleigh wave speed
cS/cl

mass density

Shear Modulus

Poissons Ratio

Yield stress of material
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ATKINSON-BROBERG-DUGDALE MODEL

STATEMENT OF PROBLEM

A crack is expanding in an elastic solid under the in-
fluence of an applied tensile stress P at infinity. As shown
in Fig. 1 a thin region ahead of each crack tip is deformed
plastically, i.e., the stress in this region is assumed to
be equal to the.yield stress Y of the material. The length
of the crack at a given instant is 2a and the length of each
plastic zone is w = c-a. The crack tips are moving at a con-

stant velacity & and the ends of the plastic zones are moving

with velocity c¢. P
o pisiiian
e
& z%_ _131 ¢
S —=
forrrrr - mm >~ X
- wke—— 2a ———*-{ fe—
g 20 >
Wi
Fig. 1

The solution may be obtained by super-posing the problem of a
plate wjth‘no crack under uniform tensile stress P and a crack

expanding under the influence of pressure P over the portion
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of the crack surface defined by |x|<a and a pressure (P-Y)
over the surface a<|x|<c. Since the problem possesses sym-
metry with respect to the x-y plane an equivalent probiem
for the upper half-space which shall be denoted as Prob. A
may be formulated (see Fig. 2). Retaining consistency with
Atkinsons solution the formulation is for plane strain. The
plane stress solution differs only by a constant and will be-

obtained from the plane strain solution.
PROBLEM A

A pressure P is acting on the infinite strip |x]<at on
the surface z = 0 of a semi-infinite solid z>0. A pressure
(P-Y) is acting on the infinite strips at<|x|<ét of the sur-

0 is zero

face z = 0. The vertical displacement u, at z

for |x|>ct.

Find the normal stress at the surface z = 0 for [x|>ct

and the displacement u . for [x[<ct.

(A ERERT N S
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In order to solve Problem A, the following problem is first

solved (see Fig.3).

PROBLEM B

A pressure P is acting on the infinite strip |x|<at of

“the surface z = 0. A pressure g acts on the stripsat<|x|<ct
0 for |x|>ct.

whereas no pressure acts on the surface z

0.

Find the displacement u_ at the surface z

Z

I ~—"
6, =~
Gemg  G=-P 7%

Fig.3
In Fig.3, <, is the dilatational wave velocity.

SOLUTION TO PROBLEM B

The boundary conditions on z = 0 are

Q
]

-P 0<|x|<at

-q at<|x|<ct , - (1)

i

0 Ix|>ct
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For the problem where a pressure p* is applied to the strip
o<|x]iélt and no pressure is appiied for |x|>a t the boun-

dary conditions are

; = -P* 0<]x|iélt

Q
1}

(2)

0 Ix]>a t

and the foilowing expression has been obtained by Broberg
for azuz/ataon the surface z = 0 (see Brobergs eq.{(16) where
his symbols g, B, T are equivalent to p*, élfcl, and-c t in

this paper),

Ry _ 2" { d.e, RE[F(eﬂ‘)}

I

¢ | Zmitexl |y gttt X®
x?.
T 2 TealE (2 < _wm |
+ 7 a.IME:(E‘,_)]g(cl c:c)} (3)
where
F(Bz) = -l e — = 1 (4)
gz - 8%)% + 62/(1-02) (7 - 0%)

| An expression for azuzlat2 that corresponds to the boun-
dary conditions of eq.(1) may be obtained by superposing

_ three problems: positive pressure P acting on a strip ex-

| panding with velocity a, positive pressure q acting on a
strip expanding with velocity ¢, and negative'pressdre‘q
acting on a strip expanding with velocity a. This is shown

in Fig. 4.
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The result is
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SOLUTION TO PROBLEM A

"Now use the solution of problem B to set up an integral
equation solution to problem A. Firsiconsider an incremental
load on the half space defined by the following boundary con-

ditions (see Fig.5)

do, = 0 |x|<ct
= -q'(v)dv ct<|x]<vt (6)
= 0 vi<|x]|

Cé&wg L, {7)
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T%

e vt~

—¢1 —'-l

™
- 94;=.-cy(nf)&nr
Fig. §
Making use of eqs.{1) and (5), with appropriate change
in variables, the solution for azuz/at2 corresponding to the
boundary conditions of eq.(6) is:

i_a_zt_)% - (ﬂf) Any ru-c. ac, I: Q_;j'z':]
2t* ZTrk"’ec'-\x\ [ \-__1.’.'.1"' |- ;": Re F( x‘-)

x|
X -
+ ——Ll-ru- Imﬁ-‘ :i Cl-‘-) (8)
- X & T el Lo it
T Im IE:(-E‘-L):I i :, C..T)}
In order to satisfy the stress and displacement boundary"

conditions for Problem A, superpose stresses doz ocver the

range of eq.(7) together with the stresses

-P 0<|x|<at |
o, ={-q, &t<|x|<é§ (9)
0 ct<|x|
where g, = P-Y, on the surface z = 0 in such a manner that
0 .

3%u,/at? = 0 for |x|>ct.
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The superposed expression for 32uZ/at2 is obtained by

adding (3) with 9=q, and the integral over the range c<v<e
of eq.(8). Then

T —a, ' Tﬂ
o zwrf*ecl’“\xt{(lcj tTt)PE[F(C—F)”
(P-92) ey il
- el () )
_ ’REFF( %f)[ ‘Enrc\ e, '[

; ‘(n) ns
2ZoktecHx| |- t* Y at’ )
e xX* xT (10}
e, .
— \ (ﬂ‘_m)mnﬂ_- = 3) ‘) &
_— M (%) s
4kq€c'11b(l jcg ¢ ot/ T [ (M %( )
| ¢ z:0
Setting a“uZ/at2 = 0 for |x|>¢t and making the following
_transformation of variables,
2 2
f = =T, l? = s %—q'(v) = ¢(s) , (11)
c, t c) 1

‘we obtain, for ct<|x|<c

(¢/c,)2<r<l,

o= %{((““5) Re(FCA]) (- %)[TQ-LCL)RE[ i

e gRfFR] [ [ 25 - e, o e

\
N

, * or equivalently for

- | 2 (12)
+ 2 P Iml_F(’/J v G dr <
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or rearranging terms,

1 .
o In [E(e N o B r- SO N5 - §(r-
T Re D};('ia—g (- %,;a)@(v-) + l K*’ sf‘\-) : al 5)195

- 2¢ A
| r- %)

Tm[FOA 2 S~ & s
m(*’ i‘t,)@"(r) u %rf ¢(5]&-

5-r
%,
[ , ( (r' g';n.)
“_[— (S - é/cl) QS(S)BS - ZC‘.CEP + 2 P %a]o' a“i' )
T . g ‘ 'ﬂ'(‘.‘ r- /C-;‘ (]3)
. .
%; (vl

Eq.(13) is a singular integral equation which may be written

.
o) ) + L f b(s) Bis)

C '
= = (¥
® e e T g Her
._;1 (14}
where
™ K?
O 1 ?b’ Lrk .

_ Im[FORY . ety .
) = - = =
e = o [F L lf.-j( - &)

=K (- 9.“) Rr <
AR

3 .G“-Zk}) (15)
br) = v - St (16)
2 \l/’ ¢, ' ZI(WD q,)ol("' %L)
= A | S = /e L c
) = 2 TJT p1ds » 228 s (17)
C-'l- X .

Lo

- )
cr
s N o
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The solution of the integral equation (14) may be written

in the form (see page 331, Muskhe]iﬁhvi]]i,-Siggu]ar Integral

Equations )

| o |
I. G = g alr) _ exp{-w(r (st ‘:.%;.)exf(tg(s}) b(g)q(s)&s
: - T T y - F 2 o
AP+ bWy T(e- %ﬁv a(A) + 50 ‘%ES )/ @+ B
P cxp(-w(n) (18)

(v- %’;l/a‘[»-) + b

where L is an arbitrary constant and

] -

wlr) = f -(—_?é-r(s—)- ds (19)
(c?/c "

® (r) = ooy In(2frd ggg;g) - (20)

w{r) is calculated in Appendix I of Broberg and thus,

expl-w(r}] is written

( (‘“wz r(r:kﬁ )thr(kl
(r- &%2) (e-2x)' - 43 /0 -¥)(ry ~ @

(\-v) r(r-k;) : V€%<l
~ (v- &%) [(r-200F HiEkE (1-r)(r-1)

(21)

explo] =
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where k, 1s the ratio of the Rayleigh wave speed c. to the

dilational wave speed c -

Recalling from eq.(18) that g{r) is dependent on &{r),
it is seen that eq.(18) does not yet solve explicitly for
@(r). Thus, the next step is to consider the integral on

the right hand side of eq.(18). Denote this integral by J.

3 ! (s- ) explw(si] blsd gis) 4

J = ‘ .
ot (S-ﬂfa}(swbz(s) (22)
e - :

and rewrite g{r)} in the form

g(r) = B + A/[r-{a"/c*)] . (23)

where
s = 2(P-gglafa? - &%) ) (24)
ey _

- . l .

no 2. 4 2(P-gda __s_.fJ:_z ) ds

. T, ™e, ) s (25)
S

Then J may be rewritten.as

I
(s- Cep) explw(s)] bis) [ g(s)- 40 + g (] As
(s-v} [ai(s}+ b

3= g(r)1 (r) + [A/(32/¢2)-011 (42/¢?) . (26)
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where
| _
S Chn w(s)] bis
I(n = ( (4‘2exf[)+b’(§ 4 (27)
g, (s-r / a¥(s s
since . '
(s1-9.(¥ A N J: - ? -
L9 - AT~ b %) -4,

I.(r) and I, (d*/c*) may be calculated by contour inte-

gration as in Appendix 2 of Broberg the result being:

/W(M—r) > c%.?.(\“"-kl
T () =4 TR
‘ W[M-Q+'“4k3"(‘"'k:)('"")./(Y’kl)(r' ) Vvl (28)
(r-2) 416151~V (- kD)

- and

I (a2/c?) = n[M-(3%/c?)] - w[(d2/c?)-k2)T (29)
where | _

o e T

T T 3 = = '
(% - 2¢)" - 4k )(- ;) (30)
with M being a constant it is not necessary to evaluate.

Upon substitution of the values for I (r), Il(ézlcf)

into J(r) and then into eq.(18) the resulting expression for

p(r) is:
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po= (- Bl - Al o A =,
r(r-kd)  eleaQdi(r-82) (e (= a0) r(r-\)

( (FZF$*'4KVTPFKKLF7
JO=v) (- )

% 7
) Srlvck

_ A(M-";’c{)},‘
)

r(mxd) -2z (r-2%2) k*<v < |

SN I

(31)

Next, isolate coefficients of the term ll(r—kg) in eq.(31),

thus rewriting ¢(r) as:

SBM4A +TA+L +BK

BM-A-TA-L
— 4
26 { ks (- k) ke

(r-2k*) — 4K (\"*j(\*"‘-“‘ , 92.. Ly ks

TA } /(1-\’)(?‘*9%})3 ' '
elr- %) (-2 ;K|
JO-0 (-5
(32)

The first term on the right hand side of eq.(32)‘does not
- satisfy the displacement boundary conditions for the probiem

(see Broberg). Then in order that this term be zero, set

L = BM - BkZ - A - TA | (33)
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and, ¢(r) is then,

(h—?k - A3/ k) )%"1<H Y
} v/ (=R (- & C.‘) b

)] ey e
L v/ G- (- G

(34)

In order to evaluate the unknown constant B substitute

eq.(34) into eq.(25). The result of this substitution is

BZ, =(2q.&/c,) - [TA/(a%/c?)]1z, | (35)
where,
. C—:_ . L3 CJ. +4_k4 . - .

., = 2l il e e

2l -4 e (%) #Bk"]c.EgT—cz)

3(“' c'/‘:-l)

CR=Tae) + SEERITTRR) (g

and

: " ( C}l 2](1)1-
Zz.:: — R4 £y ~ K |~ €
(’_c( C,_-..O/.,_)(l_ /C:') ( )
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-4

j&t_ zk (l"' C/t f =)
/-:-: 3 H( %‘)) R g’C‘L )

2(9%)(
(1- %)

(% %%

N

z
4(/‘:1."' /c %‘l v

(37)

where K and E are complete elliptic integrals of the first

and second kind and where'Il is a complete elliptic integral

of the third kind. (see Byrd and Friedman, Handbook of Elliptic
Ilnfegrals}). A

STRESS ON SURFACE Z = 0

The expression for stress over the interval ct<|x|<vt
on the surface z = 0 may be found by integrating eq.(6) over
‘ the .
the range of eq.(7) and recallingptransformation of variables

in eq.{11). Thus,

e, S |
Cr;(x)-_———-f %’(m‘) A = — -lzlj -F—M As | (38)
. - Te . et

wh1ch upon subst1tut1on of eq. (34) reads,

o (x) = - (s%ﬂ&s _4,f Nés &s
z 2 . 8/s(i-5)(s-¢2.) 5,/5(5 e

C}F

) s(s-%‘%;.}ﬁ 5)(s- &3 5 S(S'C%.‘)/Sis Zs)
Sy ot (39)

;
v

At ctdkicet

|
—I—TA[ (5-213)" &s ‘H{[ Jit-s A&s J
2
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The objective next is to make the stress singularity at

|x{ = ¢t equal to zero. This is accomplished if

B = AT/[(¢/c )?- (é/cl)zj' . (40)

with the stress expression becoming,

|
. [T -2 s
o (x) = — Al [ & e
2% 2(c"~a:‘}.xl s(s-%%.)/s0-9) (s- )’

At

—4—[ /-5 ds } ,c’f(lx\«:‘q‘t'

s(s- 8%) s(s- ey
T " / ( ) . (41)

where it can be seen by inspection of the integrands in eq.(41)

that the integrals remain bounded when |x| = é&t.

DISPLACEMENTS

The region of non-zero displacement on the surface z = 0

is |x|<ct. For this range, eq.(10) reduces to,

. et |
_a__J:tj=_ -RE.[:F -1—] _%é'_cn_ + (P—-Cﬁ,)a’c_,
ot* 2rkte ¢fxl | - qt | - afft
x'l.
—}—j ToL . — LE———; ! (o) &:\r} £=0, o<1x1<c’f
| =0 i | - cx-"-J Cb

(42)
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The change of variables in equation (11) will again be

used. Thus, eq.{(42) is rewritten in the form,

Q.?'_U_; — -—RE[F(}FH[ Cﬁ,(‘:ciY‘ + (P'C?,o\ a:c'lr
(

D Zwlk®e cfixi P - C,"E:.) (‘,.-_V a:}’c.‘-)
o p ' (e
L v cze) r o<i< et
+ il § [____ — ] (s &5 1 ’(l C.
th = 7 (r- aX) @(s)
c/t )

- - 2 |
v &Wulunt%, ocr{ % (43)

Eq.(43 may be rewritten as

du,_ -rRe[FU] [ go o () (Pg)a
ot 2mk¥ei(r- Gl & (r-%2

| N .
__‘.f _Ci;ffg_)-¢(s)&g +.lz.f_:‘5_\l;cﬁ€n_¢(s)&s},
. S _
| ,

2] . 5-¥% z
c‘ .
/C;‘ Tk
. i
O(r(C/CL (44)

Further simplification‘is allowed through eq.(25) so that the

preceding expression becomes

Fo, _ vRe[FY] [ uB (2% (P-g) &
ot T zmklel (- 2 T @ (v-ak)

| » |
L[ (s~ %) | ' $:
_E_jz (s=+) ¢(S)&s} ! OQ-(S/&:.

“

T

(45)
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It remains to evaluate the integral on the righf hand
side of eq.(45). Making use of eq (34)
(s 2" As

(s-%) _
4 (5-— (5)&5 = B '1 S(S r)/] S) S“Cz/c?-

‘:l

oy (s*-2¥) &s
”AHCI Hs-%20 s(s- ﬂ} {f (s~ G’Ea‘)sﬁs'ﬂ/'iﬂ(g-%})
_'4_ kl 5) . }

< ‘/Y:; g(s- a/z)(s v) " (46)

The four 1ntegra1s in the preceding expression will be evalu-

ated by contour integration (seg for example p. 276 of Muskheli- .
villi)* Note that all the following are evaluated for the
range 0<r<(62/CT).

1
o (S-Zkgl&5 |
IV_V[Z S(S—Vykps)(s-q%$]h - . (4?)

%

The real integral I may be t-splane

written as the limit of a brameh out

contour integral in the t-plane.

- 'Q‘l.m_[_g (+-26)" At
21, L T(*\'f\-)‘/(t--;)(f- c:}/clq

X3

--2n{ 19~ G - G} 5 oer ¢Sy

I . (r-2k2)?
‘ - r/TT-r){e?/c?)-r]

* Muskhelishvilli, N. I., Some Basic Problems of tne Mathematical
- Theory of Elasticity
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dk*c
I - 1
6 (r) = - —
si(r) =1 W
Then,
b= {(hm — e o) (a8)
?ﬂ\ k}(%t \"") e
T, fJLk‘ $) o (49)
(s-¢ /ct s(; v) : | plene
po\e 1 branchh oot
- Rel4)
) oy AL -
21 = 1im & (k2-t)dt %, K
2 1 T t(t'r)v’(t-k?.j(t:cg/c%)
2
) -Zw{fn(r) 6 (r) - II(r)}
where,
fII(T') = ‘ﬂ__kz
r/{k2-r](E2/c? -~ r]
ke
11 3
61°(r) = - &
6il(r) = 0

Then,
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I = _KEE;rl__.l - Eii | (50)
2 * 2 2 r .
: Rc /cl)-ﬁ] cr

(st-2i)" &s

I, = (51)
? (ca/ca) (9-—0‘/51) s(s- ﬂ/(\ s)(s- e'/c‘*-)
pIn(p
: 'i'-— F\a‘ne.
poles o Tovamch cut
f/\ /"37<
o a' wl Re(®) -
_ e F (+~?.kl) At o
IJ(‘E 8%t - )t 1'—-01‘- <)
o Y
;-sz{? (v — d.“m e - G,,m}
where | |
fIiI(r) _ (\- )"
\" G;/cl.}/ \—Y‘)(E'/cm-\-)
GEII(r) = 4k*ci/a%cr
111, (% - 2"
G, (r) = — e -
[%,) {_T" a/cl'k)/(cfc‘t' %:.) (\"" %’cl\.)
6llitry = 0
Then,
T —T‘E‘{ (\"«-Zkt)t . e}
S TRy (T R
_ (%%k‘)t e - }
(e %%:) & /(- 26 (G- %) (52)
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I:j o ds ?
PR = S

L[ (1) ax
21, = . 1j

4 1'(-]--?-) (1’— %}W

=-2n { %0 - G - 6, -..Gf(r“} |

4-

Th( T-p!
y AWE
where, N B '

(=)
c (r- C}%'LV( k:v)( "—:;C_I_- k)

/ \ E‘, brach coT
G = Koo OT@—R‘E(H
: Qe l S ¥

£ =

/CI"- K
v (- %)
Ga (v= 2 at way Yek, - o2
. (&/c:.)(\-- /'c:-)/ K*- Q‘/{_‘s)(f/c;’" /C:')
joa
ORG
Hence,
(e-¥ I kep oy (k- ¥ez) ’
T = 1 T oA M b) ;
¥ (v (-9 2T &Y () (- %%
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Using the preceding expressions for I, I , I,, and I,

eq.(QE) reduces to;
'l S
j SEC%") @(S)&s =TB { (r'zkl)l—‘qu (‘*ﬂ(w'g -+ l}

v JO-) (S mr)

_ oA { (c-21d) = 413/0-9) (&)
(- ”‘}E})/("”C Ge-r)

(% - ze) = 4l - ) (K - %)
(@er) (r- 8 [- 85 w Zr)

S

(56)

and

o, . rRe{fl [ (8- ) (P-g (/e
2% ank‘*\xl( -\-] (\,-_, o‘.}c‘,_)

_ TR (r-ud - 430G
2 rj(\-\-‘; [C}c.’-' )

+vTA{ (et - 4G - kA
r(r- &) -V e - 1)

‘,_- * - 1. T
_ (- we] S o) }] 00§, (57)
(a'/c‘)(r" d'/cﬂ,/ﬁl /c‘-)(c'/ﬁ"-&/c )

But, recalling eq.(4),

NPT (e Mk &
QE[F(}/F)]_ (r_lk;_)t_ 4km } o< ¥l %} ) | (58)

and making use of eqs.(24) and (30), eq.(57) reduces to



Poi = =¥ {’Bv'ft _ TAk }

J+t - eixl (C‘ %" Y’) //Cr. ¥ .(T_ a;c:]\f%:t""

For the first integration note the following

2 _ R = _px* 2 o g Lr*
3t T or i v x] o
Hence

Q_U_z____ n { BAr _TA f Rr- |
T 2 oL T . .
kel (% 'P)”* (S %) (320 [

Seam %) (9-?)%}
Making use of egq. 212.9a of Integratafe1

g l
of 2“—1{2[ (/,_ /%7] (S-e)™
_TA Q‘J%l- -[S- & }

RN Y Ny =N
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T
\"(c/clt
(59)

{61)

(62)

Recai?ing the finiteness condition as expressed by eq.(40),

eq.(62) reducesto

- 4 it
Wy = =TA | % R
- c:‘l B at }rb - - ]
or Zﬁc, ( “cr /C'IL) 9/:1."?' + C)’;t" e
]
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Again writing the derivative in terms of r, a second

‘integration with respect to r leads to the result,

farl -3, ol
' cyﬁ'."v%tt Y PVC\"“r

irip—

u — _b(‘i TA {
-1 G:l C.-Z,
[ - -
/;E:f /éit- + /../C‘t . o

R ;ﬁ%{?ﬂ )
eet (%~ %)

z L » L
o -0 /& — .
+ _g_j QJ\’\ Y 9&1 ‘/C;L N 92. %i v O¢ r< 9/2:1_
a’ y-‘_ cl *9-} - 9"/9} - i
| YT s e CF
(64)
Y
In terms of x and t, the result of eq.(64) may be
written 7
U= STALE L | ot g | L/ERSE ot
zC[c"-—aﬂ""-a: TJC_L—G-'L +JC:;_1,-;_X1_
. oL ., A L_ v .
+ oK | XEZd &jet - xt i< ¢t
xJjet-ut - afe™Mt-xt (65)

Half of the cracks opening displacement, &, is found by

letting |x| = at. The result is

§.=2u(at t) =2 TAc i ((€)
J - . « .
T e (t-ah) & (66)
It should be noted that the expressions for displacement
make use of the finiteness condition, eq.(40). Then, by eqgs.
(35), (36), (37) and (40) the following relationship between

a, ¢, P and Y is obtained.



Ak 4

T e 3
B.IC L( c'/cl'l.-' aVCI

Ayt ¢

2o, X .
atet( Sk %)

1

Akt
. c:L _ a:‘l-
a ( 4‘1. /C.

r)H(

(% ~2) e

a™(1- ) S- %)

J BV - )
E(/1- )

.t
I_,C/'I. Z
c,k’

| = & He

55

S '%.‘k‘)

I, /%)

l—a;c:

(67)
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Fig. 2

(a)
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Fig. 2. Suberitical growth of a crack embedded in a viscoelastic solid.
Concentrated loads are applied directly to the crack surface.
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Fig. 3. Suberitical growth of a crack embedded in a viscoelastic solid
and driven by a remotely applied tensile stress.
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In Fig. 7b the initial crack size is constant

while the ratio p = {n/2)xcrack length/panel width
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Fig. 8. Applied load as = function of the Increment of crack length
generated during the slow growth stage which originated at
various initial flaw sizes. Rate sensitivity C and Iinitial
crack size/panel width ratio are comstant.
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FigAl.Initial slope of the R-curve vs, ductility parameter o(;
h{x) denotes the present solution, f(x) is Rice's sclution,
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Fig. A2. Front of an advancing crack and the associated yielded
(or crazed) zene. P is the control point.
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FIG.A4 SLOW GROWTH UNDER MONOTONICALLY INCREASING LOAD

(a) LOAD VS.CRACK LENGTH CURVES,
(b) APPARENT SURFACE ENERGY.
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FIG.A5 APPARENT SURFACE ENERGY (RESISTANCE) OF A
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