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ABSTRACT

The behavior of thin square perforated plates under
the action of uniform shear deformation is studied experi-
mentally and analytically using finite element analysis.
Elastic Shear buckling strength is established as a function
of the diameter of a round, centrally located hole in the
plate. Post buckling behavior and the behavior of perfor-
ated plates with various ring stiffeners are also studied
experimentally.
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1. INTRODUCTION

Thin plates occur in a wide variety of structures.
While a good deal of our early knowledge about the behavior
of thin plates has evolved from research directed to civil

engineering structures such as plate girders, new applica-
tions in aerospace structures and pressure vessels have ac-~
celerated research in recent years.

Whatever the application, plate elements often block
access to some other portion of the parent structure. Per-
forations are made in plates to allow permanent passage of
electrical, hydrauliec, or other conduilts, or simply to per-
mit easy access for painting or servicing. Where a reduc-
tion in strength 1is permissible, a hole might be placed in
a plate to reduce weight. This is common in aerospace
structures. In some cases, the reduction 1n the strength
of the plate can be offset by the presence of a stiffener.

Plate elements are often subJected to complex loading
conditions. To understand the behavior of perforated plates
under complex loads, we must first know something of their
behavior under more simple loading conditions. The behavior
of thin, square, perforated plates subjected to in-plane
shear 1s studied experimentally and analytically in this
report. The plates have clamped edges anéd centrally located,
circular perforations. An experimental study of stiffened
perforated plates 1s also presented here.

A key aspect in the behavior of any thin plate is its
buckling strength. Thin plates commonly become unstable
at stress levels far below the proportionail .imit of the
material. In some cases, the large transve "se deformations
assoclated with buckling can be tolerated an: only the ulti-
mate strength of *»e plate is of any practical consequence.
Elsewhere, aerodynamic or aesthetic considerations dictate
that buckling cannot be allowed.



Plate buckling strength is usually expressed in terms
of the critical stress, Oup OF Topne The critical stress is
the stress which, when applied uniformly along the edges of
the plate, produces instability. For an isotropic square plate of
thickness t, width b, elastic modulus E, and Poisson's ratio
v, this stress can be expressed as

o it =k T Et2
er?er 12(1-v2)b2 (1)

where k is known as the stability coefficient. Stability
coefficients for compression and shear buckling of plates
with various aspect ratios and edge conditions have been
calculated and can be found in Reference 1. For the case

of shear buckling of a square plate with clamped edges,

this coefficient has been determined by Budlansky and Connor
(Ref. 2) to be 14.71.

Perforated plates, however, present some analytical
problems. The case of the square perforated plate under
edge compression has been studled quite extensively since
1947. The most important works in this period are those of
Levy, et al. (Ref. 3), Schlacr .Ref. 4 and 5), Kawal and
Ohtsubo (Ref. 6), and Vann and Vos (Ref. 7). The analytical
methods used in these papers range fromn energy methods and
numerlical integration in the report of Levy, et al. to
finite element analysis as used by Vann and Vos.

The above work excluded consideration of shear buckling.
Infinitely long shear webs have received some attention, but
their relevance to the square plate is minimal and they will
not be discussed 1n this report. The first serlious attempt
at predicting the critical shear stress of square perforated
plates was made by Kroll (Ref. 8) in 1949. Using Timoshenko's
energy method, which calls for the evaluation of two double surface
integrals, Kroll obtained theoretical buckling coefficients for
simply supported square plates with circular holes having
diame%ters (d) equal to 1/8 and 1/4 the length of a side.



Numerical integration was used, and 22 points were
needed in each octant to reduce the error for the known
unpierced case to less than 5%. Analysis of the perforated
plates indicated that the smaller hole reduced the coef-
ficient by only 0.2%, while the larger hole causel a 22.6%
reduction in the coefficient. Hole reinforcements were
also analyzed and were found to increase the coefficient
by as much as 334% over that for an unreinforced hole.

In 1967, Rockey, Anderson, and Cheung (Ref. 9) solved
the same problem using finite element analysis. With an
idealization containing 56 triangular elements in the ana-
lyzed quadrant, the solution for the unperforated case dif-
fered from classical theory by 9.7%. Solutions for the per-
forated cases differed markedly from those obtained by Kroll.

Four hole sizes were analyzed with simply supported and
clamped edges. For the simply supported plate with a hole
diameter to plate width ratio d/b = 0.125, Rockey, et al.
found a reduction in the buckling coefficient of about 15%,
whereas Kroll reported only a 0.2% reduction. The two papers
were in somewhat better agreement with respect to perforated
plates with a hole diameter to plate width ratio d4/b = 0.250,
for which Rockey, et al. observed a 28% reduction in the buck-
ling coefficient, compared to Kroll's 22.6%.

Rockey, et al, investigated hole reinforcements, like
Kroll, and found them extremely effective in canceling losses
in buckling strength due to perforations. An experimental
program was conducted and agreement with their analysis was
good for the smaller diameter holes. Agreement was not as
good for the larger holes.

Both Kroll and Rockey, et al, studied uniform applied
shear stress rather than the case encountered in testing,
that of uniform shear deformation. This was most graphical-
ly apparent in the investigation of Rockey, et al., wherein
uniform stress was analyzed and uniform deformation tested.
While this distinction has 1little effect on the classical



case of the unperforated plate, it has definite consequences
when a hole is introduced. As the diameter of the hole in-
creases, the stiffness of the plate continues to change along
the edge and the two cases become more dissimilar.

This distinction was observed for the perforated plate
in compression by Schlack in 1964. It was taken into ac-
count in his analysis, which used the Rayleigh-Ritz energy
method, and was borne out by his testing.

The study ieported here is restricted to perforated
plates subjected to uniform shear deformation. The cholce
of test specimen geometries and the experimental program
are described in Section 2. An analytical approach to
elastlc stability of unstiffened perforated plates is pre-
sented in Section 3, along with a summary of computed re-
sults. The experimental results for both unstiffened and
stiffened plates ar2 ziven in Section 4 and comparisons
between analysis and test results are made. The final sec-
tion of the report contains the concluding remarks.

2. TEST SPECIMENS AND EXPERIMENTAL PROGRAM
Specimen Size and Materials:

The experimental program was conc .cted on 10" square
aluminum plates with a thickness of 0.063". The 10" size
was chosen for convenlence. It was felt that plates of
this size would ke large enough for careful observation and
instrumentation, and yet not *oo large to test in a standard
testing machine. Larger plates would alsc have necessitated
a2 larger and more costly test fixture.

The materlal and thickness of the plates were chosen
to ensure elastic buckling. Since very thin plates would
be difficult to handle and would probably have initlal im-
perfections of more significance than thicker plates, the
latter were considered more desirable than the former.
Since buckling stress 1is proportional to the square of the



plate thickness and to the elastic modulus, thicker plates
could only be used with lower modulus materials. Thus,
aluminum, with an elastic modulus approximately one third
that of steel, was chosen.

Using Eq. 1, 1t was found that aluminum plates with a
thickness of 0.063" and a side length of 10" would have a
critical stress of 5.4 ksi. This 1s well below the yield
stress and proportional limit of most of the common struc-
tural aluminum alloys.

The specific alloy chosen was 6061-T6, which has a
relatively high yield point, an extensive linear post-yield
region in its stress-strain curve, and a relatively small
difference between its yleld stress and ultimate strength.
Hence, 1t approaches the elastic-plastic properties of
structural steel and was chosen on that basis.

Six tensile coupons were tested to evaluate the signifi-
cant mechanical properties of the material. The properties
of interest are the initial modulus of elasticity E, Poisson's
ratio v, the proportional limit op, the yleld stress oy, and
the ultimate strength o, The proportional 1limit was taken
as the point at which tenslle strain first deviated from
linearity by 0.0001 and the 0.2% offset approach was used to
define the yileld point. The above properties, which did not
vary significantly with the direction in which the material
was rolled, were E = 10.2 x 106 p.s.i., v = 0.3, op = 34,000
p.s.i., oy = 30,000 p.s.1i. and g, = 45,000 p.s.1i.

Three groups of speclmens were tested. The flrst group
were simply unperforated plates, (Figure 1, d = 0), used to
establish "benchmark" values for the buckling loads. The
second group of specimens was used to study the influence of
unstiffened hole size on shear buckling capaclity. Central
holes with diameters (d) of 2, 4, and 6 in. were cut in these
specimens, giving perforated plates with d/b ratios of 0.2,
0.4, and 0.6.



The third group of specimens (Fig. 2) consisted of
perforated plates with stiffening material added around the
perforations for the purpose of increasing the buckling load
up to or beyond the buckling load of the unperforated plates.
Five stiffened plates with four-inch holes were test~d. All
five stiffeners were flat rings made of ii:e same material as
the basic plates.

Choice of Stiffeners

There are several rules encountered in practice which
can be used to determine the size of the requjiied stiffener.
One such rule is to replace the cross seccional area of the
hole with a stiffener of equal cross section. This notion
would have a theoretical foundation if buckling were entirely
an axial phenomenon, but since the flexural rigidity of the
plate dictates the buckling load, this rule lacks proper
theoretical justification.

Two approaches to the equal cross section rule were
tested. Stiffener 1 was a 2" wide circular ring fastened
to one side of the plate only, whlle stiffener 2 consisted
of 1" wide circular rings fastened on both sides. 3tiffener
1 used 20% more material than stiffener 2.

Another common criterion is to replace the volume of
material removed by the hole with a stiffener of equal
volume. Thls rule has no more theoretical justification
than the first, but 1t does result in a plate made of the
same amcunt of material as the unperforated plate.

Three different equal volume stiffeners were tested.
Since all stiffeners were fabricated from material of the
same thickness as the test plaves, equal volume was equiv-
alent to equal surfac. area. Stiffener 3 was a simple
circular ring, similar to stiffener 1 but only 0.828" wide.
Stiffeners 4 an? 5 were fabricated from 5.012" squares to
form square outer and circular inner boundaries.



Stiffener U4 was oriented with its edges parallel to
those of the test plate, while stiffener 5 was oriented at
45 degrees. Since shear 1s not a radilal phenomenon, there
1s no reason to believe that a circular ring is the most
efficient use of available material. Moreover, square
stiffeners are easier to fabricate than circular ones.

The reinforcing rings were .ctached to the plates with
epoxy (Epcn 907, produced by the Miller-Stephenson Chemical
Company). In order to keep the thickness of the epoxy as
uniform as possible, thin steel fibers (0.002" dia.) were
placed between plate and stiffener at clamring points.

In each specimen, the epoxy was strong enough to hold
the ring to the plate beyond the buckling load. However,
the epoxy always failed in a brittle fashion shortly there-
after, making it impossible to evaluate ultimate loads.

Loading Apparatus and Test Procedures:

The fixture used for testing the plates was designed
to simulate the action «f uniform shear deformation for
plates with clamped edges. Such 1deal behavior required
the somewhat comple fixture shown in Fig. 3. Specifically,
the external edge members had to form a mechanlism with
hinge. located at the four corners of the plate to allow
the plate to distort from a square shape to a diamond shape
as shezar load was applied.

The desired loading and edge restraint was accomplished
by using a frame that consisted of tw> separate pairs of
frames. An exploded vliew of the system is shown in Figure
4, including a typlcal test specimen. The test specimen
had a2 3 in. wide strip along each edge to enable bolting of the
specimen to the frame. The coirners of the :esulting 16 in.
square plate were zu* out, as shown 1in Fisure 5, to elimilnate
any extraneous stresses that might arise from distortion
of the areas »utside the basic 10 in. dimension ¢ the plate
as shearing 'itortions were introduced in the specimen.



The inner palr of frames were intended to force the
specimen edges to displace linearly. They were made of
3" x 3/4" steel, formed the 10" square boundary of the
test plates and provided the clamp2d edges over a 3" strip
around the perimeter of the plates. Attachment of the plates
was made by a total of 52 1/2" diameter bolts arranged in
two rows. The holes for these bolts had to be located with
extreme accuracy to assure proper fit between the fixture
and the specimens. Moreover, the bolts had to fit into the
holes with a minimum of play so that the plate could bear on
the bolts in the event that frictional forces were not suf-
ficient to transfer load into the plate. It was expected
that possible slippage at the frame-plate interface would
not happen until after the plate had buckled.

The outer pair of frames, made of 2-1/2" x 1/2" steel,
were conn2cted to the inner pair through the central row of
bolts. It was the outer pair that contained the corner
pivots in the form of 1" diameter hardened steel pins. These
pins also provided the diagonal load polnts.

The test set-up was assembled vertically in a deforma-
tion controlled testing machine capable of exerting a tension
load up to 30,000 pounds.

The fittings on elther end of the fixture were each
fabricated from three separate pieces of stz2el so that they
could easily be moved and assembled. With Jjust one side of
the fixture (inner and outer frames) assembled, the test-
ing machine could be adjusted until the 52 connecting holes
in the fixture and specimen lined up. The machline was kept
in this position while assembly of the fixture was comy =ted.
There were no forces on the plate at this point and no
further computatlions were necessary to determine the point
of zero load.

The test specimens were instrumented with 1" gage
length strain gages placed at points of local strain maxima
to monitor in-plane behavior and check for local yielding.



In certain cases, strain gages were placed back-to-back on
opposite faces of the test plates to ald in the detection
of buckling. The points of maximum expected strain were
determined from the computer analysis.

Dial gages were used to measure out-of-plane deflections.
These gages were placed at locations of maximum transverse
deflection, which were determined from the eigenvector ob-
tained from the computer program. Strain and deflection
gage readings were taken at small increments of tensile load.
At each increment, the load was permitted to stabilize be-
fore the readings were taken. The results obtained and
their interpretation in terms of buckling loads will be de-
scribed in Section 4.

3. ANALYSIS

Formulation Basis

The analyses for initial buckling of the unperforated-
and perforated-unstiffened plates were performed with use of
a finite element computer program whose theoretlical baslis 1s
described in References 11 and 12. We briefly outline in
the following the key features of this theory and those fac-~
tors which are relevant to the subject analyses.

The finite element used in this work is a triangular
thin shell element, portrayed in Figure 6. The flat form of
the element of course applies in the present work. The
relationships for this element are constructed in the stiff-
ness matrix format on the basis of a generalized potential
energy approach. In accordance with this app»ocach, an ele-
ment stiffness matrix is first formed using rather simple
dicsplacement functions. These violate conditions of inter-
element continulty of displacement when the element 1is
Joined to others of the same type. The continuity is "restored"
by wrlting equations which stipulate the required continuity
on each of the element boundaries. Such equations are con-
straint equations which are incorporated into the global
analysis by means of the Lagrange multiplier method.
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In this work the u, v and w displacement fields of
the triangular element are chosen in tne form of complete
cublic polynomials. The vertex node points each have 9
degrees-of-freedom (the translational displacement and the
first derivatives with respect to the normal coordinate,
for each of the three translational displacement components),
and a centroidal coordinate with the values of the three
translational displacements as degrees-of-freedom. This
formulation lacks Interelement continuity of normal angular
displacement across the element boundaries. This continuity
is restored by writing a constraint equation which requires
that the angular displacements at the midpoints of the sides
of adjacent elements be equal.

The formulation for linear elastic instabillty analysis
involves the formation of a linear stiffness matrix [K], and
a "first-order" geometric stiffness matrix [N1]' The geomet-
tric stiffness matrix is a function of the applied loads and
is calculated on the basis of a reference value of such loads.
The intensity of the applied loads to cause instability is
A times the reference value so that the value of the geometric
stiffness matrix at buckling equals A[Nll. The condition for
instability is that the determinant of the matrix [K] + A [N1]
equal zero, i.e.

[ K1 + 2 INjJ| = 0 (2)

The computer program developed to imr ement the present
element formulation seeks a zero determinant iteratively.
Analysis is first performed for X = 0 in order to establish
a basis for computing [Nl], using a reference value of the
applied loads. A is then set equal to 1.0 and the deter-
minant is evaluated. These two polints on the A vs. deter-
minant plot are sufficient toc start a Lagrangian Interpolation
scheme for predicting a zero determinant. Thus linear inter-
polation is used first, followed by parabolic interpolation
wher. three points are avallable, and so on until convergence
is reached.
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The curve of load versus determinant is convex, which
is unusual in buckling phenomena. In a compressive buckling
problem, the curve would be concave. The difference is that
in the case of shear, the direction of the load is of no
consequence, while if a compressive load were changed to
tension, buckling would never take place. For shear buckling,
the determinant iteration curve must be symmetric about the
vertical axis and, hence, must be convex.
Finite Element Idealization

The inherent symmetry of the problem, illustrated
in Figure 1. simplifies the analysis somewhat. With the axes
oriented along the diagonals as shown, each quadrant is iden-
tical and only one need be analyzed. Care must be taken in
the imposition of the proper boundary conditions along these
axes. Along the x axis, for example, symmetry dictates that v

and gg must both be zero. Since v is zero along the entire
length of the axis, %% must also be zero. Finally, there can

be no shear along the x axis. Since
) u
Txy = a—x + 3y (3)
and %% has already been determined to equal zero, ﬁ%
also be zero. Four similar boundary conditions along the y

must

axis can be determined.

An 1dealization using thres intermediate radial lines
dividing the plate a2dge into four equal lengths was used to
simplify the introcduction of various hole sizes. This is
shown in Figure 8 for the four analytical models of this study,
the unperforated plate and plates with three different hole
diameters. In this way, the diameter could be changed from
0 to 0.6b by merely scaling coordinates and without changing
the basic style of the grid.

The analysis was limited to holes no larger than 0.6b,
in consequence of limits on the geometric form of individual
finite elements. As triangular finite elements become elon-
g .=d, their solution accuracy tends to deteriorate. For a
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simple constant stress element, this effect becomes notice-
able when the aspect ratio nears three but with the more
sophisticated element used in this analysis this effect should
not produce significant errors until the aspect ratio reaches
five or six. The highest aspect ratio used in the present
analysis was less than five. If a larger diameter hole were
introduced, this difficulty would have to be dealt with and
the basic style of the analysis grid would have to be changed.

Uniform shear deformation was applied as prescribed u
and v displacements at each of the five edge nodes. This
represents a departure from the case of uniform shear stress,
wherein x and y forces would be applied to these five nodes.
Some insight into the source of the prescribed displacements
can be gained by referring to Figure 7, which shows that the
edge "slides" along the axes, remaining straight, and without
changing length.

For small deformations, the displacement of each point
has the same component along the edge. Hence, 1-1' is equal
to 5-5' und the u and v displacements of each point conform
to the ratios listed below.

u; = -1.0 v, = 0.0
u, = -0.75 v, = 0.25
uz = -0.50 vy = 0.50
uy = -0.25 vy = 0.75
ug = 0.0 VS = 1.0

T ¢ nature of the elgenvalue iteration used in the computer
program insures that these ratlos do not change. Simulation

cf ciamped supports along this edge was accomplished by sup-

pression of w, %g, and o at each of the five nodes.

3y
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Convergence Study for Unperforated Plate

The first objective in the analysis was to determine the
convergence properties of the solution. As in any finite ele-
ment analysis problem, it is essential to establish that the
results were converging to the correct rolution as the grid
was refined, and that the chosen grid refinement ylields a
sufficiently accurate answer.

The unperforated plate was used for this purpose. For
an unperforated plate, uniform shear stress causes uniform
shear deformation. Therefore, the two cases are identical,
and the buckling load can be computed using Eq. 1.

Finite element solutions were obtained using gridworks
of 12, 20, and 36-elements, respectively. The 12 and 20
element meshes are shown as Figures 9a and 9b, respectively.
The 36 element mesh appeared as Figure 8a. The classical
"exact" solution, from Ref. 1, is Top = 4,800 1b. The cal-
culated results are T, = 5,226 1b., 5,114 1b., and 4,954 1b.,
from the gridworks at Figs. 9a, 9b, and 8a, respectively.
The results, shown graphically in Figure 10, demonstrate that
the numerical solutions are indeed converging to the classical
solution. The 36 element mesh produces an answer which is
only 3.2% high.

Ferforat=d Plate Sclutions

With sufficient convergence establisha2d, the buckling
loads for the perforated plates could now be determined.
The primary goal of Chese analyses was to establish the
relationship between the buckling load and the hole diameter.
To discuss these results, we must examine the manner of
definition of =ritical loading.

In the case of applied uniform shear stress, it is per-
fectly reasonable to think in terms of critical shear stresses
and buckling coefficients. There is a distinct value of
shear stress which, when appllied uniformly around the per-
imeter of the plate, causes instability.
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When the plate is under the action of uniform shear de-
formation, shown in Figure 7, this is no longer the case.
The shear stresses imposed by this deformation can be

quite nonuniform. Moreover, they can be accompanied by
direct stresses of the same order of magnitude. The crit-
ical stress concept is inappropriate under these conditions.

The critical displacement of one of the corners, or
the critical rotation of an edge could accurately define
the point of buckling, but nelther of these values is of
much interest to the design engineer. He 1is primarily
concerned with the load which can be applied before the
plate buckles. For this reason, the shear buckling strength
will henceforth be expressed iIn terms of the critical diag-
onal tension force, Tcr. This will be defined as the total
force which, when applied across elither diagonal of a square
plate which is constrained to uniform shear deformation,
causes elastic instability.

The relationship between buckling strength and hole
diameter is shown in Fig. 11. This curve, particularly in
the region of small diameters, 1s approximately parallel
to and in fairly close agreement with the findings of Rockey,
et. al. (Ref. 9), for uniform shear stress which are also shown
in Figure 11. Although the percentage dlscrepancy of the
two solutions grows with d/b ratio, the absolute difference
between them remains essentially constant. In assessing
this error, it must be recognized that different types of
elements and grldwork refinements are used in the two ap-
proaches and the associated finite element discretization
error is likely to be on the order of the indicated dis-
crepancy. Differences in the imposed boundary connitions
might also play a role.

The properties of Filg. 11 can be given an intuitive
interpretation. A small hole would not be expected to
greatly reduce the flexural stiffness of the plate, but
would rather increase the stresses by the factor (1 -d/b).
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This 1s precisely what is observed. As the diameter in-
creases, the reduction in plate stiffness becomes more
significant, causing the curve to become concave.

The buckling load does not give all the pertinent
data about the behavior of perforated plates. Also of
interest 1s the in-plane stiffness, which can be thought
of as the diagonal tension force per diagonal extension.
Figure 12 shows that the prebuckling stiffness, defined
as the ratic of the diagonal force T and the corresponding
corner point displacement u, does not change much when a
small hole is introduced, but decreases rapidly with in-
creasing hole dlameter. Hence, there is an inherent trade-
off involved in using plates with large perforations. Al-
though the loss in buckling strength is less than propor-
tional to the d/b ratio, the increased flexibility might
make such a plate undesirable.

Further insight into the behavior of perforated plates
can be galned through the examination of the buckling modes.
The normal displacement contours for the four cases are
shown in Figure 13. The oval nature of the buckling contours
is readily verified by intuition. The region of negative
deformation is, however, a blit more interesting. The fact
that the area of negative deformation decreases in size as
the hole diameter increases offers a clue to the region's
behavior. It 1s a consequence of diagonal compression alonfg
the horizontal axls, which also decreases with increasing
hole size. The unperforated plate deforms into three half-
waves along the horizontal dliagonal. When a hole is intro-~
duced, the interior edges are permitted to approach each
other on the horizontal diagonal, reducing the buckling
effect along the axis.

4, RESULTS AND ANALYSIS-TEST COMPARISONS

The test results on the perforated, unstiffened plates
are presented in this section and compared with analytical
values. This material 1s followed with a summary of the
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experimental results for the stiffened perforated plates;
no analytical results are avallable for the latter.

Perforated, Unstiffened Plates:

Buckling is a gradual process due to initial imperfec-
tions. These initlal imperfections were more pronounced and
the buckling loads more difficult to pinpoint in the plates
with the larger holes. In all cases, buckling could be de-
tected through the strain gage readings long before it could
be discerned visually. Typical plots of load against trans-
verse deflection are shown for the four plate configurations
in Figure 14. These plots indicate the gradual nature of
buckling in each case.

The problem of buckling point definition has been en-
countered before and various criteria have been established.
For example, Rockey, et al. (9), defined tr buckling load
as the intersection of the projections of the straight por-
tions of the load vs. lateral deflection plot. This method
has little justification but does produce an answer which is
near the center of the transition range. Figure 15a, a load
vs. lateral deflectlion plot for the unperforated plate, shows
that this criterion would indicate that the buckling load for
this plate was 5,200 pounds.

Another criterion defines the buckling load as the in-
flection point on the load vs. lateral deflection curve.
(See Fig. 15b). This point does have physical meaning. It
is the point of minimum plate rigidity in that the curve has
a steeper slope on elther side of it. Buckling points de-
fined in this way are on the upper end of the transition
range. Figure 15b shows that the buckling load for the un-
perforated plate is 5,400 pounds when this criterion is used.

Strain gage data can also be used to define the buckling
load. When two strain gages are placed back-to-back on op-
posite faces of a plate in a region where buckling produces
curvature, the gages indicate qqual strains untll the curva-
ture appears. The strain reversal criterion defines the
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buckling load as the point at which the strains read from

one of the gages change direction. Figure 15c¢, which repre-
sents strain gage data from the unperforated plate, lndlcates
that this method would define the buckling load as 5,100
pounds. One difficulty met with the strain reversal c¢riterion,
is placement of strain gages. They should be placed gt the
point of initiation of buckling-induced curvature, but this
point 1s not always known in advance.

Hence, the buckling load for the unperforated plate could
be called 5,400, 5,200, or 5,100 pounds, depending on which
criterion was used to define it. Although the inflection
point method does not give the best answer for thls case in
terms of agreement with theory, 1t does have physical signif-
icance and always glves a well-defined point at the top of
the transition region. For these reasons, the inflection
point method is used to define the buckling point in this
report.

The experimental versus analytical buckling loads for
the four unstiffened plates were 5,400 1b. vs. 4,954 1b. for
d/b = 0, 4,100 1b. vs. 3,940 1b. for d/b - 0.2, 2,700 1b.
vs. 3,014 1b. for d/b - 0.4, and 2,200 1b. vs. 2,482 ib. for
d/b = 0.6. PFigure 16 shows this information graphically. 1In
view of the difficultles encountered in defining experimental
buckling loads, the results are in good agreement. The max-
imum deviation 1s about 10%.

The strains encountered prilor to buckling do not agree
quite as well with analysis. Table 1 compares strains from
a selected gage in each test with the corresponding strain
from the computer analysis. In each case, the comparison is
made for a centrally located gage at about one half the
buckling load of the plate. The maximum deviation in this
comparison is 30%. This larger deviation than in other solution
parameters (e.g. the critical structure) may be due to the
presence of combined bending-flexure and the finite size of
the gage, among other experimental effects. Also, in flnite
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element analysis with the displacement method, the strains
are expected to be less accurate than the displacements, since
they are given by the derivatives of the displacements.

Buckling was the phenomenon of primary interest through-
out the testing program. However, post buckling behavior
was also of interest, and each plate was tested to failure.
Figure 17 shows, sequentially, the behavior of the plate
with a six inch hole through the onset of buckling to ulti-
mate load and failure. The vertical ridge which can be seen
at the end of the sequence was typical for the perforated
plates.

Figure 18 shows each test plate after being tested to
its ultimate strength. Each perforated plate exhibited yield-
ing in the direction of loading on either side of the hole.
Eventually, the load decreased and fracture occurred at the
same location. The unperforated plate yielded in bearing
around the connecting bolts. Since thls was an edge failure,
it is difficult to draw conclusions on th2 ultimate strength
of the unperforated plate.

Each perforated plate exhibited an ultimate strength
equal to about four times its buckling capacity. The var-
iation of ultimate strength with d/b ratio is shown in Figure
16.

In studies dealing with perforated plates under uniform
shear stress, the relationship has been given as a plot of
the buckling coefficient, k, against the d/b ratio. 1In this
way, the results have been non-dimensionalized. In the
present study, stresses are not constant and the buckling
coefficient 1s not meaningful for reasons previously dis-
cussed. The fcllowing parameter has therefore been defined:

T _(1-v2)b
N = ST
Et3
This dimensionless parameter 1s equivalent to k/?n2/12 for
the case of the unperforated plate.
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The analytical results are plotted in this form in
Figure 19. Also shown are the experimental results and the
classical solution for the unperforated plate. In this
figure, the measured thickness of each plate and the observed
mechanical properties of the material were used in calcula-
ting each experimental point.

Using Flgure 19, it is possible to evaluate the relative
efficliencies of perforated and unperforated plates. It must
be remembered that the introduction of a hole into a plate
reduces both the buckling strength and the amount of material
used. Consider, for example, a 100" square steel shear panel
which must carry a diagonal tension load of 100,000 pounds.
For an unperforated plate (d/b=0), the required thickness
would be 0.257" and 2,570 cubic inches of material.

Lf the same shear panel were fabricated with a 50"
diameter hole, d/b=0.5 and N = 9.4. Hence, the required
thickness would be 0.318" and 2,560 cubic inches of material
would be needed. This represents a slight saving over the
unperforated plate. Thlis 1is not a significant saving, al-
though perforated plates would appear more efficient at
smaller b/t ratios. However, other factors, such as stiff-
ness, must be considered in the compariscen. The in-plane
stiffness of the perforated plate in the example would be
much lower than that of the unperforated plate. Figure 12
indicates that the introduction of such a perforation would
lower the stiffness by about U40% if it were not accompanied
by a corresponding increase in thickness. Since the thick-
ness increased by only 24% when the hole was introduced, the
reduction in stiffness would be quite significant.

A similar reduction in the ultimate strength of the
plate would be expected. rigure 16 indicates that the reduc-
tion in ultimate strength would be even greater than the
reduction in stiffness, but exact evaluation of this reduc-
tion 1s not possible because of the edge failure encountered
when testing the unperforated plate.
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Moreover, initial imperfections are likely to be more
serious in perforated plates. While diagonal tension tends
to ell. inate imperfections along the loaded diagcnal of un-
perforated plates, this effect is not present in perforated
plates, and perforated plates would also be more likely to
have large Imperfections in the first place. Although initial
imperfections do not change the bucklirg load, they have
severe effects on the plate behavior prior to buckling, caus-
ing large out-of-plane deformations.

Stiffened Perforated Plates

We consider now the experimental results for t : tif-
fened perforated plates, (Figure 2), for which no analysis
results are avallable. Figure 20 gives the load vs. lateral
deflection (Glat) of the unstiffened plate to those of the
same plate reinforced with stiffeners 1 and 2. Lateral de-
flectlons were measured at the expected polint of maximum
displacement. From this figure, it can be seen that both
reinforcing schemes were quite effective in increasing the
buckling loads of the perforated plates.

Evaluation of the buckling load for stiffener 2 was
difficult. but no more so than it had been for the unstif-
fensd plates. Due to the eccentricity produced by attaching
. stiffener to only one side of the plate, however, the plate
using stiffener 1 buckled quite gradually and determination of
the inflection point involved a great deal of judgment. It
must be noted that evaluation of the buckling loads for this
and all other eccentrically stiffened plates carry with them
an inherent judgment or uncertainty factor on the order of
15%.

Despite these difficultlies, the inflection points were
iocated and the buckling loads evaluated. It was found that
stiffeners 1 an1 2 increased the buckling loads by 237% and
318%, respectively, over the same perforated plate with no
stiffener.
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Figure 21 shows the load vs. lateral deflection curves
for stiffeners 3, 4, and 5, along with a similar plot for
che unstiffened plate. As this figure .ndicates, the snape
and orientation of the stiffener made little difference in
behavior. Each stiffened plate exhibited the same gradual
buckling that was seen in the plate using stiffener 1.
Each increased the buckling load by about 60% so that eazh
stiffened plate had a buckling lcad approximately egual to
that of an unperforated plate. Table 2 lists the inflection
point buckling loads for all five stiffened plates as well as
the buckling strengths of unstiffened plates with and without
the 4" diameter hole.

Although the numbers found in this table indicate that
the clircular ring 1s the most efficient equal volume stif-
fensr, the differences are too small to draw final conzlu-
sions. Indeed, if either strain reversal or the method of
Ref. 9 had been used to define the buckling point, stiffener
5 would have appeared to be the most efficient, followed by
stiffeners 3 and U4, respectively.

5. CONCLUDING REMARKS

The behavior of thin, square. perforated plates under
the action of uniform shear deformation has been studied
analytically and experimentally. The relatinnship between
the elastic buckling strength and the diameter of a round,
centrally located hole has been established using finite ele-
ment analysis. Experimental results were in reaso..able agree-
ment with the analysis results.

The experimental program on stiffened plates indicated
that a ring of the same material and thickness as the plate
can be extremely effective in canceling the loss of buckling
strength which accompan.es the introduction of a perfrration.
Rings made of the same amount of material as the remcved hole
can 1  =ase the buckling strength back to that of an unper-
fora - o,late and, in this study, alternate reinforcing
schemes increased the buckling load by as much as 318%.
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Whereas buckling of unstiffened plates involves only one
variable, stiffener design includes many, such as stif-
fener size, shape, location, or material type.

There is a considerable amount of additional rescarch
needed in the field of shear buckling of perforated p_ates.
Problems that need attention include:

a. analytical treatment of stiffened plates, with
particular emphasis on optimum stiffener geometry.

b. analytical and experimental study of plates with
holes o1 differing shapes (such as rectangles) and at loca-
tions other than the center of the plate.

c. treatment of inelastic buckling and ultimate strength
of plates.

Experimental studies of shear buckling are quite expen-
3ive and time consuming. They must be supplemented as much
as possible with analytical approaches. It appears that
finite element analysis capabilities ~ould play a major role
in any future 1:2search in plate buckling.
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FIGURE 1 - Geometry of Test Specimens.
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FIGURE 3 - Testing Apparatus.
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FIGURE § - Unperforated Test Specimen.,



28

y.v

(x)

(Typical Degrees of Freedom at Vertex)
U v vV 3V w 3w
(u:ax iay » Vo ax ' dy twr%i:"é_y)

XU

Z,w

FIGURE 6 - Plate Element Nodes and Degrees-of-Freedom

Originai State
Displaced State

FIGURE 7 - Mode of Deformation of Specimen Due to
Imposed Edge Displacements.



29

a. Unperforated b d/b =02

c.dsb =04 d da’b=06

FIGURr. 8 = Finite Element Gridworks
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FIGURE 9 - Finite Element Gridworks for Convergence Study
of Shear Buckling Calculations for Unperforated
Plate. (See Fig. 8a for 36-Element Gridwork).
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FIGURE 10 - Comparison of Various Finite Element Modeis
with Classical Solution.
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FIGURE 12 - Pre-buckling In-plane Stiffness as Function
of Various d/b Ratios. Unstiffened Plates.
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FIGURE 13 - Contour Plots of Normal Modal Displacements
for Various d/b Ratios.
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|
d/b STRAIN T, 1b. STRAIN
LOCATION ANALYSYS ‘
]
-6 -6
.0 2,500 376x10 350x10
-6 -6
.2 2,000 278x10 319x10
-6 -6
.4 1,500 354x10 462x10
-6 -6
1 .6 1,200 473x10 531x10

TABLE 1 - Comparison of Analysis and Test Strains at
Selected Gage Locations.

d/b STIFFENER T ., 1b.
(EXPER.)
0 NONE 5,400
.4 NONE 2,700
.4 " 9,100
4 ¥2 11,300
.4 '3 5,000
.4 #4 4,800
.4 ¥S 4,500

TABLE ? - Inflection Point Buckling Loads for Both Unperforated
Plate and Stiffened and Unstiffened Plates with 4-Inch
Perforation.



