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FOREWORD

This is the Phasé 1 Final Report of the Scheduling Language
and Algorithm Development Study performed by Martin Marietta
Corporation, Denver Division, under Contract NAS9-13616. The pur-
pose of this study was to conceive and specify a high-level com-
puter programming language and a program library to be used in
writing programs for scheduling complex systems such.as_the Space
Transportation System. This repert is presented in three volumes
- plus an appendix:

Volume I ~ Study Summary and Overview

Volume II - Use of the Bésic Language and Module Library

Volume IIT - Detailed Functionmal Specification for the Basic
Language and the Module Library

Appendix - Study Approach and Activity Summary

Volume I summarizes the objectives and requirements of the
study and discusses thé "why' behind the objectives and require-
ments. Unique results achieved during the st;dy or unique fea-
tures of the specified language and program library;are then de-
scribed and related to the "why" of the objectives and require-
ments. Finally, a descripfion of the significance of study re-
sults, in terms of expecfed benefits, 1s frovided.

Volume II summarizes the capabilities of the specified sched-
uling language and the program module library. It is writfen with
the potential user in mind and, thefefore, provides maximum in-

sight .on how the capabilities will be helpful in writing scheduling
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programs. Simple examples and illustrations are provided in
Volume II to assist the potential user in applying the capabilities
of his problem.

The detailed functional specifications presented in Volume III
are the.formal product of Phase 1. These specifications are written
as requirements for software implementation of the language and the
program modulés, and are aimed at a specific‘audienCe.

A separate Appendix summarizes the énalyses, describes the
approach used to identify and specify the capabilities required
in the basic language, and presents results of the aigorithm and
problem modeling analyses used to define specifications for Ehe
schedgliﬁg module library. The appendix is directed toward the
réader who is interested in how the study conclusions and results

were reached.
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1.0

INTRODUCTION

e v e S e o D L o S o S o AN . B S S L0 o S " Yo S S e S g " T P e i = ! S o e .

This Appendix to the Phase 1 Final Report of the Scheduling
Language and Algorithm Development Study contains three major
chapters in addition to this Introduction. Chaﬁter 2.0 describes,
in general terms, the appfoaéh and organization of the study;
Chapter 3.0 documents analyses performed in the first six months
of the Phase 1 study by briefly summarizing the material pre-
sented in the two volumes of the First Interim Report issﬁed in
Januvary 1974. The analyses performed in the second part of the
Phase 1 Study to produce the functiﬁnal specifications for the
scheduling language and module library and to perform implementa-—
tion feasibility,‘are documented in Chapter 4.0. These analyses

were performed in the period between 1 January 1974 and 5 Novem-

. ber 1974.
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2.0

STUDY APPROACH

The approach to the functienal specification of the schedul-

ing language, PLANS (Programming Language for Allocation and Net-

‘work Scheduling), and the module library used a wmix of problem

analyses and language design activities. Three major tasks are
referred to in this report. Task 1 dealt with the development of’
the basic language features, and the analvsis of implementation
options; Task 2 developed methods to descfibe or model an oper-
ational system to be scheduled; and Task 3 identified mathematical
and logical strategies for solving scheduling problems. Tasks 2
and 3 effort identified functional requirements for the basic
language and appropriate software modules to enhance the capabil-
ity of the analyst to address realistic problems. In addition,
Tasks 2 and 3 served to verify the adequacy and efficiency of the_
trial language by gssessing its functional cbmpatibility with
either problem mpdeliﬁg or algorithm applications. Thus, the
three tasks worked in an iterative fashion to evolve language-
related capabiiitie; thatlare highly relevant to practical prob-
lems. This approach is illustrated cdnceptually in Fig. A-1,

‘In the first six months of the stu&y, the general scheduling
problem was analyzed from the functional point of view, using a
brbad range of representative problems. The objective in that‘time
period. was to identify and evaluate language features that would
satisfy the functional requirements and meet the design goals of
(1) .usability by a problgm analyst and (2) insensitivity to a

problem alteration.

{1 Proceding page ank | -



Iterate

Generate Trial "Code" Ev§1uate
#1 Language Functional [ Representative o Trial
Capabilities Programs Language

Analyze Real Problems and Solution Methods
Lo Determine Functional Requirements

Pigure A-1 Itervative Approach to Functional Specification

In the second part of the Phase 1 Study, the Task 1 emphasis
was on development of precise syntactic and semantic specifica-
tions for PLANS while the Task.2 and Task 3 efforts were directed
at functionally specifying a set of library routines that:

1) contained basic functionally-separable logic;

2) were usable in typical scheduling software; and

3) were free from imbedded decisions or assumptions that would
restrict the flexibility of their use.

The progress of the Phase 1 study has been guided by mile-

stones for each task. These milestones are shown in Fig. A-2,



Although the study was segmented into discrete subtagsks in
Fig., A-2, the high degree of integration required to move from
conceptual objectives to concrete functional specifications made
separation of the total activity into such weli—defined subtasks
somewhat artificial. For purpbses of documentation, in the first
Interim Report the subtasks of Fig. A-2 weré grouped into major
activities; that same format is used here so the reader can better
perceive the integrated analyses that have been carried out. Table
A~1 1lists the major activities that are addressed in this appendix,

with reference to the milestone identifier of Fig. A-2,
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TASK 1 S ONDJFMAMJIJIASO
l.a Develop Scheduling Problem Model LI¢HJ
1.b DevéloP Structure of Scheduling
Problem Information
l.c Specify Individual Language unn-un-nuni
Functions
1.d Perform Paper Simulations
of Functional Programming
l.e Develop Language Syntax
1.f Specify Basic Semantics |
l.g Assess Computer System Implica-
tions of Language
1.h Perform Paper Simulations to
Evaluation Suitability of
Language
l.i Document Language
1.j Prepare and Perform Demonstra-
tion of Language Features
1.k FEvaluate Available Translator
Design Option
1.2 Evaluate Tree Structure IHTBI
Implementation Options
1.m Evaluate Disc Access/Update . Fl#-4
Methods
l.n Verify Implementation Feasibility ITIJ

of Automated Compiler Writing
Approach

Figure A~2 Milestones




TASK 2 JJASONDJFMAMJIJIAS Of
2.a Survey and Summarize Related
Efforts
2.b Perform Preliminary Classifica- | s
tion of Planning Problems
2.¢ .Identify Operational System "
Resources, States, and
Functional Flows
2.d Formulate Preliminary Operations
Model Data Structure
2,e Formulate Initial Operations
Model Macrologic
2.f Refine Macrologic and Data
Structure
2.g Identify Preliminary Modules
within Macrologie
2.h Define Operations Model Data
Structure ‘
2.1 Define Module Functional
Requirements and Parameters
2.i Define Module and Algorithm llT-d
Interface Requirements
2.k Functional Specifications
2.% Evaluate Implementation
Feasibility of Elementary
Medule Specifications
2.m Evaluate Implementation oty
Feasibility of High~Level
Module Specifications
Z2,n Evaluate Implementation -.h.ﬂ
Practicality of a Generalized .
Mixed Integer Program :
2.0 Review and Refine Allocatiom
of Functions between Library
Modules
2.p Establish Feasible Human

Scheduler/Computer Interface
Test Objectives

Figure A-2 (cont)




TASK 3

JASONDJIFM AMIJIASO
3.a Survey Existing Automated nu;
Scheduling Techniques
3.b Evaluation of Automatic Selection s
of Solution Strategies
3.c¢ Survey Deposition Strategies
3.d Trial Problems
3.e Analyze Sensitivity Reduction
Strategies
3.f Examine Language Applicability
to Heuristic Programming
3.g Examine Operations Model/Algorithm Ph-m
Interfaces
3.h Identify Algorithm-Related
Libray Modules
3.i Specify Library Algorithm
Functional Capabilities
3.j Classify Solution Strategiles uunpn#
by Frequency of Use Problem
Size and User Interface Needs
3.k Identify Tests Required to HFHTUH
Automatically Select Solution
Strategies/Algorithm
3.£ Assess Implementation h.#.q
Requirements for PLANS Project
Scheduling Algorithms
3.m Select an Implementable Demon- LI+I
stration Problem and Identify
Capabilities, Input, and Output
3.n Evaluate Alternative Program I+HJ

Architecture and Executive
Functienal Design Logic

Pigure A-2 (conel)
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Major Activies and Study Milestome Identifiers

Appen~-
dix Mileatone

Major Activivy Sectfon | Identifier Milestone Title
Analysis of Structure l.a Develop Scheduling FProblem Medel
of the General 3.1
S5cheduling Problem i Develop Structure of Scheduling Probler Information
Formulation of Basic 1.c Specify Individual Language Functions
Language Functional 3.2
Requirements
Synthetic Preogram- 1.d Perform Paper Similations of Fungtlonal Programming
ming for Trial 3.3
Language Evaluation
Assesgsment of Sched- 2.a Survey and Summarize Related Efforts
uling Operstioms
Model Requirements 3.4 2.b Perform Preliminary Classification of Scheduling Problems

2.¢c Identify Operaticmal System Resources, Status, and

Functional Flows

Synthesis and Func— 2.d Formulate Preliminary Operations Model Data.Structure
tional Evaluation 3.5
of Operationa Model 2.e Formulate Initial Operations Model Macrologic

i.f Test and Refine Macrolegic and Data Structure

3.8 Examine Operations Model/Algorithm Interfaces

2.3 Define Module and Algorithm Interface Requirements
Analysis of Solu- 3.a Survey Existing Automated Scheduling Technigues
tion Techniquas
Applicable to Sched- 3.c Survey Decomposition Straregies
uling Prohblems 3.6 \

3.f Analyze Sensitivity Reduction Strategies

l.g Examine Language Applicability to Heuristic Programming
Identification of 3.b Evaluation of Autumafic selectinn of Scheduling Strategies
Language Requirements | 3.7 :
via Solution of
Trial Problems 3.4 Trial Problems
Formulation of Pre- 2.8 Identify Preliminary Oparations Model Modules within
limary List of Macrologie
Library Modules 3.8 - .

3.h Identify Alporithm-Related Library Modules
Preliminary Assess- l.g Assess Computer System Implications of the Language
ment of Language 3.9
Translatien Dpticns
Development of l.e Develop Language Syntax
Mechanism for
Syntactlc/Semantic 4.1 1.f Specify Basic Semantics
Specification

1.4 Document Language
Evaluation of 1.h Perform Paper Simulations to Evaluate Suitability of Language
Language Sujtabilicy 4.2 '

for Applications

A-9




Table A-1 (conel)
Appen-—
dix Milestone
Major Activity Section | Tdentifier Milestone Title
Lvaluation of 1.8 Assess Computer System Implicatioms of Language
Language Implamenta-
tion Feasibility 4.3 1.k Evaluate Available Translator Design COption
1.4 Fvaluate Tree Strxucture Implementation Opticns
L.m Evaluate Disc Accaess/Update Metheds
l.n Verify Implementation Feasibility of Automated
Campiler Writing System
Development of 2.1 Define Module Functional Requirements and Parameters
Contents and 4.4
Specifications 2.k Functional Specificeticns
for Library
Modules 3.f Examine Language Applicability to Heuristic Programming
l.g Examine Operations Model/Algorilthm Interfaces
3,h Identify Algorithm-Related Tibtrary Modules
3.1 Specify Library Algorithm Functional Capabilities
2.0 Review and Refine Allocation of Functions between
Library Modules
Development of 2.d Formulate Preliﬁinary Operations Model Data Structure
Standard Data 4.3
Structures 2.h Define Operations Medel Data Structure
2.3 Define Module and Algorithm Interface Requirements
Assessment of 2.0 Evaluate Implementation Feasibility of Elementary
Implementation Module Specifications
Feasibility of
Specified Modules 4.6 2.m Evaluate Implementation Feasibility of High-Level
Module Specifications
2.1 Evaluate Implementation Practicality of a Generalized
Mixed Integer Program -
3.2 Assess Implementation Requirements for PLANS Project
Scheduling Algorithms
3m Select Implementable Demonstration Problem and ILdentify
Capabilitiles, Input, Output
J.n Evaluate Alternative Program Architecture and Executive
Functicnal Design Logic
Assessment of ; 3.3 Clagsifify Soluticn Strategiles by Frequency of Use Problem
Methods for Automated 4.7 Size and User Interface Needs
Algorithm Application
3.k Identify Tests Required to Autcomatically Select Solution
Strategies/Algerithm
2.p Establish Feasible Human Scheduler/Computer Interface
Test Objectives ’
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3.0

3.

1

SUMMARY OF MAJOR ACTIVITIES IN THE FIRST PART OF STUDY PHASE 1

The major activities of the first six months of the study are
éummarizea in this chapter. It contains a brief description of
the conclusions reached and the‘analyses leadiné to those cgnclu—
sions. Numerous references are made to Volume IT of the First
Interim Report, where detailed documentation is presented.
ANALYSIS OF STRUCTURE OF THE GENERAL SCHEDULING PROBLEM |

The scheduling language study was initiated by defining a
basic.structure within which language functional requirements
coulli be developed. It was recognized that assignment of re-
sources for intervals of time is fundamental to the concept of a
schedule. Therefore,-a schedule unit was defined as a collec-
tion of the assignments for specific resources. It naturally
follows that a schedule 1is a collection of schedule units. A
simple illustration of a schedule is given in Fig. A-3., Note that
a schedule unit contains assignment intervals that may be differ-
ent for each resource in the schedule unit. Precise definitiens
of the terms "Schedule Unit," ”Schedule;" and "Scheduling Prob-
lem'" are given in Section 3.1 of Volume II.

The analysis of the structure of scheduling problems contin-
ued with examining the information required for scheduling. The’
objective was to find how this information was most naturally or-
ganized so appropriate data structures for a scheduling language
could be identified. The analysis revealed that all information

was hierachically related. Even though a single universal format
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Fig. A-3 Illustration of the Structure of a Schedule



3.2,

for scheduling problem information is not feasible, the conclu-

'
i

sion was that a hierarchical structure appears appropriate for

all problems. Thus, a basic datartype had been identified for

" PLANS.

FORMULATION OF BASIC LANGUAGE FUNCTIONAL REQUIREMENTS

Analysis of the structure of general scheduling problems was

foliowed by preliminary identification of the elementary func-

tional capabilities that a scheduling language should possess.

To appreciate the approach to defining functional require-
ments, it is necessary to understand a fundamental distinction
between the basic capabilities of a language -and the capabilities
that the language lends to the programmer.. For example, it is
possible to integrate a function using'FORTRAN, but integration
is not, in any.sensé, a basic language capability. The basic
FORTRAN capabilities of array manipulation, algebraic operations,
and iteration allow the programmer to perform integration. iny
if FORTRAN included something functionally equivalent to the com-
mand INTEGRATE FUNCTION X, would it be’appropriate to say that
integration is a basic capability of FORTRAN.

The principai task associated with design of PLANS during the
first six months of this study was to extract a list of underly-
ing elementary operations that must be performed by single lan-

guage statements (or even by part of a statement) .

A-13



The basic language characteristics idemtified for PLANS are
described in detail in Section 3.3, Volume II of the First Interim
Report. The basic data type identified is the hierarchical set
structure. Although intervals have a special place in scheduling
problems and were originally identified as a second data type,
subsequent analyses showed that intervals could be handled with-
out difficulty within the tree structure and by specifying a small
number of interval subroutines. Thus, specification of the hier-
archical structure as the only required data type provides logi-
cal simplicity and considerably greater economy of implementation
than would result from a variety of data types. An illustration
of a hierarchical set structure is given in Fig. A-4. PLANS must
have the capability to generate and to alter hierarchical struc-
tures and to access the contents of the structure either by key
word (label) or by ordinal position (index). It is significant
that, although the need for hierarchical data became evident
early in the study, subsequent analyses have continually rein-
forced its relevance and importance in achieving language power.

Functional capabilities for PLANS identified in this activity
include (1) algebraic operations, (2) input/output operations,
(3) transfer of control statements, (4) conditional statements,
(5) function and/or subroutine capabilities, and (6) iteration

statements.

A-14



SPERSONNEL

Job

John Engineer Mary Typist Bob Draftsman

Note: The symbol $ is used as a prefix to identify the label of
a data tree root node. Reference to $PERSONNEL within a
PLANS program statement refers to the data tree (hierachi-
cal data set) root node label and all data contained with-
in the tree, thus

$PERSONNEL

¢ Name -~ John
Job - Engineer
¢ Name - Mary
Job - Typist

& Name - Bob
Job - Draftsman

Iﬁ a loose definition,‘$PERSONNEL may be referred to as
the data set for PERSONNEL.

The symbel ¢ has been adopted to indicate a null label.

Fig. A-4 Hierarchical Set Structure

A-15



An operation that frequently occurs in scheduling is the gen-
eration of combinations or permutations of a given set. There-
fore, special PLANS iteration capabilities have been identified
that will generate, one at a time, all the combinations or permu-
tations of a set taken K at a time.

Because a design goal for PLANS is a programming capability
that is as indeﬁendent as possible of application-specific infor-
mation, a requirement for indirect referencing was identified.
Two kinds of indirect referencing are required. The first is
indirect reference to a set, or within that set. An example of
this capability can be seen in the following hypothetical lan-
guage statements:

D0 15 J =1, N
15  TOTALWT = TOTALWT + $RESOURCE.#($COMPONENT(J).NAME) .WEIGHT
The symbol # is used here to indicate an indirect reference.

I1f $COMPONENT has the structure

SCOMPONENT
1

NAME - ORBITER 7
2

NAME - PAYLDAD 35
3

NAME - SRMVIZ
thenrthe iteration loop above sums the weight of Orbiter 7, Pay-
load 35, and SEM 12. The weight information is found in the
$RESQURCE set. ©Note that if the weight of Orbiter 7, Payload 35,
and Crewmen 12 were desired, only the $COMPONENT data would have :
to be changed, the code would remain the same because the labels
ORBITER 7, PAYLOAD 35, SRM 12, never appeared in the program logic.

This illustrates the reason for the first type of indirect refer-

erence capability.
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" The second type of indirect referenciné deals with module

names. Consider, for -example, the statement:

CALL #($RESOURCE(J).RECYCLE)

" The name of a subroutine that calculates the value of thelrecycle

time of $RESOURCE(J) could be included as data as follows:
$RESOURCE

' RECYCLE - ORBCYC

b RECYCLE - PADCYC

As the CALL statement is encountered with different vélues of J,
different recycle modules are calied. This coding can be written
both concisely, and also independently of orbiters, launch pads,
etc.

Another functional capability identified is set ordering. AA.
single."order” statement can arrange tﬁe elements of a set in
order (aécending or descending) according te a list of character-
istiés,of that set. For example, the statement:

ORDER $PAYLOADS ON WINDOW.START,WINDOW.END
would create a payioad ordering in which earlier window openings
preceded later openings. Two or more windows with equal opening -
times would be ordgred so those with earlier closing times pre~

ceded those with later closing times.

A=17



SYNTHETIC PROGRAMMING FOR TRIAL LANGUAGE EVALUATION -

By the end of the second study month, the initial list of
elementary language operations had been identified and it included
many of the features described in the preceding section. It was
desirable to test the functional validity of the basic language
operations for scheduling problems, so a trial FORTRAN-like syn-
tax was adopted, although it was considered subject to later re-
placement or revision. The syntax made it possible to code com—
plete language statements and programs in this trial language,
sometimes called Trial PLANS.

Synthetic programming was then performed using the trial
language to evaluate basic language functional capabilities in
realistic program applications. The programming was ''synthetic"
in the sense that no means existed for translation to machine
code for.actual program execution. Three types of programs, de-
scribed in subsequent paragraphs, were coded and yielded further
insights and requirements for language design.

Coding with Trial PLANS was used to synthesize a number of
small routines of gemeral utility in solving scheduling problems
and also to pfogram several larger main programs. The main pro-
grams coded in Trial PLANS included an algorithm selection pro-
gram that performs tests on the scheduling problem struéture to

select candidate solutions.
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3.4

Another program coded im Trial PLANS was a critical-path
methﬁd tCPﬁ) program. The prdéram finds the eariiest and latest
start times for a set of jobs that must be completed'in a se-
quencé network, determines the job that cannot be delayed with-
out éxtending the duration of the entire project (i.e., iobs on
the critical path), and the slack times for all other jobs. This
pfogram provided an excellent example of the ease with which or-
dering and set manipulations can be perfo?med with Trial PLANS.

Synthetic programming was also used to'éoaé'the basic logié of
the NASA JSC~-MPAD Operations Simuldtion and Resource Scheduling
program (OSARS). This exercise demonstrated that the basic lan-
guage capabilitiés idenfified did make flexible programming pos-
sible, and thatrthe basic capabilities alone provided a level of
coding'stafements approximately equivalent to basic logic ele-
ments in a functional flow diagram. The number of PLANS state-
ments in the PLANS-OSARS program is approximately one—tenth of
that required by a FORTRAN version.

ASSESSMENT OF SCHEDULING OPERATTONS MODEL REQUIREMENTS

Scheduling involves making decisions about altermatives in
the operations of a system. Because the task was to develop
both tﬁe functional specifications for a scheduling language and
a Iibrﬁry of program modules, it was imperative to specify a
framework wifhin which the operations of the system to be schéd-
uled could be described._ Such a framework must be completely
compafible with thé basic language. Furthermore, many of the

higher-level modules in the module library must be designed to
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use a standard descriptive framework so they can be easily and
consistently applied within the logic of a calling program. A
number of technical disciplines already deal with the description
and response of dynamic systems. Becéuse scheduling is itself
not a new problem, it was necessary to carefully review existing
technology before this study specified a general scheduling op-
erations model tor, briefly, the Operations Model) for the sched-
uling languége.

The complexity of building a generic operations model reguired
a top-down approach to guarantee that structures gpecified were
sufficiently general to preclude making decisions that must sub-
sequently be revised. The approach began with the concept that
system resources exist with various descriptors that are trans-
formed or altered by system processes. This fundamental concept
is illustrated in Fig. A-5. Noting that a process must occur
over a time interval, it is recognized that the process is, in
fact, the entity that associates resources together in a schedule
unit. A given process has a set of required resources, and those
resources must have appropriate descriptors. The execution of a
process, then, is functionally equivalent to specifying assign-
ment intervals for the processes’ regquired resources.

Continued analysis led to identification of the operations
sequence as a mechanism for describing how various processes are
related to each other in time {temporally) and as predecessors
and successors. For example, an operations sequence might con-
tain the information that process A must be concluded before proc-

ess B starts, or that process B must start after process C starts.
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After expansion of the fundamental system operations model
components, i.e., the resources, processes, and operational se-
quences, an evaluation of the feasibility of integrating these
éomponents into a model of a system that can be scheduled could
then be undertaken.

SYNIHESIS AND FUNCTIONAL EVALUATION OF THE OPERATIONS MODEL

The compatibility of the fundamental modeling concepts with
the functional capabilities of the PLANS language is, of course,‘
essential. Therefore, the structure for describing the system
to be scheduled (i.e., resources, processes, operations sequences),
with the hierarchical data structure identified‘as a language
feature, was examined. It was determined that the information
could be organized into three tree structures called $OPSEQUENCE,
$PROCESS and $RESOURCE. Examples of these structures for a model
of Shuttle oﬁerations are shown in Table A-2.

Table A-2 illustrates one of the.primary features of the
scheduling operations model data structure--the use of labéls for
data entries. Although use of labels within the data structure
adds volume, their functicnal usefulness for accessing data is
more than sufficient justification. Also, the labels make the

data "readable,"

thus eliminating the need for tedious references
to a user's manual to determine formats. A brief examination of
Table A-2 will enable readers to deﬁelop a basic understanding

of how models can be specified in the hierarchical form. The

fact that no detailed explanation of the model data structure is

necessary conveys the point about readability. The logical
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Table A-2 Epamples of Operations Model Data Siructures
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transparency of the scheduling operations model data structure is
essential to ease of program application and adaptation, aund
eliminates the need for a high level of specialized knowledge to
develop a scheduling program.

Recognizing that details of the arrangement of information
within the Operations Model data structure depended on how the
information was used in a scheduling problem solution, macrologic
was developed that described how the Operations Model and the
algorithm would function together to solve a scheduling problem.
For logical simplicity, the Operations Model was defined as (1)
the Operations Model data structure and (2) thbse functdions re-
quired to synthesize a schedule that do not involve process al-
ternative, resource allocation, or event timing decisions. Model
capabilities in this category include updating the resource as-
signments, evaluating resource availability, computing values of
any special parameters needed by am algorithm to make a decision,
etc. With that conceptual distinction, the roles of the model
and the algorithm can be interpreted in terms of a dialogue; the
algorithm asks for problem-oriented information about the sys-—
tem and Its operations on which to. base a scheduling decision,
and the model supplies the information.

A typical example of the macrologic of the operations model
and a time-progressive heuristic algorithm is shown in Fig. A-6.
The figure also contains annotations to interpret the macrologic
in terms of the OSARS program of NASA-MPAD currently used as a

prototype program for building flight schedules.l
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ANALYSIS OF SOLUTION STRATEGIES APPLICABLE TO SCHEDULING PROBLEMS

The analysis described here deals with classification of
algorithms appropriate for scheduling problems, examination of
techniques for decomposing large problems into computationally
practical subproblems, and analysis of heuristic methods for solv-
ing complex problems.

To design a language applicable to a wlde variety of schedul-
ing problems, it is necessary to study a very large number of
algorithms. This is accomplished most efficiently within the
framework of some logical classification scheme. In the early
weeks of the study, such a scheme was developed based on the
characteristics of the problems to which certain algorifhms ap-
plied. Thus, problems were classified from a splution strategy
viewpoint., This classification is summarized in Table A-3.

Table A-3 Swwmwnary of Algorithm Classification

PROBLEM ALGORITHM CLASS
Low-Dimensional General~Purpose
Simple Scheduling Mathematical Programming

(I1Ps, Dynamic Programming)

Medium-Dimensional Special-Furpose
Specialized Scheduling Mathematical Programming
‘ (Marshal Fisher, ete)

High-Dimensional Heuristic Algorithms
Complex Scheduling {(Wiest, Kelly, etc)

Set Covering Enumeration

{(Payloads) (Total, Bounded, Impliecit)
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The strategy of decomposition is fundamental to the applica-

4

tion of many algorithms (especially mathematical programming) to
- scheduling problems of realistic size and qomplexity._ Decomposi-
tion consists of any mathematical or logical technique for wo?k-
ing the entire problem by solving smaller and simpler related
problems., The relationship of the subproblems is manipulated by
a so-called master algorithm that serves to coordinate the sub-
problems in such a way that optimality of the entire problem is
guaranteed.

Several sources exist for methods of problem decomposition.
Methods analyzed in this study are summarized in Table A-4. An
explanation of each of these techniques appears in Vol IT af the
First Interim Report.

Table A~4 Summary of Decomposition Strategies

STRATEGY REFERENCE

Restricted Master, Dantzig and Wolfe (1960)
Column Generation

Dual Minimax Everett (1963)
Right-Hand Side Silverman (1968)
Allocation

Extended Generalized Kaul (1965)

Upper Bonding '

Benders' Decomposition Benders (1962)

Rosen's Partition Rosen (1963)

To investigate the problem of algorithm selection that always
faces the analyst with a scheduling problem, a logical qetwork
(Fig. A~7} has 5een developed that gives the appropriate sequence
of decisions that must be made about problem structure to reach

an appropriate algorithm selection. ‘ A-27
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3.7

IDENTIFICATION OF FUNCTIONAL REQUIREMENTS VIA SOLUTION OF TRIAL
PROBLEMS

The approach used to identify appropriate features for PLANS
has placed heavy emphasis on analysis of real problems. Ability
to determine appropriate functional capabilities requires a
thorough understanding of methods for solving scheduling‘proﬁlems
that have successfully provided computational results. The cholce
of solution technigues must be made not only on the basis of prob-
lem structure, but on the basis of computational practicality and
experience with the details of computational pitfalls and compli-
cations. A truly practical collection of library modules for the
language must include capabilities to perform special functions
and adjustments, and.quificationS‘thaC'are almost always neces-
sary to accelerate or improve tﬁe computational results. These

rather subtle procedures can only be discovered'by solving prob-

"lems. Therefore, in the first six months of the study, a variety

of specific scheduling problems were defined. There problem
characteristics and structure were thoroughly anaiyzed, and one
or more solution strategies defined for each of the trial prob-
lems. summarized in TablerA—S. The strategies were computerized
either by writing FORTRAN programs or using existing programs.
Detailed.discussion of trial problem anal?sis is contained

in the First Interim Report.
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Table A-5 Summary

of Trial Problems

ID [ Problem Name Solution Strategy Algorithms Employed

1 { Activity Scheduling Decomposition Generalized Linear
Problem 0-1 Linear Program Program

at Master Level,
Enumeration at
Subproblem-Level

2 Multi-Ttem Decomposition Generalized Upper Bounding
Scheduling Problem 0-1 Linear Program Dual Minimax with

at Master Level Steepest Ascent
Dynamic Programming Dynamic Programming
at Subproblem~-Level

3 Tire-Facility Two-Level Heuristic Time Transcendent (Minimum

Problem Master Level Handles Slack) Algorithm at Master-
Precedence and Re- Level, Minimum Utility
source Constraints. Rule at Subproblem-Level
Subproblem-Level
Decides Substituta-
bility

4 | Problem of Prittsker,! One-Level Heuristic Time Transcendent Heuristic
Watters, and Wolfe (Minimum Slack) {(Minimum Siack)

5 | Flowshop and General | Bounded Enumeration Ignall and Schrage's
Combinations Using Partial Schedules| Bounded Enumeration
Problem Alporithm

6 Set Covering Total Enumeration Enumeration Tree Tailored

: Problem for Tractible Numbers to Payload Set Covering

of Combinations Using Domination to Prune
Branches
7 Resource Leveling Solve Minimum Time, Weist's Time Progressive

Problem

Bestricted Resource
Problems (Possibly

a Sequence of Problems
Varying Resource Poor
Levels)

Multiresource-Level Heuris-
tic Algorithm

Several potential library modules were identified as a result

of the pursuit of specific problems from conceptual definition to

numerical results.

However, emphasis in the firet six months was

focused on available experience with computational techniques on

the general functional aspects of gspecific types of scheduling
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3.8

3.9

problems. Because of these efforts, it was possible to structure
tae findings into a set of discrete algorithm-related modules
that are relevant to the rangé of problems for which PLANS is be-
ing designed, and which are usafui to the analyst who is confronted
with computational subtleties.
FORMULATION OF PRELIMINARY LIST OF LIBRARY MODULES

Activities in the first six months were designed to establish
basic PLANS functional requirements and to establish the struc-
ture from which higher level capabilities could be specified in

the form of library routines (modules). Although specification

of the library routines associated with both the Operations Model

and the algorithms was to be a primary activity in the second
part of Phase 1, a preliminary lisf of library modules did re=-
sult from the analysis activities. In fact, the preliminary list.
was modified substantially during the second part of the ?hase 1
study. However, it provided a useful starting poiﬁt from #hich
a careful examinatién of appropriate library contents could pro-
ceed. |
PRELIMINARY ASSESSMENT OF LANGUAGE TRANSLATION OPTIONS
Investigation of PLANS implementation coptions began during
the first part of the study. At issue was éhe basic mechanism
for converting PLANS programs to execuﬁable code. 1f a general-
purpose programming language existed with sufficient power to
perform the basic operations implied by the basic functions of
PLANS, it appeared desirable to implement PLANS by constructing

a translator that uses the general-purpose language as 1ts object
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language. This approach is much less expensive than building a
compiler to translate PLANS directly to machine language because
the object language's compiler fills this function. Furthermore,
this approach providés considerable machine-independence and al-
lows use of additional high-level operations that may already
exist in the object language at very little cost.

The first activity under this milestone was analysis of ex-
isting general-purpose programming languages to find those appro-
priate for use as object languages. A summary of the conclusions
is shown in Table A-6. Translation to PL/I offers some major éd—
vantages. First, the implementation of the PLANS language trans-
lator is substantially lesslexpensive and would require less time
than building a complete new compiler or translating to another
language. Second, it should be possible to build such a trans-
lator so that PL/I statements are admissible in the same pro-
gramming as PLANS statements. Thus, the entire capability of
PL/I would be available to the programmer even though he is not
required to understand PL/I. Third, the translation to an ex-
isting language initially does not preclude implementation of a
PLANS compiler {(i.e., translator direétly to machine language)
at a later time. Thus, the decision was made to recomﬁend as
initial implementation mode, translation from PLANS to PL/I.

In the first six-month period of the study Martin Marietta
subcontracted with Dr. James VanDoren of the Department of Com-
puting and Information Sciences, Oklahoma State-University, to

deliver a two-day seminar on syntax-directed compilation and
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and methods of implementing scheduling languages. This seminar,
conducted in the seventh month (January 1974) of the stdﬂy, proved
highly useful and led to a-formal method of semantic specifica-
 tion described in fhe next section.

Table A-8 -

Evaluatron of Relevant Capabilities of Candidate Object
Languages
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4.0

4.1

MAJOR STUDY ACIIVITLES IN SECOND PART OF STUDY PHASE 1

DEVELOFMENT OF MECHANISM FOR SYﬂTACTIC/SEMANTIC SPECIFICATION

To enable a digital computer to "understand" and execute the
commands of a programming language, a compiler or translator (com-—
putef program) must be developed to read thé language statements
and cause machine operations to occur in accordance with these
commands. This requires tﬁo kinds of basic information: (l) a
description of the allowable combination of language elements in
a statemen£ and (2) what must happen or what the computer must do
after each language element or combination is recognized and ac-
cepted for exécution. Therefore, the problem is to specify a lan-
guage in this framework so the bompiler or translator needed to
implement the language can be programmed.wifh minimal difficulty,
ambiguity, and uncertainty of results.

Language syntax definés the rules by which language elements
can be combined legally to form language statements. Most pro-
gramming language syntaxes can be concisely defined with formal
notational techﬁiques such as the often used Backus~Naur Form
(BNF).* BNF is a formal metalanguage for phfasefstrqcture g am—
mars whose application is not limited to any.particular‘language.
Thus, the scheduiing language syntax could be concisely and un-

ambiguously specified with existing techniques.

*Naur, P. (Ed): Report on the Algorithmic Language ALGOL €0.

Communications of the ACM. 1960, 3, 299-314.

| Preceding page blank
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However, the specification of scheduling language semantics,
i.e., the meaning of the language elements and statements, pre-
sented a different problem. A metalanguage is a language used to
talk about a language. Natural languages, such as English, are
in fact metalanguages when used to talk about a language. Semantic
specifications for programming languages have frequently taken the
form of written English text that describes what is supposed to
happen when language statements are executed. Using English as a
metalanguage it is:

1) difficult to be complete, i.e., to describe the resulté of
all possible legal statements in the language;

2) difficuelt, in.most cases, to be precise and unambiguous;

3} 1impossible to be concise enough to communicate to the language
implementer effectively;

4) difficult to assure internal logical consistency in the lan-
guage semantics;

5) difficult to provide insight on how warious capabilities could
be implemeﬁted in the compiler or translator.

A technique was sought to avoid these problems and to make
the PLANS semantic specifications as precise as the syntactic
gspecifications. The idea of embedding the semantics into the
syntactic specification was suggested by Dr. James VanDoren dur-
ing his January 1974 seminar. The embedding was accomplished by
defining an elementary conceptual device, called a pseudomachine,
which could respond to simple commands. The semantics of PLANS

statements could then be defined in terms of these simple commands

A-36



that can be generated by the translator as the syntax of the
statement is recognized. Thus, the pseudomachine commahds, which
contain the meaning of a PLANS statement, have a ccr;espondence

to the syntax or gramﬁatical structure'of that statement, and once
the syntax of the-statement is recognized, the gemantics of that
statement is known unambiguously.

The pseudomachine chosen for use in ﬁhe PLANS specification
_mechanism_involved a simple device whose basic data structure is
a push—down stack. The data elements in such a stack may be ad-
dresses in computer storage, character strings, orr;ﬁgical values
I(true or false). An example descriﬁtion of the pseudomachiﬁe op-—
erations used to support the PLANS embedded semantic specifica-
tibnSfis'given in Table A-7, *hich shows that each of the pseudo-
machine operations is identified with a sjmbolié label, e.g., DUP,
POP, INVERT, etec. A functional description of the operatiomns is
‘also given in English text, followed by a stack manipulation/
traﬁsformation exaﬁple where appiicable.' Thus,‘in the table, thé
operation DUP or DUPLICATE means 'Push a cop& of the content of
Position 1 onto the stack." 1If the stack initially contained two
data elements, XXXXXX and YYYYYY, which were considered to be in
these relative positions,

XXXXXX

YYYYYY
.then XXXXXX occupies Position 1 on the stack and the result of
executing the commanded 6peration DUP would be to transform the

stack to
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Table A-7 PLANS Pseudemachine Operation List {Examples)

STACK OPERATIONS (EXAMPLES)

pup

POF

(DUPLICATE)
PUSH A COPY OF THE CONTENT OF POSITION 1 ONTO THE STack,
EsGy DuP RESULTS IN THE TRANSFORMATIONS

XXX XXX XXXXXX
YYYYYY > X XXX XX
YYYYYY

(POP)

POF THE CONTENT OF POSITION 1 OFF THE STACK,
EuG,» POP RESULTS IN THE TRANSFORMATIONS
KAREXK L] YYYYYY

YYYYyy

ARITHMETIC OPERATIONS (EXAMPLES)

ADD

suB

MULT

DIV
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(anhy
ADD THE CONTENTS OF PNSITIONS 1 AND &+ REPLACE THE CONTENT
OF POSITION 2 BY THE RESULTe POP 1 POSITION,
EeG,» ADD RESULTS IN THE TRANSFORMATIONI
29

23
& —_—> KX XX KX
XXXXXX YYYYYY
YYYYYY

(SUBTRACT)

SUBTRACT THE CONTENT 0F POSITION | FROM THAT OF POSITION 29
REPLACE THE CONTENT OF POSITION 2 BY THE RESULTs POP | POSITION,
EelGys SuB RESULTS IN THE TRANSFORMATIONG

23 -17
6 - XXXXXK
XX XNKR YYYvyyy
YYYYYY

(MUL.TIPLY)

MULTIPLY THE CONTENTS OF POSITIONS 1 AND 29 REPLACE THE CONTENT
QF =OSITION 2 BY THE RESULT. POP 1 POSITION,
EsGos MULT RESULTS IN THE TRANSFORMATIONG

12 36
3 - EXXX XX
XXXXXX YYYYYY
YYYvyy

(DIVIDBE)

DIVIDE THE CONTENT OF POSITION 1 INTO THE CONTENT OF POSITION 2,
REP|_ACE THE CONTENTY OF PDSITION 2 8Y THME RESULTe POP 1 POSITION,
E.Geer DTV RESULTS IN THE TRANSFORMATIONI

12 25
3 - XXX X
XXX XX YYYYYY
YYYYYY
REP
4 Cr
VRGN, Jiéi%r zSGF Thp



XXXXXX

XKXXXX

YYYYYY
All pseudomachine operations described in Table A-7 can be inter-
preted in a similar manner, |

After the pseudomachinelcommands apprépriaté for defining the
semantics of a given language have been spe;ified, a basié ex—
iéts for understanding the meaning of the language elements in a
language statement. An example of the PLANS specifications psing
the pseudomaghine as a mechanism for embedding thé semantic speci-
ficatioﬁ in a BNF-type grammar is shown in Table A~8; The coﬁ—
plete PLANS specifications in this format are in Volume IIL of
this report. Previous use of this ;echnique for functionally
specifying.a language is not known. Semantic definition by means
of an abstract machine was incorporated in)a cumberéome way in the
Vienna Definition Lénguage, but has‘beeﬁ an.otherwise undeveloped
method.

A aignificant extension of the pseudomachine functional speci-
fication provided a meané bf tranélating ianguaée statements into
executable code before actual implementatiénlof-é formal PLANS
traﬁslator. To do this, the push-down stack dévipe was modeled
as a software machine (an emulator) by a.computér program. This
computer program simulated op;¥ation;-of th;'pséuadmachine, which
by desipn described what the compufer was“to,dQ to execute each

basic language operation. By using the PLANS grammar with the
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Table 4-8 .
PIANS Gramnay with Embedded Semantics: a Feormat Illustration
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/% REPLACE AN EXISTING NOPE OR INSFRT AT ITS POSITION» MOVING IT #/

A% AND ALL. LATER NANES T0 THE RIGHT, AND THEY ALLOW THE u/
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/% CAPARILITIeS, FOR EXaMpifs @/
/9 GRAFT $A(1) AT %m(2) 3 w/
/% COULD RE ACCOMPLISHED HY #y
/e $H{2) = $48{1) 3 W/
/o PRUNE $%A(1) 3 LY
A 1T SHOULD RE UNDEASTOODY HOWEVERs THAT THE GRAFT FUNCTION #f
/% ACCOMPLISHES THE OPERATION MUCH MORE EFFICIENTLYs SINCE IT #*/
/% NEED OWLY “MOVE® THE STRUCTURE RY CHANGING SUME POINTERS, n/
/% SAVING A CAMPLETE CUPY OPERATION AND A COMPLETE PRUNF #/
/% UPERATIONs WHEN INSERTs GRAFTs aND GRAFT INSERT ACCOMPLISH w/
/% THE DESIRED FUNCTIONs TrEY SOULD BE USED IN PREFERENCE TO L F
/% FUNCTTIONAL| Y EGUIVALENT PROGRAMMER=-GENERATED COPE. s/

/nﬁu##ﬂﬁo#ﬁﬂﬂa#ﬂ¥#bu####uﬁanﬁnuunﬁuu#ﬂﬁ#ﬁﬁﬁn»#nnqn##nﬁﬂuu##u#ﬁup»#ﬂf

Note: Detailed Notational Definitions are found in Volume III of thie report.
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4.2

embedded semantics, each language statement was manually trans-
lated into appropriate pseudomachine operations; after input to
the emulator, it was possible to use the emuléﬁor to perform all
thé machine operations necessary to execute the PLANS staﬁements.

It should be emphasized that the software pseudomachine wés
not necessarily an efficient device for program execution; how-
ever, it provided a,capability to test logical PLANS code and as-
sure the adequacy of the language functional capabilities. Mére
significant is the fact that exequtability was provided during
the language definition phase r;ﬁher than after impleméntation
effort had occurred. It is important to note that the emulator
mechanization of the pseudomachine proﬁided a selfuchecking %eri-
fication of the consistencf and_logiéal sufficiency of the PLANS
functional spe@ifications themselves much earlier than preﬁioué'
methods would have permitted .~
EVALUATION OF LANGUAGE SUITABILITY FOR APPLICATIONS

In the first six months of the study, trial programming was
done using a temporary syntax for a language with the functional
capabilities anticipated for éLANS. This work is referred to in
Section 3.3 as synthetic programming. After-developing a syntactic
and sémantic specification mechaﬁism, and after concluding to rec-

ommend transliation. from PLANS to PL/I, the syntax of PLANS devel-

oped rapidly. Because the conventions of PLANS coding needed to

be similar to those of PL/i, a PL/I type syntax was adopted. Cod-
ing in PLANS rather than a functionally similar synthetic lan-
guage (called TRIAL PLANS in some documentation) could then be

accompliéhed. Aedl



Several applications programs or program segments were written
to validate the adequacy of both the syntax and semantics of PLANS.
As a result of these exercises, several new features appeared.in
the language that made manipulations of the data structurés (i.e.,
trees) easier to perform. For example, GRAFT and PRUNE took on
language meanings similar to their physical meanings. Alterna-
tives were resolved about whether a label is preserved when its
corresponding node is grafted onte another tree, etc. To illus-
trate the increase in statement power that résulted after the
basic language capabilities were defined and the‘syntax and seman-
tics were nearly developed, Table A-9 is presented. Table A-9
compares the TRIAL PLANS code developed early in the study with
the PLANS code developed later. It should be stressed that the
functions of the routines are identical.

Because of the avaiiability of the pseudomachine described in
Section 4.1, analysis of language suitability could include the
execution of PLANS code. Several modules were coded in PLANS and
the PLANS code manually converted to pseudomachine instructions
using the PLANS grammar (i.e., the PLANS grammar with the embedded
semantics). The pseudomachine instructions were then input to
the computer program that emulated the ﬁseqdomachine, and the
PLANS code logic was executed. This process served to verify (1)
the adequacy and consistency of the specifications for the PLANS
statements, (2) the validity of the pseudomachine emulator pro-
gram, and (3) the adeguacy and consistency of the logic of the

module written in PLANS.
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Table A-8 Development of Syntax and Semantics of PLANS

This routine takes an unordered list of Jobs and orders it so that
no precedence relationships are viclated.

Written in Trial PLANS:

SUBROUTINE ORDERBYPREDECESSORS ( $SET ., $REMAINDER )
DO 2 1 = 1, NUMBER ( $SET ) :

IF { PREDECESSORS OF $SET(1} .SUBSET OF. $NAMES ) GO TO 3
$REMAINDER = $SET

$SET = $TEMP

RETURN ,

$TEMP = $TEMP & $SET(I) .

$NAMES = $NAMES & NAME OF $SET(1)

$SET = $SET  $SET(I)

IF ( $SET .NE. $NULL ) GO TO 1

$SET = $TEMP

$REMAINDER = $NULL

RETURN END

Written in PLANS: 3

ORDER BY PREDECESSORS: PROCEDURE ($JOBLIST, $ORDERED_LIST) ;

DECLARE $NAME LIST, $TEMP LOCAL ;LOOP:

GRAFT $JgBLIST JFIRST: (ELEMENT. PREDECESSOR SUBSET OF $NAME _LIST)
AT $TEMP

IF $TEMP IDENTICAL TO $NULL THEN RETURN

$NAME LIST(NEXT) = LABEL ($TEMP) ;

GRAFT $TEMP AT $ORDERED LIST(NEXT) ; .

GO TO LOOP ;

END ORDER BY_ PREDECESSORS ;

An example of "executed PLANS code is contained in Table A-10

which shows the input data and output data for the ORDER BY
PREDECESSORS code of Table A-9. The data pertain to a simple

network representation of Sﬁuttle Operations also shown in Fig-
ure‘A—S.

-Several examples of coded routineé or programs are include@
in vqlﬁme 11 of this report. All examples were developed during
the study as a means of evaluating the applicability of the lan-

guage.
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Tabile A-10 Execution of ORDER_BY PRECESSORS Coded in PLARS

INPUT _DATA
$JOBLIST

OUTPUT DATA

$ORDERED _LIST

LAUNCH_OPS
PREDECESSORS
X - SERVICE_SHUTTLE
X - PREP_CREW
ONORBIT_QPS
PREDECESSORS
X - LAUNCH_OPS
DEORBIT_LAND
PREDECESSORS
X - ONORBIT_OPS
CREW_TRN_DPS
PREDECESSORS
X - PAYLOAD OPS
PREP_CREY
PREDECESSORS
X - MISSION BRIEF
PAYLOAD OPS -
PREP_DROP TANK -
SERVICE_SHUTTLE
PREDECESSORS
X - MATE_ORBITER
DEBRIEF_CREW
PREDECESSORS
X - DEORBIT_LAND
MISSTON BRIEF
PREDECESSORS
X - CREW_TRN_OPS
PREP_ORB_LAUNCH
PREDECESSORS
X - PAYLOAD OPS
ASSEMBLE SRBS -
MATE_TANK_TO SRB
PREDECESSORS
X - ASSEMBLE SRBS
X - PREP_DROP_TANK
MATE_ORBITER '
PREDECESSORS
X - MATE_TANK TO SRB
X - PREP_ORB_TAUNCH
REFURB_PAD
PREDECESSORS
X - LAUNCH OPS
REFURB_LUT
PREDECESSORS
X - LAUNCH OPS
RECYCLE_SRB
PREDECESSORS
X - LAUNCH_OPS
RECYCLE_ORB
PREDECESSORS
X - DEORBIT_LAND

PAYLOAD_OPS
CREW_TRN_0PS
PREDECESSORS
% - PAYLOAD 0PS
PREP_DROP TANK -
MISSTON_BRIEF
‘PREDECESSORS
X - CREW_TRN_OPS
PREP_CREW
PREDECESSORS
X - MISSION BRIEF
PREP_ORB_LAUNCH
PREDECESSORS
X - PAYLDAD_OPS
ASSEMBLE SRBS -
MATE_TANK TG SRB
PREDECESSORS
X - ASSEMBLE_SRBS
X - PREP_DROP TANK
MATE_ORBITER
PREDECESSORS
X - MATE_TANK_TO_SRB
- X - PREP_ORB_LAUNCH
SERVICE_SHUTTLE
PREDECESSORS
: X - MATE_ORBITER
LAUNCH_OPS
PREDECESSORS
X - SERVICE SHUTTLE
X - PREP_CREW
ONORBIT OPS
PREDECESSORS
X - LAUNCH_OPS
DEORBIT_LAND
PREDECESSORS
X - ONORBIT_OPS
DEBRIEF_CREW
PREDECESSORS
X - DEORBIT_LAND
REFURB_PAD
PREDECESSORS
X - LAUNCH_OPS
REFURB_LUT
PREDECESSORS
X - LAUNCH_OPS
RECYCLE 'SRB
PREDECESSORS
X - LAUNCH_OPS
RECYCLE_ORB
PREDECESSORS
X - DEORBIT_LAND

Note: The symbol X is used in these structures for a null label
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EVALUATION OF LANGUAGE IMPLEMENTATION FEASIBILITY

Having arrived at a desirable basic functional design forlPLANS,
it was necessary to consider the feasibility of its implementation.
This required a consideration of specific execution mechanisms for
individual PLANS statements, language parsing and translator de-
sign mechanisms, system implications of PLANS, and possible disc
access and update mechanisms. TIn each case, the emphasis was not
o1 méking detailed tradeoff decisions, but on a determination that
at least one feasible method existed.

Dynamic tree manipulation is the basis of PLANS. The most
basic implementation feasibility issue is, therefore, the deter-
mination of a mechanism for the representation of dynamic trees.
The mechanism that has been selected is the binary tree structure.
In this structure, a nonterminal node contains a pointer to its
leftmost descendant, and each nonrightmost node at a given level
points tc its next sibling to the right. This structure is simple
to implement and is quite efficient for most foreseen applications,
but random access time by subscript or label varies in porportion
to the number of nodes per level. Any mechanism that avoids this
problem would necessarily require multiple descendant pointers,
with increased overhead, and hashed or ordered label pointers to
allow a nonsequential search. These methods would seriously de-
grade performance with small trees and have been rejected as dif-

ficult and undesirable.
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Storage of labels and values is on issue that might well de-
cide the efficiency of PLANS execution., 1t is a very simple mat-
ter to physically store this information as part of each node,
but this requires allocation of label and value space for each
node, even though a given node may lack one or both. It alsoc re-
quires allocation of full-length fields (or variable—length.node
records) for this information, even though the actual information
to be stured réequires only a small portion of this space. This
situation is amenable to the usual épace—time tradeoff, and we
have elected to employ a variant of the buddy system to allow
dynam;c allocation of varying~length reﬁords for label aﬁd value
storage. Jome testing of this method will be required befove it
can be determined whether it repfesants a reasonable tradeoff,
but preliminéry execution trials indicate its basic feasibility‘
end practicality.

A second concern was_with mechanisms éppropriate for lapguage
parsing and translation. The PLANS syntax proves to be expressible
in a form that is amenable‘to top~down deterministic parsing, a
simple and efficient technique. Furthermore, the PLANS functional
gspecification was expressed in a form quite amenable to thehappli—
cation of automated translator-writing concepts. These methods
have now been emploved to generate a fairly extensive syntax
checker for PLANS, and a very rudimentary code generator. The

©
indicated parsing method and the automated translator generation

approach appear quite powerful and appropriate for this applica-

tion.



PLANS has, or could have if extended in foreseeable ways, sev-
eral implications at the computer system level. The most basic of
these derives from the extreme desirability of PL/I as the trans-
lator object language. If PLANS is to be executed on a particular
system, translator development and operation will be much more
straightforward if that system has a PL/I capability. In the
past, this would have restricted PLANS to IBM computers, but this
is clearly no longer true. CDC and Univac have announced deliv-
ery of PL/I compilers in 1975, and other major manufacturers are
quite likely to develop compilers for it.

The possible extension of PLANS into interactive programming,
interactive execution, and disc access/update, particularly using
a generalized data base management system, has obvious system im-
plications, but these implications are not significantly PLANS-
specific. All the usual considerations that are enéountered in
the development of interactive systems and data base applications
can be expected with these extensions.

The use of a generalized data base system, warranted special
consideration, since PLANS tree structures represent a well-de-
fined special application for such a system., System 2000 wes con-
sidered since it is a simple, easy-to-use, hierarchical data base
management system. This system offers a subset of the functienal
capabilities of most other such systems, but makes the capabili-
ties very accessible to the user. Analysis revealed gSOd com-
patibility between PLANS and System 2000, and it was concluded

that an automatic translation capability to map PLANS statements
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4.4

into System 2000 statements is feasible. Since System 2000's

éapabilities also exist in such systems as IBM's IMS, it is ap-

parent that PLANS access and update statements can be made to

- functionally correspond to operations in those systems, but per-

haps at some cost in difficulty and complexity.

DEVELOPMENT OF CONTENTS AND SPECIFICATIbNS FOR LIBRARY MODULES
The major emphasis of the modeling and algerithm tasks in the

second part of Phase 1 was placed on definition éf the contents

of a module library and determination of the correct separétion

of functions among the modules. A detailed analysis of-scheduling

problems reveals a very large number of capabilities that could

-be preprogrammed; yet many of these are useful only in highly

specialized problems and thus would have little value in a gen-

eral library. The problem,with specifying a programrlibrgry is

not so much éhat to put in it, as what ﬁo leave out of it.
During the second paft of Phase 1, modules that met the fol-
lowing criteria were specified:

1) Each module is limited to a single logical function. Al-
'thdugh it is possible to group several of the épecified mod-~-
ules together based on high~level functiocnal similarity, to
do so.would restrict flexibility or decrease the computational
efficiency of the funétions represented. Thérefore, the mod-

ules specified fer the program library should perform a sin-

gie, separable logical function.
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2) TEach module performs a function that is common or likely to
occur in typical scheduling software. No medule is specified
that is applicable only to an infrequent special case, one
that is required only in an unenlightened or highly encum-
bered approach where an alternative exists.

3) No module specified contained judgments or decision making
logic for which the criteria are open to opinion. For ex-
ample, no module should assume a specific economic model, a
queuing service policy, or a criterion for resolving resource
alternatives. These judgmental matters are considered too
problem-dependent and inflexible for an initial library spec-
ification. Because of the criterion for functional simplicity
and separability (criterion 1), the specified moduleé perform
elementary operations and generally return information upon
which decisions can be made rather than making the decisions
themselves. Modules that make simple decisions based on quan-
titative criteria, which are easily perceived by the user, are
specified as decision algorithms. A ciear distinction is pre-
served between simple decislion making modules (algorithms) and
information providing modules (the operations model). Thus,
all of the latter are equally applicable whether exercised
interactively by a user making real-time decisions or in a
batched system design where algorithm modules make the sched-

uling decisions.
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The cutput of this analysis was specifications for modules
covering a range of sophistication, from computing the duration
of an interval to calculating the entire schedule for a ﬁroject
with tens of thousands of jobs each sharing resources with other
jobs.. The contents of the specified modﬁle library afe shown in
Table A—llxclassified-loosely according to their functions within
the overall modeling and solution process.

Some generalizations are evident from an examination of the
library contents. Two majof types of solution strategies are sup-
ported: mathematical programming techniques and project sched-
uling techniques. Of the two, it was concluded that the project
scheduling téchniques répresent the most cépable and practical
generalized fechniques available for realistic problems. Mathe-
matical programming techniques are useful, however, for special
problems with small dimemnsionality, and are, therefore, supported
by the specification of appropriate library modules.

It is also evident that the library contains many modules that
p%rform the common Bookkeeping functions that caﬁ be standardized
without loss of logié.flexibility. For example, all scheduling
programs must keep track of resource assigngents as they are made.
This simple function is accomplished by the modules UPDATE
RESOURCE and WRITE_ASSIGNMENT. Similarly, all scheduling involves
the checking of real or anticipated assignments for comstraint

compatibility. Four modules that perform constraint checking are
specified. To facilitate the formulatiqn of logically cbnsis;ent

operations model definitions, three preprocessing modules are
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Table A-11 Contents of the Module Library by Title

PREPROCESSORS

CHECK _FOR PROCESS_DEFINITION
NETWORK_EDITOR
REDUNDANT PREDECESSOR CHECKER

PRELIMINARY PROCESSORS

GENERATE_JOBSET

PREDECESSOR SET INVERTER
ORDER_BY_ PREDECESSOR
CRITICAL PATH_PROCESSOR
PREDECESSOR SET INVERTER
NETWORK_ASSEMBLER

CRITICAL PATH_CALCULATOR
CONDENSED_NETWORK_MERGER
NETWORK_CONDENSER

PROJECT DECOMPOSER
COMPATIBILITY SET GENERATOR
FEASIBLE_PARTITION GENERATOR

ELEMENTARY FUNCTIONS

DURATION

ENVELOPE

CHECK_ELEMENTARY_TEMP RELATION
WRITE ASSIGNMENT
INTERVAL_UNION

INTERVAL INTERSECTION

PERFORMANCE OR CONSTRAINT STATUS

CHECK_EXTERNAL TEMP RELATIONS
CHECK INTERNAL TEMP_RELATIONS
RESOURCE_PROFILE

POOLED _DESCRIPTOR COMPATIBILITY
CHECK DESCRIPTOR COMPATIBILITY

DATA UPDATING

UPDATE_RESOURCE
UNSCHEDULE
DESCRIPTOR UPDATE

ALGORITHMS

FIND MAXIMUM
FIND MINIMUM

HEURTSTIC SCHEDULING PROCESSOR
RESOURCE_ALLOCATOR
RESOURCE_LEVELER

NEXT SET

PRIMAL SIMPLEX

DUAL_STMPLEX

GUB_LP

INTEGER PROGRAM

MIXED INTEGER PROGRAM
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provided. Althougﬁ many additional routines cﬁuld be specified
Eé pefform analyseé of input data, it was decided that the prob-
lem analyst with eveﬁ & minimum of éxperience would be unlikely
to use such capabilities, i.e., he would be more likely to have
sufficient understanding of his problem to avoid certain obvious
logical inconsistencies. For'examplé; i£ was deemed unnecessary
to build a module to check if any defined process.requires more
resources than are determined to be in the problem model. The
incopsistencies that are more likely t; occur are, however, de-
tectable by the specified preprocessing modules.

Finally, the library contains many typical ordering and pafti—
tioning functions call preliminary processors. Thése modules cal-
culate parameters (such és slack iﬁ a netwoerk) or-create sequence
1ists that are often used by a deciéion algorithm. These same
data are equally useful in an interactive scheduling process in
which human decisions are used. Thus, minimum executive logic or
scheduling system design has béen assumed in specifying‘the con-
tents of the meodule library.

The detailed functional specificationnof each module in the
library is contained in Volume IIT of this feport, whereas inmsight
in the actual use of the library for écheduling is provided in

Volume IT.
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4.5

DEVELOPMENT OF STANDARD DATA STRUCTURES

The utility of a module library depends not only on its con-
tents and the appropriate allocation of functional capabilities,
but also on the degree of integration between the modules. It is
undesirable, for example, to require through improper specifica-
tions that the program designer devise elaborate special purpose
tree structures and reformatting loglc to convert the cutput Sf
one module to the apéropriate format for the input of another
module. This problem is minimized if a set of generalized template
data structures are defined. Use of these generalized structures
can then be assumed by the library modules. These structures serve
to integrate the modules and, in doing so, provide a framework
within which the analyét can model the operational system to be
scheduled.

A major activity in the second part of this study was to de-
fine the standard data structures in a manner that was nonrestric-
tive in terms of modeling flexibility; A prime consideration in
structure definition was unambiguous interpretation of input and
output information for a scheduling problem by problem analysts
or by the logic of the problem library modules. It was discov-
ered early ip the study that basic system descriptivelinforma—
tion was hierarchically related and that this same information
separated rather clearly into three types of tree structures that
we labeled $OPSEQ (a compression of operational sequence) $PROCESS,
and $RESOURCE. 1In the second part of the study; the details of
these structures were refined iteratively as the specifications

for the module library became specific.
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The final standard data structurés are shown in Fig. A-9. To
" illustrate the evolution of these structures that transpired,‘con—
sider ghe portion of the tree $RESOURCE with the label ASSIGNMENT.
This substructure has been designed to record the results of exe-
chting scheduling decisions that assign the resources to jobs for
particular intervals of time. The substructure design must accom-
modate the fact that the resource in question might be é‘single
item or it might be a pooi. Specifically, the resource might be
CREWMAN JONES or it might be the pool called ASTRONAUTS. A sched-

uling problem could require a mixture of pooled resources and item

_specific resources. Thus, a single standard structure for $RESOURCE

must be designed only after a careful categorization of the possi-
ble model variations has been aécﬁmplished.

This particular study activity resulted in a set of definable
dharacteristicg for general problem models that must be consid-
ered in realistic scheduling problems. These definitions along

with the standard data structures that accommodate the descrip-

tion of those characteristics are collectively called the general

operations mo&el. TaBle A-12 summarizes the results of this
analysis. The terminology "explicit descripfofs” is used to dis-
tinguish between resources whose descriptdrs do not change after
being assigned and used in a job, and resources whose descriptors
change‘as a result of being assigned and ﬁsed in a job. An ex-
ample of the latter is the descriptor LOCATION,lwhich may be

changed by scheduling and executing a job called DELIVER_PAYLOAD.
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Table A-12 Characterization of Problem Models
RELATIONS BETWEEN JOBS (TEMPORAL RELATIONS)
Simplé Predecessors

Start of Job B > End of Job A

Generalized Temporal Relations

Start
End

Start

of Job B Fnd

- of Job A %ti Constant

v v n]a A

RELATIONS BETWEEN JOBS AND THEIR REQUIRED RESOURCES ’
Job A‘Requires

One Pooled No Explicit Descriptors
More Than Resource with {Changeable Explicit

One ltem-Specific Descriptors

or it requires any combination of the above for an interval of
time that may or may not be the entire duration of the job.

Thé ASSIGNMENT substructure of $RESOURCE must be sufficiéntly
flexiblg to handle the assignment inﬁormation for any tﬁpe éf re—
source. Tabié A~13 shows an assignment structure for one pooled
resource that has been partitiongd several ways, each with a unique
set of explicit descriptors and one item specific resource. It
can be seen that both resource typeé are accommodated b? the gen-~
‘eral structure shown in Fig. A-9.

Analysés were conducted that led to other similar general
structures within $PROCESS and $0PSEQ. 1In addition, the output
structures of the library modules were developed to have maximum
compatibility with the three structures already discussed. The

structure of $SCHEDULE shown in Fig. A-10 is an example of a

specified standard structure that is obviously not an input to
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Table A-13 .
The Assignment Substructure of $RESOURCE for Pooled and

Item-Specific Resources

$RESOURCE
PERSONNEL
CRANE_OPERATORS
QUANTITY - 6
CLASS - PQOOL
7 ASSIGNMENT
DESCRIPTORS
¢
INITIAL
QUANTITY - 2
lst Partition
of the Pool
Pooled FINAL
Resource QUANTITY - 2
Assignment <: ; LOCATION - DOCK
INITIAL
QUANTITY - 1 2nd Partition
FINAL of the Pool
QUANTITY -1
¢
FINAL } 3rd Partition
QUANTITY - 3 of the Pool
INTERVAL
START - 2
L\ END - 12
. JOB ID - JOB 01
CRANES
CMOBILE 09

LOCATION - DOCK
/  ASSIGNMENT

¢
INTERVAL
START - 14
Item Specific END - 20
Resource JOB_ID - JOB_02
Assignment CMOBILE 13
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LOCATION - DOCK

: <: CAPACITY - 50

CFIXED_07
LOCATION - DOCK
ASSTGNMENT
¢
INTERVAL
START - 2
END - 12

\ JoB_ID - JOB 01 .



$SCHEDULE

. (308 1D . (JOB I1D) 0B DI

OLA: P () orsea s, () pRocess® RESOURCES

'SPLITTABLE" | “NONSPLITTABLE") (VALUE} (VALUE) (VALUE]
¢

, . START . END . {T¥pE

(VALLE) IVALUE)

'DESCRIPTORS . . . INTERVAL

. ‘ . ‘ . START . END

IVALUE) IVALUE)

. INATIAL . . FINAL

¢

'Qumnw tpnn.wnsrsm . see . esee

NAWD . . {VALLE) IVALUE) {VALUE)

Fig. 4-10 $SCHEDULE Structure
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4.6

a scheduling program, but which should be standardized to facil-
itate the use of modules that check constraint vieolations or com-
pute resource profiles. It can be noted that $SCHEDULE, $PROCESS
and $RESQURCE have certain substructures that are identical. This
is a result of recognizing that scheduling loglc will consist of
grafting or inserting portions of one tree on anothér, a proce-
dure tﬁat is simple if the structures are common.

Other standard data structures ére discussed in Volume II of
this report. Volume II provides a complete description of how
the structures accommodate the problem model variations identi-
fiéd by the analysis just described.

ASSESSMENT OF IMPLEMENTATION FEASIBILITY OF SPECIFIED MODULES

To provide data on the scope of the effort required to imple-

ment the modules being specified, selected modules were programmed.

A range of functional characteristics was considered in selecting
the modules to be coded. Simple bookkeeping-type functioms that
should be easily programmable in PLANS are represented by the
modules shown in G;oup I of Table A-14. To verify the adequacy
of the PLANS language, and the functional specifications as written,
all the modules in Group I were coded in PLANS.

The modules shown in Group II of Table A-14 are typical of
the more complex functions specified for the PLANS module library.
Coding was generated for the modules of Group II in order to bal-
ance the implementation assessments gained while coding the low-

level modules of Group I.
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Table A-14 Modules Coded for Implementation Feasibility Analysie

DURATION
ENVELOPE

ORDER_BY_ PREDECESSOR

WRITE_ASSIGNMENT

UPDATE_RESQURCE

UNSCHEDULE

RESOURCE_PROFILE

GROUP I ELEMENTARY MODULES

Calculated the duration of any standard (simplé or multiple)
interval o

Calculates an interval that is the smallest cover of a given
standard (simple or multiple) interval '

Produces a list of jobs with the property that all jobs appear
in the list only after all their predecessors have appeared;
i.e., produces a nonunique technological ordering.

Writes a single assignment for a resource and adds the assigh—
merit node in chronolegical order in $RESDURCE.

Records the scheduling of a schedule unit (job) by writing as-
signments in $RESOURCE for all resources used in the schedule
unit. :

Deletes assignments from $RESOURCE for all resources associ-
ated with a specifiad job to be deleted.

Determines the profile of a rescurce pool over a given time
interval for both "mormal" and "contingency" levels. Deter-
mines the profile of the assigned portion of a pool and gives
the jobs to which the rescurces are assigned.

NEXTSET

GENERATE_JOBSET

GROUP IT HIGHER-LEVEL MODULES FROM OPERATIONS MODEL

Determines a set of specific resource items to meet the re-
quirements of a job and permit the earliest possible executicn
of that job. .

Determines future times the job requirements can be met with
any combination of approprilate resource types.

Creates individual jobs for each occurrence of a process spec—
ified explicitly or via an operations sequence in SOBJECTIVES.
Merges information contained in $O0BJECTIVES $OPSE and $PROCESS
into a tree called $JOBSET. Jobs in $JORSET are ready for the
decision algorithms to make explicit assignments.

MIXED INTEGER_PROGRAM

INTERGER_PROGRAM *
RESOURCE_ALLOCATOR

RESOURCE_LEVELLER

GROUP IL1 ALGORITHM MODULES

Solves linear programs that contain both continuous and inte-
ger-valued decision variables.

Solves the linear form of the binary decision-making problem.
Alloecates resources to jobs to satisfy all rescurce con-
straints and heuristically produce a minimum duratifon sched-

ule.,

Reallocates resources to smooth the usage of resources while

maintaining schedule constraints.
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Finally, several algorithm modules (Table A-14, Group III)

were written to assess the effort required to lmplement sophisti-

cated sclution techniques. The results of these three coding

analyses are summarized.

1)

2)

3)
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The adequacy of PLANS for implementing nommathematical sched-
uling routines was verified.

The functional specifications for the modules coded were spe-
cific enough to provide a clear indication of what was needed,
but not so detailed as to preclude options for detailed logic
design. This conclusion was reached by using persomnnel to
design and code modules in Groups I and ITI who had not previ-
ously been associated with study. Before starting the design
and code exercise,.they had no previous knowledge of PLANS or
the operations model conventions.

Several extensions to the functional capabilities of the speci-
fied modules should be expected during implementation. It was
found that careful logic design could provide output informa-
tion that was additional to that specified without in¢reasing
the complexity or efficiency of the logic internal to the
module. For example, the NEXTSET specification called for the
return of the earliest availability window in which a resocurce
set would be available to meet specified requirements. The
logic needed to determine this earliest window alsoc deter-
mined all other later windows in which the requirements could
be met. This and other examples, which resulted from the im-

plementation assessment task, lead to the conelusion that a



+)

careful implementation effort should produce functional capa-

~bilities iIn excess of those specified.

Mathematical programming techniques can be expected to re-
quire greater iﬁplementation efforts than other relatively
sophisticated scheduling modules. This results not only from
the complexity of the mathematical logic but also from the
need to usé the most advanced mathematical programmihg meth-
ods to maximize the problem dimensionality that can be han-
dled. Programmed in this study was a technique éuggested by
Gepffrion to adapt the well-known Integer programming tech-

nique employing surrogate constraints to the problem decom-

position derived by Benders. Computational implementation of

this approach has not been reported elsewﬁere;'detailea docu-
mentation of this program will appear Subsequéhtly. It is
important to nofe here, however, that the development of state-
of-the-art mathematical programming routines is sufficiently
complex to suggest that a careful analysis of usape require-
ments be made before a‘general implementation effort is initi-
ated.

PLANS provides appropriate capabilities to program project
scheduling routines. Efforts requireﬁ to implement such rou-
tines were less than anticipated.

To provide insight on how the various specified modules would

integrate and to verify the adequacy of the standard data struc—

tures, a demonstration program was designed to solve a typical

Sﬁuttle flight scheduling problem. The afchitecture of the pro-

gram is illustrated schematically in Fig. A-11. The implementation
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of the demonstration problem was taken to a point where input data
structures were defined and executive logic functionally specified.
The analysis confirmed implementation feasibility for a program of

this nature.

Inputs Defining Single
Flight Network

- $0PSEQ . ~——— ~—
- $PROCESS - - |
- $RESDURCE |
| |
! |
i |
: [
| I
| I
Translate Inputs Assign Start Allocate
Inputs Defining Particular into Single Times for Al1 Specific
Flight Scheduling Problem Problem Statement Activities Resources
Using Project to Scheduled |—sd FINISH
ﬁ Scheduling Jobs
=8 SoRoRCTIVES
et $JOBSET HELRISTIC SPECIFIC_
UT DATA_ SCHEDULING _ RESOURCE™
INTERPRETER PROCESSOR ALLOCATOR

NN

Fig. A-11 Demomstration Program Macrologic

1t was discovered, however, that the $OPSEQ structure and the
GENERATE_JOBSET module should be extended to incorporate informa-
tion on "commonality" constraints. Commonality is a term that
refers to coupling of resource allocation decisi&ns across jobs.

For example, if Job 32 and Job 33 each require an orbiter, and
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the orbiter chosen must be the séme.orbiter,,then a commonality
constraint exists. This constraint appropriately belongs in the
$0PSEQ standard data sfructure since it concerns information re-
lating jobs to'one anothér.

. The formulation of a demonstration problem served te verify
implementation of a functional;y integrated program using PLANS
routines and PLANS executive logie. 1t also served to extend
capabilities of specified modules and data structures to make
them cover more of the functions required in a typical'problem.'
ASSESSMENT OF METHODS FOR AUTOMATED ALGORITHM APPLICAIION

The approach to identifying appropriate logic for module spec-

ification used in this study placed early emphasis on elementary

and fundamental modules. An ultimate goal has been to progress
upward in level, sequentially addressing mere and more automated

scheduling capabilities. An analysis on how realiétically com—

plex schedules are successfully generated leads to a single ines-

cépable conclusion: Humar Judgment 18 always present in thé over-
all decieilon-making process 1f the vesulting schedulings ave
realistic. This fact suggests caution in proceeding toward greater
adtomation.

The analysis performed in the task_described here was limited
to a conéideration of how current project scheduling methodology,
which can in fact handle réalistic dimensionalities, can be used

in solving problems with greater model generality than is directly

accommodated by project scheduling models., A scénario of human/

computer activities was developed to which subsequent analyses
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can provide greater detail. The overall approach to heuristic

scheduling using project scheduling methods consists of three

major procedural elements:

1) Resource constrained project scheduling applied to limited
problem descriptions;

2) Manual scheduling for fine tuning and resolving low-dimen-
sional complex conflicts; and

3) Detailed resource tracing considering resource descriptors.

Table A—lS'displays the expected frequency, ptoblem size and in-

terface needs for these three elements.

Table 4-15 GStrategy Characteristics

Expected

_ Frequency Problem
Strategy of Use Size Interface
Project Scheduling Very Often 0(10%) Batch
Interactive
Perturbations ~ Very Often 0(10) Interactive
Detailed Resource
Tracing Ocecasionally 0(102) Batch

The project scheduling modules could easily be a mainstay of
a scheduling system especially during the early phases of a new
operation. Their forte is handling large problems of a simple
format to give the scheduler a handle on an unknown situation.
The quantities of data used and presented peint to batch rather
than interactive computer interfaces.

Interactive scheduling, employing user intuition and low level
modules to schedule a small number of jobs is expected to occur at
least as often as large project scheduling and probably more often

as the operations become more routine or well-defined. In this
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case a basic framework schedule exists and the man is resolving
real-time conflicts or those wﬁich are difficult to express to the
computer{ Experience shows that once a man is familiar with the
opefation he is scheduling, he can resolve most coqﬁlicts if he
can see the effect of his decisions. Interactive computer inter-
faces would greatlyff;cilitate this process.

Detailed resource tracing may Be necessary ﬁo ensure that;all::j
jobs needed to guarantee that proper resource states are in the
petwork, or to validate a schedulé. However, detailedlresourgé

tracing should be avoided most of the time for two reasons. FirSt;

the changing of states for a particular.resource can usually be

" handled using jobs (e.g., job: receive pavload rather than resource:

payload, stétei‘ received.) Sécond, the genera;ioﬁ of schedules
that are too détailed ignofes the fact ﬁhatnthe future ié.ﬁeve;wf
exactly what 1is expécted. Such schedules limit the individuéi ig
scheduler free&om to handle day-to-day crises and spgcial‘alléc;é‘
tions. The capébility of the individual scheduler-isla-consigfig
erable resource in itself.

The analysis conducted under this task p;oduéed hasic cqﬁcepts
that leq directly to a brelimiﬁary concept for a man-computer
scheduling system. This concept is iilustrated in Fig. A-12., The
utility of such a system depends hea?il& on the gllocation of re-
sponsibilities bétween the computer and'the human schedulér# EThus,
a set of specific test objectives emerged; i.e.,'evaiuate.thé per-

formance of both the man and the computer system in the roles in-

dicated in Fig. A-12. 1In particular, what functional elements

1
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Fig, A-12 A Man-Computer Scheduling System Concept
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belong in_the iteration paths? It was decided to build the dem-
onstratibn program with the interaction points indicated in Fig.
A~-12T Specific tests could then be run on proposed automated
problen reformat;ing logic and on tutorial-type modules that might
be placed in the feedback paths of the man-computer system concept.

These tests will be executed in future analyses.



