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1. INTRODUCTION

This report is concerned with the description of a computer
program for solving a certain class of optlmal control problems
known as the linear-guadratic problem (LQP).1’5 67 The LGP is
sometimes referred to as the neighboring optimal-guidénce
problem1’3 evén though it is applicable to both guidance and
control ?roblems. The diétinguishing feature of the LQP is that
it can be solvéd without iteration (whereas general optimization
problems usually require itefative numerical techniques). - Thus,
_ it is useful in the initial portion of guidance and control
design for determining approximate feedback gains and giving |
insight into the systens. | | ‘7

| The computer program @éscribed in Appendix A_solves the

following problem:

Minimize: J zyg Spx gt 2‘f f[x A(t)x+ax h(t)u+u B(t)u]dt (1.1)
L2 _

Subject To: %=F(t)x+G(tlu, x(t)=xy o o (1.2)

Mee= O, | | (1.3)

where x is an n-vector, u is an m-vector, and P is a

k<€n ~vector. The initial and final times to and tf'are

assumed to be known, and the matrix B(t) is assumed to be
symmetric and poéitive definite on [to’tf]' It is & necessary
condition that B(t) be at least positive semi-definite; the case

when B(t) is not positive definite is called the singular case

*Numbers indicate references listed in Section 5.



and its solution is presented in Ref. 7. If one is only
interested in uging the computer »rogram, then one can proceed.
immediately to the self-contained Appendix A.

In Section 2, the solution for the problem defined by

Egs. (1.1)=-(1.3) will be solved without recourse to ovntimal

control theory methods (i.e., without using the calculus of
variations. or the Pontryagin maxinuim principle). To demonstréte
‘the essential features of the justification, the‘quantities-@
and N(t) vwill be assumed to be zero in Section 2. The case with
P ang W(t) included will be justified in Section 3 and optimal
control theory will be utilized. It should be noted that the
usual application of Egs. (1.1)-(1.3) is with¥and N(t) equal
to zero, so Section 2 should.be sufficient justification for

most of the cases which arise in applications.



2. METHOD JUSTIFICATION: WITHOUT
OPTIMAL CONTROL THEORY

- In this section the optimal feedback control for the
problem defined by Egs. (1.1)-(1.3) with M=0 and N(t)=0

will be determined, i.e.,

. N t . . ‘
Minimize: J:%xgsfxf+%,yif[xTA(t)x+u?B(t)u}dt o (2.1)
, _ by _ | | |
Subject To: x=F(t)x+G{(t)u, x(t0)=xo | : (2.2}

That is, we wish fo determine the cdnfrol ' ,
u=£(t,x) ' (@3
i.e,, a feedback control function, which causes J (the perfbr—
mance index) to be minimized. In Section A.2 of Appendix A
: the.typical origin of the terms in Egs. (2.{) and (2.2} is
discussed. Also, as noted in Section 1, B(f) is assumed to
be symmetric and positive definite (the nonsingular casé)..
| We could use the calculus of variations or the maximum
principle to solve this problem; however knowledge of varia-
tional theory is required. -Insﬁead, we shall employ a "itrick"
which is employed in many types of optimization analysis.
This trick involves the introduction of an arbitrary.function
' with specified continulty and differentiability properties, |
which will be chosen later to help us out. (Such a trick is
" also used when one introduces Lagrange multipliers into an

optimization problem, i.e., they are first treated'as arbitrary

N



functions and then particular functional forms are chosen to
aid in thersolution of the problem,)
Let S(t) be an arbitrary differentiable, symmetric

S nxn matrix functlon. :
t _

Property: %‘f th[x S(t)x]dt %[K S(t)x]t = 0. (2.4)

O .

Proof: The integral is an exact differential in XTSX, S0:

t -t t ot
%\rtid[XTSX]"%EXTSX}tj = %[XTSx]tj - %[XTSx]tzzs().

If Bgq. (2.4) is added to Eq. (2.1),:the problem is not
changed because Eq. (2.4) is identicaily zero. Thus, performing
this addition: |

S t
J:%zisfxf - %{XTS(t)x]tf + % j tf[xTAx+uT
. o 0

Bu+ %%(X?SX?}dt.

‘Note that S, is a given nxn matrix, whereas S(tf) is (as of now)

T
just an arbitrary nxn matrix function. Combining terms outside

"the integral and differentiating under the integral'résults in:

J=+XT(S ~5(t ))x 4% u(to)x

T

te m
+%.J‘tf[XTAx+ulBu+' SY+XTSX+X S¥ldt

o
But, %-Fx+Gu (note this is the point where the constraints get

into the problem), so:

T.T T.T

__1T - ‘ITn jfr
J"rxf[Sf S(tf)}xf+fxop(to)x xTAx+u Bu+x F Sx+u~G 8x

Ta T

+x Sx+x SFX+XTSGu]dt

or,



t
T 7 fo_ T ] . T
-l - 4 L i e
J,dxf[Sf S(tf)]xf ‘XOS(tO)kO+dJ1to[X (A+T~S+5+8) x+x 5Gu

+urelsxruTBulat o - . (2.5)
Note fhat the integrand is a quadratic form iﬁ %x and u, and
that {(as of now) S is an arbitrafy matfix._-We shall nowrchoose
S(t) in such a way that the optimal control is obvious.

If we can write the integral in J as:
ty T |
¢ (Ex+Tu) ~(Kx+Lu)dt , - (2.8)
‘ o - ' S : _

1 1

with L™ existing, then u=-L" Kx is the optimal control because

the integrand is the square of (Kx+Lu), which implies zero is

1Kx causes

the smallest value the integrand can take and u=-L
the integrand fo equal zero.

| Let us now expand Ig. (2.6) and equate it to the integrand
of Bq. (2.5); this will then imply how we should choose S(t)

to get the obvious control solution form of Eq. (2.6):

T T

ot ' . pt mom ,
A \ftf(Kx+Lu)T(Kx+Lu)dt= Itf[x K Kx+x K Lu+u L*KX+uTLTLu]dt (2.7)
0 ) o ‘

BEguating terms with the integrand of &g. (2.5) implies

KTR=A+F 5+5+5F | (2.8)

KTL.56 B ‘. | (2.9)
T, T | -

L K=G"S . | (2.10)
1T1-B - | (2.11)

Since B is symmetric and invertible, L is also symmetric and

invertible, i.e.,

ni-

it
e}

LL=B = LZ=B = L



By Fgs. (2.9) and (2.10)

1Tx.q se?¢h1,]GT“ B 3615, | - (2.12)

Finally, by Bgs. (2.8) and (2.12):
T

L[]
S+3+5LF

,
(B"?G S) (“ 4@ s) - AT
or

T

° T 3 ,_l_.l
S+8TM+F S+A=5GB “B <G8 ,

where the symmetry of 5"% and S has been used. . Then,
S-~SP-Fl5~A+5GB™1G1S | | (2.13)

Since Xf depends 1mpllc1t1y upon u, we can remove the 1mn1101t

_u-term from J by choosing: | :
s(tf)=sf o | . (2.14)

To summarize, then, if one defines the Riccati eguation:

4.-SF-rls-a+saa~lals

with boundary condition:

8(tg)=5,

the quantity J may be written as:

T

, t 1 _1 _a _a .
-J:%xgs(to)xo+,rtf(B‘?GT5x+B,ﬁu)T(B GrsxeB WAt . (2.15)

o

Then, the term outside of the integral is independent of u

(since % is specified and S(to} is well-defined by the solution

0
of Egs. (2.13) and (2.14)) and the smallest possible value of the
integral is zéro; and the integral is zero if:

Z T 2
~BY G Sx+B fu=0

s w=BlaToy . | O (2.16)



Equation (2.16) defines the.optimal feedback control, and
Jz%ng(to)xo is the value of the verformance index due to the
optimal control.

Examglé: “Min.: J:%\rg(ax2+bu2)dt (2.17)

 Sub. to: X=u, ﬁ(o):xo, T specified {2.185
Note that the system is a linear, time~invariant system, and if
classical linear control were employed here, a iinear'feedback
coﬁtrol with constant gains would be the typical result. The
usual result with iQP theory is a linear feedback control with

time-varying gains. However, by letting t_.=T be large, the gains

£
are approximately constant. (Constant gains may be obtainedlby
.choosing T= o0 ; see Ref. 5.) |

| Let ﬁs now compute the solution of the problem defined by
Egs. (2.17) and (2.18). As noted above, if T is finite, then
time vafying gains are obtained. However, we should expeét the
gain'to ébproach a constant as T Dbecomes large. The solution
to this problem is defined by Egs. (2.13), (2.14), and (2.16):

1.7

u=-B" G 8x | o : . . (2.19) -

with: B™'= &~ , G=1, and § is the solution of the Riccati

equation:
é:—a+ TSJ— .

The solution of the Riccati equation is:

1o2{a/b (t-7)
S(t)= JEE[;+82{57b.(t_T7— ! | (2.20)




Note that for T>>t, S(t)= Jao' . Plots of various S(t) as
T varies are showm to the right; |

p 50 .

5(t) is basically constant - Jao’

xcept for a transient near
tf_T This behavior is also
typical of more complicated

time-invariant systems. Ta Tz Ty T5.“

Thus, for this problem, S(t) = Jao if Ty»rt and the

approximate optimal Jinear feedback control is.(from Eq. (2.19))

u:%-(%)(‘l).\[a_b'xs—m:{ . o | (2.21)
This result agrees with intuition in that: (i) u is negative.
if x is positive, which implies that the control attempts to |
drive the state x to zero; (ii) u is proportional to a/b .
The latter result implies that if av»¥b, theh‘there is more
weighting on‘the state in the performance index and the result
is'arlafgé.control value to maintain a small value of X. Cn
the other hand, if a<<b, then there is more weighting on the
control in the performance index and thé result is a small -

control value (relative to the value of x). -



3. VFETHOD JUSTIFICATION: WITH

OPTTIAL CONTROL THEORY

In this section the optimal control problem defined by
Eqgs. (1.1)—(1.3) will be solved in general. The solution
teqhnique is well known, and is similar to the developmeﬁts in
Reférences 1 and 6. The underlying optimization theory is |
discussed in Refs. 1, 5, 6. |
To develop the desired solution it is convenient-fo adjbinr
the términal conditions, Eq. (1.3), to the performance index,
Eq. (1.1), with the constant Lagrange multiplier vectbr q, and
the differential eguations, Bg. (1.2), with the time-varying
(in.general).Lagrange rultiplier vector p. Then, the augmented
-performance index is:
T T . (te.m T, T
- J=ExgSxerg (Mgf- ¥ )+t ‘[t [x"Ax+2x Nu+u Bu
' 0
+pT(h+Gu-i)]dt. - ' , (3.1)
The Hamiltonlan for this problem is
H&%(XTAX+2X$Nu+uTBu)+pT(FX+Gu) , i : (3.2)

and the resultant necessary conditions of optimality are:

B=-H, | B | - (3.3)
B=0 . | | (3.4)
 JELT L T - (3.5)

where 1L is considered as an (nx1) vector and H; is an (mx1)

O



vector. Sincé the problem is nonsingular (i.e., B(t) is
positive definite), the control, u, may be eliminated from
‘the problemkby Bg. (3.4), i.e;,
H, =N x+Bu+GTp20 (3.6)
which implies | |

u::—B—

TrxsaTp) . o (3.7

Then, upon substitution into Egs. (1.2) and (3.3), we have
%=Fax~GB~ ! (11 lx+GTp)

b=+ NB™! (G p) P Tp
or, | | |
%= (F-eB" 'nyx-aB" e Ty | C(3.8)
=B~ ' -a) e (B~ ¢ T-F ) p . (3.9)
Since Egs. (3.8), (3.9), (1.3), and (3.5) are linear 3n x, p, ¥ ,
and gq, it can belshown that there musﬁ exist 1ineaf-felationships
among the‘variables; and we introduce the.unknown (for nowr)
matrices Q, R, S, and V involved in these relationshipé |
p(£)=8(t)x(t)+R(t)q | - | (3.10)
P -v(t)x(t)+Q(t)q. T (3.11)
(It can be shown that the resultant S(t) is symmetric,1’5_and
we shall assume this now to ease the notation.) Thus, among
the Z2n+2k -variables x, p; g, and i) there exist n+k indépéndent
variables, which bj Egs. (3.10) and (3.11) have been chosen to
be x and q. Upon substitution of these relations into Egs. (1.5)'
and (3.5) (i.e., the terminal boundary and transﬁersality

conditions), we obtain

10



11

Ter 3 +
M=V (L) 2+ Gt )
T

S(tf)gf+R(tf)q=szf+H q

or
=V ()% ,+Q(% ) g=0 | | - (5a2)
(5(t )-8 )%+ (B2 ) -1)g=0 , (3.13)

- which are 1dent1tles in X, and g. This implies that the

coefflclents of Egs. (3.12) and (3.13) must vanish, and thus

VM, Q=0 , S(tp)=8,, R . (3.1h)
Bquations (3.14) define boundary conditions for the unknown
matrices. If differential equations could Be.deVeIOPed for the
-matrices, then the matrices could be-cémputed by intégrating the;
resultant equations backward vith the boundary conditions of
(3.14). We shall now determine such a set of dlfferentlal
equations by differentiating Egs. (3.10) and (3 11), substituting
the results into Egs. (3.83) and (3.9), and then 1nterpreting the
resultant forms. |
Before we make these computations, it is instructive to
answer the queétion of why Egs. (3 10) and (3.11) were 1ntroduced
in the first place. Our goal is a feedback conirol, say
| u=g(t,x, ¥) . o o (3.15)
Ve are guaranteed the existence of relétionships of the type
assumed in Egs. (3.10) and (3.11) by properties of linear
differential equations (i.e., Zgs. (3.8), (3.9)) with linear
boundary conditions (i.e., Igs. (1.3),.(5.5)). Such relations
are desirable because if 5(t), R(t), V(t), and Q(t) can be

determined, and if Q(t) is invertable, then the optimal feedback



control can be computed from &g. (3.7), i.e.,

g G 52+ G R -7 vx) ) L (3.16)
We-shalllcomelback to this eguation after detérmining the
defining differential equations for S, R, V, and Q.

First differentiate Lg. (3.10) and substitute the result

into Egq. (3.9), i.e.,

Sx+Sk+Re = (WB™ T =A) x+ (9B™ 16 T-F71) (Sx+Rq) . (3.17)

Then upon substitution for % {(from Eq. (3.8)) and upon rearrange-
ment, we obtain

T

[S+SF+FLs+a- (804108~ 1 (8a+1) T1x

+[ﬁ+(FT~(SG+N)B“’GT)R]q:o S (3.18)

Since % and q are the independent variables, Eq.‘(3.18) is an
~ddentity in x and g, and thus, the coefficients must vanish,
which implies:

BamSF-F 8-+ (5G+10)B™ 1 (Sa+1) © | 5(t)=5, C(3.19)

R-[-Fl+(se+m)B e IR R(t )=  (3.20)

where the boundary conditions at tf are obtained from Eg. (3.14);

e

The equations for § and V are obtained by differentiating
Bg. (3.11) (noting that ¢ is a constant} and substituting for

%, which gives

v (r-eBT (046 T8)) Ix+13-vesT 16 TRIg=0 (3.21)

This is also an didentity in x and q which implies that the

coefficients must vanish. Since the equation for V is the

. v m }
transpose of R,V(tf)xMzR(tf)+ » and 3 is symmetric, it follows that:

V(t)=R()T , | (3.22)

so the variable V(i) is eliminated. The equation for @, with
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boundary condition from Eg. (3.14), is
T

T

H-R e e , Q(tf)=0 . a (3.23)

The resultant optimal control is then: -

oeen traTsg sy 2y 1x-pletRy Y, (3.28)
where 5, R, and Q can-be'determined by Igs. (5.19),'(5;20), and |
(3.23).
lote that § occurs in the optimal control, Eq. (3.24); only
in the product RQ"?. This motivates one to develoy differential-
" equations for (S—RQ"1RT) and RQ"1 (as opposed to S,:R; and Q),
ang if can be shown1’6 that the resultant differential equatioﬁs
aré exactly-like-the é and ﬁkequations. However, one cannot use

these until t.~ € (€ » 0) because Q_l does not exist at tf
V(Since Q(tf)so). Thus, in LGP, the 3, R, and Q egquations are
'intégrated beckward for a small time'increment, and . then a‘
switch-over to the direct computation of S;RQ_1RT and RQ"1 is
made. This, of course, saves conmputer time. - |

Finally, it should be noted that S-RQ™'RY

can becone
unbounded. This means that the proposed problem does not possess
an optimal solution (or a unique optimal in very special cases),

m
- L3 fal i L
and the time at which 3-RY ]R

hecomes unbounded is called a

conjugate voint. The program, L3P, prints out the occurrence

of a conjugate point and stops the computation. This is another
reason for choosing 5,> 0, A4(t) > 0, N(t)=0, and no terminal
conditions bhecause then one is zguaranteed that a unigue optimal

control exists5 and no conjugate point can occur.



iy, SUMMARY AND CCNCLUSIOUS

This report contains develomments of the linear quadratic
o2tinmal control probleﬁ, one of which does not involve optimal
control theory.. The theory iz applicabie to the development of
ngighboring optimal feedback suidance gains, and is useful as a
tool for synthesizing feedbacl: control laws in general. A
comnuter program which reguires ouly the nertinent matrices of
the linear quadratic provlen is described in Appendix A, which
also serves as é self-contained User's Guide.

¥nowledge of optimal control theory is not necessary to use
the cbmputer Drogram orrto understand the development of the
expression for the optimal feedback control (see Section 2).
Thus, Section 2 and Arvendix A may.be learned in a relatively
short period of time without any background in ontinization
theory. | |

The relationships between classical feedback control-design
and linear quadratic optimal control design were presented‘in
a number of lectures to NASA-JSZ and contiractor personnel 4in
July-~-August 1974 by 7. F. Powers, Lecture lotes were handed buﬁ
at the léctures and are available upon request Trom Modern

Systems Analysis, Inc.
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ADFRERDIX A
USER'S GUIDE FOR Lo
CLYP is a subroutine which solves the following ontimization

Problem, which does not require iteration:

m .t,. ’ m ‘ '
Minimize: J:%X;Sfxf+%\r IEXTA(t}K+2X*N(t)u+uTB(t)u]dt (&.1)

Subject To:  x=T(t)z+G(iju , x(% Yax : (A.2)

e ¥ , (4.3)
where x:n—vector,' usm-vecior, N =n~-vector, and t - and tf are

LY

specified. The notation of Egs. (A.1)-(A.3) is that of Ref, 1.

,q.- —_—

The user.need only supply a "HATN" subrouulne whlch defines the
varameters of the nroblenm and calle LATP. If any of the matrices
A, 1T, B, ¥, or G are time—varying, then a second subroutine
which defines the time-~varying matrices, nust be supplied,
zlso, Since LGY employs the Aumerlcal 1ntvﬂ ation schene DVDQ'
(which is a variable-stepsize, var1aole~orasr integrator; see
Ref. 2},'it is recommended tnat the tlwe varVJng matrices in

TIMVAR be represnnten by cubic splines.

.1 DBagic Flow Of The Alcoriihnm

el

As shown in Section %, the solution of the ontimal control
2 . s

— m b i il -
5-ry" 100y 1= Vet~ W (4.1)

vhere



- m !
. - L
SomsP-Frlgaas (se+) s (e T | S(6.)=8. (4.5)
L A

. T -1.7. o . )

R=l =172 (SG+)B” '¢7 12, E(tf):u . (A.6).

s =17 ' ‘ ,

\;:R GE 'GTR . s (\,( T D) =0) . ‘ AL ’?)
L . )

as in nost anplications, EZg. (A.3) is not »resent, then the

I,
zolution is defined by:
O T JN J |
u=-B"IN*+C 8%, (A.8)

vhere S is still defined by Ig. (A.5).. Since the lattef problem
reéuires much less integration and logical operatioﬁs, it is
advantageous to model the dontrol problem without an Eq. (A.5)
(if possibie) and a flag exists in the program for this purpose
(IFLAGT).

The flow of the computations is as shown in Figure Alt,

-i.e., the values for S(tf),R(t?), and Q(tf) are defined, numerical

% - ' &tf: 5t ,)
Intesrate For: ' ’ |
S(t), R(t), 9(t) Set 4 R(t,)
Qty)

Integrate For: x*(t),u*(t)

TMgure A.1. Flow 0f The Commutations.



] '

integration proceeds backward to t05 and then the ogtlmal otate
and control are defined by a forward 1nt@5ratwon

A.2 Selection Of Veighting latrices

In the optimization problem of 1?"s:.-(A.U (A, 3) the
matrices F(t}), G(t), ¥, and g? are defined by the process,
€.8., I and G typically result from linearization about a nominal
trajectory. If pure helvnborlng ontlmql guidance is to be used,
then the matrices in Eg. (1) are also well- deflned (e.o., see'
Refs., 1, 3). However, most applications will probably require
the specification of the weighting matrices S, A(t), N(t), and
B(t) by the guidance or control designer. In this section a
”rulé—of~thumb” for weighting matrix selection which has proﬁed
useful in a nuﬁber of applications (Ref. 1, 4) willlbe presented.

To get started on a design, assume N(t):O i;e., no mixed
- state-control terms in Eq. (4.1). In most cases one will not
have to employ a nonzero N-matrix at any tlme in the design. Thé
only remaining matrices are uf, A, and B which welght terminal
state values, state trajectory values, and control values,
respectively. If Eg. (A.2) reualts from 11nearwzatlon about a
_nominai trajectory (the usual case), then x and u actually.
represent deviations from the nominal. In such a case, one usuaily
has some ldea of the tolerable deviations for each variable. Thus,
assume it is desired that:

Ixiflfgliif| (i=1,. . .‘,n) ‘ . CA.9)

|xi(t)( < [Ei(t)l (i=1,. . . ,n) . | (A;TD)

|ui(t)‘fi ‘ﬁi(t)‘ (i=1,. . . ,m , (A.11)
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i.e., the maximum deviation from the nominal value associated

m

with Z is + X1n, znd s0 on. Then, the srmaller the value of
O (e.2., %}f), the larger the weightin; of () (,.r., XTHD
ghould Dbe in Eg. (A.1), and vice versa. A ch01ce which satisfies

this criterion is:

1
=
41
1
=2
*or , -
‘sfz _ - (A.l?)
| — |
— -~

A(t)= | . L (4.13)
| N

uplt 0
B(1)= . - (A.14)
. . . - 1 __V . .
| | G
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Tynically the E&(t) and Ei(t) values are constaﬁts; however in
Shuttle reentry.dne nay wish to change the weighting matrices
from‘one flight phase tb another (e.g., from the cdnétant drag
1z2s2 to the equilibrium glide nhase and so on). One can'then
compute the resultant optimal control with LGP, and check to
gee 1 the resultant feedbacl: control meets allISpéCifications.
If not, the weighting matrices should be modifi ed, and, of course,
the modifications are problem dependent. In any case, Eqs..(ﬁ.TE)—_
(A.14) give, at least, a well-defined start to the fesdback gain
design prbcess.

Finally, to save computer time, B"1 7111 be supplied to
thelprogram instead of B. Usually B~ is easily calculated |

beforehand (if not, the computation can be done in TIMVAR).

A3 LQP Areument List

In this section the vafiables employed in LQP_will.be listed
along with thedr type (integer or double precision}; dimension,
and identification with the variables in.Eqs. (A.Tj—(A.B). A
"HAINY subroutine {(to be discussed iﬁ the next section) is to be
supprlied by the user, and a call to L{P is made from MAIN; The
CALL-statement is:

CALL IgP(W,M,IP,IFLAGT,IFLAG2, TI,TF, EP, SF,A, D, BINV,T, G,

DM, TSI, X uR:;;A DSRGX, 5,1,0,U, X007, DT, K9, YN, DUMI,

DUID DU 3, DUML, DUMS, DULG, DUF?iDUﬂS,DUﬁg,DUﬁlo DU%?I,
,AID“T,JU‘la) o - :

Yhe variables in this call are defined as ?0110ws, where 1= 1nueﬁc

D=double precision, S:single precision, and

K=n(n+1)/2 + ap+a(n+1)/2+4n .
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Variable
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Troblem

Varianie

n

o

=

Variab
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o
]

-

-

SIS

o S o o N o N v B o N o B

R~ - = ==

w)

scalar

scalar

scalar

scalar

- scalar

scalar
scalar
scalar

* (N+1)/2
HHRHLQV

IR

S ME(Me1)/2

N*I
*H
N*IP(IF p=0,DIM=1)
IF(If p=0,DIM=1)
N

K

[
"

N () /2
N¥IP(If p=0,DIM-1)
IP*(IP+1)/2(If p=0,

5
H

17,1

REPRODUCIBILITY |
OF THg
ORIGINAL PAGE Ig Pog}faib



Trogran Troblen Variable

Variaple Varizable Iype Dimensigg

%) - 1 4

iH ~— D X

DU - D L

DUH2 — D Rkt

DUM3 - D MW
- DUML - D 7%}

DUM5 - - D KM

DUMG | — D NRE(T T p=0,DIM=1)

DU - D *IP(If p=0,DIM=1)
- DUMR -— D N*IP(If p=0,DI}-1)
DUHO -— D N*IP(IT pzo,DIm;1)
DUH10 g D o

DUHT1 - D L Hr(m1)/2

XL  p(see Tq.3.9) D Cow

KILpoT " p(see Eq.§.9) | . D _ .

D2 e | N D | N

The variables above which are not problem variabies are
described below. IExcept for IFLAG!, IFLAG2, and EP, these
variables are LYP and DVDE VYworking variables™ Wﬁich are of no.
concern to the user excent fof DIMENSIOH statements {and the
dimensions are well-defined in the list above). |
IFLAG1: flaz set by user indicating nresence or zhsence of

terminal conditions; =0 if terminal conditions present,

and =1 if no terminal conditions.



i by user indicating time-variability of

i
]
v
[l

flag =ze

£

matrices; =0 if A, B, DI, ¥, C are time-invariant,
and =1 if at least one of these matrices is time-
varying (in which case the user must supply a subroutine

o -

TIMVAR) .

52
iy

: absdlute local error indicator for the numerical integration
scheme DVDQ; this parameter is problem dependent, but a
safe initial choice iz 1.3-5. (See Ref. 2 for a more
thorough descrintion of EP.)

SRIK: contains the vector being integrated by ovVDy. - If-tefminal
conditions present, SRQA contains S, R,‘Q (éxpressed in
vector form) going backward and 3, R;'Q;‘ﬁ going forward.
If no- termlnul conditions, SRQX contains S going backward
and x, p going forward.

DSRIXL:  contains the iime derivative of SRQX.

DT: storage regquired for DVDR., *

1=

H8: storage réquired or DVDU.

TH: storage reguired for DVDg.,

DUF1 through DUMI2: dwmny storage required for L%P'matrix
manipulations.

AL HMatrix To Vector Conversions

Tven though Bgs. (4.1)-(A4.3) are written in matrix form, the
computer program operates in a vector mode. (The only matrix
dimensién is for.DT, which is vart of the integrator, Dﬁb@).

Thus, a2ll matrices must be converted to vectors, and since some

ymzetric, congiderable savings can be gained

0]
)

of the matrices are

by distinguishing between general and symmetric matrices.
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A number of subroutines from Ref. 8 are emnloyeﬂ in LGP

1o nmerform the various matrix mani?ulations. These sutbroutines

]
o
iy
9
o]
O
=
=
(]
3
Iui
4]
2,
o
]
]
¢}
d-
o)
=
U
]
(o]
!
o
—
=
)
|

fomid

the matrices hav

<k

assume thai

-

hy-colunmn, Tbab is, consider the three-bdy-three matrix A:

- ] -
211 %12 Q13
. #21 faz F23 (2.15)
821 %32 933
- ]

If A dis a general matrix, then it will be converted to a 9-vector

colunn~by-colunn, i.e.,

T

~ = . - 1

11 %21 %31 B2 B2z Bzp B3 Fp3 F330 -
{(General Vatrix Format)

A(9)=fa (A.15)
If A is a symmetric matrix, then it will be converted to a
i

S5-vector column~-by~column of the upper triangular portion of the

matrix, i.e.,

lA(6)={a11 215 8oy & L : ‘ (L.17)

1
(Symmetric Matrix Tormat
m- - g Ld - L . J S 1 " - Ly
The various matrices are nrinted out in the same manner (di.e., as
>

n~ or n{n+1}/2 vectors in the forwat of Ezs. (A.16) or (4.17),

respectively).

A5 Byxamunle Problenms
A nunber of simple exam»lies will be hresented in thls section

to illustrate the setup of ALY and TIMVAR, typical printout,

i

_ard the output for a »roblem with a conjugate noint.



Txe mn7m.ﬂ.1: Let % be a 3-vector and u a Z-vector.

' 1
Minimize: J=7 I (Ex§+uf+u§)dt
N o — — -
Subject To: ' Q10 Q0
L
p 00 x + 11 0qu
001 o1
e . . ]

100 Q
10 x(1) O
o1 1
- - - & o
Bguation (A.18) corresponds to Tg. (A.1); Hgs., (A.19) and
to Bg. (A.2); and Ig. (A.21) to Zq. (A.3). Oince téfminal

conditions are

are time~invariant, IPLAG2=0., A value of

25

(4.19)

(A.20)

(a.21)

(A.20)

vresent, IFLAGI=0; and since all of the matrices

EP-1.0x1077 will be

used for the absolute local error control in the integrator. A
typical MAIY subroutine (the only 1ﬂformotlon required by the
ueser) is shown in Figure 4.2, 'The develomment of MAIN involves
the development of & well-defined DINENSICH-statement, data
input, and a well-defined CALL to LQP. (Also, note the REAL EP

-+

statement because =P must be single precision to avoid di
on UNIVAC computers.)
The »progran beging the backward integration of 5, G,

wrintout dis

IFficulties

and R

at t=1, and the is shovn in PPigure A.35. Since only
~r bl i - A a L) 2 |
REFSENNE) 12* and UwRQ -1 are needed to define the optimal

Teedbacls



gains, a

(Suech a smltca

control are

vitch

to the 5 and ¥ system iz made at t=0.95.
15 moszible onply i 071(0.95) exists; if Q7 1(0.95)

then the nrozram will stor, uswally indicating
_ | - N
nrghlem.) From ©=0.05 to t=2, the S5 ané W matrices

out in the formet of fas. (A4.17) and (4.16),
, Since 5 is symmetric and W is a general matrix.

are shovm in

.

optimal state aund

a‘ . to the printout. One can cor pare the backward

BN

choice of a value

and forward values of 5 and V7 to aid in the
for ED which glvns the desired accuracy.
Sxammle £,.2: Let x and u be scalars.
2SI
‘ ' 2 > '
Minimize: I uat
]
. L)
subject To: M2
K(O):O » :’:(3'“_,/2):‘:1.0
This opiimal control problem noscesses a conjugate point at
t= W /2, which invlies that there doesz not exist an optimal
feadback control on the interval [0, 3T/2]. The program detects
the possibility of a conjugate »oint when the numerical integra-
tion Mclene herins to decrease the stepsize to a very small value
~ _
(which‘is necesgary to get accurate values of S and W since
~
S| ~——» oa ). The ouvtput of the program denoting that this

|

bhehavionr is

ogccurring is showm in Fig pure A5,



Brample A.%5: Let ¥ and u be scalars.

i 1,
Hinimize: J:.B:{D'f'::,‘ At

< 8]
o~ . ) : o« 2 v - N
Subiect To: vt Twetu ,  m(0)=1

ThHis ontimal control problem possesses tine variable dynamics,
end, thus, the subroutine TIMNVAR is required. A typical TIHVAR

subroutine for this nroblem is shown in Figure A.5.
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ﬂPLlCIT FEAL#B{A~H0- ZJ , , :
HRFAL IR —— - e -
DIMENSION Sr(bi Azal,D“téJ,aIMVtai,F{91,6¢5l,u3:9},P51(31 S A3y
'“'JR%K‘243:DSRNX‘241::iéi'R!ﬂi.Q:é)aU\Zi,aDoTlal DT 7 240 Kt 251y
@ lt’ﬁiaDUH1‘9l.9uN2(9iaJUw3i9),00na1a!.DUW=.a1,auwu\gr,Juh:{9l.
muuH8¢$1-DU%9{9).oUHlot7l.DUHI {3}, X3, anv¢13) DuM I (3)-

S E I e me e e e
M= : : .
-1 P::3 O P P S R . . . - L I VIS,
[FLAGI=g : —
T1=0-00 _

FulaDQ
EPalaf=5 : -
D} - 1mYgbor o e . e o s et i ¢ e e e e s
SF(1)=D.00 ' ' - SRR _

DO 2 1 = | ,5-

ALiImg. 00
AL =200

< 1'ir
i}"aaDD
i‘:“i}! L Di’.‘a
ﬁ«if? =02 '
4% 12)=1.00

_ .EP& 7:
4 1=1:9 ,,  .. . . ,._ (%ucﬂvobﬁaj-mf

e "'-‘-G'-*-»- ""’L'J

W

Hi

-

[

L)

©0
BT 5
N @1\

[

i~

1=ya00 | L Oog
905 [=labd T T | - : :

G ‘ I ’ au ' Dn o e e - —— .. i e ..“ ————————— . ke v em e rmme s e
B U —— _ _
Gts1=1e00
0o 6'{31}? ) .
oHily=0,00 _W_;.”,_m_w,_wjm; e
DM{5)=1.D0 :

o (9 )= DT T | |
P51t11=0.00 e b
" psil21=gp.00 o N B . | | B
PS!(3)31’DU e e e e e T

B e - -
Ai2)1=2.00

x(3)=gepd e R - .
CALL LAPIHyMy 1P,1FLaGl:trLAGZ.TI.TF,EP;SF.A UN.BSNV FoG,DNs.

“a PSI,Ay5REX,DSRAR, 53R, A, U ABOTHOT ,KGaYN,Dunisoun2 sBUHI DUMY,DUMD:
s DUMS, DuM?.DUHB DuH? DUH!D DUHI!KL-XLDDT)DUMIL) _
MO | )

e I T B W v B+ FR Vel TR w I

Figure A.2 A Tynicel MATE Subroutine For Txample ALT.
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Backward Integration Printout For

Lxample A.1, With Switch At t=0.95.
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Figure AL Forvrard Integration Printout
For Ixample A.1.



3(TILDE) S 2.300445
Y Lizs s 3 REPROﬁUc :
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237 -
S(TILOE) : -15.361151
W (TITDE) :  -16.39167u

----------------------------------------------

I
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4

i DVDQ 3USPENDS EXECUTION WITH IFLAG
1 :
: TF IFLAG = 7 (MINIAUM STEPSIZE EXCEEDED]&
LZXELY A CDNJUSATE POINT EXISTS AT

T = -1.573&2 |
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Pigure A.5 Printout Denoting The Cccurrence OF A
Conjugate Point In IZxample A.2.

SUBROUTIMNE TIMVARI(T N, MsADNyBINV,F,G)
IMPLICIT REAL*8(A-H,G~7) :
DIMENSION A(L),ON(L),BINV(LIIsFIL),GLL)

FUL)=T*T

G(1l)=T
RETURN
END

Figure A.5 A ¢vvlcﬁl TIJVAR Subroutine For
HxaHPTG A5,

A



