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SUBSONIC ROLL-DAMPING CHARACTERISTICS OF A SERIES OF WINGS

By Richmond P. Boyden

Langley Research Center

SUMMARY

The aerodynamic damping in roll of a series of wings has been investigated in the

Langley high-speed 7- by 10-foot tunnel at Mach numbers ranging from 0.2 to 0.8 by

use of a forced oscillatory-roll technique. Tests were conducted on wings of aspect

ratio 6 with sweep angles of 250, 350, and 450 and on 350 swept wings of aspect ratios 4

and 5. The wings with the higher sweep were found to maintain favorable values of the

roll damping over a wider range of angles of attack. The deflection of a leading-edge

flap resulted in improved roll damping at the higher angles of attack. Comparisons

have been made with theoretical estimates of the roll damping at 00 angle of attack over

the Mach number range, but the comparisons showed only fair agreement.

INTRODUCTION

The subsonic and transonic aerodynamics of wings operating well out of the range

of potential flow and into the separated-flow regime is a subject of continuing interest

because of the direct applicability of the study to highly maneuverable aircraft and to

aircraft operating near the stall. Both the performance and the response of the aircraft

can be adversely affected by the consequences of separated flow on the lifting surfaces.

In addition, the aerodynamic characteristics of lifting surfaces, such as the damping in

roll, are difficult to predict for nonpotential flow.

The objective of this study was to make an assessment of the effect of several wing

design parameters on the aerodynamic damping in roll in regions of separated flow. The

wing parameters that were varied during this investigation were the wing sweep, the

aspect ratio, the airfoil section, and the deflection of the leading- and trailing-edge flaps.

The range of Mach numbers was from 0.20 to 0.80 and the maximum angle of attack

reached was nearly 220.

This investigation is a continuation of previous work done at Langley Research

Center on the roll damping of wings using various methods. Some of this work is listed

as references 1 to 9. Among the methods used in these references to obtain roll-damping

characteristics are free rolling, forced steady roll, forced oscillatory roll, twisted wings,

rolling flow, and free flight. The present study used the forced oscillatory-roll technique.



The experimental results for an angle of attack of 00 are compared with a potential-flow

theory over the range of Mach numbers from 0.2 to 0.8.

SYMBOLS

The aerodynamic parameters in this paper are referred to the body system of axes.

In figure 1, the rolling-moment coefficient, the angles, and the angular velocity are

shown in the positive sense. The axes originate at the assumed center of oscillation

which was located 66.80 cm (26.30 in.) rearward of the model nose and 0.318 cm

(0.125 in.) below the fuselage axis of symmetry.

Units of measurement are presented in the International System of Units (SI) with

U.S. Customary Units given parenthetically. Details on the use of SI, together with the

physical constants and conversion factors, are given in reference 10. A dot over a

quantity indicates a first derivative with respect to time.

A.R. aspect ratio

b reference span, centimeters (inches)

Cl  rolling-moment coefficient, Rolling moment
q Sb

C - per radian

Clp + Cl sin a damping-in-roll parameter, per radian

aC1Clf. b2 per radian

P b2

a

Cl= O 1 per radian

Cl sin a - k2C/, rolling moment due to roll displacement parameter, per radian
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Clj - per radian

c mean geometric chord, centimeters (inches)

Cr root chord, centimeters (inches)

f frequency of oscillation, hertz

k reduced-frequency parameter, ', radians2V'

M free-stream Mach number

p angular velocity of model about X-axis, radians/second

q free-stream dynamic pressure, pascals (pounds/foot 2)

S reference area, meters 2 (feet2 )

V free-stream velocity, meters/second (feet/second)

X,Y,Z body system of axes

a angle of attack, degrees

angle of sideslip, degrees

A sweep angle of wing quarter-chord line, degrees

A taper ratio

w angular velocity, 27f, radians/second

APPARATUS

Models

Six wing models were studied which incorporated variations in wing sweep, in

aspect ratio, and in the position of maximum thickness. One of these wings had provision
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for testing with leading- and trailing-edge flaps. The flush brackets supporting the

leading and trailing edges in the undeflected case were removed and were replaced with

brackets having a built-in deflection about the 20-percent-chord line and the 70-percent-

chord line, respectively. Both the leading- and trailing-edge flaps extended from

0.1375b/2 to the wing tip. Except for the leading- and trailing-edge flaps, each wing was

machined from a solid steel panel. The wings were attached to a steel wing adapter

which formed a section of the center fuselage and served to carry the wing loads through

to the strain-gage balance. The fuselage forebody and the rear fuselage section were of

fiberglass construction. These wing-body models were originally used in a study of buf-

fet onset in reference 11, and the wing designation numbers used in reference 11 have

been retained. (See table I.) The only change in the models used previously has been the

use of a 5.08-cm (2.00-in.) shorter rear fuselage section. The basic model dimensions

are shown in figure 2(a) and in tables I and II. Sketches of the different wing planforms

are shown in figure 2(b). The photographs in figure 3 show one of the wing-fuselage

models mounted in the test section of the high-speed 7- by 10-foot tunnel on the forced-

oscillation roll mechanism.

Forced-Oscillation Mechanism

A sketch of the small amplitude oscillatory-roll mechanism used for this investi-

gation is shown in figure 4. The basic principles of operation of the oscillatory-roll

mechanism are the same as those for the small amplitude rigidly forced-oscillation

system of reference 12. A two horsepower electric motor with an eccentric drive

oscillates the-sting and the model in an essentially sinusoidal motion. The model is

rigidly forced in a fixed 2.50 amplitude oscillation about the sting axis (body X-axis) at

a variable frequency. A mechanical torsion spring internal to the sting is attached to

the front of the strain-gage balance section. This attachment permits the model to be

oscillated at the frequency for velocity resonance whereby the mechanical torsion spring,

plus any aerodynamic spring, balances out the model inertia. The only torque then

required to oscillate the model at that particular frequency is equal to the torque caused

by the aerodynamic damping. (See ref. 12.)

Although the models may be oscillated at frequencies from about 1 to 30 hertz, the

damping torque is obtained most accurately by operating at velocity resonance. The

rolling-moment strain gages are located forward of all the bearings and the other

friction-producing devices. A strain-gage bridge is mounted on the mechanical torsion

spring to provide a signal proportional to the model angular displacement in roll.

Wind Tunnel

The facility used for this investigation was the Langley high-speed 7- by 10-foot

tunnel. This single-return, atmospheric, continuous-flow facility had a closed test sec-
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tion during this series of tests and was capable of Mach numbers from the low subsonic

to in excess of 0.90. Additional information on the tunnel and on its operating conditions

is contained in reference 13. The sting-support system, when used with the forced-

oscillation roll mechanism (figs. 3 and 4), provided an angle-of-attack range from about

-40 to 220.

MEASUREMENTS AND REDUCTION OF DATA

Measurements were made of the amplitude of the torque required to oscillate the

model in roll TX, of the amplitude of the angular displacement in roll of the model

with respect to the fixed portion of the sting 4, of the phase angle a between TX

and b, and of the angular velocity of the forced oscillation w. The viscous-damping

moment coefficient in roll CX, for this single-degree-of-freedom system, was com-

puted as

TX sin a (1)CX - (1)

The spring-inertia parameter in roll was computed as

KX - IxW2 TCOS a (2)

where KX is the torsional spring coefficient of the system and IX is the moment of

inertia of the system about the body X-axis.

For this investigation, the damping-in-roll parameter was computed as

Cp + C. sin a _ 2V 2(CX)W o - (CX)wind. f] (3)
q, Sb 2  wind on wind off

and the rolling moment due to roll displacement parameter as

Cl sin a - k2 Ch - 1 KX-X2) - (KX - IXW2) (4)13 P q,,SbK X windon wind off]

The wind-off value of CX is determined at the frequency of wind-off velocity resonance,

where the mechanical spring balances the model inertia. However, the value of CX is

independent of frequency and can be determined most-accurately at the frequency of

velocity resonance. The wind-on and wind-off values of KX - IXW2 are determined at

the same frequency since KX - IXw 2 is a function of frequency.

TESTS

The dynamic stability parameters were measured at Mach numbers of 0.20, 0.40,

0.60, and 0.80 over an angle-of-attack range which varied depending on the specific con-
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figuration. All the models were tested over the entire available range of angles of attack

from about -40 to 220 at Mach numbers of 0.20 and 0.40. For the Mach numbers of 0.60

and 0.80, however, the upper limit on the angle of attack was restricted to a range between

40 and 120 by an unwanted vibration of the model-sting combination in the pitch plane and

by the balance load limits. Nominal test conditions are listed in the following table:

Dynamic pressure Reynolds number
Mach number

Pa lb/ft2  per m per ft

0.20 2 869 59.9 4.30 x 106 1.31 x 106

.40 10 192 212.9 8.05 2.45

.60 20 072 419.2 10.75 3.28

.80 29 794 622.3 12.32 3.76

The amplitude of the roll oscillation for this investigation was about 2.50 and was

determined by the mechanical throw of the actuating crank. The range of the reduced-

frequency parameter was from 0.034 to 0.208.

The effective increment in the angle of attack at the wing tip induced by the

oscillatory-roll rate may be determined by multiplying the amplitude of the roll oscilla-

tion by the reduced-frequency parameter. For these wings, the increment in the angle

of attack at the wing tip ranged from approximately 0.0850 to 0.520.

The wind-off frequency for velocity resonance of this series of wing-body models

ranged from 2.39 to 2.59 hertz. Since this range of oscillation frequency was considered
to be too low for consistent wind-on data, all the models were tested at a constant wind-on
frequency of oscillation of about 4.0-hertz, with the exception of wing 2. It was run at

about 5.0 hertz for M = 0.20 and M = 0.40; the frequency was then lowered to 4.0 hertz

for the remainder of the tests.

In order to insure a turbulent boundary layer over the model, carborundum grains

were applied as three-dimensional roughness to the model nose and to the leading edge

of the wing. The grit size and location chosen were those used on the same models in

reference 11. These specifications consisted of transition strips of No. 150 carborundum

grit, 1.27 cm (0.50 in.) behind the leading edge of the wings on the upper and lower sur-

faces and 2.54 cm (1.00 in.) behind the fuselage nose as described in reference 14.

RESULTS AND DISCUSSION

The results are presented in figures 5 to 8. The damping-in-roll parameter

Clp + Cl sin a and the rolling moment due to roll displacement parameter

C, sin a - k2 C/%, are plotted against the angle of attack.
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Effect of Wing Sweep

The first set of results shows the effect of various wing sweep angles of 250, 350,

and 450 on a wing with an aspect ratio of 6 for Mach numbers of 0.20, 0.40, 0.60, and

0.80. These results are shown in figures 5(a) to 5(d). The roll damping for wing 1

(A = 250) falls off rapidly with an increasing angle of attack above 60 at Mach numbers of

0.20 and 0.40 and above 40 at Mach numbers of 0.60 and 0.80. At M = 0.20 the damp-

ing for wing 1 decreased to less than 20 percent of its 00 angle-of-attack magnitude;

while, for M = 0.40 and M = 0.60, the roll damping decreased to approximately zero

damping at about 100 and 80, respectively. This decrease in the roll damping with an

increased angle of attack is primarily a result of tip stall or separation on the outboard

sections of the wing as noted in references 6 and 8. At higher angles of attack, the

damping in roll tends to increase with a for Mach numbers of 0.20 and 0.40 with the

higher sweep wings having the more negative values of Clp + ClP sin a. The angle of

attack at Mach numbers of 0.60 and 0.80 had to be restricted because of the allowable

balance loads and the unwanted model-sting vibrations in the pitch plane.

Generally, there is a decrease in the level of the roll damping at a = 00 with an

increase in wing sweep from 250 to 450. The exception to this was at M = 0.20 and

M = 0.40 where the 250 and 350 swept wings did not follow this trend. Increasing the

wing sweep also had the effect of decreasing the amount of dropoff in the roll damping

at the higher angles of attack. For wing 3 (A = 450), there was an apparent peak in the

damping-in-roll parameter at a = 60 for M = 0.20 and M = 0.40 which was some-

what larger than the a = 00 value.

The rolling moment due to roll displacement parameter Clp sin a - k2 Cl is

included with the damping-in-roll parameter in figures 5 to 8 for completeness since

both components of the rolling moment are measured simultaneously. The usefulness

of this parameter is greatly reduced, however, because of the sin a multiplier in the

Cll term. The parameter does serve to indicate gross effects such as a sign change

in the dihedral effect. The actual contribution of the Clp term is considered to be

small inasmuch as tests at different frequencies (or values of k) usually show a negli-

gible frequency effect.

Effect of Aspect Ratio

The effect on the damping in roll of various aspect ratios in the range of 4, 5, and

6 for a wing with 350 wing sweep is shown in figures 6(a) to 6(d). Increasing the aspect

ratio increases the damping in roll in the low angle-of-attack range.
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Effect of Leading-Edge and Trailing-Edge Flaps

The results for a 350 swept wing of aspect ratio 6, with and without leading- and

trailing-edge flaps, are shown in figures 7(a) to 7(d). This particular wing model

(wing 6) had a NACA 64A008 airfoil section, while the remainder of the wings utilized in

this investigation had a NACA 63A008 airfoil section as shown in table I. With the

leading-edge flap deflected 300, the roll damping is less than that for the basic wing for

angles of attack less than 20 for Mach numbers of 0.60 and below. However, the roll

damping does not fall off until a is greater than 120 for Mach numbers of 0.20 and

0.40 and until a is greater than 80 for the Mach number of 0.60. Because the roll

damping does not fall off, the leading-edge flap would appear to have a favorable effect

on the damping in roll for Mach numbers less than 0.80. At M = 0.80, the roll damping

for the deflected leading-edge case is much lower than that for the basic wing over the

somewhat limited range of angle of attack.

The 120 deflection of the trailing edge generally caused the roll damping to fall off

much sooner with the angle of attack than did the basic wing. Consequently, it showed

little possibility of being a method of improving the trend of roll damping with angle of

attack.

Effect of Position of Maximum Thickness

Figure 8 is a comparison of the roll-damping results with a variation in the posi-

tion of maximum thickness of the airfoil sections from 0.3 chord to 0.4 chord for an

aspect-ratio-6 wing with 300 sweep. At a Mach number of 0.20, there is a clear differ-

ence in the level of the damping-in-roll parameter for the two airfoil sections. The

wing with the more forward position of maximum thickness, the NACA 63A008 section,
has the higher roll damping. At the other Mach numbers this difference was less appar-

ent, except for isolated data points such as at M = 0.40 and a 140 angle of attack.

Comparison of Theoretical Estimates and Experimental Results

Theoretical estimates of the damping-in-roll derivative Cp were computed for

both the sweep series and the aspect-ratio series of wings. The method used was the

modified Multhopp lifting-surface theory of reference 15. These theoretical estimates
give the potential flow result for a zero-thickness planform, and they have been compared

with averaged experimental data for an angle of attack of about 00 as shown in figure 9.

The experimental results are for the damping-in-roll parameter CLp + Clj sin a, but
for a = 00 the contribution of the second term would be zero.

For the wing-sweep series in figure 9(a), the experimental results show a more
positive damping than did the theoretical estimates. The experimental variation with
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Mach number for the three wings is only in fair agreement with that predicted by the

method of reference 15. Also, the theoretical trend of decreased roll damping with

increased wing sweep was not realized experimentally at M = 0.20 and M = 0.40.

One reason that the experimental results have more damping in roll than the pre-

dicted values is because the wing is located a vertical distance z along the Z-axis

above the actual roll axis. This vertical separation results in an increment to the pre-

dicted roll damping AClp, which is primarily a function of the wing dihedral effect

ACp z Cl. Estimates of this increment for this series of wings give
9 b }3

AC/p = -0.01 to -0.02, a condition which can account for only a portion of the differences

seen in figure 9(a).

The comparison of the experimental results with the theoretical estimates for

the aspect-ratio series of wings is shown in figure 9(b). As in the previous figure, the

experimental data show the higher values of roll damping over the Mach number range.

The theoretical variation of increased roll damping with increased aspect ratio was

verified by the experimental results.

SUMMARY OF RESULTS

The results from an experimental investigation into the roll-damping characteris-

tics of a series of wings at subsonic speeds using a forced oscillatory-roll technique are

as follows:

1. For the wing series of aspect ratio 6, a 450 wing sweep resulted in more favor-

able values of the damping-in-roll parameter at angles of attack in excess of 60

than did wing sweeps of 250 and 350.

2. The deflection of a leading-edge flap on a wing of aspect ratio 6 with 350 sweep

had a favorable effect for Mach numbers less than 0.80 by extending to a higher angle of

attack the point at which the roll damping began to decrease.

3. The effect of the position of maximum thickness on the roll damping was not

conclusive and only showed a clear difference at a Mach number of 0.20.

4. A comparison of the experimental results for an angle of attack of 00 and the

theoretical estimates showed only fair agreement.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., November 5, 1974.
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TABLE I. - WING CHARACTERISTICS

Fuselage station of
cr b S leading edge of Cr

Wing Airfoil section A, Aspect ratio X
deg cm in. cm in. cm in. m 2  ft2  cm in.

1 NACA 63A008 25 6 0.4 21.8 8.57 16.2 6.38 91.4 36.00 0.139 1.50 48.95 19.27

2 NACA 63A008 35 6 .4 21.8 8.57 16.2 6.38 91.4 36.00 0.139 1.50 47.93 18.87

3 NACA 63A008 45 6 .4 21.8 8.57 16.2 6.38 91.4 36.00 0.139 1.50 46.58 18.34

6 NACA 64A008 35 6 .4 21.8 8.57 16.2 6.38 91.4 36.00 0.139 1.50 47.93 18.87

10 NACA 63A008 35 4 .4 26.7 10.50 19.8 7.80 74.7 29.39 0.139 1.50 47.75 18.80

11 NACA 63A008 35 5 .4 23.9 9.39 17.7 6.98 83.5 32.86 0.139 1.50 47.85 18.84



TABLE II.- FUSELAGE ORDINATES

Fuselage station Radius

cm in. cm in.

0.00 0.00 0.00 0.00

4.14 1.63 3.71 1.46

6.68 2.63 4.22 1.66

9.22 3.63 4.62 1.82

11.76 4.63 4.95 1.95

14.30 5.63 5.23 2.06

16.84 6.63 5.54 2.18

19.38 7.63 5.74 2.26

21.92 8.63 5.97 2.35

24.46 9.63 6.12 2.41

27.00 10.63 6.22 2.45

98.55 38.80 6.22 2.45

101.09 39.80 6.12 2.41

103.63 40.80 5.99 2.36

106.17 41.80 5.84 2.30

108.71 42.80 5.64 2.22

111.25 43.80 5.44 2.14

113.79 44.80 5.18 2.04

116.33 45.80 4.88 1.92

118.87 46.80 4.57 1.80
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z

Figure 1.- Body system of axes with the angles, angular velocity, and the

rolling-moment coefficient shown in the positive sense.
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340 
(0,125) 9.14 diam.

(134) 
(360)diam.

(a) Wing-body model with wing 2 shown.

Figure 2.- General arrangement of models. All linear dimensions are in centimeters

and parenthetically in inches.
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Wing I Wings 2 and 6 ing 3

Wing I0 Wing II

(b) Sketch of the wing-body planforms.

Figure 2.- Concluded.
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L-69-6646

(a) Upstream view.

Figure 3.- Wing-body mounted on forced-oscillation roll mechanism in

Langley high-speed 7- by 10-foot tunnel.
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(b) Downstream view. L-69-6647

Figure 3.- Concluded.
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.Torsion spring rod

Flexure
diaphrogm

-Extension to model

support sting Section A-A

-Electrcal center

Flywheel- drive shoft

2-HP variable-speed motor
Vertical stays to
tunnel wals

Figure 4.- Forced-oscillation roll mechanism.
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