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Abstract

In this paper the fracture problem of a composite plate
which consists of perfectly bonded parallel load carrying lam- .
inates and buffer strips is considered. It is assumed that the
fatigue cracks may appear and spread in main laminates or in
buffer strips or in both perpendicular to the interfaces. The
external load is applied to the plate parallel to the strips
and away from the crack region. The problem is solved for fully
imbedded cracks and for broken laminates or strips and the corre-
sponding stress intensity factors are calculated.

| .;3; INTROOUCTION |

- ' In des1gn1ng u1th h1gh strength compos1te sheet mater1als

the use of re]at1ve1y ]ow st1ffness and:= h1gh toughness buffer
strips oriented parallel-ito the main ]oad-carrying_1amihate$’has-
been under investigation for some.time.” The practicel.eimtof'thfs
particu]ar destgn practice is to improve the totigue crack propa-h
gation and arresticharocteristics of the structure. The fracture
process may start es the initiation of a-fatigue crack at a local
imperfection in the load carrying laminate. The cyclic history
of the applied 1oeds'permitting, it may then be possible for the
,creck to enter the adjacent buffer strips .as a result of subcrit-
ical or criticaf‘érthha;wFatigue cracks mey also appear and prop-
aoate in the buffer strips - Knowing tﬁezfatigut and fracture
characteristics of both mater1a1s, for: stud1es relating to life

and structural 1ntegr1ty it would therefore be necessary to have

*This. work was supported by the National Aeronautics and Space
Administration under the Grant NGR 39-007-011 and by the Nation-
al Science Foundation under the Grant GK-42771X.
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a reliable analysis of the problem. Particu]ar]y'in fatigue
crack propagation studies tt would he‘very he]pfuT to have a
technique for the calculation of corresponding stress inten-
sity factors. | K | |

Even though in actda] structures the primary 1aminates
and the buffer strips wdu]d be anisotropic, in this study,
largely for reasons of analytical exped1ency, 1t w11] be as-
sumed that both materials are 1sotrop1c and 11near1y elastic.
The Taminates and the buffer strips-containing‘cracks of arbi-
trary length perpend1cu1ar to the 1nterfaces are assumed to be
perfectly bonded and per1od1ca1]y arranged (ngure 1) " The com4
pos1te p]ate is loaded para]]el to the interfaces away from the
_crack reg1on The case 1n wh1ch the propagat1ng crack termi-
nates’at a. bimater1a1 interface 15-separate1y stud1ed For "~
various crack geometr1es and for a cert1an mater1a1 comb1nat1on
the stress 1ntens1ty factors ‘are ca]cu]ated In recent years
the solutions of various specia] cases of this phoh]em_have |
appeared in 1iterature Referr1ng to F1gure 1, for example,
the case of a s1ng]e strip, (1 €. U,= 0) 1s 1nvest1gated in (1]
and [2], the prob]em of two half p]aneS‘bonded through a cracked
’-strip»{i»e l h2 = @ b = 0,-a<h ) is studied in [3] and [4], the
solut1on to the same problem w1th the broken laminate (1 |
h2 = o, b = 0, a = h ) may be found 1n [5] “The problem of two
bonded half p]anes with the finite cracksiterminating at or

going through the interface was considered in [6] and ([7].



2. FORMULATION OF THE PROBLEM

Consider the elastostatic broblem'for the two-dimensional

-’ composite medium shown in Figure 1. ’ It is assumed that two sets
of periodically arranged 1am1nates er strips of finite widths

Zh] and 2h2 are perfectly bonded_a]ong their straight boundar1es.
The strips 1 and 2 are assumed to contain'symmetricaliy located
cracks qf lengths 2a end 2b, respectively and to have the re-
spective elastic cohstants My s ;] and Hos Ky where Ky = 3 - 4vj
for plane strain and Kj'= (3 - vj)/(1 + vj) for generalized plane
stress, vj, (j =1, 2) being the Poissoh's ratio. The external
Toads are assumed to be such that the periodic nature of the
"problem is;preservedAand;the'crack pléne is a plane of symmetry.
The*solutibh'of the ectua] tracfion free crack problem may be
obta1ned by means” of the isual superpos1t1on technique. In this
paper we w1]1 therefore cons1der the s1ngu1ar part of the problem
in which the se]f equ111brat1ng crack surface tract1ons are the
only external 1oads. Thus, referrmng to F1gure 1, the solution™ .
qf the problem may'be obtained by solving the related field equa-

tions for the two Strips under the following boundary and con-

tinuity conditions:

u](O,y) = UZ(O:',‘_YA),-_}V:'-I,(O,)’);: VZ(O’,,Y), (05y<°°), o » (]'a,b:y
---..‘..-.--A?_,‘,,'__o]xx(O,y) 3.~,292;2.x;(91?-%;,2-,«&,_01x-y(‘°’y') = Ooyy(0sy),s (Ogy<=), (2.a,b)

up(=hysy) = 0, oq, (-hyuy) = 0, (0<y<w), T (3.a,b)
“2(“2’Y) = 0y apyylhpsy) = 0, (o<y<@>,*f’ . (s.a.p)
Glxy(x’o) = 0, (-h 5x<0)’-02xy(x,0) =0, (0<x§h2l;v: (5.a,b)
o _Y_Y(X’O) = ‘p] (X), ('h]fX<a'h])s V]‘(X,O.) = 03 - B

(a-h]<x<0), (6.a,b)



(X,O) = 'pz(x)s (hz'b<X<h2)s Vz(xso) = 0;

92yy r
, (0<x<h2-b), .+ (7.a,b)
Opyy(xs=) = 0, oy (x,) - 0 ,(‘f]’;z)’ o | (8)

i
1

o K P
where, because of symmetry, only one Quérter‘oﬂ a strip from each

set is considered. In (1-8)-uk and Vi a;e the x and y-components

of the displacement vector in the strip k, (k=1,2), o (k=1,2,

kij’
(i,3) = (x,y)) are the usual stress components and P and p2'are
known functions. Defining the coordinates |

X] = x + h]’ X2.= X'hzq y]'; y_='YZ’ | (9)
the solution: of the problem'satisfying the'necessdry”field equa-

tions and the éonditions.(3), (4), (5), and (8) may be expressed és

g;f “{l[f (s) --ii;l (s)jsinh(x s)
m o tstTitS) T T 9y ST

u;(x;,¥)

+.X€gi(s)cpsh(xis}fcdé(}ﬁ)ds

. K.-T1 : '
-fo°° mi(r)r']('; - ry)e'rysih(xi,r)dr,

]
2N

o ] Ki+]
fo {g[fi(s) + —7—*'91(5)]cosh(xis)

A

vilxi,y)

+ .

xig%(s)sinh(xis)}sin(ys)ds

. . . _-I K_i+] . _yr - = =
[0 mi(r)r ( 5 + yr)e. cos(xir)dr,

+
SR

(i =1,2) (10.a,b)

where f., g., and mi, (i = 1,2) are unknown functions which may be

determined from the'fema{ning six boundary conditions given by (1),

- (2), (6), and (7). From (10) the stress components may be obtained



as

2
i

fom[fi(s)cosh(xis) + sxigi(s)sinh(xis)]*.

1 -
fﬂ? Oixx(xi’Y)_' -

. - - ; _ v
*cos(ys)ds - % [0 mi(r)(l—yr)e yrcos(xir)dr,

(x;,y) =

STIN

1 - - |
7ﬁ? Siyy Sy LLf(s) + 291(5)]C05h(xis)

+ sxigi(s)sinh(xis)}cos(ys)ds

foé mi(f)(14yr)e—yrcos(x5r)dr,

ERLN

‘
-

1L

°ixy(X1’Y) 

N
=

So LLfi(s) + g4(s)Isinh(xys)

o+ sxigi(s)cosh(xis)}siﬁ(ys)ds

=]

.2- ‘ »’-yr', . R N ‘
- fo yrmi(r)e ,_s1n(xir)dn{

(i=1,2). | (11.a-c)

If we now substitute from (1@)‘$nd (1]) info the four contin-
uity conditions (1) and (2) and také thé inverse transforms %Q the
variable s, we obtain four algebraic equationsrfor,the‘functi;ns 
. fT,»Q1y-f2f~aﬂdagzﬂ~—Solving thesevequations,~f%»and'gﬁ;u(jgi-J,z)",U
may be expfessed in terms_of m](r) and m2(r). The remaining two
mixed boundary conditions would then g{Ve a sys}em of dua] integral
equations'%or m, and ﬁz. 'Appendik'A‘giQés'fhe.eXpressions for f.
and 9 (i = 1,2). Rather than deriving the system of dual integral
equations, in this paper the mixed boundary conditions are diréct]y
reduced to a system of singular integral gquations. Before doing

this we observe thaf the conditions (6.b) and (7.b) are equiva]eht
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to

a. ‘
d - 1 i 9 .
57; Vi(xi’o) = 0, (ai<|le<hi)’ Iai 5;? Vi(xi’o)dxi' 0,
(1= 1,25 3, = a, a, = b) (12.a,b)
If ‘we now define
Gi'\x-i) —l-"".'ax'i Vi(xi’o)’ (i =1,2), (13)

from (12.a) and (10.b) it is seen 'that

2 % e
G.(t)s1n Yt_dt,'(ad = a, a, = b,

mi(r) = - K1+1 fo i

= T2) B

Thus, substituting from (14), (AT),_(AZ), and-(11.b) into (6;a) and
(7.a) we obtain a pair of integfa] eduafidﬁs'forﬂthe new-unkn0wn"
functions G, and G,. With m,- as dé%ingd inj(14yﬁfor y++0 the sec-
ond ihteéra] in (11.b) becomes '

1im0[-‘% fow mi(r)(1 + yr)e_yrcos(xir)dr]

y->+ ’ : :

ce 2t ey, (=), (5)
n3K1+1§ "0 . t-xi ) t+xi i ’ 2=/

Similarly, the functions defined by (A.1) may be expressed as

d. .
F..(s) = oo p {Mij(s,t) - M..(S,-t)]Gi(t)dt,

—d

ij

(i = 1,25 3 =1,..,4) (16)



where

' K.-1
Moq(s,t) = - [s(h.-t) + f%**]e's(hi”t),
K.+l 0
Mio(sst) = [s(h.-t) - ;. je-shy-t)
Mi3(s’t) = S(hi't)e-s(h‘i'—t)’ N
Mi4(s,t) = [S(h_l—t) - ]]e's(hi—t)’ ('i - ],2):, (]7)

If we substitute from (15), (16), (A2), and (11.b) into (6.a)

and (7.a) and note that because of symmetry

G'I(X'I) = - G.i(‘x.i)s (1 = 1,2; - aiKXi<ai) . (18)
we obtain
a Gl(t) a SN . b '
[a r— §t + [a 'k]1(x1t)G](t)dt + [b sz(x],t)Gz(t)dt
‘TT(?]TK]) .. o
= - "EUTT___pl(X1-h])’ (-a<x]<a),
p Bp(t) a, b
b f:;E— dt + Za KZ](XZ’t)GT(t)dt1+ [b k22(x2,t)G2(t)dt
. "T(]"'Kz) . . )
= - -———4112 p2(X2 + hz), (-b<X2<b) (19,a,b)

where the kernels kij(xi’t)’ (i,j = 1,2) are given by

K5 (x50t) = 1,7 Kij(xi,t,s)e's‘hiit)ds. (20)

fhe'expressions for the functions Kij may be found in Appendiva.

The index of the system of singular integral equations (19) is +1;



therefore the so]utlon will contain two arbitrary constants [8].
Theoretically these constants are determined by using the single-
_ valuedness conditions (12.b). However, due to symmetry, if one
only considers sofutions-satisfyinj (18), (12.b) will be auto-
matically satisfied. For a <h, and b<h, (Figure -1) from Appen-
dix B.it may be shown that the kernels kij(xi,t), (i,j =1,2)

are bounded and continuous in the-corresponding closed intervals.
Thus, in this case, (19) is e system of.ordinary singular in-

tegral equations with fundamental functions

wi(t) = (af (21.a,b)

and may be so];ed in a straightforward manner.
A1l the known special cases may be recovered from (19) by

1ett1ng the length parameters'a, h]; b, and h2~ge to propet 1imitsf

For examp]e, for h]+w and h2+w k. i3 van1sh (19) uncouples g1v1ng

the 1ntegra1 equations for center notched 1nf1n1te p]ates For

b =0, h2+w, (19) reduces to an 1ntegra1 equat1on in G]( ), the

Cauchy kernel and k being the only kernels. From Appendlx B,

11
the integrand giving k]] may be shown to reduce to

R _2h.s —4hys\-1_-h.s
»K11$x],tis)'— (1-4aJh1??"‘”] -a] o€ ) e T1°%

*{a]cosh(x,s)[l-a2(3 + 2h]s)e;2h151v

-Zh]s

-2x15a1azsinh(x,s)e + az[l-Zs(h]-t)*

*[cosh(x,s)(3;2h]s-a]e'2h15) + 2xys sinh(x]s)]}. (22)




where the constants o4 and a, are defined in Appendix B.

This is the kernel found in [5]. If Wy = 0 (18) furthef reduces
to the kernel obtained for‘thé center-notched strip in [2]. One
may also observe that the kernéf§ k%j have the expected property
of interchangability in the sense that'kzj may be obtained from
'klj by changing the necessary indices and letting ay>ag and

(12'*(!4 .

3. THE LIMITING CASE: BROKEN LAMINATES.

In the 1imiting case of brokén}Tamfnates,.(i.e., a = hy or
b = h2) the integral equations (19) are still valid. However, in
this case the kernels kij’ (i, = 1,2) w11} noﬁ all be bounded in
the corresponding closed intervals.l'For examblé if a = h], b<h2;

examining the integrands Kij(x.,t,s) given in Appendix B it may

j
be sgén that the kerne]s'klz, koys and k,, are bounded for all
values of x],‘xz, and t, but k]] becomes unbounded as X4 and t
approach the end points ih]simultaneously. The impqr;ant conse-
quence of this is that for a = h]:(19)-js.no ﬂénger a system 6fv
ordinary singu1ar‘fntegra1 equatiéns:'%;:hés generalized Cauchy
kernels, the fundahenta]’matrix of the sysfem is different than
that given by'(21); and the solution requires mqrglcaré; Noting:.
ithat s{hté;K]] ismgduhaéd and‘cbntiﬁdobé%é;eryﬁhéfezgn Ofgéw, |
referring to (20) any divergence in the 1nfegra1 must be due to
the behavior of the integrand for s-+w~. Thus séparating the

asymptotic part K]]s of the integrand K]] we find

K]](X]st‘,s) ='K]]S(X] ,t,S) + K]]f(x]atss),



K11 (Xq58) = kg Uxgnt) + kyqp(xgntds

_ w | -s(h,-t)
ki1 (xqst) = /g K]]s(x],t,s)f". 1 dsi

_S(h]-t)

kypg(xqst) = fomK]1f(x],t,S)e ds,

Kypg(x7otas) = e M5 {aqcosh(xys) + ay[1-2s(hy-t)1 (3

- 2h]kcosh(x]s) + 2$x]§inh(x]h)]},

(-h]<('X,1j,t)<h]), ‘ . (-23.6-8)

where k”f is bounded TnA-h]S(x],t)fh]. The sihgu]ar part of
the kernel k]]s-may be evaluated by .using thevfollowing,re$u1t [107:

- '\ sinh{sx,) no ' sinh(sx
o n -s(2h,-t) " ] _ d" = -s(2h,-t) ]
S s ! {cosh(sx )}ds = o € . {cosh(sx )}ds
o co 1 dt X
" PR :
= [ " { - }]: (n!= ]923-0)9 (24)
ot (zny-t)2 2t
giving c : |
k (xq5t) = (a; + 30 . + , [x;"t -
11s (X R PTSNRTL P R TP LIRS A
(et ahg-3t) e enen) Pex P ey L

S 2 2 20 2,2 2,

1

= {Za(h, + xq)° ¢’ .+ 60, (h b x y 9
B AR S R @iy ¥ X7 9x
x] 1
0.4 -30
1 2 -1
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2
d d
—— - ba,(hy-x;) =
dx]z AR B dX]

-3
- b (2ng )Y

2 Grlshpsxgatishy) (25)

Substituted into (19) and together with 1/{(t-x), k]]s
gives a typical generalized Cauéhy kernel. Inithis case the.

fundamental solution matrix of (19) is of the form

‘wi(t) - (h]z-tz)‘Y, wy(t) = (b?-tz)'ﬁ, (0<Re(y,B)<1).(26.a,b)

The characteristic equations giving the exponents y and B may be

obtained from (19) by letting

Nnéj(t) f,HT(;)(h]Z-t?)'Y, GZ(E)'# Hz(t)(bz-tz)LB (27.a,b)

.and‘using the standard complex function technique [8, 2, 5). In
. (27) Hy and”H2 are assumed-to be bounded in the intervals.
-h,<t<hy and -b<tsb, respective]y.::Qmitting the detailed manipu-
lations (see,.for examp}e, [2],.[5-7]) the chéfacteristic equa-

tions are found to be

)2

2cosmy + 4a2(y-1v - (a] + a2) =0,

" cosmg = 0. -  (28.a,b)

We note that (28.a)is the same as the characteristic equation
found in [6] by two different methods for a crack tip terminating
at a bimaterial interface and (28.b) gives the ;known result

. ) . ]
B8 = 0.5. Similar results may be obtained for b = h,, a<h,.

11



4. THE SOLUTION AND THE RESULTS

For a<h], b<h2 the system of integral equations (19) has
the fundamental functions as,gtven,byl(21) which.are the weights
of Chebyshev polynomials. Hence the system may be solved in a
stra1ghtforward manner by us1ng the. Gauss- Chebyshev 1ntegrat1on
technique descr1bed in [9]. For a = h], 2 (or a<h],b = h2),
the fundamental functions of the integral equations are given
by (26) where B = 0.5 and vy is the root of (28.a) for which
O<Re(y)<1. It may be shown that fpr all possible materta] coh-
binations vy is real. In this-case;the,fundamenta1 functions
are the weights of'Jacobi polynomials and the so]ution.of the
tntegra] equations may he obtained by using the Gauss-Jacobi
integration technique (see, for exampie,:t5-7]).

After solving (19) from the formu]aticn given in this
paper it is c]ear that a]] the des1red f1e]d quant1t1es may be
expressed in terms of definite 1ntegrals with appropr1ate Green S
functions as kerne]s and 61 and G2 as dens1ty funct1ons ”In’
fracture stud1es one is usually interested on]y in the stress
intensity factors which may be defined in terms of cleavage

1
i

1,2) and may be expressed in terms

stresses Oiyy(xi’o)’ (i

of the der1vat1ves of the crack surface d1sp1acements G] and 62

as fo1]ows [6]:

LT

2yy(X2’0) =T- TF - 1im vYZ2(b-X ) G (x2),

b<h2:v kb = 1im /2( 55 o
Ko x§b

ﬁ e x§b

12



4u

a<h]: k -11m V2 (X —a ],O) = Tocs 1im vV2(a- - X3 ) G (x )

xTa 1yy K2 xTaA
a = h] 'k —11m V2 (x +h )Y (x2, )— -2u*11m V2 (h - X, )Y,
x3-h, . - xyhy

.G](x]),v‘ (29.a-c)

where

TR 1+20¢, (1-vy)  1-20,(1-=y)
1H2 1 , L%
sinmy “uytkyH, Ha¥KoHy

u* = (30)

As an example we consider fhégcombosfte medium shown in Fig-
ure 1. It is assuméd that the prbb}gm is 6ne of ”p]ahe stress”,
there is no constraint in x-directibﬁl and the plate isv1oadéd
in y-direction sufficiently far aﬂay from thefgrack region.(*)
.Thus, in the perturbation problem the crack surface tractions

i
are constant and satisfy the following condition:
(P]/pz) = Ei/EZ ' ‘ '(3])

where E, and Eé are the Young's moduli.
Figures 2-5 show some of the calculated rggults. . The ma-
terial combination used (v; = 0.35, v, = 0.45, 1y = 6.65y,) is

assumed to approximate ‘boron epoxy sheets having-buffer-strips. . ..
‘ 1

(*)This means that the dimension of the plate in y direction is
large compared to that in x- direction. If the opposite is
true and if the external load is applied through fixed grips,
then in the uncracked platee = 0 and the, ratio of the crack
surface tractions becomes (pl/pz)-[E (1-v, )1/[E2(1-v;:7)].

In either case the ana]ys1s does not apply to the strips on
the sides.

13 |




of the same material but different stiffness. Figure 2 shows
the stress intensity Factor ka for b‘= 0 and varying ratios
a/h] and hz/h]. Referring to;Fjgurq 1, for a.= h, (and
O<b<h,) the asymptotic value of ‘the ;]eavagé stress around
the singular point is (see (29.6))f}f" | |

k

= a . = _ .
(x5,0) /2 (x2+h2)Y’ (x5 - X hy) ; (31‘)

-

where{ for the materials under conSi¢eration vy = 0.7015. Figure
2 also shows the normalized k, for a = hy, b = 0. As expected

for h,>0 k (a = h;)»>~. Note that for h, =0 the problem reduces

2
to that of a homogeneous plate with periodicttbllihear cracks.
'Figﬁre 3 shows the similar results for a ='0,_avnd‘b/h,2 and

hy/h, variable. In this case fdf:E”=ﬁh2 the_St?ffness,of the -
~adjacent medium is hﬁgher and conSequently the power of the stress
singularity y becomes léss{than 0.5 (y = 0.3621). The results
given in Figures 2 and 3 fndicate1that the stress intensity
factor.ka for a crack in'the §t1ffé¥-mqteria1ji§'highervand.éb

for a crack in the fess stiff maték%dﬂ is lower than the stress

.intensity factor in the corresponding homogeneous plate.

sets of strips contain cracks. These exampjes are given for the
same material pair as used %n Figures 2 and 3, éhd for a fixed
width ratio h]/h2 =:4. Figure 4 shows the §tre§s intensity
factor k. for various values of a/h; and varying b/h,. Again
for a = h1 the powéf of the stress singularity Y 1$ greatér

than 0.5 and the'sca]e for ka is given on the rjght with a

Figures 4 andAS_showrthe results for the case in which both



normalizing factor ﬂ]h]y. Figure- 5 shows the stress intensity

factorikb for the same problem. The scale for kb/pz/E for the

limiting case of a = h] is- shown on the right. "Note that

a = h] kb+m as b+h2 and for a<h1Al‘<~b tends to zero,a5~b+h2.

for

This latter result is due to the change in'the‘power of stress

singularity from 0.5 for b<h, to y= 0.3621<0.5 for b = h
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. APPENDIX A

The expressions for the functions f. and di’ (i = 1,2):
The functions f and .g; (i‘j'] 2) ,may be expressed in terms
of m, and m, by substituting from (10) and-(T]f into (1) and (2).

First define

. .§3 sin{h.r)
2s © 2.5 2,2 i
F..(s) = =7 m.(r)[2s° + (rc+s°)]—s—5—5 dr,
il il (o) 1 2 (*r2+52)2 :
2 URISPS B "cos(h.f)
2s © 2 i 2., -
F.o(s) = =— [ m,(r)(2r° +, (r“+s®)]—s——=—,dr
i2 ™ 0 1 ‘ 2 . r;(r2+52)2
2 . | cos(h.r)
_ 4s © i
Figls) = = J, rm;(r) ?;?:§7§7 dr, |
: sin(h r)
4s o 2 . : .
F..(s) = =7 rém.(r) ——e—7 dr, (i ='1,2). (A1.a-d)
14 o L (o] | 1 (Y'2+52)2 . | . .
Equations (1) and (2) would then'give
(s) :
fi(s) =2 ; ‘
! s=1(a55F15 * bysFay) N
(s) =3 ( ), (= 1.2). O (Az.ab)
g.(s) = Z c::Fy. + d..Fr:), (1 =1,2), ' .a,b}
i 5= 1] 1j ij 23 | S
' !
where z
a]](s) = [n]cqéh(hzs).— c]]T1]/S], '

a]2(s) = [n]sinh(hzs) <) ]]/S],
a]3(s) = [-ATnzsinh(hzs) - ¢y3T41/84,

a14(s) = [A]nzcosh(hés) - cqy4T41/5¢5
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b]i(s) = ai](s);‘blzfs) = [-n swnh(h s) - ]2 ]]/S],

by3(s) = [npsinh(hys) - dyyT ]]/s],
b]4(s) = [nzcosh(hzs) -vd14Tr]/Si,
aZ](s) ¥u[n3cosh(h]s) - c2]T2]/52,
azz(s) = [-n3sinh(h]s) - Cyy 2}/52,
a23(s) = [n4sinh(h]s) - €3 2]/32,
a24(s) = [n4cosh(h]s) - c24T21/52}

Dgy(8) = a5y (5], bppls) = Ingsinnlhys) - dppT,1/5,,

b23(s) = [-A2n4sinh(h s) - 23 2]/52,
: b24(s);=-[A2n4cosh(h s) - d24 2]/52, (A.3)
where
Ay o= Hq/uy, AZ:é Ho/Hys
: A]K2+1 _ .
51 = [(}] - l)hzs T s1nh(2h25)]s1nh(h]+h2)s,
A2K1+1 . o
‘“§g f,€(%2_7 ]}h]s f 5 s1nh(2h]s)]s1nh(h]+h2)s
— x]kéiff' ' T s Ce s e
T] = [(Ai - 1)hzs - —3 sinh (2h2§][h]? cosh(h]+h2)s_
) Motk |
+ %s1nh(h]+h )s] + [——————— s1nh(2h25)
- (A]+K])hé§]%sinh(h2-h])s, |
T2 = [(}2-1)h]s - 5 sxnh(Zh]s)][hzs cosh(h]+h2)s-

17



+ Lsinh(h, +hy)s] + %sihh(h]-hz)s[-(AZ+K2)h]s

X]K]-Kz ) f
A 51nh(2h]s)]. | (A.4)
c]](s) = L]cosh(hzg) + L3c§sﬁ(h]§),
cy,(s) ﬁiL]ﬁinh(hzs)'F L3sinh(h]s), |
cy3(s) = -Lysinh(h,s) + A Lgsinh(h;s),
c]4(s) = LAcosh(hzs) + A]L3§osh(h]s), |
d1](s) = C]}(S)’ dlz(s) = - cTé(s); dl3(s) = A2L1sinhkhzs)
- - L;%inh(h]s),
d]4(s) = AéL]cosh(hés) +.L3cpsﬁ(h]s), ?
cé](s) =‘L2¢osh(h]s) + L4cos;(h2§),
A - . |
céz(s) = -ngivh(h]s) + L4sinh(hzs), |
Cyqls) = }i@zsinh(h]s) - L4s€nh(hzs), !
c24(s) = A]Pécqshﬁh]s) + L4cosh(hzs),
d21(s)_= czi(é); dézﬁs) = - c22(s)e déé(s; = - Lzsinh(h1s)
B o +vX;L4sinh(h25)>-
d24(s) = chosﬁ(hTS) ¥'AéL4cosh(h25), ; ‘ (A.5)
where |
1kt o 1 <t

Ly = 5{ 5 S]Ph(hz-hl)sf Ly, = 5 5 s1nh(h1-h2)s,
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Ly =’% [(1-2,)hys - %(A2+K2)sinh(2h25)],
Ly = % [1-3)hys = 50+ )sinh(2hys)T,
(K1+])(K2+]) . 2 ! .
= - 7 sinh (hqfhz)s - [(1-A])h25
n
Kpthy | . Kitry
- 5 s1nh(2h25)][(]-xl)h]s - 5 51nh(2h]s)]f (Ai6)




APPENDIX B
I

The expressions for the functions K.

i5° (i,§ = 1,2) which

appear in (20): |
-h

S o -
Kyq(xqstss) = 6%65%5 cosh(x;s) [1(3-2hys-(2hys+3)e

2$(h]+h2))Q3

a]Q]QS}{(Zazé(h1-t)-a2+§-2h:S)Q3+(1-q]dz)Qs}
- Qg ((1+a)Qg+1+e 2N2%-2(hy-t)se 2 2% )]
+ ik e-hlssi%h(- ~2hys

0y h{x;s)[Q3{e” " 17 -a,
20,5 (hy-t)} 1+ (j~a]a2)051,I

+

( ) 1+a,
K X,,t,8) =
1220 0309

1
1+

'h1acosh(x1S)I{Q3<3;2h]S-(3+2h]s)e'25(h]+h2))

|

-2,Q,0Q }{Q5(2§4s(h2-t) ;‘a4+g -2h 2°)+Q,}
1o, _4h _ah,
- T Qg léh, se M2S4(1-e 25)(2sh2-2st-1)}]
Y 2 ' |
1ta, Hos
+ Qg 2x]se i] s1nh(x s){Q [Za (hz-t)-a4
4ot 03;}’ f |
1+a -
- 4 -h,s _ ) -2s{(h,+h,)
Koy (xpst8) = g0, © 2§C°Sh( _?[{Q4(f 2hys (3f2h2f{e 120
+ 30,05} (05 {420y (hy-t)-e 72h1%) 4,3
1+a 5 : .
= Q (anyse 4“15 (1-e74M%) (20 s-2ts-1) 1)
1+a !
+ 094 stze'?zssinh(xzs)[eraz-Zazs(h]—t) 2h S)+Q4],
-h,s ; '
_e 2 ; - -2s(hy+h,)
K22(x2,t,s) = Q4Q809 coshfxzs)[{Q4(3-2h2§-(3+2h25)e 1°727)

-+

130,05} (0 (20,5 (hy-t)-ayre”12%) ¥ (agay-1)05)

20




)e-Zh]s

- Qq{1+e 2M2%-25(h,-t +(1+05)0,}1
25X :
+ ng e'hZSsinh(xzs)[Q4(2a4s(h2-t)-a4+e-2h25)
. - = (]"(13(14)05], ’ (B.]a-d)

where |

ay = (K1u2-K2u])/(u2+§2u]),éa2‘= (up-uy )/ (uytiquy)
|

ay = (Kzu]-S]uz)/(u]+K]u2)ﬁ ay = (uy-uy)/(uyteoug), (B.2)
, i |
4h,s 5 4h,s
Q1 - _ag_ e'2h25-1+e'4h25,;Q2 - _El_ e-2hls_]+ef4h]s’
3 B ] . '
_ _-4h,s 2h,s 4 0 . .-8hys., o _-2hgs ~
Q3 = e .2 +4a4sh2e 2 _]f 04-_ e 1 +4a25h]e 1°-1, :
. ! -4sH
Q.= e'2h15-e'2h25, Q. = 1+4sh e~2sh,-e 2’
5 . 6 2 !
' Q, = 1+an se M S TS g = 1-e72s(Mythy),
. Qo = (ayo, - 1)Q.2 + Q,0,. - (8.3)
9 1%2 5 3g- :
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