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Abstract

In this paper the fracture problem of a composite plate
which consists of perfectly bonded parallel load carrying lam-
inates and buffer strips is considered. It is assumed that the
fatigue cracks may appear and spread in main laminates or in
buffer strips or in both perpendicular to the interfaces. The
external load is applied to the plate parallel to the strips
and away from the crack region. The problem is solved for fully
imbedded cracks and for broken laminates or strips and the corre-
sponding stress intensity factors are calculated.

1 . INTRODUCTION

In designing with high strength composite :sheet materials
'."•'•• ' • ' "." ' ' • - ' i

the use of relatively low stiffness .and,>high toughness, buffer

strips oriented parallel 'to the main load-carrying laminates has

been under investigation for some.time." The practical aim of'this

particular design pra.cti.ce is to improve the fatigue crack propa-

gation and arrest characteristics of the structure. The fracture

process may start as the initiation of a fatigue crack at a local

imperfection in the load carrying laminate. The cyclic history

of the applied loads permitting, it may. then be possible for the

crack to enter the adjacent buffer strips as a result of subcrit-

ical or critical growth;:.;-Fatigue cracks may also appear and prop-

agate in the buffer strips. Knowing the fatigue and fracture

characteristics of both materials, for "studies relating to life
• •" .1 -"V :.

and structural integrity it would therefore be necessary to have

*This.work was supported by the National Aeronautics and Space
Administration under the Grant NGR 39-007-011 and by the Nation-
al Science Foundation under the Grant GK-42771X.
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a reliable analysis of the problem. Particularly in fatigue

crack propagation studies it would be very helpful to have a
r

technique for the calculation of corresponding stress inten-

sity factors. .

Even though in actual structures the primary laminates

and the buffer strips would be anisotropic, in this study,

largely for reasons of analytical expediency, it w i l l be as-

sumed that both materials are isotropic and 1inearly elastic.

The laminates and the buffer strips containing cracks of arbi-

trary length perpendicular to the interfaces are assumed to be

perfectly bonded and periodically arranged (Figure 1). The com-

posite plate is loaded parallel to the interfaces away from the

crack region. The case in which the propagating crack termi-

nates at a.bimaterial interface is separately studied. For

various crack geometries and for a certian material combination

the stress intensity factors are calculated. in recent years

the solutions of various special cases of this problem have

appeared in literature. Referring to Figure 1, for example,

the case of a single strip, (i.e.,yp= 0) 1S investigated in [1]

and [2], the problem of two half planes bonded through a cracked

• strip (i.e., h« - «>, b = 0, a.<h,) is studied in [3] and [4], the

solution to the same problem with the broken laminate (i.e.,

\\2 = °°, b = 0, a = h,) may be found in [5], The problem of two

bonded half planes with the finite cracks terminating at or

going through the interface was considered in'[6] and [7].



2. FORMULATION OF THE PROBLEM

Consider the elastostatic problem for the two-dimensional

.composite medium shown in Figure 1. It is assumed that two sets

of periodically arranged laminates o'r strips of finite Widths

2h.j and 2h2 are perfectly bonded along their straight boundaries.

The strips 1 and 2 are assumed to contain symmetrically located

cracks of lengths 2a and 2b, respectively and to have the re-

spective elastic constants y, , K, and vu, K? wnere <i = 3 - 4v .

for plane strain and K. = (.3 - v.)/(l + v.) for generalized plane
J J ' J

stress, v., (j = 1, 2) being the Poisson's ratio. The external
J

loads are assumed to be such that the periodic nature of the

problem is preserved and the crack plane is a plane of symmetry.

•Th'eV;sol utio'n, of th,e-:actual. .tracti on-free crack problem may be

obt'a'ined "by" means' :6T the'^ifeual superposition technique. In this

paper we w i l l therefore consider the singular part of the problem

in which the self -equi 1 i brati ng crack surface tractions are the

only external loads. Thus, referring to Figure 1, the solution

of the problem may be obtained by solving the related field equa-

tions for the two strips under the following boundary and con-

tinuity conditions:

, y) = u2(0.,y), v;T(0,y),= v2(0,y), (0<y<»), (l.a.b)

= . a? (0,y_), a, (0,y.) = a~ (0,y), (0<y<»)» (2.a,b)
.':.':"-."-.' t.'A'A. • •-";"'T'": -;p̂ - - . ' A'Jf _ ^ A Jr

u^-h^y) = 0, crlxy(-n1»y) = °» (0<y<«) , (3.a,b)

u2(h2,y) = 0, o2xy
(h2'y) = °* (0<y<00)' ... (4.a,b)

olxy(x,0) = 0, (-h1<x<0), a2xy(x,0) = 0, (0<x<h2) , (5.a,b)

a1 (x,0) = -p^x), (-h1<x<a-h1 ) , v1(x,0) = 0, .. , ;, .

(a-h1<x<0), (6.a,b)



a 2 y y (x ,0) = - P 2 ( x ) , (h 2 -b<x<h 2 ) , v 2 (x ,0 ) = 0,

(0<x<h 2 - b ) , ; ( 7 . a , b )

akyy ( x > r o ) = °' a kxy ( x > o o ) = °' (k = l ,2) . (8)

- • ' '*. . • ' ; ' ' . , , • •

where, because of symmetry, only .one quarter of a. strip from each

set is considered. In (1-8) u. and v. are the x and y-components

of the displacement vector in the strip k, (k=l,2), o. • •, (k=l,2,
K i j •

(i»j) = (x,y)) are the usual stress components and p, and p2 are

known functions. Defining the coordinates

. 'i

x1 = x + h] , x2 = x-h2, y1 = y = y^ ,, (9j

the solution of the problem satisfying the necessary field equa-

tions and the conditions (3), (4), (5), and (8) may be expressed as

' °°

+ X
1-9 i ( s ) c o s h ( x . . ; s ) } e d s ( y s ) d s .

K -1

' f^o* m i ( r) r"1(-2 -- r y )e " r y s in (x . ,r)dr,

v^x^y) = l/o-{l[f.(s) + ̂ ~ g i ( s ) ] c o s h ( x i S )

+ x ig i ( s ) s i n h ( x i s ) } s i n ( y s ) d s

+ | /0°° mi ( r ) r ' 1 (-21— + yr)e" y r cos (xi r )d"r , :

(i = 1 ,2) (10. a, b)
.j

where f-, g., and m.j (i = 1,2) are unknown 1 functions which may be

determined from the remaining six boundary conditions given by (1),

(2), (6), and (7). From (10) the stress components may be obtained



as

o,-wv(x. ,y) = - -2V . U i X X V A i > j r ; TT

«* -*

,-yr,* c o s ( y s ) d s - — / m i ( r ) ( 1 - y r ) e ~ y c o s ( x - r ) d r ,

sx,g . (s)sinh(x.s)}cos(ys)ds

| /0°° mi(r)(l+yr)e"
yrcos(x.r)dr,

Sx-j9-j (s)cosh(xis)}sin(ys)ds

- /0°° yrmi (r)e"
yrsin(xl.r)dnj

(i = 1 ,2). (11 .a-c)

If 'we now substitute from (10) and (11) into the four contin-

uity conditions (1) and (2) and take the inverse transforms in the

variable s, we obtain four algebraic equations for the functions

f , g ,_ f and g?- Solving these equations, f\j and '"g,..- , (i-= ] ,2).-

may be expressed in terms of m, (r) and m2(r). The remaining two

mixed boundary conditions would then give a system of dual integral

equations for m, and ITU. Appendix A gives the .expressi ons for f,

and g., (i = 1,2). Rather than deriving the system of dual integral

equations, in this paper the mixed boundary conditions are directly

reduced to a system of singular integral equations. Before doing

this we observe that the conditions (6.b) and (7.b) are equivalent



to

o / v, n \ - n / - . ^ 1 ' u l » u ^ /• 1 9 = 0,
1 . 1

(i = 1 ,2.; a, > a, a, = b) (12.a,b)

If we now defi ne

G i ( x i } *.577 v ^ x - . O ) , (i = 1 ,2) , ( 13 )

from (12. a) and ( l O . b ) it is seen 'that

9 a. . :
m . ( r ) = - / G t j s i n rt dt, (a = a, a = b,

: i: = 1,2) (14)

Thus, substituting from (14), (Al), (A2), and (11.b) into (6.a) and

(7.a) we obtain a pair of integral equations for.,the new unknown

functions G, and G2- With m^ as defined in (14) for y->+0 the sec-

ond integral in (11.b) becomes

1 im [- — / °° mi(r)(l + yr)e~
yrcos(x.r)dr]

= * 2 ai ( 1 + 1 )G .(t)dtj (i =,lj2). (15)
U • L "" A • L * A • I

Similarly, the functions defined by (A.I) may be expressed as

FijU) = ̂ Tf ^' J'MijU.t) - Mi.(s,-t)]Gi(t)dt, •

(i = 1,2; j = 1,.. ,4) (16)



where

M^U.t) = - [s(hrt) + -j.

Mi2(s,t) = [s(hrt) - -1-

Mi3(s,t) = s(hi

Mi4(s,t) = [s(hrt) - (17)

If we substitute from (15), (16), (A2), and (11.b) into (6.a)

and (7.a) and note that because of symmetry

^x.) = - G. (-X.J), (i = 1,2; - a i<x.<a i)

we obtain

, a G 1 ( t ?

-a t-x dt

. (18)

,t)G2(t)dt

r b G2(t)
-b t-x0

dt -a /b
Dk22(x2>t)G2(t)dt

,(x2 + h2), (-b<x2<b) (19,a,b)

where the kernels k..(x.,t), (i,j = 1,2) are giv e n by
. ' J '

(20)

The expressions for the functions K. . may be found in Appendix B.

The index of the system of singular integral equations (19) is +1;



therefore the solution w i l l contain two arbitrary constants [8] .

Theoretically these constants are determined by using the single-

valuedness conditions (1.2.b). However, due to symmetry, if one

only considers solutions satisfying (18), (12. b) w i l l be auto-

matically satisfied. For a <h, and b<hp (Figure -1) from Appen-

dix B it may be shown that the kernels k..(x.,t), (i,j = 1,2)
I J '

are bounded and continuous irt the corresponding closed intervals.

Thus, in this case, (19) is a system of ordinary singular in-

tegral equations with fundamental functions

W](t) = (a
2 - t2)^2, w2(t) = (b

2 - t2yh (21.a,b)

: I .

and may be solved in a straightforward manner.

All the known special cases may be recovered from (19) by

letting the length parameters a, h, , b, and h2 'go to proper limits.

For example, for h,+°° and h,,->°° k.. v a n i s h , (19) uncouples g i v i n g

the integral equations for center-notched infinite plates. For

b = 0, hp-*00, (19) reduces to an integral equation in G-,(t), the

Cauchy kernel and k,, being the only kernels. From Appendix B,

the integrand g i v i n g k,, may be shown to reduce to

Kn(x1,t,s) = (l-4a1h1se~
2hlS-a1a2e~

4hlS)~VhlS*

~ 2 h s*{aicosh(x,s) [l-a2(3 + 2 h 1 s ) e ~ l ]

-2x1sa1a2sinh(x,s)e"
2hls + a2 [1 -2s (h] -t)*

*[cosh(x,s)(3-2h1s-a1e"
2hls) + 2x]s sinh(x1s)]>. (22)
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where the constants a-| and a^ are defined in Appendix B.

This is the kernel found in [5]. If y? = 0 (18) further reduces

to the kernel obtained for the center-notched strip in [2]. One

may also observe that the kernels k. . have the expected property

of interchangabi1ity in the sense that k2- may be obtained from

k, . by changing the necessary indices and letting cu+a- and

3. THE LIMITING CASE: BROKEN LAMINATES.

In the l i m i t i n g case of broken '•! ami nates ,.(i .e. , a = h, or

b = h2) the integral equations (19) are still v a l i d . However, in

this case the kernels k.,, (i.,j = 1,2) w i l l not all be bounded in
' J i . ' :

the corresponding closed intervals. For example if a = h, , bxh?,

examining the integrands K,.(x.,t,s) g i v e n < in Appendix B it may
' J '

be seen that the kernels k,2, k,,, , and k22 are bounded for all

values of x, , XpS and t, but k,, becomes unbounded as x, and t

approach the end points +h, s imul taneousl.y. The important conse-

quence of this is that for a = h, (19) is .no longer a system of

ordinary singular integral equations, it has generalized Cauchy

kernels, the fundamental matrix of the system is different than

that given by (21), and the solution requires more care. Noting

that since K,, is bounded and continuous everywhere in 0<s<°°,

referring to (20) any divergence in the integral must be due to

the behavior of the integrand for s+°°. Thus separating the

asymptotic part K,, of the integrand K,^ we find

K11(x1,t,s) = K]IS(XI ,t,s) + KI lf (x1 ,t,s) ,



k l l f (x l s . t ) = / 0
a > K l l f (x 1 , t , . s )e" s ( h T t ) ds, ,

K l l s ( x 1 , t , s ) = e " h l s { a 1 cosh ( - x - r s ) + a2 [1 -2s ( h ] - t ) ] [( 3
i

- 2h , ) scosh (x , s ) + 2 s x - | S i n h ( x - j h ) ] } ,

( - h 1 < (;x.-|; , t )<h-| ) , ( 2 3 . a - e )

where k,, f is bounded in -h ,< (x , , t )<h, . The s ingu la r part of

the kernel k,, may be e v a l u a t e d b y , u s i n g the f ol 1 owi ng resul t [ 10 ] :

, 0. . v s i n h ( s x, ) . n / o u . > s i n h ( s x,)
Csne-s(2h1-t, { cosh jsx lJ )ds . JL. /0- . r?(2",- t ) { c o 5 h js x j5,ds

.n • ' • • • , x~,
- '-d r ' { ' }] , (n! = 1 ,2, . .) , ( 2 4 )

dtn ( •2h ] - t ) 2 - x 1 ' 2 2hT t

giving j

2h.|-t 2a2

k i i c C x i * * ) = (ai + 3 a?)— ? o + ' 1 o o tx- i
I I o I I ^ / o u 4 - \ ^ » » ^ - r / o u . 4 . ^ ^ • * J ^ • ^ ^ • '

t ) [ (2h r t )
2 (2h 1

2 -h 1 t -3x 1
2 ) + x

X ] )
2

A ^

a-,-3a9
' 2 ^ } [ t - ( 2 h ]

10



-y - 6a?(h1-x1)^ i i ax

(25)

]

i

- ~4 — - >[-t-(2h1-x1)']"i
1,;-|(;Th1<(x1,t)<h1).

Substituted into (19) and together with l/(t-x), k,,

gives a typical generalized Cauchy kernel. In 'this case the

fundamental solution matrix of (19) is of the form

W](t) = (h^-t
2)^, w2(t) = (b

2-t2)'3, (0<Re(Y,3)<l).(26.a,b)

'i

The characteristic equations g i v i n g the exponents y and 3 may be

obtained from (19) by letting

G^t) = H1(t)(h]
2-t2)-Y, 62(t)"= H2(t)(b

2-t2r6 (27. a, b)

and using the standard complex function technique [8, 2, 5]. In

(27) H, and H? are assumed to be bounded in the intervals,

-h,<t<h, and -b<t<b, respectively. .Omitting the detailed manipu-

lations (see, for example, [2], [5-7]) the characteristic equa-

tions are found to be

2cosiTY + 4a(Y-l)2 - (o + a) = 0,

We note that (28.a)is the same as the characteristic equation

found in [6] by two different methods for a crack tip terminating

at a bimaterial interface and (28. b) gives theiknown result
. . . i

B = 0.5. Similar results may be obtained for b = h>

11



4. THE SOLUTION AND THE RESULTS

For a<h, , b<hp the system of integral equations (19) has

the fundamental functions as given .by (21) which are the weights

of Chebyshev polynomials. Hence the system may be solved in a
' f

straightforward manner by using the .Gauss-Chebysh.ev integration

technique described in [9]. For a = h, , b<h« (or a<h, ,b = h?) ,

the fundamental functions of the integral ' equations are given

by (26) where 3 = 0.5 and y "is the root of (28. a) for which

0<Re(y)<l. It may be shown that for all possible material com-
V

binations y is real. In this case' the fundamental functions

are the weights of Jacobi polynomials and the solution of the

integral equations may be obtained by using the Gauss-Jacobi

integration technique (see, for example , [5-7] ).

After solving (19) from the formulation given in this

paper it is clear that all the des.i red. .field quantities may be

expressed in terms of definite integrals with appropriate Green's

functions as kernels and G, and G? as density functions. In

fracture studies one is usually interested only in the stress

intensity factors which may be defined in terms of cleavage
; t

stresses a. (x.,0), (i = 1,2) and may be expressed in terms

of the derivatives of the crack surface displacements G-j and G2

as follows [6] : .

k. = lim

12



a<h1 : ka = lim /2^-a) 6 l y y (x ] ,0) = - ^p -̂ lim / Z U - X j ) G^x-, )

i

a = h, : k = l im /2~ (x ? +h ? ) Y 0? v v ( x ? ,0)= -2y* l im /? (h,-x,)Y .
Y-^— h '*/•"•/ . . Y-vH

• G^x^ , ( 2 9 . a - c )

where

s mry

As an example we consider the composite medium shown in Fig-

ure 1. It is assumed that the problem is one of "plane stress",

there is no constraint in x-direction, and the. plate is loaded

in y-direction sufficiently far away from the crack region.^ '

Thus, in the perturbation problem the crack surface tractions
i

are constant and satisfy the following condition:

(Pl/P2} = E1/E2 .. . (31)

where E-j and E2 are the Young's moduli.

Figures 2-5 show some of the calculated results. The ma-

terial combination used (v-, = 0.35, v? = 0.45,i-u-, = 6.65y2) is

assumed to approximate boron epoxy sheets havi ng buff er -stri ps . —

(*)This means that the dimension of the plate in y direction is
large compared to that in x- direction. If the opposite is
true and if the external load is applied through fixed grips,
then in the uncracked plate e = 0 and the 2ratio of the, crack
surface tractions becomes (pi/p2) = [Ei(1-v2 )l/[E2(l-vi )].
In either case the analysis does not apply to the strips on
the sides.

13



of the same mater ia l but d i f ferent s t i f f n e s s . Figure 2 shows

the s t ress intensi ty f a c t o r ' k for b = 0 and varying ra t ios
a

a/h, and h^/h, . Referring to Figure 1., for a.= h, (and

0<b<h2) the asymptotic value of 'the cleavage stress around

the singular point is (see (29. c)) ,:

k
. (* = x - h ) . (31)

where, for the materials under consideration y = 0.7015. Figure

2 also shows the normalized k for a = h,, b = 6. As expecteda i ,

for hp^O k (a = h, )->«>. Note that for h2 - 0 the problem reduces

to that of a homogeneous plate with periodic col linear cracks.

Figure 3 shows the similar results for a =0, and b/h^ and

h,/h2 variable. In this case for b = .h. tne stiffness of the

adjacent medium is higher and consequently the power of the stress

singularity y becomes less, than 0.5 (y.= 0.36211). The results

given in Figures 2 and 3 indicate that the stress intensity

factor k for a crack in the stiffer material is higher and k.a . . D
> r.r '

for a crack in the less stiff material is lower than the stress

intensity factor in the corresponding homogeneous plate.
" " '

Figures 4 and 5 show the results for the case in which both

sets of strips contain cracks. These examples are given for the

same material pair as used in Figures 2 and 3, and for a fixed

width ratio h-i/hp = 4. Figure 4 shows the stress intensity

factor k, for various values of a/h, and varying b/h9. Againd I : f-

for a = h, the power of the stress singularity y is greater

than 0.5 and the scale for k is given on the rjght with a

14



normalizing factor f/,h-|Y. Figure 5 shows the stress intensity

factor kb for the same problem. The scale for k./pp/F for the

li m i t i n g case of a = h, is shown on the right. Note that for

a = h-| kb-*<» as b+hp and for a<h, k. tends to zero as b+hp.

This latter result is due to the change in the power of stress

singularity from 0.5 for b<h2 to y= 0.3621<0.5 for b = hp.
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,, APPENDIX A

The expressions for the functions f. and g . , (i = 1,2):

The functions f. and .g.,. (i = i.y2),may be expressed in terms

of m, and m2 by substituting from (10) and (11) into (1) and (2).

F i r s t d e f i n e

- K.-3 sin(h.r)

,2 , Kjtl , ., cos(h.r)
Fi2< s> =ie^oml('-"2'- trT-(r *' ) (̂r2^2)

.2 c o s ( h . r )
"

Fu(s) - ̂  /„" r
2m,(r) $1g ^2 dr, (i =;1,2). (Al.a-d)

1 : . V . ' ; i

Equations (1) and (2) would then give i

? ( C1J FIJ + d1jF2j>'
J ~ ' -

where

a12(s) = [n1sinh(h2s) -
 C]

a-|3(s) = [-A^n^si nh(h2s) -

16



bn (s) = an (s) ,» b 1 2 ( s ) =

b 1 3 ( s ) = [n 2 s inh(h 2 s) - d ]

b 1 4 ( s ) = [ n 2 cosh (h 2 s ) - d ]

a 2 - | ( s ) = •. [n ,cosh(h- ,s ) - c,

a >> o (s ) = [ -n^s inh(h,s) - c
C~ £ O I

- C13T21 / S2'

a 2 4 ( s ) = [n 4 cosh( .h 1 s ) -

b 2 1 ( s ) = , b 2 2 ( s ) =

>Z3<S> -

= [A2n4 .cosh-(h| .s) - d^T^J/S^

where

( A . 3 )

I)h2s

I)h 2s

~2 si nh(2h2s }] sinh( h-,+h2 )s ,
i

~— s i n h ( 2 h 1 s ) ] s i n h ( h 1 + h 2 ) s ,

s inh c o s h ( h , + h 2 ) s

î  ^1^

^—- s i n h ( 2 h 2 s )

)s ,

-,+1

— s 1 n h ( 2 h ] s ) ]

17



+ %sinh(h1+h2)s] + ^sinh(h1 -h2)s [-( X2+<2)h1 s

i Ki ~K?
I + -^ — ± sinh(2hlS)]. ' (A. 4)

c-j-|(s) = L-,cosh(h2s) + L3cosh(h.|S),

i •
C12(s) = L-jSinh(h2s) - L-^sinhd^s),

C13(s) = -L.jSinh(h2s) + AI .L3sinh(.h, s) ,

c14(s) = L1cosh(h2s) + X1L3cosh(h1 s) ,
i

dn(s) = cn(s), d]2(s) = - c12(s), d]3(s) = X£LI si nh (h2s)

!'

, , .' - L 3 s i n h ( h , s ) ,
i

h2s) + L3cosh(h-j s ) ,

s) + I_4cosh(h2s),

c22(s) = -L2sinh(h,s) + L.sinh(h2s),

c23(s) = X^^sinhCh^) - l_4-sinh(h2s) , ,

d21(s) = c21(s), d22(s) = - c22(s), d23(s) = - L2si nh(h.j s)

d24(s) = L2cosh(hyS) + X2L4cosh(h2s) , j (A.5)

where ;

-, (C2 + l -, K-t+1

L, = K -o— s inh(h 0 -h 1 )s , L0 = ^ -^— s inh(h 1 -h 9 )s ,

18



L3 = i fO-V h 2 S " %(*2
+ K2i ~

L4 = ^ [ ( i -x^^s - %(\^K}

D = -

s i n h ( 2 h 2 s ) ] [ (1-X^h^ - . ( A . 6 )

19!



A P P E N D I X B
!

The e x p r e s s i o n s for the func t i ons K ^ . , ( i j = 1 ,2 ) w h i c h

appear in ( 20 ) : '

- 2 h s - 2 h s } ]- Q 9 { ( l + a 1 ) Q 6 + i + e - 2 s - 2 ( h 1 - t ) s e - 2

2V -h.

2a 2 s (h r t ) } i

K 1 2 ( x 1 § t , s ) =

- a 1 Q 1 Q 5 } { Q 5 ( 2 o j 4 s ( h 2 - t ) - a,

1+a
=-2- 2 x 1 s e " h . l s s . i n h ( x 1 s ) { Q 5 [ 2 a 4 s ( h 2 - t ) - a 4

K 2 1 ( x 2 . t . s ) =

e '2 h2 s ]

<4^

K 2 2 ( x 2 ' t ' s ) = bi;k c o s h | x2S

20



e-sinh(x2s)[Q4(2a4s(h2-t)-a4+e

- (l-a3a4)Q5]

where

a = a2 =

(B.la-d)

= !Ve-2h2s_1+e-4h2Sj ;c
l a3

Q3 = e-
4h2s

+4a4sh2e-
2h2s-l j

a-,

(B.2)

e'2hl

Q5=

Q7

Q

, Q

o2 - 1)Q5 + Q3Q4. ; (B.3)

21
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