General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A procedure is developed to extract cross-band textural features from ERTS multi-spectral scanner imagery. Evolving from a single-image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial inter-relationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure compliments the single-image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single-image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.3% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single-image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6% respectively.
PREFACE

A procedure is developed to extract cross-band textural features from ERTS multi-spectral scanner imagery. Evolving from a single-image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial inter-relationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure compliments the single-image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single-image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single-image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.
STIF
KANSAS ENVIRONMENTAL AND
RESOURCE STUDY: A GREAT PLAINS
MODEL
MARCH 1974
Type III Final Report for the Period
August 1, 1972 - March 17, 1974

Prepared for:
National Aeronautics and Space Administration
Goddard Spaceflight Center
Greenbelt, Maryland 20771

Contract No. NAS 5-21822

RECEIVED
NOV 08 1974
SIS/902.6

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
2385 Irving Hill Rd.—West Campus Lawrence, Kansas 66044
Use of Feature Extraction Techniques for the Texture and Context Information in ERTS Imagery:

Spectral and Textural Processing of ERTS Imagery

R. M. Haralick, Principal Investigator
University of Kansas Center for Research, Inc.
Remote Sensing Laboratory
c/o Space Technology Center
Nichols Hall
2291 Irving Hill Drive-Campus West
Lawrence, Kansas 66045

March 17, 1974
Type III Final Report for the Period August 1, 1972 - March 17, 1974

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Goddard Spaceflight Center
Greenbelt, Maryland 20771
Type III Final Report
for the period: August 1, 1972 - March 17, 1974

Title of Investigation: Use of Feature Extraction Techniques for Texture Context Information in ERTS Imagery

ERTS-A Proposal Number: 60-1
Task Number: 1
Co-Investigators: R. M. Haralick and G. L. Kelly
NASA-GSFC PI ID Number: UN 094

Report Prepared by: Robert J. Bosley
Research Assistant

Report Approved by: R. M. Haralick
Co-Principal Investigator
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. TEXTURE</td>
<td>2</td>
</tr>
<tr>
<td>III. REVIEW OF PAST WORK ON TEXTURE</td>
<td>3</td>
</tr>
<tr>
<td>IV. TEXTURAL FEATURES</td>
<td>4</td>
</tr>
<tr>
<td>IV.1 Spatial Grey Tone Dependence Matrices</td>
<td>4</td>
</tr>
<tr>
<td>IV.2 Textural Features for Multi-Images</td>
<td>11</td>
</tr>
<tr>
<td>IV.3 Textural Feature Extraction Procedure</td>
<td>14</td>
</tr>
<tr>
<td>V. GROUND TRUTH ASSIGNMENT PROCEDURE</td>
<td>17</td>
</tr>
<tr>
<td>VI. IDENTIFICATION PROCEDURE</td>
<td>19</td>
</tr>
<tr>
<td>VII. RESULTS OF CLASSIFICATION EXPERIMENTS</td>
<td>23</td>
</tr>
<tr>
<td>VII.1 Summary of Classification Results</td>
<td>30</td>
</tr>
<tr>
<td>VIII. CONCLUSION</td>
<td>31</td>
</tr>
<tr>
<td>APPENDIX I - Textural Features Obtained from the Grey Tone Dependence Matrix</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX II - N-Dimensional Spherical Coordinate Systems and Ellipsoidally Symmetric Distribution</td>
<td>51</td>
</tr>
<tr>
<td>APPENDIX III - Normalization Procedure to Make Covariance Matrix Invariant Under Translating and Scaling Transformations</td>
<td>65</td>
</tr>
<tr>
<td>APPENDIX IV - Computer Program Documentation & Listings</td>
<td>67</td>
</tr>
<tr>
<td>APPENDIX V - Glossary and Index to Remotely Sensed Image Pattern Recognition Concepts</td>
<td>247</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>254</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Eight Nearest Neighbor Resolution Cells</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>The Set of All Distance 1 Horizontal Neighboring Resolution Cells on a 4 x 4 Image</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>The General Form of Any Grey Tone Spatial Dependence Matrix</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Textural Feature for Two Different Land-Use Category Images</td>
<td>10</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Example of a Nearest Neighbor Grey Tone Spatial Dependence Matrix</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Scattergram of the Nearest Neighbor Differences for Distance 1 on MSS Bands 4 and 5</td>
<td>16</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Histogram the Distribution of Differences</td>
<td>16</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Retrieval Program Printout of a Portion of Image No. 1021-16333 over Kansas City</td>
<td>18</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Identification Scheme for Classification</td>
<td>20</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>ERTS Image No. 1002-18134</td>
<td>26</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>ERTS Image No. 1330-16515</td>
<td>27</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>ERTS Image No. 1021-16333</td>
<td>28</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Cross-Band Texture Feature Component Designation</td>
<td>29</td>
</tr>
<tr>
<td>Figure 14.</td>
<td>Examples of Cross-Band Texture Features</td>
<td>32</td>
</tr>
<tr>
<td>Figure 15.</td>
<td>Comparison of the Performance of the Cross-Band Texture Procedure and the Single-Image Texture Procedure</td>
<td>33</td>
</tr>
<tr>
<td>Figure 16.</td>
<td>Three Dimensional Spherical Coordinate System</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>Contingency Table Using the 6 Multi-Image Textural Features Over Monterey Bay, California</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.</td>
<td>Results of Land-Use Classification Experiments Over Monterey Bay, California</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Contingency Table Using the 6 Distance 1 Multi-Image Textural Features Over Garden City, Kansas</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Results of Land-Use Classification Experiments for Distance 1 Over Garden City, Kansas</td>
<td>35</td>
</tr>
<tr>
<td>Table 5.</td>
<td>Contingency Table Using the 6 Distance 8 Multi-Image Textural Features Over Garden City, Kansas</td>
<td>36</td>
</tr>
<tr>
<td>Table 6.</td>
<td>Results of Land-Use Classification Experiments for Distance 8 Over Garden City, Kansas</td>
<td>36</td>
</tr>
<tr>
<td>Table 7.</td>
<td>Contingency Table Using Both Distance 1 and 8 Multi-Image Textural Features Over Garden City, Kansas</td>
<td>37</td>
</tr>
<tr>
<td>Table 8.</td>
<td>Results of Land-Use Classification Experiments for Distances 1 and 8 over Garden City, Kansas</td>
<td>37</td>
</tr>
<tr>
<td>Table 9.</td>
<td>Contingency Table Using Distance 1 Multi-Image Textural Features Over Garden City, Kansas, with the Bayes Classifier</td>
<td>38</td>
</tr>
<tr>
<td>Table 10.</td>
<td>Contingency Table Using Distance 8 Multi-Image Textural Features Over Garden City, Kansas, with the Bayes Classifier</td>
<td>38</td>
</tr>
<tr>
<td>Table 11.</td>
<td>Contingency Table Using the Bayes Classifier for 9 of the 29 Cross-Band Textural Features Over Garden City, Kansas</td>
<td>39</td>
</tr>
<tr>
<td>Table 12.</td>
<td>Contingency Table Using All 17 Distance 1 Texture Features on MSS Band 5 Over Kansas City</td>
<td>40</td>
</tr>
<tr>
<td>Table 13.</td>
<td>Contingency Table Using All 29 Distance 1 Cross-Band Texture Features Over Kansas City</td>
<td>40</td>
</tr>
<tr>
<td>Table 14.</td>
<td>Contingency Table Using the 4 Spectral Features Over Kansas City</td>
<td>41</td>
</tr>
<tr>
<td>Table 15.</td>
<td>Contingency Table Using All 17 Texture Features Plus the 4 Spectral Features Over Kansas City</td>
<td>41</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Table 16</td>
<td>Contingency Table Using the First 26 of the 29 Cross-Band Texture Features Plus the 4 Spectral Features Over Kansas City</td>
<td>42</td>
</tr>
<tr>
<td>Table 17</td>
<td>Contingency Table Using the First 8 of the 17 Texture Features from MSS Band 5 Over Kansas City</td>
<td>42</td>
</tr>
<tr>
<td>Table 18</td>
<td>Contingency Table Using the First 9 of the 29 Cross-Band Texture Features Over Kansas City</td>
<td>43</td>
</tr>
<tr>
<td>Table 19</td>
<td>Contingency Table Using the First 9 of the 29 Cross-Band Texture Features Over Kansas City with the Bayes Classifier</td>
<td>43</td>
</tr>
<tr>
<td>Table 20</td>
<td>Contingency Table Using the First 6 of the 29 Cross-Band Texture Features Plus the 4 Spectral Features Over Kansas City</td>
<td>44</td>
</tr>
<tr>
<td>Table 21</td>
<td>Contingency Table Using the First 9 of the 17 Texture Features from Band 5 plus the 4 Spectral Features Over Kansas City</td>
<td>44</td>
</tr>
<tr>
<td>Table 22</td>
<td>Contingency Table Using the First 11 of the 29 Cross-Band Texture Features Plus the 4 Spectral Features Over Kansas City</td>
<td>45</td>
</tr>
<tr>
<td>Table 23</td>
<td>Contingency Table Using the First 16 of the 29 Cross-Band Texture Features Plus the 4 Spectral Features Over Kansas City</td>
<td>45</td>
</tr>
<tr>
<td>Table 24</td>
<td>Contingency Table Using the First 21 of the 29 Cross-Band Texture Features Plus the 4 Spectral Features Over Kansas City</td>
<td>46</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

A procedure is developed to extract textural features for automatic analysis of ERTS multi-spectral scanner imagery. Previous work (Haralick, 1973; Haralick, 1972) indicates that useful textural features can be computed from the co-occurrence matrices for grey tones in specific spatial relationships on an image. The performance of the land-use classification algorithm using these textural features from only one band is encouraging; up to 75 per cent of the images were correctly classified (Haralick, 1973). Since textural features and spectral features of ERTS multi-images provide different kinds of information, a significant increase in identification accuracy will occur when both features are used together.

Adoption of the texture procedure for multi-images leads to excessive amounts of storage for the grey tone N-tuple co-occurrence matrices. Therefore, to solve the storage problem we measure grey tone N-tuple differences instead of grey tone N-tuples and assume an ellipsoidally symmetric functional form for the co-occurrence distribution of multi-image grey tone N-tuple differences.

It is expected that the estimated parameters of the ellipsoidally symmetric distribution will lead to textural features that can distinguish between texturally distinct categories on ERTS MSS images over Kansas. In order to obtain more texture information, the dimensionality of the grey tone N-tuples was increased from the original four MSS bands by the addition of cross-band product terms for higher order components. This procedure for cross-band texture analysis of multi-images provides a natural extension of the single-image texture analysis while retaining its advantages: invariance under translating and scaling transformations, low storage requirements, and direct proportionality between the number of operations required to process an image and the number of resolution cells present in an image.
11. TEXTURE

Texture and tone are two fundamental pattern elements used in the interpretation of image data. The concept of tone is concerned with the whiteness, greyness, or blackness of resolution cells of the image. The concept of texture is concerned with the spatial distribution of the grey tones. Tone is based upon the varying shades of grey of the resolution cells in the image, while texture is based upon the spatial distribution of grey tones. However, texture and tone are not independent concepts but are intrinsically related to one another. Although either property can dominate the other depending upon the image context, texture and tone are always present.

When one attempts to objectively use tone and texture pattern elements, the texture-tone concept must be explicitly defined. This can be visualized as follows. When a small area patch of an image has little variation of features of discrete grey tone, then that area is dominated by tonal properties. As the number of distinguishable features of discrete grey tone increases within the patch, then the texture properties will dominate. The size of the small area patch, the relative sizes of the discrete features and the number of distinguishable discrete features are all crucial in this distinction. When the size of the small area patch is reduced to one resolution cell, the only property present is tone. When there is no spatial pattern in the tonal features and the grey tone variation between features is wide, a fine texture results. And as the spatial pattern becomes more defined using more and more resolution cells, then a coarser texture results.

Texture can be termed as being fine, coarse, smooth, rippled, mottled irregular, or lineated. Texture is a property of nearly all surfaces, the grain of wood, the weave of fabric, the pattern of crops in a field, etc. Although texture is quite easy for humans to recognize and describe, it is quite subjective by its nature and is extremely difficult to precisely define and analyze by digital computers. Since the texture of images contains important information for discrimination purposes, textural features could be very useful.
II. REVIEW OF PAST WORK ON TEXTURE

To date there has been at least six different approaches to the problems of measuring and characterizing texture of images: autocorrelation functions, optical transforms, digital transforms, edgeness, structural elements, and spatial grey tone co-occurrence probabilities. The first three approaches all measure spatial frequency either directly or indirectly. Spatial frequency is related to texture because fine textures are rich in high frequencies while coarse textures are rich in low frequencies.

One alternative approach to viewing texture as spatial frequency distribution is to view texture as the amount of edgeness per unit area. Fine textures have a high number of edges per unit area whereas coarse textures have a small number of edges per unit area.

The structural element approach uses a matching procedure to detect the spatial regularity of shapes called structural elements in a binary image. When the structural elements themselves are single resolution cells, the information provided by this approach is the autocorrelation function of the binary image. By using larger and more complex shapes, a more generalized autocorrelation can be computed.

The grey tone spatial dependence approach characterizes texture by the spatial distribution of its grey tones. In coarse textures the distribution changes only slightly with distance, but for fine textures it changes rapidly with distance.

Because of our familiarity with the concepts of spatial frequency and edgeness, these approaches to texture characterizations are readily employed. However, an inherent problem exists with these approaches in regard to grey tone calibration of the image and they are not invariant under even a linear grey tone translation. And the price paid for invariance by compensating with quantization is a loss of grey tone precision in the quantized image.

The power of the structural element approach is that it emphasizes the shape aspects of the discrete tonal features. Weakness of this approach lies in that it can only do so for binary images.

The power of the spatial grey tone co-occurrence approach lies in characterizing the spatial inter-relationships of the grey tones in a texture pattern in such a way that is invariant under monotonic grey tone transformations. Weakness of the approach lies in failure to capture the shape aspects of the discrete tonal features.
IV. TEXTURAL FEATURES

The above description of texture is an idealization of what actually occurs, a gross simplification. Discrete tonal features are actually quite subjective in that they do not necessarily stand out as entities by themselves. Therefore, the texture analysis presented here is concerned with more general or macroscopic concepts rather than discrete tonal features. The procedure developed by Haralick (Haralick, 1972) for obtaining the textural features of an image is based on the assumption that the texture information on an image I is contained in the overall spatial co-occurrence relationship which the greytones in the image I have to one another. More specifically, we assume that this texture information is adequately specified by a set of spatial grey tone dependence matrices, which are computed for various angular relationships and distances between neighboring resolution cell pairs on the image. All of the textural features are then derived from these angular nearest neighbor spatial grey tone dependence matrices.

IV.1 Spatial Grey Tone Dependence Matrices

Let \(G = \{0, 1, \ldots, N_g\} \) be the set of possible grey tones that each resolution cell can take on after image normalization by equal probability quantizing to \(N_g \) levels. It can be shown that this quantization guarantees that images which are a monotonic transformation of one another, such as lighter or darker images due to variations in film, lighting, or development, will produce the same results. Let \(N_x \) be the number of resolution cells in the horizontal direction and \(N_y \) the number of resolution cells in the vertical direction in the image to be analyzed so that \(L_x = \{1, 2, \ldots, N_x\} \) and \(L_y = \{1, 2, \ldots, N_y\} \) are the horizontal and vertical spatial domains. Then \(L_y \times L_x \) will be the set of resolution cells of the image. And the image I can be represented as a function which assigns some grey tone in \(G \) to each resolution cell or pair of coordinates in \(L_y \times L_x \); \(I: L_y \times L_x \rightarrow G \).

Essential to our conceptual framework of texture are four closely related measures called angular nearest neighbor grey tone spatial dependence matrices. The concept of angular nearest neighbor for a resolution cell is the adjacent resolution cell for a given angle, as shown in Figure 1.
FIGURE 1. Eight nearest neighbor resolution cells of cell \(* \).
Resolution cells 1 and 5 are the 0-degree nearest neighbors to resolution cell \(* \), resolution cells 2 and 6 are the 135-degree nearest neighbors, etc.
Note that this information is purely spatial, having nothing to do with grey tone values.

We assume that the texture information in our image 1 is contained in the overall or "average" spatial relationship which the grey tones in image 1 have to one another. Specifically, we shall assume that this information is adequately specified by the matrix of relative frequencies \(P_{ij} \) with which two neighboring resolution cells separated by distance \(d \) occur on the image, one with grey tone \(i \) and the other with grey tone \(j \). These matrices of spatial grey tone dependence frequencies are a function of the angular relationship between the neighboring resolution cells as well as a function of the distance between them. Figure 2 illustrates the set of all horizontal neighboring resolution cells separated by distance 1. This set along with the image grey tones would be used to calculate a distance \(i \) horizontal spatial grey tone co-occurrence matrix.

Formally, for angles quantized to 45° intervals the unnormalized frequencies are defined by:

\[
P(i, j, d, 0^\circ) = \# \{(k, l), (m, n)\} \in (L_y \times L_x) \times (L_y \times L_x) \mid k-m=0, |l-n|=d, l(k, l)=i, l(m, n)=j\}
\]

\[
P(i, j, d, 45^\circ) = \# \{(k, l), (m, n)\} \in (L_y \times L_x) \times (L_y \times L_x) \mid (k-m=d, l-n= -d) \text{ or } (k-m= -d, l-n=d), l(k, l)=i, l(m, n)=j\}
\]

\[
P(i, j, d, 90^\circ) = \# \{(k, l), (m, n)\} \in (L_y \times L_x) \times (L_y \times L_x) \mid |k-n|=d, |l-n|=0, l(k, l)=i, l(m, n)=j\}
\]

\[
P(i, j, d, 135^\circ) = \# \{(k, l), (m, n)\} \in (L_y \times L_x) \times (L_y \times L_x) \mid (k-m=d, l-n= -d) \text{ or } (k-m= -d, l-n=d), l(k, l)=i, l(m, n)=j\}
\]

Note that these matrices are symmetric; \(P(i, j; d, a) = P(j, i; d, a) \). The distance metric \(\rho \) implicit in the above equations can be explicitly defined by

\[
\rho((k, l), (m, n)) = \max \{|k-m|, |l-n|\}.
\]
\[
R_H = \left\{ \left((k,1), (m,n) \right) \in \left(L_y \times L_x \right) \times \left(L_y \times L_x \right) \mid k-m = 0, \ |l-n|= 1 \right\}
\]

\[
= \left\{ (1,1), (1,2), (1,3), (1,4), (1,2), (1,3), (1,1), (1,2), (1,3), (1,4),
(1,2), (2,1), (2,2), (2,3), (2,4), (2,3), (2,1), (2,2), (2,3), (2,4),
(3,1), (3,2), (3,3), (3,2), (3,3), (3,2), (3,1), (3,2), (3,3), (3,2),
(3,3), (3,4), (3,3), (4,1), (4,2), (4,3), (4,1),
(4,2), (4,3), (4,2), (4,3), (4,4), (4,3), (4,4), (4,3) \right\}
\]

FIGURE 2. Illustrates the set of all Distance 1 Horizontal Neighboring Resolution Cells on a 4 x 4 Image.
For an example of the four distance 1 grey tone spatial dependence matrices, consider Figure 3. Figure 3-a represents a 4 x 4 image with four grey tones, ranging from 0 to 3. Figure 3-b shows the general form for any grey tone spatial dependence matrix. For example, the element in the (2, 1)-st position of the distance 1 horizontal \(P_H \) matrix is the total number of times two grey tones of value 2 and 1 occurred horizontally adjacent to each other. To determine this number, we count the number of pairs of resolution cells in \(R_H \) such that the first resolution cell of the pair has grey tone 2 and the second resolution cell of the pair has grey tone 1. Figure 3-c through 3-f shows all four distance 1 grey tone spatial dependence matrices.

From the grey tone dependence matrices a set of 17 textural features is derived. The equations defining these 17 features are given in Appendix 1. To illustrate the significance of these features, three are defined as follows:

\[
f_1 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(\frac{P(i, j)}{\#R} \right)^2,
\]

\[
f_{12} = \sum_{n=0}^{N_g-1} n^2 \left(\sum_{|i-j|=n} \left(\frac{P(i, j)}{\#R} \right) \right)
\]

\[
f_3 = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ij P(i, j)}{\#R} - \mu_x \mu_y \sigma_x \sigma_y
\]

where \(\#R \) = number of resolution cells pairs, and \(\mu_x \) and \(\sigma_x \) are the mean and standard deviation of the marginal distribution \(P_x \) defined by

\[
P_x(i) = \sum_{j=1}^{N_g} \frac{P(i, j)}{\#R}
\]

and \(\mu_y \) and \(\sigma_y \) are the mean and standard deviation of the marginal distribution \(P_y \) defined by:

\[
P_y(j) = \sum_{i=1}^{N_g} \frac{P(i, j)}{\#R}
\]
Figure 3-a. This shows the general form of any grey tone spatial dependence matrix for an image with integer grey tone values 0 to 3. \#(i,j) stands for number of times grey tones \(i \) and \(j \) have been neighbors.

Grey Tone

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>#(0,0)</td>
<td>#(0,1)</td>
<td>#(0,2)</td>
</tr>
<tr>
<td>1</td>
<td>#(1,0)</td>
<td>#(1,1)</td>
<td>#(1,2)</td>
<td>#(1,3)</td>
</tr>
<tr>
<td>Grey Tone</td>
<td>2</td>
<td>#(2,0)</td>
<td>#(2,1)</td>
<td>#(2,2)</td>
</tr>
<tr>
<td>3</td>
<td>#(3,0)</td>
<td>#(3,1)</td>
<td>#(3,2)</td>
<td>#(3,3)</td>
</tr>
</tbody>
</table>

Grey Tone Spatial Dependence Matrix

\[
P = \begin{pmatrix}
4 & 2 & 1 & 0 \\
2 & 4 & 0 & 0 \\
1 & 0 & 6 & 1 \\
0 & 0 & 1 & 2
\end{pmatrix}
\]

\[
P_{90} = \begin{pmatrix}
6 & 0 & 2 & 0 \\
0 & 4 & 2 & 0 \\
2 & 2 & 2 & 2 \\
0 & 0 & 2 & 0
\end{pmatrix}
\]

\[
P_{135} = \begin{pmatrix}
2 & 1 & 3 & 0 \\
1 & 2 & 1 & 0 \\
3 & 1 & 0 & 2 \\
0 & 0 & 2 & 0
\end{pmatrix}
\]

\[
P_{45} = \begin{pmatrix}
4 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 \\
0 & 2 & 4 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
To explain the significance of these features, let us consider the kind of values they take on two different land use category images. Figure 4 shows the digital printout of two sub-images of size 64 x 64 resolution cells (approximately 8.5 square mile area) from MSS band 5 of 1002-18134, see Figure 10. The image shown in 4 (a) belongs to the grass land category and the image in Figure 4(b) is mostly water. Values of the features f_1, f_{12}, and f_3 are also shown for these images in Figure 4.

The angular second moment feature (ASM), f_1, is a measure of homogeneity of the image. In a homogeneous image, such as shown in 4(b), there are very few dominant grey tone transitions. Hence, the P matrix for this image will have fewer entries of large magnitude. For an image like the one shown in Figure 4(a), the P matrix will have a large number of small entries and hence the ASM feature which is the sum of squares of the entries in the P matrix will be smaller. A comparison of the ASM values given below the images in Figure 4 shows the usefulness of the ASM feature as a measure of the homogeneity of the image.

The contrast feature, f_{12}, is obtained as a difference moment of the P matrix and is a measure of the contrast or the amount of boundaries present in an image. Since there is a large amount of boundaries present in the image 4(a) compared to the image shown in 4(b), the contrast feature for the grassland image has consistently higher values compared to the water body image.

The correlation feature, f_3, is a measure of linear grey tone dependencies in the image. For both the images shown in Figure 4, the correlation feature is somewhat higher in the horizontal (0°) direction, along the line of scan. The water body image consists mostly of a constant grey tone value for the water plus some additive noise. Since the noise samples are mostly uncorrelated, the correlation features for the water body image have lower correlation values compared to the grassland image. Also the grassland image has a considerable amount of linear structure along 45° lines across the image and hence the value of the correlation feature is higher along this direction compared to the values for 90° and 135° directions.

The various features presented here are all functions of distance and angle. The angular dependencies present a special problem. Suppose image A has features a, b, c, d for angles 0°, 45°, 90°, and 135° and image B is identical to A except that B is rotated 90° with respect to A. Then B will have features c, d, a, b, for angles 0°, 45°, 90°, and 135° respectively. Since the texture
<table>
<thead>
<tr>
<th>Angle</th>
<th>ASM</th>
<th>Contrast</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>.0128</td>
<td>3.048</td>
<td>.8075</td>
</tr>
<tr>
<td>45°</td>
<td>.0080</td>
<td>4.011</td>
<td>.6366</td>
</tr>
<tr>
<td>90°</td>
<td>.0077</td>
<td>4.014</td>
<td>.5987</td>
</tr>
<tr>
<td>135°</td>
<td>.0064</td>
<td>4.709</td>
<td>.4610</td>
</tr>
<tr>
<td>Avg.</td>
<td>.0087</td>
<td>3.945</td>
<td>.6259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>ASM</th>
<th>Contrast</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>.1016</td>
<td>2.153</td>
<td>.7254</td>
</tr>
<tr>
<td>45°</td>
<td>.0771</td>
<td>3.057</td>
<td>.4768</td>
</tr>
<tr>
<td>90°</td>
<td>.0762</td>
<td>3.113</td>
<td>.4646</td>
</tr>
<tr>
<td>135°</td>
<td>.0741</td>
<td>3.129</td>
<td>.4650</td>
</tr>
<tr>
<td>Avg.</td>
<td>.0822</td>
<td>2.863</td>
<td>.5327</td>
</tr>
</tbody>
</table>

Figure 4. Textural Features for Two Different Land Use Category Images.
context of A is the same as the texture context of B, any decision rule using the angular features a, b, c, d must produce the same results for c, d, a, b, or for that matter b, c, d, a (45° rotation) and d, a, b, c, (135° rotation). To guarantee this, we do not use the angularly dependent features directly. Instead, we merge the four arrays by summing corresponding elements. The merged array is then used for computing the 17 texture features defined in Appendix I.

IV.2 Textural Features for Multi-Images

Results of previous work in texture using the spatial grey tone dependence matrices as the basis from which all textural features are extracted has been very encouraging (Haralick, 1973). The good performance of these texture features can be seen by the results of the classification experiments. The computational aspects of the procedure are also notable. The number of operations required to process an image using the spatial grey tone dependence matrices is directly proportional to the number of resolution cells, N, present in an image. In comparison, the number of operations needed to use Fourier or Hadamard transforms to extract texture information are of the order of N log N. And, to compute the entries in the spatial grey tone dependence matrices, one needs to keep only two lines of image data in core at a time, keeping storage requirements to a minimum.

Even with these advantages, however, the extraction of texture information from multi-images, as in the case of ERTS MSS data, forces a new approach to the measurement of grey tone N-tuple co-occurrences. The use of the spatial dependence matrices requires that they be stored in the computer. For multi-images containing grey tone N-tuples, we have too many possible grey tone N-tuples which can neighbor each other and as a result, the dependence matrices will be very large. For example, for four MSS bands in which each grey tone can range through 64 levels, each matrix would have $64^4 \times 64^4$ elements. Even using the symmetry of the matrices to reduce the number of entries does not help since there would be on the order of 10^{15} entries.

The spatial dependence matrices, however, provide a way of escape. In using these matrices, it was observed that they are heavily weighted along the diagonal with decreasing entries farther from the diagonal. Figure 5 gives an
example of one of these matrices. Note that the number of entries decreases as we move away from the diagonal. This suggests that neighboring resolution cells are similar. Choosing any resolution cell in an image at random, we are very likely to find nearly identical neighbors to the cell in all directions and less likely to find dissimilar neighbors. Clearly, a measure which indicates how similar the neighboring N-tuples are and how fast the similarity drops off with distance must contain textural information about the object imaged.

It is therefore reasonable to measure the difference between neighboring grey tone N-tuples and observe this distribution instead of computing the number of times each N-tuple neighbors every other N-tuple. In both cases we measure the co-occurrence of nearest neighbor grey tone N-tuples.

Since the textural features are based on the spatial dependence of grey tone N-tuples, our first step must be to define a binary relation between neighboring resolution cells on which the co-occurrence of grey tone N-tuples can be counted. As above, let \(L_x = \{1, 2, \ldots, N_x\} \) and \(L_y = \{1, 2, \ldots, N_y\} \) be the set of column and row indexes, respectively, so that \(L_y \times L_x \) is the set of resolution cells in the image. Let \(G = \{0, 1, \ldots, N_g\} \) be the set of possible grey tones that each component of every grey tone N-tuple can be assigned. Then, the image \(I \) can be defined by \(I: L_y \times L_x \rightarrow G \times G \times \cdots \times G \).

Let \(R \) be the set of all pairs of resolution cells in a specified spatial relation. Then \(R \) is a binary relation on the set \(L_y \times L_x \); \(R \subseteq (L_y \times L_x) \times (L_y \times L_x) \). For example, the set of all distance 1 horizontally neighboring pairs of neighboring resolution cells would be defined by:

\[
R = \{(k, l), (m, n) \in (L_y \times L_x) \times (L_y \times L_x) \mid k-m=0, \mid l-n\mid=1\}.
\]

The co-occurrence frequency of grey tone N-tuples \((i_1, i_2, \ldots, i_N) \) and \((j_1, j_2, \ldots, j_N) \) in spatial relation defined by \(R \) is

\[
P\left((i_1, \ldots, i_N), (j_1, \ldots, j_N)\right) = \frac{\# \left\{ (k, l), (m, n) \in R \mid I(k, l) = (i_1, \ldots, i_N), I(m, n) = (j_1, \ldots, j_N) \right\}}{\# R}.
\]

where \(\# \) denotes the number of elements in the set.

Note that this \(R \) is symmetric. Assume that \((k, l), (m, n) \) is in \(R \). Then \(k-m=0 \) and \(\mid l-n\mid=1 \) from the definitions of \(R \). But \(\mid l-n\mid=1 \) when \(\mid n-1\mid=1 \).
FIGURE 5. Example of Nearest Neighbor Grey Tone Dependence Matrices, Taken from Processing ERTS Data.
And if \(|n-l| = 1 \) and \(k-m = 0 \), then \((m, n), (k, l)\) is in \(R \). Thus, \(R \) is symmetric.

In fact, by the symmetry of any distance function, \(R \), in general, must be symmetric.
And since \(R \) is symmetric, \(P \) is also symmetric.

IV.3 Textural Feature Extraction Procedure

Let \(R \) be a symmetric binary relation pairing nearby neighboring resolution cells. We define the frequency of grey tone \(N \)-tuple differences co-occurring in the spatial configuration defined by \(R \) as

\[
P(x_1, x_2, \ldots, x_N) = \frac{\# \left\{ (i, j), (m, n) \in R \mid I(i, j) - I(m, n) = x_1 \right\}}{\# R}.
\]

Note that \(P \) is an even function since

\[
P(x_1, x_2, \ldots, x_N) = \frac{\# \left\{ (i, j), (m, n) \in R^{-1} \mid I(i, j) - I(m, n) = x_1 \right\}}{\# R}.
\]

Referring to the monotonic behavior of nearly every column in the matrices of Figure 5, and assuming that this behavior occurs on every band of the ERTS multi-images, it is reasonable to assume that the even frequency distribution \(P(x_1, \ldots, x_N) \) of the nearby grey tone \(N \)-tuple differences can be adequately approximated using an ellipsoidally symmetric distribution; thus we may write

\[
P(x_1, x_2, \ldots, x_N) = f(x^t Ax)
\]

for some monotonically decreasing function \(f \).
This implies that only the function \(f \) and the matrix \(A \) need to be determined. We take \(f \) to be one of the two forms \(e^{-1/2 \|i\|^2} \), \((1+\|i\|^2)^{-m} \). Figure 6 is a scattergram of the differences for the first two bands of distance 1 horizontally neighboring resolution cells of a 64x64 sample image. Figures 6 and 7 clearly show the ellipsoidally symmetric functional form of the distribution of neighboring differences. In Appendix II N-dimensional spherical coordinate systems and ellipsoidally symmetric distributions are discussed and it is shown that the matrix \(A \) is proportional to the inverse covariance matrix of the N-tuple differences. Thus, we estimate \(A \) by a matrix proportional to the inverse of the estimate for the covariance matrix.

Therefore, if the image is blocked into subimages of small area so that each subimage is essentially of one category, we can expect the distribution of grey tone N-tuple differences over each subimage to be a function only of the assumed form of the function \(f \) and the covariance matrix of the difference vectors for grey tone N-tuples in a specified spatial relationship within the subimage. This leads us to consider textural features for multi-images based upon the elements of this spatial-spectral covariance matrix.

Consider each covariance matrix as a vector. Consider the distribution of the set of covariance matrices from the blocked image. Since the entries of the covariance matrix are the parameters of the distribution, we would like to have these entries invariant with respect to scale changes on the grey tone N-tuple differences. In order to do this, we scale the grey tone N-tuple differences so that all components have variance 1. The covariance matrix of these normalized differences is equivalent to the correlation matrix. Appendix III shows that this normalization procedure makes the covariance matrix invariant with respect to translating and scaling transformations on the grey tone N-tuples. The normalized covariance matrix can be considered as an extracted texture feature vector in an \(N(N-1)/2 \) dimensional hyperspace.

Initial classification experiments indicated a need for more textural information and in order to provide this the dimensionality, \(N \), of each resolution cell was increased from the four provided by the four MSS bands to eight by appending higher order terms and cross-band product terms for each cell. The resultant increase in correct classification accuracy can be seen in section VII.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
FIGURE 6. Scattergram showing ellipsoidally symmetric distribution of differences for Bands 4 and 5 over a sample 64 x 64 ERTS image.

FIGURE 7. Histogram of the distribution of differences on Band 5 for distance 1 horizontally neighboring resolution cells.
V. GROUND TRUTH ASSIGNMENT PROCEDURE

For all classification experiments, the only method available to determine ground truth was based upon the 9 inch by 9 inch ERTS image transparency. Initially, the land-use category names were determined with the aid of two photo interpreters and, when available, contour maps published by the U. S. Geological Survey.

After the categories to be used were decided upon, each ERTS image was processed. The image was blocked into 64 x 64 subimages for texture analysis on MSS band 5 and 32 by 32 subimages for cross-band texture analysis of MSS bands 4 thru 7. The ERTS Retrieval Program was then used to printout a picture of the same area that was processed. This was subdivided into 64 x 64 subimages. In this way, the location of each subimage was known and could be fairly accurately determined on a 7 inch by 7 inch print. Then, on the basis of its location, the subimage is assigned a ground truth category. Figure 8 shows a picture printout by the ERTS Retrieval Program for a portion of image 1021-16333 (see Figure 12) over Kansas City. The picture has been blocked into 64 x 64 subimages and by referring to the original image in Figure 12, each subimage was assigned a ground truth category.

Figures 8 and 12 also illustrate the major problem with ground truth assignment. This is the determination of ground truth when a subimage covers more than one ground truth category. The irregular boundary around the urban area of Kansas City makes ground truth assignment difficult. The deciding factor was the amount of area within the subimage from each category. The subimage was assigned to the category which had the largest area within its boundary. For this reason the accuracy with which the location of every subimage is determined becomes very important, and the picture printouts from the retrieval programs aided in this.

Since the starting and ending image row and column coordinates were known, the Retrieval Program could use the same coordinates for the picture printout. This printout could then be accurately divided into 64 by 64 subimages. The actual location of these subimages could then be determined fairly well, although it is sometimes difficult to locate objects in the printout that are on the original image. To aid in this, a few of the well defined objects were used to construct a 64 by 64 grid on the 7 inch by 7 inch
Figure 8. Printout of a Portion of Image 1021-16333 Over Kansas City by the ERTS Retrieval Program for Use in Ground Truth Assignment.
print. When there was a question in the ground truth, the printout could be referred to for the more accurate subimage location. The size of the subimage also relates directly to the accuracy with which its location on the print can be determined. It was found that 32 lines by 32 points per line was about as small as a subimage can be for good accuracy in ground truth assignment.

VI. IDENTIFICATION PROCEDURE

In the classification experiments two different classification algorithms were used, a Bayes classifier and a piecewise linear classifier. The Bayes classifier assumes a multivariate normal distribution and randomly chooses pattern vectors for the training set where the piecewise linear classifier does not.

The problem of developing procedures for categorizing environmental units consists of the following:

With reference to Figure 9, the Universe \mathcal{U} consists of environmental units (for example rocks) U_1, U_2, \ldots, U_T which belongs to one of R possible categories C_1, C_2, \ldots, C_R (different land use categories). Of the large number of environmental units present in the universe, we observe a smaller subset of units U_1, U_2, \ldots, U_N. Our observations consist of a set of measured values of n features f_1, f_2, \ldots, f_n for each unit U sampled. Based on the information contained in the feature vectors F_1, F_2, \ldots, F_N, the categories of the environmental units which produce these measurements being known, we want to develop an algorithm to identify the categories of new units based on the measurements they produce.
Nonlinear Feature Extraction Transformation Identification

\[
\bar{U} = \{ U_1, U_2, \ldots, U_T \}
\]
\[
\bar{F} = \{ F_1, F_2, \ldots, F_T \}; \quad F = [f_1 \ f_2 \ \ldots \ f_n]^T
\]
\[
\bar{X} = \{ X_1, X_2, \ldots, X_T \}; \quad X = [x_1 \ x_2 \ \ldots \ x_m]^T
\]

The vectors F_i and X_i are usually referred to as feature vector and pattern vector respectively.

Figure 9. Identification Scheme.
The decision rule which assigns categories based on the values of features may be implemented in the feature space \(\mathcal{F} \) by partitioning \(\mathcal{F} \) into various regions and assigning categories to new units based on the regions to which their feature vectors belong. Efficient partitioning of the feature space may require complicated nonlinear decision boundaries (discriminant functions). Instead of deriving a decision rule in the feature space \(\mathcal{F} \), we may transform the feature vectors into a new space \(\mathcal{X} \) and implement a decision rule in the new space \(\mathcal{X} \). By using appropriate nonlinear transformations, we may be able to implement nonlinear decision boundaries in \(\mathcal{F} \) as linear decision boundaries in \(\mathcal{X} \). Several procedures are available for deriving linear decision boundaries for partitioning \(\mathcal{X} \) into various regions, based on the information contained in a set of sample patterns \(X_1, X_2, \ldots, X_N \) whose categories are known.

Identification Algorithms: In a widely used algorithm (Fukunaga 1972, Fu and Mendel 1970, Miesel 1972), the pattern space \(\mathcal{X} \) is separated into a number of regions using a set of hyperplanes (decision boundaries) whose locations are determined by the sample patterns. Each region is dominated by sample patterns of a particular category. When a new pattern is presented for identification, it is assigned a category depending on the region in which it belongs. If the new pattern \(X \) is located in a region dominated by sample patterns of category \(c_i \) or \(c_j \), then \(X \) is classified as coming from category \(c_j \).

To illustrate the procedure for obtaining the hyperplanes, consider the problem of separating the sample patterns \(X_1, X_2, \ldots, X_{n_1} \) belonging to category \(c_i \) and \(X_{n_1+1}, X_{n_1+2}, \ldots, X_{n_1+n_j} \) belonging to category \(c_j \). We can write the linear discriminant function (hyperplane) which separates the patterns belonging to categories \(c_i \) and \(c_j \) as

\[
\begin{align*}
 h_{ij}(X) &= V_{ij}^T X + v_{ij}^o \\
 &> 0 \text{ for } X \in c_i, \\
 &< 0 \text{ for } X \in c_j.
\end{align*}
\]

The vector \(V_{ij} \) and the scalar \(v_{ij}^o \) are to be determined from the information contained on the sample patterns.

If we introduce a new form to express the pattern vectors as

\[
Z = [+1 \ x_1 \ x_2 \ \ldots \ x_n]^T \text{ for } X \in c_i
\]

\[
Z = [-1 \ -x_1 \ -x_2 \ \ldots \ -x_n]^T \text{ for } X \in c_j
\]
then the discriminant function can be written as

$$h_{ij}(Z) = W_{ij}^T Z = 0$$

(1)

where W_{ij} is referred to as a weight vector and

$$h_{ij}(Z) = W_{ij}^T Z = 0$$

is the equation of a hyperplane in the transformed feature space.

The weight vector W_{ij} is chosen so as to satisfy equation 1 for as many training patterns as possible. Usually we do not know the precise form of h_{ij}. But, given our knowledge of the categories of the training patterns, we can postulate reasonable values $g_{ij}(Z_k)$ for $h_{ij}(Z_k)$ and choose W_{ij} to minimize the mean square error given by

$$\epsilon^2 = \frac{1}{n_i + n_j} \sum_{k=1}^{n_i + n_j} (W_{ij}^T Z_k - g_{ij}(Z_k))^2 .$$

Usually $g_{ij}(Z_k)$ is taken to be +1 for $k = 1, 2, \ldots, n_i + n_j$. We can rewrite ϵ^2 as,

$$\epsilon^2 = \frac{1}{(n_i + n_j)} \{ W_{ij}^T Y - G_{ij} \} \{ Y^T W_{ij} - I \}$$

(2)

where

$$Y = [Z_1 Z_2 \ldots Z_{n_i + n_j}],$$

and

$$G_{ij} = [g_{ij}(Z_1) g_{ij}(Z_2) \ldots g_{ij}(Z_{n_i + n_j})].$$

The weight vector which minimizes ϵ^2 given in equation 2 is given by

$$W_{ij} = (YY^T)^{-1} Y G_{ij}$$

which is the well-known normal equation set from linear least square theory.

For the multiclass problem involving N_R categories, a total of $N_R (N_R - 1)/2$ hyperplanes must be determined using the procedure described above. After the hyperplanes are determined, the classification of new patterns is done as follows.

For each category c_i, the number of hyperplanes, V_i, which give a positive response when the new pattern X is presented are determined using

$$V_i = \sum_{j=1}^{N_R} \left| \frac{W_{ij}^T Z + W_{ij}^T T - W_{ij}^T Z}{2|W_{ij}^T Z|} \right| ; i = 1, 2, \ldots, N_R$$

22
where \(Z = \left[\begin{array}{c} 1 \\ X \end{array} \right] \).

X is assigned to category \(c_j \) if
\[
V_j = \max_i \{ V_i \}
\]

If there is a tie between categories \(c_m \) and \(c_n \), then X is assigned to \(c_m \) if \(W_{mn}^T Z \geq 0 \) or to \(c_n \) if \(W_{mn}^T Z < 0 \). Several modifications of the linear discriminant function method and a multitude of other classification procedures may be found in the references cited.

VII. RESULTS OF CLASSIFICATION EXPERIMENTS

Tables 1 thru 24 show the results of the classification experiments. Unless otherwise stated, the contingency tables are determined using the piecewise linear classification programs (RCLASS) given in Appendix IV. In each contingency table the number of errors (\#ERR) and percent error (%ERR) is shown for both errors of commission and errors of omission. The final entry in the percent error column is the average of the percent error for each category. The average correct classification is simply the number of correct classifications divided by the number of incorrect classifications. The final column in each contingency table (%SD) is an estimate for the standard deviation of the probability for correct classification. This was taken from Afarani (Afarani, 1972) where he gives an estimate for the variance of the probability of correct classification when the sample size is fixed as:
\[
\sigma^2 = \frac{\sum n_{ii} \left(\sum_{i=j} n_{ij} \right)}{n^3} = \frac{\text{no. correct} \cdot \text{no. errors}}{(\text{total no.})^3}
\]

where \(n \) is the fixed sample size and \(n_{ij} \) is the number of classifications of units assigned to category \(j \) whose true category is \(i \). Used directly, this gives an estimate over all categories for the entire contingency table. This is the last entry in the percent standard deviation (%SD) column. The remaining entries were determined by fixing \(i \) and estimating the standard deviation for each category \(i \). This estimate says that as the number of samples tested increases and the number of correct classifications increase, the variance of the probability of correct classification decreases, as one would expect.
In order to obtain an initial estimate of performance of the multi-image texture features an experiment was performed on ERTS satellite imagery over Monterey Bay, California, image number 1002-18134 (see Figure 10) taken on July 25, 1972. Using a small set of 64 sampled 32 x 32 subimages and training on 34 of these, 80 per cent of the remaining 30 test samples were correctly classified according to four land-use categories: coastal forest, annual grassland, urban area, and water, as shown in Table 1. This is encouraging since previous accuracy using spatial dependence matrices on band 5 with 64 by 64 subimages over the same general area was only 70.5 per cent as shown in Table 2 (Haralick, 1973).

The ability to obtain good ground truth and several distinct categories in the California data was not the case for an ERTS image over Finney County, Kansas, which was used in later experiments. Approximately a 40 mile by 60 mile section near Garden City, Kansas, on image number 1330-16515 (see Figure 11), taken on June 18, 1973, was processed with initially four categories: grassland, large fields, small fields, and water. Both texture procedures, using the multi-image texture features with 32 by 32 subimages and the single-image texture analysis on MSS band 5 with 64 by 64 subimages, were used on the image. Tables 3 and 4 show the results of classification for distance 1 resolution cells while Tables 5 and 6 show distance 8 results. In both cases the single image classification is higher. However, when both distances 1 and 8 are used together, classification accuracy for both procedures is nearly identical, as shown in Tables 7 and 8, about 70 per cent. Tables 9 and 10 show results using the Bayes Classifier.

This implies that more information is contained in the single-band texture features than the multi-image texture features. In order to add more texture information, a measure of entropy (Kullbach, 1959), given by

\[E = -\frac{1}{2} \log |P| \]

where \(P \) is the correlation matrix, was added to the cross-band texture feature set. Also, higher order components were appended to each grey tone N-tuple by squaring the grey tones and getting cross-band product terms. Only a few of these were added, increasing the grey tone N-tuple dimensionality from 4 to 8, which results in an increase in the number of feature vector components (elements in the correlation matrix) from 6 to 28 plus the entropy measure. The eight components in each grey tone N-tuple are: MSS Band 5, Band 6, Band 7, (Band 5)^2, (Band 6)^2, (Band 7)^2, (Band 5) x (Band 6),...
(Band 5) x (Band 7). Figure 13 gives an illustration of a correlation matrix with the feature vector component designation to be used in indicating the components selected for input to the classification programs.

Table 11 shows the contingency table for the cross-band texture features using 9 of the 29 components (1, 2, 5, 6, 9, 12, 20, 24, and 27 of figure 13) for a portion of the Garden City, Kansas, data. The increase in identification accuracy between the large and small fields results in an increase in overall correct classification, up to 87.1%.

The final classification experiment to test the cross-band texture analysis was made on ERTS image 1021-16333 (see Figure 12) taken on August 13, 1973, over Kansas City. Four land-use categories were chosen: cropland (directly north and south of Kansas City), urban area (Kansas City, Topeka), grassland (southwestern corner of the image), and water (Perry Reservoir plus several small lakes). These areas were processed three separate ways:

1) spectrally, 32 by 32 subimages
2) texturally, 64 by 64 subimages on band 5
and 3) cross-band texturally, 32 by 32 subimages.

Because of problems with ground truth and a small data set for water, that category was later dropped. The spectral processing involved obtaining the average grey tone over the subimage for each spectral band, giving 4 components for each feature vector. The textural processing was over a larger subimage than either the spectral or the cross-band textural processing. This was chosen because the 64 by 64 subimages have performed better in the past than the 32 by 32 subimages for the single-image texture analysis. The smaller subimage size was chosen for the cross-band texture processing so that the subimage would more likely be from only one category. The cross-band texture method uses spectral information which the single-image texture procedure does not have available. The smaller subimage size was also chosen for the spectral processing in order to provide an estimate of the amount of spectral information contained in the four MSS bands that is available to the cross-band texture analysis.

Single-image texture analysis was done for distance 1 nearest neighbors at all angles and all of the 17 texture features defined in Appendix I were computed for each subimage. The cross-band texture processing was also done for distance 1 using horizontally adjacent nearest neighbor grey tone N-tuples.
Figure 10. Part of ERTS Image No. 1002-18134 (MSS Band 5) Over Monterey Bay, California, Taken on July 25, 1972.
Figure 11. ERTS Image No. 1330-16515 (MSS Band 5) Over Garden City, Kansas, Taken on June 18, 1973.
Figure 12. ERTS Image No. 1021-16333 Over (MSS Band 5) Kansas City, Taken on August 13, 1972.
<table>
<thead>
<tr>
<th></th>
<th>Band 5</th>
<th>Band 6</th>
<th>Band 7</th>
<th>(Band 5)^2</th>
<th>(Band 6)^2</th>
<th>(Band 7)^2</th>
<th>x(Band 6)</th>
<th>x(Band 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 6</td>
<td>F(2)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 7</td>
<td>F(3)</td>
<td>F(9)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Band 5)^2</td>
<td>F(4)</td>
<td>F(10)</td>
<td>F(15)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Band 6)^2</td>
<td>F(5)</td>
<td>F(11)</td>
<td>F(16)</td>
<td>F(20)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Band 7)^2</td>
<td>F(6)</td>
<td>F(12)</td>
<td>F(17)</td>
<td>F(21)</td>
<td>F(24)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Band 5) x Band 6</td>
<td>F(7)</td>
<td>F(13)</td>
<td>F(18)</td>
<td>F(22)</td>
<td>F(25)</td>
<td>F(27)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Band 5) x Band 7</td>
<td>F(8)</td>
<td>F(14)</td>
<td>F(19)</td>
<td>F(23)</td>
<td>F(26)</td>
<td>F(28)</td>
<td>F(29)</td>
<td>1</td>
</tr>
</tbody>
</table>

Entropy = F(1)

Figure 13. Designation of the entropy measure and elements of the correlation matrix as feature vector components for cross-band texture analysis of multi-images.
Table 12 shows the contingency table for all 17 single-image texture features over image 1021-16333 with an average correct classification of 86.2%. Table 13 shows the resulting contingency table over the same image for the 29 cross-band texture features with an increased correct classification of 88.8%. The spectral processing on the four MSS bands for the same image gave four spectral features—the mean grey tone over the subimage for each spectral band. The resulting contingency table using these four spectral features is shown in Table 14. The relatively good performance, 73.9% correct, shows a significant amount of land-use information is contained in the four spectral bands, accounting for the better performance of the cross-band texture analysis over the single-image texture analysis.

It is interesting to see the classification accuracy of the single-image texture greatly improve to 93.8% with the addition of the four spectral features to the original 17 texture features, as shown in Table 15. As expected, the addition of the four spectral features to the first 26 of the 29 cross-band texture features does not improve the classification accuracy as well as with the single-image texture. Table 16 shows the resulting contingency table with an average correct classification of 91.6%. Note the higher estimate for the standard deviation of the probability for correct classification with the textural plus spectral features.

These tables show that the single-image texture procedure does well in extracting texture information, but for this data set, the cross-band texture procedure by itself performs slightly better by extracting more information texturally and spectrally.

The remaining tables show the effect upon classification accuracy of using fewer features. In each case it can be seen that the fewer the number of features used, the lower the average correct classification. Also, it can be seen that the Bayes classifier performs slightly better than the piecewise linear classifier.

Tables 20 thru 24 show that as the number of components is increased, the spectral plus cross-band texture reaches a limiting accuracy of approximately 92%. Ground truth assignment errors could easily account for the remaining 8% error.

VII.1 Summary of Classification Results

It is apparent from these classification experiments that both texture extraction procedures complement each other in that they extract different kinds of texture information. When used without spectral features, the cross-band texture procedure performed better. However, when the spectral features were added, the single-image texture plus spectral features performed better than the cross-band texture plus spectral features. This indicates that the cross-band texture procedure does well in
extracting more information texturally and spectrally than the single-image texture procedure. However, when the spectral information is made available to the single-image texture procedure, it performs better than the cross-band texture plus spectral features.

Programs used in these experiments can be found in Appendix IV. The single-image texture programs are under the Texture Analysis Programs with mainline MAINLN. And the cross-band texture programs are in the Cross-Band Texture Analysis Programs with mainline SPECTR. RCLASS is the mainline program for the piecewise linear classifier. Some of the cross-band texture feature components can be seen in Figure 14. Figure 14a shows the ground truth assignment for the image 1021-16333 (Figure 12) for the area near Kansas City. At the bottom of the image, grassland was inserted to give an idea of how well the features separate the three categories: cropland, urban area, and grassland.

VIII. CONCLUSION

The procedure developed here for the extraction of texture information from ERTS multi-images gives encouraging results. The classification experiments show that the cross-band texture procedure can be used successfully in automatic land-use classification of multi-images over Kansas.

The cross-band texture procedure is a natural extension of the previous single-image texture extraction procedure based upon angular nearest neighbor grey tone spatial dependence matrices. It retains the power of the previous approach to texture by characterizing the spatial inter-relationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern in such a way as to be invariant under linear grey tone transformations. And both procedures are simple to employ, economical, and require a minimum of core-storage (see Figure 15).

Both procedures complement each other by extracting different kinds of textural information with the cross-band texture procedure using the cross-band spectral information contained in ERTS multi-images. Results indicate that the cross-band texture procedure does well by extracting more information texturally and spectrally than the single-image texture procedure when used alone. However, when the spectral information is made available to the single-image texture procedure, it performs better than the cross-band texture plus spectral features in classifying texturally distinct land-use categories from ERTS multi-images over Kansas.
Figure 14-a. Ground Truth Map

- Cropland
- Urban Area
- Grassland

Figure 14-b. F(16)

Figure 14-c. F(20)

Figure 14-d. F(24)

Figure 14-e. F(29)

Figure 14. Examples of Cross-Band Texture Feature Vector Components; Resolution Cell Size is 32 x 32
FIGURE 15. COMPARISON OF THE PERFORMANCE OF THE SINGLE-IMAGE TEXTURE ANALYSIS PROGRAMS ON MSS BAND 5 WITH THE CROSS-BAND TEXTURE ANALYSIS PROGRAMS ON MSS BANDS 4 THRU 7 IN PROCESSING THE SAME AREA, NEAR KANSAS CITY, ON ERTS IMAGE NO. 1021-16333 USING A HONEYWELL 635 COMPUTER.

<table>
<thead>
<tr>
<th></th>
<th>Core Required</th>
<th>Total Processing Time</th>
<th>Total Job Cost</th>
<th>Cost Per Resolution Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE-IMAGE TEXTURE</td>
<td>43k</td>
<td>0.788HR</td>
<td>$223.</td>
<td>$0.000252</td>
</tr>
<tr>
<td>(64x64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROSS-BAND TEXTURE</td>
<td>25k</td>
<td>0.884HR</td>
<td>$216.</td>
<td>$0.000244</td>
</tr>
<tr>
<td>(32x32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Contingency table for image no. 1002-18134 using multi-image textural features, 6 components, average correct classification on test set=80.0%*

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coastal Forest</td>
<td>Annual Grassland</td>
</tr>
<tr>
<td>Coastal Forest</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Annual Grassland</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Urban Area</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors of Omission</th>
<th>#Errors</th>
<th>%Error</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12.5%</td>
<td>58.3%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Table 2. Results of land-use classification experiments from ERTS image no. 1002-18134 over Monterey Bay, California.

<table>
<thead>
<tr>
<th>Features</th>
<th>No. of Samples in Training Set</th>
<th>No. of Samples in Test Set</th>
<th>Overall Accuracy of Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-image Textural</td>
<td>34</td>
<td>30</td>
<td>80.0%</td>
</tr>
<tr>
<td>Single-image Textural</td>
<td>260</td>
<td>172</td>
<td>70.5%</td>
</tr>
</tbody>
</table>

*Unless stated otherwise, all contingency tables are determined using the piecewise linear classification programs (RCLASS).
Table 3: Contingency Table for Image No. 1330-16515 Using Multi-Image Textural Features, Distance 1, 6 Components.

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>#Err</th>
<th>%Err</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland</td>
<td>Grassland</td>
<td>16</td>
<td>25.4</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Large Fields</td>
<td>36</td>
<td>20.2</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Small Fields</td>
<td>63</td>
<td>31.3</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>2</td>
<td>25.0</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>364</td>
<td>25.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

AVERAGE CORRECT CLASSIFICATION = 66.5%

Table 4: Results of Land-Use Classification Experiments for ERTS Image No. 1330-16515 at Distance 1.

<table>
<thead>
<tr>
<th>Features</th>
<th>No. of Samples in Training Set</th>
<th>No. of Samples in Test Set</th>
<th>Overall Accuracy of Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Image Textural</td>
<td>548</td>
<td>364</td>
<td>66.5%</td>
</tr>
<tr>
<td>Single-Image Textural</td>
<td>140</td>
<td>88</td>
<td>76%</td>
</tr>
</tbody>
</table>

Table 3. Contingency table for image no. 1330-16515 using multi-image textural features, distance 1, 6 components. Average correct classification = 66.5%

Table 4. Results of land-use classification experiments for ERTS image no. 1330-16515 at distance 1.
Table 5. Contingency Table for Image No. 1330-16515 Using Multi-Image Textural Features, Distance 8, 6 Components. Average Correct Classification = 63.7%

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grassland</td>
<td>Large Fields</td>
</tr>
<tr>
<td>Grassland</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>Large Fields</td>
<td>7</td>
<td>147</td>
</tr>
<tr>
<td>Small Fields</td>
<td>18</td>
<td>44</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>204</td>
</tr>
</tbody>
</table>

Table 6. Results of Land-Use Classification Experiments for ERTS Image No. 1330-16515 at Distance 8.

<table>
<thead>
<tr>
<th>Features</th>
<th>No. of Samples in Training Set</th>
<th>No. of Samples in Test Set</th>
<th>Overall Accuracy of Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Image Textural</td>
<td>548</td>
<td>364</td>
<td>63.7%</td>
</tr>
<tr>
<td>Single-Image Textural</td>
<td>140</td>
<td>88</td>
<td>76%</td>
</tr>
</tbody>
</table>

Table 5

Table 6
Table 7. Contingency Table for Image No. 1330-16515 Using Multi-Image Textural Features, Distances 1 and 8, 12 Components. Average Correct Classification = 71%

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grassland</td>
<td>Large Fields</td>
<td>Small Fields</td>
<td>Water</td>
<td>Total</td>
<td>#Err</td>
</tr>
<tr>
<td>Grassland</td>
<td>52</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>63</td>
<td>11</td>
</tr>
<tr>
<td>Large Fields</td>
<td>2</td>
<td>145</td>
<td>31</td>
<td>0</td>
<td>178</td>
<td>33</td>
</tr>
<tr>
<td>Small Fields</td>
<td>12</td>
<td>42</td>
<td>61</td>
<td>0</td>
<td>115</td>
<td>54</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>195</td>
<td>102</td>
<td>1</td>
<td>364</td>
<td>42.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors of Commission</th>
<th>#Errors</th>
<th>%Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21.8</td>
<td>21.8</td>
</tr>
</tbody>
</table>

Table 8. Results of Land-Use Classification Experiments for ERTS Image No. 1330-16515 Using Both Distances 1 and 8.

<table>
<thead>
<tr>
<th>Features</th>
<th>No. of Samples in Training Set</th>
<th>No. of Samples in Test Set</th>
<th>Overall Accuracy of Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Image Textural</td>
<td>548</td>
<td>364</td>
<td>71%</td>
</tr>
<tr>
<td>Single-Image Textural</td>
<td>140</td>
<td>88</td>
<td>73%</td>
</tr>
</tbody>
</table>

37
<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grassland</td>
<td>Large Fields</td>
</tr>
<tr>
<td>Grassland</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>Large Fields</td>
<td>6</td>
<td>150</td>
</tr>
<tr>
<td>Small Fields</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>192</td>
</tr>
</tbody>
</table>

Table 9. Contingency table for image no. 1330-16515 using multi-image textural features, distance 1.6 components. Average correct classification = 74.0% using Bayes.

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Err</td>
</tr>
<tr>
<td>Grassland</td>
<td>18</td>
</tr>
<tr>
<td>Large Fields</td>
<td>50</td>
</tr>
<tr>
<td>Small Fields</td>
<td>59</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 10. Contingency table for image no. 1330-16515 using multi-image textural features, distance 8.6 components. Average correct classification = 61.1% using Bayes.
Table 11. Contingency table for image no. 1330-16515 using 9 of the 29 cross-band textural features, distance 1. #TRAIN=103, #TEST=70, average correct classification = 87.1% using the Bayes classifier. The 9 feature components used were: 1, 2, 5, 6, 9, 12, 20, 24, 27.
Table 12. Contingency Table for ERTS Image 1021-16333 Using All 17 Single-Band Texture Features at Distance 1.

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CROPLAND</td>
<td>URBAN</td>
</tr>
<tr>
<td>CROPLAND</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>URBAN</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>73</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 13. Contingency Table for ERTS Image 1021-16333 Using All 29 Cross-Band Texture Features at Distance 1.

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CROPLAND</td>
<td>URBAN</td>
</tr>
<tr>
<td>CROPLAND</td>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>URBAN</td>
<td>11</td>
<td>81</td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>172</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 12. Contingency table for ERTS image 1021-16333 using all 17 single-band texture features at distance 1. #TRAIN=178, #TEST=116, AVERAGE CORRECT CLASSIFICATION = 86.2%

Table 13. Contingency table for ERTS image 1021-16333 using all 29 cross-band texture features at distance 1. #TRAIN = 569, #TEST = 376, AVERAGE CORRECT CLASSIFICATION = 88.8%
Table 14. Contingency Table for ERTS Image 1021-16333 Using Spectral Features Only. \#TRAIN=564, \#TEST=372
AVERAGE CORRECT CLASSIFICATION = 73.9%

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>Cropland</th>
<th>Urban</th>
<th>Grassland</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>138</td>
<td>9</td>
<td>22</td>
<td>169</td>
</tr>
<tr>
<td>Urban</td>
<td>8</td>
<td>53</td>
<td>30</td>
<td>91</td>
</tr>
<tr>
<td>Grassland</td>
<td>20</td>
<td>8</td>
<td>84</td>
<td>112</td>
</tr>
<tr>
<td>Total</td>
<td>166</td>
<td>70</td>
<td>136</td>
<td>372</td>
</tr>
<tr>
<td>Errors of Commission</td>
<td>#Errors</td>
<td>28</td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>%Error</td>
<td>16.9</td>
<td>24.3</td>
<td>38.2</td>
</tr>
</tbody>
</table>

Table 15. Contingency Table for ERTS Image 1021-16333 Using All 17 Single-Image Texture Plus the 4 Spectral Features, 21 Components. \#TRAIN=175, \#TEST=112
AVERAGE CORRECT CLASSIFICATION = 93.8%

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>Cropland</th>
<th>Urban</th>
<th>Grassland</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>62</td>
<td>2</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>Urban</td>
<td>4</td>
<td>19</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Grassland</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>21</td>
<td>25</td>
<td>112</td>
</tr>
<tr>
<td>Errors of Commission</td>
<td>#Errors</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>%Error</td>
<td>6.1</td>
<td>9.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Table 16. Contingency Table for ERTS Image 1021-16333 Using First 26 Cross-Band Texture Plus The 4 Spectral Features, 30 Components. #Train=567, #Test=369

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>CROPLAND</th>
<th>URBAN</th>
<th>GRASSLAND</th>
<th>TOTAL</th>
<th>#ERR</th>
<th>%ERR</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROPLAND</td>
<td>155</td>
<td>12</td>
<td>1</td>
<td>168</td>
<td>13</td>
<td>7.7</td>
<td>2.1</td>
</tr>
<tr>
<td>URBAN</td>
<td>12</td>
<td>80</td>
<td>0</td>
<td>92</td>
<td>12</td>
<td>13.0</td>
<td>3.5</td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>4</td>
<td>2</td>
<td>103</td>
<td>109</td>
<td>6</td>
<td>5.5</td>
<td>2.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>171</td>
<td>94</td>
<td>104</td>
<td>369</td>
<td>171</td>
<td>9.4</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Table 17. Contingency Table for ERTS Image 1021-16333 Using First 8 of the 17 Single-Image Texture Features, #Train=178, #Test=116. Average Correct Classification = 84.5%

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>CROPLAND</th>
<th>URBAN</th>
<th>GRASSLAND</th>
<th>TOTAL</th>
<th>#ERR</th>
<th>%ERR</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROPLAND</td>
<td>60</td>
<td>1</td>
<td>3</td>
<td>64</td>
<td>4</td>
<td>6.2</td>
<td>3.0</td>
</tr>
<tr>
<td>URBAN</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>24</td>
<td>8</td>
<td>33.3</td>
<td>9.6</td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>5</td>
<td>1</td>
<td>22</td>
<td>28</td>
<td>6</td>
<td>21.4</td>
<td>7.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>73</td>
<td>18</td>
<td>25</td>
<td>116</td>
<td>20.3</td>
<td>3.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors of Commission</th>
<th>#ERRORS</th>
<th>%ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6</td>
</tr>
</tbody>
</table>
Table 18. Contingency Table for ERTS Image 1021-16333 Using First 9 of the 29 Crossband Texture Features, #Train=569, #Test=376, Average Correct Classification = 79.0%

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>Cropland</th>
<th>Urban</th>
<th>Grassland</th>
<th>Total</th>
<th>#Err</th>
<th>%Err</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cropland</td>
<td>138</td>
<td>22</td>
<td>8</td>
<td>168</td>
<td>30</td>
<td>17.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Urban</td>
<td>21</td>
<td>68</td>
<td>3</td>
<td>92</td>
<td>24</td>
<td>26.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Grassland</td>
<td>20</td>
<td>5</td>
<td>91</td>
<td>116</td>
<td>25</td>
<td>21.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Total</td>
<td>179</td>
<td>95</td>
<td>102</td>
<td>376</td>
<td>21.9</td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 19. Contingency Table for ERTS Image 1021-16333 Using First 9 of the 29 Crossband Texture Features, #Train=562, #Test=374, Average Correct Classification = 81.0% Using the Bayes Classifier.

<table>
<thead>
<tr>
<th>Assigned Category</th>
<th>Cropland</th>
<th>Urban</th>
<th>Grassland</th>
<th>Total</th>
<th>#Err</th>
<th>%Err</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cropland</td>
<td>142</td>
<td>25</td>
<td>4</td>
<td>171</td>
<td>29</td>
<td>17.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Urban</td>
<td>20</td>
<td>66</td>
<td>5</td>
<td>91</td>
<td>25</td>
<td>27.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Grassland</td>
<td>12</td>
<td>5</td>
<td>95</td>
<td>112</td>
<td>17</td>
<td>15.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
<td>96</td>
<td>104</td>
<td>374</td>
<td>19.9</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors of Commission</th>
<th>#Errors</th>
<th>%Error</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#Errors</td>
<td>32</td>
<td>18.4</td>
<td>31.3</td>
<td>8.7</td>
<td>19.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18 and Table 19 present the contingency tables for ERTS Image 1021-16333 using the first 9 of the 29 crossband texture features. The tables show the distribution of errors for different categories, with specific values for #Errors, %Error, and %SD.
Table 20. Contingency Table for ERTS Image 1021-16333 Using First 6 of the 29 Cross-Band Texture Plus the 4 Spectral Features, #Train=569, #Test=367, Average Correct Classification = 84.2%

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Cropland</th>
<th>Urban</th>
<th>Grassland</th>
<th>Total</th>
<th>#Err</th>
<th>%Err</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td></td>
<td>158</td>
<td>6</td>
<td>2</td>
<td>166</td>
<td>8</td>
<td>4.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td>13</td>
<td>58</td>
<td>18</td>
<td>89</td>
<td>31</td>
<td>34.8</td>
<td>5.1</td>
</tr>
<tr>
<td>Grassland</td>
<td></td>
<td>9</td>
<td>10</td>
<td>93</td>
<td>112</td>
<td>19</td>
<td>17.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>180</td>
<td>74</td>
<td>113</td>
<td>367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#Errors</td>
<td></td>
<td>22</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Error</td>
<td></td>
<td>12.2</td>
<td>21.6</td>
<td>17.7</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 21. Contingency Table for ERTS Image 1021-16333 Using First 9 of the 17 Single-Image Texture Plus the 4 Spectral Features, #Train=175, #Test=112, Average Correct Classification = 92.9%

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Cropland</th>
<th>Urban</th>
<th>Grassland</th>
<th>Total</th>
<th>#Err</th>
<th>%Err</th>
<th>%SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td></td>
<td>61</td>
<td>2</td>
<td>1</td>
<td>64</td>
<td>3</td>
<td>4.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td>3</td>
<td>19</td>
<td>2</td>
<td>24</td>
<td>5</td>
<td>20.8</td>
<td>8.3</td>
</tr>
<tr>
<td>Grassland</td>
<td></td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>64</td>
<td>21</td>
<td>27</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#Errors</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Error</td>
<td></td>
<td>4.7</td>
<td>9.5</td>
<td>11.1</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44
Table 22. Contingency Table for ERTS Image 1021-16333 Using First 11 of the 29 Cross-Band Texture Plus the 4 Spectral Features, Train=564, Test=372, Average Correct Classification = 90.1%

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CROPLAND</td>
<td>URBAN</td>
</tr>
<tr>
<td>CROPLAND</td>
<td>161</td>
<td>7</td>
</tr>
<tr>
<td>URBAN</td>
<td>15</td>
<td>77</td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>185</td>
<td>90</td>
</tr>
<tr>
<td>%ERRORS</td>
<td>13.0</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Table 23. Contingency Table for ERTS Image 1021-16333 Using First 16 of the 29 Cross-Band Texture Plus the 4 Spectral Features, Train=565, Test=371, Average Correct Classification = 90.3%

<table>
<thead>
<tr>
<th>True Category</th>
<th>Assigned Category</th>
<th>Errors of Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CROPLAND</td>
<td>URBAN</td>
</tr>
<tr>
<td>CROPLAND</td>
<td>159</td>
<td>8</td>
</tr>
<tr>
<td>URBAN</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>181</td>
<td>89</td>
</tr>
<tr>
<td>%ERRORS</td>
<td>12.2</td>
<td>14.6</td>
</tr>
</tbody>
</table>
Table 24. Contingency table for ERTS image 1021-16333 using first 21 of the 29 cross-band texture plus the 4 spectral features, #train=568, #test=368, average correct classification = 91.9%
APPENDIX I

TEXTURAL FEATURES OBTAINED FROM THE GREY TONE DEPENDENCE MATRIX

In this appendix, we define 17 textural features which are computed for each of the four angular grey tone dependence matrices.

The following notation will be used in defining the 17 textural features.

- \(P(i, j) \) - \((i, j)\)th entry in a particular grey tone dependence matrix.
- \(P_x(i) \) \#R - i\th entry in the marginal distributions of \(P(i, j) \) obtained by summing rows and columns of \(P(i, j) \) respectively.
- \(P_y(i) \) \#R - number of resolution cell pairs which were considered in computing the entries in \(P(i, j) \).
- \(N_g \) - number of distinct grey tone values in the image.
- \(u \) - mean of \(P(i, j) \)/\#R.
- \(P_{x+y}(i) \) \#R - i\th entry in the distribution of the sum of grey tones of neighboring resolution cells.
- \(P_{x-y}(i) \) \#R - i\th entry in the distribution of the absolute differences in the grey tones of neighboring resolution cells.
TEXTURAL FEATURES

1. Angular Second Moment:

\[f_1 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \left(\frac{P(i,j)}{\#R} \right)^2 \]

2. Entropy:

\[f_2 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} -\left(\frac{P(i,j)}{\#R} \right) \log \left(\frac{P(i,j)}{\#R} \right) \]

3. Correlation:

\[f_3 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{i \cdot j \cdot P(i,j)}{\#R} - \frac{\mu_x \mu_y}{\sigma_x \sigma_y} \]

where \(\mu_x\) and \(\sigma_x\) are the mean and standard deviation of \(P_x\), and \(\mu_y\) and \(\sigma_y\) are the mean and standard deviation of \(P_y\).

4. Sum of Squares on x:

\[f_4 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i-\mu_x)^2 \left(\frac{P(i,j)}{\#R} \right) \]

5. Product Moment:

\[f_5 = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i-\mu_x)(j-\mu_y) \left(\frac{P(i,j)}{\#R} \right) \]
6. Inverse Moment:

\[f_6 = \sum_{i=1}^{\#g} \sum_{j=1}^{\#g} \frac{1}{1+(i-j)^2} \left\{ \frac{P(i,j)}{\#R} \right\} \]

7. Difference Moment:

\[f_7 = \sum_{i=1}^{\#g} \sum_{j=1}^{\#g} (i-j)^2 \left\{ \frac{P(i,j)}{\#R} \right\} \]

8. Sum Average:

\[f_8 = \sum_{i=1}^{\#g} i \left\{ \frac{P_{x+y}(i)}{\#R} \right\} \]

9. Mean:

\[f_9 = \frac{1}{\#g} \sum_{i=1}^{\#g} \left\{ \frac{P(i,j)}{\#R} \right\} \]

10. Sum Variance:

\[f_{10} = \text{variance of } P_{x+y} \]

11. Sum Entropy:

\[f_{11} = \sum_{i=1}^{\#g} \left\{ \frac{P_{x+y}(i)}{\#R} \right\} \log \left\{ \frac{P_{x+y}(i)}{\#R} \right\} \]

12. Contrast:

\[f_{12} = \sum_{n=0}^{\#g-1} n^2 \left(\sum_{i=1}^{\#g} \sum_{j=1}^{\#g} \left\{ \frac{P(i,j)}{\#R} \right\} \right) \]
13. Difference Variance:
\[f_{13} = \text{variance of } \frac{P_{x-y}}{\#R} \]

14. Difference Entropy:
\[f_{14} = \sum_{i=0}^{N-1} \left(\frac{P_{x-y}(i)}{\#R} \right) \log \left(\frac{P_{x-y}(i)}{\#R} \right) \]

15, 16, 17. Additional Measures of Correlation:
\[f_{15} = \frac{H_{XY} - H_{XY1}}{\max H_X, H_Y} \]
\[f_{16} = \sqrt{1 - \exp[-2.0(H_{XY2} - H_{XY})]} \]
\[f_{17} = \sqrt{\text{second largest eigenvalue of } QQ^T} \]

where \(H_X \) and \(H_Y \) are the entropies of the marginals of the transition matrix before quantization, \(H_{XY} \) is the entropy of the transition matrix, and \(H_{XY2} \) is the entropy of the product distribution of the marginals before quantization;

\[Q(i, j) = \frac{P(i, j)}{\sqrt{P_x(i)P_y(j)}} \]

* \(f_{17} \) is the maximal correlation coefficient.
APPENDIX II

N-DIMENSIONAL SPHERICAL COORDINATE SYSTEMS
AND ELLIPSOIDALLY SYMMETRIC DISTRIBUTIONS

We illustrate the N-dimensional spherical coordinate system in the calculation of the volume of the N-dimensional hypersphere. Next we show how suitable functions can be used to define ellipsoidally symmetric density functions and we determine the normalizing constant for any function. Finally, we show that for any ellipsoidally symmetric density \(f(\sqrt{x^T A x}) \), the matrix \(A \) is proportional to the inverse covariance matrix of \(x \) and we determine the constant of proportionality.

II.1 Volume of an N-dimensional Hypersphere

Let \(V \) be the volume of a N-dimensional hypersphere of radius \(r_0 \). By definition

\[
v = \int \int \ldots \int dx_1 \, dx_2 \ldots dx_N \sqrt{\sum_{i=1}^{N} x_i^2} \leq r_0
\]

To evaluate this N-fold integral, we transform to spherical coordinates.

\[
\begin{align*}
 x_1 &= r \cos \theta_1 \cos \theta_2 \ldots \cos \theta_{N-3} \cos \theta_{N-2} \cos \theta_{N-1} \\
 x_2 &= r \cos \theta_1 \cos \theta_2 \ldots \cos \theta_{N-3} \cos \theta_{N-2} \sin \theta_{N-1} \\
 x_3 &= r \cos \theta_1 \cos \theta_2 \ldots \cos \theta_{N-3} \sin \theta_{N-2} \\
 \vdots \\
 x_j &= r \cos \theta_1 \cos \theta_2 \ldots \cos \theta_{N-3} \sin \theta_{N-2} \\
 \vdots \\
 x_N &= r \sin \theta_1
\end{align*}
\]

Figure 16 illustrates the geometry of the spherical coordinate system we use for a 3-dimensional system.
Transformation between rectangular coordinate system and spherical coordinate system.

\[
\begin{align*}
 x_1 &= r \cos \theta_1 \cos \theta_2 \\
 x_2 &= r \cos \theta_1 \sin \theta_2 \\
 x_3 &= r \sin \theta_1 \\
\end{align*}
\]

Figure 16 Three-Dimensional Spherical Coordinate System
The Jacobian J of this transformation is defined by the determinant J.

\[
J = \begin{vmatrix}
\frac{\partial x_1}{\partial r} & \frac{\partial x_2}{\partial r} & \cdots & \frac{\partial x_N}{\partial r} \\
\frac{\partial x_1}{\partial \theta_1} & \frac{\partial x_2}{\partial \theta_1} & \cdots & \frac{\partial x_N}{\partial \theta_1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial \theta_{N-1}} & \frac{\partial x_2}{\partial \theta_{N-1}} & \cdots & \frac{\partial x_N}{\partial \theta_{N-1}} \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
\cos \theta_1 \cos \theta_2 \cdots \cos \theta_{N-1} & \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{N-2} \sin \theta_{N-1} & \cdots & \sin \theta_1 \\
-r \sin \theta_1 \cos \theta_2 \cdots \cos \theta_{N-1} & -r \sin \theta_1 \cos \theta_2 \cdots \cos \theta_{N-2} \sin \theta_{N-1} & \cdots & r \cos \theta_1 \\
-r \cos \theta_1 \sin \theta_2 \cdots \cos \theta_{N-1} & -r \cos \theta_1 \sin \theta_2 \cdots \cos \theta_{N-2} \sin \theta_{N-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-r \cos \theta_1 \cos \theta_2 \cdots \sin \theta_{N-1} & r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{N-2} \cos \theta_{N-1} & \cdots & 0 \\
\end{vmatrix}
\]

To find the value of the Jacobian, factor r out of the last $(N-1)$
rows and from each column factor out its first entry.
\[J = r^{N-1} \cos^N \theta_1 \cos^{N-2} \theta_2 \cdots \cos^1 \theta_{N-1} \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{N-1} \]

\[
\begin{array}{cccccccc}
1 & 1 & 1 & \cdots & 0 \\
-tan \theta_1 & -tan \theta_1 & -tan \theta_1 & \cdots & cot \theta_1 \\
-tan \theta_2 & -tan \theta_2 & -tan \theta_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-tan \theta_N & cot \theta_N & \cdots & 0 \\
-tan \theta_{N-1} & cot \theta_{N-1} & 0 & \cdots & 0
\end{array}
\]

Subtracting column 2 from column 1, column 3 from column 2, \ldots, column N from column N-1 there results

\[
\begin{array}{cccccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & -tan \theta_1 & -cot \theta_1 & cot \theta_1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-tan \theta & cot \theta & \cdots & 0 & 0 & \cdots & \cdots \\
-tan \theta_{N-2} & cot \theta_{N-2} & cot \theta & \cdots & 0 & \cdots & \cdots \\
-tan \theta_{N-1} & cot \theta_{N-1} & cot \theta_{N-1} & \cdots & 0 & \cdots & 0
\end{array}
\]

Since all entries in the upper left triangle are zero, the value of the determinant is easily found as minus one times the product of entries on the lower left to upper right diagonal.
\[
\begin{align*}
J &= r^{N-1} \cos^{N-1} \theta_1 \cos^{N-2} \theta_2 \ldots \cos \theta_{N-1} \sin \theta_1 \sin \theta_2 \ldots \sin \theta_{N-1} (-1)^{\frac{\pi}{2}} \prod_{N=1}^{\infty} (-\cot \theta_N) \\
&= (-1)^{\frac{\pi}{2}} r^{N-1} \cos^{N-2} \theta_1 \cos^{N-3} \theta_2 \ldots \cos \theta_{N-2}
\end{align*}
\]

Notice that \(\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta} \). Now upon simplifying we obtain

\[
\begin{align*}
J &= (-1)^{\frac{\pi}{2}} r^{N-1} \cos^{N-2} \theta_1 \cos^{N-3} \theta_2 \ldots \cos \theta_{N-2} \\
\text{and } |J| &= r^{N-1} \cos^{N-2} \theta_1 \cos^{N-3} \theta_2 \ldots \cos \theta_{N-2} \text{ since}
\cos \theta_i > 0 \text{ for } -\pi/2 < \theta_i < \pi/2, i=1, 2, \ldots, N-2.
\end{align*}
\]

In spherical coordinates the volume \(V \) of the \(N \)-dimensional hypersphere of radius \(r_o \) is readily evaluated.

\[
\begin{align*}
V &= \int_{r=r_o}^{r=0} \int_{\theta_1=\pi/2}^{\theta_1=-\pi/2} \ldots \int_{\theta_{N-1}=\pi/2}^{\theta_{N-1}=-\pi/2} r^{N-1} \cos^{N-2} \theta_1 \cos^{N-3} \theta_2 \ldots \cos \theta_{N-2} \, dr \, d\theta_1 \ldots d\theta_{N-1}
\end{align*}
\]

Separating the integrations,

\[
\begin{align*}
V &= \int_{r=0}^{r=\infty} \int_{\theta_1=\pi/2}^{\theta_1=-\pi/2} \ldots \int_{\theta_{N-1}=\pi/2}^{\theta_{N-1}=-\pi/2} r^{N-1} \cos^{N-2} \theta_1 \cos^{N-3} \theta_2 \ldots \cos \theta_{N-2} \, dr \, d\theta_1 \ldots d\theta_{N-1}
\end{align*}
\]

Since \(\int_{0}^{\pi/2} \cos \theta \, d\theta = \frac{\Gamma\left(\frac{N+1}{2}\right)}{\Gamma\left(\frac{N+2}{2}\right)} \),

\[
\begin{align*}
\theta &= \frac{\pi}{2}
\end{align*}
\]
\[V = \frac{r_o^N}{N} \left[\frac{\Gamma\left(\frac{N-1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{N}{2}\right)} \right] \left[\frac{\Gamma\left(\frac{N-2}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{N-1}{2}\right)} \right] \ldots \left[\frac{\Gamma\left(\frac{2}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \right] \times 2^\pi \]

\[= \frac{r_o^N}{N} \times 2^\pi \frac{\Gamma\left(\frac{1}{2}\right)^{N-2}}{\Gamma\left(\frac{N}{2}\right)} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{N}{2}\right)} \]

\[\text{But } \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \text{ and } \Gamma(1) = 1 \]

\[V = \frac{r_o^N}{N} \frac{\frac{N-2}{2}}{\Gamma\left(\frac{N}{2}\right)} = 2 \frac{r_o^N}{N} \frac{\frac{N-2}{2}}{\Gamma\left(\frac{N}{2}\right)} \]
II.2 Suitable functions for Ellipsoidally Symmetric Distribution.

Suppose \(f \) is a real function, defined on domain \(R \), a subset of \([0, \infty)\), and satisfying \(f(\mu) \geq 0 \) for all \(\mu \) in \(R \) and \(\mu^k f(\mu) d\mu \) is finite for \(k \leq N+1 \). We show that \(f \) is suitable for defining an ellipsoidally symmetric density function and we determine the constant \(c \) so that \(f(\sqrt{x^tAx}) \) is an ellipsoidally symmetric density.

Let \(A \) be an \(N \times N \) symmetric positive definite matrix and \(X \) an \(N \times 1 \) vector. Consider the ellipsoidally symmetric function \(f(\sqrt{x^tAx}) \). We wish to determine a constant \(C \) such that \(f(\sqrt{x^tAx}) \) is a density function.

It is clear that \(C = \frac{1}{\int_{\mathbb{R}^N} f(\sqrt{x^tAx}) \, dx_1 \ldots dx_N} \).

To determine the value of the integral, we will make a transformation which rotates and scales. Let \(T \) be an orthonormal matrix such that \(T^tAT = D \), where \(D \) is a diagonal matrix. Make the change of variables

\[X = TD^{-1/2}Z. \]

The Jacobian \(J \) of this transformation is

\[
J = \begin{vmatrix}
\frac{\partial x_1}{\partial z_1} & \frac{\partial x_2}{\partial z_1} & \cdots & \frac{\partial x_N}{\partial z_1} \\
\frac{\partial x_1}{\partial z_2} & \frac{\partial x_2}{\partial z_2} & \cdots & \frac{\partial x_N}{\partial z_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial z_N} & \frac{\partial x_2}{\partial z_N} & \cdots & \frac{\partial x_N}{\partial z_N}
\end{vmatrix} = |TD^{-1/2}| = |T| |D|^{-1/2}.
\]
Since T is an orthonormal matrix, $|T| = 1$ and

$$|D| = |T'AT| = |T'| |A| |T| = |A|. $$

So the Jacobian is the determinant $|A|^{-1/2}$ which is positive since A is positive definite.

$$1 = \int \cdots \int f \left(\sqrt{x'Ax} \right) dx_1 \cdots dx_N$$

$$\sqrt{x'Ax} \in \mathbb{R}$$

$$= |A|^{-1/2} \int \cdots \int f \left(\sqrt{z'D^{-1/2}T'ATD^{-1/2}z} \right) dz_1 \cdots dz_N$$

$$\sqrt{z'D^{-1/2}T'ATD^{-1/2}z} \in \mathbb{R}$$

$$= |A|^{-1/2} \int \cdots \int f(z') dz_1 \cdots dz_N$$

Now change to spherical coordinates.

$$z_1 = r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{N-1}$$
$$z_2 = r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{N-2} \sin \theta_{N-1}$$
$$\vdots$$
$$z_j = r \cos \theta_1 \cdots \cos \theta_{N-j} \sin \theta_{N-j+1}$$
$$\vdots$$
$$z_N = r \sin \theta_1$$
The Jacobian of this transformation is \((-1)^{\frac{N-1}{2}}\) \[\cos^{N-2} \theta_1 \cos^{N-2} \theta_2 \ldots \cos \theta_{N-2} \]

\[
I = |A|^{-1/2} \int_{r \in \mathbb{R}} \int_{\theta_1=-\pi/2}^{\pi/2} \int_{\theta_2=-\pi/2}^{\pi/2} \ldots \int_{\theta_{N-2}=-\pi/2}^{\pi/2} \int_{\theta_{N-1}=0}^{\pi/2} f(r) r^{N-1} \cos^{N-2} \theta_1 \cos^{N-2} \theta_2 \ldots \cos \theta_{N-2} dr d\theta_1 d\theta_2 \ldots d\theta_{N-1}
\]

\[
= |A|^{-1/2} \int_{r \in \mathbb{R}} \int_{\theta_1=-\pi/2}^{\pi/2} \int_{\theta_2=-\pi/2}^{\pi/2} \ldots \int_{\theta_{N-2}=-\pi/2}^{\pi/2} \int_{\theta_{N-1}=0}^{\pi/2} \cos^{\theta_{N-2}} r \cos^{\theta_{N-2}} \theta_1 d\theta_1 d\theta_2 \ldots d\theta_{N-1}
\]

Since \[\int_{\theta=-\pi/2}^{\pi/2} \cos^{\theta} d\theta = \frac{\Gamma\left(\frac{N+1}{2}\right)}{\Gamma\left(\frac{N+2}{2}\right)} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \], the integrals are readily evaluated.
\[I = |A|^{-1/2} \int_{r \in \mathbb{R}} r^{N-1} f(r) \, dr \left[\frac{\Gamma\left(\frac{N-1}{2}\right)}{\Gamma\left(\frac{N}{2}\right)} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{N}{2}\right)} \frac{\Gamma\left(\frac{N-2}{2}\right)}{\Gamma\left(\frac{N-1}{2}\right)} \cdots \frac{\Gamma\left(\frac{2}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \right] 2\pi \]

\[= |A|^{-1/2} \int_{r \in \mathbb{R}} r^{N-1} f(r) \, dr \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{N}{2}\right)} 2\pi \]

\[= \frac{2^{(N+2)/2}}{|A|^{1/2} \Gamma\left(\frac{N}{2}\right)} \int_{r \in \mathbb{R}} r^{N-1} f(r) \, dr \]

Therefore, the constant \(c \) is

\[c = \frac{|A|^{-1/2} \Gamma\left(\frac{N}{2}\right)}{2 (\pi)^{N/2}} \int_{r \in \mathbb{R}} r^{N-1} f(r) \, dr . \]
Next we determine the normalizing constant \(c \) for the forms \(e^{\frac{-1}{2}u^2} \) and \((1 + u^2)^{-m}\).

Case 1. Multivariate Normal

The density function for the multivariate normal distribution is of the form

\[
f(\sqrt{x'Ax}) = e^{-\frac{1}{2}x'Ax}, \quad 0 \leq x'Ax \leq \infty
\]

or, \(f(r) = e^{-\frac{1}{2}r^2}, \quad 0 \leq r \leq \infty \).

Since

\[
\int_{r \in \mathbb{R}} r^{N-1} f(r) dr = \int_{r \in \mathbb{R}} r^{N-1} e^{-\frac{1}{2}r^2} dr = \int_{u = 0}^{\infty} (2u)^{\frac{N-2}{2}} e^{-u} du = 2^\frac{N-2}{2} \Gamma\left(\frac{N}{2}\right)
\]

then the normalizing constant is

\[
c = \frac{\Gamma\left(\frac{N}{2}\right)}{2^{\frac{N}{2}} |A|^{\frac{1}{2}} \int_{r \in \mathbb{R}} r^{N-1} f(r) dr} = \frac{\Gamma\left(\frac{N}{2}\right)}{2^{\frac{N}{2}} |A|^{\frac{1}{2}} 2^\frac{N-2}{2} \Gamma\left(\frac{N}{2}\right)}
\]

and,

\[
f(\sqrt{x'Ax}) = \frac{1}{(2\pi)^{\frac{N}{2}} |A|^{\frac{1}{2}}} e^{-\frac{1}{2}x'Ax}, \quad 0 \leq x'Ax \leq \infty.
\]

Case 2. Multivariate Pearson Type VII.

Let

\[
f(\sqrt{x'Ax}) = (1 + x'Ax)^{-m}, \quad 0 \leq x'Ax \leq \infty,
\]

then,

\[
\int_{r \in \mathbb{R}} r^{N-1} f(r) dr = \int_{r \in \mathbb{R}} r^{N-1} (1+r^2)^{-m} dr = \int_{u = 0}^{1} \left(\frac{1-u}{u}\right)^{\frac{N-2}{2}} u^{m-2} \frac{du}{2u^2}
\]

And the normalizing constant is \(c \)

\[
c = \frac{\Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{N}{2}\right)}{\pi |A|^{\frac{1}{2}} \frac{1}{2} \Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{m-N}{2}\right)} = \frac{\Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{N}{2}\right)}{\pi |A|^{\frac{1}{2}} \frac{1}{2} \Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{m-N}{2}\right)}
\]

and,

\[
f(\sqrt{x'Ax}) = \frac{\Gamma\left(\frac{N}{2}\right) |A|^{\frac{1}{2}}}{\pi \frac{N}{2} \Gamma\left(\frac{N}{2}\right) \Gamma\left(\frac{m-N}{2}\right)} (1 + x'Ax)^{-m}, \quad m > \frac{N}{2}, \quad 0 \leq x'Ax \leq \infty.
\]

II.3 Covariance Matrix For Multivariate Distributions.

Given the density function \(f(\sqrt{x'Ax}) \) we want to find the covariance matrix \(\mathbf{\Sigma} \),

\[
\mathbf{\Sigma} = \mathbb{E}(xx') = c \int_{A} \ldots \int_{A} xx' f(\sqrt{x'Ax}) dx_1 \ldots dx_N
\]

where \(\sqrt{x'Ax} \in \mathbb{R} \).
where \(c \) is a normalizing constant and \(N \) is the dimension of \(x \). Using the orthonormal transformation \(T'AT = D \), where \(D \) is a diagonal matrix, and scaling with \(x = TD^{-\frac{1}{2}}z \), we have
\[
\|x\| = c \int \cdots \int (TD^{-\frac{1}{2}}z \cdot zD^{-\frac{1}{2}}T') f(\sqrt{z'z}) |A|^{-\frac{1}{2}} dz_1 \cdots dz_N \sqrt{z'z} \in \mathbb{R}
\]

since
\[
x'AX = z'D^{-\frac{1}{2}}T'ATD^{-\frac{1}{2}}z = z'D^{-\frac{1}{2}}D\frac{1}{2}z = z'z
\]

and
\[
J = \begin{bmatrix}
\frac{\partial x_1}{\partial z_1} & \cdots & \frac{\partial x_N}{\partial z_1} \\
\frac{\partial x_1}{\partial z_2} & \cdots & \frac{\partial x_N}{\partial z_2} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial z_N} & \cdots & \frac{\partial x_N}{\partial z_N}
\end{bmatrix} = |T| D^{-\frac{1}{2}} = |D|^{-\frac{1}{2}} = |T'AT|^{-\frac{1}{2}} = |A|^{-\frac{1}{2}}.
\]

Rearranging,
\[
\|x\| = c |A|^{-\frac{1}{2}} T D^{-\frac{1}{2}} \int \cdots \int z'z \cdot f(\sqrt{z'z}) dz_1 \cdots dz_N D^{-\frac{1}{2}} T' \sqrt{z'z} \in \mathbb{R}
\]

where \(z'z \) is an \(N \times N \) matrix. Looking at the off diagonal terms, for \(i \neq j \),
\[
\int \cdots \int z_i z_j f(\sqrt{z_i z_j}) dz_1 \cdots dz_N = 0 \quad \text{since we are integrating an odd function over even limits.}
\]

function over even limits.

For terms of \(\|x\| \) along the diagonal, for \(i = j \),
\[
\int \cdots \int z_i^2 f(\sqrt{z_i z_i}) dz_1 \cdots dz_N = \int \cdots \int z_i^2 f(\sqrt{z_i z_i}) dz_1 \cdots dz_N \sqrt{z_i z_i} \in \mathbb{R}
\]

and changing to spherical coordinates,
\[
= \int \int_{\mathbb{R}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} z_i \cos^2 \theta_1 \cdots \cos^2 \theta_{N-1} f(r) r^{N-2} \cos \theta_1 \cdots \cos \theta_{N-2} dr d\theta_1 \cdots d\theta_{N-1} = 0
\]

since
\[
\int_{\mathbb{R}} \frac{\sqrt{r}}{r} = 0.
\]

Since
\[
\int_{-\pi/2}^{\pi/2} \cos^k \theta d\theta = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k+2}{2}\right)},
\]

62
\[
\int I^2 \left(\int I^2 \right) = \int \int I^2 \left(\int I^2 \right) = \int \int I^2 \left(\int I^2 \right)
\]

From II.2,
\[
c = \frac{\Gamma \left(\frac{N}{2} \right) |A|^\frac{1}{2}}{2 \pi \frac{N}{2} \int r^{N-1} f(r) \, dr} \quad r \in \mathbb{R}
\]

so that
\[
\Sigma = \frac{\Gamma \left(\frac{N}{2} \right) |A|^\frac{1}{2}}{2 \pi \frac{N}{2} \int r^{N-1} f(r) \, dr} |A|^{-\frac{1}{2}} \quad \text{and} \quad \Sigma = TD^{-\frac{1}{2}} T'
\]

and, \(\Sigma = T D^{-1} T' \quad \int r^{N+1} f(r) \, dr \)

where \(T' A T = D \), or \(D^{-1} = T' A^{-1} T \).

So that
\[
\Sigma = A^{-1} \quad \frac{\int r^{N+1} f(r) \, dr}{\int r^{N-1} f(r) \, dr}
\]

Since the integrals are constants for any \(f \), the covariance matrix is directly proportional to \(A^{-1} \). We determine the constant of proportionality for the multivariate normal and Pearson Type VII distributions.
Case 1. Multivariate Normal

For the multivariate normal, the density is of the form \(f(r) = ce^{-\frac{1}{2}r^2} \) where \(r^2 = x^T Ax, \ 0 \leq r \leq \infty \).

Since, \(\int_{r}^{\infty} e^{-\frac{1}{2}r^2} \, dr = 2 \cdot \frac{k-1}{2} \cdot \Gamma \left(\frac{k+1}{2} \right) \)

then \(\int r^{N+1} f(r) \, dr = c2^{\frac{N}{2}} \cdot \frac{N}{2} \cdot \Gamma \left(\frac{N+2}{2} \right) \)

and \(\int r^{N-1} f(r) \, dr = c2^{\frac{N-2}{2}} \cdot \frac{N}{2} \cdot \Gamma \left(\frac{N}{2} \right) \)

so that \(\Phi = A^{-1} \cdot \frac{N}{2} \cdot \frac{N}{2} \cdot \Gamma \left(\frac{N}{2} \right) \)

and thus, \(\Phi = A^{-1} \)

or, \(A = \Phi^{-1} \).

Case 2. Multivariate Pearson Type VII.

\(f(r) = c (1 + r^2)^{-m}, \ 0 \leq r \leq \infty \).

Since \(\int r^{N+1} f(r) \, dr = \frac{c}{2} \cdot \frac{N}{2} \cdot \frac{N}{2} \cdot \frac{\Gamma(N + 1)}{\Gamma(m)} \cdot \frac{\Gamma(m - \frac{N}{2} - 1)}{\Gamma(m)} \)

and \(\int r^{N-1} f(r) \, dr = \frac{c}{2} \cdot \frac{N}{2} \cdot \frac{\Gamma(N)}{\Gamma(m)} \cdot \frac{\Gamma(m - \frac{N}{2})}{\Gamma(m)} \)

then, \(\Phi = A^{-1} \cdot \frac{cN}{2} \cdot \frac{\Gamma(N)}{\Gamma(m)} \cdot \frac{\Gamma(m - \frac{N}{2} - 1)}{\Gamma(m - \frac{N}{2} - 1)} \cdot \frac{2 \Gamma(m)}{c \Gamma(N) (m - \frac{N}{2}) \Gamma(m - \frac{N}{2})} \)

\(= A^{-1} \cdot \frac{1}{2} \cdot \frac{1}{(m - \frac{N}{2} - 1)} \)
APPENDIX III

NORMALIZATION PROCEDURE TO MAKE COVARIANCE MATRIX INVARlANT UNDER TRANSLATING AND SCALING TRANSFORMATIONS

Let \(\mathbf{\Sigma}_x \) be a covariance matrix for the difference vectors of grey tone N-tuples in a specified spatial relationship within a subimage. We transform the covariance matrix to obtain the normalized covariance matrix \(\mathbf{\Sigma}_y \) using \(y = Dx \), where \(x \) is the difference vector and \(D \) is diagonal. Thus, assuming zero mean,

\[
\mathbf{\Sigma}_y = E(yy') = E(Dxx'D')
= D E(xx') D'
= D \mathbf{\Sigma}_x D \quad \text{since} \quad D' = D.
\]

For normalization, we have

\[
d_{ii} = \frac{1}{\sqrt{\sigma_{ii}}}
\]

where \(\sigma_{ii} \) is the \(ii \)th element of \(\mathbf{\Sigma}_x \) and is the variance \(\sigma_i^2 \) of the \(i \)th component of \(x \).

Assume that all grey tone N-tuples have a scale factor \(a \) and an additive factor \(c \) so that for N-tuples \(ax_1 + c \) and \(ax_2 + c \), the difference becomes

\[
y = (ax_1 + c) - (ax_2 + c)
= a(x_1 - x_2).
\]

Hence, translational effects due to bias terms are cancelled but scaling effects are marked by the diagonal transformation \(y = Ax \) so that the elements of the covariance matrix become

\[
\mathbf{\Sigma}_y = E.yy' = E(Axx'A')
= A \mathbf{\Sigma}_x A
\]

65
where A is a diagonal matrix. We must show that \mathbf{t}_N, the normalized covariance matrix of \mathbf{t}_x is identical to \mathbf{t}_y. Normalizing \mathbf{t} we have

$$\mathbf{t}_N = D\mathbf{t}D$$

$$= D (A \mathbf{t}_x A) D$$

where D is again diagonal but in this case,

$$d_{ii} = \frac{1}{\sqrt{\sigma_{ii} \sigma_{ii}^2}}$$

with σ_{ii} the iith element of diagonal matrix A. For the ijth element of \mathbf{t}_N we have

$$\sigma_{Nij} = d_{ii} \sigma_{ii} \sigma_{ij} \sigma_{jj} d_{jj}$$

$$= \frac{\sigma_{ii} \sigma_{ij} \sigma_{jj}}{\sqrt{\sigma_{ii}^2 \sigma_{jj}^2}}$$

$$= \sigma_{ij}$$

Thus, this procedure of normalization makes the entries of the normalized covariance matrix invariant with respect to translating and scaling transformations on the grey tone N-tuples.
APPENDIX IV

COMPUTER PROGRAM DOCUMENTATION & LISTINGS

IV.1 PROGRAM DOCUMENTATION

IV.1-a ERTS Retrieval Programs
IV.1-b Texture Analysis Programs
IV.1-c Cross-Band Texture Analysis Programs
IV.1-d Piecewise Linear Classification Programs

IV.2 PROGRAM LISTINGS

IV.2-a ERTS Retrieval Programs
IV.2-b Texture Analysis Programs
IV.2-c Cross-Band Texture Analysis Programs
IV.2-d Piecewise Linear Classification Programs
IV.1-a ERTS Retrieval Programs - Documentation

RETV
ERTS
PIXEY
ZEQUAN
PITCHR
WRTDSK
RDDSK1
KEQUAN
RDDSK2
ERTS RETRIEVAL PROGRAMS

PROGRAM TITLE: RETV
VERSION: 1
DATE: January, 1974
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635
PURPOSE:

This is the mainline for the ERTS Retrieval Programs which retrieve ERTS MSS data from standard NASA digital tapes and outputs the image data in a picture, or greytone listing, or copies it onto an output tape.

INPUT PARAMETERS under NAMELIST 'PARAM':

<table>
<thead>
<tr>
<th>PARAM</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBAND</td>
<td>int</td>
<td>Band number, 1 through 4 for MSS band 4 through 7, to be selected. Set to 5 for all 4 bands, assumed to be 2.</td>
</tr>
<tr>
<td>IRSTART, ICSTART</td>
<td>int</td>
<td>Row, column starting coordinates.</td>
</tr>
<tr>
<td>IRSTOP, ICSTOP</td>
<td>int</td>
<td>Row, column stopping coordinates.</td>
</tr>
<tr>
<td>TITLE</td>
<td>char</td>
<td>80 Column title for output list.</td>
</tr>
<tr>
<td>MILLI</td>
<td>bool</td>
<td>TRUE if coordinates are in millimeters; assumed to be FALSE, coordinates are row, column points in ERTS image.</td>
</tr>
<tr>
<td>SMALL</td>
<td>bool</td>
<td>TRUE if millimeter coordinates are from a small 70 mm by 70 mm negative; assumed to be FALSE, coordinates from a 7 inch by 7 inch print.</td>
</tr>
<tr>
<td>PRNT</td>
<td>bool</td>
<td>TRUE for greytone listing; assumed FALSE.</td>
</tr>
<tr>
<td>TAPE</td>
<td>bool</td>
<td>TRUE for tape output; assumed FALSE.</td>
</tr>
</tbody>
</table>
REQUIREMENTS:

1. ERTS input tape must be on file code 'ES'.
2. Four disc files must be on files 11, 12, 13 and 14.
3. Any output tape must be positioned on file code 'IFIL'.
4. All coordinates must be determined relative to the input tape rather than the print -- that is, ICSTOP must not exceed 824 points or 46 mm.
5. Core = 22 k
6. Subprograms required:
 - RETV
 - ERTS
 - PIXEY
 - ZEQUAN
 - ERTS
 - PITCHR
 - WRTDSK
 - RDDS
 - KEQUAN
 - PITCHR
 - RDDS

COMMENTS:

For efficiency, data is read by RETV in blocks of 41 lines by 41 points. One ERTS tape (one-fourth of an image) will then be covered by 20 horizontal blocks, leaving 4 points left at the end of each line. Note --- sometimes on the first tape of an image, the first four points are greytones of 255 and can adversely affect a picture printout. If so, set ICSTRT = 5.
Also note that if the point ICSTRT is not a multiple of 41 from the end of the line, then the last points may not necessarily be listed since blocks are determined starting from ICSTRT.

A special picture run can be made to print out and reduce any image over the entire tape by setting SPIC to TRUE and specifying under namelist PARAM the following parameters: IRSTRT, IRSTOP, ICSTRT, ICSTOP, NBAND, QUAN. Then under namelist PICTUR, parameters for PITCHR are specified. See PIXEY for details.
ERTS RETRIEVAL PROGRAM

SUBPROGRAM TITLE: ERTS
VERSION: II
DATE: September, 1972
UPDATE: November, 1973
AUTHOR: G. Gunnels
DOCUMENTED BY: R. Bosley
PROGRAM LANGUAGE: GMAP
IMPLEMENTED ON: HW635

PURPOSE: To read 7-track ERTS MSS data tapes.

ENTRY POINTS:
CALL EINIT (NOLS)
CALL ESKIP (NOSK)
CALL EREAD (I, LN)
CALL EREWND

ARGUMENTS:
NOLS Number of words per scan line; returned by EINIT.
NOSK The number of records to skip.
I The array into which the NOLS words of data from a line of ERTS data is placed.
LN Returned by EREAD giving the line number of the line of data returned. If LN = 0, the end of file was reached on the ERTS tape.

ERROR FLAGS:
MB EREAD buffer is not large enough for a block of ERTS data.
AI EINIT was called twice.
NI EINIT was not called before calling EREAD, ESKIP, or EREWND.
UE EOF encountered while reading ID or annotation blocks on ERTS tape.

EF EOF encountered while trying to skip records in ESKIP.

COMMENTS:

EINIT initializes the ERTS tape so that data may be read, and must be called first. ESKIP skips over NOSK records (scan lines). EREWIND rewinds the ERTS tape. EINIT must not be called twice. The data placed into array I by EREAD is in standard corresponding point forms. Since the ERTS MSS data has four channels, there are actually NOLS/4 points or cells per scan line.

REQUIREMENTS:

ERTS tape must be on file code 'ES'.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
ERTS RETRIEVAL PROGRAMS

SUBPROGRAM TITLE: PIXEY
VERSION: 1
DATE: January, 1974
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635

PURPOSE:
To provide a flexible option for printing a picture of ERTS MSS data using user specified parameters to PITCHR.

ENTRY POINT:
CALL PIXEY (ILINE, IMAGE, IIRSTRT, IIRSTOP, IICSTRT,
IICSTOP, QUAN, NBAND)

INPUT ARGUMENTS:
ILINE Array the ERTS line is read into.
IMAGE Array containing one line of the image.
IIRSTRT, IIRSTOP Starting, stopping row in the image.
IICSTRT, IICSTOP Starting, stopping column in the image.
QUAN TRUE for equal probability quantizing of the image.
NBAND Bond number to be processed; set to 5 for all 4 MSS bands.

INPUT PARAMETERS: under NAMELIST 'PICTUR':
LNSKIP, KOLSKIP Line and column increment for ERTS data; assumed to be 4,3.
ICELL, JCELL Number of rows, columns in image to be printed; assumed to be 1,256.
INIT Number of times entry to PITCHR is made at SNAP: must be greater than 1; assumed to be 304.
IMIN, IMAX Minimum, maximum greytones in image; assumed to be 0,75 or 12 if QUAN is true.
NROW Number of rows to be printed; equal to ICELL.
NFIL Number of output files available to PITCHR; set to 0 for all output on file code 06, set to 2 for files 06 and 42; assumed to be 2.
IFIL(10) Array containing output file codes; assumed to be 06 and 42.
NULW, NULD Number of columns, rows per output page; assumed to be 129, 60.
AMAG, DMAG Width, length magnification for output picture; assumed to be 1.

SAMPLE RUN:
$PARAM SPIC=T, QUAN=T, IRSTRT=1, IRSTOP=1216,
ICSTRT=5, ICSTOP=772, NBAND=2$END/$PICTUR INIT=304,
NFIL=2, LNSKIP=4, KOLSKP=3, JCELL=256$SEND.
This run will print out on files 06 and 42 a picture 256 points wide by 304 lines long. Note that 1216/4 = 304 and 786/3 = 256 gives the values for LNSKIP=4, KOLSKP=3, JCELL=256,
INIT=304. Also, using these values for LNSKIP and KOLSKP will result in a picture in proportion to the same area on an ERTS image print, approximately twelve 64 by 64 subimages across by 19 subimages down the tape.

COMMENTS:
If SPIC=T in the $PARAM card, then a $PICTUR card must follow. Note that the parameters IRSTRT, IRSTOP, ICSTRT, ICSTOP, QUAN, NBAND are supplied on the $PARAM card while LNSKIP, KOLSKP and all PITCHR parameters are supplied on the $PICTUR card.
The program will output a negative picture but a positive picture can be made by setting IMAX=0 and IMIN=75 (or 12 if quantization is used). The parameters are initialized to output an area approximately twelve 64 by 64 subimages wide by 19 down. For a complete description of PITCHR parameters, see PITCHR.

REQUIREMENTS:

1. Processor time for one bond with parameters as shown in the sample run is 0.075 hr with 3k lines of output.
2. Subprograms required are ZEQUAN, PITCHR.

CALLED BY:

RETV
ERTS RETRIEVAL PROGRAM

SUBPROGRAM TITLE: ZEQUAN
VERSION: 1
DATE: September, 1973
UPDATE: September, 1973
AUTHOR: Z. Dinstein
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635

PURPOSE: To equal probability quantize a large image on disc to NQ levels.

ENTRY POINT:
CALL ZEQUAN (LINE, NUMLIN, NUMPPL, NCOMP, ICOMP, LEFT, NQ, INFILE, IOUTFL)

INPUT ARGUMENTS:

LINE
NUMLIN
NUMPPL
NCOMP
ICOMP
LEFT
NQ
INFILE

Array to store one line of the image.
Number of lines in the image.
Number of columns in the image.
Number of components in the image.
The component to be quantized.
Left-most cell desired in the line.
Number of quantized levels.
File code of disc containing the image to be quantized.

OUTPUT ARGUMENTS:

IOUTFL

Output file code for the quantized image.
COMMENTS: Processing is done line by line after an initial pass through the image is made to determine the number of grey tone levels in the image. The minimum and maximum grey tones are printed. The number of grey tone levels should not exceed 512. Input data on disc INFILE must be in binary.

CALLED BY: PIXEY
ERTS RETRIEVAL PROGRAM

<table>
<thead>
<tr>
<th>SUBPROGRAM TITLE:</th>
<th>PITCHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSION:</td>
<td>II</td>
</tr>
<tr>
<td>DATE:</td>
<td>July, 1969</td>
</tr>
<tr>
<td>UPDATE:</td>
<td>November, 1970</td>
</tr>
<tr>
<td>AUTHOR:</td>
<td>R. Cowles</td>
</tr>
<tr>
<td>DOCUMENTED BY:</td>
<td>G. Elliott</td>
</tr>
<tr>
<td>PROGRAM LANGUAGE:</td>
<td>GMAP</td>
</tr>
<tr>
<td>IMPLEMENTED ON:</td>
<td>HW635</td>
</tr>
</tbody>
</table>

PURPOSE:

To print out images in 13 grey levels.

ENTRY POINTS:

- CALL PITCHR (IRRAY, ICELL, JCELL, INIT, IT, IMIN, IMAX, NROW, NFIL, IFIL, NULW, NULD, AMAG, DMAG, *)
- CALL SNAP
- CALL SNAPA (IARRAY)
- CALL ENDBNR

ARGUMENTS:

<table>
<thead>
<tr>
<th>ARGUMENT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARRAY</td>
<td>Array to be printed, either integer or floating point.</td>
</tr>
<tr>
<td>ICELL</td>
<td>Number of rows in array. (row dimension)</td>
</tr>
<tr>
<td>JCELL</td>
<td>Number of columns in array. (column dimension)</td>
</tr>
<tr>
<td>INIT</td>
<td>=0 if all of image to be printed out is in core at time of call. Output will be done before return to calling program. =1 for reinitialization entry. Any of the arguments previously specified with INIT = 0 with the exception of INIT may now be changed. Return will be made to the calling program without any output. This is especially useful if the image is read into core in pieces and the last piece does not completely fill the array. >1 for initialization</td>
</tr>
</tbody>
</table>
entry. INIT will reflect the number of times entry is made at SNAP before final border is to be printed. Return is to the calling routine without any output.
INIT =0 is assumed.

II =0 if array is floating point
=1 if array is integer
II =1 is assumed.

IMIN Minimum brightness level in array. Type of IMIN should correspond to that indicated by II.
IMIN =0 is assumed.

IMAX Maximum brightness level in array. Type of IMAX should correspond to that indicated by II.
IMAX =12 is assumed.

NROW Number of rows of array to be printed if full array is not to be printed. This allows for partial printing.
NROW = ICELL is assumed.

NFIL Number of output files available if image is to be output in strips that are NULW lines wide.
=0 for all output on file code 06
=1 for all output on file code IFIL
1 for outputs in strips, on file codes specified in array IFIL. NFIL=0 is assumed.

IFIL Array containing output file codes. Ignored unless NFIL =0. IFIL must be a variable rather than a literal, since SNAP alters the value(s) of IFIL to contain the location of the relevant file control block in the upper half of the word.

NULW Number columns per output page. MAX =129
NULW =120 unless otherwise specified.

NULD Number of rows to be printed before a slew on the top of the next page is given. NULD = ICELL*DMAG +1.
AMAG
Floating point magnification in width.
AMAG = 1 is assumed.

DMAG
Floating point magnification in length.
DMAG = 1 is assumed.

Error return if not enough output files are available. Return is made with NARG = -10.
If not specified, a message will be printed out on the accounting report and an NF report will terminate execution.
ERTS RETRIEVAL PROGRAMS

SUBPROGRAM TITLE: WRTDSK
VERSION: II
DATE: September, 1972
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635
PURPOSE:
To write one line of ERTS data onto disc files, one file for each band.

ENTRY POINT:
CALL WRTDSK (ILINE, NHOR, IPSTR, IPEND, NBAND)

INPUT ARGUMENTS:
ILINE Array containing one line of ERTS data
NHOR Number of horizontal blocks of 41 columns in the line.
IPSTR, IPEND Starting and ending points in the ERTS line.
NBAND The desired band; set to 5 for all 4 MSS bands.

COMMENTS:
After reading a line of data into ILINE, RETV calls WRTDSK to pick out the segment of NHOR blocks in the line and write it onto disc. If only one band is desired, only that band is put onto disc. Disc files 11, 12, 13, and 14 must be present.

CALLED BY:
RETV
ERTS RETRIEVAL PROGRAMS

SUBPROGRAM TITLE: RDDSKL
VERSION: II
DATE: September, 1972
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635

PURPOSE: To read the ERTS data from disc and print out a picture of the image, proceeding vertically and then from left to right.

ENTRY POINT:

CALL RDDSKL (IMAGE, QUAN, NHOR, NVERT, NDSK)

INPUT ARGUMENTS:

IMAGE Array used to store two 41 x 41 blocks.
QUAN TRUE for equal probability quantization of the image.
NHOR Number of horizontal 41 x 41 blocks.
NVERT Number of vertical 41 x 41 blocks.
NDSK File code of disc to be processed.

ERROR FLAGS:
Same as for PITCHR.

COMMENTS:
Since blocks are 41 columns wide, then two horizontal blocks are processed together, except for the final strip of blocks when NHOR is an odd number. It is recommended that QUAN be set to TRUE since transmission errors result in very high and very low grey tones along the line which will make the true image features indistinguishable unless equal probability quantizing is used.
SUBPROGRAMS CALLED:
 KEQUAN
 PITCHR

CALLED BY:
 RETV
ERTS RETRIEVAL PROGRAMS

SUBPROGRAM TITLE: KEQUAN
VERSION: II
DATE: September, 1971
UPDATE: June, 1973
AUTHOR: G. Elliot
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635

PURPOSE:
To equal probability quantize the input array to NQ levels.

ENTRY POINT:
CALL KEQUAN (IA, NGL, NQ, IASIZE)

ARGUMENTS:
IA
Input array which is returned quantized.
NGL
Number of greytone levels in IA.
NQ
Number of quantizing levels.
IASIZE
Size of array IA.

ERROR FLAGS:
If the number of greytone levels exceeds 512, an error message is printed.

CALLED BY:
RDDSK1
ERTS RETRIEVAL PROGRAMS

SUBPROGRAM TITLE: RDDSK2
VERSION: II
DATE: September, 1972
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635

PURPOSE:
To read ERTS data from disc and print out the grey tones and/or copy the data onto an output tape.

ENTRY POINT:
CALL RDDSK2 (IMAGE, IRSTRT, IRSTOP, NHOR, NDSK, PRNT, TAPE, IFIL)

INPUT ARGUMENTS:
IMAGE Array data is read into.
IRSTRT, IRSTOP Starting, stopping lines of data.
NHOR Number of horizontal blocks of 41 columns.
NDSK File code of the disc to be read.
PRNT TRUE for greytone listing.
TAPE TRUE for tape output
IFIL Output tape file code.

COMMENTS:
If neither the grey tone listing nor the output tape is desired, execution is returned to the calling program, RETV.

CALLED BY:
RET V
IV.1-b Texture Analysis Programs - Documentation

MAINLN
ERTS
MAING
KEQUAN
PITCHR
FPLXIT
INDEX
IMOMTR
COR
IEQPQ1
RITOWT
ERTS TEXTURE ANALYSIS

PROGRAM TITLE: MAINLN
VERSION: II
DATE: September, 1972
UPDATE: June, 1973
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Craig Paul
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE:

To read the Texture Analysis parameters, read in subimages from ERTS input tape, and send these subimages to MAING for processing.

INPUT PARAMETERS:

1. Title Card: Up to 80 columns for use as identification information.

2. Parameters under NAMELIST /PARAM/:
 IBAND Band used for processing
 = 1 for MSS Band 4
 = 2 for MSS Band 5
 = 3 for MSS Band 6
 = 4 for MSS Band 7
 assumed to be 2.
 NUMPPL Number of points per line of each subimage;
 assumed to be 64.
 NUMLIN Number of lines of each subimage; assumed to be 64.
 NBVERT Number of the last vertical subimage to be processed; assumed to be 36.
 NUMIM Number of subimages taken horizontally in one run; assumed to be 3. Note:
 NUMPPL x NUMIM must not exceed 192 points.
N11 The upper-left column coordinate for the vertical strip (of NUMIM horizontal subimages) being processed in this run.

NUMSTR The number of the vertical strip being processed; assumed to be 1.

NBSKIP The number of vertical rows of subimages to skip before beginning processing; assumed to be 0.

PNCH Specifies the output option:
= 1HY for card output
= 1HT for tape output on file code IF
= 1HN for neither card nor tape but a listing of the LEX arrays; assumed to be tape (1HT).

Note: PNCH must be denoted as a Hollerith constant in the $PARAM card.

IF Output tape file code which is assumed to be in position (it is not rewound); assumed to be '03'.

NRED The base used for image reduction; assumed to be 1.

NSTART, NTIMES Each subimage is processed NSTART through NTIMES times, each time with a new reduction factor NFT = NRED ** NLAYER where NLAYER goes from NSTART - 1 through NTIMES - 1; both assumed to be 1.

PICTUR TRUE for a picture of each subimage; assumed FALSE.

NQUANT Number of quantization levels of the probability function in IMOMTR; assumed to be 16.

MERGE TRUE for all four LEX arrays to be merged into one array; assumed to be TRUE.
REQUIREMENTS:

1. ERTS input tape must be on file code 'ES'.
2. Core - 43k.
3. Disc file must be on file code '02'.
4. Subprograms required:
 MAINLN
 ERTS
 MAING
 KEQUAN
 PITCHR
 FPLXIT
 INDEX
 IMOMTR
 INDEX
 COR
 IEQPQ1
 RITOWT

CARD SETUP FOR SAMPLE RUN:

$ IDENT 9999, ANYNAME
$ LIBRARY LB
$ OBJECT ERTS TEXTURE ANALYSIS PROGRAMS
$ DKEND
$ EXECUTE
$ PRMFL LB, R, S, PATTERN/GEE/LIB
$ TAPE ES, A5DD, 60500, ERTS00, INPUT
$ FILE 02, A2R, 2L
$ LIMITS 20, 43k, 10k
$ INCODE IBMF

TEST-SETUP FOR TEXTURE ANALYSIS PROGRAMS

$ PARAM N11=1, PNCH = 1HN, PICTUR = TSEND
$ ENDJOB

This run of the texture analysis programs will process the ERTS image in 64 x 64 subimages, giving only printed output plus a picture of each subimage.
This is the mainline of the texture analysis programs. Each ERTS image is divided into 4 vertical strips, each put onto a 7-track digital tape. This image is divided up into subimages for processing. For example, if the subimages are 64 columns by 64 lines, then the first tape contains subimages 1 through 12, the second contains 13 through 24, and so on up to 48 horizontal subimages. And, each tape contains 36 vertical subimages.

Often, the first 8 points at the beginning of each line have grey tones of 255 and will adversely affect processing. Therefore, the first eight points of each line are skipped.

Each tape contains usually 3296 points of 4 bands, or 824 points per line for one band. Skipping the first eight points leaves 816 points per line. If subimages are each 64 columns, then 12 will occupy 768 columns, leaving 48 points at edge of each tape unused.

Due to core limitations, each input tape is processed in vertical strips of up to 192 horizontal points. This is 3,64 by 64 subimages, or 6,32 by 32 subimages in one run. For example, if NUMPPL = 64 and NUMIM = 3, then the tape is processed as follows: Run 1 - (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), ..., (36, 1) (36, 2), (36, 3). Run 2 - (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), ..., (36, 4), (36, 5), (36, 6). Run 3 - (1, 7), (1, 8), (1, 9), (2, 7), (2, 8), (2, 9), (3, 7), ..., (36, 7), (36, 8), (36, 9). Run 4 - (1, 10), (1, 11), (1, 12), ..., (36, 10), (36, 11), (36, 12). This completes the processing of the first tape. Note that N11 is determined relative to the entire image while NUMSTR is relative to the input tape. That is, for tape 1, N11 and NUMSTR are both 1 for Run 1. But for Run 2, N11 is 4 while NUMSTR is 2 and for Run 3, N11 is 7 while NUMSTR is 3, etc.
Continuing with the example, topic 2 will be processed as follows: Run 1 ($N11 = 13$, $NUMSTR = 1$) - $(1, 13), (1, 14), (1, 15), \ldots, (36, 13), (36, 14), (36, 15)$. Run 2 ($N11 = 16$, $NUMSTR = 2$) - $(1, 16), (1, 17), (1, 18), \ldots, (36, 16), (36, 17), (36, 18)$, etc.

See Figure 1 for an illustration of an ERTS image divided into 64 by 64 subimages. Note - the size of each subimage must not exceed 4096 points.
ERTS IMAGE

4 Tapes for Each ERTS Image

Figure 1.
SUBPROGRAM TITLE: ERTS
VERSION: II
DATE: September, 1972
UPDATE: November, 1973
AUTHOR: G. Gunnels
DOCUMENTED BY: R. Bosley
PROGRAM LANGUAGE: GMAP
IMPLEMENTED ON: HW635

PURPOSE:
To read 7-track ERTS MSS data tapes.

ENTRY POINTS:
CALL EINIT (NOLS)
CALL ESKIP (NOSK)
CALL EREAD (I, LN)
CALL EREWND

ARGUMENTS:
NOLS Number of words per scan line; returned by EINIT.
NOSK The number of records to skip.
I The array into which the NOLS words of data from a line of ERTS data is placed.
LN Returned by EREAD giving the line number of the line of data returned. If LN = 0, the end of file was reached on the ERTS tape.

ERROR FLAGS:
MB EREAD buffer is not large enough for a block of ERTS data.
AI EINIT was called twice.
NI EINIT was not called before calling EREAD, ESKIP, or EREWND.
UE EOF encountered while reading ID or annotation blocks on ERTS tape.

EF EOF encountered while trying to skip records in ESKIP.

COMMENTS:
EINIT initializes the ERTS tape so that data may be read, and must be called first. ESKIP skips over NOSK records (scan lines). EREWIND rewinds the ERTS tape. EINIT must not be called twice. The data placed into array 1 by EREAD is in standard corresponding point forms. Since the ERTS MSS data has four channels, there are actually NDLS/4 points or cells per scan line.

REQUIREMENTS:
ERTS tape must be on file code 'ES'.
ERTS TEXTURE ANALYSIS

SUBPROGRAM TITLE: MAING
VERSION: III
DATE: October, 1971
UPDATE: June, 1973
AUTHOR: R. M. Haralick
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE:
To print out a picture of the subimage, copy it to file 2, and then process it through the texture subroutines FPLXIT to get the LEX arrays, IMOMTR to calculate the texture features, and RITOWT to output the results.

ENTRY POINT:
CALL MAING (IWORK, MERR, MERGE, PICTUR, IF)

ARGUMENTS:
IWORK
NUMLIN by NUMPPL subimage array.
MERR
Set to 1 if an error occurs in fitting the LEX arrays into IWORK.
MERGE
TRUE to merge the four LEX arrays into one.
PICTUR
TRUE for a picture of the subimage.
IF
File code for the output tape.

COMMENTS:
The subimage sent in IWORK is scaled to fill a page for the picture printout, and at the same time it is copied to a scratch disc on file code '02'. If the size of the LEX arrays is greater than NUMPPL x NUMLIN, then an error message is printed and processing is terminated by MAINLN, after putting EOF marks on the output tape. Each subimage is quantized by KEQUAN to 32 levels.
CALLED BY:

MAINLN

SUBPROGRAMS REQUIRED:

KEQUAN
PITCHR
FPLXIT
IMOMTR
RITOWT
SUBPROGRAM TITLE: KEQUAN
VERSION: II
DATE: September, 1971
UPDATE: June, 1973
AUTHOR: G. Elliot
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW635
PURPOSE: To equal probability quantize the input array to NQ levels.

ENTRY POINT:
CALL KEQUAN (IA, NGL, NQ, IASIZE)

ARGUMENTS:
IA Input array which is returned quantized.
NGL Number of greytone levels in IA.
NQ Number of quantizing levels.
IASIZE Size of array IA.

ERROR FLAGS:
If the number of greytone levels exceeds 512, an error message is printed.
SUBPROGRAM TITLE: PITCHR
VERSION: II
DATE: July, 1969
UPDATE: November, 1970
AUTHOR: R. Cowles
DOCUMENTED BY: G. Elliott
PROGRAM LANGUAGE: GMAP
IMPLEMENTED ON: HW635
PURPOSE: To print out images in 13 grey levels.

ENTRY POINTS:
CALL PITCHR (IRRAY, ICELL, JCELL, INIT, IT, IMIN, IMAX,
NROW, NFIL, IFIL, NULW, NULD, AMAG, DMAG, *)
CALL SNAP
CALL SNAPA (IARRAY)
CALL ENDBNR

ARGUMENTS:
IRRAY Array to be printed, either integer or floating point.
ICELL Number of rows in array. (row dimension)
JCELL Number of columns in array. (column dimension)
INIT =0 if all of image to be printed out is in core at time of call. Output will be done before return to calling program.
=1 for reinitialization entry. Any of the arguments previously specified with INIT =0 with the exception of INIT may now be changed. Return will be made to the calling program without any output. This is especially useful if the image is read into core in pieces and the last piece does not completely fill the array. >1 for initialization
entry. INIT will reflect the number of times
entry is made at SNAP before final border is to
be printed. Return is to the calling routine
without any output.

INIT = 0 is assumed.

II
= 0 if array is floating point
= 1 if array is integer
II = 1 is assumed.

IMIN
Minimum brightness level in array. Type of
IMIN should correspond to that indicated by II.
IMIN = 0 is assumed.

IMAX
Maximum brightness level in array. Type of IMAX
should correspond to that indicated by II.
IMAX = 12 is assumed.

NROW
Number of rows of array to be printed if full array
is not to be printed. This allows for partial printing.
NROW = ICELL is assumed.

NFIL
Number of output files available if image is to
be output in strips that are NULW lines wide.
= 0 for all output on file code 06
= 1 for all output on file code IFIL
> 1 for outputs in strips, on file codes specified
in array IFIL. NFIL = 0 is assumed.

IFIL
Array containing output file codes. Ignored unless
NFIL = 0. IFIL must be a variable rather than a
literal, since SNAP alters the value(s) of IFIL
to contain the location of the relevant file
control block in the upper half of the word.

NULW
Number columns per output page. MAX = 129
NULW = 120 unless otherwise specified.

NULD
Number of rows to be printed before a slew on the
top of the next page is given. NULD = ICELL * DMAG + 1.
AMAG Floating point magnification in width.
AMAG = 1 is assumed.

DMAG Floating point magnification in length.
DMAG = 1 is assumed.

* Error return if not enough output files are available. Return is made with NARG = -10.
If not specified, a message will be printed out on the accounting report and an NF report will terminate execution.
To compute the four nearest neighbor greytone matrices LEX1, LEX2, LEX3, LEX4, for angles of 90, 0, 135, and 45 degrees.

ENTRY POINT:

CALL FPLXIT (IDATA, LEX1, LEX2, LEX3, LEX4, NUMPPL, MERGE)

ARGUMENTS:

IDATA
LEX1 - LEX 4
NUMPPL
MERGE

Scratch array holding two lines of the subimage.
Address indices for the four LEX arrays.
Number of points in each line of the subimage.
TRUE to merge the four LEX arrays into one array.

This subroutine reads two lines at a time from the subimage being processed, which is now on scratch disc file 02. After all the LEX arrays are created, they can be merged into one by setting MERGE to TRUE in MAINLN. The merge is performed by adding each array term by term and putting the total into LEX1.
SUBPROGRAMS REQUIRED:
 INDEX

CALLED BY:
 MAING
ERTS TEXTURE ANALYSIS

SUBPROGRAM TITLE: INDEX
VERSION: 1
DATE: September, 1971
UPDATE: September, 1971
AUTHOR: R. M. Haralick
DOCUMENTED BY: R. J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE: To return to the calling program the single subscript for the LEX array that indicates where element (I, L) can be found, given its row and column subscripts I and L.

ENTRY POINT: INDEX (I, J)

ARGUMENTS:
I Row subscript for an element in the LEX array.
J Column subscript for an element in the LEX array.

COMMENTS: This subprogram is a FUNCTION.

CALLED BY: FPLXIT IMOMTR
ERTS TEXTURE ANALYSIS

SUBPROGRAM TITLE: IMOMTR
VERSION: II
DATE: September, 1971
UPDATE: June, 1973
AUTHOR: R. M. Haralick
DOCUMENTED BY: R. J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE: To calculate the moment texture statistics.

ENTRY POINT:
CALL IMOMTR (LEX1, LEX2, LEX3, LEX4, F, IQ, MERGE)

ARGUMENTS:
LEX1 - LEX4 Address indices for the four LEX arrays.
F Cumulative distribution function.
IQ Quantized output array of IEGFG1,
MERGE TRUE indicates the four LEX arrays have been merged into one.

TEXTURE FEATURES:
1. Angular Second Moment

\[\text{ANGMOM} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P^2(i, j) \]

where \(N_g \) is the number of grey tone levels, and \(P(i, j) \) is the array of joint probabilities.
2. Entropy

\[\text{ENTROP} = - \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P(i, j) \log P(i, j) \]

3. Mean

\[\text{AMEAN} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i \cdot P(i, j) \]

4. Variance

\[\text{SGMASQ} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - \text{AMEAN})^2 P(i, j) \]

5. Covariance

\[\text{SGMAXY} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - \text{AMEAN})(j - \text{AMEAN}) P(i, j) \]

6. Correlation

\[\text{RATIO} = \frac{\text{SGMAXY}}{\text{SGMASQ}} \]

7. Inverse Moment

\[\text{IVDMOM} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{P(i, j)}{1+(i-j)^2} \]

8. Average Contrast

\[\text{DIFAVE} = \sum_{k=1}^{N_g-1} k \cdot \text{DIF}(k) \]

where \(\text{DIF}(k) = \sum_{|i-j|=k} P(i, j) \)
9. Variance of DIF
\[
DIFVAR = \sum_{k=1}^{N_g-1} k^2 \cdot DIF(k) - \left[\sum_{k=1}^{N_g-1} k \cdot DIF(k) \right]^2
\]

10. Entropy of DIF
\[
DIFENT = - \sum_{k=1}^{N_g-1} DIF(k) \cdot \log(DIF(k))
\]

11. Average of Intensity
\[
SUMAVE = \sum_{k=2}^{N_g} k \cdot SUM(k)
\]
where \(SUM = \sum_{i+j=k} P(i, j) \)

12. Variance of SUM
\[
SUMVAR = \sum_{k=2}^{N_g} k^2 \cdot SUM(k) - \left[\sum_{k=2}^{N_g} k \cdot SUM(k) \right]^2
\]

13. Entropy of SUM
\[
SUMENT = - \sum_{k=2}^{N_g} SUM(k) \cdot \log(SUM(k))
\]

14. True mean of probability function
\[
TMEAN = \frac{1}{N_g} \sum_{i=1}^{N_g} F(i)
\]
COMMENTS:
The three remaining texture features are computed in subroutine
COR: CORINF, CORMUT, and CORMAX. If MERGE is
TRUE, then these features are computed for only the merged
array, LEX1. Otherwise they are computed for each LEX
array, corresponding to each of four angles.

SUBPROGRAMS REQUIRED:
INDEX
IEQPQ1
COR

CALLED BY:
MAING
ERTS TEXTURE ANALYSIS

SUBPROGRAM TITLE: COR
VERSION: II
DATE: November, 1972
UPDATE: June, 1973
AUTHOR: Sam Shanmugam
DOCUMENTED BY: R. J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE:
To calculate three measures of correlation between two discrete random variables X and Y whose joint probabilities of occurrence are known.

ENTRY POINT:
CALL COR(PXY, N, IOPT, Q, COR1, COR2, COR3)

INPUT ARGUMENTS:
PXY Array of joint probabilities.
N Size of the array PXY
IOPT Option flag - if IOPT = 0, then only COR1 and COR2 will be calculated; if IOPT = 1, then COR3 will also be calculated.
Q Scratch array of size N x N. This array is used only if IOPT is non-zero.

OUTPUT ARGUMENTS:
COR1 Maximal correlation measure.
COR2 Information measure of correlation.
COR3 Second type of maximal measure.
COMMENTS:

These three correlation measures are the last three texture features. For details of the measures see "Mutual Information and Maximal Correlation As Measure of Dependence," by C. B. Bell, in the Annals of Mathematical Statistics, vol. 43, 1962.

CALCULATIONS:

1. \(\text{COR1} = \frac{H(x, y) - H_1(x, y)}{\max(H(x), H(y))} \)

where \(H(x, y) = \sum_i \sum_j \log \left(\frac{P_{xy}(i, j)}{P_x(i) P_y(j)} \right) \)

\(H_1(x, y) = \sum_i \sum_j \left(\log \left(\frac{P_x(i) P_y(j)}{P_{xy}(i, j)} \right) \right) P_{xy}(i, j) \)

\(H(x) = \sum_i \left(\log P_x(i) \right) P_x(i) \)

and \(H(y) = \sum_j \left(\log P_y(j) \right) P_y(j) \)

2. \(\text{COR2} = \sqrt{1 - e^{-2R}} \)

where \(R = H_2(x, y) - H(x, y) \)

\(H_2(x, y) = \sum_i \sum_j \left(\log \left(\frac{P_x(i) P_y(j)}{P_{xy}(i, j)} \right) \right) P_{xy}(i, j) \)

and \(P_x(i) = \sum_j P_{xy}(i, j), P_y(j) = \sum_i P_{xy}(i, j). \)
3. COR3 is computed using the eigenvector corresponding to the second largest eigenvalue of QQ^T, where

$$Q(i, j) = \frac{P_{xy}(i, j)}{\sqrt{P_x(i)P_y(j)}}$$

CALLED BY:

IMOMTR
SUBPROGRAM TITLE: I EQPQ1
VERSION: 1
DATE: September, 1971
UPDATE: September, 1971
AUTHOR: D. Goel
DOCUMENTED BY: R. J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635
PURPOSE: To determine k levels of equal probability quantization for an array for which the cumulative distribution function is known for all elements.

ENTRY POINT: CALL I EQPQ1 (N, K, F, IQ, IMIN)

ARGUMENTS:

- N Number of items in array F to be equal probability quantized.
- K Number of quantizing levels.
- F Input array to be quantized.
- IQ Output array of quantized levels.
- IMIN The lowest possible level in the input data.

CALLED BY: IMOMTR
ERTS TEXTURE ANALYSIS

SUBPROGRAM TITLE: RITOWT
VERSION: II
DATE: September, 1971
UPDATE: June, 1973
AUTHOR: R. M. Haralick
DOCUMENTED BY: R. J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE:
To output onto printer, cards, or tape the texture features.

ENTRY POINT:
CALL RITOWT (LEX1, LEX2, LEX3, LEX4, G, IQ, MERGE, IF, PICTUR)

ARGUMENTS:
LEX1 - LEX4 Address indices for the LEX arrays.
G CDF for the image data
IQ Quantized output of IEQPQ1 of NQUANT levels.
MERGE TRUE indicates that the four LEX arrays have been merged into one array.
IF File code for output tape.
PICTUR TRUE indicates that a picture of the subimage has been printed.

COMMENTS:
The output format for the listing is slightly different depending upon the PICTUR and merge options. The PNCH option determines whether cards or tape or neither are used to output the 17
texture features for each subimage. In any case, the texture features are listed on the printer. If PNCH = 1HY in the $PARAM card in MAINLN, then cards are punch according to the following formats:

1. for MERGE = TRUE: M1, N1, NFT, ANGMOM, ENTROP, RATIO, SGMASQ, SGMAXY, AMEAN, VIDMOM, KOUNT/TMEAN, DIFENT, DIFAVE, DIFVAR, SUMENT, SUMAVE, SUMVAR, KOUNT+1/CORINF, CORMUT, CORMAX, KOUNT+2.

\[\text{FORMAT (12, 1X, 212, 1X, 7F9.5, 19/8X, 7F9.5, 19/8X, 3F9.5, 36X, 19), where (M1, N1) is the subimage row, column coordinate.} \]

\[\text{FORMAT ('THE SCENE', 12, 1, 12, 1X, 4F9.4, 38X, 15).} \]

If tape output on file code 'IF' is selected by PNCH = 1HT, then the texture features are written in binary as follows:

\[\text{WRITE(IF) M1, N1, NFT, ANGMOM(K), ENTROP(K), RATIO(K), SGMASQ(K), SGMAXY(K), AMEAN(K), VIDMOM(K), TMEAN(K), DIFENT(K), DIFAVE(K), DIFVAR(K), SUMENT(K), SUMAVE(K), SUMVAR(K), CORINF(K), CORMUT(K), CORMAX(K), where K is one for MERGE = TRUE and is 4 for MERGE = FALSE denoting the number of values for each measure.} \]

If neither cards nor tape output is selected, then the LEX arrays are listed after the texture features.
IV.1-c Cross-Band Texture Analysis Programs -
Documentation

SPECTR
GETIM / GETIT
ERTS
DIFFER
COVAR
MNCVIN / MNCV
CORREL
CROSS-BAND TEXTURE ANALYSIS

PROGRAM TITLE: SPECTR
VERSION: 1
DATE: January, 1974
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTY
IMPLEMENTED ON: HW635

PURPOSE: This program is the mainline of the spectral-textural analysis which obtain spectral-textural features for land-use classification of ERTS MSS data.

ENTRY POINT:
CALL SPECTR (IMAGE, X, ILINE, IXDIM, IYDIM, NDIN)

INPUT ARGUMENTS:
IMAGE Array containing a subimage.
(IYDIM, IXDIM, IDIN)
X (IYDIM, IXDIM, IDIN) Array containing the difference image.
ILINE Array one ERTS line is read into.
IXDIM Column dimension of IMAGE, X.
IYDIM Row dimension of IMAGE, X.
NDIN Number of components, bands, in IMAGE, X.

INPUT PARAMETERS: under NAMELIST 'PARAM':
NDIM Number of components desired in IMAGE: Assumed to be NDIN.
NUMLIN Number of lines in subimage; Assumed to be IYDIM.
NUMPL
FMT
TITLE
OPT
IDIST
IRSTR
IRSTOP
LAPHOR
LAPVER
PNCH

Number of columns in subimage; Assumed to be IYDIM.
Format used to output elements of covariance matrix; assumed to be 'E11.4'.
80 column title for run.
TRUE to print covariance matrix; assumed FALSE.
Distance between neighboring cells for difference array; assumed to be 1.
Starting row in ERTS image; assumed to be 1.
Stopping row in ERTS image; assumed as last row.
Number of horizontal points that subimages overlap; assumed to be 0.
Number of vertical points that subimages overlap; assumed to be 0.
TRUE for output on cards, FALSE for output to file code 01 for tape or disc.

EXAMPLE OF DRIVER:

DIMENSION IMAGE (16, 17, 8), X (16, 17, 8), ILINE (3300)
EQUIVALENCE (IMAGE, X, ILINE(130))
IXDIM =17
IYDIM =16
NDIN =8
CALL SPECTR (IMAGE, X, ILINE, IXDIM, IYDIM, NDIN)
STOP
END

This driver will set up the spectral-textural analysis mainline SPECTR to process 16 x 16 subimages over 8 components with IDIST =1. Note IXDIM must include NUMPL plus IDIST points, and array ILINE must have at least NUMPL x NDIM points outside of any other array. These points form array XLINE in COVAR.
REQUIREMENTS:

1. Core - 25k for IMAGE (32, 33, 8)
2. ERTS input tape must be on file code 'ES'
3. Random access disc file on file 11, e.g. $ FILE II ALL, OR.
4. Subprograms required:

 DRIVER
 SPECTR
 GETIM
 SETDIM (Fortran callable program to initialize HEMP package)
 GETIT
 ERTS
 DIFFER
 COVAR
 MNCV IN
 MNCV
 CORREL
 SFA07F
 HEMDET (Fortran callable program from HEMP library to solve for determinant of matrix).

COMMENTS:

These analysis programs obtain a series of NUMLIM by NUMPPL by NDIM subimages from the ERTS input tape and outputs a feature vector with \((1 + NDIM \times (NDIM-1)/2)\) components for each subimage. The input data is processed in horizontal rows of subimages that may overlap both horizontally and vertically. The distance between neighboring resolution cells used to get the difference array is variable. Note that IXDIM must include NUMPPL plus IDIST points, and that the array ILINE must have at least NUMPPL x NDIM points outside of any other array because these are used for array XLINE in COVAR. Other than this, arrays IMAGE, X, and ILINE may be equivalenced.
to conserve core, as in the example for a DRIVER. The first feature component on the output file is the entropy measure, and the remaining NDIM (NDIM-1)/2 components are elements of the correlation matrix. See the GETIM subprogram for listing of all 8 possible components for a subimage.

CALLED BY:

DRIVER
CROSS-BAND TEXTURE ANALYSIS

SUBPROGRAM TITLE: GETIM
VERSION: 1
DATE: January, 1974
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTY
IMPLEMENTED ON: HW635
PURPOSE: To get a row of subimages from the ERTS input tape and copy them onto a random access disc file.

ENTRY POINTS:
CALL GETIM (ILINE, IDIST, NDIM, IRSTRT, IRSTOP, NUMLIN, NUMPPL, LAPIVER, LAPHOR, NHOR, INCR, IPEND)
CALL GETIT

INPUT ARGUMENTS:
ILINE Array into which one ERTS line is read.
IDIST Distance between neighboring resolution cells whose differences form the difference array, X.
NDIM Number of components in each resolution cell.
IRSTRT Starting line of ERTS data.
IRSTOP Stopping line of ERTS data.
NUMLIN Number of lines in each subimage.
NUMPPL Number of points per line (columns) in each subimage.
LAPIVER Number of lines that subimages overlap.
LAPHOR Number of columns that subimages overlap.
OUTPUT ARGUMENTS:

NHOR Number of horizontal overlapping subimages in image.
INCR Horizontal increment to the first column of the
 next subimage in the row.
IPEND Last cell in the row.

REQUIREMENTS:

Random access disc file on file code II: and FILE II, AIIR, IOR.

COMMENTS:

This program is initialized by calling GETIM which initializes the
ERTS input tape and sets up the disc on file II for random access
with fixed length records of NDIM words, up to a maximum of
NDIM = 8. The eight possible greytone components are:
1. Band 2
2. Band 3
3. Band 4
4. Band 2 x Band 2
5. Band 3 x Band 3
6. Band 4 x Band 4
7. Band 2 x Band 3
8. Band 2 x Band 4, where band 1 through 4 is MSS band 4 through 7.
It is suggested that all eight components be used and the best of these
be selected for feature vector components. This gives a total
of 29 components, including the entropy measure.
After calling GETIM, all further calls are made to GETIT which
goes down the input data file line by line copying to the random
access disc an entire row of NHOR subimages of NDIM components.
Note that MSS band 4 (band 1 here) has been deleted because of
its high correlation with MSS band 5 (band 2 here).

CALLED BY:

SPECTR
SUBPROGRAM TITLE: ERTS II
VERSION: September, 1972
DATE: November, 1973
UPDATE: G. Funnels
AUTHOR: R. Bosley
DOCUMENTED BY: GMAP
PROGRAM LANGUAGE: HW635
IMPLEMENTED ON: GMAP
PURPOSE:

To read 7-track ERTS MSS data tapes.

ENTRY POINTS:
CALL EINIT (NOLS)
CALL ESKIP (NOSK)
CALL EREAD (I, LN)
CALL EREWND

ARGUMENTS:
NOLS Number of words per scan line; returned by EINIT.
NOSK The number of records to skip.
I The array into which the NOLS words of data
LN Returned by EREAD giving the line number of the
from a line of ERTS data is placed.
line of data returned. If LN=0, the end of file
was reached on the ERTS tape.

ERROR FLAGS:
MB EREAD buffer is not large enough for a block of
EINIT was called twice.
AI EINIT was not called before calling EREAD,
NI ESKIP, or EREWND.
UE EOF encountered while reading ID or annotation blocks on ERTS tape.

EF EOF encountered while trying to skip records in ESKIP.

COMMENTS:
EINIT initializes the ERTS tape so that data may be read, and must be called first. ESKIP skips over NOSK records (scan lines). EREWND rewinds the ERTS tape. EINIT must not be called twice. The data placed into array 1 by EREAD is in standard corresponding point forms. Since the ERTS MSS data has four channels, there are actually NDLS/4 points or cells per scan line.

REQUIREMENTS:
ERTS tape must be on file code 'ES'.
CROSS-BAND TEXTURE ANALYSIS

SUBPROGRAM TITLE: DIFFER
VERSION: 1
DATE: January, 1974
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTY
IMPLEMENTED ON: HW635

PURPOSE:
To calculate the nearest neighbor difference array.

ENTRY POINT:
CALL DIFFER (IA, X, IXDIM, IYDIM, NDIM, IDIST, NUMPPL, NUMLIN)

INPUT ARGUMENTS:
IA(IYDIM, IXDIM, NDIM) Array containing the subimage being processed.
IXDIM Column dimension of IA and X.
IYDIM Row dimension of IA and X.
NDIM Number of components of each resolution cell.
NUMPPL Number of columns in the subimage.
NUMLIN Number of lines in the subimage.

OUTPUT ARGUMENTS:
X(IYDIM, IXDIM, NDIM) Array of nearest neighbor differences.
COMMENTS:

This subroutine will replace the original subimage in array IA with the nearest neighbor horizontal difference: (I1 - J1, I2 - J2, ..., IN - JN) where I and J are N-dimensional horizontally neighboring resolution cells separated by distance IDIST. Arrays IA and X may be equivalence to occupy the same area of core. Note that the absolute value is used to get the differences. This gives only the positive half of the distribution of differences I-J and J-I. This shifts the mean of the distribution from the origin and must be accounted for in COVAR when the covariance matrix of the difference array is calculated.

CALLED BY:

SPECTR
CROSS-BAND TEXTURE ANALYSIS

SUBPROGRAM TITLE: COVAR
VERSION: 1
DATE: January, 1974
UPDATE: January, 1974
AUTHOR: Robert J. Bosley
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTY
IMPLEMENTED ON: HW635
PURPOSE:
To calculate the covariance matrix of the difference array.

ENTRY POINT:
CALL COVAR (XLINE, NDIM, NUMPPL, X, IXDIM, IYDIM, NUMLIN, NDIN, COV)

INPUT ARGUMENTS:
XLINE(NDIM, NUMPPL) Array used to send one line of the difference array to MNCVIN.
NDIM Number of components of each vector in X.
NUMPPL Number of columns of vectors in X.
X Nearest neighbor difference array.
IXDIM, IYDIM Column, row dimensions of array X.
NUMLIN Number of rows of vectors in X.
NDIN Dimension of COV array.

OUTPUT ARGUMENTS:
COV (NDIN, NDIN) Covariance matrix of the difference array X.

 REQUIREMENTS:
Subroutine MNCVIN.
COMMENTS:

Array XLINE is formed from the first NDIM x NUMPPL points of array ILINE in SPECTR. Hence at least the first NDIM x NUMPPL words of ILINE must not be equivalenced into array X.

Since only the positive differences were used to make array X by DIFFER, the mean is reset to zero for each component.

CALLED BY:

SPECTR
CROSS-BAND TEXTURE ANALYSIS

SUBPROGRAM TITLE: MNCVIN
VERSION: 1
DATE: August, 1973
UPDATE: August, 1973
AUTHOR: James D. Young
DOCUMENTED BY: James D. Young
PROGRAM LANGUAGE: FORTRAN IV or FORTY
IMPLEMENTED ON: HW635

PURPOSE:
To calculate the mean vector and covariance matrix for each category of a set of vectors, based on a specified percentage of the vectors randomly chosen within the set.

ENTRY POINTS:
CALL MNCVIN (NVPCAL, NDIM, NCALL, PERCNT, NCAT, X, NTRUTH, COV, XMEAN, SCTMEN, SAMSZ, IERROR, JERROR)

CALL MNCV

INPUT ARGUMENTS:
NVPCAL: Number of vectors per call.
NDIM: Dimension of data vectors.
NCALL: Number of calls.
PERCNT: Percentage of total number of vectors from which the mean and covariance matrices will be calculated.
NCAT: Number of categories considered; set to 1 if only one set of statistics will be calculated for all data, set to the number of categories in data set if one set of statistics will be calculated for each category.
\[X \text{(NDIM, NVPCAL)} \] Matrix containing input data vectors in its columns.

\[NTRUTH \text{(NVPCAL)} \] Vector containing the ground truth integers, 1 through NCAT, associated with the data vectors of \(X \); if NCAT is 1 this vector is ignored.

OUTPUT ARGUMENTS:

\[COV \text{(NDIM, NDIM, NCAT)} \] Matrix containing covariance matrices of the data.

\[XMEAN \text{(NDIM, NCAT)} \] Matrix containing mean vectors of the data.

\[SCTMEN \text{(NDIM, NCAT)} \] Scratch matrix.

\[SAMSZ \text{(NCAT)} \] Vector with the number of vectors used to calculate the statistics for each category.

\[IERROR \] Error flag when returned non-zero:

1. If NVPCAL .LE. 0
2. If NDIM .LE. 0
3. If NCAL .LE. 0
4. If PERCENT .GT. 100. or so small that less than 2 vectors will be used to calculate all the statistics.
5. If NCAT .LE. 0

\[JERROR \] Error flag when returned non-zero:

1. If an illegal ground truth label is formed.

COMMENTS:

One call to MNCVIN initializes this routine. Calls to MNCV should be performed NCALL times, each with the next line of vectors in \(X \). After MNCV has been called NCALL times, the mean vector and covariance matrix for each category is completed. For use in the Spectral-Textural Analysis programs, PERCENT is set to 100 and NCAT is set to 1.
To calculate the correlation matrix given the covariance matrix of the difference array.

ENTRY POINT:

CALL CORREL (COV, NDIM, COR)

INPUT ARGUMENTS:

COV
NDIM

Covariance matrix of the difference array
Order of matrix COV.

OUTPUT ARGUMENTS:

COR

Correlation matrix of COV.

CALLED BY:

SPECTR
IV.1-d Piecewise Linear Classification Programs - Documentation

RCLASS
XIN
LINEAR
WEIGHT
LINEAR DISCRIMINANT CLASSIFIER

SUBPROGRAM TITLE: RCLASS
VERSION: 1
DATE: September, 1972
UPDATE: November, 1972
AUTHOR: Sam Shanmugam
DOCUMENTED BY: Sam Shanmugam
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE:
This subroutine is the mainline for routines which implement a decision rule using piecewise linear discriminant functions. It calls subroutine XIN to read in the pattern vectors, and calls LINEAR to get the decision rule and classify the pattern vectors.

ENTRY POINT:
CALL RCLASS (WORK, ISIZE)

ARGUMENTS:
WORK
Scratch array of size ISIZE which holds the training vectors and the weight vectors.
ISIZE
Dimension of array WORK.

INPUT PARAMETERS:
Card 1. Format (I11)
NOPT1 Set to 1 to print out training patterns; otherwise set to zero.
NOPT2 Set to 1 to print out test patterns; otherwise set to zero.
NOPT3 Set to 0 to list only the contingency table for the training patterns; otherwise set to 1 and the classification of each training pattern is listed as well as the contingency table.

132
NOPT4

Set to 0 for only the contingency table of the

test set; otherwise set to 1 for the classification

of each test pattern as well.

Card 2. Format (515)

NTOT

The total number of pattern vectors in the
data set.

NPART

NPART out of every ten pattern vectors in the
data set will be used for training. The remaining
will be used as test patterns.

NDIM

The number of measurements per vector plus two.

NC

The number of ground truth categories.

NPAIR

Twice the maximum number of training patterns
in any one category.

REQUIREMENTS:

1. Maximum number of categories is 15.

2. Maximum number of components, NDIM, is 100.

3. Pattern vectors must be sorted by category.

4. A scratch disc file must be on 02.

5. ISIZE must be at least

\[
\text{NDIM} \times (\text{NTRAIN} + 10) + 1000
\]

\[+ (\text{NC} \times (\text{NC} + 1)/2)\text{ND} + \text{NPAIR} \times \text{ND} \]

where ND = NDIM - 1

and NTRAIN = number of training patterns.

6. Pattern vectors must be written in binary to disc file 01

as follows:

\[
\text{WRITE (01) IGT, MI, NI, NFT, (FEAT(I), I = 1, NMEAS)}
\]

where

IGT is the ground truth category.

MI, NI, NFT are not used - may be used as

ID tags

FEAT is the feature vector

NMEAS is the number of measurements per feature

vector.
7. Subprograms required
 DRIVER
 RCLASS
 XIN
 LINEAR
 WEIGHT

ERROR FLAGS:

If ISIZE is too small, processing is terminated and an error message is listed.

THEORY:

Using a regression type algorithm the program obtains a set of hyperplanes for separating the training patterns of different category pairs. A total of NC(NC-1)/2 hyperplanes are determined. Test patterns are identified by taking a majority vote on this set of hyperplanes. For complete details, see "Introduction to Statistical Pattern Recognition" by Y. Fukunaga, Academic Press, 1972.

COMMENTS:

The input data file on 01 should have a total of NTOT logical records in binary. Each logical record must be of length NDIM + 2 words, where word 1 is the ground truth category and words set is sorted into training and test sets according to NPART. Training vectors are stored in WORK and test vectors are copied to disc 02.
CALLED BY:

DRIVER

EXAMPLE OF DRIVER:

DIMENSION WORK (10000)
ISIZE = 10000
CALL RCLASS (WORK, ISIZE)
STOP
END
SUBPROGRAM TITLE: XIN
VERSION: II
DATE: September, 1972
UPDATE: December, 1973
AUTHOR: Sam Shanmugam
DOCUMENTED BY: Robert J. Bosley
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635
PURPOSE: To read the parameter cards and the Input data set, copying the test vectors to disc.

ENTRY POINT:

CALL XIN (WORK, U)

ARGUMENTS:

WORK Array training vectors are read into Scratch array
U

CALLED BY:

RCLASS

COMMENTS: This version does not use subroutine POST to position the input file 01. Hence the input data file must be the first file on 01.
LINEAR DISCRIMINANT CLASSIFIER

SUBPROGRAM TITLE: LINEAR
VERSION: 1
DATE: September, 1972
UPDATE: November, 1972
AUTHOR: Sam Shanmugam
DOCUMENTED BY: Sam Shanmugam
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635

PURPOSE:
Using the set of training patterns, this program obtains a set of hyperplanes for pairwise separation of training patterns of different categories. The program also identifies the test patterns on a majority vote on the hyperplanes and outputs contingency table.

ENTRY POINT:
CALL LINEAR (XTRAIN, XTEST, W, U, DUMMY)

ARGUMENTS:
XTRAIN Matrix containing training patterns.
XTEST Matrix containing test patterns.
W Array of weight vectors.
U Matrix used for calculating the boundary between category pairs.
DUMMY Scratch array.

CALLED BY:
RCLASS

SUBPROGRAMS REQUIRED:
WEIGHT
LINEAR DISCRIMINANT CLASSIFIER

SUBPROGRAM TITLE: WEIGHT
VERSION: 1
DATE: September, 1972
UPDATE: November, 1972
AUTHOR: Sam Shanmugam
DOCUMENTED BY: Sam Shanmugam
PROGRAM LANGUAGE: FORTRAN IV
IMPLEMENTED ON: HW 635
PURPOSE: To find the minimum mean square fit hyperplane for separating the training patterns of two different categories.

ENTRY POINT:
CALL WEIGHT (U, DUMMY, WT, ND, NIJ)

INPUT ARGUMENTS:
U Array containing the patterns of category 1 and category J.
DUMMY Scratch array.
ND ND+1 is the dimension of the pattern vector.
NIJ Number of vectors in U.

OUTPUT ARGUMENTS:
WT Weight vector which defines the hyperplane separating categories 1 and J.

CALLED BY:
LINEAR

SUBPROGRAMS REQUIRED:
MINV Matrix inversion program from the IBM Scientific Subroutine Package.
IV.2-a ERTS Retrieval Program Listings

RETV
 ERTS
 PIXEY
 ZEQUAN
 PITCHR
 WRTDSK
 RDDSK1
 KEQUAN
 RDDSK2
DESCRIPTION OF PROGRAM.

THIS IS THE MAINLINE FOR ERTS RETRIEVAL PROGRAMS WHICH WILL RETRIEVE DATA FROM STANDARD NASA ERTS DATA TAPES AND OUTPUT THE IMAGE DATA IN A PICTURE, OR GREYSCALE LISTING, OR COPY IT INTO AN OUT PUT TAPE ON FILE CODE "IF..". COORDINATES MAY BE EITHER IN MILLIMETERS OR IN ROW, COLUMN COUNT. FOR REASONABLE EFFICIENCY DATA IS READ IN BLOCKS OF 41 LINES BY 41 POINTS, ONE ERTS TAPE WILL THEN BE COVERED BY 27 HORIZONTAL BLOCKS, LEAVING 4 POINTS LEFT AT THE END OF EACH LINE. NOTE--SOMETIMES ON THE FIRST TAPE OF AN IMAGE, THE FIRST FOUR POINTS ARE 255 AND WILL ADVERSELY AFFECT A PICTURE PRINTOUT. IF SO, SKIP THE FIRST FOUR POINTS BY SETTING ICSTRT=5.

NOTE--IF THE POINT ICSTRT IS NOT A MULTIPLE OF 41 FROM THE END OF THE LINE, THEN THE LAST POINTS MAY NOT NECESSARILY BE OUTPUTTED SINCE THE BLOCKS ARE DETERMINED BY THE ICSTRT POSITION. THEREFORE IT IS SUGGESTED THAT IF THE DATA OUT TO THE END OF EACH LINE IS DESIRED, THAT THE COORDINATES BE SPECIFIED IN ROW,COLUMN FORMAT AND THAT THEY BE PREDETERMINED SO AS TO OUTPUT THE DESIRED POINTS IN THE ERTS LINE.

A SPECIAL PICTURE RUN TO PRINT OUT AND REDUCE ANY IMAGE OVER THE ENTIRE TAPE CAN BE MADE BY SETTING SPIC=TRUE IN SPARM AND THEN SPECIFYING PICTURE PARAMETERS UNDER NAMELIST SPICTUR.

SEE THE PIXEY PROGRAM FOR AN EXAMPLE OF A SAMPLE RUN.

INPUT PARAMETERS UNDER NAMELIST /PARAM/.

NBAND BAND NUMBER TO BE SELECTED
 SET=5 FOR ALL BANDS

IRSTRT,ICSTRT ROW,COLUMN STARTING COORDINATES
INSTOP,ICSTOP ROW,COLUMN STOPPING COORDINATES

NVERT NUMBER OF HORIZONTAL 41 X 41 BLOCKS THAT COVERS AREA SELECTED

IPSTR,IPEND STARTING, ENDING POINTS IN ERTS LINE

TITLE TITLE FOR THIS RUN

IFIL OUTPUT FILE FOR TAPF, SET TO 02

LINE ARRAY WHERE ERTS LINE IS READ INTO

IMAGE ARRAY TO STORE 41 X 41 SUBIMAGE BLOCK

PIC TRUE FOR PICTURE OUTPUT

SPIC TRUE FOR SPECIAL PICTURE RUN

QUAN TRUE FOR QUANTIZED PICTURE OUTPUT

BLUE TRUE FOR GREY-TONE LISTING

TAPE TRUE FOR TAPE OUTPUT

MILLI TRUE IF COORD ARE SPECIFIED IN MM.

SMALL TRUE IF MM. COORD COME FROM A SMALL

70 X 70 NEGATIVE--OTHERWISE ASSUME 70X70
TO BE FALSE--FROM A 7 X 7 INCH PRINT

C RESTRICIONS.
1. ERTS INPUT TAPE MUST BE ON FILE CODE 'ES'.
2. FOUR DISC FILES MUST BE ON FILES 11, 12, 13, 14.
3. ANY OUTPUT TAPE MUST BE POSITIONED ON FILE CODE 'IF':
4. ALL COORDINATES MUST BE DETERMINED RELATIVE TO THE INPUT TAPE--THAT IS, ISTOP MUST NOT EXCEED 824 COLUMNS OR 46 ROWS. STARTING COORDINATES MUST BE AT LEAST 1.

SUBPROGRAMS REQUIRED.

RETV ERTS (WITH EREWNO)
PIXEY ZEOQUAN
ERTS ERTSP
WRTSK RDTSK
KEDQUAN PITCHR
RDTSK2

DIMENSION IMAGE(41, 82), ILINE(13300), TITLE(14)
EQUIVALENCE (IMAGE(1, 1), ILINE(1))
LOGICAL EOF, PIC, SPI, QUAN, PRNT, TAPE, SMALL, MILLI
DATA BLANK/*
NAMELIST /PARAM/ N3AND, PIC, QUAN, PRNT, TAPE, RSTRT, ICSTRT, ISTOP,
1 ICSTOP, IFIL, TITLE, MILLI, SPIC

***** SECTION I --- SET UP PARAMETERS FOR PROCESSING *****

CALL EINIT(LENGTH)
CALL FLGEOF(05, EOF)

INITIALIZE ERTS AND EOF FLAG

INITIALIZE PARAMETERS

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

02-12-74 18.974 ERTS RETRIEVAL PROGRAM

ICSRT=1
IPSTOP=0
ICSRT=0
C
READ(05,PARAH)
C
IF(EOF) STOP
C
READ IN PARAMETERS
C
CHECK FOR END OF CARDS
C
WRITE out the PARAMETERS

WRITE(6,1) (TTL(1),I=1,14),NBAND
IF(NBAND.EQ.5) WRITE(6,3)
IF(TAPE) WRITE(6,3) FIL
IF(PIC) WRITE(6,4) QUAN
WRITE(6,5) IRSTD,IRSTOP,ICSTD,ICSTOP
1
FORMAT(20X, *ERTS RETRIEVAL PROGRAM VERSION II'///1X,14A6///
1
* BAND NUMBER IS ',L3)
2
FORMAT(" ALL FOUR ERTS BANDS WILL BE PROCESSED")
3
FORMAT(" AN OUTPUT TAPE WILL BE CREATED ON FILE ",13)
4
FORMAT(" PICTURE QUANTIZATION IS ",L1)
5
FORMAT(" STARTING ROW IS ",16,10X, "ENDING ROW IS ",6/
5
" STARTING COLUMN IS ",16,10X, "ENDING COLUMN IS ",16)
C
IF (.NOT.MLLI) GO TO 19
WRITE(6,6)
FORMAT(" COORDINATES ARE IN MILLIMETERS")
C
IF(SMALL) GO TO 10
C
GET THE CORRECT IMAGE SIZE
C
ASSUME THAT A PRINT HAS 103MM VERT
AND 184 MM ACROSS OR 2336 ROWS VERT
AND 3296 POINTS ACROSS.
HOWEVER--SINCE THE TAPE ONLY COVERS
ONE FOURTH ACROSS AN IMAGE, THEN USE
46MM ACROSS AND 824 COLUMNS ACROSS.
GO TO 15
C
DO SMALL NEGATIVE COORDINATES
A NEGATIVE IS 70MM BY 70MM
GO TO 10
C
WRITE(6,16) IRSTD,IRSTOP,ICSTD,ICSTOP
FORMAT(" COORDINATES IN ROW AND COLUMN FORMAT ARE---/
1
* STARTING ROW IS ",16,10X, "ENDING ROW IS ",16/
1
* STARTING COLUMN IS ",16,10X, "ENDING COLUMN IS ",16)
C
CHECK COORDINATES SO THEY FALL IN
ONE TAPE
IF (ICSTOP.GT.24) GO TO 20
CHECK PARAMETERS
IF (NBAND.GT.5) GO TO 20
IF (NBAND.LT.1) GO TO 20
IF (IRSTRT.LT.1) GO TO 20
IF (IRSTOP.LT.1) GO TO 20
IF (IRSTOP.LT.IRSTRT) GO TO 20
IF (ICSTOP.GT.ICSTRT) GO TO 22
WRITE(6,21)
FORMAT /// **EXECUTION TERMINATED FOR THIS RUN--ERROR IN PARAMETERS**
1EPS*11-11)
GO TO 1001
CHECK FOR SPECIAL PICTURE RUN
IF (NOT.SPIC) GO TO 18
CALL PIKEXY(INLINE,ILINE,IRSTRT,IRSTOP,ICSTRT,ICSTOP,QUAN,NBAND)
GO TO 1001
POSITION THE INPUT TAPE
NOSK=IRSTPT-1
CALL ERTNND
IF (NOSK.NE.0) CALL ESKIP(NOSK)
WRITE(6,23) LENGTH
FORMAT /// LENGTH OF ONE ERTS LINE IS **,16)
IF (LENGTH.LE.3300) GO TO 29
WRITE(6,24)
FORMAT /// LENGTH OF LINE ON ERTS EXCEEDS DIMENSION OF ARRAY ILI
IF (**EXECUTION TERMINATED**)
STOP
DETERMINE THE NUMBER OF BLOCKS
ALLOW 15 PTS TO BE CUT OFF BEFORE STARTING A NEW STRIP OF BLOCKS
NHOR=((ICSTOP-ICSTRT-1)/41)+1
RESET ENDING COLUMN
ICSTOP=NHOR*41+ICSTRT-1
IF (ICSTOP.LE.824) GO TO 26
N=NHOR-1
GO TO 27
NVERT=(ICSTOP-IRSTRT-15)/41+1
IRSTOP=41*NVERT+IRSTRT-1
SET STARTING AND ENDING PTS IN LINE
ISTRT=(ICSTRT-1)*4
IPEND=ICSTOP*4
WRITE OUT NO OF BLOCKS AND STOPS
WRITE(6,28) NHOR,NVERT,IRSTOP,ICSTOP
FORMAT /// NUMBER OF HORIZONTAL BLOCKS **,15/
1 ** NUMBER OF VERTICAL BLOCKS **,15/
1 ** REVISED STOPPING ROW IS NOW **,16/
1 ** REVISED STOPPING COLUMN IS NOW **,16)

***** SECTION II --- PROCESS THE ERTS DATA TAPE *****
ERTS RETRIEVAL PROGRAM

1. READ THE DATA
 GO THRU EACH VERTICAL BLOCK

2. CHECK FOR ERROR
 EXECUTION TERMINATED-----EOF DETECTED ON ERTS TAPE

3. WRITE NHOR RECORDS ON DISC, ONE DISC PER BAND

4. CALL WRDSK(ILINE,NHOR,IRSTR,IRSTOP,PRNT,TAPE,IFIL)

5. PART 2--OUTPUT THE DATA
 SET UP NO OF TIMES AND DISC FILE CODE

6. OUTPUT THE PICTURE FOR THIS BAND
 WRITE OUT THE GREY-TONES

7. CALL RDSSK2(IMAGE,IRSTR,IRSTOP,NHOR,NOSK,PRNT,TAPE,IFIL)

8. CONTINUE
 GO BACK FOR ANOTHER RUN

9. IF(TAPE) END FILE IFIL
 WRITE(6,302)

10. FORMAT('///' END OF THIS RUN'/1ML')
 GO TO 1001

END

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.
ERTS READING PROGRAM-ERead,ESkip,EInit

FOR CENTER FOR RESEARCH, INC.

1 LBL ERTS,ERTS TAPE READING PROGRAM
2 TIL ERTS READING PROGRAM-ERead,ESkip,EInit
3 TILS FOR CENTER FOR RESEARCH, INC.
4 DATE 9/11/72
5 *
6 CALLING SEQUENCES ARE---
7 *
8 TO INITIALIZE--
9 *
10 CALL EInit(NOLS)
11 EInit initializes the ERTS tape so that data may
12 be read. It returns the number of words per
13 scan line in the variable NOLS.
14 *
15 TO SKIP A NUMBER OF RECORDS
16 *
17 CALL ESkip(NOSK)
18 NOSK is the number of records to skip.
19 *
20 IF the end of file is encountered before NOSK records
21 are skipped, ERead is aborted.
22 *
23 TO READ A LINE
24 *
25 CALL ERead(LN)
26 *
27 I THIS IS THE ARRAY INTO WHICH THE NOLS WORDS OF DATA
28 FROM A LINE OF ERTS DATA IS PLACED. THE DATA IS PLACED INTO
29 THIS ARRAY IN STANDARD CORRESPONDING POINT FORM.
30 THE ERTS DATA HAS FOUR CHANNELS, SO THERE ARE
31 ACTUALLY NOLS/4 DATA POINTS PER SCAN LINE.
32 LN THIS IS RETURNED BY ERead. If LN IS RETURNED AS ZERO, THEN
33 END OF FILE WAS REACHED ON THE ERTS TAPE. IF IT IS
34 RETURNED NON-ZERO, THEN IT IS THE LINE NUMBER
35 OF THE LINE OF DATA RETURNED.
36 *
37 NOTE-- THE ERTS TAPE MUST HAVE FILE CODE "ES" FOR
38 THIS PROGRAM...
39 *
40 ABORT CODES POSSIBLE FROM THIS SUBROUTINE ARE--
41 MB ERead buffer "DATA" is not large enough
42 FOR a block of ERTS DATA. It must be increased
43 IN SIZE.
44 AI EInit was called twice.
45 NI EInit was not called before calling ERead or ESkip
46 UE END of file encountered while reading
47 ID or annotation blocks on ERTS tape
48 EF END of file encountered while trying to skip
49 RECORDS ON ERTS TAPE IN ESkip.
50
<table>
<thead>
<tr>
<th>STORAGE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>53 .EINIT OFC</td>
<td>0</td>
</tr>
<tr>
<td>54 RECCNO. OFC</td>
<td>0</td>
</tr>
<tr>
<td>55 FDW VFD</td>
<td>18/FC9,1/0,1/1,2/0,1/0,1/0,1/1</td>
</tr>
<tr>
<td>56 FIC9</td>
<td>FCB,ES,,,1024,,,1,1</td>
</tr>
<tr>
<td>57 CNT1 ITO3</td>
<td>DATA,9</td>
</tr>
<tr>
<td>58 CNT2 ITO3</td>
<td>DATA,139</td>
</tr>
<tr>
<td>59 CONT ITO3</td>
<td>DATA,**</td>
</tr>
<tr>
<td>60 EOF A LDQ</td>
<td>=3HOUSE,DL</td>
</tr>
<tr>
<td>61 MME</td>
<td>GEBORT</td>
</tr>
<tr>
<td>62 DATA BSS</td>
<td>1024</td>
</tr>
<tr>
<td>63 OT BSS</td>
<td>1</td>
</tr>
<tr>
<td>64 IT BSS</td>
<td>1</td>
</tr>
<tr>
<td>65 STS TALLY</td>
<td>STK,4</td>
</tr>
<tr>
<td>66 ST BSS</td>
<td>1</td>
</tr>
<tr>
<td>67 STK BSS</td>
<td>4</td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
ERTS READING PROGRAM-READ,ESKIP,EINIT

EINIT

69 EINIT SAVE

70 SZN .EINIT HAVE WE BEEN CALLED BEFORE
71 TNZ 2A3A YES
72 STCI .EINIT MARK THAT WE'VE BEEN HERE ONCE
73 EAXO 2,1*
74 STXO EIP SAVE ADDRESS
75 CALL OPEN(FDW+1) OPEN FILE

76 CALL READ(FCB,CNT1) READ ID RECORD

77 CALL WAIT(FCB,EOFA) AND WAIT FOR IT TO GET DONE

78 LDQ DATA+3 GET RECORD LENGTH
79 ANQ =0177777,DL ISOLATE IT
80 EIP STQ ** GIVE IT TO CALLER
81 QLS 6+18
82 STCQ ADCOUNT,70 SAVE TALLY COUNT
83 ORL 6+18-1 MULTIPLY BY 2
84 DIV 9,DL AND DIVIDE BY 9
85 ARL 0 IS REMAINDER ZERO
86 TZE *+2 YES
87 ADQ 1,DL NO, SO INCREMENT QUOTIENT
88 CMPQ 1025,DL IS IT TOO BIG
89 TNC *+3 NO
90 LDQ =3S048B,DL YES, SO ABORT
91 MHE GE8ORT
92 STCO CONT+07 SAVE IT IN OSW
93 MHE GE8NAP
94 ZERO DATA,9 SNAP OUT ID BLOCK
95 CALL READ(FCB,CNT2) READ ANNOTATION BLOCK

96 CALL WAIT(FCB,EOFA) WAIT ON IT
ERS READING PROGRAM-EREAD,ESKIP,EINIT

EINIT

97 MME GESNAP SNAP OUT ANNOTATION BLOCK
98 ZERO DATA,139 AND RETURN
99 RETURN EINIT
100 ESKIP SAVE
101 SZN ESKIP ARE WE INITIALIZED
102 TZE EABT3 NO
103 LDQ 2,1 GET NUMBER RECORDS TO SKIP
104 ECOMP TZE ESKR NONE TO QO, SO RETURN
105 CMPQ 64,DL IS IT > 63
106 TRC ESK64 YES
107 ASQ RECNQ INCREMENT RECORD COUNT
108 EAX1 0,DL
109 STX1 +5
110 CALL FSREC(FCB,ESKIP,EOFS)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

111 ESKR RETURN ESKIP
112 ESKIP BSS 1 NO. OF RECORDS TO SKIP
113 EOFS LDQ =3H0FF,DL UNEXPECTED EOF
114 MME GEBORT
115 * TRYING TO SKIP 64 OR MORE RECORDS
116 ESK64 LDA 63,DL INCREMENT RECORD COUNT
117 ADA RECNQ
118 SPQ 63,DL
119 STQ ESKIP SAVE FOR LATER
120 CALL FSREC(FCB,63,EOFS)
121 LDQ ESKIP
122 TRA ECOMP
123 *
124 EABTA LDQ =3H0AI,DL TRIED TO CALL EINIT TWICE
125 MME GEBORT
126 EABTB LDQ =3H0NI,DL DIDN'T CALL EINIT
ERS PROGRAM-READ,SKIP,EINIT

ERead
129 EREAD SAVE

130 SZN .EINIT ARE WE INITIALIZED
131 TZE EABT3 NO
132 EAQ 2,1* GET ARRAY ADDR.
133 ADGONT ORQ "*,DL ADD TALLY COUNT
134 STQ OT AND SAVE IT
135 EAQ DATA SET UP INPUT TALLY
136 STQ IT INSERT ADDRESS OF COUNT NO
137 EAXO 3,1* ERTS0133
138 STXO ERP ERTS0138
139 CALL READ(FCB,CONT) READ NEXT LINE OF DATA

140 CALL WAIT(FCB,EOF) WAIT ON IT

141 AOS RECNO. INCREMENT LINE NO.
142 LDQ RECNO. GET LINE NO.
143 ERP STQ ** RETURN TO CALLER
144 STZ LINIT INITIALIZE EXPANDER
145 NEXT LDQ STS HINIT STACK TALLY
146 STQ ST GET POINT
147 NXTOE TSX1 L AND PUT IT IN ARRAY
148 STIA OT,10
149 TTFF *+2
150 DRL ERROR
151 TSX1 L GET NEXT POINT
152 STA ST,10 PUT INTO STACK TALLY
153 TTF NXTONE GO PROCESS NEXT
154 LDQ STS TALLY RUNOUT
155 STQ ST SO REINITIALIZE TALLY
156 AGAIN LDQ ST,10 PICK UP POINTS
157 TTF MORE GOT ONE
158 STQ OT,10 TALLY RUNOUT
159 TTF NEXT GO PROCESS NEXT EIGHT POINTS
160 RETURN EREAD TALLY RUNOUT, SO WE'RE DONE.
161 MORE STQ OT,10 SAVE IT
162 TTF AGAIN GO GET NEXT ONE STACKED
163 DRL ERROR

ERS0129
ERS0130
ERS0131
ERS0132
ERS0133
ERS0134
ERS0135
ERS0136
ERS0137
ERS0138
ERS0139
ERS0140
ERS0141
ERS0142
ERS0143
ERS0144
ERS0145
ERS0146
ERS0147
ERS0148
ERS0149
ERS0150
ERS0151
ERS0152
ERS0153
ERS0154
ERS0155
ERS0156
ERS0157
ERS0158
ERS0159
ERS0160
ERS0161
ERS0162
ERS0163
I
I
I
I
I
I
I
I,
EPTS READING PROGRAM-EREAD,ESKIP,EINIT

POINT FETCHING ROUTINE L

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>LSAVE ASS 1</td>
<td>QR SAVED FROM LAST TSX1 L</td>
</tr>
<tr>
<td>166</td>
<td>LINIT ASS 1</td>
<td>SHIFT INDICATOR FOR L</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>L SZN LIMIT</td>
<td>ARE WE READY FOR NEXT PAIR</td>
</tr>
<tr>
<td>169</td>
<td>TNZ LCONT</td>
<td>YES</td>
</tr>
<tr>
<td>170</td>
<td>LDQ IT,IO</td>
<td>NO, SO GET NEXT WORD</td>
</tr>
<tr>
<td>171</td>
<td>AOS LIMIT</td>
<td>INCREMENT LIMIT</td>
</tr>
<tr>
<td>172</td>
<td>TRA LRET</td>
<td>DONE FOR THIS ONE</td>
</tr>
<tr>
<td>173</td>
<td>LCONT AOS</td>
<td>INCREMENT AGAIN.</td>
</tr>
<tr>
<td>174</td>
<td>LDQ LIMIT</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>CMPQ 5,DL</td>
<td>IS THIS 5TH TIME</td>
</tr>
<tr>
<td>176</td>
<td>TZE L5</td>
<td>YES</td>
</tr>
<tr>
<td>177</td>
<td>CMPQ 9,DL</td>
<td>OR 9TH TIME</td>
</tr>
<tr>
<td>178</td>
<td>TNZ ++2</td>
<td>NO</td>
</tr>
<tr>
<td>179</td>
<td>STZ LIMIT</td>
<td>REINITIALIZE</td>
</tr>
<tr>
<td>180</td>
<td>LDQ LSAVE</td>
<td>GET SAVED QR</td>
</tr>
<tr>
<td>181</td>
<td>LRET LDA 0,DL</td>
<td>SHIFT OVER</td>
</tr>
<tr>
<td>182</td>
<td>LLS 8</td>
<td>SAVE QR FOR NEXT TIME</td>
</tr>
<tr>
<td>183</td>
<td>STQ LSAVE</td>
<td>AND RETURN</td>
</tr>
<tr>
<td>184</td>
<td>TRA 0,1</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>L5 LDA 0,DL</td>
<td>RESTORE QR</td>
</tr>
<tr>
<td>186</td>
<td>LDQ LSAVE</td>
<td>THIS ONE IS DIVIDED OVER</td>
</tr>
<tr>
<td>187</td>
<td>LLS 4</td>
<td>WORD BOUNDARIES</td>
</tr>
<tr>
<td>188</td>
<td>LDQ IT,IO</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>LLS 4</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>STQ LSAVE</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>TRA 0,1</td>
<td>RETURN</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>* EOF PROCESSOR FOR EREAD</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>EOF STZ ESR,P1</td>
<td>MARK EOF TO CALLER</td>
</tr>
<tr>
<td>195</td>
<td>RETURN EREAJ</td>
<td>AND RETURN</td>
</tr>
</tbody>
</table>

ERTS0165 - ERTS0196

NOTE:
PA 091572/091472 JMP3 053172/070872 JMPC 072772/072772
IN THE ABOVE ASSEMBLY

ERTS0196
SPECIAL PICTURE ROUTINE

CPIXFY

written by RJ Bosley

January 1974

DESCRIPTION OF PROGRAM.

This subprogram outputs a picture of the ERTS data from user specified parameters to PITCHR. Input parameters for PITCHR plus the parameters LNSKIP and KOSKIP all must be supplied to this subprogram under the name list picture format. For a complete description of input arguments to PITCHR, see the PITCHR writeup. By the user setting INAX=0 and IMIN= MAX GREY TONE LEVEL, it is possible to obtain a positive image instead of a negative.

Note--Disc files must be on file codes 13 and 14.

INTERNAL PARAMETERS.

IBAND, IS, IE, LINES, NOSK, IPSTR,IPEN, LNSKIP, KOSKIP, ISP, KOS, KIP, KP

INPUT ARGUMENTS TO PITCHR.

IMAGE, ICELL, ICCELL, INIT, INMIN, IMAX, NROW, NFIL, IFIL, NULH, NULD, AMAG, DMAG

ENTRY POINT.

CALL PIXFY(IINE, IMAGE, IRSTR, IRSTOP, ICSTR, ICSTOP, QUAN, NFRAND)

INPUT ARGUMENTS.

ILINE, IMAGE, IRSTR, IRSTOP, ICSTR, ICSTOP, QUAN, NFRAND

EXTERNAL PARAMETERS.

BAND NUMBER BEING PROCESSED
STARTING, ENDING BAND NUMBERS
NUMBER OF LINES IN IMAGE PRINTED
NUMBER OF LINES TO SKIP IN ERTS TAPE
STARTING, ENDING POINTS IN ERTS LINE
LINE AND COLUMN INCREMENT
COLUMN INCREMENT FOR ERTS LINE
NUMBER OF COLUMNS IN IMAGE
ARRAY TO BE PRINTED
NUMBER OF ROWS, COLS IN ARRAY
NUMBER OF TIMES ENTRY IS MADE AT SNAP MUST BE GREATER THAN 1
MINIMUM, MAXIMUM GREY TONES IN ARRAY
NUMBER OF ROWS TO BE PRINTED=ICELL
NUMBER OF OUTPUT FILES AVAILABLE:
SET=0 FOR ALL OUTPUT ON FILE CODE 6
SET=2 FOR FILES 06 AND 42
IF .GT. 2, USER MUST SUPPLY FILES
ARRAY CONTAINING OUTPUT FILE CODES
NUMBER OF COLUMNS, ROWS PER OUTPUT PAGE
WIDTH, LENGTH JOHN MAGNIFICATION
ARRAY ERTS LINE IS READ INTO
IMAGE ARRAY FOR PITCHR, HOLDS ONE LINE
STARTING, STOPPING ROW IN IMAGE
STARTING, STOPPING COL IN IMAGE
TRUE FOR EQUAL PROBABILITY QUANTIZING OF IMAGE
BAND NUMBER TO BE PROCESSED
SPECIAL PICTURE ROUTINE

SET=5 FOR ALL BANDS

EXAMPLE OF SAMPLE RUN.

CONTROL CARDS--
SPARM SPIC=T,QUAN=T,IRSTRT=1,IRSTOP=1216,ICSTRT=5,
ICSTOP=77?,N?BAND=23END
SPICTUR INIT=304,NFILES=2,LNSKIP=4,KOLSKP=3,JCELL=256END
THIS RUN WILL PRINT OUT ON FILES 06 AND 42 A PICTURE 256 PTS WIDE BY 304 LINES. NOTE THAT 1216/4=304 AND 769/3=256, GIVING THE VALUES FOR LNSKIP=4,KOLSKP=3,JCELL=256,INIT=304.
TURE VALUES FOR LNSKIP AND KOLSKP, THE PICTURE WILL BE IN PROPORTION TO THE ENTS PRINT.

SUBROUTINE PIXEY(ILINE,IMAGE,IRSTRT,IPSTOP,ICSTRT,ICSTOP,QUAN,1 N?BAND)

DIMENSION ILINE(1),IFIL(10),IMAGE(1)
LOGICAL QUAN
NAMELIST /PICTURE/NFILES,IFIL,ICELL,JCELL,INIT,IMIN,IMAX,NROW,
1 NULW,NULD,AMAG,DMAG,LNSKIP,KOLSKP
 INITIALIZE PARAMETERS

ICEll=1
JCELL=256
INIT=304
IMIN=0
IMAX=75
IF(QUAN) IMAX=12
NFILES=2
IFIL(1)=6
IFIL(2)=42
NROW=ICELL
NULW=129
NULD=60
AMAG=1
DMAG=1
LNSKIP=4
KOLSKP=3

READ(S,PICTURE)

WRITE(S,PICTURE)

FORMAT('///20X,'SPECIAL PICTURE ROUTINE'''///)

FORMAT(11=1,'BAND NUMBER '*11)

IS=1
IF=4
ISKIP=4*KOLSKP
IF(NBAND.EQ.5)GO TO 5

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
SPECIAL PICTURE ROUTINE

I1=N1AND
I2=1 1
C 5 DO 10 IBAND=1,14
REWIND 13
C 10 WRITE (6,2) IBAND
IPSTR=(IGSTPT-1)*4+IBAND
IREND=ICSTOP*4
C CALL PITCHR(IIMAGE,JCELL,JCELL,INIT,1,IMAX,IMIN,NROW,NFILES,IFIL,
1 NULW,NULD,AMAG,DMAG)
C NOSK=IRSTRT-1
C CALL EPFIND
C IF(NOSK.NE.0) CALL ES KIP(NOSK)
C DO 50 LINE=IPSTR,IRSTOP,LNSKIP
GO THRU EACH LINE
C DO 10 LIN=1,LNSKIP
CALL EREAD(ILINE,LN)
C IF(LN.NE.0) GO TO 10
L=LINE+LIN
WRITE (6,9) L
C 10 FORMAT(///***EXECUTION TERMINATED--EOF DETECTED ON ERTS TAPE,
1 LINE NUMBER IS /*,I6/LH1)
RETURN
C 50 CONTINUE
GET THIS LINE FOR THE IMAGE
C 10 KP=0
C 20 DO 20 IP=IPSTR,IREND,IS KIP
KP=KP+1
C 20 IMAGE(KP)=ILINE(IP)
C 20 CONTINUE
WRITE THIS LINE TO SCRATCH FILE 14
C 50 CONTINUE
C 50 ENDFILE 14
C 50 REWIND 14
C IF(QUAN) CALL ZEQUAN(IIMAGE,INIT,JCELL,1,1,1,13,14,13)
C 50 REMIND 13
C 50 READ THE QUANTIZED IMAGE
C 90 DO 90 I=1,INIT
C 90 IMAGE(IP)=IP=1,JCELL)
C 90 CONTINUE
C 90 SNAP OUT THIS LINE
100 CONTINUE
RETURN
END

02-09-74 20,623
DESCRIPTION OF PROGRAM.

This subroutine quantizes an image on file 'INFILE' by equating the probability to NQ levels and outputs it to file 'IOUTFL'. This processing is done line by line after a first pass is made through the image to determine the minimum and maximum grey tones.

ENTRY POINT.

CALL ZEQUAN(LINE,NUMLIN,NUMPPL,NCOMP,LEFT,NQ,INFILE,IOUTF)
INTRODUCTIBILITY OF THE
ORIGINAL PAGE IS POOR/

02-12-74 19.149 ZEQUAN

2 CONTINUE
NGL=MAX
WRITE(6,100) MIN,MAX
100 FORMAT(1X,\"MIN, MAX ARE \",2I4) GET NO OF PTS IN IMAGE
C NP=NUMLIN*NUMPPL
J=1
MQ=NP
C DO 3 T=1,NQ
N_=NP
C 4 N_=NL-MQ*KN(J)
NP=NP-KN(J)
KN(J)=I-1
J=J+1
C IF(J.GT.NGL) GO TO 6
C IF(MQ*KN(J).LE.NL*2) GO TO 4
C MQ=MQ-1
3 DO 5 I=J,NGL
KN(I)=MQ-1
GO TO 8
C 5 N=(NQ-I)/2
6 IF(N.LT.1) GO TO 8
7 DO 8 I=1,NGL
KN(I)=KN(I)+N CONTINUE
C REMIND INFILE
REMIND IOUTFL
C 8 DO 11 II=1,NUMLIN
READ(INFILE) ((LINE(J,L),J=1,NCOMP),L=1,NUMPPL)
9 DO 9 I=LEFT,RIGHT
LINE(ICOMP,I)=KN(J+1)
C WRITE(IOUTFL) ((LINE(ICOMP,K),K=LEFT,RIGHT)
11 CONTINUE
ENDFILE IOUTFL
REIND IOUTFL
RETURN
END
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
i

\(\text{PTCHRS} \)

\(\text{INCREMENT EXECUTION REPORT} \)

52 BORDER EAX STR
53 STAX STR
54 EAX ESIH
55 STI STR-1
56 LDN 2,1* 16,192
57 DIV 10,DL
58 CMPA 0,DL
59 DIV 10,DL
60 LOD 32
61 TRA STR
62 TRA STR
63 TRA STR
64 TRA STR
65 TZE FIVE
66 STA **
67 STR XED
68 TRA 0,1
69 FIVE LDA 0,1
70 TRA STR
71 TW ESTA TALI,ID
72 TRA TT
73 CS STA 3,1*
74 STA 4,1*
75 SYMDF LSHIFT
76 LSHIFT EAXO 2,1*
77 LDD 3,1*
78 QLS TALI
79 STD TALI
80 STO TALI,ID
81 LD LDD TALI,ID
82 QLS 6
83 STD TALI,ID
84 TTF LD
85 TRA 0,1*
86 SYMDF IFETCH
87 S1 BSS 1
88 S2 BSS 3
89 S3 BSS 1
90 IFETCH SAVE 2,7
91 LXLI 4,1*
92 EAX2 2,1*
93 TIO GETT
94 SS1 FSTR S1
95 LXLO 7,1*
96 TVZ +3
97 ADDX 1,DU
98 TSNX GETT
99 FSTR 6,1*
100 LXLO 6,1*
101 TZE +3
102 FLD S1
103 TRA FS

WE STORE ON EITHER SIDE OF IMAGE DATA
CHARACTER FOR VERTICAL BORDER
CURRENT LINE COUNT IS IT DIVISIBLE BY TEN
PUT BLANKS IN OR MAKE NEXT LEFT JUSTIFIED, BLANK FILLED
WAS THE NUMBER DIVISIBLE BY FIVE
RETURN IF WE ENTERED AT BORDER
PUT IN HOR BORD ARRAY
ADDRESS OF ARRAY NO, ELEMENTS IN ARRAY USE FOR TALLY COUNT
SHIFT UP NEXT CHARACTER
#1 FOR INTEGER, 0 FOR FLOATING PT

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7644</td>
<td>03-03-71</td>
<td>18-192</td>
<td>PTCHEP</td>
</tr>
<tr>
<td>156</td>
<td>LDE</td>
<td>35*1.24;D</td>
<td>PTCHRG36</td>
</tr>
<tr>
<td>157</td>
<td>FAD</td>
<td>a, a;AV</td>
<td>PTCHRG37</td>
</tr>
<tr>
<td>158</td>
<td>FSTR</td>
<td>E</td>
<td>PTCHRG38</td>
</tr>
<tr>
<td>159</td>
<td>LDG</td>
<td>U;2</td>
<td>PTCHRG39</td>
</tr>
<tr>
<td>160</td>
<td>LLO</td>
<td>36</td>
<td>PTCHRG40</td>
</tr>
<tr>
<td>161</td>
<td>TNZ</td>
<td>5, 1*</td>
<td>PTCHRG41</td>
</tr>
<tr>
<td>162</td>
<td>EAXO</td>
<td>IE</td>
<td>PTCHRG42</td>
</tr>
<tr>
<td>163</td>
<td>SX</td>
<td>STXO</td>
<td>PTCHRG43</td>
</tr>
<tr>
<td>164</td>
<td>STXO</td>
<td>01</td>
<td>PTCHRG44</td>
</tr>
<tr>
<td>165</td>
<td>TRA</td>
<td>0, 1*</td>
<td>PTCHRG45</td>
</tr>
<tr>
<td>166</td>
<td>ZZ</td>
<td>EIXM</td>
<td>PTCHRG46</td>
</tr>
<tr>
<td>167</td>
<td>ZZ</td>
<td>0</td>
<td>PTCHRG47</td>
</tr>
<tr>
<td>168</td>
<td>TRA</td>
<td>SX</td>
<td>PTCHRG48</td>
</tr>
<tr>
<td>169</td>
<td>FDIF</td>
<td>SSS</td>
<td>PTCHRG49</td>
</tr>
<tr>
<td>170</td>
<td>FMIN</td>
<td>SSS</td>
<td>PTCHRG50</td>
</tr>
<tr>
<td>171</td>
<td>BLVK</td>
<td>SCI</td>
<td>PTCHRG51</td>
</tr>
<tr>
<td>172</td>
<td>END</td>
<td></td>
<td>PTCHRG52</td>
</tr>
</tbody>
</table>

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
VERSION 11 WRITTEN BY RJ OSLEY

DESCRIPTION OF PROGRAM.
THIS SUBROUTINE WRITES ONE LINE OF ERTS DATA FROM ARRAY ILINE
INTO DISC FILES, ONE FILE FOR EACH BAND. DATA IS WRITTEN IN NHOR
BLOCKS.

INTERNAL PARAMETERS.
NDSK DISC FILE CODE, 11 THRU 14
IP POINT INDEX FOR ERTS LINE
IPSTR,IPSTOP STARTING, STOPPING POINTS IN LINE, DEPENDENT UPON THE BAND

ENTRY POINT.
CALL WRTOSK(ILINE,NHOR,IPSTR,IPEND,NBAND)

INPUT ARGUMENTS.
ILINE ARRAYS CONTAINING ERTS LINE OF DATA
NHOR NUMBER OF HORIZONTAL BLOCKS OF 41 COL
IPSTR,IPEND START AND END POINTS IN ERTS LINE
NBAND THE BAND DESIRED, SET=5 FOR ALL FOUR

SUBROUTINE WRTOSK(ILINE,NHOR,IPSTR,IPEND,NBAND)

DIMENSION ILINE(1)

IF(NBAND.EQ.5) GO TO 100 WRITE ONE BAND ONLY

NDSK=10*NWBAND WRITE NHOR BLOCKS

DO 10 J=1,NHOR
IPSTR=(J-1)*41+4+NWBAND+IPSTR
IPSTOP=IPSTR+40*4
WRITE(NDSK) (ILINE(IP),IP=IPSTR,IPSTOP,4)
10 CONTINUE RETURN

100 CONTINUE WRITE ALL FOUR BANDS

DO 101 I=1,4
NDSK=10*I WRITE NHOR BLOCKS

DO 101 J=1,NHOR
IPSTR=(J-1)*41*4+I+IPSTR
IPSTOP=IPSTR+40*4
WRITE(NDSK) (ILINE(IP),IP=IPSTR,IPSTOP,4)
101 CONTINUE RETURN

END

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
DESCRIPTION OF PROGRAM.

This subroutine reads the ERTS data from the disc files and then prints out a picture of the data, proceeding vertically and then from left to right. Since the blocks are 41 cols then two will fit on one page, eliminating one half of the total lines.

INTERNAL PARAMETERS.

NGL NUMBER OF GREY LEVELS IN IMAGE
NO NUMBER OF QUANTIZING LEVELS
IASIZE SIZE OF ARRAY TO BE QUANTIZED
NHOR HALF OF NHOR
NCOL NUMBER OF COLUMNS USED IN IMAGE
NSkip NUMBER OF RECORDS TO SKIP TO STAY IN THE SAME STRIP
LAST TRUE INDICATES THE LAST STRIP

ENTRY POINT.

CALL RDOSK1(Image, QUAN, NHOR, NVERT, NDSK)

INPUT ARGUMENTS.

Image ARRAY TO STORE TWO 41 X 41 BLOCKS
QUAN TRUE FOR EQUAL PROBABILITY QUANTIZATION OF THE IMAGE
MAX MAXIMUM GREY TONE IN IMAGE
M.N MINIMUM GREY TONE IN IMAGE
NHOR NUMBER OF HORIZONTAL BLOCKS
NVERT NUMBER OF VERTICAL BLOCKS
NDSK FILE CODE OF DISC TO BE PROCESSED

SUBROUTINE RDOSK1(Image, QUAN, NHOR, NVERT, NDSK)

DIMENSION Image(41,82)
LOGICAL EOF, QUAN, LAST
EOF=.FALSE.
LAST=.FALSE.
CALL FLGENOF(NDSK, EOF)

Determine the number of levels

MAX=63
M:N=0
IF(QUAN) MAX=11

Set up for quantization

NGL=75
NO=12
NHOR=NHOR/2
N'COL=82

Reproducibility of the original page is poor.
IF(NHOP.NE.1) GO TO 2
NCOL=41
NHOR=1
IASIZE=41*NCOL
C C
NSKIP=NHOP-(NCOL/41) SET THE NUMBER OF RECORDS TO SKIP TO REMAIN IN THE SAME STRIP
GO THRU HORIZONTALLY
C C
DO 100 J=1,NHOR REWIND NOSK
K=J
IF(LAST) K=(NHOR/2)+1 IF FIRST BLOCK, DO NOT SKIP OVER
IF(K,EQ.1) GO TO 5 IF ONLY ONE BLOCK VERTICALLY, DO NOT INITIALIZE SNAP IN PITCHR
DO 1 =Z,I(IF(NHOR.GT.1) READ(NOSK) READ(NDSK)
IF(NHOR.EQ.1) READ(INDSK)
1 IF(INVERT.NE.1) CALL PITCHR(IMAGE,41,NCOL,NVERT,,MAX,MIN,...,1,21,...) READ IN THO 41 BY 41 BLOCKS
C C
DO 50 II=1,NVERT READ 41 ROWS
C C
DO 20 JJ=1,41 READ NCOL COLUMNS
C C
READ(NCSK) IMAGE(JJ,KOL),KOL=1,41)
IF(NCOL.EQ.32) READ(NDSK) IMAGE(JJ,KOL),KOL=42,82) SKIP OVER RECORDS NOT WANTED
C C
IF(NSkip.EQ.0) GO TO 20 IF(NVERT.NE.1) CALL SNAP
DO 16 N=1,NSKIP READ(NDSK)
IF(EOF) GO TO 20 CONTINUE
16 CONTINUE
EOF=.FALSE. QUANTIZE THE IMAGE
C C
IF(QUAN) CALL KEQUAN(IMAGE,NSL,NC,SIZE) SNAP OUT A 41 BY 82 BLOCK
1 CONTINUE
C C
IF(INVERT.NE.1) CALL PITCHR(IMAGE,41,NCOL,1,MAX,4:N,...,1,21,...) CHECK TO SEE IF NHOR IS EVEN
50 CONTINUE
C C
IF(NHOR.EQ.1) GO TO 101 IF NOT, DO THE LAST STRIP OF 41 COLS
IF(NHOR.EQ.(NHOR**2)) GO TO 101
C C
IF(LAST) GO TO 101 LAST=.TRUE.
GO TO 3
READ DISC AND OUTPUT PICTURE

WRITE THE BAND NUMBER

101 IGAND=IOSK-10
WRITE(6,102) IGAND
102 FORMAT(6X,'PICTURE FROM BAND NUMBER',:2)
RETURN
END
DESCRIPTION OF PROGRAM.
THIS PROGRAM WILL QUANTIZE BY EQUAL PROBABILITY THE INPUT
ARRAY IA TO NO LEVELS.
ENTRY POINT.
CALL KEQUAN(IA,NGL,NQ,IASIZE)

ARGUMENTS.
IA
INPUT ARRAY TO BE CONVERTED TO
QUANTIZED ARRAY
NGL
NUMBER OF GREY TONE LEVELS IN IA
NQ
NUMBER OF QUANTIZING LEVELS
IASIZE
SIZE OF ARRAY IA

SUBROUTINE KEQUAN(IA,NGL,NQ,IASIZE)

DIMENSION IA(1),KN(512)
IF(NGL.GT.512) WRITE(6,10)
10 FORMAT(5X,**NUMBER OF GREY LEVELS TOO LARGE**)

1 DO 2 I=1,NGL
2 KN(I)=0
COUNT EACH GREY LEVEL

1 DO 2 I=1,IASIZE
2 J=IA(I)

2 DO 3 I=1,NQ
3 NP=IA(I)+1
GO THRU NQ LEVELS

4 DO 3 I=1,NQ
3 N=NP
GET NEW LEVEL

4 DO 3 I=1,NQ
3 NL=NL-MQ*KN(J)
GET NEW LEVEL

5 DO 5 J=1,NGL
CHECK FOR LAST LEVEL

5 IF(J.GT.NGL) GO TO 6
INCREMENT AGAIN FOR LEVEL

5 IF(MQ*KN(J).LE.NL) GO TO 4
DECREASE NO. OF LEVELS LEFT

5 MQ=MQ-1

6 DO 5 I=J,NGL
GO TO 8
C N=(NQ-I)/2
 IF(N,LT,1)GO TO 8
 DO 7 I=1,NGL
 KN(I)=KN(I)+N
 7 CONTINUE
 DO 9 I=1,ASIZE
 J=IA(I)
 A(I)=KN(J+1)
 RETURN
 END

SET LAST LEVEL
 ASSIGN ELEMENTS TO A LEVEL AND RETURN
READ DISC AND LIST GREY TONES

VERSION II WRITTEN BY RJ BOSLEY

DESCRIPTION OF PROGRAM.
THIS SUBROUTINE READS DATA FROM DISC FILE NJSK AND PRINTS OUT
THE GREY TONES AND WRITES THEM OUT TO AN OUTPUT TAPE.

INTERNAL PARAMETERS.
K
LINE
ENTRY POINT.
CALL RODSK2(IIMAGE,IRSTRT,IRSTOP,NHOR,NJSK,PRNT,TAPE,IFIL)

INPUT ARGUMENTS.
IMAGE
IRSTRT,IRSTOP
NHOR
NJSK
PPNT
TAPE
IFIL

SUBROUTINE RODSK2(IIMAGE,IRSTRT,IRSTOP,NHOR,NJSK,PRNT,TAPE,IFIL)

DIMENSION IMAGE(41,41)
LOGICAL PRNT,TAPE
REMARK NJSK
K=NJSK-10

IF(PRNT) GO TO 2
IF(TAPE) GO TO 3
RETURN
WRITE(6,1) K
FORMAT(1H1,'LINE STRIP',20X,'BAND NUMBER IS',12)
GO THRU EACH LINE OF DATA
DO 50 LINE=IRSTRT,IRSTOP
GO THRU EACH BLOCK ACROSS THE IMAGE
DO 50 J=1,NHOR
READ(NJSK) (IMAGE(1,1),KOL=1,41)
WRITE(6,100) LINE,J,(IMAGE(1,1),KOL=1,41)
CONTINUE
50 FORMAT(1X,15,13,41I3)
RETURN
END
IV.2-b Texture Analysis Program Listings

MAINLN
ERTS (see IV.2-a)
MAING
KEQUAN (see IV.2-a)
PITCHR (see IV.2-a)
FPLXIT
INDEX
IMOMTR
COR
IEQPQ1
RITOWT
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
ETS TEXTURE ANALYSIS

SPECIFIED IN OUTPUT LISTING.

OUTPUT.

PRINTER OUTPUT.

1. PARAMETER VALUES.
2. PICTURE OF IMAGE BEING PROCESSED.
3. COORDINATES OF THE IMAGE.
4. VALUES OF THE EXTRACTED FEATURES.
5. LISTING OF LFX ARRAYS.

CARD OUTPUT.

1. COORDINATES OF THE IMAGE BEING PROCESSED.
2. VALUES OF THE FEATURES EXTRACTED.
3. CARD COUNT.

TAPE OUTPUT.

1. COORDINATES OF THE IMAGE BEING PROCESSED.
2. VALUES OF THE FEATURES EXTRACTED.

RESTRICTIONS.

1. DATA SET IS STANDARD ERTS DATA TAPE FROM NASA.
2. THE NUMBER OF POINTS IN ONE LINE OF THE STRIP BEING PROCESSED MUST NOT EXCEED 192 POINTS.
3. THE SIZE OF EACH IMAGE MUST NOT EXCEED 4096 POINTS.
4. QUANTIZATION MUST BE 32 LEVELS OR LESS.
5. THE ERTS INPUT TAPE MUST HAVE A FILE CODE 'ES'.
6. ISANU MUST NOT EXCEED FOUR.

SUBLPROGRAMS REQUIRED.

- MAINLN
- ERTS READ PROGRAM
- MAIN
- KEQUAN
- PICTUR
- FPPLXIT
- INDEX
- IMOMTR
- INDEX
- COR
- IEFPO1
- RITIT

CARD SETUP FOR SAMPLE RUN.

$ IDENT 9999, ANYNAME
$ LIBRARY LB
$ OBJECT M-A-I-N-L-N
$... ERTS TEXTURE ANALYSIS PROGRAMS ...
$ $KEND
$ $EXECUTE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

170
ERTS TEXTURE ANALYSIS

JUNE 1973

DESCRIPTION OF PROGRAM

This is the mainline of the ERTS Texture Analysis Programs. Each ERTS image is divided into 4 strips, each put onto one tape. Due to core limitations, each strip will contain 3 subimages. Images will be processed as follows: Run 1: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), etc. Note that for Run 1, N11 is 1 and Numstr is 1. For Run 2, N11 is 4 and Numstr is 2. And for the second tape for Run 1, N11 is 13 and Numstr is 1. N11 is the upper-left column coordinate and is relative to the entire image, where Numstr is the strip number relative to the data tape. Also note that the first 8 points at the beginning of each line are left out. It is possible to have less than one full image at the end of each tape that cannot be processed.

DESCRIPTION OF INPUT PARAMETERS UNDER NAMELIST /PARAM/

- **NOUNIT**
 - No. of quantizing levels in IEOPT1, set to 16
- **NUMIM**
 - The number of images taken horizontally in one pass
- **NUMSTR**
 - The strip number of the run in relation to the ERTS input tape
- **NEVSTR**
 - The number of images in a vert col of the strip

BIBLIOGRAPHY

END OF DOCUMENTATION COMMENT CARDS

PARAMETERS

- **PRMFL**
 - LB.RS.,PATTERN/GEF/2:9
- **TAPRM**
 - ES+A103.,99999.,nnname.,input
- **DRAFT**
 - 02.APB.5
- **LIMITA**
 - 32.4K...3K
- **INCODA**
 - 13MF

END OF TEXT OF TEXTURE ANALYSIS PROGRAMS XXXXX

PARAM

- N11=1,PNCH=1H4,PICUT=1SENO
- FDOJOR
D.MENSION ILINE(4096),TITLE(14)
COMMON /Q/ NQUANT
COMMON M1,M1.F(15),MAX,MIN,NUMPL,NUMLIN,NUMB,IR1,IR1,IR3,IR4,
1 DUMMY(29),LEAST,NEO,LOSS,START,NTimes,N,T,PNC,N
COMMON /G/ENTROP(4),DIFFENT(4),DIFFAVE(4),DIFFVAR(4),SUMENT(4),
SUMAVE(4),SUMVAR(4)
COMMON /COR=,COR=,OR=,OR=,OR=,COR=,COR=,COR=,COR=,
COMMON IMAGE(64,192)
LOGICAL MERGE,PICTUR
NAMELIST/PARAM/NUMH,NUMSTR,MBVERT,MBAND,N11,MERGE,PICTUR,NBSkip,
1 PNC,NUMPL,NUMLIN,NEO,LOSS,START,NTimes,NQUANT,F
DATA /BANC,NUMH,NUMS,MBVERT,MBAND,N11,MERGE,PICTUR,NBSkip,11/2,3,36,0,TRUE,
1 .FALSE.,1/TAPE/IHT/,NUMSTR/I7/,1F/03/,Y/Y/Y/,N/1HN/

***********SECTION I--PREPARE FOR ERTS READING AND PROCESSING**********

NUMLIN THE NUMBER OF LINES IN EACH NUMAN X NUMPL SUB-IMAGE
NUMPL THE NUMBER OF PTS PER LINE IN EACH SUB-IMAGE
NOTENUMPL.NUMLIN MUST NOT EXCEED 192
EXAMPLEIF NUMPL=64, THEN NUMLIN=3
EXAMPLEIF NUMPL=32, THEN NUMLIN=4
IPANDO THE SPECTRUM BAND TO BE PROCESSED FROM 1 TO 4
PNC HH SPECIFIES THE OUTPUT OPTION--Y FOR CARDS, T FOR TAPE, AND N FOR PRINTER ONLY
NOTEPNC MUST BE DENOTED AS A TOLLER.TH CONSTANT IN THE DATA CARD
N11 THE UPPER LEFT COLUMN COORDINATE FOR THE STRIP BEING PROCESSED
IF THE FILE COEF OF THE OUTPUT TAPE--ASSUMED TO BE IN POSITION
NBSkip THE NUMBER OF VERTICAL ROWS OF SUB-IMAGE TO BE SKIPPED PRIOR TO EXECUTION
MERGE IF TRUE, THE ARRAYS WILL BE MERGED TO ONE PRINTED
PICTUR IF TRUE, A PICTURE OF EACH SUB-IMAGE WILL BE
NOTEPROCESSING IS, APPROXIMATELY--
100 PERCENT= MERGE-OFF, PICTUR-ON
125 PERCENT= MERGE-ON, PICTUR-ON
158 PERCENT= MERGE-ON, PICTUR-OFF

02-12-74 20.547 ERTS TEXTURE ANALYSIS JUNE 1973

C REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
READ TITLE AND WRITE IT OUT

READ(5,6) (TITL(I),I=1,14)
WRITE(6,21)
WRITE(6,7) (TITL(I),I=1,14)
FORMAT('/////////40X,'ERTS TEXTURE ANALYSIS'////////)
6 FORMAT(13A,42)
7 FORMAT(20X,13A5,A2///)

READ ERTS TEXTURE PARAMETERS

READ(5,PAR4)
M=NUMIM*NUMPP
IF(M.LE.192) GO TO 2
WRITE(6,1)
FORMAT(' NUMBER OF IMAGES TIMES THE NUMBER OF POINTS _4 EACH LINE
MUST NOT EXCEED 192 ')
STOP

INITIALIZE THE ERTS READ PROGRAM AND WRITE OUT PARAMETERS

CALL EINIT(LENGTH)
WRITE(6,11) LENGTH,NUMIM,NUMSTR,NSVERT,ISAND,N3SKIP
WRITE(6,101) PNCH,NUMPP,NUM_IN,NRED,NSTART,NTIMES,NQUATE
1 FORMAT('10X,'LENGTH OF ERTS LINE IS ',15,' POINTS',/10X,'NUMBER OF HORIZONTAL IMAGES,NUMIM,IS *',12,/^10X,' THIS STRIP IS NUMBER ',I2,'/10X,'NUMBER OF VERTICAL IMAGES COUNTED ',I2,'/10X,'STAINED IN STRIP IS ',I2,'/10X,'PROCESSING WILL BE ON BAND ',I2,/^10X,'SKIPPED DOWN ',I3,' VERTICAL IMAGES BEFORE STARTING'///)
101 FORMAT(1X,'PUNCH=',A3,' NUMPP_=',I4,' NUMIN=',I4,' NRED=',I3,' NQUAT=',I4)
IF (MERE) WRITE(6,3)
3 FORMAT('///0X,'THE FOUR _EX ARRAYS HAVE BEEN MERGED INTO ONE ARRAY'\M11475
1 ///)
IF (.NOT.PICTURE) WRITE(6,4)
FORMAT(' THE PICTURE OPTION IS OFF '///)
4 SKIP THE FIRST N3SKIP ROWS OF IMAGES
N3SK=NUMIM*N3SKIP
CALL ESKIP(N3SK)
G0 DOWN THE STRIP
IMAGE COORDINATES (M1,N1) ARE TRANSFERRED IN COMMON
M1 GIVES THE ROW COUNT GOING DOWN THE STRIP
1BEGIN=((NUMSTR-1)*(192*4))+ISAND
MOVE THE IMAGE TO THE RIGHT BY EIGHT POINTS

BEGIN=IBEGIN+32
JSTOP=IENDIN+(NUM1M*NUMPP)-1BAND
N9=N9+1
DO 99 M1=M0,NOVERT

**********SECTION II---READ ERTS AND MOVE DATA INTO IMAGE**********

LINE IS THE ARRAY INTO WHICH THE ERTS DATA IS READ.ILINE AND IN WORK USE THE SAME STORAGE SPACE.
MDOWN GIVES THE ROW COUNT IN IMAGE FROM 1 DOWN TO NUMLIN

DO 90 MDOWN=1,NUMLIN
READ ERTS LINE BY LINE
CALL EREAD(ILINE,LN)
LN, RETURNED BY EREAD, GIVES THE LINE NUMBER, OR ERROR INDICATION
IF(LN.FEQ.0) GO TO 996

MOVE EVERY POINT IN THE LINE THAT BELONGS TO IBAND, INTO IMAGE.
JSTOP GIVES THE STOPPING POINT IN ILINE FOR THE TRANSFER.
THE TRANSFER IS INCREMENTED BY 4, THE NUMBER OF BANDS.
LCOUNT GOES FROM 1 TO NUMPP+NUN1M, GIVING THE LENGTH COUNT.

LCOUNT=0
DO 80 IPOINT=IBEGIN,JSTOP,4
LCOUNT=COUNT+1
IMAGE(MDOWN,LCOUNT)=ILINE(IPOINT)
CONTINUE

IMAGE IS FULL, START TEXTURE ANALYSIS

**********SECTION III---PROCESS IMAGE, BLOCK BY BLOCK**********

BLOCK IMAGE INTO NUMLIN X NUMPP BLOCKS FOR PROCESSING.

KF=0
DO 60 JBLOCK=1,NUMIM
KS=KF+1
KE=KS+NUMPP-1
KL=0
DO 59 KLINE=1,NUMLIN
K. GOES FROM 1 TO NBR OF PTS WHILF KCOL GIVES THE COLUMN COUNT.
DO 50 K10=KS,KE
 K1=K1+1
 I.LINE(K1)=IMAGE(K.LINE,K10)
 CONTINUE
58
CONTINUE
59
M1=(M11-1)+JBLOCK
C
C
USE ILINE AS A DUMMY ARRAY TO SEND WORK TO MAIN
C
CALL MAING(ILINE,MERR,MERGE,PICTUR,IF)
C
C
CHECK FOR ERROR CONDITION IN MAING
C
IF(MERR.EQ.1) GO TO 992
60
CONTINUE
99
CONTINUE

**********SECTION IV--END OF STRIP, FINISH UP**********
C
PUT AN EOF MARK ON OUTPUT FILE IF AND WRITE ANOTHER RECORD
C
ENDFILE IF
WRITE(IF) (ILINE(K),K=1,10)
STOP
C
ERROR DETECTED-- WRITE FILE MARK AND ANOTHER RECORD
C
992 WRITE(6,993) M1,N1
993 FORMAT(10X,'ERROR IN SUBROUTINE MAING, LAST IMAGE WAS
(, 2 , , ' ,
1? , ,)'
ENDFILE IF
WRITE(IF) (ILINE(K),K=1,10)
STOP
C
ERROR DETECTED-- WRITE FILE MARK AND ANOTHER RECORD
C
996 WRITE(6,997) M1
997 FORMAT(10X,'UNEXPECTED EOF ON ERTS, LAST ROW COMPLETED WAS
(, 13)
ENDFILE IF
WRITE(IF) (ILINE(K),K=1,10)
STOP
END
DESCRIPTION OF PROGRAM.

THIS SUBROUTINE PREPARES THE IMAGE IN ARRAY IWORK FOR PITCH
AND THEN PROCESSES IT, ACCORDING TO THE MERGE OPTION. CALLING
SUBROUTINES FOR THE LEX ARRAYS, CALCULATING THE TEXTURE FEATURES
AND THEN WRITING OUT THE RESULTS.

ENTRY POINT.

CALL MAING(IWORK,MERR,MERGE,PICTUR,IF)

ARGUMENTS.

IWORK THE NUM*NNUMPP IMAGE ARRAY
MERR ERROR FLAG FOR LEX ARRAY SIZE
MERGE OPTION TO MERGE THE FOUR LEX ARRAYS
PICTUR OPTION TO PRINT PICTURE OF THE IMAGE
IF FILE COG FOR OUTPUT TAPE IN RIOTNT

INTERNAL PARAMETERS.

NUMLIN THE NUMBER OF LINES IN THE IMAGE
NUMPP_ THE NUMBER OF POINTS PER IMAGE LINE
NUMIM MAXIMUM ALLOWABLE SIZE OF THE LEX ARRAYS, NUMPP*NUMLIN
NQ NUMBER OF QUANTIZING LEVELS FOR KFQUAN
IMAX MAXIMUM GREY TONE LEVEL IN IWORK
IMIN MINIMUM GREY TONE LEVEL IN IWORK
IS STARTING PT OF A ROW OF IWORK
IE ENDING POINT OF THE ROW IN IWORK
NGL NUMBER OF GREY TONE LEVELS IN IWORK
IASIZE SIZE OF IWORK ARRAY
HORZ HORIZONTAL SCALE FACTOR FOR PITCH
VERT VERTICAL SCALE FACTOR FOR PITCH
LEAST1 ONE GREY TONE LEVEL BELOW IMIN
NQBTL THE NUMBER OF GREY TONE LEVELS IN IWORK
NBPL THE NUMBER OF LEVELS IN THE TRIANGULATION
L1...L6 ADDRESS INDEXS FOR THE LEX ARRAYS

SUBROUTINE MAING(IWORK,MERR,MERGE,PICTUR,IF)

LOGICAL MERGE,PICTUR
DIMENSION IWORK(4096)
DIMENSION G(64),IQ(64)

COMMON /N/ NUANT
COMMON H1,N,F(15),I MAX,MIN,NUMPL,NUMLIN,NOUPL,IR1,IR2,IR3,IR4
COMMON /E/ENTROP(4),DIFENT(4),FAVE(4),SUMENT(4)
COMMON /V/ DIFAVE(4),SUMVAR(4)
COMMON /C/ CORREL,CORINF(4),CORMUT(4),CORMAX(4)

DIMENSION IQ(64,192)
NOI=NUMPL*NUMLIN
NO=32

REWRITE SCRATCH FILE, COPY IMAGE IN A LINE BY LINE FASHION ONTO THE SCRATCH FILE, AND DETERMINE THE MINIMUM AND MAXIMUM GREY TONE.

REWRITE 2

FIRST, QUANTIZE THE ARRAY TO NO LEVELS FOR PICTURE AND EFFICENCY

IMAX=-10000
IMIN=10000
DO 13 J=1,NUMLIN
IS=NUMPL*(J-1)+1
IE=NUMPL*J
DO 12 K=IS,IE IF(IMIN.KT,IWORK(K)) IMIN=IWORK(K)
IF(IMAX.LE.IWORK(K)) IMAX=IWORK(K)
12 CONTINUE
13 CONTINUE
NGL=IMAX+1
IASIZE=NUMPL*NUMLIN
CALL KEQUAN(IWORK,NGL,NO,IASIZE)

COPY IMAGE ON SCRATCH FILE AFTER QUANTIZATION

DO 20 I=1,NUMLIN
IS=NUMPL*(I-1)+1
IE=NUMPL*I
WRITE(2) (IWORK(K),K=IS,IE)
20 CONTINUE

THE MAXIMUM AFTER KEQUAN QUANTIZES TO NO LEVELS IS NO-1, MINIMUM=

IMAX=NO-1
IMIN=0

TEST FOR PICTURE OPTION

IF(.NOT.PICTUR) GO TO 16

TRANSPOSE IWORK FOR PITCH

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
C
L=0
DO 14 I=1,NUM_IN
L=L+1
IS=NUMPPL_*(I-1)+1
IE=NUMPPL_I
K=0
DO 15 J=IS+IE
K=K+1
IMAGE(L,K)=I_WORK(J)
15 CONTINUE
CONTINUE

PRINT OUT PICTURE OF THE IMAGE
HORIZ=(64.0*0.75)/FLOAT(NUMPPL)
VERT=(64.0*0.90)/FLOAT(NUMPPL)
CALL PITCHR(IMAGE,NUM_LIN,NUMPPL,0,1,0,IMAX,0,...,HORIZ,VERT,.)
LEAST1=IMIN-1

NOBL IS THE NUMBER OF BRIGHTNESS LEVELS
NOBL=IMAX-LEAST1

NBUBL IS THE NUMBER OF LEVELS IN THE TRIANGULAR LEX ARRAY
NBUBL=NOBL_NOBL+1/2

SET UP THE INDEICES FOR THE LEX ARRAYS
L1=1
L2=L1+NUPPL_2
L3=L2+NBUBL
L4=L3+NBUBL
L5=L4+NBUBL
L6=L5+NBUBL-1

CHECK THE SIZE
IF(L6.GT.NDIM) GO TO 78
DO 4 NN=1,NSTART,N_TIMES
RE_MINO 2
NL_AYER=NN-1
4 CONTINUE
GET THE LEX ARRAYS
CALL PPLXIT(I_WORK(L1),I_WORK(L2),I_WORK(L3),I_WORK(L4),I_WORK(L5),
1 NUMPPL,MERGE)

CALL PRINT1

CALCULATE THE TEXTURE FEATURES
C CALL IMONTR(IWORK(2),IWORK(3),WORK(L4),IWORK(L5),G,.I,.MERGE) MAING15
C C
C C OUTPUT THE TEXTURE DATA
C C CALL RACCOUNT(IWORK(2),IWORK(3),WORK(L4),IWORK(L5),G,.I,.MERGE,.IF,M.
4 CONTINUE MAING15
4 CONTINUE MAING16
C C SET ERROR INDICATOR TO NO ERRORS
C MERR=0 MAING16
RETURN MAING16
WRITE(6,104) NOIM,L5 MAING16
78 formulaire 6,104 NOIM,L5 MAING16
104 formato (6H NOIM=,I5,16H NOIM MUST BE = .17:
MERR=1 MAING16
RETURN MAING16
END MAING16
DESCRIPTION OF PROGRAM.

This subroutine computes four nearest neighbor grey tone matrices, LEX1, LEX2, LEX3, and LEX4 for angles of 90-degrees, 135-degrees, 180-degrees, and 45-degrees respectively.

Included in this subroutine is an option to merge the four LEX arrays into one, LEX1.

ENTRY POINT.

CALL FPLXIT(IDATA, LEX1, LEX2, LEX3, LEX4, NUMPPPL, MERGE)

ARGUMENTS.

IDATA WORKING ARRAY FOR TWO LINES OF IMAGE
LEX1-LEX4 ADDRESS INDEXES FOR LEX ARRAYS
NUMPPPL NUMBER OF PTS PER IMAGE LINE
MERGE OPTION TO MERGE THE FOUR LEX ARRAYS INTO ONE ARRAY, LEX1

INTERNAL PARAMETERS.

NUMUBL NUMBER OF LEVELS IN THE TRIANGULAR LEX ARRAYS
IST POINTER TO FIRST LINE
INO POINTER TO SECOND LINE
NRED BASE FOR IMAGE REDUCTION
RLRED THE POWER TO WHICH NRED IS RAISED
MM AMOUNT OF REDUCTION OF THE IMAGE
FILE 2 SCRATCH FILE CONTAINING THE IMAGE
I,J,L,K GREY TONE VALUES OF NEIGHBORS RESOLUTION CELLS, ONE TO EACH ANGLE
INDEX(I,J) FUNCTION USED TO RETURN A SINGLE SUBSCRIPT FOR THE LEX ARRAY INDICATING WHERE ELEMENT (I,J) CAN BE FOUND

SUBROUTINE FPLXIT(IDATA, LEX1, LEX2, LEX3, LEX4, NUMPPPL, MERGE)

DIMENSION IDATA(NUMPPPL,2), LEX1(1), LEX2(1), LEX3(1), LEX4(1)
COMMON M1,M1,TYPE,F(14)
COMMON I1,IR2,INNUMPL,N3UBL,I8R1,1R2,IR3,IR4,DUMMY(29)
COMMON MSTART,NRED,NLAYER,MDIM1,NTINES
COMMON MERGE

INITIALIZE LEX1, LEX2, LEX3, AND LEX4 ARRAYS TO ZERO

DO 10 I = 1, NUMUBL
C

IST POINTS TO FIRST LINE, NNO POINTS TO SECOND LINE

IST = 1
NNO = 2

MLAYER INDICATES BY HOW MUCH THE IMAGE WILL BE REDUCED.
NRED IS THE FACTOR BY WHICH THE IMAGE WILL BE REDUCED. (IT IS THE FPLXIT67
BASE WHICH IS RAISED TO THE POWER MLAYER.) THEN, BY DEFINING THE FPLXIT68
QUANTITY MM, WHERE MM = NRED**MLAYER, WE HAVE A SINGLE FACTOR FPLXIT69
THAT DETERMINES THE REDUCTION BASE AND THE AMOUNT OF THE REDUC-
TION. IF, FOR EXAMPLE, NRED = 2, AND MLAYER RANGES FROM 0 TO 3 -- FPLXIT70
THIS RANGE IS DETERMINED BY THE PARAMETER 4TIMES (SEE *MAIN*). FPLXIT71
THE RESULTANT PROCESSING WILL YIELD FOUR IMAGES THAT WILL BE SUCCESSIVELY REDUCED BY 1, 1/2, 1/4, AND 1/8 RESPECTIVELY.

-MM = NRED**MLAYER
-NUMPL2 = NUMPL/MM
DO 111 KK1=1,MM
DO 111 KK2=1,MM

GET THE FIRST LINE OF DATA FROM DISC FILE 02

DO 11 LL=1,KK1
8 READ(2) (IDATA(L,IST),L=1,NUMPL)
 N = 0
 DO 29 J=KK2,NUMPL,MM
 N = N + 1
29 IDATA(N,IST) = IDATA(J,IST)

MML=MML+KK1
DO 1 LCNT = MML,NUMLIN,MM

GET THE SECOND LINE OF DATA. AFTER EACH ITERATION, THE OLD SECOND LINE BECOMES THE NEW FIRST LINE.

DO 11 LL=1,MM
18 READ(2) (IDATA(L,NNO),L=1,NUMPL)
 N = 0
 DO 19 J=KK2,NUMPL,MM
 N = N + 1

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
I DATA(N,NND) = I DATA(J,NND)

SET I, L, J, AND K EQUAL TO THE (NORMALIZED) VALUES OF GREY TONES OF RESOLUTION CELLS IN POSITIONS (I,IST), (1,NND), (2,IST), AND (Z,NND) RESPECTIVELY.

I = I DATA(1,IST) - LEAST1
J = I DATA(2,IST) - LEAST1
L' = I DATA(1,NND) - LEAST1
K = I DATA(2,NND) - LEAST1

PUT TWO DIMENSIONAL INFORMATION INTO ONE DIMENSIONAL FORM. THE FUNCTION NEEDED TO CONVERT A DOUBLE SUBSCRIPTED ARRAY, IMM(X,Y), INTO A SINGLE SUBSCRIPTED ARRAY, IMM(Z), IS OF THE FORM G(X) + F(Y), WHERE G(X) = (X-1)*X/2, AND F(Y) = Y. THEREFORE,

Z = (X-1)*X/2 + Y

THIS IS DONE IN THE PROGRAM BY THE EXTERNAL FUNCTION, INDEX(X,Y).

IMM(1,1) = IMM(1), IMM(2,1) = IMM(2), IMM(2,2) = IMM(3), IMM(3,1) = IMM(4),

IMM(N3UBL,N3UBL) = IMM(N3UBL), WHERE N3UBL = NO3L*(NO3L + 1)/2, AND NO3L IS THE TOTAL NUMBER OF GREY TONES IN THE ARRAY.

THE SCANNING PROCEDURE, THAT IS, THE METHOD BY WHICH THE PAIRWISE COMPARISONS ARE MADE, IS DESCRIBED BELOW FOR THE GENERAL CASE.

CONSIDER A RESOLUTION CELL WITH SPATIAL COORDINATES (M,N), AND CALL THIS CELL "I". THE SCANNING OPERATION BEGINS IN THE UPPER LEFT HAND CORNER OF THE IMAGE (THE FIRST POSITION OF "I") IS IN THAT OF RESOLUTION CELL (1,1) AND IT THEN PROCEEDS BY COMPARING THE GREY TONE OF "I" WITH, AT MOST, FOUR GREY TONES OF ITS NEIGHBORING RESOLUTION CELLS. THAT "I" NEVER NEEDS TO CONSIDER MORE THAN FOUR NEAREST NEIGHBORS.

CAN BE SEEN FROM THE DIAGRAM OF THE SEARCH PATTERN SHOWN BELOW
ON A GIVEN ITERATION, 'I' WILL LOOK FIRST AT ITS NEAREST VERTICAL NEIGHBOR ("L"), NEXT AT ITS NEAREST HORIZONTAL NEIGHBOR ("J"), THIRD AT ITS LOWER RIGHT NEIGHBOR ("K"), AND FOURTH AT ITS LOWER LEFT DIAGONAL NEIGHBOR ("H"). 'I' THEN MOVES INTO THE POSITION OF THE LEFT-MOST RESOLUTION CELL OF THE PREVIOUSLY SCANNED SECOND ROW (THE POSITION OCCUPIED BY "M"). THE OPERATION IS REPEATED UNTIL ALL NEIGHBORING PAIRS OF RESOLUTION CELLS HAVE BEEN EXAMINED.

MAKE COUNT FOR THE FIRST TWO COLUMNS.

IL = INDX(I,L)
CLEX(I) = LEX1(IL) + 1
IR1 = IR1 + 1

I = INDX(I,J)
CLEX2(I) = LEX2(IJ) + 1
IR2 = IR2 + 1

IK = INDX(I,K)
CLEX3(I) = LEX3(IK) + 1
IR3 = IR3 + 1

NOW SHIFT ONE COLUMN TO THE RIGHT AND CONTINUE THE PROCEDURE FOR GENERAL CASE IN WHICH A RESOLUTION CELL (I) HAS ONE VERTICAL NEAREST NEIGHBOR (L), ONE HORIZONTAL (J), ONE LOWER RIGHT DIAGONAL (K), AND ONE LOWER LEFT DIAGONAL (H). ITERATE UP TO NEXT TO LAST COLUMN.

DO 2 N = 3,NUMPL2
I = J
M = L
L = K
J = IDATA(N,IST) - LEAST1
K = IDATA(N,.NonNull) - LEAST1
IL = INDEX(I,L)

COUNT VERTICALLY ADJACENT (90-DEGREE) NEAREST NEIGHBORS.

LEX1(IL) = LEX1(IL) + 1
IR1 = IR1 + 1

IJ = INDEX(I,J)

COUNT HORIZONTALLY ADJACENT (0-DEGREE) NEAREST NEIGHBORS.

LEX2(IJ) = LEX2(IJ) + 1
IR2 = IR2 + 1

IK = INDEX(I,K)

COUNT 'LEFT DIAGONALLY' ADJACENT (135-DEGREE) NEAREST NEIGHBORS.

LEX3(IK) = LEX3(IK) + 1
IR3 = IR3 + 1

IM = INDEX(I,M)

COUNT 'RIGHT DIAGONALLY' (45-DEGREE) ADJACENT NEAREST NEIGHBORS.

LEX4(IM) = LEX4(IM) + 1
IR4 = IR4 + 1

CONTINUE

MAKE COUNT FOR LAST COLUMN.

I = J
M = L
L = K

IL = INDEX(I,L)

COUNT VERTICALLY ADJACENT NEAREST NEIGHBORS FOR LAST COLUMN.

LEX1(IL) = LEX1(IL) + 1
IR1 = IR1 + 1

IM = INDEX(I,M)

COUNT 'RIGHT DIAGONALLY' ADJACENT NEAREST NEIGHBORS FOR THE LAST COLUMN.

LEX4(IM) = LEX4(IM) + 1
IR4 = IR4 + 1
INTERCHANGE THE LINE POINTERS.
MN = IST
IST = MIN
MIN = MN

CONTINUE

MAKE COUNT FOR LAST ROW.
I = IDATA(I, IST) - LEAST1
J = IDATA(2, IST) - LEAST1
IJ = INDEX(I, J)
COUNT HORIZONTALLY ADJACENT NEAREST NEIGHBORS FOR FIRST TWO COLUMNS OF LAST ROW.
LEX2(IJ) = LEX2(IJ) + 1
IR2 = IR2 + 1
COMPLETE COUNT FOR LAST ROW.
DO 12 N = 3, NUMPL2
I = J
J = IDATA(N, IST) - LEAST1
IJ = INDEX(I, J)
COUNT HORIZONTALLY ADJACENT NEAREST NEIGHBORS FOR REMAINDER OF LAST ROW.
LEX2(IJ) = LEX2(IJ) + 1
IR2 = IR2 + 1
12 CONTINUE
REWIND 02
111 CONTINUE

NOW DOUBLE THE DIAGONAL TO MAKE EVERYTHING COME OUT RIGHT
NBDL = I1-I2+1
DO 100 I1 = 1, NBDL
II = INDEX(I, I)
LEX1(I1) = '?'*LEX1(I1)
LEX2(I1) = '?'*LEX2(I1)
LEX3(I1) = LEX3(I1)*2
LEX4(I1) = LFX4(I1)*2
100 CONTINUE
IF (.NOT. MERGE) RETURN

IF MERGE IS TRUE, SUM ALL ARRAYS INTO LEX1

DO 112 I=1,NBUHL
 LEX1(I)=LEX1(I)+LEX2(I)+LEX3(I)+LEX4(I)
112 CONTINUE
 RETURN
END

769 WORDS OF MEMORY USED BY THIS COMPILATION

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
INDEX

WRITTEN BY RMH

SEPT 1971

GIVEN THE ROW AND COLUMN SUBSCRIPTS I AND L, INDEX RETURNS THE SINGLE SUBSCRIPT FOR THE LEX ARRAY INDICATING WHERE ELEMENT (I,L) CAN BE FOUND.

1 2 3
4 5 6
7 8 9 10

FUNCTION INDEX(I,L)
INDEX1(I,L) = (I-1)*I/2 + L
IF(I.GT.L) GO TO 1
INDEX = INDEX1(L,I)
RETURN
1 INDEX = INDEX1(I,L)
RETURN
END

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
DESCRIPTION OF PROGRAM.

This program calculates the moment texture statistics (as defined below under texture features) from the LEX arrays, according to the merge option.

ENTRY POINT.

CALL IMOMTR(LEX1, LEX2, LEX3, LEX4, F, IQ, MERGE)

ARGUMENTS.

LEX1-LEX4 ADDRESS INDEXES FOR LEX ARRAYS
F CUMULATIVE DISTRIBUTION FUNCTION
IQ QUANTIZED OUTPUT ARRAY OF IEQPQ1
MERGE OPTION TO MERGE THE FOUR LEX ARRAYS INTO ONE ARRAY

INTERNAL PARAMETERS.

ANGHOM= number of texture features--see below
CORMAX = number of quantizing levels for IEQPQ1
NQUANT = twice NQUANT
NQUAN2 = maximum number of grey tone levels
NQUAN3 = minimum number of grey tone levels
IMAX = the number of resolution cell pairs
IMIN = inverse of IMAX
IR1-IR4 = counted in each LEX array
R1-R4 = scratch array used by subroutine COR
Q0 = array of joint probabilities
P(XY) = number of grey tone levels
NOBL = sum of elements of the LEX array
NAD01-NAD04 = sum of elements of the LEX array

TEXTURAL FEATURES.

ANGHOM= \sum \sum P(i,j) * P(i,j)
 i j

AMean= \sum \sum i * P(i,j)
 i j

AMean= \sum \sum j * P(i,j)
 i j

SGMASQ= \sum \sum ((i - AMean)**2) * P(i,j)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
I J

SGMASQ = SUM SUM (I-AMEAN)**2 * P(I,J)
 I J

SGMAXY = SUM SUM (I-AMEAN)*(J-AMEAN) * P(I,J)
 I J

IVOMOM = SUM SUM (P(I,J)/(1+I+J)**2)
 I J

RATIO = SGMAXY/SGMASQ

ENTROP = SUM SUM P(I,J) * LOG(P(I,J))
 I J

DIF(K) = SUM SUM P(I,J)
 A35(I-J)=K

SUM(K) = SUM SUM P(I,J)
 I+J=K

DIFENT = SUM DIF(K) * LOG(D.F(K)) * (-1)
 K

DIFAVE = SUM K * DIF(K)
 K

DIFVAR IS THE VARIANCE OF THE DISTRIBUTION DIF

NOTE THAT
DIFMOM = 2 * (SGMASQ - SGMAXY)

THE INTEGERS 1, 2, 3, 4 FOLLOWING THE VARIABLE NAMES CORRESPOND TO
THE FOUR ANGLES--

<table>
<thead>
<tr>
<th>SUBSCRIPT</th>
<th>LEX ARRAY</th>
<th>MOMENT ARRAY</th>
<th>ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>90 DEGREES</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0 DEGREES</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>135 DEGREES</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>45 DEGREES</td>
<td></td>
</tr>
</tbody>
</table>
IF MERGE IS .TRUE., THE FOUR LEX ARRAYS HAVE BEEN MERGED INTO
LEX1.

SUBROUTINE IOMTR(LEX1, LEX2, LEX3, LEX4, F, IN, MERGE)

REAL IIVDOMM
LOGICAL MERGE
DIMENSION LEX1(1), LEX2(1), LEX3(1), LEX4(1)
DIMENSION IIVDOMM(64), IN(64)
DIMENSION DIF1(64), DIF2(64), DIF3(64), DIF4(64)
DIMENSION SUM1(128), SUM2(128), SUM3(128), SUM4(128)
DIMENSION P(3600), Q(300)
EQUIVALENCE (P(1), Q(1))
COMMON /Q/ NQUANT
COMMON M11, M21, TYPE, G(14)
COMMON IMAX, IMIN, NUMPP, NUMLIN, NGUB, IR1, IR2, IR3, IR4, ANGMOM(4), I1, I2, I3, I4
COMMON AMEAN(4), SGMASQ(4), SGMAXY(4), DIFMOM(4), RATIO(4), IIVDOMM(4), THEAN
COMMON /R/ ENTROPI(4), DIFENT(4), DIFAVE(4), DIFVAR(4), SUMN(4), SUMV(4), SUMVAR(4)
COMMON /T/ CORREL, CORINF(4), CORMUT(4), CORMAX(4)

INITIALIZE ARRAYS TO ZERO

DO 1 I = 1, 4
 IIVDOMM(I) = 0
 ANGMOM(I) = 0
 AMEAN(I) = 0
 SGMASQ(I) = 0
 SGMAXY(I) = 0
 ENTROPI(I) = 0.0
 DIFENT(I) = 0.0
 DIFAVE(I) = 0.0
 DIFVAR(I) = 0.0
 SUMN(I) = 0.0
 SUMVAR(I) = 0.0
 SUMV(I) = 0.0
 RATIO(I) = 0
1 DO 56 K = 1, NQUANT
 DIF1(K) = 0.0
 DIF2(K) = 0.0
 DIF3(K) = 0.0
56 D.F4(K) = 0.0
 NQUAN2 = 2*NQUANT
 DO 87 KS = 1, NQUAN2
 SUM1(KS) = 0.0
 SUM2(KS) = 0.0
 SUM3(KS) = 0.0
 SUM4(KS) = 0.0
87 CONTINUE
GET THE NUMBER OF BRIGHTNESS LEVELS, NOBL
IF THE LEX ARRAY WERE SQUARE AND NOT COMPACTED, IT WOULD BE
DIMENSIONED NOPL BY NOBL

NOBL=IMAX-IMIN+1

NOW DETERMINE THE TOTAL NUMBER OF RESOLUTION CELL PAIRS
COUNTED IN EACH OF THE LEX ARRAYS

I31=0
I32=0
I33=0
I34=0
IF (.NOT. MERGE) GO TO 40
DO 42 I=1,NOPL
DO 42 J=1,NOPL
IJ=INDEX(I,J)
IR1=IR1+FX1(IJ)
42 CONTINUE
R1=1./FLOAT(IR1)
GO TO 41

40 DO 5 I=1,NOPL
DO 5 J=1,NOPL
IJ=INDEX(I,J)
IR1=IR1+FX1(IJ)
IR2=IR2+FX2(IJ)
IR3=IR3+FX3(IJ)
IR4=IR4+FX4(IJ)
5 CONTINUE
GET R1, R2, R3, R4 TO SAVE DIVISIONS

R1=1./FLOAT(I31)
R2=1./FLOAT(I32)
R3=1./FLOAT(I33)
R4=1./FLOAT(I34)

FIND THE CORRELATION MEASURES
PUT THE LEX ARRAYS IN P MATRIX AND CALL CORRELATION ROUTINE

DO LEX2' ARRAY
JJ=0
DO 201 I=1,NOPL
DO 201 J=1,NOPL
IJ=INDEX(J,J)
JJ=JJ+1
201 P(JJ)=FLOAT(LEX2(IJ))*R1
CALL COR(P,NO9+,1,QD,COR1,COR2,COR3)
CORINF(1)=COR1
C
DO LEX4 ARRAY

DO 211 I=1,N08L
DO 211 J=1,N08L
IJ=INDEX(I,J)
JJ=JJ+1
211 P(JJ)=FLOAT(LEX4(I,J))*R?
CALL COR(P,N0BL,1,Q0,COR1,COR2,COR3)
CORINF(2)=COR1
CORMUT(2)=COR2
CORMAX(2)=COR3
JJ=0

C
DO LEX4 ARRAY

DO 221 I=1,N08L
DO 221 J=1,N08L
IJ=INDEX(I,J)
JJ=JJ+1
221 P(JJ)=FLOAT(LEX1(I,J))*R1
CALL COR(P,N0BL,1,Q0,COR1,COR2,COR3)
CORINF(3)=COR1
CORMUT(3)=COR2
CORMAX(3)=COR3
IF(MERGE) GO TO 43
JJ=0

C
DO LEX3 ARRAY

DO 231 I=1,N08L
DO 231 J=1,N08L
IJ=INDEX(I,J)
JJ=JJ+1
231 P(JJ)=FLOAT(LEX3(I,J))*R4
CALL COR(P,N0BL,1,Q0,COR1,COR2,COR3)
CORINF(4)=COR1
CORMUT(4)=COR2
CORMAX(4)=COR3

C
GET THE PROBABILITY FUNCTION IN F

43 DO 379 I=1,64
20(I)=0
379 F(I)=0

C
IF MERGE, GO TO SECTION .A TO MAKE THE COMPUTATIONS

REPRODUCIBILITY OF THE
ORrGINAL PAGE IS POOR
IF (MERGE) GO TO 911
DO 6 I=1,NOBL
IA=0
DO 7 J=1,NOBL
IJ=INDEX('I', J)
7 IA=IA+LEX1(IJ)+LEX2(IJ)+LEX3(IJ)+LEX4(IJ)
6 F(I)=FLOAT(IA)/FLOAT(IR1+IR2+R3+IR4)

FIRST COMPUTE THE TRUE MEAN
TMEAN=0
DO 10 I=1,NOBL
10 TMEAN=TMEAN+F(I)*FLOAT(:)
 TMEAN=TMEAN+FLOAT(IMIN+1)

GET CUMULATIVE DISTRIBUTION FUNCTION IN F
DO 8 I=2,NOBL
8 F(I)=F(I)+F(I-1)

DETERMINE THE QUANTIZING FUNCTION
CALL IEQP01(NOBL,NQUANT,FlQ,MIN)

NEXT COMPUTE THE QUANTIZED TRANSLATED MEAN FOR EACH ARRAY
DO 2 I=1,NQUANT
DO 2 J=1,NQUANT
NSI=1
IF(I.NE.1) NSI=IQ(I-1)+2-MIN
NEI=IQ(I)-IMIN +1
NSJ=1
IF(J.NE.1) NSJ=IQ(J-1)+2-MIN
NFJ=IQ(J)-IMIN +1
IF(NSI.GT.NEI) GO TO 2
IF(NSJ.GT.NEJ) GO TO 2
NADO1=0
NADO2=0
NADO3=0
NADO4=0
DO 9 NI=NSI,NEI
9 DJ=NADOI+LEX1(IJ)
NADO3=NADO3+LEX3(IJ)
NADO4=NADO4+LEX4(IJ)
AMean(1)=AMean(1)+FLOAT(NADO2* I)
AMean(4)=AMean(4)+FLOAT(NADO3*I)
NOW NORMALIZE TO GET THE MEANS

\[
\text{AMEAN}(1) = \text{AMEAN}(1) \times 2
\]
\[
\text{AMEAN}(2) = \text{AMEAN}(2) \times 2
\]
\[
\text{AMEAN}(3) = \text{AMEAN}(3) \times 2
\]
\[
\text{AMEAN}(4) = \text{AMEAN}(4) \times 2
\]

NOW DO MOMENT CALCULATIONS

\[
\text{DO } 3 \text{ I}=1, \text{NQUANT}
\]
\[
\text{DO } 3 \text{ J}=1, \text{NQUANT}
\]
\[
\text{NSI}=1
\]
\[
\text{IF(I,NE,1) NSI=IQ(I-1)+2-IMIN}
\]
\[
\text{NEI=IQ(I) -IMIN +1}
\]
\[
\text{NSJ}=1
\]
\[
\text{IF(J,NE,1) NSJ=IQ(J-1)+2-IMIN}
\]
\[
\text{NFJ=IQ(J) -IMIN +1}
\]
\[
\text{IF(NSI,ST,NEI) GO TO 3}
\]
\[
\text{IF(NSJ,ST,NEJ) GO TO 3}
\]
\[
\text{NA001}=0
\]
\[
\text{NA002}=0
\]
\[
\text{NA003}=0
\]
\[
\text{NA004}=0
\]
\[
\text{DO 13 NI=NSI,NEI}
\]
\[
\text{DO 13 NJ=NSJ,NEJ}
\]
\[
\text{NINJ=INDEX(NI,NJ)}
\]

SUM UP THE ELEMENTS IN EACH LEX ARRAY

\[
\text{NA001}=\text{NA001}+\text{LEX1}(\text{NINJ})
\]
\[
\text{NA002}=\text{NA002}+\text{LEX2}(\text{NINJ})
\]
\[
\text{NA003}=\text{NA003}+\text{LEX3}(\text{NINJ})
\]
\[
\text{NA004}=\text{NA004}+\text{LEX4}(\text{NINJ})
\]

NORMALIZE

\[
\text{RL1}=\text{FLOAT}(\text{NA001}) \times 2
\]
\[
\text{RL2}=\text{FLOAT}(\text{NA002}) \times 2
\]
\[
\text{RL3}=\text{FLOAT}(\text{NA003}) \times 2
\]
\[
\text{RL4}=\text{FLOAT}(\text{NA004}) \times 2
\]

CALCULATE THE MOMENTS

\[
\text{ANGMOM}(1)=\text{ANGMOM}(1)+\text{PL2}^{*2}
\]
\[
\text{ANGMOM}(2)=\text{ANGMOM}(2)+\text{PL4}^{*2}
\]
\[
\text{ANGMOM}(3)=\text{ANGMOM}(3)+\text{RL1}^{*2}
\]

194
ANGMOM(4) = ANGMOM(4) + PL3**2
SGMASQ(1) = SGMASQ(1) + ((FLOAT(I) - AMEAN(1))**2) * R2
SGMASQ(2) = SGMASQ(2) + ((FLOAT(I) - AMEAN(2))**2) * R4
SGMASQ(3) = SGMASQ(3) + ((FLOAT(I) - AMEAN(3))**2) * R1
SGMASQ(4) = SGMASQ(4) + ((FLOAT(I) - AMEAN(4))**2) * R5

SGMAXY(1) = SGMAXY(1) + (FLOAT(I) - AMEAN(1)) * (FLOAT(J) - AMEAN(1)) * PL2
SGMAXY(2) = SGMAXY(2) + (FLOAT(I) - AMEAN(2)) * (FLOAT(J) - AMEAN(2)) * PL4
SGMAXY(3) = SGMAXY(3) + (FLOAT(I) - AMEAN(3)) * (FLOAT(J) - AMEAN(3)) * R1
SGMAXY(4) = SGMAXY(4) + (FLOAT(I) - AMEAN(4)) * (FLOAT(J) - AMEAN(4)) * R3

IVOMOM(1) = IVOMOM(1) + PL2/((I-J)**2)
IVOMOM(2) = IVOMOM(2) + PL4/((I-J)**2)
IVOMOM(3) = IVOMOM(3) + R1/((I-J)**2)
IVOMOM(4) = IVOMOM(4) + R3/((I-J)**2)

IF (RL2.LT.0.000001) GO TO 50
ENTROP(1) = ENTRNT(1) - RL2 * ALOG(RL2)
IF (RL4.LT.0.000001) GO TO 51
ENTROP(2) = ENTRNT(2) - RL4 * ALOG(RL4)
IF (RL1.LT.0.000001) GO TO 52
ENTROP(3) = ENTRNT(3) - RL1 * ALOG(RL1)
IF (RL3.LT.0.000001) GO TO 53
ENTROP(4) = ENTRNT(4) - RL3 * ALOG(RL3)
CONTINUE

SET UP THE SUM ARRAY
K = IABS(1-J) + 1

SET UP THE DIFFERENCE ARRAY
K3 = IABS(1+J) + 1
DIF1(K) = DIF1(K) + RL2
DIF2(K) = DIF2(K) + RL4
DIF3(K) = DIF3(K) + R1
DIF4(K) = DIF4(K) + R3
SUM1(KS) = SUM1(KS) + RL2
SUM2(KS) = SUM2(KS) + RL4
SUM3(KS) = SUM3(KS) + R1
SUM4(KS) = SUM4(KS) + R3
CONTINUE
DO 4 I = 1, 4
RATIO(I) = SGMAXY(I) / SGMASQ(I)

CALCULATE THE ENTROPY, AVERAGE, AND THE VARIANCE OF THE DIFFERENCE ARRAY
DO 31 K = 1, NQUANT
IF (DIF1(K) .LT. 0.000001) GO TO 54
DIFENT(1) = DIFENT(1) - DIF1(K) * ALOG(DIF1(K))
IF (DIF2(K) .LT. 0.000001) GO TO 55
DIFENT(2) = DIFENT(2) - DIF2(K) * ALOG(DIF2(K))

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
55 IF(DIFE(K)<LT.0,000001) GO TO 56
56 DIFENT(K)=DIFE(K)-DIF3(K)*ALOG(DIF3(K))
57 CONTINUE
G=FLOAT(K)
D:FAVE(1)=D:FAVE(1)+(G*DIF1(K))
D:FAVE(2)=D:FAVE(2)+(G*DIF2(K))
D:FAVE(3)=D:FAVE(3)+(G*DIF3(K))
D:FAVE(4)=D:FAVE(4)+(G*DIF4(K))
D:VAR(1)=D:VAR(1)+(G*G)*D.F1(K)
D:VAR(2)=D:VAR(2)+(G*G)*DIF2(K)
D:VAR(3)=D:VAR(3)+(G*G)*DIF3(K)
D:VAR(4)=D:VAR(4)+(G*G)*DIF4(K)
31 DO 32 KK=1,4
32 D:VAR(KK)=D:VAR(KK)-(D:FAVE(KK)*D:FAVE(KK))
33 DO 34 KK=1,4
34 D:VAR(KK)=D:VAR(KK)-(D:FAVE(KK)*D:FAVE(KK))
RETURN
SECTION 41
IMOMTR FOR THE MERGED LEX ARRAY
GET THE PROBABILITY FUNCTION IN F FOR MERGE OPTION
911 DO 16 I=1,NOBL
IA=0

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
DO 17 J=1,NQBL
 IJ=INDEX(I,J)
17 IA=IA+LEX1(IJ)
16 F(I)=FLOAT(I)/FLOAT(IR1)
 C
 FIRST COMPUTE THE TRUE MEAN
 C
 THEAN=0
 DO 90 I=1,NQBL
 THEAN=THEAN+F(I)*FLOAT(I)
 90 THEAN=THEAN+FLOAT(IMIN-1)
 C
 SET CUMULATIVE DISTRIBUTION FUNCTION IN F
 C
 DO 91 I=2,NQBL
 F(I)=F(I-1)
91 C
 DETERMINE THE QUANTIZING FUNCTION
 C
 CALL IEQPQL(NQBL,NQUANT,F,IO,,MIN)
 C
 NEXT COMPUTE THE QUANTIZED TRANSLATED MEAN
 C
 DO 92 I=1,NQUANT
 NSI=1
 IF(I,NE.1) NSI=IQ(I-1)+2-MIN
 NEI=IQ(I)-IMIN+1
 NSJ=1
 IF(J,NE.1) NSJ=IQ(J-1)+2-MIN
 NEJ=IQ(J)-IMIN+1
 IF(NSI.GT.NEI) GO TO 92
 IF(NSJ.GT.NEJ) GO TO 92
 NAODI=0
 DO 93 NI=NSI,NEI
 DO 95 NJ=NSJ,NEJ
 IJ=INDEX(NI,NJ)
 NAODI=NAODI+LEX1(IJ)
 AMEAN(3)=AMEAN(3)+FLOAT(NAODI* I)
93 CONTINUE
50 C
 NOW Normalize TO GET THE MEANS
 C
 AMEAN(3)=AMEAN(3)*R1
 C
 NOW DO MOMENT CALCULATIONS
 C
 DO 95 I=1,NQUANT
 DO 95 J=1,NQUANT
 NSI=1
 NSJ=1
 95 C
 C
 C
 REPRODUCIBILITY OF THE
 ORIGINAL PAGE IS POOR

197
IF(I.NE.1) NSI=IQ(I-1)+2-MIN
NSJ=I
IF(J.NE.1) NSJ=IQ(J-1)+2-MIN
NEJ=IQ(J) -MIN +1
IF(NSJ.GT.NEI) GO TO 95
IF(NSN.GT.NEJ) GO TO 95
NADD1=0
DO 96 NI=NSJ,NEJ
DO 96 NJ=NSJ,NEJ
NINJ=INDEX(NI,NJ)

96 SUM UP THE ARRAY
NADD1=NADD1+EX1(NINJ)

NORMALIZE
RL1=FLOAT(NADD1)*R1

COMPUTE MOMENTS
ANGMOM(3)=ANGMOM(3)+R.1**2
SGMASQ(3)=SGMASQ(3)+((FLOAT(I)-AMEAN(3))*R1
SGMAXY(3)=SGMAXY(3)+((FLOAT(I)-AMEAN(3))*R1
TVHOM(3)=TVHOM(3)+RL1/((I+FLOT(I-J)**2))
IF(RL1.LT.0.000001) GO TO 533
ENTROP(3)=ENTROP(3)-RL1*A_LOG(RL1)
CONTINUE

533 SET UP THE SUM ARRAY
K=IABS(I-J)+1

SFT UP THE DIFFERENCE ARRAY
KS=IABS(I+J)+1
DIF3(K)=DIF3(K)+R1
SUM3(KS)=SUM3(KS)+R1
95 CONTINUE
RATIO(3)=SGMAXY(3)/SGMASQ(3)

CALCULATE THE ENTROPY, AVERAGE, AND THE VARIANCE OF THE DIFFERENCE ARRAY

DO 97 K=1,NQUANT
IF(DIF3(K).LT.0.000001) GO TO 577
DIFFNTN3(DIF3(K))=DIF3(K)*A_LOG(DIF3(K))
97 CONTINUE
G=FLOAT(K)

400 CONTINUE
CALCULATE THE ENTROPY, AVERAGE, AND THE VARIANCE OF THE SUM ARRAY

DO 98 K=1, NQUAN
 IF (SUM3(K).LT.0.000001) GO TO 99
 SJMEMENT(3)=SUMMENT(3)-SUM3(K)*LOG(SUM3(K))
 CONTINUE
G=FLOAT(K)
 SUMAVE(3)=SUMAVE(3)+(G*SUM3(K))
 SUMVAR(3)=SUMVAR(3)+(G*G)*SUM3(K)
 SUMVAR(3)=SUMVAR(3)-(SUMAVE(3)*SUMAVE(3))
RETURN
END

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
SUBROUTINE COR

WRITTEN BY SAM SHANMUGAM

NOV 1972

OBJECTIVE.

THIS PROGRAM CALCULATES THREE MEASURES OF CORRELATION COR1, COR2, COR3, BETWEEN TWO DISCRETE RANDOM VARIABLES X AND Y WHOSE JOINT PROBABILITIES OF OCCURRENCE ARE STORED IN THE ARRAY PXY.

ENTRY POINT.

CALL COR(PXY, N, IOPT, Q, COR1, COR2, COR3)

INPUT ARGUMENTS.

PXY: ARRAY OF JOINT PROBABILITIES
N: SIZE OF THE ARRAY PXY
IOPT: OPTION FLAG--IF IOPT=0 THEN COR1 AND COR2 ONLY WILL BE COMPUTED. IF IOPT=1, THEN COR3 WILL BE COMPUTED SCRATCH ARRAY OF SIZE N X 4. THIS ARRAY IS NEEDED ONLY IF IOPT IS NON-ZERO. IF IOPT IS ZERO THEN A DUMMY VARIABLE MAY BE SUBSTITUTED FOR THE ARGUMENT Q.

OUTPUT ARGUMENTS.

COR1: MAXIMAL CORRELATION MEASURE
COR2: INFORMATION MEASURE OF CORRELATION
COR3: SECOND TYPE OF MAXIMAL MEASURE

BIBLIOGRAPHY.

ANNALS OF MATHEMATICAL STATISTICS, V3..43, 1962, COR0004 P.587. "MUTUAL INFORMATION AND MAXIMAL CORRELATION AS MEASURE OF DEPENDENCE" BY C.S. BELL.

CAUTION.

...
1. THE ARRAY PXV MUST HAVE A DIMENSION OF N X N IN THE CALLING PROGRAM. OR PXV SHOULD BE A ONE DIMENSIONAL VECTOR CONTAINING THE JOINT PROBABILITIES IN A COLUMN BY COLUMN ARRANGEMENT.

2. IF N IS LARGE, THE COMPUTATIONS FOR COR1 WILL TAKE CONSIDERABLE TIME. HENCE THE USE OF THIS ROUTINE IS RESTRICTED TO N LESS THAN OR EQUAL TO 32.

COMPUTATIONS.

\[\text{PX}(I) = \sum \text{PXV}(I,J) \]
\[\text{PY}(J) = \sum \text{PXV}(I,J) \]
\[\text{HXV} = \sum \sum \log(\text{PXV}(I,J) \cdot \text{PXV}(I,J)) \]
\[\text{HXV1} = \sum \sum \log((\text{PXV}(I,J) \cdot \text{PY}(J)) \cdot \text{PXV}(I,J)) \]
\[\text{HXV2} = \sum \sum \log(\text{PXV}(I,J) \cdot \text{PY}(J)) \cdot \text{PXV}(I,J) \]
\[\text{HY} = \sum \log(\text{PY}(J)) \cdot \text{PXV}(I,J) \]
\[\text{HYX} = \sum \sum \log(\text{PY}(J)) \cdot \text{PXV}(I,J) \cdot \text{PY}(J) \]
\[R = \text{HXV2} - \text{HXV} \quad \text{EMAX} = \max(\text{HXV}, \text{HYX}) \]
\[\text{COR1} = (\text{HXV} - \text{HXV1}) / \text{EMAX} \]
\[\text{COR2} = \text{SQRT}(1.0 - \exp(-2.63)) \]
\[\text{COR3} = \text{IS COMPUTED USING THE EIGEN VECTOR CORRESPONDING TO THE SECOND LARGEST EIGEN VALUE OF Q^TQ, WHERE} \]
\[Q(I,J) = \text{PXV}(I,J) / \text{SQRT}(\text{PXV}(I,J) \cdot \text{PY}(J)) \]

SUBROUTINE COR(PXY,N,NOPT,Q,COR1,COR2,COR3)

DIMENSION PXV(1,N),Q(1)
DIMENSION PXV(64),PY(64),E(64),V(128),B(64),C(64),D(64),F(64)
DIMENSION IZEROP32

INITIALIZE PX, PY, HX, HY, HXY, HXY1, AND HXY2

\[\text{DO 80 I=1,N} \]
\[\text{PX}(I) = 0.0 \]
\[\text{PY}(I) = 0.0 \]
\[80 \]
COMPUTE THE MARGINALS AND THEIR ENTROPY

\[H_X = 0.0 \]
\[H_Y = 0.0 \]
\[H_{XY} = 0.0 \]
\[H_{XY1} = 0.0 \]
\[H_{XY2} = 0.0 \]

DO 82 T = 1, N
DO 81 J = 1, N
IJ = (J-1)*N + I
81 PX(I) = PX(I) + PXY(I,J)
IF (PX(I) .LT. 0.0000001) GO TO 82
HX = HX - (ALOG(PX(I))) * (PX(I))
CONTINUE
DO 84 J = 1, N
DO 83 I = 1, N
IJ = (J-1)*N + I
83 PY(J) = PY(J) + PXY(I,J)
IF (PY(J) .LT. 0.0000001) GO TO 84
HY = HY - (ALOG(PY(J))) * (PY(J))
CONTINUE

COMPUTE THE ENTROPY OF THE JOINT DISTR.

DO 69 I = 1, N
DO 68 J = 1, N
IJ = (J-1)*N + I
IF (PXY(I,J) .LT. 0.0000001) GO TO 68
HXY = HXY - (ALOG(PXY(I,J))) * (PXY(I,J))
PXY = PX(I) * PY(J)
IF (PXY .LT. 0.0000001) GO TO 69
HXY1 = HXY - (ALOG(PXY)) * PXY(I,J)
HXY2 = HXY - (ALOG(PXY)) * (PXY)
CONTINUE

COMPTE COR1 AND COR2

EMAX = HX
IF (HX .LT. HY) EMAX = HY
COR1 = (HXY - HXY1) / EMAX
COR2 = SQRT(1.0 - EXP(-2.0*R))

IF COR3 NOT ASKED FOR RETURN

SCAN PXY AND DELTE ROWS OF ZEROS
AND COLUMNS OF ZEROS
I7E90(NDFX)=0
NZERO=0
DO 600 I=1,N
I=I
IF(PX(I).GT.0.000001) GO TO 601
NZERO=NZERO+1
I7E90(NZERO)=II
601 CONTINUE
600 CONTINUE
IF(NZERO.EQ.0) GO TO 651
JJ=0
DO 650 J=1,N
DO 650 I=1,N
DO 640 KK=1,NZERO
NDEK=IZER0(KK)
IF((I.EQ.NDEK).OR.(J.EQ.NDEK)) GO TO 649
640 CONTINUE
JJ=JJ+1
IJ=(J-1)*N+I
PX(JJ)=PX(IJ)
649 CONTINUE
650 CONTINUE
651 CONTINUE
C REMOVE ZERO ENTRIES IN THE MARGINALS
C
C JJ=0
DO 661 I=1,N,
IF(PX(I).LT.0.000001) GO TO 662
JJ=JJ+1
PX(JJ)=PX(I)
662 CONTINUE
661 CONTINUE
JJ=0
DO 671 I=1,N
IF(PY(I).LT.0.000001) GO TO 672
JJ=JJ+1
PY(JJ)=PY(I)
672 CONTINUE
671 CONTINUE
NNNN=N
N=N-NZERO
C NORMALIZE PX Y AND STORE IN Q. SAVE PX Y
C
C DO 58 I=1,N
DO 58 J=1,N
IJ=(J-1)*N+I
CONS=SQRT(PY(IJ))
58 Q(IJ)=PX(IJ)/CONS
C
,

I

!
[

!

f

.I:

.

(

za.fI&D

02-12-7'.

,
c
c
c
c

H.,,

.I
,.
I

COMPUTE THE UPPE~/O~AG E~EHENr5 OF O·QT
STORE IN 0
00 49 !=l.N
DO 51 J=I.N
BCJ'=O.O
Oil 52 K:::1.N
IK= 1~-1) ·')+1

1
I

CORD02D~,

COH0020 Q
COR0021J
COR00211
COR00212
COR 00 2t..3
COR00214

JK= CK-1 , ·rl+J

~(JI=O(J'+n(lK)·QCJK)

V1NTINUF.
O~ SO J =1. N
IJ=CJ-l,tlN+I

50

Q

COR0021~

CIJ' =8 CJ,

COROD21!~

CONTINUE

49
C

COR002ll

FILL IN THE BELOW DIAG E_EMENTS OF OtlOT

C
C

00 48 J=l,N
00 4a I=J·N
IJ=CJ-l,tl'l+I

JI =(!-1I ·N+J

c

(

QCIJ'=!lIJ:'

48

~ORM

STORE

CC

SQRTCPX' tl QtlQT • SQRT(PV'
~N

Q

DO 91 I=l.N
00 <Jl J=1.N

!J=CJ-UtlN+I
QIIJ'

91
C

=Q

lIJI/CgORTCPXII) ·?X(J,"

GET THE EIGEN VE~TORS AND EiGE~ VALUES
OF O·OT

C

C
C

c
c
c
c
C
C
C

C
C
C

HI\X=5
IfCN.LT.HAX' HAX=N
G~=D.00f11

CORDOZOt
COP.002r.J2
SOR0021J3
GOP-00204
COR0020,)
COR0020o
COR0020l

~OR002tp

CORDD21e:
CORODl20
COR002:?1
COP00222
CORD022:;
COR00224
COR00225
COR0022S
COR00227
COR00228
COROOl2<:
COROOl30
COl\00231
GOR00232
CORoa233

COR0f)234
COR0023S
CALL THE SU9POUTiNE TO GET T~E E:GENVALS :OR00236
GET A MAX Of 5 EIGENVALUES. IF ALL FIVE COR00237
ARE NEAR UNITY,SET COR3=q.qqq~.
RETURN CORoa23P
IF ALL OF THEM (OTHE~ THtN THE F:RST ONEICOP0021 c
ARE _ESS T~AN 0.001 • SET ~O~3=a.OOOl AN0:0R0024f
RETURN. THE fIGEN VA_UES A~E CA~~ULATEO COR00241
W~TH AN ACCURACY OF 0.0001.
COR00242
COROD243
::;OROQZ44
CORD 0 2'.5
COR0024f,
COROOZ47
COROOZ4C'

EPS=O.00001
CALL SFA02DCQ,N,N,CR,E~S,HAX,NE'E,V,B,C,0,F,IE'

c

COR0024(~

COR00251\i

(-

I

I

\
I
!

.,
204
i.

.JI.·

..

.,,

\~

I

II


C SUBROUTINE COP

IF(NE.GT.1) GO TO 60

C COR3=0.0001 AND RETURN

C COR3=0.01

WRITE(6,200)

200 FORMAT(1H1,1X,'ALL EIGEN VALUES OTHER THAN THE FIRST ARE LESS THAN')

I0.001. COR3 IS SET=0.0001'/10X,'ABORT AA')

N=NNNN

RETURN

60 CONTINUE

C FIND THE EIGEN VALUE CLOSEST TO 1.0

DO 63 I=1,NE

DIF=ABS(E(I)-1.0)

JJE=I

IF(DIF.GT.0.00003) GO TO 64

63 CONTINUE

C IF PROGM IS AT THIS POINT, THEN THE FIRST 5 EIGEN VALUES ARE CLOSE TO 1.0. SET COR3=0.9999 AND RETURN

C COR3=0.9999

WRITE(6,202)

202 FORMAT(1H1,1X,'THE FIRST 5 EIGEN VALUES ARE NEAR UNITY. /10X,'1 COR3 IS SET =0.999....ABORT BB')

N=NNNN

RETURN

C FOUND A PROPER EIGEN VALUE

64 IF(FOUND=JJE

C COR3=SORT(E(FOUND))

N=NNNN

RETURN

END
SUBROUTINE IEOQP1(N,K,F,IQ,IMIN)
DIMENSION F(1),IQ(1)
DIF=10**6
GET THE FIRST QUANTIZING LEVEL.
GO THRU THE WHOLE ARRAY OF C.D.F.'S
DO 1 J=1,N
FIND PERCENTAGE OF DISTRIBUTION FOR FIRST QUANTIZING LEVEL AND
CHECK FOR THE NEAREST C.J.F.
X=AAS(1./FLOAT(K)-F(J))
IF(DIF.LE.X)GO TO 1
DIF=X
ISAVE=J
1 CONTINUE
FIRST QUANTIZING LEVEL
IQ(1)=ISAVE+IMIN-1
TO GO FOR NEXT LEVEL
LFTOFF=ISAVE
DO 2 I=2,K
DECIDE FOR OTHER QUANTIZING LEVELS IN THE SIMILAR WAY.
DIF=10.**6
DO 3 J=LFTOFF,N
THE PERCENTAGE OF DISTRIBUTION FOR NEXT QUANTIZING LEVEL WILL
BE DECIDED AMONG REST OF ELEMENTS.
X=ABS(((1.-F(LFTOFF))/F(K-I+1))+F(LFTOFF)-F(J))
IF(X.EQ.0)GO TO 3
DIF=X
ISAVE=J
GET THE NEXT QUANTIZING LEVEL
3 CONTINUE
IQ(I)=ISAVE+IMIN-1
LFTOFF=ISAVE
2 CONTINUE
RETURN
END
SUBROUTINE RITOWT(LEX1, LEX2, LEX3, LEX4, G, IQ, MERGE, IF, PICTUR)

D: dimension LEX1(1), LEX2(1), LEX3(1), LEX4(1), G(64), IQ(64), 3(4)
COMMON M1, N1, TYPE, F(14), J0(9), ANGMOM(4), ANMFAN(4), SGMAXQ(4),
1 SGMAX(4), DIFMM(4), RATIO(4), VIMI(4), THEAN, LEASI, NRED
COMMON NAYFR, NSTART, NITEM, ND, PNCH
COMMON VE, SNEWS(4), CDEF(14), Q, FAVE(4), DIFVAR(4), SUMPNT(4),
1 SUMAVE(4), SUMVAR(4)
COMMON /JONREL/CORINF(4),JORMUT(4),CORMAX(4)
LOGICAL MERGE,PICTUR
DATA B(1),B(2),B(3),B(4)/0.,45.,90.,135./
DATA TAPE/1HT/
DATA Z/HY/
DATA KOUNT/0./INT/0/
NFT=NRED**MAYER
N=4
KKJ=50
M=3

CHECK FOR THE MERGE OPTION

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

IF(MERGE) GO TO 22

PUNCH OR NO PUNCH

IF(PNCH.NE.Y) GO TO 400

PUNCH TEXTURE FEATURES FOR ALL FOUR ANGLES

WRITE(43,600) M1,N1,NFT
106 FORMAT(I0,2A5,12H1IS COMPLETED)
KOUNT=KOUNT+1
WRITE(43,600) (ANSMOM(K),K=1,4),(ENTROP(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (RATIO(K),K=1,4),(SGMASQ(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (SGMAXY(K),K=1,4),(AMEAN(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (VIDMOM(K),K=1,4),(TMEAN,K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (DIFENT(K),K=1,4),(DIFAVE(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (DIFVAR(K),K=1,4),(SUMMNT(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (SUMAVE(K),K=1,4),(SUMVAR(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,600) (JORMINF(K),K=1,4),(JORMUT(K),K=1,4),KOUNT
KOUNT=KOUNT+1
WRITE(43,601) (CORMAX(K),K=1,4),KOUNT
600 FORMAT(1X,8F9.5,17)
601 FORMAT(1X,4F9.4,3A4,15)
661 FORMAT(1X,4F9.5,36X,17)
400 CONTINUE

WRITE TEXTURE FEATURES TO TAPE FILE 'IF'

IF(PNCH.NE.TAPE) GO TO 500
WRITE(IF) M1,N1,NFT,(ANSMOM(K),K=1,N),(ENTROP(K),K=1,N),(RATIO(K),
1K=1,N, (SMSGQ(K), K=1,N), (SMAXY(K), K=1,N), (AMEAN(K), K=1,N),
1(VIDMOM(K), K=1,N), (TMFAN(K), K=1,N), (DIFENT(K), K=1,N),
1(IFAVF(K), K=1,N), (DIFVAR(K), K=1,N), (SUMFNT(K), K=1,N),
1(SUMAVE(K), K=1,N), (SUMVAR(K), K=1,N), (CORINF(K), K=1,N),
1(K=1,N), (CORMAX(K), K=1,N)

500 CONTINUE

PRINT TEXTURE FEATURES FOR EACH ANGLE AND TITLE

WRITE(6,60) M1,N1,NFT

60 FORMAT(5) THE SCENE ('*','I2','*',I2,'*) HAS BEEN REDUCED BY ',I5)
WRITE(6,303)

303 FORMAT(6H ANGLE, 9H ANGOM, 9H ENTROP, 9H RATIO, 8H SGMSQ, 8H SGMAX, 8H SGMAX, 8H VIDMOM, 8H CFFNT, 8H DIFAVE, 8H DIFVAR, 8H SUMVAR, 8H SUMAVE, 8H CORINF, 8H CORMAX)
WRITE(6,300) (9(K), ANGOM(K), ENTROP(K), RATIO(K), SGMSQ(K), SGMAX(K), SGMAX(K), VIDMOM(K), DIFENT(K), DIFAVE(K), DIFVAR(K), SUMVAR(K), SUMAVE(K), SUMVAR(K), CORINF(K), CORMAX(K), K=1,N)

300 FORMAT(1X,F5.1,L5F9.4)
WRITE(6,600) TMEAN

100 CONTINUE

IF NEITHER PNCY NO TAPE, PRINT LEX ARRAYS

IF((PNCY.EQ.Y) OR (PNCY.EQ. TAPE)) RETURN
WRITE(6,31) GN
WRITE(6,31) IN

31 FORMAT(2H F/(1X,16F7.3))
31 FORMAT(3H IQ/(1X,1617))
NOB=IDD(1)-IDD(2)+1

IF MERGE, JUST DO LEX1 AND RETURN

IF(MERGE) GO TO 54
WRITE(6,566)

566 FORMAT(10X,9H0 DEGREES) REPRODUCIBILITY OF THE
DO 50 I=1,NOB
NE=(I+1)*7/2
PRINT LEX2 FOR 0 DEGREES

50 WRITE(6,700) (L=N2(J), J=NS, NE)
700 FORMAT(1X,26S5)
WRITE(6,567)

567 FORMAT(10X,10H45 DEGREES)
DO 51 I=1,NOB
NE=(1+1)*7/2
PRINT LEX4 FOR 45 DEGREES

51 WRITE(6,700) (LEX4(J),J=NS,NE)
 WRITE(6,99)
99 FORMAT(1+1)
54 WRITE(6,568)
568 FORMAT(/10X,10490 DEGREES)
 DO 52 I=1,N0BL
 NS=I*(I-1)/2+1
 NF=(I+1)*I/2

PRINT LEX1 FOR 90 DEGREES

52 WRITE(6,700) (LEX1(J),J=NS,NE)
 IF(MERGE) RETURN
 WRITE(6,569)
569 FORMAT(/10X,114135 DEGREES)
 DO 53 I=1,N0BL
 NS=I*(I-1)/2+1
 NF=(I+1)*I/2

PRINT LEX3 FOR 135 DEGREES

53 WRITE(6,700) (LFX3(J),J=NS,NE)
 RETURN

FOR THE MERGE OPTION

IF PICTURE HAS BEEN PRINTED

22 IF(PICTUR) GO TO 23
 INCREMENT PAGE COUNT
 IMT=IMT+1

IF PAGE IS FULL GO TO TOP OF NEXT PAGE AND WRITE TITLE

IF(IMT.E.1) WRITE(6,662)
 IF(.LT.6E-14) IMT=0
662 FORMAT(/10X,"ERTS TEXTURE ANALYSIS",//
 1 IX^X ANG.ME ANG.ENTROP RATIO SGMASQ SMAXY VMOM\)
 1 IM DIFEV DIFVAV DUMEN DUMAVE SUMVAR COVINF CORINF\)
 1 CORMAX */)

CHECK FOR PUNCH

23 IF(PUNCH.NE.Y) GO TO 40

PUNCH THE MERGED TEXTURE FEATURES
WRITE(43,663) M1,N1,NFT,ANGHOM(M),ENTROP(M),RATIO(M),SGMASQ(M),
1 SGMAXY(M),AMEAN(M),VICHOM(M),KOUNT
KOUNT=KOUNT+1
WRITE(43,664) TMEAN,DIFENT(M),DIFAVE(M),DIFVAR(M),SUMENT(M),
1 SUMAVE(M),SUMVAR(M),KOUNT
KOUNT=KOUNT+1
WRITE(43,665) CORINF(M),CORMUT(M),CORMAX(M),KOUNT
KOUNT=KOUNT+1
663 FORMAT(12X,1F7.1,12X,1F9.5,19)
664 FORMAT(3X,7F9.5,19)
665 FORMAT(3X,3F9.5,36X,19)
40 CONTINUE
C CHECK FOR TAPE OUTPUT
IF(PNCH.NE.TAPE) GO TO 41
C WRITE OUT ONTO FILE *IF* THE MERGED TEXTURE FEATURES
WRITE(IIF) M1,N1,NFT,ANGHOM(M),ENTROP(M),RATIO(M),SGMASQ(M),
1 SGMAXY(M),AMEAN(M),VICHOM(M),TMEAN,DIFENT(M),DIFAVE(M),
2 DIFVAR(M),SUMENT(M),SUMAVE(M),SUMVAR(M),CORINF(M),CORMUT(M),
3 CORMAX(M)
C IN ANY CASE, PRINT THE MERGED TEXTURE FEATURES
41 WRITE(6,660) M1,N1,NFT
WRITE(6,666) ANGMOM(H),ANGHOM(M),ENTROP(M),RATIO(M),SGMASQ(H),SGMASQ(M)
1 SGMAXY(M),AMEAN(H),VICHOM(M),EVEAN,MEAN,DIFENT(M),DIFAVE(M),
2 DIFVAR(M),SUMENT(M),SUMAVE(M),SUMVAR(M),CORINF(M),CORMUT(M),CORMAX(M)
666 FORMAT(1X,*MERGE*,15F8.4)
667 FORMAT(1X,F9.5)
C NOW GO PRINT OUT THE MERGED _EX1_ ARRAY AND RETURN
GO TO 100
END

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
IV.2-c Cross-Band Texture Analysis Program Listings

SPECTR
GETIM / GETIT
ERTS (see IV.2-a)
DIFFER
COVAR
MNCVIN / MNCV
CORREL
CROSS-BAND TEXTURE ANALYSIS

written by RJ Bosley

Description of Program

This program is the mainline of programs which obtain a
numlin x numpl x ndim subimage from the erts input tape and for
each subimage calculates the covariance matrix and the
correlation matrix. This matrix is written to file ifile for
further analysis.

The erts tape is processed in horizontal rows of subimages.
subimages may overlap horizontally and vertically, and the
distance between neighboring cells used in the difference array
is variable.

Note---
erts input tape must be on file es.
a random disc file is required on file 11--- $ file 11, a11r, 30r

A random disc file is required on file 11--- $ file 11, a11r, 30r

Internal Parameters

number of grey tone n-tuple comp.
number of lines in a subimage
number of columns in a subimage
row coord for the subimage
column coord for the subimage
distance between neighboring res.
cells for the difference image
starting row for this run
stopping row for this run
set=0, the strip will be processed
to its end of file
horizontal overlap of subimages
vertical overlap of supimages
number of overlapping horizontal
subimages in a row
ending point for one line from erts
final row of subimages

Cor, Cov

correlation, covariance matrices

Title

title for the matrix
title for the matrix

format for printing out matrix terms
true to print out covariance matrix

determines output file for features
true for file 43, punched bars
false for file 01, tape or disc
output file for features

if

label and col. names for matrix printout

determinant of the correlation matrix

entrop

texture measure

card counter

Reproducibility of the
original page is poor
INPUT ARGUMENTS.

IMAGE, X ARRAY CONTAINING SUBIMAGE
ILINE ARRAY FOR READING ERTS TAPE
YDIM ROW DIMENSION OF IMAGE
IXDIM COL DIMENSION OF IMAGE
NOIN EQUAL TO NOIN, NO OF BANOS

ENTRY POINT.

CALL SPECTR(IMAGE, X, ILINE, IXDIM, YDIM, NOIN)

INPUT ARGUMENTS.

IMAGE, X ARRAY CONTAINING SUBIMAGE
ILINE ARRAY FOR READING ERTS TAPE
YDIM ROW DIMENSION OF IMAGE
IXDIM COL DIMENSION OF IMAGE
NOIN EQUAL TO NOIN, NO OF BANOS

ENTRY POINT.

CALL SPECTR(IMAGE, X, ILINE, IXDIM, YDIM, NOIN)

EXAMPLE OF DRIVER.

DIMENSION IMAGE(16, 17, 4), X(16, 17, 4), ILINE(330)
EQUIVALENCE (IMAGE(1, 1, 1), X(1, 1, 1), ILINE(130))
IXDIM=17
YDIM=16
NOIN=4
CALL SPECTR(IMAGE, X, ILINE, IXDIM, YDIM, NOIN)
STOP
END

THIS PROGRAM WILL SET UP THE TEXTURE RUN FOR 16 X 16 SUBIMAGE
OVER ALL FOUR BANDS, WITH IDIST=1. ***NOTE*** IXDIM MUST INCLUDE
NUMPLU PLUS IDIST, AND ARRAY ILINE MUST HAVE AT LEAST NUMPLU*NOIN
POINTS OUTSIDE OF ANY OTHER ARRAY. THESE POINTS FORM ARRAY XLINE
WHICH IS USED IN COVAR TO SEND ONE LINE OF DATA TO MNOV.

SUBPROGRAMS REQUIRED.

DRIVER
SPECTR
GETIM
SETDIM
GETIT
ERTS (WITH EREWNO)
DIFFER
COVAR
MNCVIN
MNV
CORREL
SFA077
HEMDET

SUBROUTINE SPECTR(IMAGE, X, ILINE, IXDIM, YDIM, NOIN)

DIMENSION IMAGE(XDIM, YDIM, NOIN), ILINE(1), TITLE(14), AR(9),
1 LABEL(8), OR(8, 8), JOV(8, 8), X1LYDIM, IXDIM, NOIN)
CHARACTER ROW*12, COL*12, TTL*6(14)
EQUIVALENCE (ROW, TTL(13), COL, TTL(11))
LOGICAL OPT, PNC
NAMELIST /PARAM/ NOIN, NUMLIN, NUMPLU, FMT, TITLE, OPT, IDIST, IRSTR,
1 IRSTOP, LAPHOR, LAPVER, PNC
DATA TTL(1) /'COVARIANCE OVER SUBIMAGE --- '~/TTL(6) '~/CORRELATION
CROSS-BAND TEXTURE ANALYSIS

SECTION I --- SET UP PARAMETERS FOR PROCESSING

OPT=.FALSE.
PNCH=.TRUF.
IDIST=1
IRSTR=1
IRSTOP=0
LAPHR=0
LAPVE=0
IXDIM=IXDIM
IXOIM=IXOIM
NOIM=NOIM
MDIN=MDIN
NUMLIN=NUMLIN
NUMPPL=NUMPPL
FMT=FMT

READ(5,PAPAM)

WRITE(6,PAPAM)

READ IN PARAMETERS

WRITE OUT PARAMETERS

IF(.NOT.OPT) WRITE(6,11)

IF(NUMPPL.LE.IXOIM) GO TO 5
WRITE(6,4)

IF(NOIM.LE.4) GO TO 7
WRITE(6,6)

IF(NOIM.LE.13) GO TO 12
WRITE(6,32) K9

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
CROSS-BAND TEXTURE ANALYSIS

32 FORMAT(* ERROR---IDIST MUST NOT EXCEED *14)
33 STOP
12 IF(LAPVR.GT.NUMPPL) GO TO 15
13 WRITE(6,14)
14 FORMAT(* FATAL ERROR---OVERLAP EXCEEDS SIZE OF SUBIMAGE*)
15 IF(LAPVR.GE.NUMLIN) GO TO 13
16 WRITE(6,16) IYDIM
17 FORMAT(* NUMLIN EXCEEDS *3, * LINES---EXECUTION TERMINATED*)
18 STOP

****** SECTION II --- PROCESS THE SUBIMAGES ******

17 CALL GETIM(IINE,IDIST,NDIM,IRSTR,IRSTOP,NUMLIN,NUMPPL,LAPVER, LAPHOR,NNOR,INCR,IPEND)

C

CALL SETDIM(COV,MOIN,MOIN)
KDIM=MOIN+1
IF(IPCH) IF=43

C

NROW=IRSTR/(NUMLIN-LAPVER)
LASTIM=(IRSTOP-IRSTR+1)/(NUMLIN-LAPVER)+1
KPE=NUMPPL+IDIST
DO 100 1=1,LASTIM
NROW=NROW+1

C

ENCODE (ROW,8) NROW
FORMAT(*6,6X)

C

CALL GETIT

C

KS=-INCR
DO 90 1=1,NNOR

C

KS=KS+INCR
DO 50 LLN=1,NUMLIN

C

JP=IPEND*(LLN-1)
DO 45 KOL=1,KPE

C

IP=JP+KS+KOL

C

SET UP FOR TITLE OF MATRICES
PUT THE COORDINATE INTO HOLLERITH LITERAL FOR MATRIX PRINTING
GET A ROW OF HORIZ OVERLAPPING SUBIMAGES FROM ERTS AND PUT THEM ON DISC FILES 11,12,13,14 FOR 4 BANDS
PULL OFF EACH SUBIMAGE, GOING ACROSS THE ENTIRE ROW
SET START AND END PTS FOR SUBIMAGE
GO THRU NUMLIN LINES
READ A LINE OF THE SUBIMAGE
READ IN THE RESOLUTION CELL

C

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
READ(11,IP) (IMAGE(IN,IN,IN),J=1,KDIM)
CONTINUE
50 CONTINUE
C CALL DIFFE(IMAGE,X,IXDIM,YDIM,NOI2,IO,JO,DI,NUMPPL,NUMLIN)
GET THE DIFFERENCE IMAGE
C CALL ENCODE(COL,NOI)
PUT THE COORDINATE INTO HOLERHIT
C CALL COVAR(ILINE,NOIM,NUMPPL,X,IXDIM,YDIM,NUMLIN,NOIM,COV)
GET THE COVARIANCE MATRIX FOR THIS
C CALL CORREL(COV,NOIM,NOIM)
WHERE COORDINATES ARE (NOI2,NOIM)
C IF(OPT) CALL SFA07F(COV,NOIM,NOIM,NOIM,NOIM,NOIM,2,1,2,FMT,TITLE,TTL(1),
1 TTL(1),TTL(13),LABEL,LABEL)
C CALL CORREL(COV,NOIM,NOIM)
GET THE CORRELATION MATRIX
C CALL SFA07F(COV,NOIM,NOIM,NOIM,NOIM,NOIM,2,1,2,FMT,TITLE,TTL(1),
1 TTL(13),LABEL,LABEL)
C DO 65 IS=1,NOIM
DO 65 JS=1,NOIM
COV(IS,JS)=COV(IS,JS)
65 CONTINUE
C CALL HEMDFT(COV,NOIM,DET)
GET THE DETERMINANT FOR THE
C CALL HEMDFT(COV,NOIM,DET)
GET THE DETERMINANT FOR THE
C ENTRP=(-1.)*ALOG(DET)
WRITE(6,91) ENTRP
91 FORMAT('ENTROPY MEASURE IS ',F15.5)
C KT=KT+1
WRITE(7,9200) NROW,NCOL,ENTR(P,((CO(R(J,X+1)),K=J,KDIM),J=1,KDIM)
CONTINUE
9200 FORMAT(2I3,1X,E13.6,6F10.6/8F10.6/6F10.6/6F10.6,1X,I5)
STOP
END
7 MEMORY EXPANDED. USE $LIMITS OR CORE= OPTION FOR NEXT RUN

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
GET THE IMAGE FROM ERTS

 Written by RJ Bosley

 Description of Program

 This program is initialized by calling GETIN. All following
 calls must be to GET1 which gets the subimage from the ERTS
 data tape on file CODE 'ES', and outputs a row of overlapping
 subimages to disc file 11.

 Internal Parameters.

 LENGTH Length of one ERTS line of data
 NOSK Number of lines to skip after
 rewinding ERTS input tape
 LNSTRT Starting line in ERTS data file
 LNNCR Vertical increment for the next row
 F Array containing cross band N-tuple

 Entry Point.

 CALL GET1(LINE, IDIST, NDIM, IRSTRT, IRSTOP, NUMLIN, NUMPL,
 LAPVER, LAPHOR, NHOR, INCR, IPEND)

 Input Arguments.

 LINE Array where ERTS line is read into
 IDIST Distance between neighboring cells
 to form difference array
 NDIM Number of components of each res cell
 IRSTRT Starting line of ERTS data file
 IRSTOP Ending line of ERTS data file
 NUMLIN Number of lines in subimage
 NUMPL Number of columns in subimage
 LAPVER Number of lines subimages overlap
 LAPHOR Number of columns subimages overlap

 Output Arguments.

 NHOR Number of horizontal overlapping
 subimages per row
 INCR Horizontal increment for first col of
 the next subimage in the row
 IPEND Last point in row

 Subroutine GET1(LINE, IDIST, NDIM, IRSTRT, IRSTOP, NUMLIN, NUMPL,
 LAPVER, LAPHOR, NHOR, INCR, IPEND)

 Dimension LINE(1), F(8)

 Call EINIT(LENGTH)

 WRITE(4, 4) LENGTH
 FORMAT(9, LENGTH OF ONE ERTS LINE IS *.16)

 IF(LENGTH .LE. 3300) GO TO 5

 Reproducibility of the original page is poor.
GET THE IMAGE FROM ERTS

WRITE(6,1) LENGTH
 formats the total length of ERTS line exceeds 3300
LENGTH=",16)
STOP

CALL EREWIND

IRSTR=IRSTR-1
LNSTR=LNSTR

LNINCR=NUMPL-LAPVER
ASSIGN 951 TO JP
ASSIGN 971 TO KP

IF(LAPVER.NE.0) GO TO 940

ASSIGN 990 TO JP
ASSIGN 970 TO KP

IF THERE IS NO OVERLAP, DO NOT REWIND

CALL EREWIND

LENGTH OF NbIM WORDS PER RECORD

IF(USR.FEQ.0) RETURN

RETURN

ENTRY TO GET IT

IF (LNSTR.EQ.IRSTR) GO TO 950
NOSK=LNSTR
2-12-74 18.736

GET THE IMAGE FROM ERTS

K=NOSK+NUMLIN

C IF(K.LT.1STOP) GO TO 901
WRITE(6,900) ISTOP,NOSK
900 FORMAT(* PROCESSING TERMINATED--NEXT ROW WOULD EXTEND PAST LAST LINE,'16,' LAST LINE COMPLETED WAS '16)
STOP
C CALL ESKIP(NOSK)
901 CONTINUE
C LASTLINE=LASTLINE+LINCR
C KT=0
DO 903 1=1,NUMLIN
CALL EPEAD(INLINE,N)
.C IF(INLINE.EQ.0) GO TO 902
WRITE(6,905)
905 FORMAT(* EOF DETECTED ON ERTS INPUT TAPE--PROCESSING TERMINATED')
STOP
C DO 960 IP=IS,IE,4
KT=KT+1
C F(1)=INLINE(IP+2)
F(2)=(INLINE(IP+2))*INLINE(IP+2)
F(3)=ILINE(IP+3)
F(4)=(INLINE(IP+3))*ILINE(IP+3)
F(5)=(INLINE(IP+2))*ILINE(IP+3)
F(6)=ILINE(IP+4)
F(7)=(ILINE(IP+4))*ILINE(IP+4)
F(8)=(ILINE(IP+2))*ILINE(IP+4)
C WRITE(11,KT) (F(I),I=1,NDIM)
960 CONTINUE
983 CONTINUE
GO TO KP,(970,971)
C CALL EREW0
971 CONTINUE
970 RETURN
END

7 MEMORY EXPANDED. USE $LIMMS OR CORE= OPTION FOR NEXT RUN
DIFFER
GET THE DIFFERENCE ARRAY

Written by RJ Bosley

January 1974

Description of Program
This program replaces the original image IA with the nearest horizontal difference, (IA-J1, IA-J2, ..., IA-JN) where I and J are N-dimensional, horizontally neighboring resolution cells of distance IDIST. Note that the absolute value is used, giving only the positive half of the distribution of differences I-J and J-I.

Entry Point:
CALL DIFFER(IA,X,IXDIM,IYDIM,IDIM,IDIST,NUMPPL,NUMLIN)

Arguments:
IA - THE SUBIMAGE BEING PROCESSED
X - DIFFERENCE ARRAY
IXDIM - COL DIMENSION OF X
IYDIM - ROW DIMENSION OF X
IDIM - THE DIMENSION OF EACH RESOLUTION CELL
IDIST - DISTANCE BETWEEN RESOLUTION CELLS USED FOR THE DIFFERENCE ARRAY
NUMPPL - NUMBER OF COLUMNS IN SUBIMAGE
NUMLIN - NUMBER OF LINES IN SUBIMAGE

Subroutine DIFFER(IA,X,IXDIM,IYDIM,IDIM,IDIST,NUMPPL,NUMLIN)

DIMENSION IA(IYDIM,IXDIM,1),X(IYDIM,IXDIM,1)

DO 5 IBAND=1,IDIM
 DO 4 LINE=1,NUMLIN
 DO 3 KOL=1,NUMPPL
 KKOL=KOL+IDIST
 X(LINE,KOL,IBAND)=IABS(IA(LINE,KOL,IBAND)-IA(LINE,KKOL,IBAND))
 CONTINUE
 CONTINUE
5 CONTINUE
4 CONTINUE
3 CONTINUE
2 RETURN
END
FIND THE COVARIANCE MATRIX FOR THE SUBIMAGE

CCOVAR

WRITTEN BY RJ BOSLEY
JAN 1974

DESCRIPTION OF PROGRAM
This program takes the difference subimage and calculates the covariance matrix for it.

DESCRIPTION OF PARAMETERS
PERCNT PERCENTAGE OF TOTAL VECTORS X FROM WHICH COVARIANCE IS CALCULATED
SCR,XLINE,SAM IER SCRATCH ARRAYS ERROR FLAG FROM MNCVIN
IER ERROR FLAG FROM MNCV
ENTRY POINT
CALL COVAR(XLINE,NUMPPL,X,IXDIM,IYDIM,NUMLIN,NOIN,COV)

INPUT ARGUMENTS.
XLINE ARRAY USED TO SEND ONE LINE TO MNCV
NDIM DIMENSION OF VECTORS X, NO OF BANDS
NUMPPL NUMBER OF COLUMNS IN SUBIMAGE
X FLOATING POINT DIFFERENCE ARRAY
IXDIM,IYDIM COL,ROW DIMENSIONS OF X
NUMLIN NUMBER OF LINES IN SUBIMAGE
NOIN DIMENSION OF COV ARRAY

OUTPUT ARGUMENTS.
COV COVARIANCE MATRIX FOR THE SUBIMAGE

SUBROUTINE COVAR(XLINE,NDIM,NUMPPL,X,IXDIM,IYDIM,NUMLIN,NOIN,COV)
DIMENSION X(NDIM,NUMPPL),XLINE(NDIM,NUMPPL),XMEAN(8),SCR(8),
1 NTRUTH(1),SAM(1),COV(NOIN,NOIN)
PERCNT=100.0
CALL MNCVIN(NUMPPL,NDIM,NUMLIN,PERCNT,XLINE,NTRUTH,COV,XMEAN,
1 SCR,SAM,IER,IER)
IFIER.EQ.0) GO TO 1
WRITE(6,2) IER
2 FOMAT('ERROR IN MNCVIN, IERROR IS ',I3)
STOP
1 CONTINUE
DO 10 LINE=1,NUMLIN
10 GO TO 10
FIND THE COVARIANCE MATRIX FOR THE SUBIMAGE

GET ONE LINE OF DATA

DO 6 I=1,NDIM
DO 5 KO=1,NUMPPL
5 X_LINE(I,KOL)=X(LINE,KOL,I)
6 CONTINUE

INCREMENT COVARIANCE CALCULATIONS

CALL MNCV

IF (JER.EQ.0) GO TO 10

WRITE(6,7) JER
7 FORMAT(* ERROR IN MNCV, JERROR IS *:*2)
STOP

CONTINUE

NOTE***ONLY THE POSITIVE DIFFERENCES WERE USED IN THE CALCULATIONS---THE TRUE MEAN MUST BE ZERO, SO WE MUST ADD XMEAN**2 TO EACH ELEMENT

DO 20 I=1,NDIM
DO 20 J=1,NDIM
20 COV(I,J)=COV(I,J)+XMEAN(I)*XMEAN(J)
RETURN
END
IDENTIFICATION

PROGRAM NAME: MNCVIN
OTHER ENTRY POINT: MNCV
SYSTEM: PDP-15
SOURCE LANGUAGE: FORTRAN IV
AUTHOR: JAMES D. YOUNG
DATE: 8/18/73

PURPOSE

TO CALCULATE THE MEAN VECTOR AND COVARIANCE MATRIX FOR EACH CATEGORY OF A SET OF VECTORS. THE CALCULATIONS WILL BE BASED ON A SPECIFIED PERCENTAGE OF THE VECTORS RANDOMLY CHOSEN WITHIN THE SET.

ENTRY POINT - MNCVIN(NVPCAL, NCALM, NCALL, PERCENT, NCAT, X, NTRUTH, COV, XMEAN, SCTHEN, SAMSZ, JERROR, JERROR)

THIS INITIALIZES THE ROUTINE. AFTER MNCVIN HAS BEEN CALLED CHECK JERROR TO SEE IF IT IS NONZERO WHICH INDICATES THAT AN ERROR HAS OCCURRED.

ENTRY POINT - MNCV

THE CALL TO MNCV SHOULD BE PERFORMED NCALL TIMES, EACH TIME WITH THE NEXT GROUP OF VECTORS IN X. IF MORE THAN ONE CATEGORY IS BEING CONSIDERED, THE GROUND TRUTH INTEGERS IN NTRUTH ASSOCIATED WITH THE VECTORS SHOULD ALSO BE UPDATED EACH TIME MNCV IS CALLED, AND JERROR SHOULD BE CHECKED AFTER EACH CALL TO SEE IF IT IS NONZERO WHICH INDICATES THAT AN ILLEGAL GROUND TRUTH INTEGER HAS BEEN FOUND. IF ONLY ONE CATEGORY IS BEING CONSIDERED HOWEVER, THE VALUES IN NTRUTH ARE NOT USED IN THE ROUTINE.

AFTER MNCV HAS BEEN CALLED NCALL TIMES THE MEAN VECTOR AND COVARIANCE MATRIX FOR EACH CATEGORY IS COMPLETED. IN ADDITION, THE NUMBER OF VECTORS USED FOR THE CALCULATIONS FOR EACH CATEGORY IS OUTPUT. THESE NUMBERS SHOULD BE CHECKED WHEN APPROPRIATE TO SEE IF ENOUGH VECTORS WERE USED FROM EACH CATEGORY TO GIVE A REASONABLE ESTIMATE OF THE DESIRED STATISTICS.

ARGUMENTS

INPUT -

NVPCAL NUMBER OF VECTORS PER CALL
NDIM DIMENSION OF DATA VECTORS
NCALL NUMBER OF CALLS
PERCNT PERCENTAGE OF TOTAL NUMBER OF VECTORS FROM WHICH
MEAN AND COVARIANCE MATRICES WILL BE CALCULATED
NCAT NUMBER OF CATEGORIES CONSIDERED
 =1 IF ONLY ONE SET OF STATISTICS WILL BE
 CALCULATED FOR ALL DATA
 =NUMBER OF CATEGORIES IN DATA IF ONE SET OF
 STATISTICS WILL BE CALCULATED FOR EACH CATEGORY
X X(NDIM,NVPCAL) MATRIX CONTAINING INPUT DATA VECTORS
 IN ITS COLUMNS
NTRUTH NTRUTH(NVPCAL) VECTOR CONTAINING THE GROUND TRUTH
 INTEGERS, 1 THROUGH NCAT, ASSOCIATED WITH THE DATA
 VECTORS OF X. IF NCAT EQUALS 1 THIS VECTOR WILL NOT
 BE USED.

OUTPUT -

COV COV(NDIM,NDIM,NCAT) MATRIX CONTAINING COVARIANCE
 MATRICES OF THE DATA
XMEAN XMEAN(NDIM,NCAT) MATRIX CONTAINING MEAN
 VECTOR/VECTORS OF THE DATA
SCSTMEN SCSTMEN(NDIM,NCAT) SCRATCH MATRIX CONTAINING AN
 ESTIMATE OF THE MEAN VECTOR/VECTORS
SAHSZ SAHSZ(NCAT) VECTOR CONTAINING NUMBER OF VECTORS USED
 TO CALCULATE THE STATISTICS FOR EACH CATEGORY
IERROF ERROR INDICATED IF RETURNED NONZERO
 =1 IF NVPCAL .LE. 0
 =2 IF NDIM .LE. 0
 =3 IF NCAL .LE. 0
 =4 IF PERCNT .GT. 100, OR PERCNT IS SO SMALL THAT
 FEWER THAN 2 VECTORS WILL BE USED TO CALCULATE
 ALL THE STATISTICS
 =5 IF NCAT .LE. 0
 (IF MORE THAN ONE OF THESE ERRORS OCCURS,
 THE HIGHER VALUE WILL BE RETURNED)
JERROR ERROR INDICATED IF RETURNED NONZERO
 =1 IF ILLEGAL GROUND TRUTH LABEL IS FOUND

INTERNAL PARAMETERS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

226
INITIALIZER ENTRY POINT

SUBROUTINE MNCVIN(NVPCAL, NOIM, NCALL, PERCNT, NCAT, X, NTRUTH, COV, 1
 XMEAN, SCOTHEN, SAMSZ, IERROR, JERROR)

DIMENSION X(NOIM, 1), NTRUTH(1), COV(NOIM, NOIM, NCAT), XMEAN(NCAT, 1), 1
 SCOTHEN(NOIM, 1), SAMSZ(NCAT)

ICALL=0
VECTS=NVPCAL*NCALL
IERROR=0
NVBU=VECTS*PERCNT/100.+0.49999
VBU=NVBU
VLBU=NVBU
VLEFT=VECTS
INTRUE=1
IP=33333
IQ=55555
JERROR=0

CHECK LEGALITY OF SOME NUMBERS:

IF(NVPCAL.LE.0) IERROR=1
IF(NOIM.LE.0) IERROR=2
IF(NCALL.LE.0) IERROR=3
IF(PERCNT.GT.100..OR.VBU.LT.2.) IERROR=4
IF(NCAT.LE.0) IERROR=5

ZERO OUT A FEW ARRAYS

DO 14 K=1,NCAT
 SAMSZ(K)=0
 DO 14 J=1,NOIM
 XMEAN(J,K)=0
 SCOTHEN(J,K)=0
 DO 14 I=1,NOIM
 COV(I,J,K)=0
 14 CONTINUE

REPRODUCIBILITY OF THE ORIIGINAL PAGE IS POOR
MNCVIN - MNCV

SET TRANSFER TO REFLECT NUMBER
OF CATEGORIES

ASSIGN 5 TO IGO
IF(NCAT.GT.1) ASSIGN 15 TO IGO
RETURN

ENTRY POINT FOR ALL CALLS AFTER THE FIRST

ENTRY MNCV

ICALL=ICALL+1
IF((ICALL/50)*50.NE.ICALL.AND.ICALL.NE.10) GO TO 1

UPDATE ESTIMATE OF THE MEANS AND MODIFY
COVARIANCE CALCULATIONS TO REFLECT
THIS UPDATE

DO 10 K=1,NCAT
IF(SAMSZ(K).EQ.0.) GO TO 10
DO 2 J=1,NDIM
DO 2 I=1,J
2 COV(I,J,K)=COV(I,J,K)-SAMSZ(K)*(XMEAN(I,K)/SAMSZ(K)-SCMMN(I,K))*
1 (XMEAN(J,K)/SAMSZ(K)-SCMMN(J,K))
DO 3 J=1,NDIM
3 CONTINUE
10 CONTINUE

CONTINUE TO CALCULATE MEAN AND
UPPER TRIANGLE OF COVARIANCE MATRICES

1 DO 8 I=1,NVPCAL

Determine whether to skip this vector

IF(RCM(IP,IQ).GT.VLTBU/VLEFT) GO TO 11

INCLUDE THIS VECTOR IN CALCULATIONS

VLTBU=VLTBU-1.
GO TO IGO,(15,5)

WE ARE TO CONSIDER MORE THAN ONE
CATEGORY

15 INTRU=INTRU(I)

CHECK LEGALITY OF GROUND TRUTH LABEL

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
IF(INTRU.LE.0.OR.INTRU.GT.NCAT) GO TO 9
6 DO 4 J=1,NOIM

 SUM FOR MEAN
 XMEAN(J,INTRU)=XMEAN(J,INTRU)+X(J,I)
 DO 4 K=1,J

 SUM FOR FOR COVARIANCE
 COV(K,J,INTRU)=COV(K,J,INTRU)+(X(J,I)-SCTHEN(J,INTRU))*(X(K,I)-
 1 SCTHEN(K,INTRU))
 4 CONTINUE
 SAMSZ(INTRU)=SAMSZ(INTRU)+1.
 11 CONTINUE
 VLEFT=VLEFT-1.
 8 CONTINUE
 IF(ICALL.LT.NCALL) RETURN

ALL VECTORS HAVE BEEN INPUT
FINISH CALCULATION OF STATISTICS

DO 7 K=1,NCAT
 IF(SAMSZ(K).EQ.0.) GO TO 7
 DO 6 J=1,NOIM
 COV(I,J,K)=COV(I,J,K)/SAMSZ(K)-(XMEAN(I,K)/SAMSZ(K)-SCTHEN(I,K))**
 1 (XMEAN(J,K)/SAMSZ(K)-SCTHEN(J,K))
 6 CONTINUE

FILL IN LOWER TRIANGLE

6 COV(J,I,K)=COV(I,J,K)
 DO 13 J=1,NOIM
 XMEAN(J,K)=XMEAN(J,K)/SAMSZ(K)
 13 CONTINUE
 7 CONTINUE
 RETURN
9 JERROR=1
GO TO 12
END

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
GET THE CORRELATION MATRIX FOR THE SUBIMAGE

CCORPEL

WRITTEN BY RJ BOSLEY

JAN 1974

DESCRIPTION OF PROGRAM

THIS PROGRAM CALCULATES THE CORRELATION MATRIX GIVEN THE
COVARIANCE MATRIX AND ITS ORDER.

ENTRY POINT.

ENTRY POINT.

CALL CORREL(COV,NOIM,COR)

ARGUMENTS.

COV

COVARIANCE MATRIX ARRAY

NOIM

ORDER OF MATRICES

COR

CORRELATION MATRIX ARRAY

SUBROUTINE CORREL(COV,NOIM,COR)

DIMENSION COV(NOIM,NOIM),COR(NOIM,NOIM)

DO 10 LINE=1,NOIM

COVL=ABS(COV(LINE,LINE))

GO THRU EACH ROW OR LINE

DO 9 KOL=LINE,NOIM

COVC=ABS(COV(KOL,KOL))

COR(LINE,KOL)=COV(LINE,KOL)/SQRT(COVC*COVL)

9 CONTINUE

RETURN

END
IV.2-d Piecewise Linear Classification Program Listings

RCLASS
XIN
LINEAR
WEIGHT
DESCRIPTION OF PROGRAM:
This subroutine CLASSifies a given set of pattern vectors into one of many possible categories using the information contained in a set of training patterns whose categories are known.

ENTRY POINT:
CALL RCLASS(WORK,ISIZE)

INPUT ARGUMENTS:
WORK - scratch array used by RCLASS
ISIZE - size of the scratch array WORK. THE ARRAY WORK MUST BE DIMENSIONED IN THE CALLING PROGRAM, WITH A DIMENSION GREATER THAN OR EQUAL TO ISIZE. THE VALUE OF ISIZE IS GIVEN BY

\[
\text{ISIZE} = \text{NDIM} \times (\text{NTRAIN} + 10) + 1000 + (\text{NC} \times (\text{NC} + 1)/2) \times \text{ND} + \text{NPAIR} \times \text{ND}
\]

WHERE ND = NOIM - 1

INPUT PARAMETER CARDS:
CARD 1. SHOULD CONTAIN THE PROGRAM OPTION PARAMETERS NOPT1, NOPT2, NOPT3, NOPT4, IN FORMAT (11).

IF (NOPT1 .NE. 0) THE TRAINING PATTERNS ARE PRINTED OUT
IF (NOPT2 .NE. 0) THE TEST PATTERNS ARE PRINTED OUT
IF (NOPT3 .NE. 0) THE CLASSIFICATION OF EACH TRAINING PATTERN IS LISTED. OTHERWISE, ONLY THE CONTINGENCY TABLE IS PRINTED OUT
IF (NOPT4 .NE. 0) THE CLASSIFICATION OF EACH TEST PATTERN IS LISTED. OTHERWISE ONLY THE CONTINGENCY TABLE IS PRINTED OUT.

CARD 2. SHOULD CONTAIN PARAMETERS NTOT, NPART, NOIM, NC, NPAIR IN FORMAT (515).

NTOT -- total number of pattern vectors in the data SFT

NPAIR -- NPAIR OUT OF EVERY 10 pattern vectors in the pattern set will be used for training. The classifier remaining patterns will be used for testing the classifier.

NOIM -- number of measurements per vector plus 2
NC -- number of ground truth categories

NPAIR -- 2*(maximum number of training patterns in
ANY ONE CATEGORY)

INPUT DATA SET.

INPUT DATA VECTORS ARE READ IN BINARY FROM FILE CODE 01

ACCORDING TO THE FOLLOWING READ---

READ(01) IGT, M1, NFT, (FEAT(I), I=1,NMEAS)

WHERE:

INGT IS THE GROUND TRUTH CATEGORY

M1, NFT ARE NOT USED (MAY BE USED AS TO TAGS)

FEAT(I) IS THE FEATURE VECTOR I-TH COMPONENT

NMEAS IS THE NUMBER OF COMPONENTS OR MEASUREMENTS IN

EACH FEATURE VECTOR=NOIM-2.

THE DATA FILE SHOULD HAVE A TOTAL OF NJOT LOGICAL RECORDS IN

BINARY FORM. EACH LOGICAL RECORD MUST BE OF LENGTH (NOIM+2)

WORDS. WORD 1 IS THE GROUND TRUE CATEGORY AND 5 THRU NOIM+2 ARE

THE MEASUREMENT VALUES. THE PATTERN VECTORS MUST BE SORTED BY

CATEGORY. THE DATA SET IS SORTED INTO TRAINING AND TEST SETS

ACCORDING TO THE USER SPECIFIED RATIO IN NPART. TRAINING PATTERNS

ARE COPIED TO CORE AND TEST PATTERNS ARE COPIED TO DISC ON FILE

CODE 02.

LIMITATIONS.

1. MAXIMUM NUMBER OF CATEGORIES IS 15.

2. MAXIMUM VALUE OF NOIM IS 100.

3. SCRATCH DISC FILE MUST BE ON 02 AND INPUT DATA ON 01.

4. PATTERN VECTORS MUST BE SORTED BY CATEGORY.

THEORY.

USING A REGRESSION TYPE ALGORITHM, THE PROGRAM

OBTAINS A SET OF HYPERPLANES FOR SEPARATING THE

TRAINING PATTERNS. THE SEPARATION IS DONE FOR

DIFFERENT CATEGORY PAIRS. A TOTAL OF NOIM(NOIM-1)/2

HYPER PLANES ARE DETERMINED. TEST PATTERNS ARE

CLASSIFIED ON THE BASIS OF A MAJORITY VOTE ON THESE

HYPERPLANES.

BIBLIOGRAPHY.

FOR A COMPLETE DISCUSSION OF DETAILS, SEE "INTRODUCTION TO

STATISTICAL PATTERN RECOGNITION" BY FUKUNAGA, ACADEMIC PRESS,

NEW YORK, 1972.

SUBPROGRAMS REQUIRED.

DRIVER

RCLASS

XIN

LINEAR

WEIGHT

MINV -- A FORTRAN CALLABLE ROUTINE FROM IBM SSP

EXAMPLE.

IN ORDER TO PROCESS A DATA SET REQUIRING A SCRATCH ARRAY OF

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR.
SIZE 15000, THE DRIVER SET UP IS AS FOLLOWS ---

SAMPLE DRIVER FOR CLASSIFICATION PSN
DIMENSION WORK(15000)
ISIZE = 15000
CALL RCLASS(WORK, ISIZE)
STOP
END

SUBROUTINE RCLASS(WORK, ISIZE)

DIMENSION WORK(ISIZE), DO(50)
COMMON NTRAIN, NTEST, NDIM, NC, NPAIR, NH, NOPT1, NOPT2, NOPT3, NOPT4,
1 NTOT, NPART

CALL XIN(WORK(1), DO(1))

READ IN PARAMETER CARDS AND DATA SET

LOCATE THE BEGINNING ADDRESS OF THE VARIOUS ARRAYS FOR THE LINEAR SJSPGM

CALL LINEAR(WORK(I1), WORK(I2), WORK(I3), WORK(I4), WORK(I5))

RETURN END

IF(ISIZE.LE.15000) GO TO 53
WRITE(6, 82) IAM, "PROBLEM WIL NOT FIT THE CORE ALLOCATED FOR THIS PROGRM"
CONTINUE
53 CALL LINEAR(WORK(I1), WORK(I2), WORK(I3), WORK(I4), WORK(I5))
RETURN

READ IN PARAMETER CARDS AND DATA SET

LOCATE THE BEGINNING ADDRESS OF THE VARIOUS ARRAYS FOR THE LINEAR SJSPGM

CALL LINEAR(WORK(I1), WORK(I2), WORK(I3), WORK(I4), WORK(I5))
RETURN

END

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
READ IN THE DATA

DESCRIPTION OF PROGRAM:
THIS SUBROUTINE READS IN THE TWO PARAMETER CARDS AND THEN
READS IN THE DATA SET, COPYING THE TEST PATTERNS TO DISC FILE 02.

ENTRY POINT.
CALL XIN(WORK,U)

INPUT ARGUMENTS.
WORK
U

INTERNAL PARAMETERS.
NTIME
NPAIR
NH
NOPT1-4
NSKIP
NTOT
NPART
NOIM
NC
NPAIR
NH
NOPT1-4
NSKIP
NTIME
ILEFT

DIMENSION WORK(11),U(11)
COMMON NTRAIN,NTEST,NDIM,NO,NC,NPAIR,NH,NOPT1,NOPT2,NOPT3
1 NTOT,NPART

READ(5,100) NOPT1,NOPT2,NOPT3,NOPT4
READ(5,101) NTOT,NPART,NOIM,NC,NPAIR

100 FORMAT(11)
101 FORMAT(5I5)

RELOAD 01

ICALIZE INTERNAL PARAMETERS
READ IN THE DATA

NTRAIN = 0
NDO = NDIM + 2
NTIMES = NTOT / 10
NSKIP = 10 - NPART

IF (NOPT1 .NE. 0) WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)
WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)

DO 20 NN = 1, NTIMES
IF (NSKIP .EQ. 0) GO TO 16
DO 15 JJ = 1, NSKIP
READ(1) (U(K), K = 1, NDO)
CONTINUE
DO 10 JJ = 1, NPART
NTRAIN = NTRAIN + 1
IBEGIN = (NTRAIN - 1) * NDIM + 1
IEND = NTRAIN * NDIM
IB1 = IBEGIN + 1
IB2 = IB1 + 1
WORK(IB1) = 1.0
READ(1) WORK(IBEGIN), NM1, NM2, NM3, (WORK(K), K = IB2, IEND)
CONTINUE
READ IN THE LEFTOVER PATTERNS
IF (ILEFT .EQ. 0) GO TO 26
DO 25 JJ = 1, ILEFT
CONTINUE

READ IN THE DATA

NTRAIN = 0
NDO = NDIM + 2
NTIMES = NTOT / 10
NSKIP = 10 - NPART

IF (NOPT1 .NE. 0) WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)
WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)

DO 20 NN = 1, NTIMES
IF (NSKIP .EQ. 0) GO TO 16
DO 15 JJ = 1, NSKIP
READ(1) (U(K), K = 1, NDO)
CONTINUE
DO 10 JJ = 1, NPART
NTRAIN = NTRAIN + 1
IBEGIN = (NTRAIN - 1) * NDIM + 1
IEND = NTRAIN * NDIM
IB1 = IBEGIN + 1
IB2 = IB1 + 1
WORK(IB1) = 1.0
READ(1) WORK(IBEGIN), NM1, NM2, NM3, (WORK(K), K = IB2, IEND)
CONTINUE
READ IN THE LEFTOVER PATTERNS
IF (ILEFT .EQ. 0) GO TO 26
DO 25 JJ = 1, ILEFT
CONTINUE

READ IN THE DATA

NTRAIN = 0
NDO = NDIM + 2
NTIMES = NTOT / 10
NSKIP = 10 - NPART

IF (NOPT1 .NE. 0) WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)
WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)

DO 20 NN = 1, NTIMES
IF (NSKIP .EQ. 0) GO TO 16
DO 15 JJ = 1, NSKIP
READ(1) (U(K), K = 1, NDO)
CONTINUE
DO 10 JJ = 1, NPART
NTRAIN = NTRAIN + 1
IBEGIN = (NTRAIN - 1) * NDIM + 1
IEND = NTRAIN * NDIM
IB1 = IBEGIN + 1
IB2 = IB1 + 1
WORK(IB1) = 1.0
READ(1) WORK(IBEGIN), NM1, NM2, NM3, (WORK(K), K = IB2, IEND)
CONTINUE
READ IN THE LEFTOVER PATTERNS
IF (ILEFT .EQ. 0) GO TO 26
DO 25 JJ = 1, ILEFT
CONTINUE

READ IN THE DATA

NTRAIN = 0
NDO = NDIM + 2
NTIMES = NTOT / 10
NSKIP = 10 - NPART

IF (NOPT1 .NE. 0) WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)
WRITE(6,201)
FORMAT(1H1,10X,*TRAINING PATTERNS*)

DO 20 NN = 1, NTIMES
IF (NSKIP .EQ. 0) GO TO 16
DO 15 JJ = 1, NSKIP
READ(1) (U(K), K = 1, NDO)
CONTINUE
DO 10 JJ = 1, NPART
NTRAIN = NTRAIN + 1
IBEGIN = (NTRAIN - 1) * NDIM + 1
IEND = NTRAIN * NDIM
IB1 = IBEGIN + 1
IB2 = IB1 + 1
WORK(IB1) = 1.0
READ(1) WORK(IBEGIN), NM1, NM2, NM3, (WORK(K), K = IB2, IEND)
CONTINUE
READ IN THE LEFTOVER PATTERNS
IF (ILEFT .EQ. 0) GO TO 26
DO 25 JJ = 1, ILEFT
CONTINUE
READ IN THE DATA

192=IN1+1
WORK(IN1)=1.0
READ A TRAINING PATTERN
C
READ(1) WORK(IBEGIN),NM1,NM2,NM3,(WORK(K),K=192,1END)
C
IF(NOPT1.NE.0) WRITE(6,101) NTTRAIN,WORK(IBEGIN),NM1,NM2,(WORK(K),
1K=192,1END)
C
25 CONTINUE
26 CONTINUE
REWIND 01
REWIND 02
C
COPY TEST PATTERNS TO DISC FILE 02
C
WRITE HEADING
C
IF(NOPT2.NE.0) WRITE(6,103)
103 FORMAT(1H1,10X,'TEST PATTERNS'),NTTEST=0
C
SKIP IF THERE ARE NO TEST PATTERNS
C
IF(NPART.NE.0) GO TO 99
DO 45 NN=1,NTIMES
DO 43 JJ=1,NSKIP
C
COUNT THE NO. OF TEST VECTORS
C
NTTEST=NTTEST+1
C
READ(1) (U(KK),KK=1,NCD)
C
READ INPUT DATA FILE THE SECOND TIME
C
U(4)=1.0
C
SET COMPONENT FOUR TO 1.0
C
IF(NOPT2.NE.0) WRITE(6,102)
C
WRITE OUT THE TEST PATTERNS
C
WRITE TEST PATTERN TO DISC FILE 02
C
SKIP OVER THE TRAINING VECTORS
C
DO 44 JJ=1,NPART
44 READ(1) (U(KK),KK=1,NCD)
C
END FILE 02
C
CONTINUE
C
CONTINUE
C
REWIND 02
C
REWIND 01
C
WRITE OUT A PROGRESS NOTE
C
WRITE(6,702)
702 FORMAT(5X,'DATA HAS BEEN COPIED ON TO DISK 02'),
C
Determine the NO. OF HYPERPLANE
C
NH=NC*(NC+1)/2
NG=NDIM-1
RETURN
END
LINEAR DISCRIMINANT FUNCTION

DESCRIPTION OF PROGRAM.

THIS SUBROUTINE CALLS THE REGRESSION ROUTINE WEIGHT TO GET THE
DISCRIMINANT FUNCTIONS. COMBINES THESE TO OBTAIN A PIECEWISE
LINEAR DISCRIMINANT FUNCTION FOR EACH CATEGORY, AND CLASSIFIES
THE TRAINING AND TEST PATTERNS. THIS ROUTINE ALSO OUTPUTS THE
RESULTS.

THEORY.

THE ALGORITHM FOR DETERMINING THE WEIGHT VECTOR FOR SEPARATING
THE I AND J-TH CATEGORIES IS:

\[w = (u^T u)^{-1} u^T y \]

WHERE I IS A VECTOR OF LENGTH NO WITH COMPONENTS OF VALUES EQUAL TO 1. FOR
DETAILS SEE "INTRODUCTION TO STATISTICAL PATTERN RECOGNITION"
BY FUKUNAGA, ACADEMIC PRESS, 1972.

THE MATRICES (DIMENSIONED AS ONE DIMENSIONAL IN PG4) HAVE THE
FOLLOWING STRUCTURES--

\[\text{XTRAIN} \rightarrow \text{XTEST} \]

- XTRAIN IS AN NO1 X NTRAIN MATRIX. EACH COLUMN
 VECTOR IN XTRAIN REPRESENTS ONE TRAINING PATTERN.
 THE FIRST ENTRY IN EACH COLUMN IS THE CATEGORY NAME
 THE SECOND ENTRY IS THE CONSTANT 1. THE ENTRIES 3
 TO NO1 ARE THE VALUES OF THE COMPONENTS OF THE
 PATTERN VECTOR X(I). XTRAIN HAS NTRAIN COLUMNS AND
 NO1 = NO1 ROWS.

- XTEST HAS THE SAME CONFIGURATION AS XTRAIN.

U --- DATA MATRIX U IS USED FOR CALCULATING THE BOUNDARY
BETWEEN THE CATEGORIES I AND J. U HAS NO1 ROWS AND
NTR(I) + NTR(J) COLUMNS, AS FOLLOWS--

*** PATTERNS FROM CATEGORY I ******* PATTERNS FROM CATEGORY J ******

\[\begin{bmatrix}
1 & 1 & \cdots & -1 \\
1 & 1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & -1
\end{bmatrix} \]

U HAS NO1 ROWS AND NTR(I) + NTR(J) COLUMNS

ENTRY POINT.

CALL LINEAR(XTRAIN, XTEST, W, U, DUMMY)

INPUT ARGUMENTS.

XTRAIN

MATRIX CONTAINING TRAINING PATTERNS

XTEST

MATRIX CONTAINING TEST PATTERNS

W

WEIGHT VECTORS
SUBROUTINE LINEAR(XTRAIN,XTEST,W,U,DUMMY)

DIMENSION XTRAIN(1),XTEST(1),W(1),U(1),DUMMY(1)
DIMENSION IERROR(15,15),NTR(15),NAME(15)
DIMENSION L(100),M(100)
DIMENSION WT(100)
COMMON NTRAIN,NTEST,NDIM,NO,NC,NPAIR,NH,NOPT1,NOPT2,NOPT3,NOPT4,
1 NTOT,NPART
REAL NAME

WRITE(6,1401)
1401 FORMAT(1H1,10X,'INPUT DATA SUPPLIED BY YOU')
WRITE(6,1402) NTO,IPT,NPART,NIM
1402 FORMAT(/10X,'TOTAL NUMBER OF PATTERNS=',14/10X,'OUT OF 10 PAT','IERS WERE USED IN TRAINING'/10X,'NOT=','i13')

DO 1 J=1,NC

1 NTR(J)=0

DO 3 I=1,NTRAIN

NAME(J)=XTRAIN(I)

GO THRU ALL THE TRAINING PATTERNS
LINFA01
C 11=(I-1)*NOIM+1
C IF(NAME(J).EQ.XTRAIN(11)) GO TO 2
C J=J+1
C NAME(J)=XTRAIN(11)
C NTR(J)=NTR(J)+1
C CONTINUE
C WRITE(6,1403) NTRAIN, NTEST, J
1403 FORMAT(10X,'NUMBER OF TRAINING PATTERNS USED=',I4/10X,'NUMBER OF CATEGORIES =',I3)
C WRITE(6,1404) NC
1404 FORMAT(10X,'NUMBER OF GROUND TRUTH LABELS SPECIFIED =',I3)
C WRITE(6,1411)
1411 FORMAT(1H1,5X,'SUMMARY OF WEIGHT VECTORS'///)
C
C INCOL=0
DO 10 I=1,NC
IPLUS1=I+1
DO 10 J=IPLUS1,NC
C IF(J.GT.NC) GO TO 868
C INCOL=INCOL+1
ISUM=0
C DO 9 K=1,I
9 ISUM=ISUM+NTR(K)
C INBEG=ISUM-NTR(I)
ISUM=0
DO 8 K=1,J
8 ISUM=ISUM+NTR(K)
JWBEQ=ISUM-NTR(J)
C WRITE(6,1412)
1412 FORMAT(1H1,5X,'GAP BETWEEN BEGINNING OF WEIGHT VECTORS FOR CATEGORIES I AND J')
C WRITE(6,1413)
1413 FORMAT(1H1,5X,'END OF WEIGHT VECTORS FOR CATEGORIES I AND J')
C WRITE(6,1414)
1414 FORMAT(1H1,5X,'WEIGHT VECTORS FOR CATEGORIES I AND J')
C
C INCOL=1
DO 10 I=1,NC
IPLUS1=I+1
DO 10 J=IPLUS1,NC
C IF(J.GT.NC) GO TO 868
C INCOL=INCOL+1
ISUM=0
C DO 9 K=1,I
9 ISUM=ISUM+NTR(K)
C INBEG=ISUM-NTR(I)
ISUM=0
DO 8 K=1,J
8 ISUM=ISUM+NTR(K)
JWBEQ=ISUM-NTR(J)
C WRITE(6,1412)
1412 FORMAT(1H1,5X,'GAP BETWEEN BEGINNING OF WEIGHT VECTORS FOR CATEGORIES I AND J')
C WRITE(6,1413)
1413 FORMAT(1H1,5X,'END OF WEIGHT VECTORS FOR CATEGORIES I AND J')
C WRITE(6,1414)
1414 FORMAT(1H1,5X,'WEIGHT VECTORS FOR CATEGORIES I AND J')
C
C INCOL=IPLUS1-2
DO 10 I=1,NC
IPLUS1=I+1
DO 10 J=IPLUS1,NC
C IF(J.GT.NC) GO TO 868
C INCOL=INCOL+1
ISUM=0
C DO 9 K=1,I
9 ISUM=ISUM+NTR(K)
C INBEG=ISUM-NTR(I)
ISUM=0
DO 8 K=1,J
8 ISUM=ISUM+NTR(K)
JWBEQ=ISUM-NTR(J)
C WRITE(6,1412)
1412 FORMAT(1H1,5X,'GAP BETWEEN BEGINNING OF WEIGHT VECTORS FOR CATEGORIES I AND J')
C WRITE(6,1413)
1413 FORMAT(1H1,5X,'END OF WEIGHT VECTORS FOR CATEGORIES I AND J')
C WRITE(6,1414)
1414 FORMAT(1H1,5X,'WEIGHT VECTORS FOR CATEGORIES I AND J')
C
LINEAR DISCRIMINANT FUNCTION

C

Ni=NTR(I)
NJ=NTR(J)
NJ=NTR(I) * NTR(J)

C

GO THRU EACH TRAINING PATTERN IN CAT I
INDEX COL FOR XTRAIN
GO THRU EACH COMP IN VECTOR
SET UP INDEXES

C

TRANSFER PATTERN TO U FROM XTRAIN
DO THE SAME FOR CATEGORY J
GO THRU EACH PATTERN IN CAT J
SET UP COL INDEX
SET UP ROW INDEX
TRANSFER THE VECTOR IN XTRAIN TO U
AND CHANGE THE SIGN

C

CALL WEIGHT(U,DUMMY,HT,NO,NJ)
GET WEIGHT VECTOR FOR CATS I AND J
INDEX THE VECTOR INTO W ARRAY
WRITE OUT THE WEIGHT VECTOR
PUNCH OUT THE WEIGHT VECTOR

C

WRITE(6,100) I,J
IRGW=IMCOL-I) * ND+IROW
WRITE(6,101) (W(IRGW),IRG=IRGW,IRGW+1)

C

WRITE(45,100) I,J
WRITE(43,1761) (W(1RW),IRGW=IRGW,IRGW+1)
BEGIN CLASSIFICATION

GO THRU FIRST FOR TRAINING PATTERNS
THEN FOR TEST PATTERNS

DO 67 INDEX=1,?
C WRITE HEADING

IF((INDEX.EQ.1).AND.(NOT3.NE.0))WRITE(6,1498)
IF((INDEX.EQ.2).AND.(NOT3.NE.0)) WRITE(6,1499)

FORMAT(1=1,5X,'CLASSIFICATION OF TRAINING PATTERNS')
FORMAT(1=1,10X,'CLASSIFICATION OF TEST PATTERNS')
INITIALIZE CONTINGENCY TABLE FOR ALL CATEGORIES

DO 78 IMN=1,15
C WRITE HEADING

IF((INDEX.EQ.1).AND.(NOT3.NE.0)) WRITE(6,1500)
IF((INDEX.EQ.2).AND.(NOT3.NE.0)) WRITE(6,1500)

FORMAT(////2X,'PATTERN NO.',5X,'TRUE CAT',6X,'ASSIGNED CAT',9X,'VOL')

1500
C SET NO. OF PATTERNS TO CLASSIFY
C RETURN IF NO TEST SET
C GO THRU EACH PATTERN TO BE CLASSIFIED
C GO THRU EACH COMPONENT AND PULL OUT THE TRAINING VECTORS FROM CORE
C OTHERWISE, READ TEST VECTORS FROM 02
C KMAX=-20
C GO THRU EACH CAT FOR VOTING
C LOCATE THE HYPERPLANE THAT SEPARATES CATS IIC AND JJC. THE SIGN OF THE WEIGHT VECTORS IS CHANGED DEPENDING UPON WHETHER OR NOT JJC.GT.IIC
DO 64 JJC=1,NC
IF(JJC.EQ.IIC) GO TO 63
IF(JJC.GT.IIC) GO TO 50
IF(JJC.LT.IIC) GO TO 41
CONTINUE
C
SIGN=1.0
ISUM=0
IS=IIC-1
IF(IS.EQ.0) GO TO 53
DO 51 KS=1,IS
ITERM=NC-KS
51 ISUM=ISUM+ITERM
CONTINUE
NCOLW=ISUM+JJC-IIC
C
GO TO 45
41 CONTINUE
C
ISUM=0
SIGN=-1.0
IS=JJC-1
IF(IS.EQ.0) GO TO 43
DO 42 KS=1,IS
ITERM=NC-KS
42 ISUM=ISUM+ITERM
43 CONTINUE
NCOLW=ISUM+IIC-JJC
45 CONTINUE
C
SUM=0.0
DO 52 IWRROW=1,NO
IWRCH=IWRROW+1
IWRCH=(NCOLW-1)*NO+IWRROW
SUM=SUM+((IWRROW)*(IWRCH))*SING
52 CONTINUE
IVOTE=0
C
IF(SUM.GT.0.0) IVOTE=1
ELSE VOTE NEGATIVE
63 IF(SUM.LT.0.0) IVOTE=-1
CONTINUE
C
IF(JJC.EQ.IIC) IVOTE=0
IF SAME CATEGORY, DONT VOTE
64 KOUNT=KOUNT+IVOTE
TALLY THE COUNT
C
IF(KOUNT.GT.KMAX), ICLASS=IIC
DETERMINE THE CAT FOR WHICH VOTE IS MAXIMUM

SET PARAMETERS

THEN GO TO VOTE CALCULATIONS

SET PARAMETERS FOR SIGN CHANGE

COMPUTE XTRAIN**W(NCOLW)

VOTE POSITIVE IF SUM .GT. ZERO
ELSE VOTE NEGATIVE

IF SAME CATEGORY, DONT VOTE
TALLY THE COUNT
DETERMINE THE CAT FOR WHICH VOTE IS MAXIMUM
RESET MAX COUNT

65 CONTINUE

GET THE RESULTS AND OUTPUT THEM

II1=(II1-1)*NDIM+1
IF(INDEX.EQ.1) TCAT=XTRAIN(II1)
IF(INDEX.GT.2) TCAT=SUM(1)
WRITE RESULTS FOR THIS PATTERN VECTOR

1,TCAT
IF((INDEX.EQ.1).AND.(NOPT3.NE.0).AND.(KMAX.EQ.0)) WRITE(6,1501)II1,LIN1
1,TCAT
IF((INDEX.EQ.2).AND.(NOPT4.NE.0).AND.(KMAX.EQ.0)) WRITE(6,1502)II1,LIN1
1,TCAT
IF((INDEX.EQ.1).AND.(NOPT3.NE.0).AND.(KMAX.GT.0)) WRITE(6,1502)II1,LIN1
1,TCAT
IF((INDEX.EQ.2).AND.(NOPT4.NE.0).AND.(KMAX.GT.0)) WRITE(6,1502)II1,LIN1
1,TCAT
IF(CNOEX.EQ.1) II1
IF(INDEX.EQ.1) II1
IF(INDEX.EQ.2) II1
WRITE(6,721)
WRITE(6,722)
WRITE(6,723)
WRITE(6,724)
WRITE(6,725)
WRITE(6,726)

UPDATE THE CONTINGENCY TABLE

71 CONTINUE
ITCAT=JITCAT

IF(KMAX.GT.0) IERROR(ITCAT,ICLASS)=IERROR(ITCAT,ICLASS)+1
CONTINUE
WRITE OUT THE HEADING

C
IF(INDEX.EQ.1) WRITE(6,722)
IF(INDEX.EQ.2) WRITE(6,723)
WRITE(6,724)
WRITE(6,725)
WRITE(6,726)
CONTINUE
RETURN
END
GET THE WEIGHT VECTOR

GET THE WEIGHT VECTOR

WEIGHT VECTOR DEFINING THE HYPERPLANE IS GIVEN BY

\[\mathbf{W} = (\mathbf{UU}^T)^{-1} \mathbf{U}^T \]

WHERE \(\mathbf{W} \) IS THE WEIGHT VECTOR

DESCRIPTION OF PROGRAM

GIVEN A MATRIX \(\mathbf{U} \) CONTAINING PATTERNS OF CATEGORY I AND J.

THIS ROUTINE FINDS A HYPERPLANE TO SEPARATE THESE PATTERNS. THE

WEIGHT VECTOR DEFINING THE HYPERPLANE IS GIVEN BY

\[\mathbf{W} = (\mathbf{UU}^T)^{-1} \mathbf{U}^T \]

WHERE \(\mathbf{W} \) IS THE WEIGHT VECTOR

T IS A COLUMN VECTOR WHOSE COMPONENTS ARE +1'S

NO IS THE LENGTH OF THE PATTERN VECTORS, AND

NIJ IS THE NUMBER OF PATTERNS FROM CATEGORY I + NUMBER

OF PATTERNS FROM CATEGORY J

THE DATA MATRIX \(\mathbf{U} \), USED FOR CALCULATING THE BOUNDARY BETWEEN THE

CATEGORIES I AND J, IS FORMED AS FOLLOWS ---

*** PATTERNS FROM CATEGORY I ***** PATTERNS FROM CATEGORY J *****

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | 1 | -1 | -1 | -1 | WEIGHT 1
| | | | | | WEIGHT 2
| | | | | | WEIGHT 3
| | | | | | WEIGHT 4

**** U HAS NO ROWS AND NIJ COLUMNS. **********

ENTRY POINT. CALL WEIGHT(U,DUMMY,WT,NO,NIJ)

INPUT ARGUMENTS.

U(MATRICE CONTAINING PATTERNS OF

CATEGORIES I AND J)

DUMMY(DUMMY ARRAY USED FOR MINV)

NO(LENGTH OF PATTERN VECTORS IN U)

NIJ(NUMBER OF PATTERNS FROM CAT I AND J)

OUTPUT ARGUMENTS.

WT(WEIGHT VECTOR DEFINING THE HYPERPLANE)

SUBPROGRAMS REQUIRED.

MINV(MATRIX INVERSION PGM FROM IBM SSP)

INTERNAL PARAMETERS.

L (SCRATCH ARRAYS USED BY MINV)

M (DETERMINANT OF DUMMY, FROM MINV)

ROW (ROW OR COMPONENT INDEX, FOR WT)

IDJ (INDEX FOR A VECTOR IN DUMMY)

IDWK (INDEX FOR A VECTOR IN DUMMY AFTER IT)

WEIGHTS:

WEIGHT0:

WEIGHT1:

WEIGHT2:

WEIGHT3:

WEIGHT4:
SUBROUTINE WEIGHT(U, DUMMY, WT, ND, NIJ)

DIMENSION U(11), DUMMY(1), WT(100)
DIMENSION L(100), M(100)

DO 15 ID=1, ND
DO 15 JD=1, ND
SUM=0.0

DO 14 K=1, NIJ
INK=(K-1)*ND+ID
JNK=(K-1)*ND+JD

14 SUM=SUM+U(INK)*U(JNK)

IDJO=(JD-1)*ND+ID

DUMMY(IDJO)=SUM
CONTINUE

CALL MINV(DUMMY, ND, D, L, M)
DO 30 K=1, ND
SUM=0.0

DO 25 KK=1, NIJ
KK=(KK-1)*ND+K

25 SUM=SUM+U(KK)

U(K)=SUM

DO 40 IROW=1, ND
SUM=0.0

DO 35 K=1, ND
IROWK=(K-1)*ND+IROW
SUM=SUM+DUMMY(IROWK)*U(K)

35 RETURN
END

WEIGHT51
WEIGHT52
WEIGHT53
WEIGHT54
WEIGHT55
WEIGHT56
WEIGHT57
WEIGHT58
WEIGHT59
WEIGHT60
WEIGHT61
WEIGHT62
WEIGHT63
WEIGHT64
WEIGHT65
WEIGHT66
WEIGHT67
WEIGHT68
WEIGHT69
WEIGHT70
WEIGHT71
WEIGHT72
WEIGHT73
WEIGHT74
WEIGHT75
WEIGHT76
WEIGHT77
WEIGHT78
WEIGHT79
WEIGHT80
WEIGHT81
WEIGHT82
WEIGHT83
WEIGHT84
WEIGHT85
WEIGHT86
WEIGHT87
WEIGHT88
WEIGHT89
WEIGHT90
WEIGHT91
WEIGHT92
WEIGHT93
Glossary and Index to Remotely Sensed Image Pattern Recognition Concepts

ROBERT M. HARALICK
Remote Sensing Laboratory, University of Kansas, Lawrence, Kansas 66045, U.S.A.
(Received 29 March 1973 and in revised form 21 June 1973)

Abstract—The purpose of the glossary is to state in the simplest possible way the general meaning or word usage for many of the terms in image pattern recognition. There is no intent to provide definitive statements for terms such as "resolution" but rather only statements about the general nature of what resolution is. There is no intent to provide mathematical formulas involving integrals or derivatives in any of the statements. Those who need the mathematics can get it from technical papers or texts.

The glossary is designed to be read by those generally unfamiliar with the area and provide for them an overall perspective. The organization approaches that of programmed learning material and can be smoothly (I hope) read from beginning to end. Those needing to look up a specific term can do so via the index.

There is some overlap of terms in this glossary with those glossaries or definitions in radiometry and aerial photography. There is no intent that the way the terms are described here replace the way they are described in those glossaries and definitions. The overlap is provided here so that the reader can get a perspective of a cluster of terms frequently used in our field. The perspective is intended to start from what the image concept is through the recording of an image by some sensor, the possible conversion of image format and the simple analog or more complex digital processing which must be done on the imagery. In short, the perspective is one of image pattern recognition.

1. An Image is a spatial representation of an object, scene, or another image. It can be real or virtual as in optics. In pattern recognition, image usually means a recorded image such as a photograph, map, or picture. It may be abstractly thought of as a continuous function I of two variables defined on some bounded region of a plane. When the image is a photograph, the range of the function I is the set of grey shades usually considered to be normalized to the interval $[0, 1]$. The grey shade located at spatial coordinate (x, y) is denoted by $I(x, y)$ and is usually proportional to the radiant energy in the electromagnetic band to which the photographic sensor is sensitive. When the image is a map, the range of the function I is a set of symbols or colors, and the symbol or color located at spatial coordinate (x, y) is denoted by $I(x, y)$. A recorded image may be in photographic, video signal, or digital format.

2. The grey shade or grey tone is a number or value assigned to a position (x, y) on an image. The number is proportional to the integrated output, reflectance, or transmittance of a small area, usually called a resolution cell or pixel, centered on the position (x, y). The grey shade can be measured as or expressed in any one of the following ways:

 (1) transmittance
 (2) reflectance
 (3) a coordinate of the ICI color coordinate system

* The glossary was prepared as the report from the definitions and standards subcommittee, Automatic Image Pattern Recognition Committee of Electronic Industries Association.
† I would like to acknowledge the helpful suggestions, comments and corrections which many of my colleagues made. Particular thanks are due to R. Asendorf, B. Bulluck, L. Kirvida, P. Pryor, A. Rosenfeld, B. Scheps, R. Swonger, S. Viglione and R. Zaputowycz.
(4) a coordinate of the tristimulus value color coordinate system
(5) brightness
(6) radiance
(7) luminance
(8) density
(9) voltage
(10) current.

3. A photograph is a “hard copy” pictorial record of an image formed by a sensor. The photograph is usually recorded on some type of photosensitive emulsion. It can be either reflective, as is a paper print, or transmissive, as is a transparency. It is usually two-dimensional and its reflectance or transmittance, (either monochromatic or polychromatic) varies as a function of position. If it is a multi-colored image (polychromatic), it can be either natural color where the colors are similar to the original, or false color where the colors of the photograph are radically different from the original. The sensor used to form the image may be any type such as an optical camera with or without spectral filtration, infrared optical–mechanical scanners, TV systems, radars, or sonic sensors, etc. The type of sensor recording the image and spectral region the sensor is sensitive to, should always be indicated when referring to a photograph.

4. A map is a representation, of physical and/or cultural features (natural, artificial or both) of a region (such as the sky) or a surface such as that of the earth or a planet. It indicates by a combination of symbols and colors those regions having designated category identifications. Very often ground truth and/or decision rule category assignments are displayed by maps. A photograph with limited symbolism and annotation is often called a photo-map.

5. The radiant intensity of a point object is a measure of the radiant power per steradian radiated or reflected by an object. In general, radiant intensity is a function of the nature of the object, the viewing angle, spectral wavelength and bandwidth.

6. The reflectance or reflection coefficient is the ratio of the energy per unit time per unit area (radiant power density) reflected by the object to the energy per unit time per unit area incident on the object. In general, reflectance is a function of the incident angle of the energy, viewing angle of the sensor, spectral wavelength and bandwidth, and the nature of the object.

7. The transmittance or transmittance coefficient is the ratio of the energy per unit time per unit area (radiant power density) transmitted through the object to the energy per unit time per unit area incident on the object. In general, transmittance is a function of the incident angle of the energy, viewing angle of the sensor, spectral wavelength and bandwidth, and the nature of the object.

8. The density of an \((x, y)\) position on a photograph is a measure of the light absorbing capability of the silver or dye deposited on that position. It is defined by the logarithm of the position’s reciprocal transmittance. The density measured should be specified as to whether it is specular or diffuse.

9. Densitometry is the field devoted to the measurement of optical image densities on film or print grey shades usually caused by the absorption or reflection of light by developed photographic emulsion.

10. A densitometer is a device used to measure the average image density of a small area of specified size on a photographic transparency or print. The measurement may be a
meter reading or an electronic signal. When the small area is smaller than a few hundred microns square, the instrument is called a micro-densitometer.

11. The contrast for a point object against its background can be measured by: (1) its contrast ratio, which is the ratio between the higher of object transmittance or background transmittance to the lower of object transmittance or background transmittance; (2) its contrast difference, which is the difference between the higher density of object or background to the lower density of object or background; (3) its contrast modulation, which is the difference between the darker of object or background grey shade and the lighter of object or background grey shade.

12. Resolution is a generic term which describes how well a system, process, component or material, or image can reproduce an isolated object or separate closely spaced objects or lines. The limiting resolution, resolution limit or spatial resolution is described in terms of the smallest dimension of the target or object that can just be discriminated or observed. Resolution may be a function of object contrast, spatial position as well as element shape (single point, number of points in a cluster, continuum, or line etc.).

13. The resolving power of an imaging system, process, component or material is a measure of its ability to image closely spaced objects. The most common practice in measuring resolving power is to image a resolving power target composed of lines and spaces of equal width. Resolving power is usually measured at the image plane in line pairs per millimeter, i.e. the greatest number of lines and spaces per millimeter that can just be recognized. This threshold is usually determined by using a series of targets of decreasing size and basing the measurement on the smallest one in which all lines can be counted. In measuring resolving power the nature of the target (number of lines and their aspect ratio), its contrast and the criteria for determining the limiting resolving power must be specified.

14. Acutance is a measure of the sharpness of edges in a photograph or image. It is defined for any edge by the average squared rate of change of the density across the edge divided by the total density difference from one side of the edge to the other side of the edge.

15. The spread function of an image system, process, component, or material describes the resulting spatial distribution of grey shade when the input to the system is some well defined object much smaller than the width of the spread function. If the input to the system is a line, the spread function is called the line spread function. If the input to the system is a point, the spread function is called the point spread function.

16. The Modulation Transfer Function of an imaging system or component measures the spatial frequency modulation response of the system or component. As an imaging system or component processes or records an image, the contrast modulation of the processed or recorded image is different from the input image. In fact, there is always a spatial frequency beyond which the contrast modulation of the processed or recorded (output) image is smaller (worse) than the contrast modulation of the input image. The modulation transfer function can be thought of as a curve indicating, for each spatial frequency, the ratio of the contrast modulation of the output image to the contrast modulation of the input image. It is formally defined as the magnitude of the Fourier transform of the line spread function of the imaging system or component.

17. A resolution cell is the smallest most elementary areal constituent of grey shades considered by an investigator in an image. A resolution cell is referenced by its spatial coordinates. The resolution cell or formations of resolution cells can sometimes constitute the basic unit for pattern recognition of image format data.
18. A digital image, or digitized image, or digital picture function of an image is an image in digital format and is obtained by partitioning the area of the image into a finite two-dimensional array of small uniformly shaped mutually exclusive regions, called resolution cells, and assigning a "representative" grey shade to each such spatial region. A digital image may be abstractly thought of as a function whose domain is the finite two-dimensional set of resolution cells and whose range is the set of grey shades.

19. A picture element or pixel or pel is a pair whose first member is a resolution cell and whose second member is the grey shade assigned by the digital image to that resolution cell. Sometimes picture element, pixel, or pel refer only to the grey shade or grey shade n-tuple in a resolution cell.

20. A multi-image is a set of images, each taken of the same subject at different times, or from different positions, or with different sensors, or at different electromagnetic frequencies, or with different polarizations. Although there is a high degree of information redundancy between images in a multi-image set, each image usually has information not available in any one of or combinations of the other images in the set.

21. A multi-digital image is a multi-image in digital form. It can be, for example, a set of digital images obtained from the images in a multi-image. A multi-digital image is often called a multi-image for short when it is understood from context that digital images are involved.

22. A flying spot scanner is a device used to rapidly convert image data from photographic format to electronic video signal format. Normally, the scanner directs an electron beam across the face of a cathode ray tube (CRT) in a TV-like raster. The photographic transparency is placed in front of the CRT (either directly or through some optics) and the light coming from the CRT is passed through it. The modulated light beam is detected by a photomultiplier or other photo detector and amplified to a usable video signal level.

23. A scanning densitometer is a device used to convert image data from transparency photographic format to electronic video signal format. Usually, the photographic transparency is placed on a glass cylinder which rotates and slowly translates. A fine beam of light is focused on the transparency, passed through it, and is detected by a photo-multiplier where it is amplified to a usable video signal. The scanning densitometer is a much slower conversion device than the flying spot scanner. However, this disadvantage is compensated by its fine resolution capability of a few microns.

24. The vidicon is an imaging vacuum tube having a photosensitive surface and is a means of converting image data from instantaneous radiance format to electronic video signal format. The scene being viewed is imaged on the photosensitive surface which can be scanned by an electron beam generating a signal whose amplitude corresponds to the radiance intensity focused on the surface at each point. This signal is called a video signal and may be amplified to any desired level.

25. A video image is an image in electronic signal format capable of being displayed on a cathode ray tube screen. The video signal is generated from devices like a vidicon or flying spot scanner which converts an image from photographic form to video signal form by scanning it line by line. The video signal itself is a sequence of signals, the ith signal representing the ith line of the scanned image.

26. Registering is the translation–rotation alignment process by which two images of like geometries and of the same set of objects are positioned coincident with respect to one another so that corresponding elements of the same ground area appear in the same place on the registered images. In this manner, the corresponding grey shades of the two images
at any \((x, y)\) coordinate or resolution cell will represent the sensor output for the same object over the full image frame being registered.

27. **Congruencing** is the process by which two images of a multi-image set are transformed so that the size and shape of any object on one image is the same as the size and shape of that object on the other image. In other words, when two images are congruenced, their geometries are the same and they coincide exactly.

28. **Rectifying** is a process by which the geometry of an image area is made planimetric. For example, if the image is taken of an equally spaced rectangular grid pattern, then the rectified image will be an image of an equally spaced rectangular grid pattern. Rectification does not remove relief distortion.

29. **Change detection** is the process by which two images may be compared, resolution cell by resolution cell, and an output generated whenever corresponding resolution cells have different enough grey shades or grey shade \(n\)-tuples.

30. An **optical color combiner** is an instrument which produces “false” or “true” color images by linearly combining a few black and white transparencies of the same scene. The transparencies are usually obtained from multi-spectral, multi-band, or time-sequential photography. The transparencies are placed in projectors which are all focused and registered on the same screen and which have various color filters placed in front of their lenses. The viewing brightness of the projector’s lamp in each projector can be changed independently thereby changing chromaticity balance. An optical color combiner is sometimes called an *additive color display*.

31. An **electronic color combiner** is an instrument which produces a “false” color image by linearly combining video signals of images of the same scenes. The images are usually obtained from multi-spectral, multi-band, or time-sequential photography. If the original image format is photographic, then the image format is changed from photographic to video signal format by synchronized vidicons or flying spot scanners. The resulting video signals are linearly combined through a matrix multiplier circuit, and the three linearly combined signals then drive the color gun of a color TV tube. An electronic color combiner usually has greater versatility for congruencing or registering than an optical color combiner.

32. **Level slicing** or **density slicing** or **thresholding** is an operation performed by an instrument (usually electronic) called a level slicer to change one or more a grey scale images to one binary image.

33. The **level slicer, density slicer** or **thresholder** is an instrument (usually electronic) which takes a single or multi-image as an input and produces a binary image for an output. A binary “one” is produced on the output image whenever the grey shades on each of the input images lie within the independently set minimum and maximum thresholds. A set of \(N\) input images would, therefore, require a setting \(N\) minimum and \(N\) maximum levels.

34. A **figure** \(F\), or a **subimage** \(F\) in a continuous or digital image \(I\) is any function \(F\) whose domain is some subset \(A\) of the set of spatial coordinates or resolution cells, whose range is the set \(G\) of grey shades, and which is defined by \(F(x, y) = I(x, y)\) for any \((x, y)\) belonging to \(A\).

35. A **figure** \(F\) is **connected** if there is a path between any two spatial coordinates or resolution cells contained in the domain of \(F\). More precisely, \(F\) is connected if for each pair of spatial coordinates \((x, y)\) and \((u, v)\) belonging to the domain of \(F\), there exists some sequence \(\langle (a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m) \rangle\) of spatial coordinates belonging to the domain.
of F such that $(x, y) = (a_i, b_i)$, $(u, v) = (a_{m}, b_{m})$, and (a_{i+1}, b_{i+1}) are sufficiently close neighboring coordinates, $i = 1, 2, \ldots, m - 1$.

36. A figure F is convex if the domain of F contains the line segment which joins any pair of spatial coordinates in the domain of F.

37. A discrete tonal feature on a continuous or digital image is a connected set of spatial coordinates or resolution cells all of which have the same or almost the same grey shade.

38. Texture is concerned with the spatial distribution of the grey shades and discrete tonal features. When a small area of the image has little variation of discrete tonal features, the dominant property of that area is grey shade. When a small area has wide variation of discrete tonal features, the dominant property of that area is texture. There are three things crucial in this distinction: (1) the size of the small areas, (2) the relative sizes of the discrete tonal features, and (3) the number of distinguishable discrete tonal features.

39. Quantizing is the process by which each grey shade in an image of photographic, video, or digital format is assigned a new value from a given finite set of grey shade values. There are three often used methods of quantizing:

(1) in equal interval quantizing or linear quantizing, the range of grey shades from maximum grey shade to minimum grey shade is divided into contiguous intervals each of equal length, and each grey shade is assigned to the quantized class which corresponds to the interval within which it lies;

(2) in equal probability quantizing, the range of grey shades is divided into contiguous intervals such that after the grey shades are assigned to their quantized class there is an equal frequency of occurrence for each quantized grey shade in the quantized digital image or photograph; equal probability quantizing is sometimes called central stretching;

(3) in minimum variance quantizing, the range of grey shades is divided into contiguous intervals such that the weighted sum of the variance of the quantized intervals is minimized. The weights are usually chosen to be the grey shade interval probabilities which are computed as the proportional area on the photograph or digital image which have grey shades in the given interval.

40. A quantizer is an instrument which does quantizing. The quantizer has three functional parts. The first part allows the determining and/or setting of the quantizing intervals, the second part is a level slicer which indicates when a signal is in any quantizing interval, and the third part takes the binary output from the level slicers and either codes it to some binary code or converts it to some analog signal representing quantizing interval centers or means.

41. The simplest and most practical unit to observe and measure in the pattern recognition of image data is often the basic picture element (the grey shade or the grey shade n-tuple in its particular resolution cell). This is what makes pattern recognition so hard sometimes for the objects requiring analysis or identification are not simple picture elements but are often complex spatial formations of picture elements such as houses, roads, forest, etc.

42. A measurement n-tuple or measurement pattern or pattern or measurement vector is the ordered n-tuple of measurements obtained of a unit under observation. Each component of the n-tuple is a measurement of a particular quality, property, feature, or characteristic of the unit. In image pattern recognition, the units are usually picture elements or simple formations of picture elements and the measurement n-tuples are the corresponding grey shades, grey shade n-tuples, or formations of grey shade n-tuples.
43. The range set R_i for the ith sensor which produces the ith image in the multi-image set, is the set of all measurements which can be produced by the ith sensor. Simply, it is the set of all grey shades which could possibly exist on the ith image.

44. The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs where the first component of the pair is some element from the first set and the second component of the pair is some element from the second set. The Cartesian product of N sets can be inductively defined in the usual fashion.

45. Measurement space is a set large enough to include in it the set of all possible measurement n-tuples which could be obtained by observing physical attributes of some set of units. When the units are single resolution cells or picture elements, measurement space M is the Cartesian product of the range sets of the sensors; $M = R_1 \times R_2 \times \cdots \times R_n$.

46. Each unit is assumed to be of one and only one given type. The set of types is called the set of pattern classes or categories C, each type being a particular category. The categories are chosen specifically by the investigator as being the ones of interest to him.

47. A feature or feature pattern or feature n-tuple or pattern feature is a n-tuple or vector with (a small number of) components which are functions of the initial measurement pattern variables or some subsequence of the measurement n-tuples. Feature n-tuples or vectors are designed to contain a high amount of information relative to the discrimination between units of the types of categories in the given category set. Sometimes the features are predetermined and other times they are determined at the time the pattern discrimination problem is being solved. In image pattern recognition, features often contain information relative to grey shade, texture, shape or context.

48. Feature space is the set of all possible feature n-tuples.

49. Feature selection is the process by which the features to be used in the pattern recognition problem are determined. Sometimes feature selection is called property selection.

50. Feature extraction is the process in which an initial measurement pattern or some subsequence of measurement patterns is transformed to a new pattern feature. Sometimes feature extraction is called property extraction.

51. The word pattern can be used in three distinct senses:
 (1) as measurement pattern;
 (2) as feature pattern; and
 (3) as the dependency pattern or patterns of relationships among the components of any measurement n-tuple or feature n-tuple derived from units of a particular category and which are unique to those n-tuples, that is, they are dependencies which do not occur in any other category.

52. A signature is the observable or characteristic measurement or feature pattern derived from units of a particular category. A category is said to have a signature only if the characteristic pattern is highly representative of the n-tuples obtained from units of that category. Sometimes a signature is called a prototype pattern.

53. A data sequence $S_d=\langle d_1, d_2, \ldots, d_J \rangle$ is a sequence of patterns derived from the measurement patterns or features of some sequence of observed units. d_1 is the pattern associated with the first unit; d_2 is the pattern associated with the second unit; and d_J is the pattern associated with the Jth unit.

54. A decision rule f usually assigns one and only one category to each observed unit on the basis of the sequence of measurement patterns in the data sequence S_d or in the corresponding sequence of feature patterns.
55. A **simple decision rule** is a decision rule which assigns a unit to a category solely on the basis of the measurements or features associated with the unit. Hence, the units are treated independently and the decision rule may be thought of as a function which assigns one and only one category to each pattern in measurement space or to each feature in feature space.

56. A **compound decision rule** is a decision rule which assigns a unit to a category on the basis of some non-trivial subsequence of measurement patterns in the data sequence or in the corresponding sequence of feature patterns. A compound decision rule is not a simple decision rule.

57. Provision can be made for the decision rule to **reserve judgement** or to **defer assignment** if the pattern is too close to the category boundary in measurement or feature space. With this provision, a deferred assignment is an assignment to the category of "reserved judgement."

58. A **category identification sequence** or **ground truth** $S = \langle c_1, c_2, \ldots, c_J \rangle$ is a sequence of category identifications obtained from some sequence of observed units. c_1 is the category identification of the first unit; c_2 is the category identification of the second unit; and c_J is the category identification of the Jth unit.

59. A **training sequence** is a set of two sequences: (1) the data sequence and (2) a corresponding category identification sequence (sometimes called ground truth). The training sequence is used to estimate the category conditional probability distributions from which the decision rule is constructed.

60. The **conditional probability** of a measurement or feature n-tuple d given category c is denoted by $P(c|d)$, or by $P(d|c)$, and is defined as the relative frequency or proportion of times the n-tuple d is derived from a unit whose true category identification is c.

61. A **distribution-free or non-parametric decision rule** is one which makes no assumptions about the functional form of the conditional probability distribution of the patterns given the categories.

62. A **simple maximum likelihood decision rule** is one which treats the units independently and assigns a unit u having pattern measurement or features d to that category c whose units are most probable to have given rise to pattern or feature vector d, that is, such that the conditional probability of d given c, $P(c|d)$, is highest.

63. A **simple Bayes decision rule** is one which treats the units independently and assigns a unit u having pattern measurements or features d to the category c whose conditional probability, $P(d|c)$, given measurement d, is highest.

64. Let $\langle u_1, u_2, \ldots, u_J \rangle$ be a sequence of units with corresponding data sequence $\langle d_1, d_2, \ldots, d_J \rangle$ and known category identification sequence $\langle c_1, c_2, \ldots, c_J \rangle$. A simple **nearest neighbor decision rule** is one which treats the units independently and assigns a unit u of unknown identification and with pattern measurements or features d to category c_j where d_j is the pattern closest to d by some given metric or distance function.

65. A **discriminant function** $f(d)$ is a scalar function, whose domain is usually measurement space and whose range is usually the real numbers. When $f(d) \geq f_k(d)$, $k = 1, 2, \ldots, K$, then the decision rule assigns the ith category to the unit giving rise to pattern d.

66. A **linear discriminant function** f is a discriminant function of the form

$$f(d) = b + \sum_{j=1}^{n} a_j \delta_j$$

where $d = (\delta_1, \delta_2, \ldots, \delta_n)$.
67. A decision boundary between the \(i\)th and \(k\)th categories is a subset \(H\) of patterns in measurement space \(M\) defined by

\[H = \{ d \in M | f_i(d) = f_k(d) \} , \]

where \(f_i\) and \(f_k\) are the discriminant functions for the \(i\)th and \(k\)th categories.

68. A hyperplane decision boundary is the special name given to decision boundaries arising from the use of linear discriminant functions.

69. A linear decision rule is a simple decision rule which usually treats the units independently and makes the category assignments using linear discriminant functions. The decision boundaries obtained from linear decision rules are hyperplanes.

70. The pattern discrimination problem is concerned with how to construct the decision rule which assigns a unit to a particular category on the basis of the measurement pattern(s) in the data sequence or on the basis of the basis of the feature pattern(s) in the data sequence.

71. Pattern identification is the process in which a decision rule is applied. If \(S_u = \langle u_1, u_2, \ldots, u_J \rangle\) is the sequence of units to be observed and identified, and if \(S_d = \langle d_1, d_2, \ldots, d_J \rangle\) is the corresponding data sequence of patterns, then the pattern identification process produces a category identification sequence \(S_c = \langle c_1, c_2, \ldots, c_J \rangle\) where \(c_j\) is the category in \(C\) to which the decision rule assigns unit \(u_j\) on the basis of the \(J\) patterns in \(S_d\). In general, each category in \(S_c\) can be assigned by the decision rule as a function of all the patterns in \(S_d\). Sometimes pattern identification is called "pattern classification" or "classification".

72. A cluster is a homogeneous group of units which are very "like" one another. "Likeness" between units is usually determined by the association, similarity, or distance between the measurement patterns associated with the units.

73. A cluster assignment function is a function which assigns each observed unit to a cluster on the basis of the measurement pattern(s) in the data sequence or on the basis of their corresponding features. Sometimes the units are treated independently; in this case the clustering assignment function can be considered as a transformation from measurement space to the set of clusters.

74. The pattern classification problem is concerned with constructing the cluster assignment function which groups similar units. Pattern classification is synonymous with numerical taxonomy or clustering.

75. The cluster identification process is the process in which the cluster assignment function is applied to the sequence of observed units thereby yielding a cluster identification sequence.

76. A misidentification, or misdetection, or type I error occurs for category \(c_i\) if a unit whose true category identification is \(c_i\) is assigned by the decision rule to category \(c_k\), \(k \neq i\). A misidentification error is often called an error of omission.

77. A false identification, or false alarm, or type II error occurs for category \(c_i\) if a unit whose true category identification is \(c_k\), \(k \neq i\), is assigned by the decision rule to category \(c_i\). A false identification error is often called an error of commission.

78. A prediction sequence, or test sequence, or a generalization sequence is a set of two sequences: (1) a data sequence (whose corresponding true category identification sequence may be considered to be unknown to the decision rule) and (2) a corresponding category identification sequence determined by the decision rule assignment. By comparing the category identification sequence determined by the decision rule assignment with the
category identification sequence determined by the ground truth, the misidentification rate and the false identification rate for each category may be estimated.

79. A confusion matrix or contingency table is an array of probabilities whose rows and columns are both similarly designated by category label and which indicates the probability of correct identification for each category as well as the probability of type I and type II errors. The (ith, kth) element P_{ik} is the probability that a unit has true category identification c_i; and is assigned by the decision rule to category c_k.

80. A unit is said to be detected if the decision rule is able to assign it as belonging only to some given subset A of categories from the set C of categories. To detect a unit does not imply that the decision rule is able to identify the unit as specifically belonging to one particular category.

81. A unit is said to be recognized, identified, classified, categorized or sorted if the decision rule is able to assign it to some category from the set of given categories. In military applications, there is a definite distinction between recognize and identify. Here, for a unit to be recognized, the decision rule must be able to assign it to a type of category, the type having included within it many subcategories. For a unit to be identified, the decision rule must be able to assign it not only to a type of category but also to the subcategory of the category type. For example, a small area ground patch may be recognized as containing trees, which may be specifically identified as apple trees.

82. A unit is said to be located if specific coordinates can be given for the units physical location.

83. A unit is said to be acquired if it can be located and recognized.

84. A target is one type of category used in the pattern recognition of image data. It usually occupies some relatively small area on the image and has a unique or characteristic set of attributes. It has a high a priori interest to the investigator.

85. Target discrimination is the process by which decision rules for targets (small area extensive categories) are constructed.

86. Target identification or target recognition is the process by which targets contained within image data are identified by means of a decision rule.

87. An image transformation is a function or operator which takes an image for its input and produces an image for its output. The domain of the transform operator is often called the spatial domain. The range of the transform operator is often called the transformed domain. Some transformations have spatial and transform domains of entirely different character. For these transforms, the image in the spatial domain may appear entirely different from and have a different interpretation from the image in the transformed domain. Specific examples of these kinds of transformations are the Fourier, Hadamard, and Karhunen–Loève transformations. Other transformations have spatial and transform domain of similar character. For these transformations, the image in the transformed domain may appear similar to the image of the spatial domain. These types of transformations are often called spatial filters.

88. A spatial filter is an image transformation, usually a one-one operator used to lessen noise or enhance certain characteristics of the image. For any particular (x, y) coordinate on the transformed image, the spatial filter assigns a grey shade on the basis of the grey shades of a particular spatial pattern near the coordinates (x, y).

89. A linear spatial filter is a spatial filter for which the grey shade assignment at coordinates (x, y) in the transformed image is made by some weighted average (linear combination) of grey shades located in a particular spatial pattern around coordinates (x, y) of the domain image. The linear spatial filter is often used to change the spatial
frequency characteristics of the image. For example, a linear spatial filter which emphasizes high spatial frequencies will tend to sharpen the edges in an image. A linear spatial filter which emphasizes the low spatial frequencies will tend to blur the image and reduce salt and pepper noise.

90. **Template matching** is an operation which can be used to find out how well two photographs or images match one another. The degree of matching is often determined by cross-correlating the two images or by evaluating the sum of the squared corresponding grey shade differences. Template matching can also be used to best match a measurement pattern with a prototype pattern.

91. **Matched filtering** is a template matching operation done by using the magnitude of the cross-correlation function to measure the degree of matching.

92. In pattern recognition problems such as target discrimination, for which the category of interest is some specific formation of resolution cells with characteristic shape or tone-texture composition, the problem of pattern segmentation may occur. **Pattern segmentation** is the problem of determining which regions or areas in the image constitute the patterns of interest, i.e. which resolution cells should be included and which excluded from the pattern measurements.

93. **Screening** is the operation of separating the uninteresting photographs or images from those photographs containing areas of potential interest.

94. **Preprocessing** is an operation applied before pattern identification is performed. Preprocessing produces, for the categories of interest, pattern features which tend to be invariant under changes such as translation, rotation, scale, illumination levels, and noise. In essence, preprocessing converts the measurements patterns to a form which allows a simplification in the decision rule. Preprocessing can bring into registration, bring into congruence, remove noise, enhance images, segment target patterns, detect, center, and normalize targets of interest.

95. **Image compression** is an operation which preserves all or most of the information in the image and which reduces the amount of memory needed to store an image or the time needed to transmit an image.

96. **Image restoration** is a process by which a degraded image is restored to its original condition. Image restoration is possible only to the extent that the degradation transform is mathematically invertible.

97. **Image enhancement** is any one of a group of operations which improve the detectability of the targets or categories. These operations include, but are not limited to, contrast improvement, edge enhancement, spatial filtering, noise suppression, image smoothing, and image sharpening.

98. **Image processing** encompasses all the various operations which can be applied to photographic or image data. These include, but are not limited to, image compression, image restoration, image enhancement, preprocessing, quantization, spatial filtering, and other image pattern recognition techniques.

99. **Interactive Image Processing** refers to the use of an operator or analyst at a console with a means of assessing, preprocessing, feature extracting, classifying, identifying and displaying the original imagery or the processed imagery for his subjective evaluation and further interactions.

100. **Pattern recognition** is concerned with, but not limited to, problems of: (1) pattern discrimination, (2) pattern classification, (3) feature selection, (4) pattern identification, (5) cluster identification, (6) feature extraction, (7) preprocessing, (8) filtering, (9) enhancement, (10) pattern segmentation, or (11) screening.
Index to Glossary of Remotely Sensed Image Pattern Recognition Concepts

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuance</td>
<td>14</td>
</tr>
<tr>
<td>Acquire</td>
<td>83</td>
</tr>
<tr>
<td>Additive color display</td>
<td>30</td>
</tr>
<tr>
<td>Bayes decision rule</td>
<td>63</td>
</tr>
<tr>
<td>Category</td>
<td>46</td>
</tr>
<tr>
<td>Categorize</td>
<td>81</td>
</tr>
<tr>
<td>Category identification sequence</td>
<td>58</td>
</tr>
<tr>
<td>Cartesian product</td>
<td>44</td>
</tr>
<tr>
<td>Change detection</td>
<td>29</td>
</tr>
<tr>
<td>Classification</td>
<td>71</td>
</tr>
<tr>
<td>Classify</td>
<td>81</td>
</tr>
<tr>
<td>Clustering</td>
<td>72</td>
</tr>
<tr>
<td>Cluster assignment function</td>
<td>73</td>
</tr>
<tr>
<td>Cluster identification</td>
<td>75</td>
</tr>
<tr>
<td>Clustering</td>
<td>74</td>
</tr>
<tr>
<td>Compound decision rule</td>
<td>56</td>
</tr>
<tr>
<td>Conditional probability</td>
<td>60</td>
</tr>
<tr>
<td>Confusion matrix</td>
<td>79</td>
</tr>
<tr>
<td>Congruencing</td>
<td>27</td>
</tr>
<tr>
<td>Connectedness</td>
<td>35</td>
</tr>
<tr>
<td>Contingency table</td>
<td>79</td>
</tr>
<tr>
<td>Contrast</td>
<td>11</td>
</tr>
<tr>
<td>Contrast difference</td>
<td>11</td>
</tr>
<tr>
<td>Contrast modulation</td>
<td>11</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>11</td>
</tr>
<tr>
<td>Contrast stretching</td>
<td>39</td>
</tr>
<tr>
<td>Convex</td>
<td>36</td>
</tr>
<tr>
<td>Data sequence</td>
<td>53</td>
</tr>
<tr>
<td>Decision boundary</td>
<td>67</td>
</tr>
<tr>
<td>Decision rule</td>
<td>54</td>
</tr>
<tr>
<td>Deferr assignment</td>
<td>57</td>
</tr>
<tr>
<td>Densitometer</td>
<td>10</td>
</tr>
<tr>
<td>Densitometry</td>
<td>9</td>
</tr>
<tr>
<td>Density</td>
<td>8</td>
</tr>
<tr>
<td>Density slicer</td>
<td>33</td>
</tr>
<tr>
<td>Density slicing</td>
<td>32</td>
</tr>
<tr>
<td>Detect</td>
<td>80</td>
</tr>
<tr>
<td>Digital image</td>
<td>18</td>
</tr>
<tr>
<td>Digital picture function</td>
<td>18</td>
</tr>
<tr>
<td>Digitized image</td>
<td>18</td>
</tr>
<tr>
<td>Discrete tonal feature</td>
<td>37</td>
</tr>
<tr>
<td>Discriminant function</td>
<td>65</td>
</tr>
<tr>
<td>Distribution-free decision rule</td>
<td>61</td>
</tr>
<tr>
<td>Electronic color combiner</td>
<td>31</td>
</tr>
<tr>
<td>Equal interval quantizing</td>
<td>39</td>
</tr>
<tr>
<td>Equal probability quantizing</td>
<td>39</td>
</tr>
<tr>
<td>Error of commission</td>
<td>77</td>
</tr>
<tr>
<td>Error of omission</td>
<td>76</td>
</tr>
<tr>
<td>False alarm</td>
<td>77</td>
</tr>
<tr>
<td>False identification</td>
<td>77</td>
</tr>
<tr>
<td>Feature</td>
<td>47</td>
</tr>
<tr>
<td>Feature extraction</td>
<td>50</td>
</tr>
<tr>
<td>Feature n-tuple</td>
<td>47</td>
</tr>
<tr>
<td>Feature pattern</td>
<td>47</td>
</tr>
<tr>
<td>Feature selection</td>
<td>49</td>
</tr>
<tr>
<td>Feature space</td>
<td>48</td>
</tr>
<tr>
<td>Figure</td>
<td>34</td>
</tr>
<tr>
<td>Flying spot scanner</td>
<td>22</td>
</tr>
<tr>
<td>Generalization sequence</td>
<td>78</td>
</tr>
<tr>
<td>Grey shade</td>
<td>2</td>
</tr>
<tr>
<td>Grey tone</td>
<td>2</td>
</tr>
<tr>
<td>Ground truth</td>
<td>58</td>
</tr>
<tr>
<td>Hyperplane decision boundary</td>
<td>68</td>
</tr>
<tr>
<td>Identify</td>
<td>81</td>
</tr>
<tr>
<td>Image</td>
<td>1</td>
</tr>
<tr>
<td>Image compression</td>
<td>95</td>
</tr>
<tr>
<td>Image enhancement</td>
<td>97</td>
</tr>
<tr>
<td>Image processing</td>
<td>98</td>
</tr>
<tr>
<td>Image restoration</td>
<td>96</td>
</tr>
<tr>
<td>Image transformation</td>
<td>87</td>
</tr>
<tr>
<td>Interactive image processing</td>
<td>99</td>
</tr>
<tr>
<td>Level slicer</td>
<td>33</td>
</tr>
<tr>
<td>Level slicing</td>
<td>32</td>
</tr>
<tr>
<td>Limiting resolution</td>
<td>12</td>
</tr>
<tr>
<td>Line spread function</td>
<td>15</td>
</tr>
<tr>
<td>Linear decision rule</td>
<td>69</td>
</tr>
<tr>
<td>Linear discriminant function</td>
<td>66</td>
</tr>
<tr>
<td>Linear spatial filter</td>
<td>89</td>
</tr>
<tr>
<td>Linear quantizing</td>
<td>39</td>
</tr>
<tr>
<td>Locate</td>
<td>82</td>
</tr>
<tr>
<td>Map</td>
<td>4</td>
</tr>
<tr>
<td>Concept</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Matched filtering</td>
<td>91</td>
</tr>
<tr>
<td>Maximum likelihood decision rule</td>
<td>62</td>
</tr>
<tr>
<td>Measurement n-tuple</td>
<td>42</td>
</tr>
<tr>
<td>Measurement pattern</td>
<td>42</td>
</tr>
<tr>
<td>Measurement space</td>
<td>45</td>
</tr>
<tr>
<td>Measurement vector</td>
<td>42</td>
</tr>
<tr>
<td>Micro-densitometer</td>
<td>10</td>
</tr>
<tr>
<td>Minimum variance quantizing</td>
<td>39</td>
</tr>
<tr>
<td>Misdetection</td>
<td>76</td>
</tr>
<tr>
<td>Misidentification</td>
<td>76</td>
</tr>
<tr>
<td>Modulation transfer function</td>
<td>16</td>
</tr>
<tr>
<td>Multi-digital image</td>
<td>21</td>
</tr>
<tr>
<td>Multi-image</td>
<td>20</td>
</tr>
<tr>
<td>Nearest neighbor decision rule</td>
<td>64</td>
</tr>
<tr>
<td>Non-parametric decision rule</td>
<td>61</td>
</tr>
<tr>
<td>Numerical taxonomy</td>
<td>74</td>
</tr>
<tr>
<td>Optical color combiner</td>
<td>30</td>
</tr>
<tr>
<td>Pattern</td>
<td>42, 51</td>
</tr>
<tr>
<td>Pattern class</td>
<td>46</td>
</tr>
<tr>
<td>Pattern classification</td>
<td>71, 74</td>
</tr>
<tr>
<td>Pattern discrimination</td>
<td>70</td>
</tr>
<tr>
<td>Pattern feature</td>
<td>47</td>
</tr>
<tr>
<td>Pattern identification</td>
<td>71</td>
</tr>
<tr>
<td>Pattern recognition</td>
<td>100</td>
</tr>
<tr>
<td>Pattern segmentation</td>
<td>92</td>
</tr>
<tr>
<td>Pel</td>
<td>19</td>
</tr>
<tr>
<td>Photograph</td>
<td>3</td>
</tr>
<tr>
<td>Photomap</td>
<td>4</td>
</tr>
<tr>
<td>Picture element</td>
<td>19</td>
</tr>
<tr>
<td>Pixel</td>
<td>19</td>
</tr>
<tr>
<td>Point spread function</td>
<td>15</td>
</tr>
<tr>
<td>Prediction sequence</td>
<td>78</td>
</tr>
<tr>
<td>Preprocessing</td>
<td>94</td>
</tr>
<tr>
<td>Property extraction</td>
<td>50</td>
</tr>
<tr>
<td>Property selection</td>
<td>49</td>
</tr>
<tr>
<td>Prototype pattern</td>
<td>52</td>
</tr>
<tr>
<td>Quantizer</td>
<td>40</td>
</tr>
<tr>
<td>Quantizing</td>
<td>39</td>
</tr>
<tr>
<td>Radiant intensity</td>
<td>5</td>
</tr>
<tr>
<td>Range set</td>
<td>43</td>
</tr>
<tr>
<td>Recognize</td>
<td>81</td>
</tr>
<tr>
<td>Rectifying</td>
<td>28</td>
</tr>
<tr>
<td>Reflectance</td>
<td>6</td>
</tr>
<tr>
<td>Reflection coefficient</td>
<td>6</td>
</tr>
<tr>
<td>Registering</td>
<td>26</td>
</tr>
<tr>
<td>Reserve judgement</td>
<td>57</td>
</tr>
<tr>
<td>Resolution</td>
<td>12</td>
</tr>
<tr>
<td>Resolution cell</td>
<td>17</td>
</tr>
<tr>
<td>Resolution limit</td>
<td>12</td>
</tr>
<tr>
<td>Resolving power</td>
<td>13</td>
</tr>
<tr>
<td>Scanning densitometer</td>
<td>23</td>
</tr>
<tr>
<td>Screening</td>
<td>93</td>
</tr>
<tr>
<td>Segmentation</td>
<td>92</td>
</tr>
<tr>
<td>Signature</td>
<td>52</td>
</tr>
<tr>
<td>Simple decision rule</td>
<td>55</td>
</tr>
<tr>
<td>Sort</td>
<td>81</td>
</tr>
<tr>
<td>Spatial filter</td>
<td>88</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>12</td>
</tr>
<tr>
<td>Spread function</td>
<td>15</td>
</tr>
<tr>
<td>Subimage</td>
<td>34</td>
</tr>
<tr>
<td>Target</td>
<td>84</td>
</tr>
<tr>
<td>Target discrimination</td>
<td>85</td>
</tr>
<tr>
<td>Target identification</td>
<td>86</td>
</tr>
<tr>
<td>Target recognition</td>
<td>86</td>
</tr>
<tr>
<td>Template matching</td>
<td>90</td>
</tr>
<tr>
<td>Test sequence</td>
<td>78</td>
</tr>
<tr>
<td>Texture</td>
<td>38</td>
</tr>
<tr>
<td>Thresholder</td>
<td>33</td>
</tr>
<tr>
<td>Thresholding</td>
<td>32</td>
</tr>
<tr>
<td>Training sequence</td>
<td>59</td>
</tr>
<tr>
<td>Transmittance</td>
<td>7</td>
</tr>
<tr>
<td>Transmittance coefficient</td>
<td>7</td>
</tr>
<tr>
<td>Type I error</td>
<td>76</td>
</tr>
<tr>
<td>Type II error</td>
<td>77</td>
</tr>
<tr>
<td>Unit</td>
<td>41</td>
</tr>
<tr>
<td>Video image</td>
<td>25</td>
</tr>
<tr>
<td>Video signal</td>
<td>24</td>
</tr>
<tr>
<td>Vidicon</td>
<td>24</td>
</tr>
</tbody>
</table>
REFERENCES

