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ABSTRACT

Remote sounding of stratospheric temperatures up to 3.2 mb (% 40 km)

is attempted using high resolution (unapodized) radiance measurements in

the 15 CO2 band from the Infrared Interferometer Spectrometer on Nimbus

4. Inversions are performed using the Chahine relaxation technique.

Radiance data and simultaneous in situ temperature profiles are obtained

from the Rocket/Nimbus Sounder Comparison. Numerical tests with synthetic

radiance data show that the uncertainty in the retrieved temperatures due

to random instrument noise is about 1.1 K when averaged over layers about

10 km thick. However, comparison of the measured radiances with the

radiances calculated from the in situ profiles show the calculated radiances

to be systematically higher than the measured radiances. The evidence

indicates that systematic errors exist in both the radiance and the in situ

measurements. These errors are reflected in the temperature profiles,

where the discrepancy between the in situ and the retrieved temperatures

averages 11.5 K at 40 km. Estimates of the possible systematic errors in

measured radiances and in the transmission data show that the retrieved

profiles may be 6 to 8 K too low at 40 km. This suggests that the in situ

temperatures may be too high by 4 to 6 K at that height. If the radiance

measurements can be corrected for systematic errors, the retrieved profiles

may be more accurate than the in situ profiles.

viii



INTRODUCTION

Remote temperature sounding from satellites has potentially great

value in providing global coverage of the earth's temperature structure.

However, up to now most temperature sounding systems have been limited

to retrieving temperature no higher than about 20 mb. Extension of this

limit to higher in the atmosphere would be of great value to both the

forecaster and the basic researcher in stratospheric phenomena.

In this study, I have attempted to obtain remotely retrieved

temperatures.up to 3.2 mb using high resolution radiance data from the

Infrared Interferometer Spectrometer on the Nimbus 4 satellite. Inver-

sion of the radiance data to obtain temperature profiles was done using

the Chahine iterative technique. Simultaneous satellite radiance data

and in situ temperature profiles from the Rocket/Nimbus Sounder Comparison

were used, allowing comparison of the inverted profiles with the balloon-

and rocketsonde measured profiles.. Originally, the program called for

obtaining retrieved profiles from the ground up to 3.2 mb. Difficulties

encountered in the course of the study, however, limited the retrieved

temperatures to the stratosphere only: below the tropopause, in situ

temperature measurements were used.

The Chahine inversion technique was first evaluated using synthetic

radiance data derived from the actual measured profiles. Then real radi-

ance data was inverted and compared to the measured profiles. However,

from the comparison of the measured radiances with the radiances calculated

-1-
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from the in situ profiles, it became clear that both the measured radi-

ances and the in situ profiles were contaminated with systematic errors.

These errors make accurate verification of the retrieved profiles impos-

sible and limit their usefulness.

The principle of obtaining remotely retrieved temperatures up to

3.2 mb from high resolution IRIS data does appear to be valid. If the

systematic errors in the radiance data can be reduced sufficiently, then

the large amount of data available from this instrument would be available

for use in stratospheric research.



THE INVERSION PROBLEM

The outgoing radiation leaving the top of the atmosphere is a

complex function of the temperature profile and of the distribution of the

absorbing gases present. The inversion problem consists of reconstructing

the temperature profile from measurements of the radiance in different

spectral intervals, assuming that the distribution of the absorbing gases

is known. To understand how this inversion can be accomplished, one must

first consider the radiative transfer equation (RTE).

For monochromatic radiation leaving the top of the atmosphere in the

vertical (such as is seen by a satellite), the RTE is

I(0) = B(0,0(0)) T(0,0) + B(0,e(z)) dT(0,z) dz (1)
o dz

where I(0) is the intensity of radiation emitted at the wavenumber 0, B(0,0)

is the blackbody function at the wavenumber 0 and temperature 0, 6(z) is

the vertical temperature profile, z = -In(P/P ) is the vertical coordinate,

and T(0,z') is the monochromatic transmission function between the levels

z = z' and z = =. Therefore, I(0) is a function of the temperature profile

6(z) and, through the transmission function T(0,z), of the distribution of

the absorbing gases.

If the radiance is measured by an instrument having an instrument

function q(O -0.i) centered on 0., the RTE becomes

I(Di) = I(0) ( -oi)dO (2)

-3-
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If (O -0.) is narrow so that B(0,8) varies little over the width of the

instrument function, (2) can be written

I(0.) = B(i.,e(0)) T(Oi.,) + B(O,e(z)) dT(0i,z) dz (3)
1 1 o dz

where the average transmission T is

F(Oi,z) E T(O,z) (0 -0i )dO (4)0

Insight into the structure of the RTE can be gained by looking at

the form of the function dT/dz. For an absorbing gas whose mixing ratio is

constant with height and whose molecular line intensities depend only weakly

on temperature (and, therefore, height), the transmission function is

approximated by T = exp(-cP) where c is a constant which depends upon 0..

Therefore, dT/dz = cP exp(-cP). A typical graph of dT/dz vs. z is plotted

in Fig. 1. Note that dT/dz is strongly peaked around the level marked z..

Looking at (3), the outgoing radiation can be considered to be (apart from

the boundary term) the vertical integral of the blackbody function weighted

by dT/dz. Because of the peaked shape of dT/dz, the bulk of I(0 i ) comes

from the vicinity of the level zi, with lesser contributions from more

distant levels. Thus, as a zero'th order approximation, the temperature

O(zi) can be retrieved by calculating the equivalent blackbody temperature

of the measured radiance 1(i.).

However, dT/dz is not the best measure of the information carried by

i(0i). .Consider a small increment 60(z) in the temperature profile e(z)
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and let 6I( i.) be the resulting increase in I(0). It can be shown that

when T depends only weakly on temperature,

6I(.) df 60(z)dz (5)
1 d6dz

The quantity d- d as a function of z represents the sensitivity of I(Z0.)

to changes in temperature at the level z. Therefore, the level at which

this quantity is a maximum more accurately identifies the level which con-

tributes the maximum information to I(Oi). The quantity dT/dz is called the

weighting function, and is the quantity usually presented in remote sounding

dB dT
studies. In this study, dB dT , not dT/dz, will be called the weightingdO dz

function for simplicity. Note that the weighting function depends upon the

temperature profile. By using a mean or standard atmosphere value for 0(z),

a representative weighting function is obtained.

The temperature inversion problem consists of inferring the vertical

temperature profile O(z) from a set of measured radiances I(O.) at a prop-

erly chosen set of wavenumbers 0.. Numerous authors have attempted to
1

solve this problem using a variety of techniques. Westwater and Strand

(1972), and Conrath and Reveh (1972) have reviewed the various existing

methods. The primary difficulty in the inverse solution of the RTE is that

the radiance is a highly nonlinear function of the temperature profile.

Attempts to solve the inverse problem by linearization run into the problem

that measurement noise renders the solutions physically meaningless.

Successful linear methods require the inclusion, either explicitly or

implicitly, of a priori knowledge of the desired solution.
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Chahine (1968, 1970, 1972) however, has developed a very simple

nonlinear relaxation technique which he claims requires no a priori

knowledge of the retrieved solution. The Chahine inversion method starts

by assuming an initial guess for O (z) and obtaining successively better

approximations to the correct profile by relaxation as described below.

With n the order of relaxation and 8 (n)(z) the n'th order guess, 8 (n)(z)

is used in (3) to calculate I ( n )  The residuals R(n) (0) are then

computed from I (n)(i) and the measured 1(0.) by1 1

R (n) (0 = I(.) - I(n) (0.)/ (0.) (6)

If the R (n) () are of the order of magnitude of the computational and

measurement error e, then 6(n)(z) is the solution. If the R (n)pi) are

greater than E, then a new guess is generated using the appropriate relaxa-

tion equation. The procedure is repeated until the residuals all approach

E or a minimum.

The relaxation equation is derived by considering the equation for

I(n) (i), with the boundary term ignored for simplicity:

I(n) (.) = B(,(n)(z))d( z) dz (7)
i  dz

(n)and multiplying it by I(i)/I ( i) giving:
1 dgT(i ivz)

(0.) = I[B(i., (n)(z.)) ( ) dT(,z dz (8)
0 (n) dzo I (0.) d1
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Since I(j.) is associated with the temperature at the level zi of the peak

of the i'th weighting function, the new guess for the blackbody function at

z. is given by the expression between the brackets;
1

B(i. , 8 ( n + l ) (zi)) = B(Oi,6(n ) ( zi )  i(Oi)- (9)1 (n)iini)

Equation (9) is then solved for (n + l) (z i ) for each a..

The complete relaxation procedure is as follows:

1) Make an initial guess 0 (n)(z), n = 0, which can be

almost any function or constant.

2) Calculate I(n)(o i ) using (7).

3) Calculate R(n) (0 i ) from (6): if all the R(n)(0i)-e , then

6(n) (zi) is a solution.

(n)4) If the R (0.i ) are larger than e, generate a new guess

8(n+l)(zi) using (9).

5) Using 0(n+l) (zi) go back to step 2 and repeat the proced-

ure until all the residuals converge to c.

Note that the convergence of the temperature estimate at one level

depends upon the simultaneous convergence of the estimates at all .the levels.

That is, since 0 (n+l)(zi ) depends upon I(n) (0 i ) which in turn depends upon

all the 6n(zi)'s, all the 0n(zi)'s must converge together, although not

necessarily at the same rate. Thus, improvement in the estimate at one

level leads to the improvement of the estimates at all levels, but partic-

ularly at neighboring levels. This interdependence also implies that
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errors, in say one 1(Oi), will affect the retrieved temperatures at not

only that particular level, but at neighboring levels also.

As described by Chahine, this procedure is stable against noise in

measurements and errors in quadrature. In the presence of random errors

in measurement, the solution still converges, and the root mean square re-

siduals R converge to an asymtotic value which is of the order ofrms

magnitude of the rms errors. Thus, the residuals can distinguish between

noise and valid information. In a controlled numerical experiment of

inversions done in the 4.3p region, 2 percent rms random errors in the

observed radiances produced an average temperature error of 1 K. Relaxa-

tion essentially converges in 10 iterations or less from an isothermal

first guess: this number though will depend upon the 0. 's and the number
1

of weighting functions chosen. Also, the final solution does not depend

upon the initial guess. Even large errors in the initial guess result in

convergence, and all initial guesses converge to essentially the same

profile.

However, it should be noted that Chahine's numerical experiments were

performed in the 4.311 region whereas this study uses the 15p region. The

relative variation of the blackbody function with temperature is 3.5 times

greater in the 4.3p region than it is in the 151 band. This difference

between the two bands implies that for the same signal to noise ratio,

inversions in the 4.3p band should give more accurate retrierved solutions

than are possible in the 15p band.

Also, Chahine reports that the iteration should be stopped when the

R approach a minimum. However, further experience seems to show thatrms
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the most accurate solutions are obtained by stopping the iteration at

about the point of maximum curvature of the R ( n ) curve (Conrath and Reveh,
rms

1972). This convergence criteria remains somewhat vague, and can best be

evaluated by experience.

At this point a note of caution is in order. Chahine's method is

based on reducing the residuals, defined by (6), to some small value

determined by the measurement and quadrature errors. However, Westwater

and Strand (1972) demonstrated that mere smallness of the residuals does

not guarantee a solution close to the exact solution. To see this fact,

consider the direct problem:

H
I(0.) = f B(i.,(z)) dT(Oii). dz, i =1,2, ... M (10)

o dz

where I(oi) and 8(z) are exact and H represents the top of the atmosphere.

Now consider the integral

K(O.,N) = [B(O.i, (z)) + D sin(7- z)]dT dz,0 H dz

i = 1, ... M; N = 1,2,3 (11)

where D is an arbitrary constant. By the Rieman-Lebesque lemma (Whittaker

and Watson, 1963);

K(0i,N) I(O i ) as N-+, i = 1,2, ... M (12)
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Thus, K(Oi,N) can approximate I(0i ) as closely as desired by making N

large enough. However, since D is arbitrary, the term in the brackets in

(11) can be radically different from B(Oi,O(z)). The conclusion to be

drawn then, is that the mere convergence of the residuals to some small

value does not guarantee that the retrieved profile will be suitably close

to the exact profile. Therefore, the use of the smallness of the residuals

as a convergence criterion for temperature retrieval is justified only by

experiments with real and simulated data.

The particular set of weighting functions is chosen so that the z.'s
1

are evenly distributed throughout the atmosphere. By conservation of

information, N radiance measurements can sound no more than N levels in the

atmosphere. However, the vertical resolution obtainable is effectively

limited by the spread of the weighting functions about the z.'s: if the
1

overlap of two weighting functions is nearly complete, then the information

contained in the two radiance measurements at those wavenumbers is largely

redundant. Fig. 2 shows one set of seven weighting functions for the 15p

CO2 band (Conrath, 1972). As shown, there is considerable overlap between

weighting functions. Conrath has shown that increasing the number of

weighting functions used for inversion from 7 to 16 gains little non-

redundant information and consequently only a marginal improvement in the

vertical resolution. Furthermore, in the presence of noise in the data,

the use of highly redundant weighting functions leads to instabilities in

the retrieved profiles. These facts suggest that the largest number of

weighting functions that can be usefully employed in temperature inversion

in the 15u C02 band is about 10.



THE WEIGHTING FUNCTIONS

The weighting functions selected for use in this study lie in the

15P CO2 band. This band is well suited for remote temperature-sounding for

several reasons:

1) CO2 is well mixed in the troposphere and the strato-

sphere.

2) The band is strongly absorbing, particularly around the

Q branches at 667 cm-1 and 648 cm-1.

3) Absorption by other gases, such as ozone and water vapor,

is small.

4) The temperature dependence of the line intensity, and

therefore the absorption is small.

The level at which a particular weighting function peaks is determined

by the average absorption within the spectral field-of-view of the spectrom-

eter: the greater the average absorption, the higher the level sounded.

In the 15 CO2 band, the greatest absorption is due to the lines of the

intense Q branch of the u2 fundamental vibration-rotation band centered at

667.4 cm- 1. These lines are the strongest in the band and are closely

spaced. Fig. 3 shows the lines of this Q branch plus a few lines of the P

and R branches. The many, much weaker lines from other bands are not shown.

Due to the limited spectral resolution of a conventional satellite

spectrometer, its spectral field-of-view must include many lines of varying

intensity. The greater the resolution, the more narrowly the instrument

-11-
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can focus on the strongest lines. By focusing the spectrometer more

closely on the strongest part of the Q branch, that is, by using a narrower

instrument function, greater average absorption in the spectral field-of-

view is obtained. Consequently, the weighting function will peak at a

higher level.

Most previous temperature sounding studies have used radiance data

from the Satellite Infrared Spectrometers (SIRS-A and B) or the Infrared

Interferometer Spectrometers (IRIS-B and D) on the satellites Nimbus 3 and

4. These instruments have a resolution of about 5 cm- 1 except for the IRIS-

D, whose resolution is 2.8 cm- 1 . As can be seen from Fig. 3, 5 cm-1

resolution includes significant regions of low absorption on either side of

the Q branch. Fig. 4 gives the weighting functions for the eight channels

of the SIRS-A. Note that the weighting function centered at 669 cm- 1 peaks

at about 30 mb. In addition, it is quite broad, making the vertical resolu-

tion of the retrieved temperatures in the stratosphere poor. (The IRIS-D

weighting functions by Conrath, with 2.8 cm-1 resolution, are given in

Fig. 2. However, the procedure used to calculate the transmission functions

was inaccurate for those weighting functions centered around the Q branch.)

In order to get a weighting function which peaks at a higher level, one must

go to an instrument. with a higher resolving power.

The data from the IRIS can be processed in two ways corresponding to

two values of spectral resolution. The IRIS produces raw data in the form

of an interferogram which is then Fourier transformed into the radiance

spectra. An apodization function may be applied to the interferogram before

the Fourier transform is performed. The apodization function has the effect
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of reducing the side lobes of the instrument function while at the same

time increasing the width of the central maximum. Fig. 5 compares the

instrument function with and without apodization. Note that the width of

the central maximum of the apodized instrument function is almost twice as

large as that of the unapodized one. Thus, the difference between the

unapodized and the apodized spectra is that the unapodized radiance 1(i)

comes from a narrower spectral region around 0., but also has more

significant contributions from distant regions. The unapodized instrument

function also has large negative contributions, whose effect on the weight-

ing functions will be seen later. The resolution of the IRIS-D is nominally

1.4 cm- 1 in the unapodized mode and 2.8 cm- 1 in the apodized mode.

Fig. 6 shows the weighting functions at 668.2 cm- 1 corresponding to

both the apodized and the unapodized IRIS-D spectra. Note that the apodized

weighting function is sharper and peaks higher than the corresponding SIRS-A

weighting function shown in Fig. 4, due to the higher resolution of the

IRIS-D. Going from the apodized to the unapodized mode increases this effect

further: thus, the hump in the apodized weighting function at around 10 mb

disappears. Note also that the weighting function takes on negative values:

this effect results from the fact that the unapodized instrument function

is significantly negative over certain regions. Using the unapodized IRIS-D

spectra, the peak of the highest weighting function is raised to 3.2 mb

(,v40 km), up from about 20 mb (b27 km) for the SIRS-A.

Fig. 7 shows the complete set of weighting functions initially chosen

for this study. The transmission data for these weighting functions was

supplied by V. Kunde of Goddard Space Flight Center, Greenbelt, Maryland.
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He has computed the average transmission due to CO2 over 0.1 cm
-u inter-

vals from 500 cm- 1 to 800 cm- 1, using a detailed line-by-line calculation.

The temperature profile shown in Fig. 8 was assumed. The effects of

other absorbing gases, such as water vapor, ozone, and nitrous oxide, was

not included. The transmissions were computed at 31 pressure levels from

0 to 60 km in steps of about 2 km.

The highest weighting function shown in Fig. 7, using unapodized

spectra at 668.2 cm-1, peaks at 3.2 mb. The second highest, also unapodized,

is centered at 648.7 cm-1 around the Q branch of the u2 fundamental of the

isotope 1 3C1602 . All the other weighting functions are based on the apodized

spectra.

Weighting functions 2 and 3 are actually each based on the difference

between two weighting functions. Fig. 9 shows the weighting functions at

668.2 cm-1 (unapodized), at 667.5 cm-1 (apodized), and the difference between

the two curves. The difference curve is seen to have a shape very similar

to that of a weighting function. The difference between the two correspond-

ing radiances can be interpreted as follows:

I(Da) -b) = B a b  b dz (13)
a--',"b z(3

o dz dz

For Oa = 668.2 cm -1 and ob = 667.5 cm-1 and for 0 between 210 K and 300 K,

B(Oa,O) B(Ob,O) to within 0.2 percent. Therefore;

(a)- ob) Ba[dT _db dz (14)
o dz dz



-15-

From the shape of the differenced weighting function, I(0a) -I(0b ) can be

treated as a single radiance which sounds the level of the peak of the

differenced weighting function. As shown in Fig. 7, weighting function 2

is based on the difference between the weighting functions at 648.7 cm-1

(unapodized) and 655.0 cm-1 (apodized), while weighting function 3 is based

on 668.2 cm-1 (unapodized) and 667.5 cm-1 (apodized).

The transmission functions used to calculate the weighting functions

do not include the absorption due to either ozone or water vapor. Ozone,

which has a maximum concentration at around 20 km, has an absorption band

centered at 701 cm-1. By choosing weighting functions on the low wavenumber

side of 667 cm- 1 , instead of the high wavenumber side as in other studies,

problems due to the absorption of ozone are avoided.

However, on the low wavenumber side of 667 cm- 1 , absorption due to

water vapor is significant in the lower layers of the atmosphere. Because

of the rapid decrease of water vapor amount with height, water vapor absorp-

tion at the wavenumber under consideration is negligible above about 400 mb,

for standard midlatitude conditions. Below this level, water vapor absorp-

tion becomes significant and its effect is to decrease the transmission at

any level, compared to the transmission due to CO2 alone.

Neglecting the absorption due to water vapor in the transmission

function leads to errors in the weighting functions and in the calculated

outgoing radiance. The level of the peak of weighting functions below 400

mb is underestimated. Since the temperature below 400 mb is in general

decreasing with height, the calculated outgoing radiance would be too large.

For these reasons, neglecting water vapor absorption would certainly
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lead to errors in the retrieved temperatures in the lower layers of the

atmosphere. On the other hand, I hoped that these errors would not be too

large and would be confined to the lower layers, with little effect on the

retrieved temperatures in the upper layers. However, when inversions were

performed using the full set of weighting functions shown in Fig. 7, gross

instabilities in the retrieved temperatures in the lower levels appeared

which propagated to the highest levels and rendered the retrieved profiles

meaningless.

To correct this problem by including water vapor absorption in the

transmission function would be beyond the scope of this study. So to over-

come this difficulty, I decided to include only those weighting functions

peaking above the tropopause in the relaxation procedure. Below the

tropopause, the retrieved profile is merged into the in situ profile in

order to calculate the outgoing radiance. Since the aim of this study is

primarily to retrieve temperatures in the stratosphere, eliminating the

retrieval of tropospheric temperatures in not a great loss.

So far, little has been said regarding the accuracy and the vertical

resolution of the retrieved profiles. Conrath (1972) has shown that for a

given level of noise in the measured radiance, there is a trade-off between

accuracy and vertical resolution: increased accuracy can be achieved only

at the expense of decreased vertical resolution. In order to investigate

this effect, the following calculation was performed: using an assumed

temperature profile 80(z), the outgoing radiance IO(Oi) was calculated for

each 0 i . Then at each of the thirty 2 km thick layers zj, a 2 K pertur-

bation was added to 80(z.) and the radiance I (Oi) calculated. The
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residuals R.(i.) = (I.(0.) -10 (i))/1 (0.) are shown in Table 1.

The maximum residuals are about 0.5 percent for the lower weighting

functions, decreasing to about 0.2 percent for the highest. These residuals

should be compared to the instrument noise of about 1 percent. Clearly a

2 K error in the retrieved profile in a layer 2 km thick could not be

detected to within the measurement error. In order to produce residuals

comparable to the instrument noise, the vertical resolution must be degraded

to about 4 to 5 km for the lower weighting functions and to as much as 8 km

for the highest. Conversely, for a vertical resolution of 2 km, the minimum

uncertainty of the retrieved profiles must be increased to about 5 to 10 K.

Note that these trade-off figures include contributions only from the

measurement error; the inversion routine itself will introduce further

uncertainties into the retrieved profiles.

Clearly the spacing between weighting functions 3 and 4 in Fig. 7

(2 km) is too small for a reasonable level of accuracy in the retrieved

profile. Therefore, I decided to limit the number of weighting functions

in the stratosphere to three. Also, the measurement error for a combination

weighting function is twice that for a single one, since the error in the

individual radiances add. Therefore, I further decided to drop the combina-

tion weighting functions and use only the single radiance form.

Fig. 10 shows the final set of weighting functions chosen for this

study. An additional one (667.4 cm-I, apodized) is shown which is not used

in the relaxation: however, since this channel sounds practically the

entire stratosphere, its radiance provides a useful check on the internal

consistency of the retrieved profiles.



ROCKET/NIMBUS SOUNDER COMPARISON

The radiance and temperature data used in this study were taken from

the Rocket/Nimbus Sounder Comparison (R/NSC) (Rocket/Nimbus Sounder Com-

parison, 1972). In this experiment, conducted during the summer of 1970

at Wallops Island, Virginia, in situ temperature measurements were made

coincident with radiance measurements by the IRIS-D and the SIRS-B instru-

ments on the Nimbus 4 satellite passing overhead. The objectives of the

study were to compare the compatibility of:

1) radiance data derived from different satellite

spectrometers;

2) temperatures measured by balloonsondes and different

types of meteorological rockets, and,

3) satellite retrieved profiles and in situ measured

temperatures.

In designing the experiment, care was taken that the satellite systems

and the balloon- and rocketsondes were measuring essentially the same

environment. Usually, the satellite did not pass directly overhead of

Wallops Island. Therefore, the criterion for making observations was estab-

lished that the distance between the in situ observations and the satellite

path be less that ±50 of longitude. A maximum time difference in observa-

tions of one hour was' set. However, there is a difference in the sampling

properties of the two systems: the balloon- and rocketsonde measurements
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are local values taken along the trajectory of the vehicle, while the

IRIS-D measures the average radiance over a vertical column about 120 km

in diameter. The differences in the sampled environment due to horizontal

temperature differences were minimized by making the measurements in the

summer, when the horizontal temperature gradients in the stratosphere are

quite weak (as little as 15 K from equator to pole).

The in situ temperature profiles are derived from combined balloon-

and rocketsonde measurements. The balloonsonde measurements are used up

to about 20 km where they are merged with the rocketsonde profiles, which

extend up to about 60 km.

There is considerable uncertainty regarding the accuracy of the in situ

profiles. The balloonsonde temperatures are considered to be accurate to

better than ±1 K up to about 20 km. Analysis of the rocketsonde data is

complicated by the fact that three different instrument packages were used

and there are systematic differences among their measured temperatures.

Further, the measured temperatures must be corrected for various effects,

such as radiative heating and conductive heat transfer. As many as 40

parameters are involved in the temperature correction, and because the

values of many of these parameters are poorly known, the accuracy of the

measured temperatures is uncertain. Estimates of the uncertainty in one

instrument are: 1 K from 25 to 40 km, about 3 K at 50 km, and about 8 K at

60 km.

Comparison of rocketsonde and satellite measurements indicate syste-

matic differences between the two, with the rocketsonde values being higher.

This point will be discussed in much greater detail later.
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Simultaneous in situ temperature profiles and IRIS-D radiance data

for nine days in June and July of 1970, were provided by V. Kunde. The

temperature data were smoothed and interpolated to give the mean temperature

in each 2 km thick layer from the ground.to 60 km. The radiance data are

given at discrete wavenumber intervals. Due to the effects of off-axis

rays in the interferometer, a wavenumber correction, amounting to 0.3 cm-I

must be added to the tabulated wavenumbers to obtain the true values.

The weighting function center wavenumbers 0. were adjusted slightly to1

coincide with the corrected tabulated values and new weighting functions

were calculated. The new weighting functions were negligibly different

from the old. The noise equivalent radiance of the IRIS-D is estimated to

be about 0.5 erg sec-lcm- 2 str-1/cm- 1 (hereafter called simply ergs) in the

apodized mode, and somewhat more in the unapodized mode (Hanel et al., 1972).

Typical measured radiances are about 50 to 70 ergs, so that the noise is about

1 percent.

The precision of the radiance measurements vs. the in situ temperature

measurements has been compared by Kunde et al. (1974). The standard devia-

tion of the brightness temperature in the region 600-750 cm1- for eight

Wallops Island cases was about 1 K. The standard deviation of the corre-

sponding in situ temperature measurements averaged over the 0-50 km range

was about 3 K, indicating a lower precision in the in situ measurements

compared to the satellite measurements.



THE DIRECT PROBLEM

Each iteration of the relaxation procedure requires the solution

of the direct problem; that is, the calculation of the outgoing radiance

from a given temperature profile using (3). Since the calculation must be

repeated many times, a rapid but accurate algorithm must be found. The

transmission data T(O,z) is given at 0.1 cm-1 intervals in 0, and at 31

pressure levels in steps of about 2 km, from the ground to 60 km. Replacing

(3) with a simple numerical quadrature, and ignoring the boundary term for

now, the direct problem becomes

I(Di) B(O ,O(zj)) Af (0 ,zj) ( ( -ti) (15)

Now the unapodized instrument function dies out slowly; its envelope

does not become less than one percent of its maximum value until about

40 cm- I away from the center. Letting the limits of the integration in 0

be 0i ± 40 cm-1, there are 800 quadrature points in 0. The integration

with respect to z involves 30 quadrature points. Performing the double

summation indicated in (15) for each iteration of the relaxation scheme and

for each 0i would require large amounts of computing time and storage.

Appendix A gives an efficient algorithm for evaluating (15) which

uses an approximate factoring of the blackbody function. Factoring the

blackbody function into terms containing 0 and 6 alone allows the integration

with respect to 0 in (15) to be done once and for all. The calculation of
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I(Oi) requires only the integration with respect to z, reducing the compu-

tation time required to solve the direct problem by a factor of about 800.

For a given profile O(z), j = 1, 30, the quadrature error in the calcu-

lated radiance associated with the factored blackbody approximation is less

than 0.4 percent.

However, there is a remaining difficulty associated with the emission

from the top-most layer of the atmosphere. In the supplied transmission

data, the transmission at the 60 km level has been taken to be identically

equal to 1. For most spectral intervals, this approximation is quite good

since the absorption above 58 km is negligible. However, for the unapodized

weighting functions centered at 668.1 cm-1 and 648.6 cm-1, the absorption

above 58 km is 9 and 1.7 percent respectively. For these two channels, the

emission from above 58 km is a significant fraction of the total.

In calculating the outgoing radiance, the contribution from each

atmospheric layer is given to a close approximation by multiplying the

blackbody function at the average temperature of the layer by the change

in transmission in that layer. The average temperature of the layer is

taken as the temperature at the center of the layer. With the given trans-

mission data however, the layer above 58 km actually extends up indefinitely,

and there is no clear definition of the average temperature of this layer.

It is possible to place limits on the range of possible values for

the effective emission temperature of this layer, call it O(zT). Appendix

B discusses the problem of determining 0(zT) and shows that its range is

limited to about 220 ± 20 K. For this study, the value of O(z ) = 220 K

was adopted. The corresponding uncertainty in the calculated outgoing
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radiance due to the uncertainty in (zT ) is ±2 ergs for the highest weight-

ing function corresponding to 01, and much less in the other channels.

The effect of this uncertainty will be considered later.

Having established the value of 8(z ), the outgoing radiance can be

calculated from the in situ temperature profile and the results compared

to the measured radiances. The measured and calculated radiances should

agree to within experimental and computation error. Table 2 compares the

measured and calculated radiances for the nine days of data. The calculated

radiances are systematically higher than the measured radiances by from 5

to 20 percent. The most significant discrepancy is in I(0i), where the

average difference is 11.9 ergs.

The same difficulty was noted by Kunde et aZ. (1974), in their compari-

son of the calculated and the measured radiances using the apodized IRIS

spectra. The authors noted three possible sources for this discrepancy:

1) theoretical transmittances; 2) absolute instrument calibration, and,

3) in situ temperature measurements. These and other possible sources of

error will now be examined to see if the difference between the calculated and

the measured radiances can be accounted for. First, errors in the calculated

radiance will be considered.

The uncertainty in the CO2 transmission functions has been estimated

to be 5-10 percent (Kunde and Maguire, 1974). A 10 percent uncertainty in

the transmission implies about a 10 percent uncertainty in the level P" of

the peak of the corresponding weighting function. For weighting function

1, peaking at 3.2 mb, a 10 percent uncertainty in P' corresponds to an

uncertainty in the temperature at P' of about ±1.5K. Translating this

uncertainty in 8(P') roughly into the uncertainty in the radiance for that
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weighting function gives a possible error in I(01) due to transmission

errors of at most ±2 ergs. A more likely error would be ±1 erg.

The uncertainty in (zT ) contributes at most another 2 ergs to the

uncertainty of the calculated radiance. But this again is a maximum

estimate and would require a value for e(z ) of 200 K. Again, a more likely

uncertainty in the calculated radiance due to (zT ) is ±1 erg.

Finally, Hanel et aZ. (1971) states that, instead of the nominal

resolution of the IRIS-D spectra of 1.4 cm-1, the actual resolution is 1.8

cm-1 due to the natural apodizing effect of the off-axis rays in the inter-

ferometer. In calculating the radiance, however, the unapodized instrument

function of resolution 1.4 cm-1 was assumed. It is estimated that using

this instrument function could lead to calculated radiances systematically

too high by 2 ergs, at 668.1 cm- .

Now consider possible systematic errors in the radiance measurements.

The absolute calibration of the IRIS-D has been estimated by comparing

simultaneous IRIS-D and SIRS-B measurements during the R/NSC (Kunde et al.,

1974). After correcting for the difference between the two instrument

functions, the IRIS radiances were found to be systematically lower than

the SIRS measurements by as much as 4 ergs at 668.1 cm-1, and by lesser

amounts in the other channels. Of this 4 erg difference at 668.1 cm-1,

about 2 ergs can be attributed to the uncertainty in the IRIS instrument

function, which has already been considered. There remains a possible 2

erg systematic error in the IRIS measurements due to calibration error.

In summary, the sum of the possible systematic errors in the calcu-

lated and in the measured radiance at 668.1 cm-1 is at most 8 ergs, with
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a more likely value of 6 ergs. The average difference between the calcu-

lated and the measured radiances is, however, 12 ergs. Of this difference,

4 to 6 ergs remain unaccounted for, and the only remaining source of error

seems to be the in situ profiles. From the R/NSC (1972) and Kunde et aZ.

(1974), it appears that systematic errors in the rocketsonde measured

temperatures of 5 to 10 K are quite possible.

Therefore, the results of this study indicate that systematic errors

in the rocketsonde measurements exist. A rough estimate of the size of

this error can be obtained from the radiance difference: a 4 to 6 erg

error at 668.1 cm-1 translates roughly into a temperature error at 3.2 mb

of 4 to 6 K. Since the systematic error probably increases with height,

the error in the in situ temperature above 40 km is probably greater.

The fact that the in situ profiles contain systematic errors means

that accurate verification of the retrieved profiles is impossible. Also,

until the systematic errors in the measured and the calculated radiances

are corrected, the retrieved profiles will be unreliable. Further research

is needed, particularly to correct the absolute calibration of the IRIS

and to determine the actual instrument function. However, if the errors

in the calculated and the measured radiances are in the direction indicated,

then the retrieved profiles probably set a lower limit on the actual

profiles. And if further research shows that the radiance errors are less

than indicated, the retrieved profiles may, in fact, be more accurate

than the in situ profiles.



INVERSIONS WITH SYNTHETIC DATA

In order to investigate the accuracy and convergence properties

of the retrieval process, the inversion routine was first applied to syn-

thetic radiance data. Before presenting the results of this test, some

comments on the temperature interpolation scheme and the best measure of

the accuracy of the retrieved profiles are necessary.

The inversion routine relaxes the temperature at the three levels:

z1 (3.2 mb , 40 km); z2 (20.4 mb ' 27 km), and, z3 (60.0 mb 4 19 km). Between

these levels, the temperature is found by linear interpolation in z = -ln

(P/Po). Below z3, the temperature is merged with the in situ profile at

127 mb. There remains the problem of specifying the profile above z1 .

As mentioned before, the stratosphere during the period under investi-

gation was relatively quiet. The level of the stratopause remained between

1.8 and 1.1 mb while the stratopause temperature varied over only 8 K.

Above zl, the individual profiles varied from the average profile with an

average standard deviation at all levels of 2.5 K, and with a maximum

standard deviation of 4.3 K at 1.8 mb. Therefore, for the profile above

z1 in the inversion routine, I decided to use a profile parallel to the

average profile for the nine cases. The effect of this approximation on

the accuracy of the retrieved profiles is demonstrated in the tests with

synthetic data.

When evaluating the inversion process, there are several possible

measures of the accuracy of the retrieved profiles. First, there is the
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difference between the "exact" and the retrieved temperatures at the

levels z--A(n)(zi)-- which measures the error in the retrieved profile

only at the three specific points. Secondly, there is AO(n) ms the root
rms'

mean square error integrated between z1 and z 3 , which measures the

overall error in the retrieved profile between z1 and z2 . Note, however,

that even in these tests with error-free synthetic radiance data, neither

AO(n)(zi), nor Ae(n)rms can, in general approach zero exactly. The reason

for this is that the synthetic radiance data are generated from the actual

in situ profiles (here, the "exact" profiles). However, the retrieved

profiles have only three degrees of freedom and cannot fit the fine

structure of the "exact" profiles perfectly. The best fit, in the r.m.s.

sense, between the "exact" and the retrieved profiles will, in general,

produce errors at the levels zi, while an exact fit at the levels z. will

necessarily produce a non-zero value for AOs (see Fig. 15).
rms

However, if the "exact" and the retrieved temperatures, averaged over

layers of significant thickness, are compared, the fine structure of the

"exact" profile tends to be smoothed out and the agreement between the

"exact" and the retrieved profiles should be improved. Therefore, the

temperatures averaged over layers extending over approximately z. + 5 km
1

-(n)--0 (zi)-- have been computed for both the exact and the retrieved

profiles. Note that the layer-averaged temperatures (n)(z i ) are also more

(n)
significant than the 8((zi) for use in numerical weather prediction

models, which will probably be a prime application of remote temperature

sensing.

In these tests with synthetic data, the convergence characteristics
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of the various measures of temperature error were examined to discover:

1) the accuracy of the retrieval process with and without random noise

in the radiance data, and, 2) the criterion for stopping the iteration

procedure.

The in situ temperature profiles for the nine cases were used to

generate "exact" synthetic radiance data for the four channels whose

weighting functions are shown in Fig. 10. These data were used as input

to the inversion routine. At each iteration n, the following quantities

were computed:

1) (n)(z.): the retrieved temperature at the levels z..
1 1

2) (n) (zi): the retrieved temperatures averaged over

approximately z. ± 5km.

(n)3) AO(n )  : the r.m.s. difference between the "exact"rms

and the retrieved profiles between the levels zI and z3.

4) R(n) : the r.m.s. residuals for weighting functionsrms

1, 2, and 3.

5) R(n)4: the residual for weighting function 4 (Fig. 10),

which is not relaxed but sounds most of the stratosphere.

Each case was run using two initial guesses for O(z):A, for which the

initial guess is a reasonable approximation to the real profile, with

0 ( 0 ) ( z l ) = 250 K, 0(0)(z2) = 225 K, and e(0)(z 3 ) = 215 K; and B, for which

the atmosphere between z1 and z3 is isothermal at 240 K. The relaxation

procedure was iterated nine times.

Convergence of the retrieved profiles was obtained for all cases and
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for both initial guesses. Fig. 11 shows R(n)  vs. n and Fig. 12 showsrms

Ae n  , for guess A. Figs. 13 and 14 shows the corresponding values for
rms

guess B. Understandably, guess A converges more rapidly than B. For

guess A, AO(n) reaches a minimum for n between 1 and 4, and remains
rms

essentially constant thereafter. For guess B, the corresponding values of

n range between 5 and 7. Note, however, that at the value of n for which

AO(n) reaches a minimum, R(n) may be as large as 1 percent and is
rms rms

still decreasing.

The question arises whether or not any improvement in the retrieved

profile is obtained by continuing the iteration beyond the point where

Ae(n )  reaches a minimum, so that R(n )  may be decreased further.
rms rms

Investigation shows that, for those values of n for which AO(n) remains
rms

constant, all other measures of the accuracy of the retrieved profile

remain constant also. In particular, no decrease in the mean error in the

layer-averaged temperatures is gained by continuing the iteration pa3t the

point at which AO(n) is a minimum. Therefore, AO(n) is a good overall
rms rms

indicator of the accuracy of the retrieved profile for different n.

The question remains then, why does the accuracy of the retrieved

(n)profile not improve beyond the.point of minimum AOn) , even though the
rms'

radiance data are exact and the R(n) are decreasing? The answer is
rms

apparently that even though the radiance data are exact, the temperature

data are not: the three-parameter retrieved profile cannot fit the "exact"

profile perfectly, and the profile above 3.2 mb for the retrieved profile

is only an approximation to the "exact" profile. These two effects

represent a kind of "noise" in the data and reducing the R(n) below the
rms



-30-

level of this noise does not increase the accuracy of the retrieved pro-

file.

As mentioned previously, Conrath and Revah (1972) have indicated

that the critical value of n = n" which produces the most accurate solu-

tion is obtained by halting the iteration at that point on the R(n)rms

curve where the curvature is the greatest. From Figs. 12 and 14, one can

see that the point of minimum AO(n) occurs for an n which is 2 or 3
rms

less than the n for the maximum curvature in the R(n) curve. Therefore,
rms

the maximum curvature criterion is acceptable, but, for "exact" data

anyway, it leads to an unnecessarily large value of n'. The question will

be investigated again for noisy synthetic data.

Now consider the accuracy of the retrieved profiles. After converg-

ence, (n )  for guess A varies between 1.1 K and 1.9 K for the nine
rms

cases, with an average of 1.6 K. The corresponding values for B are

essentially the same. Table 3 gives the "exact" and the retrieved temper-

atures e(z i ) for guesses A and B, and their differences. The average

difference between the "exact" and the retrieved temperatures for the three

levels is 0.3 K r guesses A and 0.7 KfcrB. The individual differences are

much larger, as shown by the standard deviations, which average 1.3 K for

guess A and 1.4 K for B. The largest individual error is 3.8 K. Since

the mean error averaged over the nine cases approaches zero, the standard

deviations of the errors gives a better measure of the uncertainty to be

expected in any single inversion than the average error. Fig. 13 shows

the retrieved profile for a typical case (6/25), along with the "exact"

profile and the initial guess A.
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Table 4 gives the "exact" and the retrieved layer-averaged temper-

atures and their differences. The accuracy of the O(z.)'s is significantly

better than that of the O(z.) 's. The mean error averaged over the three

levels remains small while the standard deviations are decreased by about

half, to 0.6 K for guess A and 0.7 K for B. The maximum individual error

in the layer-averaged temperature is 1.2 K.

Consider now the differences between the retrieved temperatures for

the two initial guesses, shown in Table 3. These differences are, on the

average, less than the differences between the "exact" temperature and

either retrieved temperature. Furthermore, the temperatures retrieved using

guess A are uniformly lower at zI than those retrieved by B, higher at z2 ,

and lower again at z3 . However, these differences are small, averaging

0.7 K for all three levels, with a maximum of 1.3 K. The differences

between the layer-averaged temperatures retrieved by A and by B, shown in

Table 4, show the same systematic trend, but are less, averaging 0.4 K,

with a maximum of 0.8 K.

The previous test used exact synthetic data. To test the effect of

measurement noise on the inversion process, a similar test was run with

random errors added to the exact radiance. The random errors were generated

from a normal distribution of mean zero and standard deviation of 0.5 ergs,

approximating the noise of the IRIS-D. For each of the nine cases,

inversions were run with six different sets of random noise, and using.

initial guesses A and B.

The results for a typical case, 6/25, will be shown in some detail.

Fig. 16 shows the curve of R )  vs. n, while Fig. 17 shows A (n) vs.
rms rms
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n, for initial guess A. Note that (n)  goes to a minimum after 1 to
rms

3 iterations, but may then increase. The point of maximum curvature on

the R curve (as determined by eye), occurs for n equal to 1 or 2,rms

while the rate of convergence of the residuals varies over a wide range.

In these instances, the point of maximum curvature is the same as the

point of minimum error in the retrieved profiles, so that the maximum

curvature criterion is valid. Note the correlation, in these figures,

between the size of the residuals and the accuracy of the retrieved pro-

files, as measured by AO(n)rms

Figs. 18 and 19 show the same curves for initial guess B. Note that,

(n)even for an isothermal guess, the AO curve decreases to a minimum
rms

and diverges thereafter. Also, the point of maximum curvature occurs for

(n)n 1 to 3 greater than the point of minimum A(n) In this case, using
rms

the maximum curvature criterion increases the error in the retrieved

profiles over the minimum possible error. Table 5 gives the values of

AO( n )  and R( n )  for the two criteria: ni--the minimum A ( n )  , and
rms rms rms

ni--the maximum curvature. The total r.m.s. error in the radiances is also

given. For guess A, nl equals n2, so the accuracy of the retrieved

profiles is the same in both cases. For guess B, n/ is greater than n1 by

from 1 to 3. The total average decrease in accuracy, judged by the average

AO(n)rms, resulting from using the maximum curvature criterion, is quite

small: only 0.1 K. In individual cases, however, such as 5 and 6 with

guess B, the increased error is from .4 to .6 K.

Note that the correlation between the r.m.s. noise and AO(n )  is
rms

weak. Cases 3 and 6 have the same level of noise but differ in A8(n) rms
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by 0.5 K, while case 2 has greater noise than case 6, but a lower A (n )
rms

by 0.5 K. Also, R (n )  is not a consistent indicator of the r.m.s.
rms

noise: case 2 has a relatively large level of noise but a relatively

small value of R(n) at convergence.rms

Table 6 shows the same statistics as Table 5, but for 6/8, and in

general, implies the same results. In particular, the value of n at maximum

curvature is 1 or 2 greater than the n for the minimum AO(n) . The increase
rms

in AO(n) due to using the maximum curvature criterion is again, small:
rms

only about 0.2 K for both guess A and B. Also, guess A gives a retrieved

profile only slightly better than guess B. Note also that the average R(n)rms

at convergence for 6/8 is about twice that for 6/25, although they both

have about the same retrieved accuracy.

In summary, these results show that using the point of maximum curv-

ature on-the R curve as the convergence criterion is, in general,rms

valid, although slightly better results are obtained in some cases from one

less iteration. They also show that the accuracy of the retrieved profile

is practically independent of the initial guess..

Consider now the level of accuracy of the retrieved profile in the

presence of noise. From all these tests with noisy synthetic data and for

both initial guesses, the average value of AO(n) is 2.0 K, using the
rms

maximum curvature criterion, compared to an average of 1.6 K without noise.

The uncertainty in the layer-averaged temperature (perhaps a more useful

measure of the retrieved accuracy than AO(n ) is about 1.1 K for guess A

compared to 0.6 K for the case with no noise. For guess B, the uncertainty

in O(z.) is 1.2 K compared to 0.7 K without noise. An individual error of
1
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3.0 K was observed, but this error was due to an unusually large (and

statistically improbable) value of the noise.

The average of R4 for these tests with noise is 0.7 percent for

guess A, with a maximum of 1.6 percent, and 0.5 percent for B, with a

maximum of 1.5 percent.



INVERSIONS WITH REAL DATA

The results of the inversions of the IRIS data are shown in Figs.

20 and 21, and in Tables 7 and 8. Fig. 20, shows R vs. n usingrms

initial guess A. Convergence is obtained in all cases, and the critical

value n' for which the curvature is greatest varies between 1 and 3.

Note that initial guess A is closer to the final retrieved profiles with

real data than it is to the "exact" profiles using synthetic data, so that

the residuals for n = 0 are relatively small. The values of the R( n )  's
rms

are comparable to those obtained from the tests with 1 percent random

noise. Therefore, the reported level of random noise for the IRIS-D of

about 1 percent (Hanel et al., 1972) tends to be confirmed, or at least,

not contradicted. Systematic errors in the radiance data however, would

not necessarily be reflected in the R(n) curves. Due to the probable
rms

systematic errors in the in situ profiles, the curves of Ae(nrms cannot

be used to judge the accuracy of the retrieved profiles, and so they are

(n)
not shown here. The average value of A (n ) ms at convergence is 7.9 K.

Table 7 lists the retrieved and the in situ temperatures e(z.),

along with their differences. The differences are systematic and increasing

with height. At z1 , the mean difference is 11.5 K with a standard devia-

tion of ±2.2 K; at z 2 , 6.0 ± 3.7 K; and at z3, 3.1 ± 1.9 K. Table 8 shows

the differences between the retrieved and measured layer-averaged temper-

atures, (zi), which are quite similar. The mean differences are: at zi,

10.3 ± 2.8 K; at z2 , 6.6 ± 2.9 K; and at z 3 , 2.7 ± 1.7 K.
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The profiles retrieved using initial guess B show essentially the

same characteristics as those retrieved using A. For each day, R(n )
rms

converges to approximately the same value, although the critical value n'

varies between 5 and 7. The average values of A (n )rms and R(n) 4 are
rms

within 0.02 K and 0.003 of their previous values. The mean differences

and the standard deviations between the temperatures retrieved using A

minus those using B are: -0.2 ± 0.5 K at zl, +1.2 ± 1.3 K at z2 , and

-2.0 ± 1.0 K at z3. Since the tests with synthetic data show that guess A

gives slightly better results than B, all further discussion will use the

results from A.

Fig. 21a-i show the retrieved and the measured profiles for the nine

cases. Note that the two profiles merge at 127 mb, and that above 3.2 mb,

the retrieved profile is parallel to the average in situ profile for the

nine cases. The systematic difference between the retrieved and the

in situ profiles is clearly visible in these figures. Note also that the

day-to-day variation among the retrieved profiles is less than that among

the measured profiles.

Because of the systematic difference between the retrieved and the

in situ profiles, there is little point in discussing whether or not the

inverted profiles can retrieve structural details in the measured profiles.

In any case, because of the limited vertical resolution of the retrieved

profiles, details with a scale smaller than about 10 km cannot be retrieved,

while details with a scale greater than 10 km usually have small amplitude

in these particular profiles.

The sources of the systematic differences between the IRIS measurements
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and the in situ measurements have already been considered with respect to

the direct problem. From the comparison of the measured and the calculated

radiances, even after corrections for the possible systematic errors in

the measured and the calculated radiances were made, it was concluded that

the in situ measurements probably contain systematic errors. It should be

possible to show the same conclusion from the differences between the

retrieved and the in situ profiles, by incorporating the possible systematic

corrections into the inversion routine. However, such a demonstration

using the retrieved profiles is more difficult because of the interactions

between the retrieved temperatures at the various levels. For example,

overcorrection in the radiance for one channel would lead to a retrieved

temperature at the corresponding level which is too high. In response, the

retrieved temperatures at the other levels, due to this effect, would be

too low. Therefore, greater care in applying the corrections to the

measured and the calculated radiances is needed when.considering the

retrieved temperatures than when considering the direct problem.

With these comments in mind, inversions were run using the real data,

with rough corrections made for the possible systematic errors in the

measured and the calculated radiances. These corrections amounted to

adding 5 ergs to the measured radiances to correct for the combined effects

of the IRIS calibration error, the error in the instrument function, and

the errors in the transmission function. This value for the correction

applies actually only to the radiance at 668.1 cm-1 as estimated in the

section on the direct problem: for the other radiances, it is probably

too much. A value of 200 K was used for e(z ) to allow for the uncertainty
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in this temperature. Note that all the corrections were made in such a

way as to minimize the difference between the retrieved and the in situ

profiles.

The effect of these corrections was to raise both the temperatures

e(z i ) and 5(zi ) by 5.7 ± 0.3 K evenly at all three levels. Consider now

the average discrepancy between the retrieved and the in situ profiles

shown in Tables 7 and 8. Adding the radiance corrections overcompensates

by about 3 K for the discrepancy at z3, while it effectively eliminates

the discrepancy at z2 . However, there remains an average difference between

the retrieved and the in situ temperatures of about 6 K in e(zl) and about

4.5 K in T(zl). Adding the radiance corrections also reduces Arms from

7.9 K to 3.9 K.

Clearly these corrections for the possible systematic errors are

crude. However, the systematic difference between the retrieved and the

measured profiles, even with these corrections applied, still indicates a

systematic error in the in situ temperature measurements of about 4 to 6 K

at 40 km.

As the situation stands, the uncertainty in the retrieved profiles

is half or more of the difference between the retrieved and the in situ

profiles. While the remaining difference still indicates the presence of

a systematic error in the in situ measurements, the magnitude of this error

is poorly known. Further research into the sources of the possible errors

in the calculated and the measured radiances would be useful, both in

reducing the errors in the retrieved profiles, and in specifying more

accurately the error in the in situ measurements. The most important areas

for further work are in:
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1) determining the actual IRIS-D instrument function, both

apodized and unapodized;

2) evaluating the calibration error in the IRIS-D, and,

3) extending the transmission calculations to above 58 km

to reduce the uncertainty due to O(z T).

If these three areas of uncertainty can be significantly reduced, greater

confidence can be placed in both the retrieved profiles and the error in

the in situ measurements.

Finally, the discrepancy in the value of R4 must be accounted for.

With only random noise in the data, the average value of R4 should be of

the order of the measurement noise: in the tests of synthetic radiance data

with 1 percent noise, the average R4 was 0.5 percent. From the inversions

with real data, R4 averaged 3.1 ± 1.1 percent. This discrepancy is not

surprising, however, in view of the possible systematic errors in the

radiance data of up to 10 percent and the errors in the in situ measurements,

which affect the assumed profile above 3.2 mb. The large value of R4

therefore, merely indicates the presence of systematic errors without indi-

catingtheir source.



CONCLUSION

The goal of this research has been to obtain remote temperature

soundings up to 3.2 mb using the unapodized radiance data from the IRIS-D.

For this purpose, a set of three weighting functions which peak in the

stratosphere has been found. In order to obtain retrieved temperatures

using this limited set of weighting functions, supplementary in situ

measurements of the tropospheric temperatures are used. Tests with

synthetic radiance data show that retrieved temperatures can be obtained

in the stratosphere with a vertical resolution of about 10 km and an un-

certainty due to random instrument noise of 1.1 K.

However, there are several sources of systematic error in the data

which must be corrected for before the profiles retrieved from actual

radiance data can be used with confidence. These errors include: uncer-

tainty in the actual IRIS-D instrument function, possible errors in the

absolute calibration of the IRIS-D, and uncertainties in the transmission

functions above 58 km. These errors may cause the retrieved profiles to

be systematically low by as much as 6 to 8 K at 40 km.

In spite of these uncertainties, the results strongly suggest a

systematic error in the in situ measurements of at least 4 to 6 K at 40 km.

Unfortunately, these errors make an accurate verification of the retrieved

profiles impossible. Until the necessary corrections to the data can be

made, the retrieved temperatures and the in situ temperatures will be

incompatible. At present, both systems of temperature measurement appear

-40-
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to contain systematic errors, but it is not yet clear which system is

the more accurate.
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Table 1.--The residuals R (.) for a 2 K perturbation of the temperature

profile e(z) in the j'th 2 km thick layer

(x1000)

-1Layer i. (cm )

j Center Height 668.1 648.6 667.4 654.9 645.1 639.9 629.8 625.0 610.0 599.9
(mb) (km) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 0.31 59 2.17 0.58 1.45 0.20 0.17 0.16 0.07 0.04 0.01 0.01
2t 0.40 57 1.01 0.51 0.66 0.14 0.10 0.09 0.07 0.04 0.01 0.01
3 0.52 55 0.97 0.44 0.65 0.14 0.12 0.10 0.06 0.04 0.01 0.01
4 0.66 53 1.12 0.38 0.77 0.15 0.14 0.11 0.05 0.04 0.01 0.01
5 0.86 51 1.35 0.36 0.93 0.17 0.16 0.12 0.04 0.04 0.01 0.01
6 1.11 49 1.62 0.38 1.11 0.20 0.18 0.14 0.04 0.04 0.01 0.01
7 1.42 47 1.94 0.46 1.32 0.24 0.21 0.16 0.05 0.04 0.01 0.01
8 1.82 45 2.29 0.57 1.56 0.30 0.25 0.19 0.06 0.04 0.01 0.01
9 2.34 43 2.59 0.70 1.76 0.38 0.29 0.23 0.08 0.04 0.02 0.01

10 3.01 41 2.73 0.87 1.85 0.47 0.35 0.27 0.11 0.05 0.02 0.01
11 3.89 39 2.72 1.11 1.85 0.60 0.43 0.33 0.14 0.06 0.03 0.01
12 5.06 37 2.51 1.41 1.74 0.78 0.54 0.43 0.18 0.08 0.04 0.02
13 6.63 35 2.16 1.73 1.61 1.00 0.69 0.55 0.23 0.11 0.05 0.02
14 8.73 33 1.80 2.00 1.55 1.28 0.88 0.70 0.29 0.14 0.06 0.03
15 11.5 31 1.49 2.20 1.59 1.59 1.11 0.88 0.36 0.19 0.08 0.04
16 15.3 29 1.16 2.44 1.70 2.00 1.41 1.12 0.45 0.24 0.10 0.05
17 20.4 27 0.77 2.62 1.84 2.55 1.77 1.41 0.57 0.30 0.12 0.06
18 27.3 25 0.34 2.61 1.94 3.15 2.21 1.78 0.73 0.38 0.16 0.08
19 36.7 23 -.07 2.45 1.95 3.74 2.72 2.22 0.94 0.49 0.21 0.10
20 49.6 21 -,39 2.33 1.79 4.20 3.27 2.73 1.19 0.62 0.27 0.13
21 67.5 19 -.51 2.31 1.41 4.35 3.79 3.26 1.47 0.77 0.33 0.16
22 92.3 17 -.34 2.23 0.86 4.01 4.14 3.75 1.80 0.95 0.41 0.20
23 127 15 -.05 1.87 0.33 3.00 4.20 4.19 2.30 1.24 0.56 0.27
24 175 13 0.07 1.13 0.06 1.49 3.68 4.30 3.09 1.73 0.81 0.40
25 240 11 0.05 0.37 0.01 0.40 2.60 3.88 4.45 2.71 1.35 0.69
26 322 9 0.03 -.02 0.00 0.04 1.16 2.44 5.54 3.97 2.20 1.18
27 425 7 0.03 -.07 0.00 0.25 0.86 5.01 4.80 3.21 1.80
28 552 5 0.02 -.03 0.02 0.13 2.83 4.52 4.02 2.47
29 709 3 0.01 0.03 0.00 0.01 0.86 3.25 4.25 3.03
30 900 1 0.00 0.05 0.00 0.11 1.76 3.62 3.32

The wavenumbers V refer to the weighting functions shown in Fig. 7. The
anomalous behavior of layer 1 is explained in Appendix B. The residuals below
322 mb are unreliable, since the absorption due to water vapor has not been
taken into account in the transmission functions.
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Table 2.--The calculated and the measured radiances and their differences for
nine cases taken from the R/NSC

(in ergs)

V. (cm" )

668.1 648.6 654.9 667.4

(1) (2) (3) (4)

Calc. Meas. Diff. Calc. Meas. Diff. Calc. Meas. Diff. Cale. Meas. Diff.

6/8 85.8 74.8 11.0 58.7 53.7 5.0 50.6 48.0 2.7 68.3 63.4 4.9

6/15 79.8 72.8 7.0 56.9 54.4 2.5 49.7 48.2 1.5 65.2 61.5 3.7

6/17 87.2 72.5 14.8 61.2 53.3 8.0 53.1 47.6 5.6 71.1 62.0 9.0

6/22 81.8 73.2 8.7 58.2 54.8 3.4 50.8 49.0 1.9 66.7 62.2 4.5

6/25 85.4 73.5 12.0 61.3 54.8 6.5 53.8 49.0 4.8 70.3 64.4 5.9

7/1 86.4 71.5 14.9 61.5 52.3 9.2 53.6 47.4 6.2 70.6 61.5 9.1

7/2 82.0 71.5 10.6 57.1 53.7 3.4 49.3 46.4 2.9 66.3 61.1 5.2

7/6 85.9 71.9 14.0 62.4 54.0 8.4 54.8 49.4 5.4 70.7 62.3 8.4

7/13 85.6 71.4 14.3 59.5 52.3 7.3 51.3 47.1 4.2 69.0 61.4 7.7

Mean 84.4 72.6 11.9 59.6 53.7 6.0 51.9 48.0 3.9 68.7 62.2 6.5

Std.
Dev. 2.4 1.1 2.7 1.9 0.9 2.3 1.9 0.9 1.6 2.1 1.0 1.9



Table 3.--The "exact" and the retrieved temperatures 9(zi) and their differences for inversions of error-free
synthetic radiance data*

(in K)

S(zl) (z2) 9(z3)
n n' -i enA nB E A B E eA  B E  A BE-A AE-B AE-A AE-B AE-A AE-B

6/8 5 7 260.6 261.1 262.4 223.5 226.0 225.1 215.8 213.4 214.5
-0.5 -1.8 -2.5 -1.6 2.4 1.3

6/15 4 7 257.2 255.9 256.1 227.0 226.6 225.7 216.4 215.6 216.6
1.3 1.1 0.4 1.3 0.8 -0.2

6/17 2 7 262.3 262.2 262.6 234.3 231.6 230.5 219.0 219.9 220.8
0.1 -0.3 2.7 3.8 -0.9 -1.8

6/22 4 7 259.8 257.7 257.9 226.0 227.7 227.0 217.3 216.4 217.4
2.1 1.9 -1.7 -1.0 0.9 -0.1

6/25 2 7 261.6 260.5 260.8 232.4 231.5 230.6 220.4 220.3 221.7
1.1 0.8 0.9 1.8 0.1 -1.3

7/1 2 8 259.8 261.5 261.8 231.7 231.4 230.7 219.0 219.5 219.9
-1.7 -2.0 0.3 1.0 -0.5 -0.9

7/2 4 7 258.6 257.6 258.1 227.2 227.8 226.6 213.9 216.4 216.6
1.0 0.5 -0.6 0.6 -2.5 -2.7

7/6 2 7 260.8 261.0 261.2 233.1 231.8 231.2 219.7 220.2 221.4
-0.2 -0.4 1.3 1.9 -0.5 -1.7

7/13 3 8 263.3 261.2 261.5 230.5 229.1 228.1 215.8 216.8 217.1
2.1 1.8 1.4 2.4 -1.0 -1.3

Mean 0.6 0.2 0.2 1.1 -0.1 -0.9
Std. dev. 1.2 1.3 1.5 1.6 1.3 1.1

The critical value n' is the order of iteration for which the curvature of the Rrms curve is a maximum.
E refers to the "exact" profile while A and B refer to the profiles retrieved using initial guesses A
and B respectively,



Table 4.--The "exact" and the retrieved layer-averaged temperatures e(zi) and their differences for inver-
sions of error-free synthetic data

(in K)

(Z 1 )  _ 9(z2) _ (z3)
A B E A B E A B E A B

E-A E-B E-A E-B E-A E-B

6/8 5 7 259.8 260.3 260.4 231.4 232.0 231.4 215.9 215.6 216.1
-0.5 -0.6 -0.6 0.0 0.3 -0.2

6/15 4 7 252.9 254.9 255.0 231.2 231.4 230.8 216.5 216.1 216.7
-2.0 -2.1 -0.2 0.4 0.4 -0.2

6/17 2 7 261.2 261.0 261.3 236.8 236.6 235.9 218.6 219.4 219.8
0.2 -0.1 0.2 0.9 -0.8 -1.2

6/22 4 7 257.1 256.6 256.7 231.5 232.6 232.1 217.3 217.0 217.6
0.5 0.4 -1.1 -0.6 0.3 -0.3

6/25 2 7 259.7 259.6 259.7 236.2 236.3 235.7 220.4 220.3 221.1
0.1 0.0 -0.1 0.5 0.1 0.7

7/1 2 7 260.8 260.4 260.6 236.8 236.3 235.9 219.2 219.9 220.2
0.4 0.2 0.5 0.9 -0.7 -1.0

7/2 4 7 255.7 256.7 256.8 233.0 232.4 231.9 214.6 215.3 215.7
-1.0 -1.1 0.6 1.1 -0.7 -1.1

7/6 2 7 259.8 260.0 260.1 236.9 236.6 236.2 220.5 220.9 221.5
-0.2 -0.3 0.3 0.7 -0.4 -1.0

7/13 3 8 260.0 259.8 260.0 234.7 234.4 233.7 216.3 217.3 217.3

0.2 0.0 0.3 1.0 -1.0 -1.0

Mean -0.3 -0.4 0.0 0.5 -0'3 -0.5
Std. dev. 0.8 0.7 0.5 0.5 0.5 0.7
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Table 5.--The results of inversions of the synthetic radiance data for 6/25
with six sets of I percent random noise*

Initial guess A Initial guess B

Total
Error n' AG R n' A@ R n' A R n' A9 R1 rms rms 2 rms rms 1 rms rms 2 rms rms

(%) (K) (%) (K) (%) (K) (%) (K) (%)

0.10 3 1.79 0.1 3 1.80 0.1 7 1.79 0.3 7 1.79 0.3
1.06 3 1.94 0.3 3 1.94 0.3 5 1.76 0.7 7 1.85 0.5
0.67 3 1.93 0.2 3 1.93 0.2 6 1.81 1.5 7 1.83 0.4
0.87 3 2.16 0.8 3 2.16 0.8 5 2.09. 3.0 6 2.17 1.1
1.40 2 2.55 1.6 2 2.55 1.6 4 2.16 2.6 6 2.78 1.5
0.67 3 2.42 0.8 2 2.52 1.1 4 1.92 1.6 7 2.51 0.8

Mean 2.10 0.6 2.10 0.7 1.92 1.6 2.20 0.8

No
Error 4 1.80 0.1 3 1.80 0.1 6 1.79 0.6 8 1.79 0.2

The critical value ni is the order of iteration for the minimum Ae s
while n'2 is the order of iteration at the point of maximum curvature
of the Rrms curve.rms
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Table 6.--The results of inversions of the synthetic radiance data for 6/8
with six sets of 1 percent random noise

Initial guess A Initial guess B

Total
Error n' 9 R n' R n' e R n' e R1 rms rms 2 rms rms rms rms rms
(%) (K) (%) (K) (%) (K) (%) (K) (%)

0.78 4 1.68 1.6 6 1.68 1.1 6 1.50 1.1 6 1.50 1.1

1.25 2 2.20 3.3 4 2.54 1.9 5 2.62 2.5 6 2.87 1,8

0.52 3 2.09 2.4 4 2.40 1.8 5 2.45 2.5 6 2.72 1.8

0.62 3 1.88 2.0 5 2.27 1.1 5 2.02 2.2 6 2.11 1.5

1.17 4 1.82 1.0 4 1.82 1.0 6 1.68 1.1 7 1.73 0.7

1.60 3 2.16 2.3 4 2.45 1.8 5 2.61 2.5 6 2.83 1.9

Mean 1.97 2.0 2.19 1.5 2.15 2.0 2.29 1.5

No
Error 5 1.34 0.4 6 1.34 0.2 7 1.22 0.5 8 1.23 0.3
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Table 7.--The retrieved and the in situ temperatures G(zi) and their differ-
ences for the inversion of the actual IRIS data using initial guess A*

(in K)

z1  (3.2 mb) z2  (20.4 mb) z3  (60.0 mb)

In Re- In Re- In Re-
n' Situ trieved Diff. Situ trieved Diff. Situ trieved Diff.

6/8 4 260.6 251.5 9.1 223.5 221.9 1.6 215.8 212.9 2.9

6/15 2 257.2 249.0 8.2 227.0 224.7 2.3 216.4 214.8 1.6

6/17 2 262.3 248.6 13.7 234.3 223.8 10.5 219.0 214.4 4.6

6/22 4 259.8 249.1 10.7 226.0 225.1 0.9 217.3 215.9 1.4

6/25 3 261.6 249.5 12.1 232.4 224.9 7.5 220.4 215.5 4.9

7/1 3 259.8 247.9 11.9 231.7 221.5 10.2 219.0 213.4 5.6

7/2 2 258.6 247.7 10.9 227.2 224.7 2.5 213.9 213.9 0.0

7/6 2 260.8 248.2 12.6 233.1 223.4 9.7 219.7 214.7 5.0

7/13 3 263.3 247.7 15.6 230.5 221.9 8.6 215.8 213.9 1.9

Mean 11.5 6.0 3.1
Std.
dev. 2.2 3.7 1.9

The critical value n' refers to the point of maximum curvature on the R
curve. rms
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Table 8.--The retrieved and the in situ layer-averaged temperatures 8(zi) and
their differences for inversions of the actual IRIS data using guess A

(in K)

z1 (3.2 mb) z2  (20.4 mb) z3  (60.0 mb)

In Re- In Re- In Re-
n' Situ trieved Diff. Situ trieved Diff. Situ trieved Diff.

6/8 4 259.8 250.4 9.4 231.4 226.8 4.6 215.9 214.5 .1.4

6/15 2 252.9 248.6 4.3 231.2 228.6 2.6 216.5 215.3 1.2

6/17 2 261.2 248.2 13.0 236.8 227.8 9.0 218.6 214.5 4.1

6/22 4 257.1 248.8 8.3 231.5 229.0 2.5 217.3 216.2 1.1

6/25 3 259.7 249.1 10.6 236.2 229.0 7.2 220.4 216.1 4.3

7/1 3 260.8 247.3 13.5 236.8 225.9 10.9 219.2 214.3 4.9

7/2 2 255.7 247.5 8.2 233.0 228.4 4.6 214.6 213.6 1.0

7/6 2 259.8 247.7 12.1 236.9 227.5 9.4 220.5 215.9 4.6

7/13 3 260.0 247.1 12.9 234.7 226.2 8.5 216.3 214.2 2.1

SMean 10.3 6.6 2.7
Std.
dev. 2.8 2.9 1.7



Fig. i. The function dT/dz vs. z for T = exp(-cP). T is the

idealized average transmission along a vertical path from o to the level

z for a gas of constant composition, with pressure broadened, randomly

distributed lines whose intensities and half widths do not depend upon

temperature.
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Fig. 2. Weighting functions for the 15 C002 band for an instrument

function of resolution 2.8 cm-1, from Conrath (1972).
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Fig. 3. The u2 band of C02: the positions and relative intensities

of the lines of the Q branch plus a few lines from the P and R branches.
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Fig. 4. The SIRS-A weighting functions dT/dz, without the factor

dB/dO, for a spectral resolution of 5 cm-1.
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Fig. 5. The IRIS-D instrument functions, apodized and unapodized.

When properly normalized, the amplitude of the apodized instrument

function at 0 = 0. is 0.54 that of the unapodized instrument function.
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Fig. 6. The weighting functions at 668.2 cm- 1 corresponding to

the apodized and the unapodized IRIS-D instrument functions.
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Fig. 7. The set of tenweighting functions originally selected

for this study.



-1
-65- 1. 668.2 cm unap,

2. 648.7 "

3. 667.5 ap.
4. 655.0 "
5. 645.0 "
6. 640.0 "
7. 630.0 "
8. 625.0 " -1
9. 610.0 "

10. 600.0 "

2

-5

10

2

20

p

(mb)

3
- 50

- 100

6 200

8 -500

0 1.0

dB dT
de dz



Fig. 8. The temperature profile assumed in calculating the C02

weighting functions.
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Fig. 9. The weighting functions at 668.2 cm-1 (unapodized) and

at 667.5 cm- 1 (apodized) and their difference.
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Fig. 10. The final set of three weighting functions chosen for

this study. An additional one at 667.4 cm-1, apodized (dashed line), is

also shown, but is not used in the relaxation procedure.
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Fig. 11. The curves of R ( n ) rm vs. n for error-free synthetic

radiance data and initial guess A.
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Fig. 12. The curves of AO (n )  vs. n for error-free synthetic
rms

radiance data and initial guess A.
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Fig. 13. The curves of R r m s vs. n for error-free synthetic

radiance data and initial guess B.
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Fig. 14. The curves of A(n)rms vs. n for error-free synthetic

radiance data and initial guess B.
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Fig. 15. The in situ profile and the retrieved profile for error-

free synthetic radiance data for 6/25, and initial guess A.
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Fig. 16. The curves of r m s for the synthetic radiance data

for 6/25 with six sets of 1 perce * random noise and using initial guess

A.
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Fig. 17. The curves of Ae(n) for the synthetic radiance data
rms

for 6/25 with six sets of 1 percent random noise and using initial guess

A.
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Fig. 18. The curves of R (n )  for the synthetic radiance datafrms

for 6/25 with six sets of 1 percent random noise and using initial guess

B.
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Fig. 19. The curves of A8 (n)  for the synthetic radiance datarms

for 6/25 with six sets of 1 percent random noise and using initial guess

B.
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(n)Fig. 20. The curves of R rs vs. n for the actual IRIS data usingrms

initial guess A.
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Fig. 21 (a. through i). The retrieved and the in situ profiles

for the nine cases using the actual IRIS data and initial guess A.
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Fig. 22. The temperature profile to 100 km of the U.S. Standard

Atmosphere, 1962.
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APPENDIX A

CALCULATING THE OUTGOING RADIANCE

The solution of the direct problem involves evaluating (13),

repeated here:

1(0 i ) = B(O,(z)) AT (A ,zj) (0 - i) (A-1)
j 

9

where z. (j = 1, 30) represents the center of the j'th atmospheric layer,

and 0 ( = 1,800) represents the center of the £'th 0.1 cm-1 wide interval,

which extends up to ±40 cm-1 on either side of 0.. Since (A-1) must be

evaluated for each 0. at every iteration of the relaxation procedure, a

rapid but accurate algorithm is required.

The summation over £(i.e., the integration with respect to. 0) can be

done once and for all using the following approximate factoring of the

blackbody function (due to Chahine, 1968). The blackbody function is:

B(0,0) = a0 3 (exp(b0/ 8 ) -1)-1 (A-2)

where a and b are constants. For any 0 and 0 , let:
o o

20

D(0,0) = exp + l-) -2- i- exp(- - 1 (A-3)
0
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so that

B(0,8) -X(O) Y(O) D(O,0) (A-4)

In the 15p region (0 ' 667 cm - 1) and at normal atmospheric temper-

atures (0o  250 K), and for 0 and 6 close to 0o 0, D(0,8) is close to

unity and varies quite slowly with 0 and 0. In the neighborhood of 0p,

0 , one can write to a close approximation:

B(0,0) = X(O) Y(e) D(0 ,0o) (A-5)

A more exact specification of the accuracy of this approximation will be

given later.

Having factored the blackbody function in this way, (A-1) can be

written:

I(0.) = J Y(e(zj)) G(Oi ,z.) (A-6)

where:

G(,z j ) = D(Di , o)  X(O ) AT (0 ,zj) #(0 -.i ) (A-7)

with 0 set equal to 0. and 0o equal to any average temperature. Since

the G(Oi,z )'s are independent of 0(zj), they can be calculated once and

stored. For any given temperature profile, the calculation of I(0i)

requires only the summation over j, i.e., integration with respect to height.
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The extreme range of expected atmospheric temperatures is from about

180 K to 320 K. The factored blackbody approximation is not sufficiently

accurate over this wide a temperature range. Therefore, the interval

180 K to 320 K was divided into seven smaller intervals, each 20 K wide.

Within each subinterval, the factored blackbody approximation was applied

and the constants (the G's) calculated. In calculating I(0i), each O(zj)

is first examined to see in which subinterval it falls: the appropriate

stored constants are then used in summing over z..

To check the accuracy of the factored blackbody approximation, it was

compared to a brute force integration with respect to 0. The radiances

computed by the two methods differ by 0.2 percent or less. Since the

measured radiances have an uncertainty of about 1 percent, the accuracy of

the factored blackbody method is sufficient for this study.

The numerical integration with respect to z is performed using a

simple trapozoidal rule. The vertical step size is about 2 km with 31 grid

points (including the boundary term). In order to determine whether this

grid spacing provides sufficient accuracy, the following tests were performed.

A transmission function of the form T = exp(-cP) was assumed, with 1/c

equal to 3 mb and 78 mb (i.e., corresponding to weighting functions peaking

at 3 mb and at 78 mb). The outgoing radiance was calculated by numerical

integration using three different step sizes: 2 km, 1 km, and 0.1 km. A

standard temperature profile was assumed at the 2 km grid points: the

temperature at points in between for the other step sizes was found by

linear interpolation. The effective temperature of each layer was taken

as the temperature at the middle of each layer. The difference between the
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radiances calculated with grid sizes of 2 km and 0.1 km was less than

0.2 percent, showing that the 2 km grid size is fine enough for this

study.

The combined quadrature error for the factored blackbody approxima-

tion and for the vertical grid size of 2 km is about 0.4 percent, compared

to the measurement noise of 1 percent.



APPENDIX B

DETERMINING THE EFFECTIVE RADIATION TEMPERATURE e(zT)

In this section, limits on the possible range of E(z T ), the effec-

tive radiation temperature of the atmosphere above 58 km, will be derived

and a mean value estimated.

Above 58 km, the ratio of the doppler half width to the Lorentz half

width for CO2 is about 20, and this ratio increases with height. Therefore,

above 58 km, the doppler line shape is dominant. For the Q branch lines

around 668 cm-', shown in Fig. 3, a rough calculation shows that saturation

of the doppler core of these lines occurs at about 0.01 mb. Thus, the

function dT/dz at about 668 cm- 1 due only to the doppler line shape has a

peak at about 0.01 mb ( 80 km). When the additional factor dB/dO is con-

dB dTsidered, the weighting function d dz peaks somewhat below 80 km. Thus,

if the transmission calculations were extended to above 58 km, the weighting

functions around 668 cm-1 would show a small secondary peak between 80 and

58 km. From Fig. 10, one can see that there is a definite upturn at 58 km

in the weighting functions at 668.8 cm-1 and 667.4 cm-1 anticipating this

secondary peak. While it is impossible to say exactly at what levels these

peaks will occur without a detailed calculation, clearly they will be

significantly above 58 km.

The effective radiation temperature O(zT) of the atmosphere above

58 km is approximately the temperature at the level of this secondary peak.

With this peak occurring between 58 and 80 km, the range of O(z ) is

approximately 200 to 240 K, as seen in Fig. 22, the U.S. Standard Atmosphere,

-108-
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1962. The problem remains to determine the best value. Note that the

absorption above 58 km at 648.6 cm-1 and 654.9 cm-1 is only 1.7 percent

and 0.5 percent respectively, so that the choice of O(zT) is not critical

for these weighting functions. Inversions performed with different

values of O(zT ) confirm that the retrieved temperatures for these weighting

functions depend only weakly on (z T).

Also, since the weighting functions at 668.1 cm-1 and 667.4 cm-1

both view about the same spectral region around the 15p Q branch, the

emission in both channels from above 58 km is due to the same lines and

should come from the same region of the atmosphere. This conclusion is

supported by the fact that the absorption at these two wavenumbers above

58 km, 9.0 percent and 4.9. percent respectively, is very nearly in the same

ratio as the ratio of the unapodized to the apodized instrument functions

(normalized). Therefore, e(zT) for 668.1 cm-1 and for 667.4 cm-1 should be

the same. This value will do for the other weighting functions also, since

the value of O(zT) is not critical for these channels.

I had hoped to select the best value of 8(z T ) using the following

procedure: 04 (667.4 cm- 1, apodized) sounds most of the stratosphere but

is not relaxed. It, therefore, serves as a check on the internal consist-

ency of the retrieved profile: if the retrieved profile converges on the

exact profile, then the residual R 4 should converge to zero. The optimum

value of e(zT) should, therefore, be the one which minimizes the average of

the R4 's. Note that this conclusion is based on several assumptions: in

particular, 1) that there are no systematic errors in the data, and,

2) that the effect of the day-to-day variation in O(zT) is small.
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However, experiments with inversions showed that R4 is very nearly

independent of (z T); increasing O(zT) leads to decreased retrieved

temperatures at most levels, which almost exactly offsets the increase in

14 due to the change in (z T). The average value of R 4 for the nine cases

is 3.1 percent, with a standard deviation of 1.1 percent, showing that the

bias in R4 is systematic and not random. The possible reasons for the

bias in R4 will be dealt with later.

In an attempt to remove the bias in R4 , two simultaneous values for

1(z T ) were tried, one for 14 alone and another, higher value for the other

radiances. The supposition was that the emission from the top layer might

come from a somewhat higher level for 14 than for the other channels. Two

values of 8(zT) which lead to an average R4 of zero were 200 K and 245 K.

However, from the previous discussion, it does not appear that this large

a difference in the two effective emission temperatures can be justified

theoretically.

The choice of e(zT) must be made on the basis of intuition and the

reasonableness of the profiles it produces. The effective level of

emission lies between 58 km and 80 km, giving a possible range of temper-

ature of about 200 K to 240 K. Using 70 km as a reasonable estimate for

the effective emission level leads to a value for e(z T) of 220 ± 20 K.

Fortunately, the sensitivity of the retrieved profiles to O(zT ) is

not great. Increasing (zT ) from 220 to 240 K causes a systematic decrease

in the retrieved temperature at z1 of 2.0 ± 0.2 K, a decrease at z2 of

0.2 ± 0.3 K, and an increase at z3 of 0.3 ± 0.2 K. Decreasing O(zT) from

220 K to 200 K leads to similar but opposite changes in the retrieved



temperatures. The uncertainty in the retrieved temperatures due to the

uncertainty in e(zT) is then, ±2.0 K at zj, ±0.3 K at z2 , and ±0.3 K at

z3 *


