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1. Introduction.

In this note, we discuss the qualitative behavior of the probability of
misclassifying observations inR™ from two normally distributed populations
as the classification regions are variéd in a prescribed way. This discussion
is intended to provide a preliminary generalization of the results obtained
by Walton {4] for the case of normally distributed observations in ﬂll with
varying a priori probabilities. We hope to provide quantitative analogues of
these results in subsequent reports.

We assume that observations from two populations “'1 and T , are known

to have a priori probabilities ix01 and %, and normal density functions

. To-1

Pog (x) = = 1=1,2,
04 (zﬂ)n/2.!EOi!l/2 ® ’



for x = (xl,...,xn)T e_ﬂzn. We further assume that these observations are

classified, not by using the true Bayes optimal {(maximum likelihood) classi-
fication scheme for wl and wz,
scheme defined by a priori probabillities ul(t) and az(t) and density functions

but by using the Bayes optimal classification

T -1
1 =1/2(x~u, (t}) I, () ~(x-u,(t))
e i i i _
(ZW)n/Z’Ei(t)lllz s 1= i,2,

pyxst) =
where the functions ai(t), ui(t)9 “and Ei(t) are continuously differentiable
functions of the parameter t 1in a neighborhood of t = 0. This is to say that

and- observation x ¢ ﬂirl is classified as coming from 7, Lif and only if

. max '
&i(t) pi(x,t) = 4=1,2 aj(t) pj(x,t). (We assume that plﬂx,t) # pz(x,t} as a
funetion of x in a neighborhood of = 0}.

Under these assumptions, the probability of error in classifying an obser-

vation is & function of t 1n a neighborhood of t = 0, given by

£ _‘(t} = f mozpoz(x)dx + f C\'.OlpOl(x)dx,
Ry R

where the vregions Rl(t) and Rz(t) are defined as follows. Let

Otl(t)Pl(x:t)
Flx,t) = log -
&, (t)p, (x,t)




a, (0 |2, (e) M2

a, (t) |Ez(t) lllz

= log - 2Gen )2 (0 e () + Froi, (0) 75, (0 7 Gy (0).

Then Rl(t) = {x eR™:F(x,t) 2 0} and R,(t) = {x eﬂEH:F(x,t) < 0}. (For a
more thorough digﬁﬁssion of the probability of error, see Anderson {1].}

OQur goal is to examine qualitatively the rate at which Pe(t) varies
as t varies in a neighborhood of zero. In our main result, the exact rate of
variance of - ﬁe(t) is seen to depend on a number of factoys. However, an
inequality of the form

e, &) - P _ (O] < K|t]*

e

is obtained in every cﬁse. In other words, Pe(t) is always Holder continuous
at t = 0. In the following, the exponent & is determined precisely in each
case, The constant K 1s merely asserted to exist; no estimate of its size is
given. Unfortunately, to Implement such an inequality in practice, one must know
both the size of K and the range of t for which the inequality holds.

In the sequel, large constants are denoted generically by K,K'; etc.
Distinguished constants are subscripted. The common boundary of Rl(t) and

Rz(t} is denoted by S{t).

Z, The varlation of Pe(t),

Oux objective 1s to prove the following theorem.

Theorem: If VF(x,0) # 0 on 8{(0), then there exlsts a constant K such that



lPe(t) - P, (0)| = k|t] for small t. If V¥F(x,0) vanishes somewhere on m
S(0), then there exists a constant K such that IPe (t) - P, 0)] < K|c|m+l

for small t, where m 1is the number of non-zero eigenvalues (counting multi-

plicity) of 5, (@7 - £ (07

Remarks: If. VF(x,0) vanishes anywhere, then the assumption pl(x,,ﬂ) £ pz(x,O)

impiies that m» 0. Thus Pe (t) is Holder continuous at t = 0 with exponent

at least %‘- In the special case in which ai((}) = Qs ui(O) = “01’ 21(0) = ZO:I."

i= 1,2, exponents of Holder continuity larger than those specified above can

be obtained. The determination of these exponents is not carried out here.
Before beginning the proof of the theorem, we establish several lemmas.

For a subset X E_UZH, define

inf

gex Xyl 1f X£9

d(x,X) =
w if X = p.
et T = {x ¢ R ™:VF(x,0) = 0}.

For non-negative p and q and positive r and s, define

Lp,r(t) = {x € Rn:'x! = rltlmp} 5

- n, ~P q
Mp,q,r,s(t) = {x e R 7: x| < ¢|t] and d(x,T) = s|t| },

Novqur,st) = {x e R™:}x| s vle]™ and d(x,T) < 51t|q} )

Whern there is no danger of ambiguity, we will omit the suberipts p,q,r, and

s,i.e., prr(t) = L{t), etc.



Lemma 1: Suppose that 0 < q <1 and 0 < p < l-q.
Then there exists a constant K,  independent of p,q,x, and 8, such that,

1f ¢ is sufficiently small, then |VF(x,c)| 2 Ks[t!q for all =x e M(t).

Proof: Writing Fi(x,t) = xTA(t)x + B(t)x + C(t), one obtains VF(x,t) = 2A(t)x +

d

B(t)T and VF(x £) = 2 (t)x + — B(t) From this, it 1s seen that there

3t
axist constants K' and K", independent of p,q,r; and s, such that
iVF{x,0)| = K's[t|% and | - VF(x, Ol k" + 0t]™P for x e Mt} and t

small. It follows that there exists a constant K, independent of p,q,7,

anéd ¢, such that, for x e M(t),
[VFix,e)] = K's|t][% - K"A + o) |t|1P 2 ka|e]d

whenever ¢ i1s small.

Lemma 2: Suppose that 0 £ q = L and Q < p = L q.

2 2
. A4+
If t and ] are sufficiently small, or if t 1s sufficiently small

and 0 % p <.% - q, then, for It | < Jt] and x e M(£)) S(tg), the solution

y{x,T) of the initifal-value problem

gt e (T

d
Ty, TY = - S——— YR (y,T
dt IVF(y,T)IZ

y(xsta) =X

existe and is continuously differentiable in x and 7T for ITI < Itl.



Remarks: HNote that, wherever y(x,T)] exists, y(x,T) € S(T} and %?y(x,T)
2 P, T
is normal to S(1). It is seen in the proof that Iy(x,T) - xI < K.Slgzlﬂ-ltll Zp q’

where the constant K 1is independent of p,q,r,8, and t for small .

Proof: From Lemma 1 and the fact that %EF(x,t) is guadratic in x, one sees
that, if t is sufficientiy small, then there exists a constant K, independent

Y

of p,q,r,s, and t, such that

| & rix, )|
|VF (x,1) |

2
s1{(1+:3:) le] -2p—-q

for |t| < |t] and x e Mp,q,Zr,s/Z(t)' Consequently,

‘ 2 o
1Y(K.T) - XI < 2K £l§£l— |t|1 Zp-q whenever T 1ies in the domain of existence

i+r

2
of y(x,m). If L 4g 50 small that 2&%*3'-)— <r and 2K11f;r—) <&

5 ) then,

since 1-2Zp-q 2 q and 1-2p - q 2 -p, we have

(1) ¥ty = xT <z [¢]F and |y, - x| < 3 e[

whenever x € Mp,q,Zr,S/Z(t) and T lies in the domain of existence of y(x,T).
1

If C<p <7~ G then 1-2p-q > q and 1-2p-q > -p, and one easily verifies

chat (1) again holds for small t. Thus (1) holds under the hypotheses of

the lemma.

Suppose that the hypotheses of the lemma are satisfied {sc that (1) holds)

. c el

and that there exlsts a tys Itol < lt!ly and x e Mp,q,rgs(t)r] S(to) such

that y(x,T) does not exist for all t, [t| < |t]. Then one can find a ts,
. ) :

]tll < l¢l, for which ylx,t,) € aMp,q,Zr,slz(t) [2]. But this contradicts



(1), and the lemma is proved.
1 1
Lemma 3: Suppose that 0 < q = 5 and 0 <p < 7~ 9.
If t and EEE- are sufficiently small, or 1f t is sufficiently small and
0<p < —]é'- - q, then
4
(1) R, (e)aRr (0} ¢ [t]<|e] s{t),

(11} [Rl(t)ARl(O)]ﬂﬂpiq’r,s(t) c {yG,meR": 1] < |t| and x « S(O)ﬂMp’q’zrsslz(t)},
(111 {yGe,m) eR™:]t] < [¢] and JORE @ = JOlL 2(t)
1 yX,T E.m- . = an x ¢ p,q,Zr,—g - ITISItI ,q,31‘.‘,‘§' )

Prdof:

{1) Suppose that t » 0 and x ¢ Rl(t) - Rl(O). Set £, = inf{T:xtRl(T) - Rl(U)}.

Clearily, x ¢ S(to}. The other cases follow similarly.
(ii) If w [Rl(t)ﬂRl(G)]r\Mb,q,r,s(t)’ then ¥ ¢ S(to) for some ty»

]toi < Itl. If ¢t and lEE. are small, or 1f ¢t 1s small and 0 < p < %-- G,

then, by Lemma 2, yM,T) exists for ]T] < |t]. 1In particular, x = y@,0)

satigfies y{x,to) =W, Now, by the remarks.after Lemma 2,

(1+r)'2
s

and t. If EEE- and t are sufficiently small, or 1f t 1is small and

|x4w1 < K |t|1_2p“q for a constant K independent of p,q,r1,s,

0gspc< %-— g, then one sees that [x«wl <r Itf-p and lxﬂil < §-|t[q.

Consequently, x € S(O)r‘HP,q,Zr;E

(iil) If = ¢ S(O)f}Mp q,2r 8 (t), then, as in the proof of (i1}, one uses an

2 ~2p—
inequalit y{x, T} - x| < Kﬁiisl— it 1-2p—q to obtain y(x,T) ¢ M s (t)
Y 8 i Yy qup3r,'§

for Itl < |tf, 2if t and ilzﬁl are sufficlently small, or if ¢t is

amali and 0 <€ p < %-— q.



Proof of the theorem:

One has

Pe (t) - PE(O) = f uozpz(x)dx + J‘ aolpl(x)dx - _r aozpz(x)dx - f 301p1(x)dx
R, (t) R, (t) R, (0) R,(0)

= j G(x)dx - f G(x)dx,

Rl(t)—Rl(O) Rl(O)—Rl(t)

where G(x) = [0(01P1(x) —_uozpz(x)]. Thus

IPe(t) - P O} = f |G (x) |dx,
R, (£} 4R, (0)

and, for givem p,q,r, and s, we obtain

2) |p_ () ~P_(O)] < e + Id + Id .
[Ry (£)4R; () INL(t)  [R (£)AR, () IIM(t)  [R;(t)aR; (0) JAN()

We consider the following cases:
{1) VF(x,0) never vanishes on S5{0),
(2) VF(x,0) wvanishes somewhere on 5(0) and m > 1,

(3) VF(x,0) vanishes somewhere on S$(0) and m = 1.

Case 1: First, the following lemma is needed.

~ Lemma 4: Suppose VF(x,0) # 0 on 5(0) and 0 < P < %

I¢ ¢ and s are sufficiently small, then S()N\N(t) =@ for |t| < |¢t]



Proof: Suppose that the lemma 1s false. Then there exist sequences {s,},

]

{tj}’ {Tj}, and {xj} with s, —»0, t —»~0, [le < ftjl, and

xj € S(Tj)ﬂ N(tj). Note that VF(xj,Tj j°

Now F(x,£) = x'A(t)x + B(t)x + C(r), where A(t) = T (;(0) - 5]7(e))

} =0, since |[VEx Tj)' SKsj|tj|q.

is synnnetfic and A{t) and B(t) are continuously differentiable near t = 0.
Denote by I (A(0))} the null-space of A(0). Writing A{t) = A(0) + Dl(t),

B(t) = B(D) + Oz(t), and x + z,, where yj sn(A(O))'L and zj eu(A(D)),

17737 %

onz obtains

limVF\x 11“‘{21&(0)3;j +0 (1 + B(‘rj}T}.

3

Since ngi <y !tj,—p and O < p « —f,.L-, Ol(Tj) x,==30. It follows that

74 —>y e Bl (A(O)_)"‘. and

* *
= 24(0)y" + B©)" = VF(y",0).
e | T A
Note that this equation implies that B(0) € ¥J{ (A(0))Y . Furthermore, we have

0= F{x,,t,) = ijA(O)yj + x:l l(T )x

17y + B(O)yj + 02(1

yx, + c(t,).

3 b A

s 1 r T -P
As vefore, X, Ol(Tj)Xj + 0 (-rj)xj—bﬂ since Ixj[ sz [tj.l and

G Sp< Consequently,

|\3|j-l

T
0 =y A)Y" + BO)Y" + €(0) ~ F(z™,0).



10

This contradicts the assumption that VF(x,0) never vanishes on 5{(0), and

the proof is complete.

Using Lemma 4, we obtain from (2) that

O NN ANORS RO J le] + | f 6]

4 L(t) [R (£)aR; (0) ] M(t)

1

7 then

1
E»
the first integral on the right-hand side of (3) approaches zero faster than

for 0= p < if ¢ and s are sufficlently small, If Q0 < p <
any power of t as t approaches zero. In addition, we have the following

proposition.

Proposition 1: Suppose that 0= g = %- and 0% p< %-— Qe

If ¢ and 255 are sufficiently small, or if t is sufficiently small and

0= p= % ~ q, then

f le] <k |e|1Y,

(R, (£)AR, (O) 1) M(t)

where the constant K 1s independent of q.

e

‘Proof: It follows from Lemma 3 that if t and are sufficiently small,

ov if v is sufficiently small and 0 <y ‘:%._ q, then

ERRTCRORY
|G < j IG(y (x, 7| S d (1)dT
X, (t}AR, (0) NN &y |tl<lel s(m"p,q,zr,%(t’ |VF(y (x,7),T) |

D,q,X,8



11

[Fa

I%E'F(er)l

|97 (x, )]

[G(x) | ds(t) ) dt,

!Tliit! S(T)nMp,q,3r,'s_(t)

whexe dS{T) 1s the element of surface area on S{(t). (See Spivak [3] for a

discussion of integration odlmanifolds.) It ie easily seen that

j [G(x)| |-g-E-F(x,T)|dS(T)

S(T)nMp.qu,%(t)

is bounded for fT' < [tl uniformly for ¢ nmnear zero. Furthermore, for fixed
5, Lemma ¥ implies that IVF(x,T)I 2 K Ith for x ¢ S(T)r]Mp q,3r s(t) and
ey 93

Tl < |t!. Consequently,
f ] <k et
[Ry (£)AR, (0) 1N M ,q,r,s(t)

It is easily verified that K is independent of q, and the proof is complete.

From Proposition 1 and the preceding remarks, one sees that 1f 0 < p < %3q = 0,
and = is sufficlentiy small, then

B () - B 0] < x |t

and the theorem is proved in this case.
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Case 2: 1If G <p, then, as before, the first integral on the right-hénd
side of (2) approaches zero faster than any power of ¢t as t approaches
zerxo. In addition, Proposition 1 remains valid. Thua, 1f 0 <q < %3

0 <p 5-% - q and EEE. is sufficientiy small, then the second integral on
the right-hand side of (2) is bounded by I'l|t|l-q as t approaches zero,
where the constant K is independent of q. Of course, S(TYYR(t) # @ for

all 1, |t| = |t|, and we need the following proposition.

Proposition 2: There exists a constant K, independent of g, for which

. m g
Jrer=xpe™®,

N(t)

where m 1is the number of non-zerc eigenvalues (counting multipliicity) of
-1 -1 '
I, (0) - £7(0).
. ‘ T 1 -1 -1
Proof: We have F(x,t) = x"A(t)x + B(t)x + C(t), where A(t) = E{Ez(t) -Zl(t) ),

and VF(x,t) = 2A(t)x + B(t)". Denoting the ball of radius p about the origin

in ﬂan by Bp’ one sees that, if X is any solution of VF(xG,O) = O, then

1
N(c) & {xo +y + z:y <JLAO)), = sl Oy N let!q b

A
Now the dimension of JI(A(O)) is equal to the number of non-zero eigenvalues
(counting multiplicity) of A(0) = %{ZEI(O) - ZII(O)). Denoting this dimension

by m, we obtain (with a slight abuse of notation)
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IIGI < f } j |G(x0+y+z)ldy dz

oL
Ny HAOTN B q @)

< K |ef™

for an appropriate constant K, independent of q, and the proof is complete.
From the above discussion, one sees that the best rate of decay of the
right-hand side of (2) 1is obtained by choosing p and q such that

=g« -125, G<p= %—— q, and 1 - q =mg. Since m > 1, a compatible choice

‘ L . m - 1

is g = -y and 0 < p < TCN] This ydelds the desired inequality
m
m+1

[P (£} - P (0] <K |¢]
Case 3: In this case, one sees that S(0) is an (n-l)-dimensional hyperplane
in ]Rn and that VF(x,0) = 0 if and only if x ¢ $(0). By performing a
translation of co-ordinates folliowed by a unitary transformation on mn if
necessary, we may assume that S(0) = {x = (O,xz,...,x“)? € Rn}. Then
F{x,0) = xTAx, where A has a non-zerc entry in the upper left-hand corner
and only zero entries élsew‘nere, f.e., F{x,0) = kxz. We will use the sets

1

Lp,r{t"” Mp,q,r,s(t“ and Np,q,r,s(t) in the following with p = 0 and

q = %, and we set

K\c(t) w {x = (xl,...,xn)T £ Rn:{xll < ¢ V‘Itl /xg_+ aes + xi}.
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Proposition 3: If iix-is sufficiently small and ¢ 1s sufficiently large, then

Rl(t)ARl(O)E; N(e)Y U Kc(t) whenever t 1s small.
This proposition follows from the two lemmas below.

Lemma 5: If EEE is sufficiently smali, then M(t)f\[Rl(t)ARl(O)] = ¢‘ whenever

-

t 1is small.

Proof: In M(t), F(x,0) 2 A szlt[ and lFt(x,T)l < K(1+1:)2 for |t| s e,
where the constant K is independent of wv,s, and ¢ for small t. 5o, for

s el
[Fx,1)] 2 A % - K(1+r)2||t|

in M{t) whenever t 1s small. if EEE- < f %- one sees that F(x,T) # O

in M(t) for |[t| < [t]. Since Rl(t}ARl(O)E- U s(1), the lemma foliows.
TIslt

Lemma 6: Suppose that r is given. If C 1s sufficiently large, then

L(t)f}[Rl(t)ARl(O)] Q,Kc(t) whenever ¢ is small,

Proof: In L(t), F(x,0) = Axi and [F (x,T)] <X ]xl2 for [t| < [t|, where
the censtant K depends on r but is independent of t for smwall t. So,

for |t| < Itl, one has

. 2 it L
Fee, 0| 2 Oklelyx] - kle|( L,

in L{t). If =z« L(t)ch(t), then
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and

K, 2
IFx, | 2 [A - K |t| - ;Eixl.

If ¢ is sufficiently large, then the right-hand side is positive for small

t. C(onsequently,

(L{E)=K (D TATR, ()AR; ()] £ [L)K (O)INT U s@] =4,

T|%|t

and the proof is complete.

From Proposition 3, one sees that if l%E is sufficiently small and «¢

is sufficiently large, then

e, &) - P_(®] % I l6] + J |c]
K, (t) N(t)

for small t. The two integrals on the right-hand side are easily seen to be

bounded by Kfltf, and the proof of the theorem is complete,
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