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MOVING-BASE VISUAL SIMULATION STUDY OF DECOUPLED CONTROLS

DURING APPROACH AND LANDING OF A STOL TRANSPORT AIRCRAFT

By G. Kimball Miller, Jr., and Perry L. Deal

Langley Research Center

SUMMARY

A moving-base simulation study has been made to evaluate the use of decoupled

controls during the approach and landing of an externally blown jet-flapSTOL transport.

The simulation employed all six rigid-body degrees of freedom and incorporated aero-

dynamic characteristics based on wind-tunnel data. The flight instrumentation included

a localizer and a flight director. The primary piloting task was to capture and to main-

tain a two-segment glide slope by using the flight director. A closed-circuit television

display of a STOLport provided visual cues during simulations of the approach and.

landing.

The decoupled longitudinal controls employed constant prefilter and feedback gains

to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity

as commanded through column, flap lever, and thrust lever, respectively. Two sets of

control gains were examined. Although the first set of gains provided satisfactory han-

dling qualities, the second set was chosen to significantly reduce the aircraft response

to turbulence. The research pilot rated the piloting task equal for the two sets of gains

and stated that the smoother ride produced by the second set of gains felt like that of a

larger airplane. With either set of gains, the decoupled longitudinal controls were given

a pilot rating of 3 or better for performing decelerating approaches from 120 knots to

70 knots. A pilot rating of 2 was given for the initial phase of a normal approach

because of the ease with which the desired glide slope could be attained. The pilot rating

for the critical flare -to-landing maneuver was also 2 or better because of the precision

with which flight-path angle could be controlled in ground effect. In the lateral mode,

decoupled control of yaw rate and sideslip angle was given a pilot rating of 2.

Although a minimum turbulence level with root-mean-square gust intensity of

0.3 m/sec (1 ft/sec) was required to mask erroneous acceleration spikes due to unde-

sirable motion-base characteristics, the research pilot believed that the simulator

motion was an aid in evaluating the decoupled control system.



INTRODUCTION

One method for obtaining the high lift coefficients required for the low approach
and landing speeds of short take-off and landing (STOL) transport aircraft is the use of
externally blown jet flaps. (See refs. 1, 2, and 3.) The operational requirements of
STOL transport aircraft necessitate precise control capabilities. At the same time
STOL aircraft handling qualities are poor compared with those of conventional aircraft,
primarily because the period of the phugoid mode is much shorter than normal and the
controls are more sluggish. Although conventional stability augmentation systems (SAS)
have been applied to simulated externally blown flap STOL aircraft (refs. 4 and 5) to
obtain satisfactory handling qualities, high pilot workloads still existed during the
approach and landing. Consequently, a decoupled-control technique was investigated
(ref. 6) with a fixed-base visual simulator.

In the longitudinal mode, the movement of the horizontal tail, flaps, symmetric
spoilers, and throttle were automatically controlled to produce independent, or decoupled,
control of flight-path angle, pitch angle, and forward velocity. In the lateral mode, the
decoupled-control technique employed asymmetric spoilers, rudder, and ailerons to pro-
vide independent control of yaw rate and sideslip angle. The decoupled-control concept
used constant prefilter and feedback gains which required no onboard computation. The
use of constant gains was made possible by restricting the controller to the approach
and landing phases and by requiring that the aircraft states be decoupled only under
steady-state conditions. Modern control theory was then applied to determine the con-
trols that would reach the steady state as efficiently as possible. In reference 6 the
pilots concluded that the desired glide slope could be attained more easily with the
decoupled longitudinal controls than with conventional controls and SAS and that the
increased precision with which flight-path angle could be controlled in ground effect
made the flare-to-landing maneuver more precise. In addition, the decoupled longitudi-
nal controls permitted satisfactory performance of decelerating approaches from approx-
imately 120 knots to 70 knots. However, in the fixed-base simulation certain decoupled
longitudinal control gains and resulting aircraft accelerations in turbulence could vary
considerably without affecting pilot opinion. Therefore the present investigation
employed a moving-base simulator in an attempt to better define the decoupled longitudi-
nal control gains under the influence of turbulence.

The current study employed the same simulation program, including decoupled
lateral controls, as reference 6. The lateral control gains used in the fixed-base simu-
lation were satisfactory and were not altered for this moving-base simulation. The
simulation employed real-time digital computation of the six-degree-of-freedom nonlin-
ear equations of motion representing the STOL aircraft aerodynamically described in
references 1, 2, and 3. The study used a six-degree-of-freedom moving-base simulator
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with the linear-filter washout logic described in reference 7 and included turbulence and

ground effects. A visual display of a STOLport was generated by closed-circuit

television.

SYMBOLS

Although values are given in both SI Units and U.S. Customary Units in this report,

the measurements and calculations for the investigation were made in U.S. Customary

Units.

A matrix of aircraft stability derivatives

aX,ay,aZ body-axis longitudinal, lateral, and vertical accelerations, g units

B matrix of aircraft-control coefficients

b wing span

C matrix relating desired output vector to state vector

C1  rolling-moment coefficient

Cm pitching-moment coefficient

Cn yawing-moment coefficient

CT thrust coefficient

-2mg
C W  aircraft weight in coefficient form, -2mg

pV2S

CX longitudinal-force coefficient

Cy side-force coefficient

CZ normal-force coefficient

c mean aerodynamic chord, meters (ft)
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e i  ith iteration of general variable e

F matrix of feedback gains used in decoupled controller (see appendix A)

G matrix of prefilter gains used in decoupled controller (see appendix A)

g acceleration due to gravity, meters/second 2 (ft/sec2 )

h altitude, meters (ft)

I identity matrix

IX,Iy,I Z  moments of inertia about X, Y, and Z body axes, kilogram-meters 2

(slug -ft 2)

IXZ product of inertia, kilogram-meters 2 (slug-ft 2)

J performance index used in determining optimal control (see appendix A)

m mass of airplane, kilograms (slugs)

n number of flights

P solution to matrix Riccati equation (see appendix A)

Pph period of phugoid mode, seconds

PR period of roll mode, seconds

Psp period of short-period longitudinal mode, seconds

p,q,r angular velocities about X, Y, and Z body axes, degrees/second or

radians/second

Q state-variable weighting matrix used in performance index

R control-variable weighting matrix used in performance index

Ra range from aircraft to landing-approach beacon, measured on Earth's sur-

face, meters (ft)

4



r vector of commanded inputs by pilot

S wing area, meters 2 (ft2 )

s Laplace operator

T total thrust, newtons (lbf)

t time, seconds

(tl/2)ph time to damp phugoid mode to one-half amplitude, seconds

(tl/2)R time to damp roll mode to one-half amplitude, seconds

(tl/2)sp time to damp short-period longitundinal mode to one-half amplitude, seconds

u,v,w velocity components along X, Y, and Z body axes, meters/second or

knots (ft/sec).

Svector of control variables

i difference between instantaneous control vector and vector of pilot inputs

V airspeed, knots (ft/sec)

X,Y,Z body axes

x,y,z displacements of moving-base simulator in longitudinal, lateral, and vertical

directions, meters (ft)

x instantaneous vector of state variables

xe vector of state variables at equilibrium conditions

^ difference between instantaneous and equilibrium state vectors

yvector of state variables to be controlled in a decoupled manner
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Zlg distance of landing gear from airplane center of gravity along Z body axis,

meters (ft)

ck angle of attack, degrees

P angle of sideslip, degrees

y flight-path angle, degrees

6a aileron deflection, positive for right roll, degrees or radians

6 fl,6f2,6f3 deflections of forward, middle, and rearward segments of trailing-edge

flap, degrees or radians (see fig. 2)

6- = 6f3 - 600

6r rudder deflection, degrees or radians

6s  asymmetric deflection of spoilers, positive for right roll, degrees or radians

6 sp symmetric spoiler deflection, degrees or radians

6t  horizontal-tail deflection, degrees or radians

6 th throttle deflection

'z glide-slope error, tan-i fa g- 0 gs, degrees

Pph phugoid-mode damping ratio

R roll-mode damping ratio

Csp short-period longitudinal-mode damping ratio

0 gs glide slope of landing-approach beacon, degrees
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n

i=l
arithmetic mean,

p air density, kilograms/meter 3 (slugs/ft3 )

n -1/2

o standard deviation, (ei )
n-1 -

p,8,cp Euler angles of rotation relating body and inertial axes, referred to as yaw,

pitch, and roll, degrees or radians

Wph phugoid natural frequency, radians/second

wR rolling natural frequency, radians/second

Wsp longitudinal short-period natural frequency, radians/second

Aircraft stability and control coefficients:

aC1  _ Cn C Cy

Clf- Cn - Oa YO= ao

aCx aCZ  aCm
CX C - 5 Cm 6 -a5

aCX C aCmCX a- CZ s - a Cmss- ass

aCl  _aCn aCy
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cx6=ax 6- aCZ Cm - a__
sp a~pS ~pI1sp a~s

3xtaxC CZ C~ aCm

=, a C, = aCn CY Cy
6r a~rr a~r6r = ___

C ac, C6aCn C aCy
a aba 6a a6a Y6a a6a

= ac, acn C aCy

C ac1  aCn c
Ir=arb nr a iLCr -2V 2V 2V

aCx acz C C
U a ~ U a UV ~ v

= aCX 3z cz m aCm
a c aaC a oac c

C aCx = acm = __

x a qcCq a qEC t 3 6 th
2V 2V

CX& = CX -aCm aCy

a I a & c- CYy= - a
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Superscripts:

T matrix transpose

-1 matrix inverse

nondimensional perturbations from equilibrium

Subscripts:

c commanded by pilot

g gust intensity

i :sink rate

x touchdown position relative to runway threshold, positive down runway

0 trim condition

Abbreviations:

rms root mean square

STOL short take-off and landing

A dot over a symbol denotes differentiation with respect to time.

SIMULATED-AIRPLANE DESCRIPTION

The STOL airplane simulated in this study is the clustered-engine aircraft simu-

lated in references 5 and 6 and aerodynamically described in references 1, 2, and 3. The

airplane is a high-wing jet transport with four high-bypass-ratio turbofan engines. (See

fig. 1.) The four engines yielded a maximum total thrust of 147 058 N (33 060 lbf). The

engine response characteristics are given in table I.

For the approach and landing condition, the wing leading-edge flaps were deflected

600, and the three segments of the full-span triple-slotted trailing-edge flaps were set

at 250, 100, and 600, respectively. (See fig. 2.) In the present investigation only deflec-
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tion of the rear flap segment 6f3 was varied for control. The inboard elements of the

flaps (fig. 1) were used as ailerons because they were more effective in providing rolling

moments than the other flap elements (ref. 1). The physical characteristics of the sim-

ulated aircraft, including maximum control-surface deflection and deflection rate, are

presented in table II. A time lag of 0.1 sec (ref. 5) was employed for all control surfaces

to account for system delays. Table III contains the aerodynamic characteristics.

DECOUPLED CONTROL

Decoupled controls were employed throughout the current study in both the longi-

tudinal and lateral modes. In the longitudinal mode the mechanization of the decoupled

controls employed throttle, horizontal tail, flaps, and symmetric spoilers as active con-
trol elements. Four active control elements were used because doing so minimized the
transients experienced during decelerating approaches with three active control elements.
(See ref. 6.) As in reference 6, the rudder, ailerons, and asymmetric spoilers were
used to provide decoupled control of yaw rate and sideslip angle.

The general approach for providing independent, or decoupled, longitudinal control
of flight-path angle, pitch angle, and forward velocity is depicted in the following sketch:

y h

Prefilter t Linearized
Pilot c gain 6 airplane
inputs matrix, f3 equations

uc G 6'p of motion

Feedback q'
gain ! ,

matrix,
F u'

The decoupled controller was mechanized so that the pilot could command flight-path

angle yc through inputs to the column, pitch angle 0 c through the flap lever, and
forward velocity uc through the thrust lever. Although this mechanization was used
in both the fixed-base and moving-base simulation studies, a possible problem during
emergency wave-off was noted in the fixed-base study (ref. 6). The potential problem
concerned the tendency of a pilot trained on conventional controls to push the thrust lever
full forward for an emergency wave-off combined with the tendency of the decoupled lon-
gitudinal controls to cause transients in sink rate when a large increase in velocity is
commanded. Thus, it may be desirable to use some lever other than the thrust lever for
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commanding forward velocity. The thumb-wheel controller on the left horn of the con-

trol yoke was used to trim flight-path angle so that the pilot would not be required to

hold the column forward for a descent maneuver. With decoupled controls the aircraft

pitch angle, pitch rate, angle of attack, and forward velocity must be continuously mea-

sured. In this simulation study the measurements were assumed to be perfect.

The feedback gain matrix F and prefilter gain matrix G result in the aircraft

control elements moving to produce decoupled control as commanded by the pilot. There

are a number of ways to obtain the feedback and prefilter gain matrices required for

decoupled control. The most versatile method would be the use of an onboard computer

to find the time-varying adaptive gains. A simplified approach was taken in the present

investigation. Requiring that the commanded aircraft states be decoupled only in the

steady-state case and restricting the controller to the approach and landing phase of

operations permitted the use of constant prefilter and feedback gains and avoided onboard

computation. (See appendix A.) The control gains of either the lateral or the longitudinal

decoupled system could be changed after each flight by changing the weighting matrices

in the performance index (appendix A) as a function of pilot opinion. Decoupled longitu-

dinal controls and decoupled lateral controls are developed in appendix A and in appen-

dix B, respectively.

SIMULATION EQUIPMENT

The digital-computer program used in the present simulation employed nonlinear

equations of motion for six rigid-body degrees of freedom. The turbulence model used

in the study was based on the Dryden spectral form (ref. 5) having rms gust-intensity

values up to 1.2 m/sec (4 ft/sec).

The single-degree-of -freedom performance limits of the six-degree-of -freedom

moving-base simulator (fig. 3) used in the current study are presented in table IV. The

constraint or washout logic presented in reference 7 was considered to be state of the

art and was used to constrain the simulated aircraft excursions to the limit of the simu-

lator. The values used for the washout parameters of the constraint logic were deter-

mined subjectively by the research pilot and are presented in table V. The definition of

each washout parameter has meaning only in the context of reference 7 and may be found

therein.

The transport-type cockpit (fig. 4) was equipped with conventional flight and engine-

thrust control devices. The simulator control forces were provided by a hydraulic

servosystem as functions of control displacement and rate. The characteristics of the

simulator control system were different from those used in references 5 and 6 and are

presented in table VI. The flight instrument display was representative of current trans-
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port aircraft. Instruments indicating angle of attack, sideslip angle, and flap angle were
included. The localizer channel of the conventional cross-pointer-type flight director
was driven in the manner described in appendix A of reference 5. The glide-slope chan-
nel was driven by the raw glide-slope error EZ.

The visual cues for flare and landing were obtained by means of a 675-scan-line

color television camera and with an optical pickup similar to that described in refer-
ence 8. The optical pickup was driven by the output of the moment equations to provide
the three rotational degrees of freedom of the aircraft. The three translational degrees
of freedom were obtained by mounting the optical pickup and television camera on a
transport system that moved relative to a terrain model in response to the output of the
force equations. The terrain model (fig. 5) was a three-dimensional 1/300-scale model
of the area around a STOLport. The visual display was presented to the pilot through a
television monitor and collimating lens system mounted in the pilot's windshield. Each
flight was terminated at touchdown.

TEST PROGRAM

The flight instrumentation included a localizer and a flight director. The pilot's
task was to assume command of the aircraft in level flight and to perform a two-segment
approach using the flight director. The flights were initiated at an altitude of approxi-
mately 243.8 m (800 ft), at varying distances from the runway (with the airplane initially
below the glide slope), and with lateral offsets up to 61 m (200 ft) from the runway cen-
ter line. The pilot was instructed to visually acquire the 914-m (3000-ft) runway and to
land in a designated area with sink rates of less than 1 m/sec (3 ft/sec). The touch-
down zone marked on the runway (fig. 6) was 137.2 m (450 ft) long. The basic restric-
tions on the flights were that the angle of attack for approach conditions must be at least
100 below the stall and the approach speed must be at least 15 knots greater than the
critical engine-out stall speed. The normal approach, performed at 70 knots, was a two-
segment approach in which a 60 glide slope was followed to an altitude of 61 m (200 ft).
At this altitude a transition was made to a 40 glide slope. In a number of flights the
pilots were required to decelerate from approximately 120 knots to 70 knots while main-
taining the desired glide slope. The adverse ground effects employed in reference 5
were used. These ground effects caused a nose-down pitching moment and a decrease in
lift and drag as the ground was approached. Although a research pilot and a research
engineer were pilots during the study, only the research pilot rated the control systems.
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RESULTS AND DISCUSSION

The hydraulic servosystem providing control forces in the current moving-base

simulation had operating characteristics that were different from those of the servo-

system employed in the fixed-base simulation (ref. 6). Consequently, a preliminary

series of flights was performed with the moving-base simulator in a fixed-base mode in

order to assess the effects of the differences in control-force systems on the pilot's

ability to achieve the desired touchdown conditions. The prefilter and feedback gain

matrices used are those which the pilots believed provided the best response during the

fixed-base simulation study. These gains and the resulting stability characteristics are

presented in table VII. The touchdown conditions obtained with the moving-base simu-

lator in a fixed-base mode are presented in table VIII for comparison with the touchdown

conditions obtained during the fixed-base study of reference 6. Table VIII reflects the

difference between the two control-force servosystems. The results in this table should,
however, be conservative since difficulty in judging altitude and altitude rate historically

exists in simulations using closed-circuit television for image generation. Because of

this difficulty, sink rates at touchdown for visual simulations are generally higher than

those experienced in flight. The research pilot stated that simulation landings, compared

with actual landings, were adversely affected by the lack of important visual cues, such

as peripheral vision, depth perception, and resolution.

Operational Characteristics of Moving-Base Simulator

Operating characteristics of the moving-base simulator can best be examined by

consideration of the aircraft response characteristics for the decoupled longitudinal

controls. However, the response characteristics of the decoupled controls are different

from those associated with conventional controls because the pitch angle 0 c is indepen-

dent of the primary control yc. The time history presented in figure 7 shows aircraft

response for typical control inputs. In this flight the pilot set up a glide slope of almost

60, commanded a pitch angle change after 18 sec, reversed the command at 31 sec, and

then removed the command at 43 sec. Approximately 52 sec into the flight, the forward

velocity was reduced by about 8.9 knots in 3 sec by means of the velocity controller.

Although aircraft response to pitch commands was fairly sluggish, the primary longitu-

dinal control with decoupled controls is regulation of flight-path angle. A commanded

change in flight-path angle 68 sec into the flight resulted in a change in y of at least

50 in 1 sec. The aircraft accelerations due to all control inputs were relatively mod-

erate, the largest being a vertical acceleration of about 1/ 4 g when the flight-path angle,

was pulsed at 68 sec.

The acceleration profiles in figure 7 are those computed for the aircraft. The

acceleration profiles actually experienced by the simulator pilot (fig. 8) were obtained
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from an accelerometer package installed in the cockpit. The actual accelerations which
the simulator pilot felt were somewhat noisy and contained erroneous spikes that were
large compared with commanded accelerations. Although the source of these erroneous
acceleration spikes was never adequately determined, they appeared to occur whenever
the legs of the moving-base simulator reversed their direction of motion. (See ref. 10.)
Interaction of the six legs of the moving-base simulator caused the erroneous accelera-
tions to crossfeed into all degrees of freedom of the simulator. For example, the lateral
mode had no inputs during the flight shown in figure 7, whereas the lateral accelerations
measured for the moving-base simulator (fig. 8) were as large as 0.07g. The erroneous
accelerations were quite objectionable to the simulator pilots during flights in still air.
However, the pilots' objections could be removed by using low-level turbulence to mask
the erroneous accelerations of the simulator. Consequently, all flights performed on the
moving-base simulator included turbulence with an rms gust intensity of at least
0.3 m/sec (1 ft/sec).

The computed aircraft accelerations and the accelerations from the washout com-
putations which drive the moving-base simulator are presented in figure 9 for a typical
series of control inputs. The accelerations after the washout computations do not have
the acceleration spikes.

Landings Using Motion Cues

The time history of a typical decelerating approach in turbulence with an rms gust
intensity of 0.3 m/sec (1 ft/sec) is presented in figure 10 for a two-segment approach
in which the desired glide slope changes from 60 to 40 at an altitude of approximately
61 m (200 ft). The flight was initiated with the airplane in level flight at a speed of
120 knots and below the 60 glide-slope signal. Approximately 4 sec into the flight
the pilot began simultaneously to acquire the desired 60 glide slope and to reduce the
forward velocity to about 70 knots. The pilot made the transition to the 40 glide slope
after about 47 sec of flight and then landed in the designated 137.2-m-long (450-ft)
landing area with a sink rate of about 1.8 m/sec (6 ft/sec). The computed perform-
ance of the moving-base simulator during this flight is presented in figure 11. The
washout parameters were sized to maximize the longitudinal acceleration response
during decelerating approaches at the expense of the vertical accelerations. Thus,
the vertical channel was scaled by 0.2 because the x-y envelope was inversely pro-
portional to vertical displacement. A second compromise involved the coordination
of longitudinal channel and pitch channel. The washout parameters could be chosen so
that the longitudinal accelerations experienced on the moving-base simulator during the
deceleration maneuver would be similar to the flight accelerations. To do so, however,
would result in pitch rates that would be objectionable to the pilot. The compromise
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washout parameters yielded longitudinal accelerations, typified by those of figure 11,

which the pilots believe are quite realistic. In addition, the amount of erroneous pitch

rate exhibited in figure 11 was not objectionable to the pilots.

Although the limited displacement of the moving-base simulator prohibited dupli-

cation of the flight acceleration profiles, the research pilot believed that this motion was

an aid in evaluating the decoupled control system. The pilot ratings (of the form pre-

sented in table IX), however, were not changed by inclusion of motion cues. The

decoupl ld-longitudinal controls were given a pilot rating of 3 or better for performing

decelerating approaches. The pilot gave the decoupled longitudinal controls a rating

of 2 for the initial approach because of the ease with which the desired glide slope could

be attained. The pilot rating for the flare-to-landing maneuver was 2 or better because

of the precision with which flight-path angle could be controlled in ground effect. The

decoupled lateral controls were given a pilot rating of 2 as in the fixed-base study

(ref. 6). The touchdown conditions obtained with the decoupled longitudinal and lateral

control systems are presented in table X in which the results of the research pilot and

the research engineer are combined because no significant difference existed between

these men as pilots. The addition of motion cues had little effect on the touchdown con-

ditions. (See table VIII(b).) The pilots believed that the difficulty in landing in the des-

ignated area with low sink rates was primarily a result of visual display limitations.

Influence of Turbulence on Decoupled Control System

Aircraft vertical and longitudinal acceleration levels for a typical constant-speed

two-segment approach in turbulence with an rms gust intensity of 0.3 m/sec (1 ft/sec)

are presented in figure 12. The acceleration profiles generated by the washout logic

are presented in figure 13. Although the acceleration levels experienced with the

decoupled controls were not objectionable, the vertical and longitudinal components were

believed to be unnecessarily high. Therefore, the weights of the performance index were

altered on the basis of pilot opinion until the decoupled longitudinal control system gave

a ride that was noticeably smoother but still handled satisfactorily. The resulting pre-

filter and feedback gain matrices are presented in table XI with the corresponding air-

plane stability characteristics. The time history of a typical constant-speed two-

segment approach in turbulence with an rms gust intensity of 0.3 m/sec (1 ft/sec) with

the modified decoupled controls is presented in figure 14. Although the aircraft response

to turbulence was significantly reduced by the new feedback and prefilter gains (compare

figs. 12 and 14), the pilot merely felt as if he were flying a larger airplane with good

handling qualities. The pilot ratings consequently were unchanged. It should be noted

that, in addition to the normal constant-speed approaches, the pilot ratings are based on

decelerating approaches, approaches with initial lateral offsets, and approaches in cross-

winds. The normal constant-speed approaches presented in figures 12 and 14 were
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chosen because they best exemplify the differences in longitudinal and vertical accelera-

tions achieved with the two sets of gains. As previously stated, the lateral decoupled

control gains were not varied during the study. The apparent differences in the lateral

controls shown in figures 12 and 14 are the result of piloting differences. The accelera-

tion profiles generated by the washout logic are presented in figure 15 for comparison

with those of the original decoupled longitudinal control gains shown in figure 13.

The touchdown conditions obtained with the smoother riding decoupled control

gains are presented in table XII and are comparable with those obtained with the original

gains (table X), even though the smoother riding airplane was less responsive to control

inputs.

CONCLUDING REMARKS

A moving-base simulation study has been conducted to evaluate the use of

decoupled controls during the approach and landing of an externally blown jet-flap STOL

transport. The decoupled longitudinal controls employed the throttle, horizontal tail,
flaps, and symmetric spoilers as active control elements to provide steady-state

decoupling of flight-path angle, pitch angle, and forward velocity as commanded through

column, flap lever, and thrust lever, respectively. Restricting the application of

decoupled control to the steady-state case and to the approach and landing phase of oper-

ations permitted the use of constant prefilter and feedback gains and avoided onboard

computation. The flight instrumentation included a localizer and a flight director. The

piloting task was to capture and to maintain a two-segment glide slope by using the flight

director until visually landing in an area 137.2 m (450 ft) long on the end of a runway.

Two different sets of prefilter and feedback gains for longitudinal decoupling were

examined. The first set of gains were those employed in the original fixed-base simu-

lation study to obtain satisfactory handling qualities, and the second set of gains were

chosen to significantly reduce the aircraft response to turbulence. Although the airplane

response to turbulence was reduced with the second set of gains, the pilot ratings of the
aircraft handing qualities were unchanged. The research pilot stated that the smoother
riding airplane merely seemed like a larger airplane with satisfactory handling qualities.

With either set of gains the decoupled longitudinal controls were given a pilot rating of 3
or better for performing decelerating approaches. In addition, these controls were

given a pilot rating of 2 for the initial phase of normal approaches because of the ease

with which the desired glide slope could be attained. The pilot rating for the flare-to-

landing maneuver was 2 or better because of the precision with which flight-path angle
could be controlled in ground effect. In the lateral mode, decoupled control of yaw rate
and sideslip angle was given a pilot rating of 2.
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Although a minimum turbulence level with root-mean-square gust intensity of

0.3 m/sec (1 ft/sec) was required to mask erroneous acceleration spikes due to unde-

sirable characteristics of the moving-base simulator, the pilot believed that the simula-

tor motion is an aid in evaluating the decoupled control system.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., November 19, 1974.
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APPENDIX A

DECOUPLED LONGITUDINAL CONTROLS

The three longitudinal equations of motion were linearized as perturbations about

an equilibrium condition in equations (1-59) of reference 11. These three equations can

be nondimensionalized with respect to time using

t' = -- t (Al)

-and solved simultaneously to give

d2 0' 1 _ qm + C d' CmCZ CmCZ u
dt' 2  2 1 CKy2 2 /_ + (Cma 4 C a4

Cm&CZ ) Cm Z C6 Cm&C6sp\
+ (Cm 4+ C +  m _ +  

6  + Cm 6 sp 4 p ,]

(A2)

dt' 21 + CZ'ZOa' u + CZ6t6 + CZ 6 + CZ  s (A3)

du' ' + (CXq+ CX dO' CX& CZ C ' + Xu( CX&CZu u'dt' _ 2 o4 aa u

/ Cx6CZ6 z

+ (CT + 4CcZ 5th + CX CZ / + (C T 4

sp CXC Z,~s (A4)(+ ap 4 a)

where the primed parameters are perturbations from the equilibrium or trim conditions
of the airplane in nondimensional form; that is

0' = 0 - 00  (A5)

18



APPENDIX A

S=a- 0= W 0  (A6)
u0

u'- u0  
(A7)

u0

and where

m (A8)
pSJ

Y2  y (A9)Ky 2 - m2
m 2

The mass and dimensional characteristics of the simulated airplane are presented

in table II and the basic aerodynamic coefficients in table III. Constant coefficients were

employed in the linearized longitudinal equations of motion corresponding to an angle of

attack of 100, a forward velocity of 70 knots, and a thrust coefficient of 1.87.

The linearized longitudinal equations of motion can be written in state vector nota-

tion as

x = A + Bi (A10)

where the state vector is

(All)

and the control vector is

6th

u (A12)
f3

6bp

The general control law is given as

S= -FZ + GF (A13)

where r is the vector of commanded pilot inputs ye, Oc, and uc that are to be con-

trolled in a decoupled manner. The output equation is
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y = C (A14)

When equation (A13) is substituted into equation (A10), the Laplace transform of the

result can be written as

x(s) = (sI - A + BF)- 1BGr(s) (A15)

Substituting the Laplace transform of equation (A14) into equation (A15) and requir-

ing that the output F(s) be equal to the commanded pilot input F(s) under steady-

state conditions results in the prefilter gain

G = -[C(A - BF)-1B] - 1 (A16)

Normally the bracketed term is nonsingular. There are cases, however, when all

four control elements are used to decouple flight-path angle, pitch angle, and forward

velocity, so that the bracketed term is singular. In this case the difference between the

actual output y(s) and the commanded pilot input r(s) is minimized (approximately

decoupled steady-state control) by using the pseudo inverse of C(A - BF) -lB. Because

this term has zeros in the fourth row, it can be written

C(A - BF)-B = TN (A17)

where

100

01
T = 001 (A18)

and N is C(A - BF) -1B with the fourth row deleted. The pseudo inverse can then be

written (ref. 12) as

G = -NT(NNT) -1TT (A19)

Having obtained the prefilter gain matrix G required for approximately decoupled

steady-state control, it is desirable to obtain the control that will reach that condition as

efficiently as possible. Consequently, optimal control theory was employed to obtain the

feedback gain matrix F.

For a given constant-pilot input F, there is an associated equilibrium state Xe
that is reached in the steady-state case; that is

0 = (A - BF),e + BGF (A20)

which, since it is zero, can be subtracted from the closed-loop equations of motion,
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x = (A- BF) + BGF - [(A- BF)xe + BG (A21)

where a is the difference between the instantaneous state x and the new equilibrium

state xe. Equation (A21) is therefore

= (A - BF)R (A22)

which can be written as

S=Ait+ Bia (A23)

where

f = -Fa (A24)

which is the difference between the instantaneous control vector i and the pilot-

control input associated with the new equilibrium state. The performance index

J = 0 (TQ + fiTRf) dt (A25)

and equation (A23) constitute the familiar state-regulator problem with quadratic per-

formance index for which the optimal control f0* (ref. 13) is

f* = -R-lBTpA (A26)

where P is the solution to the time invariant matrix Riccati equation

PA + ATP - PBR-1BTP + Q = 0 (A27)

The particular solution for the Riccati equation is based on the iterative approach taken

in reference 14.

Equating the general control f to the optimal control f* permits the solution

for the remaining unknown gain matrix

F = R-lBTp (A28)

The feedback gain F is optimal for a given set of weighting matrices Q and R in

the performance index (eq. (A25)). The off-diagonal terms in these weighting matrices

were zero, whereas the diagonal terms were varied as a function of pilot opinion as the

simulation study progressed.
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APPENDIX B

DECOUPLED LATERAL CONTROLS

The lateral equations of motion were linearized as perturbations about an equilib-

rium condition (ref. 11) as

d2-' Emb b Z/ ZXZ Z + d L-' b IZXZ

dt, 2 2 1'XZ 2 Lk Z2 I Z Z _ - .)nPj r + b 2  I-V C

SIZIx IZXZ ZIX -

+ I 1- Cdn + zxz IzIx+ Cn
T -2 r dt' 2_

IZXZ IZI Cn + IzI

t 2  m(b-X XC- IXCn + ~XZClr 1 IXCnr

+ (IxzCs + ICn 6 s 6's (Bl

dt' I ' Y (_k +(b CYr _ 2 IZ + Cy~' + CYr5r

"' 2 i dt' \ 2r -( dt' '+ , ,

+ CY5a 6 + CY6S1l (B3)
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where the primed parameters are perturbations from equilibrium conditions with

t' =O t (B4)

m (B5)
pSE

These linearized lateral equations of motion are then written in state vector nota-

tion as

x = A + Bu (B6)

and the prefilter and feedback gain matrices required to decouple yaw rate and sideslip

angle are determined as in appendix A.
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TABLE I.- SIMULATED ENGINE RESPONSE CHARACTERISTICS

(a) Acceleration

Time. Thrust response, N (lbf), for Tc, N (lbf), of -

sec 2611 (587) 6530 (1468) 13 625 (3063) 16 796 (3776) 22 023 (4951) 36 764 (8265) 6904 (1552) 14 741 (3314) 18 847 (4237) 21 649 (4867) 36 764 (8265)

0 1681 (378) 1681 ( 378) 1 681 (378) 1 681 ( 378) 1 681 ( 378) 1 681 ( 378) 2611 (587) 2 611 ( 587) 2 611 (587) 2 611 (587) 2 611 (587)

.2 1681 (378) 1681 ( 378) 1 681 ( 378) 1 681 ( 378) 1 681 ( 378) 1 681 ( 378) 2705 ( 608) 2 705 ( 608) 2 705 ( 608) 2 705 ( 608) 2 705 ( 608)

.4 1775 (399) 1775 ( 399) 1 775 ( 399) 1 775 ( 399) 1 775 ( 399) 1 775 ( 399) 2798 ( 629) 2 798 ( 629) 2 798 ( 629) 2 798 ( 629) 2 798 ( 629)

.6 1868 (420) 1868 ( 420) 1 868 ( 420) 1 868 ( 420) 1 868 ( 420) 1 868 ( 420) 2985 ( 671) 2 985 ( 671) 2 985 ( 671) 2 985 ( 671) 2 985 ( 671)

.8 2055 (462) 2055 ( 462) 2 055 ( 462) 2 055 ( 462) 2 055 ( 462) 2 055 ( 462) 3358 ( 755) 3 358 ( 755) 3 358 ( 755) 3 358 ( 755) 3 358 ( 755)

1.0 2144 (482) 2144 ( 482) 2 144 ( 482) 2 144 ( 482) 2 144 ( 482) 2 144 ( 482) 4106 ( 923) 4 106 ( 923) 4 106 ( 923) 4 106 ( 923) 4 106 ( 923)

1.2 2331 (524) 2331 ( 524) 2 331 (524) 2 331 ( 524) 2 331 ( 524) 2 331 ( 524) 5227 (1175) 5 227 (1175) 5 227 (1175) 5 227 (1175) 5 227 (1175)

1.4 2424 (545) 2611 ( 587) 2 611 ( 587) 2 611 ( 587) 2 611 ( 587) 2 611 ( 587) 5600 (1259) 7 090 (1594) 7 277 (1636) 7 277 (1636) 7 277 (1636)

1.6 2518 (566) 2985 ( 671) 2 985 ( 671) 2 985 ( 671) 2 985 ( 671) 2 985 ( 671) 5880 (1322) 10 449 (2349) 10 449 (2349) 10 449 (2349) 10 449 (2349)

1.8 2611 (587) 3545 ( 797) 3 545 ( 797) 3 545 ( 797) 3 545 ( 797) 3 545 ( 797) 6161 (1385) 11 196 (2517) 12 691 (2853) 12 691 (2853) 15 302 (3440)

2.0 4012 ( 902) 4 386 ( 986) 4 386 ( 986) 4 386 ( 986) 4 386 ( 986) 6343 (1426) 11 943 (2685) 14 372 (3231) 15 115 (3398) 18 473 (4153)

2.2 4666 (1049) 5 600 (1259) 5 600 (1259) 5 600 (1259) 5 600 (1259) 6437 (1447) 12 504 (2811) 15 489 (3482) 16 796 (3776) 21 649 (4867)

2.4 5040 (1133) 8 211 (1846) 8 211 (1846) 8 211 (1846) 8 211 (1846) 6623 (1489) 12 878 (2895) 16 329 (3671) 17 917 (4028) 24 447 (5496)

2.6 5600 (1259) 9 519 (2140) 11 383 (2559) 11 383 (2559) 11 383 (2559) 6717 (1510) 13 158 (2958) 16 983 (3818) 18 571 (4175) 26 876 (6042)

2.8 5974 (1343) 10 360 (2329) 12 686 (2852) 15 395 (3461) 16 610 (3734) 6810 (1531) 13 438 (3021) 17 357 (3902) 19 034 (4279) 28 740 (6461)

3.0 6250 (1405) 11 196 (2517) 13 812 (3105) 16 983 (3818) 21 276 (4783) 6904 (1552) 13 625 (3063) 17 637 (3965) 19 407 (4363) 30 048 (6755)

3.2 6437 (1447) 11 943 (2685) 14 741 (3314) 18 104 (4070) 24 634 (5538) 13 718 (3084) 17 824 (4007) 19 781 (4447) 31 258 (7027)

3.4 6530 (1468) 12 317 (2769) 15 302 (3440) 18 571 (4175) 27 619 (6209) 13 905 (3126) 18 011 (4049) 19 968 (4489) 32 378 (7279)

3.6 12 691 (2853) 15 675 (3524) 19 034 (4279) 29 487 (6629) 13 998 (3147) 18 104 (4070) 20 248 (4552) 33 126 (7447)

3.8 12 878 (2895) 15 956 (3587) 19 407 (4363) 31 164 (7006) 14 092 (3168) 18 198 (4091) 20 417 (4590) 33 780 (7594)

4.0 13 251 (2979) 16 143 (3629) 19 781 (4447) 32 472 (7300) 14 185 (3189) 18 384 (4133) 20 715 (4657) 34 340 (7720)

4.2 13 438 (3021) 16 236 (3650) 20 061 (4510) 33 499 (7531) 14 279 (3210) 18 473 (4153) 20 809 (4678) 34 807 (7825)

4.4 13 625 (3063) 16 423 (3692) 20 342 (4573) 34 153 (7678) 14 372 (3231) 18 571 (4175) 20 996 (4720) 35 270 (7929)

4.6 16 516 (3713) 20 435 (4594) 34 714 (7804) 14 466 (3252) 18 665 (4196) 21 089 (4741) 35 643 (8013)

4.8 16 610 (3734) 20 622 (4636) 35 270 (7929) 14 555 (3272) 18 754 (4216) 21 182 (4762) 35 924 (8076)

5.0 16 703 (3755) 20 715 (4657) 35 643 (8013) 14 648 (3293) 18 847 (4237) 21 276 (4783) 36 204 (8139)

5.2 16 796 (3776) 20 902 (4699) 36 017 (8097) 14 741 (3314) 21 463 (4825) 36 391 (8181)

5.4 20 996 (4720) 36 297 (8160) 21 556 (4846) 36 578 (8223)

5.6 21 089 (4741) 36 578 (8223) 21 649 (4867) 36 671 (8244)

5.8 21 276 (4783) 36 671 (8244) 36 764 (8265)

6.0 21 463 (4825) 36 764 (8265)

6.2 21 556 (4846)

6.4 21 649 (4867)

6.6 21 930 (4930)

6.8 22 023 (4951)



TABLE I.- SIMULATED ENGINE RESPONSE CHARACTERISTICS - Continued

(a) Acceleration - Concluded

Thrust response, N (Ibf), for Tc, N (lbf), of -
Tine, 

____

sec 36 764 (8265) 18 198 (4091) 36 764 (8265) 13 905 (3126) 22 397 (5035) 36 764 (8265) 19 594 (4405) 22 953 (5160) 36 764 (8265) 22 953 (5160) 36 764 (8265) 36 764 (8265)

0 4 479 (1007) 11 196 (2517) 11 196 (2517) 12 317 (2769) 12 317 (2769) 12 317 (2769) 16"796 (3776) 16 796 (3776) 16 796 (3776) 20 715 (4657) 20 715 (4657) 24 447 (5496)

.2 4 853 (1091) 12 317 (2769) 12 317 (2769) 12 878 (2895) 13 998 (3147) 13 998 (3147) 18 291 (4112) 19 221 (4321) 19 221 (4321) 21 836 (4909) 24 074 (5412) 27 806 (6251)

.4 5 600 (1259) 14 555 (3272) 15 675 (3524) 13 251 (2979) 16 796 (3776) 16 796 (3776) 18 940 (4258) 20 342 (4573) 24 074 (5412) 22 116 (4972) 30 048 (6755) 31 912 (7174)

.6 7 090 (1594) 15 302 (3440) 20 528 (4615) 13 438 (3021) 18 291 (4112) 22 397 (5035) 19 127 (4300) 21 089 (4741) 27 993 (6293) 22 303 (5014) 32 472 (7300) 33 407 (7510)

.8 9 519 (2140) 16 049 (3608) 24 634 (5538) 13 531 (3042) 19 407 (4363 26 129 (5874) 19 407 (4363) 21 836 (4909) 30 608 (6881) 22 490 (5056) 33 780 (7594) 34 528 (7762)

1.0 12 878 (2895) 16 610 (3734) 27 993 (6293) 13 625 (3063) 20 342 (4573) 29 113 (6545) 19 594 (4405) 22 397 (5035) 32 472 (7300) 22 677 (5098) 34 527 (7762) 35 644 (8013)

1.2 17 917 (4028) 17 170 (3860) 30 234 (6797) 13 718 (3084) 20 902 (4699) 30 888 (6944) 22 677 (5098) 33 593 (7552) 22 770 (5119) 35 087 (7888) 36 205 (8139)

1.4 22 397 (5035) 17 357 (3902) 31 538 (7090) 13 812 (3105) 21 463 (4825) 32 Z85 (7258) 22 953 (5160) 34 247 (7699) 22 953 (5160) 35 643 (8013) 36 764 (8265)

1.6 25 755 (5790) 17 637 (3965) 32 472 (7300) 13 905 (3126) 21 930 (4930) 33 219 (7468) 34 714 (7804) 36 017 (8097)

1.8 28 553 (6419) 17 917 (4028) 33 219 (7468) 22 210 (4993) 33 966 (7636) 35 270 (7929) 36 391 (8181)

2.0 30 421 (6839) 18 011 (4049) 33 780 (7594) 22 397 (5035) 34 527 (7762) 35 830 (8055) 36 764 (8265)

2.2 31 444 (7069) 18 104 (4070) 34 340 (7720) 35 087 (7888) 36 204 (8139)

2.4 32 285 (7258) 18 198 (4091) 34 714 (7804) 35 457 (7971) 36 578 (8223)

2.6 32 846 (7384) 35 270 (7929) 35 830 (8055) 36 764 (8265)

2.8 33 499 (7531) 35 830 (8055) 36 297 (8160)

3:.0 34 153 (7678) 36 204 (8139) 36 578 (8223)

3.2 34 714 (7804) 36 484 (8202) 36 764 (8265)

3.4 35 087 (7888) 36 671 (8244)

3.6 35 457 (7971) 36 764 (8265)

3.8 35 737 (8034)

4.0 35 924 (8076)

4.2 36 110 (8118)

4.4 36 204 (8139)

4.6 36 391 (8181)

4.8 36 484 (8202)

5.0 36 578 (8223)

5.2 36 671 (8244)

5.4 36 764 (8265)1
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ws3 TABLE I.- SIMULATED ENGINE RESPONSE CHARACTERISTICS - Continued
O

(b) Deceleration

Thrust response, N (lbf), for Tc, N (lbf), of -
Time

sec 1 681 ( 378) 8 772 (1972) 17 357 (3902) 19 781 (4447) 24 447 (5496) 1 681 ( 378) 13 069 (2938) 16 796 (3776) 21 836 (4909) 1 681 ( 378)

0 36 764 (8265) 36 764 (8265) 36 764 (8265) 36 764 (8265) 36 764 (8265) 24 634 (5538) 24 634 (5538) 24 634 (5538) 23 513 (5286) 22 770 (5119)

.2 32 846 (7384) 32 846 (7384) 32 846 (7384) 32 846 (7384) 32 846 (7384) 21 743 (4888) 21 743 (4888) 22 210 (4993) 23 046 (5181) 20 155 (4531)

.4 26 876 (6042) 26 876 (6042) 26 876 (6042) 26 876 (6042) 26 876 (6042) 19 221 (4321) 19 221 (4321) 20 155 (4531) 22 677 (5098) 18 198 (4091)

.6 22 397 (5035) 22 397 (5035) 24 447 (5496) 24 634 (5538) 24 634 (5538) 17 170 (3860) 17 170 (3860) 19 034 (4279) 22 397 (5035) 16 049 (3608)

.8 18 847 (4237) 18 847 (4237) 22 584 (5077) 23 700 (5328) 24 447 (5496) 15 675 (3524) 15 675 (3524) 18 478 (4154) 22 210 (4993) 13 998 (3147)

1.0 16 610 (3734) 16 610 (3734) 21 463 (4825) 23 140 (5202) 14 092 (3168) 15 022 (3377) 18 104 (4070) 22 116 (4972) 12 504 (2811)

1.2 14 928 (3356) 15 302 (3440) 21 099 (4741) 22 770 (5119) 12 691 (2853) 14 555 (3272) 17 824 (4007) 21 930 (4930) 11 290 (2538)

1.4 13 812 (3105) 14 372 (3231) 20 715 (4657) 22 397 (5035) 11 196 (2517) 14 092 (3168) 17 637 (3965) 21 836 (4909) 10 449 (2349)

1.6 12 504 (2811) 13 812 (3105) 20 342 (4573) 22 210 (4993) 10 449 (2349) 13 812 (3105) 17 450 (3923) 9 706 (2182)

1.8 11 570 (2601) 13 438 (3021) 19 968 (4489) 22 023 (4951) 9 519 (2140) 13 438 (3021) 17 357 (3902) 8 959 (2014)

2.0 10 916 (2454) 12 971 (2916) 19 594 (4405) 21 836 (4909) 8 772 (1972) 13 251 (2979) 17 263 (3881) 8 398 (1888)

2.2 10 266 (2308) 12 691 (2853) 19 221 (4321) 21 649 (4867) 8 211 (1846) 13 069 (2938) 17 170 (3860) 7 838 (1762)

2.4 9 519 (2140) 12 410 (2790) 19 034 (4279) 21 463 (4825) 7 838 (1762) 17 077 (3839) 7 277 (1636)

2.6 8 772 (1972) 12 130 (2727) 18 847 (4237) 21 276 (4783) 7 371 (1657) 16 983 (3818) 6 904 (1552)

2.8 8 211 (1846) 11 943 (2685) 18 665 (4196) 21 089 (4741) 6 997 (1573) 16 890 (3797) 6 530 (1468)

3.0 7 838 (1762) 11 663 (2622) 18 478 (4154) 20 902 (4699) 6 717 (1510) 16 796 (3776) 6 161 (1385)

3.2 7 464 (1678) 11 476 (2580) 18 291 (4112) 20 809 (4678) 6 343 (1426) 5 787 (1301)

3.4 7 090 (1594) 11 290 (2538) 18 198 (4091) 20 715 (4657)i 5 974 (1343) 5 600 (1259)

3.6 6 717 (1510) 11 103 (2496) 18 104 (4070) 20 528 (4615) 5 600 (1259) 5 320 (1196)

3.8 6 530 (1468) 11 009 (2475) 18 011 (4049) 20 435 (4594) 5 413 (1217) 5 133 (1154)

4.0 6 161 (1385) 10 822 (2433) 17 917 (4028) 20 342 (4573) 5 227 (1175) 4 853 (1091)

4.2 5 974 (1343) 10 636 (2391) 17 824 (4007) 20 248 (4552) 5 040 (1133) 4 573 (1028)

4.4 5 694 (1280) 10 449 (2349) 17 731 (3986) 20 155 (4531) 4 760 (1070) 4 386 ( 986)

4.6 5 413 (1217) 10 360 (2329) 17 637 (3965) 20 061 (4510) 4 479 (1007) 4 106 ( 923)

4.8 5 227 (1175) 10 266 (2308) 17 544 (3944) 19 968 (4489)' 4 293 ( 965) 3 825 ( 860)

5.0 5 040 (1133) 10 080 (2266) 17 450 (3923) 19 875 (4468) 4 107 ( 923) 3 639 ( 818)

5.2 4 853 (1091) 9 986 (2245) 17 357 (3902) 19 781 (4447) 3 732 ( 839) 3 452 ( 776)

5.4 4 479 (1007) 9 893 (2224) 3 545 ( 797) 3 265 ( 734)

5.6 4 293 ( 965) 9 706 (2182) 3 358 ( 755) 3 172 ( 713)

5.8 4 106 ( 923) 9 613 (2161) 3 265 ( 734) 2 985 ( 671)

6.0 3 919 (881) 9 519 (2140) 3 078 ( 692) 2 798 ( 629)

6.2 3 732 ( 839) 9 426 (2119) 2 985 ( 671) 2 705 ( 608)

6.4 3 545 ( 797) 9 239 (2077) 2 798 ( 629) 2 518 ( 566)

6.6 3 172 ( 713) 9 145 (2056) 2 611 ( 587) 2 424 ( 545)

6.8 2 985 ( 671) 9 052 (2035) 2 424 ( 545) 2 237 ( 503)

7.0 2 798 ( 629) 8 959 (2014) 2 237 ( 503) 2 055 ( 462)

7.2 2 611 ( 587) 8 865 (1993) 2 055 ( 462) 1 962 ( 441)

7.4 2 424 ( 545) 8 772 (1972) 1 868 ( 420) 1 868 ( 420)

7.6 2 144 ( 482) 1 681 (378) 1 775 ( 399)

7.8 1 868 ( 420) 1 681 ( 378)

8.0 1 681 ( 378)



TABLE I. - SIMULATED ENGINE RESPONSE CHARACTERISTICS - Concluded

(b) Deceleration - Concluded

Time, Thrust response, N (lbf), for Tc, N (lbf), of -

sec 3 732 ( 839) 17 917 (4028) 11 917 (2679) 1 681 ( 378) 7 464 (1678) 3 732 ( 839) 12 691 (2853) 1 681 ( 378) 3732 ( 839) 1681 ( 378)

0 20 155 (4531) 20 155 (4531) 18 754 (4216) 17 824 (4007) 17 824 (4007) 15 115 (3398) 13 998 (3147) 13 438 (3021) 7464 (1678) 5413 (1217)

.2 18 847 (4237) 19 034 (4279) 17 450 (3923) 16 423 (3692) 16 049 (3608) 14 372 (3231) 13 625 (3063) 12 504 (2811) 7184 (1615) 5133 (1154)

.4 17 170 (3860) 18 665 (4196) 15 862 (3566) 14 555 (3272) 14 741 (3314) 13 438 (3021) 13 345 (3000) 11 570 (2601) 6810 (1531) 4853 (1091)

.6 15 302 (3440) 18 478 (4154) 14 555 (3272) 13 158 (2958) 13 812 (3105) 12 130 (2727) 13 158 (2958) 10 636 (2391) 6437 (1447) 4573 (1028)

.8 13 438 (3021) 18 291 (4112) 13 812 (3105) 11 757 (2643) 12 878 (2895) 10 822 (2433) 12 971 (2916) 9 706 (2182) 6067 (1364) 4293 ( 965)

1.0 11 943 (2685) 18 104 (4070) 13 345 (3000) 10 449 (2349) 11 943 (2685) 9 706 (2182) 12 913 (2903) 8 772 (1972) 5694 (1280) 4012 ( 902)

1.2 10 822 (2433) 17 917 (4028) 12 971 (2916) 9 332 (2098) 11 383 (2559) 8 959 (2014) 12 878 (2895) 8 025 (1804) 5320 (1196) 3732 ( 839)

1.4 9 893 (2224) 12 691 (2853) 8 398 (1888) 10 822 (2433) 8 211 (1846) 12 784 (2874) 7 277 (1636) 5040 (1133) 3545 ( 797)

1.6 9 145 (2056) 12 504 (2811) 7 838 (1762) 10 449 (2349) 7 464 (1678) 12 726 (2861) 6 717 (1510) 4760 (1070) 3358 ( 755)

1.8 8 492 (1909) 12 410 (2790) 7 090 (1594) 10 080 (2266) 6 904 (1552) 12 691 (2853) 6 161 (1385) 4573 (1028) 3078 ( 692)

2.0 7 838 (1762) 11 917 (2679) 6 530 (1468) 9 706 (2182) 6 437 (1447) 5 787 (1301) 4293 ( 965) 2891 ( 650)

2.2 7 277 (1636) 6 067 (1364) 9 332 (2098) 5 974 (1343) 5 413 (1217) 4199 ( 944) 2611 ( 587)

2.4 6 904 (1552) 5 600 (1259) 9 145 (2056) 5 600 (1259) 5 040 (1133) 4106 ( 923) 2424 ( 545

2.6 6 530 (1468) 5 227 (1175) 8 865 (1993) 5 413 (1217) 4 666 (1049) 4012 ( 902) 2237 ( 503)

2.8 6 161 (1385) 4 853 (1091) 8 585 (1930) 5 040 (1133) 4 293 ( 965) 3919 ( 881) 2144 ( 482)

3.0 5 787 (1301) 4 479 (1007) 8 398 (1888) 4 760 (1070) 4 012 ( 902) 3825 ( 860) 1962 ( 441)

3.2 5 413 (1217) 4 293 ( 965) 8 118 (1825) 4 479 (1007) 3 732 ( 839) 3732 ( 839) 1868 ( 420)

3.4 5 133 (1154) 3 919 ( 881) 7 838 (1762) 4 293 ( 965) 3 452 ( 776) 1775 ( 399)

3.6 4 853 (1091) 3 732 ( 839) 7 650 (1720) 4 106 ( 923) 3 172 ( 713) 1681 ( 378)

3.8 4 666 (1049) 3 545 ( 797) 7 557 (1699) 3 919 ( 881) 2 985 ( 671)

4.0 4 386 ( 986) 3 265 ( 734) 7 464 (1678) 3 732 ( 839) 2 798 ( 629)

4.2 4 106 (923) 2 985 ( 671) 2 611 ( 587)

4.4 3 919 ( 881) 2 798 ( 629) 2 424 ( 545)

4.6 3 732 (839) 2 611 ( 587) 2 237 (503)

4.8 2 518 ( 566) 2 055 (462)

5.0 2 331 ( 524) 1 868 (420)

5.2 2 237 ( 503) 1 775 (399)

5.4 2 055 ( 462) 1 681 ( 378)

5.6 1 868 ( 420)

5.8 1 775 ( 399)

6.0 1 681 (378)



TABLE II.- MASS AND DIMENSIONAL CHARACTERISTICS

OF SIMULATED AIRCRAFT

Weight, N (lbf) .......... ................................ 245 097 (55 100)

Wing area, m 2  (ft 2 ) ............................. 78 (843)

-Wing span, m (ft) ................ ... .......... 24 (78)

Mean aerodynamic chord, m (ft) ..................... 3.58 (11.74)

Center-of-gravity location, percent E . .................. . . . . 40

IX, kg-m 2  (slug-ft2 )... ... ..................... 331 106 (244 212)
Iy, kg-m 2  (slug-ft2 ) .......................... 334 641 (246 819)

IZ, kg-m 2  (slug-ft2 ) .......................... 625 685 (461 482)

IXZ , kg-m 2  (slug-ft 2 ) . ........ ................ 27 689 (20 423)

Maximum control-surface deflections:
6 t, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. .10

f3 , deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 90

6sp , deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 60

6s, deg . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . .. . . . . . +60

6a, deg . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . ...... . 20
6 r, deg . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .±. . 40

Maximum control-surface deflection rates:

6t, deg/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 50

f3, deg/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6sp, deg/sec . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . 50
6 s, deg/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6a, deg/sec ................. ............... ... . 50
6 r, deg/sec ................... .... ............ 50
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TABLE II. - BASIC AERODYNAMIC INPUTS USED IN SIMULATION

a CT=O CT=1.
8 7 

CT=3.74 CT=O T=1.871CT=3.74 CT= CT=1.
8 7

C T=3.74 CT= CT=1.
8 7 

CT
3
.

74 
C=0 C=1.

8 7 C=3.74 =0 187 34 CT=0 CT=1.
8 7 

CT=
3
.7

4 
C=0 CT=1.

8 7 
CT=

3
.
7 4

deg CX CZ Cm CX6T ~, per deg CZ6i , per deg Cm 6 , per deg Cmq, per rad Cm&, per rad

-10 -0.330 -0.211 0.383 -0.145 -3.212 -4.739 0.80 0.25 -0.50 " -0.0038 -0.0460 -0.0760 -0.0180 -0.0550 -0.0400 -0.0001 0.0016 -0.0036 -28.60 -17.86 -28.60 -11.40 -7.14 -11.40

-5 -. 366 -. 232 .285 -. 741 -3.794 -5.345 .45 .10 -. 50 -. 0033 -. 0435 -. 0736 -. 0134 -. 0580 -. 0610 .0006 .0021 -. 0023 -28.60 -26.80 -28.60 -11.40 -10.70 -11.40

0 -. 340 -. 250 .300 -1.400 -4.500 -6.130 .12 -.07 -. 53 -. 0026 -. 0403 -. 0700 -. 0086 -. 0611 -. 0861 .0013 .0026 -. 0010 -28.60 -32.15 -29.30 -11.40 -12.85 -11.70

5 -. 249 -. 119 .432 -2.090 -5.180 -6.889 -. 14 -. 25 -. 60 -. 0029 -. 0388 -. 0690 -. 0089 -. 0593 -. 0832 .0019 .0022 0 -26.45 -34.30 -30.00 -10.55 -13.70 -12.00

10 -. 094 .095 .594 -2.518 -5.781 -7.572 -. 23 -. 37 -. 68 -. 0040 -. 0371 -. 0674 -. 0040 -. 0534 -. 0784 .0019 .0034 .0003 -21.44 -32.86 -30.36 -8.56 -13.14 -12.14

15 .017 .344 .932 -2.770 -6.306 -8.116 -. 27 -. 45 -. 78 -. 0041 -. 0360 -. 0649 .0009 -. 0490 -. 0759 .0033 .0030 .0005 -10.72 -30.72 -31.45 -4.28 -12.28 -12.55

20 .019 .632 1.162 -2.851 -6.708 -8.601 -. 27 -. 50 -. 84 -. 0051 -. 0350 -. 0627 .0054 -. 0492 -. 0737 .0026 .0020 -. 0005 -3.57 -30.00 -31.45 -1.43 -12.00 -12.55

25 .078 .864 1.535 -2.700 -7.033 -8.972 -. 30 -. 49 -. 83 -. 0046 -. 0320 -. 0591 .0040 -. 0455 -. 0734 .0030 .0016 -. 0004 -5.00 -28.60 -30.36 -2.00 -11.40 -12.14

30 .111 .798 1.765 -2.592 -5.602 -9.258 -. 32 -. 40 -. 75 -. 0055 -. 0099 -. 0514 .0060 -. 0527 -. 0683 .0022 .0042 -. 0006 -9.29 -39.30 -48.60 -3.71 -15.70 -19.40

CXbs, per deg CZ6s, per deg Cmias, per deg Cys, per deg Cn 0 s, per deg C 1is, per deg , Cyp, per rad Cnp, per rad

-10 -0.0012 -0.0024 -0.0026 0.0093 0.0140 0.0148 -0.0012 0.0006 0.0052 -0.0002 0 0.0002 0.0007 0.0007 0.0005 0.0015 0.0023 0.0024 -0.02 -0.09 -0.49 -0.15 -0.11 0.38

-5 -. 0016 -. 0016 -. 0028 .0105 .0165 .0161 -. 0017 -. 0007 .0025 -. 0002 -. 0001 .0002 .0008 .0008 .0009 .0020 .0029 .0028 -. 04 -. 04 -. 10 -. 04 -. 15 -. 12

0 -. 0020 -. 0008 -. 0030 .0117 .0192 .0173 -. 0022 -. 0020 -. 0002 -. 0002 -. 0002 0 .0009 .0009 .0013 .0025 .0035 .0032 0 .05 .11 -. 02 -. 22 -. 30

5 -. 0026 -. 0013 -. 0032 .0128 .0209 .0173 -. 0008 -. 0022 -. 0017 -. 0002 -. 0002 -. 0001 .0009 .0010 .0015 .0027 .0038 .0033 .07 .19 .10 -. 20 -. 28 -. 25

10 -. 0033 -. 0021 -. 0028 .0119 .0217 .0185 -. 0002 -. 0020 -. 0020 -. 0003 -. 0003 -. 0002 .0009 .0011 .0015 .0026 .0038 .0032 .05 .25 .53 -. 16 -. 33 -. 40

15 -. 0035 -. 0033 -. 0046 .0099 .0219 .0186 .0008 -. 0012 -. 0012 -. 0002 -. 0003 -. 0002 .0009 .0011 .0015 .0022 .0036 .0031 .24 .45 .80 -. 20 -. 45 -. 52

20 -. 0028 -. 0037 -. 0033 .0078 .0210 .0176 .0013 -. 0008 -. 0005 -. 0002 -. 0003 -. 0002 .0008 .0011 .0014 .0017 .0035 .0029 .30 .80 1.20 -. 22 -. 50 -. 57

25 -. 0017 -. 0032 -. 0048 .0036 .0209 .0163 .0017 -. 0008 -. 0002 -.0002 -. 0004 -. 0002 .0008 .0010 .0013 .0011 .0037 .0028 .06 .89 1.25 -. 15 -. 40 -. 59

30 0 -. 0068 -. 0029 .0015 .0117 .0160 .0020 -.0012 -. 0005 -. 0002 -. 0004 -. 0003 .0007 .0010 .0012 .0008 .0038 .0028 .13 .75 1.03 -. 14 -. 22 -. 15

CXt, per deg CZ 6 t, per deg Cmt , per deg Cyr, per deg . Cn6r, per deg Cl,, per deg Clp, per rad Cyr, per rad

-10 -0.0092 0.0072 -0.0049 -0.0242 -0.0160 -0.0102 -0.090 -0.084 -0.028 0.012 0.010 0.009 -0.0043 -0.0051 -0.0046 0.0020 0.0016 0.0019 -0.05 -1.13 -0.78 0.76 0.88 0.94

-5 -. 0062 .0042 -. 0019 -. 0246 -.0204 -. 0101 -. 085 -. 087 -. 044 .012 .010 .009 -. 0041 -. 0047 -. 0046 .0018 .0016 .0020 -. 60 -. 88 -. 75 .76 .86 .92

0 -. 0030 .0010 .0010 -. 0250 -. 0250 -. 0100 -. 080 -. 090 -. 060 .012 .010 .009 -. 0039 -. 0043 -. 0046 .0016 .0016 .0021 -. 98 -. 68 -. 72 .77 .90 1.00

5 -. 0002 -. 0012 .0004 -. 0201 -. 0202 -. 0050 -. 065 -. 097 -. 076 .011 .010 .009 -. 0038 -. 0041 -. 0046 .0016 .0017 .0022 -. 68 -. 50 -. 68 .77 1.03 1.20

10 -. 0036 -. 0044 -. 0070 -. 0138 -. 0211 -. 0174 -. 040 -. 092 -. 088 .010 .010 .009 -. 0036 -. 0040 -. 0046 .0016 .0017 .0022 -. 40 -. 50 -. 63 .78 1.08 1.60

15 -. 0018 -. 0071 -. 0015 -. 0088 -. 0122 -. 0252 -. 013 -. 078 -. 098 .010 .010 .010 -. 0034 -. 0040 -. 0046 .0011 .0017 .0022 -. 37 -. 50 -. 55 .80 1.00 1.35

20 -. 0006 -. 0011 .0002 -. 0042 -. 0057 -. 0180 .002 -. 069 -. 089 .009 .011 .010 -. 0024 -.0040 004046 .0003 .0016 .0020 -. 32 -. 33 -. 42 .59 .70 1.24

25 -. 0042 -. 0051 -. 0030 -. 0053 -. 0079 -. 0124 .002 -. 060 -. 080 .006 .012 .012 -. 0020 -. 0041 -. 0047 -. 0003 .0010 .0017 -. 26 -. 17 -. 33 .33 .32 .93

30 -. 0002 -. 0152 .0339 -. 0036 -. 0312 -. 0728 -. 005 -. 050 -. 079 .002 .010 .012 -. 0002 -. 0033 -. 0042 .0006 .0008 .0014 -.26 -.08 -. 25 -.08 1.70 2.55

Cy,, per deg Cnp, per deg C1 , per deg CXasp, per deg CZ6sp, per deg Cmbsp, per deg Cnr, per rad Clr , per rad

-10 -0.020 -0.022 -0.050 0.0030 0.0035 0.0053 0.0012 0 0 0 -0.0060 -0.0044 0.0260 0.0430 0.0300 -0.006 0 0.008 -0.45 -0.33 -0.37 0.32 0.57 0.55

-5 -. 020 -. 050 -. 050 .0038 .0052 .0070 -. 0006 -. 00200020-.0020 -. 0016 -. 0043 -. 0042 .0272 .0425 .0325 -. 004 0 .005 -.35 -. 38 -. 42 .48 .70 .77

0 -. 020 -. 050 -. 055 .0042 .0078 .0081 -. 0024 -. 0036 -. 0031 -. 0040 -. 0010 -. 0040 .0290 .0420 .0380 -. 002 0 .002 -. 30 -. 42 -. 45 .67 .80 .86

5 -. 020 -. 050 -. 055 .0043 .0082 .0086 -. 0034 -. 0048 -. 0044 -. 0048 -,0018 -. 0056 .0317 .0440 .0417 0 0 .001 -. 33 -. 41 -. 45 .77 .85 .85

10 -. 020 -. 050 -. 055 .0043 .0080 .0081 -. 0023 -. 0051 -.0053 -. 0052 -. 0016 -. 0045 .0296 .0434 .0429 .001 0 .001 -. 34 -. 42 -. 54 .83 .80 .80

15 -. 023 -. 050 -. 055 .0047 .0082 .0089 -. 0028 -. 0051 -. 0061 -. 0046 -. 0012 -. 0080 .0247 .0432 .0414 .004 .001 .002 -. 38 -. 42 -. 52 .88 .82 .83

20 -. 024 -. 050 -. 055 .0050 .0084 .0092 -. 0029 -. 0062 -. 0066 -. 0036 -. 0046 -. 0070 .0157 .0420 .0387 .005 .001 .002 -. 35 -. 40 -. 52 .73 .90 .90

25 -. 020 -. 050 -. 055 .0021 .0083 .0088 -. 0070 -. 0067 -. 0072 .0001 -. 0025 -. 0085 .0045 .0408 .0347 .004 .001 .003 -. 30 -. 34 -. 47 .83 1.10 .93

30 -. 024 -. 020 -. 055 .0018 -. 0040 .0082 -. 0050 -. 0070 -. 0090 .0012 -. 0082 - 0024 .0019 -. 0022 .0321 .004 .001 .003 -. 20 -. 42 -. 70 .62 -. 20 -. 50

I-



TABLE III.- BASIC AERODYNAMIC INPUTS USED IN SIMULATION - Concluded

CT=O CT=0. 7 0 CT=1. 4 0 CT= 2 .10 CT=2 .8 1 CT=O CT=0. 7 C T=.4 0 CT= 2 .1 C 2 .8 1 CT=O CT=0. 7 0 CT=1. 4 CT=2 .1 CT=2 .81

deg CY 6a, per deg Cn6a, per deg C 1 a, per deg

-10 -0.0016 -0.0010 -0.0004 0.0002 0.0008 -0.0014 -0.0028 -0.0040 -0.0052 -0.0064 0.0082 0.0083 0.0084 0.0085 0.0086

-5 -. 0012 -. 0007 -. 0002 .0003 .0008 -. 0001 -. 0017 -. 0032 -.0047 -.0062 .0048 .0058 .0068 .0078 .0088

0 -. 0008 -. 0004 0 .0004 .0008 .0012 -. 0006 -. 0024 -. 0042 -. 0060 .0014 .0033 .0052 .0071 .0090

5 -. 0004 -. 0002 0 .0002 .0004 -. 0010 -. 0022 -. 0034 -. 0046 -. 0058 .0014 .0033 .0052 .0071 .0090

10 -. 0006 -. 0004 -. 0002 0 .0002 -. 0010 -. 0022 -. 0034 -. 0046 -. 0058 .0010 .0030 .0050 .0070 .0090

15 -. 0008 -. 0006 -. 0004 -. 0002 .0001 .0004 -. 0011 -. 0026 -. 0041 -. 0056 .0027 .0044 .0061 .0078 .0096

20 -. 0022 -. 0018 -. 0014 -. 0010 -. 0005 .0045 .0026 .0007 -. 0012 -. 0032 .0207 .0197 .0187 .0177 .0168

25 -. 0036 -. 0024 -. 0012 0 -. 0012 .0036 .0024 .0010 -. 0002 -. 0014 -. 0010 .0050 .0110 .0170 .0240

30 -. 0007 -. 0006 -. 0005 -. 0004 -. 0003 .0024 .0008 -. 0008 -. 0024 -. 0040 -. 0076 -. 0012 .0052 .0116 .0180



TABLE IV. - PERFORMANCE LIMITS FOR EACH INDEPENDENT

DEGREE OF FREEDOM

Degree of Performance limits

freedom Position Velocity Acceleration

Longitudinal Fore 1.244 m (4.08 ft) +0.610 m/sec (2.00 ft/sec) +0.6g

Aft 1.219 m (4.00 ft)

Lateral Left 1.219 m (4.00 ft) ±0.610 m/sec (2.00 ft/sec) +0.6g

Right 1.219 m (4.00 ft)

Vertical Up 0.991 m (3.25 ft) ±0.610 m/sec (2.00 ft/sec) ±0.8g

Down 0.762 m (2.50 ft)

Yaw ±32 deg ±15 deg/sec ±50 deg/sec 2

Pitch ±30 deg ±15 deg/sec ±50 deg/sec 2

-20 deg

Roll ±22 deg ±15 deg/sec ±50 deg/sec 2
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TABLE V.- WASHOUT-PARAMETER VALUES USED IN SIMULATIONa

Value in Program Variable Value in Program
Variable Units vSI Units value

kz, 1  0.2 0.2 B 1 , sec 0.15 0.15

z,1 0.7 0.7 B 2 , sec 0.15 0.15

Wn,z,1, rad/sec 0.1 0.1 B 3 , sec 0.133 0.133

kz,2 1.0 1.0 k4,,1, sec 0.15 0.15

kp,T,1, per m (per ft) 0.013 0.004 ko, 1 , sec 0.15 0.15

kp,T,2, sec 3.8 3.8 kcp,1, sec 0.15 0.15

kp,T,3, per sec 0.05 0.05 kp 0.5 0.5

kq,T,1, per m (per ft) 0.013 0.004 kq 1.0 1.0

kq,T,2, sec 3.8 3.8 kr 1.0 1.0

kq,T,3, per sec 0.05 0.05 C1, per sec 0.5 0.5

kr,1, per m (per ft) 0.0131 0.004 C2, per sec 0.2 0.2

kr,2, sec 3.8 3.8 C3, per sec 0.5 0.5

kr,3, per sec 0.05 0.05 k0,1 1.0 1.0

al, rad/sec 1.414 1.414 k9, 2  0.04 0.04

a 2 , rad/sec 2.1 2.1 0 0.028 0.028

a 3 , rad/sec 2.1 2.1 wn,O, rad/sec 1.0 1.0

bl, rad/sec 1.0 1.0 kp,1 0.5 0.5

b 2 , rad/sec 2.25 2.25 kp, 2  0.04 0.04

b3 , rad/sec 2.25 2.25 0.028 0.028

K1, m/sec 2 (ft/sec2 ) 5.8840 19.3044 wn,p, rad/sec 1.0 1.0

Yl, m/sec 2 (ft/sec2 ) 5.8840 19.3044 Zneut, m (ft) 0.6487 2.128

il, m/sec 2 (ft/sec2 ) 7.8453 25.7392 Vf, m/sec (ft/sec) 0.3048 1.0

A 1 , sec 2  0.007 0.007 XLF 2.5 2.5

A2 , sec 2  0.007 0.007 YLF 2.5 2.5

A 3 , sec 2  0.007 0.007 ZLF 3.0 3.0

aWashout parameters are defined in reference 7.
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TABLE VI.- CHARACTERISTICS- OF SIMULATOR CONTROL SYSTEM

Maximum travel in - Breakout Force gradient
force

Control
deg cm in. N lbf N/cm lbf/in.

Column:

Forward 6.9 9.75 3.84 4.7 1.07 12.1 6.9

Aft 11.9 14.71 5.79

Wheel ±17.6 ±20.57 ±8.10 11.1 2.5 5.3 3.0

Pedel 24.8 0 0 38.0 21.7
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TABLE VII.- PREFILTER AND FEEDBACK GAIN MATRICES G AND F

FOR DECOUPLED LATERAL AND LONGITUDINAL CONTROLS

(a) Lateral mode

wR= 2.298 rad/sec; (R = 0.80; PR = 4.54 sec; (tl/2)R= 0.38 sec

-7.734535 1.588237 0.0

G = 6.267414 0.714128 0.0

13.962874 -1.067195 0.

0.868495 6.990785 -21.222495 0.122524

F = 0.273273 2.615730 -2.238758 -0.116009

-0.374135 -1.615966 33.748233 -0.522822

(b) Longitudinal mode

Wsp = 5.36 rad/sec; Csp = 0.79; Psp = 1.93 sec; (tl/2 )sp = 0.16 sec

1.479356 3.424809 0.882762 0.0

2.638624 0.319423 -7.582873 0.0
G 12.143196 -4.229370 -8.572163 0.0

-11.227652 0.079126 6.239296 0.0

1.615774 -0.397886 -2.006868 3.845354

-4.873305 -16.546972 -2.428593 0.368500
F =5.489366 -0.247396 -13.759019 -2.883877

-2.592946 2.912773 6.699955 -2.834244
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TABLE VIII.- TOUCHDOWN CONDITIONS FOR FIXED-BASE SIMULATOR AND

MOVING-BASE SIMULATOR WITHOUT MOTION

[Pitch angle was maintained at zero throughout flights

by decoupled longitudinal controls]

(a) Fixed-base simulator (table XII of ref. 6)

No. of tests

Turbulence lp, l, x , 0x, No. outside desired

level m/sec m/sec m m of landing area
(ft/sec) (ft/sec) (ft) (ft) tests Short Long

*g < 0.61 m/sec 1.19 0.55 156.5 61.8 42 0 10

(2 ft/sec) (3.9) (1.8) (513.6) (202.7)

* 9 0.61 m/sec 1.34 0.61 147.4 57.8 31 2 7

(2 ft,/sec) (4.4) (2.0) (483.4) (189.7)

(b) Moving-base simulator in fixed-base mode

No. of tests
Turbulence Ali, , 'x, Ux, No. outside desired

level m/sec m/sec m m of landing area
(ft/sec) (ft/sec) (ft) (ft) tests Short Long

ag < 0.61 m/sec 0.88 0.34 148.7 41.2 13 0 0

(2 ft/sec) (2.9) (1.1) (488.0) (135.1)

*g = 0.61 m/sec 1.01 0.67 152.8 73.8 14 2 2

(2 ft/sec) (3.3) (2.2) (501.2) (242.1)
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TABLE IX. - PILOT RATING SYSTEM

SATISFACTORY Excellent, highly desirable. 1

Meets all requirements and expectations; Good, pleasant, well behaved. 2
good enough without improvement. Fair. Some mildly unpleasant characteristics. 3

Clearly adequate for mission. Good enough for mission without improvement.

ACCEPTABLE Some minor but annoying deficiencies. 4

May have deficiencies which Improvement is requested. Effect on per-

warrant improvement, but formance is easily compensated for by pilot.

adequate for mission. UNSATISFACTORY Moderately objectionable deficiencies. 5

Pilot compensation, if required Reluctantly acceptable. Deficiencies Improvement is needed. Reasonable per-

to achieve acceptable per- which warrant improvement. Perfor- formance requires considerable pilot

CONTROLLABLE formance, is feasible. mance adequate for mission with compensation.

Capable of being controlled feasible pilot compensation. Very objectionable deficiencies. Major 6

or managed in context of improvements are needed. Requires best

mission, with available available pilot compensation to achieve

pilot attention, acceptable performance.

Major deficiencies which require improvement 7

for acceptance. Controllable. Performance

inadequate for mission, or pilot compensation

required for minimum acceptable performance
UNACCEPTABLE in mission is too high.

Deficiencies which require improvement. Inadequate Controllable with difficulty. Requires substan- 8
performance for mission even with maximum fea- tial pilot skill and attention to retain control
sible pilot compensation. and continue mission.

Marginally controllable in mission. Requires 9

maximum available pilot skill and attention

to retain control.

UNCONTROLLABLE Uncontrollable in mission. 10

Control will be lost during some portion of mission.



TABLE X. - TOUCHDOWN CONDITIONS WITH DECOUPLED CONTROLS

No. of tests

Turbulence L,, i x, ax, No. outside desired

level m/sec m/sec m m of landing area
(ft/sec) (ft/sec) (ft) '(ft) tests Short Long

g< 0.61 m/sec 0.70 0.40 157.4 35.8 13 0 1

(2 ft/sec) (2.3) (1.3) (516.3) (117.3)

g2 0.61 m/sec 1.19 0.55 150.6 68.0 17 0 3

(2 ft/sec) (3.9) (1.8) (494.1) (223.0)

TABLE XI.- PREFILTER AND FEEDBACK GAIN MATRICES G AND F

FOR DECOUPLED LONGITUDINAL CONTROLS WITH

REDUCED RESPONSE TO TURBULENCE

Wsp = 4.678 rad/sec; (sp = 0.71,- Pp = 1.92 sec; (t l / 2 )sp = 0.21 sec

Wph = 0.903 rad/sec; (ph = 0.91; Pph = 17.14 sec; (tl/2)ph = 0.84 sec

2.776885 1.645801 -0.092977 0.0

0.599393 -0.059215 -5.880013 0.0
1.467427 -3.211352 -0.755450 0.0

-3.867356 0.988445 0.868685 0.0

0.528169 -0.020643 -0.656279 2.942620

-5.253016 -14.399142 -0.307930 0.016808

1.458376 2.065692 -0.881299 -1.037223

-2.066648 -1.156426 2.089220 -1.015081
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TABLE XII.- TOUCHDOWN CONDITIONS WITH DECOUPLED CONTROLS AND

PREFILTER AND FEEDBACK GAINS ALTERED TO

MINIMIZE TURBULENCE EFFECTS

No. of tests

Turbulence , x, gx, No. outside desired

level m/sec m/sec m m of landing area
(ft/sec) (ft/sec) (ft) (ft) tests Short Long

ag < 0.61 m/sec 0.67 0.55 140.0 52.1 12 0 2

(2 ft/sec) (2.2) (1.8) (459.3) (171.0)

Og > 0.61 m/sec 0.85 0.55 155.1 64.7 30 0 4

(2 ft/sec) (2.8) (1.8) (509.0) (212.3)
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3.58 (11,74)

Wing spoiler

290
10.886 0 .oo (35.70)165-0-o 50 _ 3.68 (12.06) 0.40d

.17E28.30

Cross section of horizontal tail 2.66(8.73)5.1
(16.80)

00 43.89 3.56 (11.68)
(12.76)

Cross section of vertical tail

11.88 (38.97)

5.08 380
1.25 (4.10) (16.66)

23.77 (78.00)6.6)
Figure .- Three-view24.12 (79.13)drawing of simulated airplane. All linear dimensions are in meters (ft).

Figure 1.- Three-view drawing of simulated airplane. All linear dimensions are in meters (ft).
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Figure 2.- Flap assembly and engine pylon detail. 6fl = 250; 6f9 = 100; 6f3 = 600



L-72-3233
Figure 3.- Moving-base simulator.
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Figure 5.- Photograph of 1/300-scale STOLport model.
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Figure 6.- Sketch of approach end of simulated runway.
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Figure 7.-. Response characteristics of decoupled longitudinal controls.
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Figure 7.- Concluded.
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+ COMPUTED FLIGHT DATA WASHOUT DATA
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Figure 9.- Computed acceleration profiles for a typical series of

control inputs before and after application of washout logic.
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+COMPUTED FLIGHT DATA WASHOUT DATA
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Figure 9.- Continued.
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+ WASHOUT DATA BASE RESPONSE
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Figure 9.- Continued.
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Figure 9..- Concluded.
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Figure 10.- Typical decelerating approach in low-level turbulence.
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Figure 10.- Continued.
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Figure 11.- Computed motion-base response for typical decelerating approach

in low-level turbulence.
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Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.- Concluded.
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in low-level turbulence.
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Figure 12.- Continued.
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Figure 13.- Computed motion-base response to typical constant-speed two-segment

approach in low-level turbulence.
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Figure 13.- Continued.
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Figure 13.- Continued.
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Figure 13.- Concluded.
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Figure 14.- Typical constant-speed two-segment approach with modified

decoupled controls in low-level turbulence.
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Figure 15.- Computed motion-base response for typical constant-speed two-segment

approach with modified decoupled controls in low-level turbulence.
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Figure 15.- Continued.
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Figure 15.- Concluded.
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