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ABSTRACT 

Vectorcardiograms were recorded v i a  a modified Frank lead system from 
a l l  crewmen of the three Skylab missions i n  conjuction w i t h  the Lower 
Body Negative Pressure - M092 Experiment. 
specially developed computer program ( V E C T A N ) .  
sequences a1 1 owed di rec t  comparisons of supi ne resting , Earth based 
(reference) vectorcardiograms with those taken during lower body 
negative pressure s t ress  and  those obtained a t  r e s t  in o r b i t ,  as well 
as combinations of these conditions. 

Data were analyzed by a 
Design of the t e s t  

Results revealed several s t a t i s t i c a l l y  s ignif icant  space f l i gh t  related 
changes; namely, increased resting and lower body negative pressure 
stressed heart ra tes ,  modestly increased PR interval and corrected 
QTc interval ,  and greatly increased P and QRS loop maximal amplitudes. 
In addition, orientation changes in the QRS maximum vector and the 
J-vector a t  r e s t  i n  space seem quite consistent among crewmen and 
different  from those caused by the application of lower body negative 
pressure. No cl inical  abnormalities were observed. 

Etiology of these findings i s  conjectured t o  be, a t  l ea s t  i n  p a r t ,  
related to f luid mass s h i f t s  occurring i n  weightlessness and attendant 
a1 terations i n  cardiovascular dynamics and myocardial autonomic control 
mechanisms. 

INTRODUCTION 

Electrocardiographic interval changes suggesting effects  of increased 
vagal tone were observed early i n  some Gemini crewmembers ( 1 ) .  
Preflight versus postfl ight amp1 itude di$ferences appeard i n  electro- 
cardiograms of several of the early Apollo crewmembers. In preflight 
and postfl ight crew evaluations of the l a s t  three Apollo f l i a h t s ,  
quantitative postfl iytit vectorcardiographic changes Grdere for  the 
f i r s t  time determined i n  American space crews. 
related t o  heart ra te  were mainly those of increased P and QRS vector 

Changes n o t  considered 
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magnitudes and orientation shifts .  
f l i g h t  f i n d i n g s  resembled those observed w i t h  the or thostat ic  s t r e s s  
of lower body negative pressure, i t  was inferred then tha t  upon 
the i r  return from space, astronauts exhibited exaggerated responses 
t o  orthostasis i n  the vectorcardiogram as well as i n  measures of  
cardiovascular hemodynamics ( 2 ) .  
vectorcardiographic changes or on i n - f l i g h t  influence upon p o s t f l i g h t  
f i n d i n g s  existed before Skylab. 
cardiograms have been studied on a l l  nine Skylab crewmen. 

B u t  since most of these post- 

No expl ic i t  information on in-f l ight  

To help resolve the question, vector- 

The M093 investigators have studied and reported on the vectorcardio- 
grams of exercising Skylab astronauts ( 3 ) ;  t h i s  M092 report extends 
our data base w i t h  extensive vectorcardiographic recordings on a l l  
nine, supine resting astronauts periodically subjected t o  lower body 
negative pressure s t r e s s .  

NETHODS 

A specially designed Frank  lead vectorcardiograph system (4)  was used 
for a l l  Skylab vectorcardiographic recordings ( f i g .  1 ) .  Safety and 
r e l i a b i l i t y  features commensurate with other space hardware were 
added; the only other modification was the shif t ing of leg electrodes 
t o  the "presacral" area t o  obtain greater s t a b i l i t y  of signals d u r i n g  
the exercise experiments M093 and M171. 
marked to  assure consistency in repeated application of electrodes 
( f i g .  2 ) .  System controls provided individual electrode impedance 
checks and continual d ig i ta l  heart ra te  readout selectable from 
e i ther  of the three leads since no onboard display of analog signal 
was available i n  the Experiment Support System for crew monitoring. 
Discrete gain set t ings for each lead allowed some degree of optimi- 
zation for  individual s igna l  amplitude. A l l  data were recorded 
primarily on digi ta l  magnetic tape w i t h  a sample frequency of 320 
samples per second per channel ( l imit  of Skylab capabi l i ty) ;  i n - f l i g h t  
data were telemetered from onboard recordings t o  ground tracking 
s ta t ions as they became accessible. 
in-f l ight  data,  therefore, could be randomly available for  only 
relatvely short periods. 
rarely seen i n  real time. 

Body s i t e s  were permanently 

Real-time ground monitoring of 

Data from complete experiment protocols were 

Every test protocol consisted of 25 minutes of data recording, broken 
i n t o .  f ive ,  5-minute periods for  vectorcardiographic analysis. T h i s  
provided a resting supine control period, three graded levels of 
lower body negative pressure s t r e s s  and a final period of recovery a t  
ambient pressure ( f i g .  3 ) .  The first  two minutes a t  lower levels of 
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Figure 2. Vectorcardiograph system in place on subject. 
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lower body negative pressure were included as par t  of the f i rs t  major 
s t ress  period for  vectorcardiographic analysis. 
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Figure 3 .  The lower body negative pressure protocol used for Skylab 
cardiovascular evaluations assessing or thostat ic  tolerance. 

Each astronaut trained both as subject and observer i n  a one-g f l i g h t  
simulator of the Skylab Orbital Workshop beginning about six months 
before the launch of his f l i gh t .  
f l i g h t  vectorcardiographic recordings d u r i n g  the lower body negative 
pressure protocol were obtained d u r i n g  this period to  establish his 
normal vectorcardiogram and variance. Three of these recording 
sessions were scheduled i n  the month preceding, w i t h  the l a s t  approxi- 
mately f ive  days before, launch. ’ 

The ea r l i e s t  i n - f l i g h t  lower body negative pressure t e s t s  ( f i g .  4 )  were 
performed on the fourth to  s i x t h  day of o rb i t  for  each crewman; there- 
a f t e r  i n - f l i g h t  t e s t s  were conducted approximately every t h i r d  day. 
postfl ight t e s t s  were accomplished on recovery day aboard s h i p  as 
soon as possible a f t e r  splashdown and on the succeeding two days. 
Return to  the Johnson Space Center usually occurred on the t h i r d  day 
postfl ight.  Subsequent postfl ight t e s t s  were done on fourth and 
f i f t h  day postfl ight and on a t  l ea s t  three additional days, as l a t e  
as one t o  two months a f t e r  recovery. F l i g h t  related test dates were 
not necessarily the same for a l l  crewmen. A1 1 yostfl i g h t  t e s t s  
ut i l ized Skylab hardware outf i t ted i n  a mobile aboratory ( f i g .  5 ) .  
The separate systems of hardware were of identical design and departures 

From each crewman, f ive  t o  seven pre- 
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Figure 5. Skylab Mobile Laboratory. Cardiovascular f a c i l i t y  
fo r  lower body negative pressure testing. 
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from equivalence lay only i n  necessary elements peculiar to  one-g or  
zero-g environment operations, e.g., one-g upper torso support dolly 
for  lower body negative pressure. 

All digi ta l  recordings were processed by a previously developed com- 
puter program called VECTAN (5) which analyzed the three-dimensional 
spat ia l  en t i ty  rather than planar projections i n  order to  obviate 
perspective dis tor t ions.  
studies as well as by Apollo and Skylab Medical Experiments Altitude 
Test usage. 
elements of the s p a t i a l  P-QRS-T vector loops ( f i g .  6 )  which include 
standard time intervals , vector magnitudes and orientations,  calculated 
areas and circumferences and other quantitative parameters. These 
data are  computed from the spat ia l  vector for  every complex analyzed 
(one every f ive  seconds) ( f i g .  7 )  and summarized s t a t i s t i c a l l y  over 
discrete  protocol periods fo r  every lower body negative pressure t e s t  
and subsequently for every subject according t o  f l i g h t  phase (pref l ight  , 
i n - f l i g h t  o r  postf l ight) ,  test  means and/or trends. Finally, group 
mean values for comparable f l i gh t  phases have been calculated using 
the data from a l l  nine crewmen. 

I t  has been verified w i t h  ground-based 

The program basically reconstructs the mathematical 

Standard s t a t i s t i c a l  procedures have been used to establish i n - f l i g h t  
and postfl ight differences from preflight values for  the rliost p a r t  
two basic considerations a re  dea l t  w i  th-by selected vectorcardiographic 
parameters (tab1 e I ) : 

O The ef fec t  of space f l i gh t  i t s e l f .  Answerin this query has 
been attempted by calculating the in-f l ight  9 or  postf l ight)  
minus pref l ight  difference i n  the resting phase only, since 
i t  has been assumed t h a t  the vectorcardiogram recorded on 
resting, supine subjects i n  Earth gravity i s  l ikely the 
closest  approximation obtainable t o  the vectorcardiogram 
recorded on the same resting subject i n  space. 
was thereby his own control; the pa i red  t - t e s t  was used to  
t e s t  for  s t a t i s t i c a l  significance. 

The e f fec t  of lower body negative pressure or thostat ic  stress. 
Since the t e s t  subject experienced no al terat ions i n  body 
orientation, vectorcardi crgraphi c changes evidenced d u r i n g  
application of lower body negative pressure should be f a i r l y  
discretely ascribable to  f lu id i c ,  footward s h i f t s  of body mass, 
i n  space or on Earth. 
of lower body negative pressure and resting vectorcardio- 
graphic measurements were also amenable t o  s t a t i s t i c a l  analysis 
by the paired t - t e s t  and were used fo r  these comparisons. 
Various combinations of condition e f fec ts  a re  readily evident 
i n  table I which i s  the comparison matrix used t o  test for  

Each subject 

O 

Hence differences between -50 mm Hg 
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Figure 6. Vectorcardiogram P-QRS-T loops i n  space w i t h  
projections. 

three 

This derivative from the three orthogonal scalcr leads i s  the basis for al l  
camputer analyses in this experiment (MOB VCG). 
MAX P, MAX R, and MAX T are respective spatial maxima of the P, 
QRS, and T loops. PR mean region is the computer null voltage reference. 
PB, Q R S  B, and TB are beginning; and PE, Q R S  E, and TE are ending; 
fiducial times for the respective loop camponents. 
are respective threshold and modal voltage values employed in  the camputer 
program. Fram these basic elements and the original orthogonal scalar data 
essentially a l l  aspects of the P-QRS-T camplex may be described mathemati- 
cally in  three dimensional space. 

T1, T2, M1 and M2 

planar 

Figure 7. Vectorcardiogram spatial  vector length i n  scalar form for  
one compl e t e  P-QRS-T cycle 
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vectorcardiographic changes observed a f t e r  the experimental 
conditions of 1 ower body negative pressure (LBNP) s t r e s s ,  
the space environment i t s e l f  and entry. 

TABLE I .  M092 VECTORCARDIOGRAM COMPARISON MATRIX 

Percent Change After Designated Condition I 

Reference Condition = LBNP Condition = Flight 
Values (LBNP Stress Values) (Resting Values) 

PREFLIGHT IN-FLIGHT IN-FLIGHT POSTFLIGHT 

LBNP LBNP LBNP Space Space 

Pref 1 ight (Alone) + + 
Supine Space Space 
Rest + 

Entry 

In-flight 
Rest 

Postflight 
Rest 

LBNP 
( in space) 

LBNP 
(After Space) 

+ 
Entry 

Entry 

Throughout these data analyses, i t  has been assumed that  a l l  three 
Skylab crews, despite widely varying mission lengths and i n i t a l l y  
h i g h  ambient temperatures for  the Skylab 2 mission, experienced the 
same space s t resses  and tha t  t he i r  physiologic responses should  have 
been a t  l ea s t  qual i ta t ively similar.  
comparisons have been made primarily on group (nine crewmen) mean 
values. In recognition of the differences i n  mission durations, how- 
ever, and therefore of the possibi l i ty  of trend changes, i n - f l i g h t  
means as well as single t e s t  values early and l a t e  i n  each orbital  
period have been compared separately w i t h  pref l ight  mean references. 

Using these premises, s t a t i s t i c a l  

RESULTS 

Heart ra te  responses to  lower body negative pressure ( tab le  11) a re  
presented i n  this report also.  
tha t ,  compared to  supine resting pref l ight  values, resting heart ra tes  
were elevated in-f l ight  (18%) for  the Skylab 3 and Skylab 4 crewmen, 
and generally i n  the early postfl ight period (3%) for a l l  nine 
Skylab astronauts. The  Skylab 2 crewmen , however, differed somewhat 
in-f l ight  by showing decreased resting heart ra tes .  
difference between in-f l ight  and pref l ight  resting heart ra tes  of 
the Skylab 2 crewmen, a l l  o f  whom showed decreases from pref l ight  
values, was s ignif icant ly  (P<O.OOl) different  from the same average 
difference for  the other six crewmen, who invariable exhibited higher 
resting heart ra tes  in-f l ight  than preflight.  
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Dur ing  lower body negative pressure s t r e s s ,  heart rates were always 
elevated, 20 t o  50% over the i r  corresponding resting values, regard- 
less of f l i g h t  phase; however, a tendency toward greater t h a n  preflight 
stressed increases was evident in-f l ight  and immediately postfl ight.  

The PR i nterval ( t a b l  e I I ) exhi bi ted moderate , reciprocal changes w i t h  
heart ra te ,  decreasing s ignif icant ly  ( 4  t o  10%) during lower body 
negative pressure s t r e s s  for  a l l  b u t  two crewmen (Skylab 2 Commander and 
Pi lo t ) .  Though changes in the resting PR interval in-f l ight  were 
individually sporadic and averaged some 2% less  t h a n  preflight values 
for the ea r l i e s t  in-f l ight  t e s t s ,  mean in-f l ight  values were s ign i f i -  
cantly greater (4%, P< 8.025) than preflight.  There was, however, no 
clear time trend t h r o u g h o u t  the missions nor d i s t i nc t  relationship t o  
duration of f l i gh t .  

For the QRS d u r a t i o n  ( tab le  I I ) ,  although in-f l ight  resting values 
averaged s l igh t ly  less  t h a n  (2%)  than  the preflight counterpart, no 
consistent or s ignif icant  ,pattern of change with respect t o  f l i gh t  
phase was seen. 
about 5% in absolute value, however, occurred almost universally with 
the application of lower body negative pressure. 

A modest b u t  s ignif icant  (P< 0.02)  decrease averaging 

The absolute QT interval ( table  11) was also uniformly decreased 
( 6  t o  15%) during lower body negative pressure s t r e s s  and whenever the 
heart ra te  was elevated, i t s  response following the expected reciprocal 
relationship t o  heart ra te .  Corrected resting QTc intervals by the 
Bazett equation ( 6 )  , however, showed an average increasing trend 
in- f l igh t ,  which became significantly different  in the l a t e  in-f l ight  
period from preflight mean values (3% increase, P< 0.05) .  
QTc intervals during lower body negative pressure were elevated 
( 2  t o  7%, P< 0.05 t o  0.001) over resting values a t  a l l  phases of the 
mission. 

Furthermore, 

Effects on vectorcardiograph component amp1 i tudes ( table  I1 I )  were 
greater t h a n  those on temporal measurements. 
magnitude (PmaxMAG) a t  r e s t  s ignif icant ly  {P<0 .025)  increased in- f l igh t ,  
averaging about 25%. This increase was greater early t h a n  l a t e  i n  
f l i g h t ,  was s t i l l  present on recovery, although already attenuated, 
b u t  quickly returned t o  preflight values. 
was the increase i n  PmaXMAG d u r i n g  lower body negative pressure 
(ranging 28 to  55%), again the greater changes being seen in-f l ight  
and immediately oostf l izht .  

The group average QRS maximum vector magnitude ( QRSY3MAG) (tabl e I I i ) 
a t  r e s t  also increased (12%) s ignif icant ly  (P<O.OOl 
an increasing in-f l ight  trend, returning rather precipitously to  pre- 
f l i gh t  levels about three days postfl ight.  
body negative pressure the QRSmaxMAG decreased from resting 

The P-wave maximum vector 

Even more marked, however, 

in-f l ight  w i t h  

Preflight d u r i n g  lower 
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TABLE 11. TEMPORAL MEASUREMENTS OF THE VECTORCARDIOGRAM 
Percentage changes from the nine crewmen group mean, 
p r e f l i g h t .  supine res t i ng  values (as reference) o f  
averages f o r  heart rate, PR i n te rva l ,  QRS duration,and 
QT i n te rva l  (basic and hear t  r a t e  corrected, QTc) 
during designated treatment condit ion. 

CHANGE AFTER DESIGNATED CONDITION (X) 
PREFLIGHT 
REFERENCE CONDITION = LBNP CONDITION = FLIGHT 

VECTORCARDIOGRAM VALUES 
MEASUREMENT SUPINE, RESTING PREFLIGHT IN-FLIGHT POSTFLIGHT IN-FLIGHT POSTFLIGHT 

- MEAN t SO R + O  R + O  
* I P K * X  K P  K P 

Heart r a t e  (bpm) 5 6 t  6 +20 <0.001 +54 +57 +9 NS +2 NS 

PR i n te rva l  (ms) 148 2 16 -11 <0.01 - 6 - 5  +3 <0.025 . +2 NS 

QRS duration (ms) 9 8 t  8 - 6 <0.001 - 6 - 4  - 3  NS +2 NS 

QT in te rva l  (ms) 419 t 20 - 6 <0.001 -13 -14 -2 NS -1 NS 

QTc i n te rva l  (ms) 402 t 13 + 2 <0.001 + 7 + ?  +2 0.01 +O NS 

NS = not s i g n i f i c a n t  

*P values were not computed f o r  these comparisons because 
percentage changes are reckoned from p r e f l i  h t  res t i ng  
references. and compound treatrrlent e f fec ts  7i.e. , LBNP, 
space and/or ent ry)  are involved. Approximate signff icance 
may be judged i n  r e l a t i o n  t o  the P values f o r  the r e l a t i v e l y  
"pure" treatments o f  p r e f l i g h t  LBNP o r  f l i g h t  i t s e l f .  

TABLE 111. AMPLITUDE MEASUREMENTS OF THE VECTORCARDIOGRAM 
Percentage changes f r o m  the nine cremen group mean, pre- 
f l i g h t ,  supine res t i ng  values (as reference) o f  averages f o r  
P-wave maximum vector magnitude (Pm ,MAG). QRS complex 
maximum vector magnitude (QRS, ,MAGj. QRS spat ia l  Eigenloop 
circumference (QRS-E C I R C ) ,  an i  ST-wave maximum vector magni- 
tude (STmaxMAG) during designated treatment condit ion. 

CHANGE AFTER DESIGNATED CONDITION ( I )  
PREFLIGHT 
REFERENCE CONDITION = LBNP CONDITION = FLIGHT 

VECTORCARD I OGRAM VALUES 
MEASUREMENT SUPINE, RESTING PREFLIGHT IN-FLIGHT POSTFLIGHT IN-FLIGHT POSTFLIGHT 

R + O  -- MEAN t SD R + O  
K P  K *  K *  K P K P  

PmaxMAG (mV) 0.122 0.0332 +27 cO.001 +78 +75 +24 <0.02 +16 NS 

Q R h x M A G  (mV) 1.70 t 0.373 - 6 <0.02 +13 +12 +12 <0.001 +18 <0.001 

QRS-E c i r c  (mV) 5.01 t i.027 + 3 NS +24 +32 +19 ~0.005 +21 <0.001 

STmaxMG (mV) 0.646 * 0.206 -15 ~0.01  -32 -37 -10 NS - 6 NS 

NS = not  s i g n i f i c a n t  

*P values were not computed f o r  these comparisons because percentage changes are 
reckoned from p r e f l i g h t  res t i ng  references, and compound treatment e f fec ts  ( L e . ,  
LBNP, space and/or entry) are involved. Approximate s ign i f icance may be judged 
i n  r e l a t i o n  t o  the P values f o r  the r e l a t i v e l y  "pure" treatments o f  p r e f l i g h t  
lower body negative pressure o r  f l i g h t  i t s e l f .  
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values (7%, P< 0.02) b u t  showed no s ignif icant  response to  lower body 
negative pressure in-f l ight .  This appears to  be a different ia l  response 
t o  lower body negative pressure preflight versus in-f l ight  , or perhaps 
an overriding dominance due to  the e f fec t  of space f l i g h t  alone. 

Perhaps a bet ter  indicator of change in the overall QRS depolarization 
complex, the total  QRS Eigenloop* circumference ( tab le  111) reflected 
highly s ignif icant  in-f l ight  increases also (19%, P< 0.005) , which 
generally progressed d u r i n g  the in-f l ight  phase. In-fl ight increases 
and precipitous postfl ight return t o  preflight values caused this 
measurement t o  exhibit  a "square wave" phenomenon d u r i n g  the in-f l ight  
phase. 
also increased d u r i n g  lower body negative pressure, insignificantly 
pref l ight ,  b u t  t o  around 10% in-f l ight  (P< 0.0025). 

Somewhat paradoxically, however, the QRS Eigenloop circumference 

The resting ST maximum vector magnitude (STmaxMAG) ( tab le  111) for the 
group underwent nonsignificant decrements in-f l ight  (Q 10%).  B u t  
here, as w i t h  the heart r a t e ,  a d i s t inc t ly  different  pattern prevailed 
in the Skylab 2 crewmen compared t o  the other two crews such tha t  the 
question o f  signif icant ly  different  s t ressors  may be considered a 
possible explanation. The e f fec t  of lower body negative pressure was 
always t o  increase STmaxMAG, 14% preflight (P< 0.01) u p  to  25% in-f l ight  
(P< 0.001) and 30% immediately postfl ight (P. 0.0001). 

Alterations in orientation of the PmaxMAG vector a t  r e s t  i n  space were 
quite variable and nonuniform; lower body negative pressure produced a 
s l igh t ly  greater and more consistent e f fec t  of a general s h i f t  of the 
PmaxMAG vector terminus infer ior ly  and rightward. 

I n  contrast t o  PmaxMAG orientation, the resting QRSmaxMAG vector 
terminus showed a rather consistent, though n o t  large,  s h i f t  toward 
more anterior orientation in-f l ight ,  with a nearly equivalent return 
on the day of recovery ( f ig .  8) .  Figures 8 and 9 depict the QRS 
maximum vector termini on a spherical surface (Aitoff equal area pro- 
jection) representing the body thorax with equatorial azimuth a t  heart 
level,  0" being the l e f t  axi 1 l a ,  and minus and plus 90" , anterior and 
posterior,  respectively. 
and posit ive,  footward, declinations from the horizontal reference 
plane. 
s h i f t .  
opposite direction (posteriorly and infer ior ly)  upon application of 
lower body negative pressure ( f ig .  9 ) .  
negative pressure in- f l igh t ,  therefore, was less  than ei ther  e f fec t  alone. 

*The QRS Eigenloop i s  tha t  unique spatial  en t i ty  representing the 

Negative elevation angles represent headward, 

A s l i gh t  superior component is also seen i n  this orientation 
Almost universally the QRSmaxMAG vector terminus shifted i n  the 

The net e f fec t  of lower body 

net summation of a l l  instantaneous vectors throughout the QRS 
depolarization cycle. 
f ied and oriented within standard orthogonal reference axes. 

I t  i s  normally f a i r l y  planar and is  quanti- 

609 



0 

c, 
0 
c 
-r 
n 

c 
I 

61 0 



>, 
Y :111 v, 

c, 
0 
? 
‘I- 
n 

6 
L 
3 
v) 
v) aJ 
L 
P 

x 

v, ac 
C Y  

2 

N cn 
0 
E 
n 
m 
h 
Y 
v, 

P 

cn 
a 
L 
3 
0 3  

61 1 



TABLE IV .  DERIVED MEASUR CTORCARDIOGRAH 

CHANGE AFTER DESIGNATED CONDITION ( X )  
PREFLIGHT 
REFERENCE CONDITIMI = LBNP CONDITION = FLIGHT 

VECTORCARD I OGRAM VALUES 
MEASUREHENT SUPINE, RESTING PREFLIGHT IN-FLIGHT POSTFLIGHT IN-FLIGHT POSTFLIGHT 

M E A N  t SD R + O  R + O  
X P  X *  X X P  X P  

J Vector (my) 0.074 t 0.024 +28 ~0.001 +13 +26 + 6 NS +18 <0.05 

ST Slope (mV/s) 1.28 t 0.528 - 1 NS -21 -18 + 5 tlS + 7 NS 

QRS-T angle (deg) 38 t 14 +61 <0.001 +13 +lo5 -17 NS +12 NS 

NS = not s ign i f i can t  
* values were not computed f o r  these comparisons because percentage 

changes are reckoned from p r e f l i g h t  res t ing  references, and com- 
pound treatment e f fec ts  i.e. lower body negative pressure, space 
and/or entry)  are involved. Approximate s igni f icance may be 
judged i n  re la t i on  t o  the P values f o r  the re la t i ve l y  "pure" 
treatments o f  p r e f l i g h t  lower body negative pressure o r  f l i g h t  
i tse1.f. 

Orientation changes of the J-vector terminus were perhaps the most 
consistent and striking. 
men (excepting the Commanders on Skylab 2 and 4) displayed considerable 
s h i f t  superiorly (figure 10). All nine crewmen by l a t e  in - f l igh t  
produced a fur ther  leftward s h i f t y  while immediately on recovery day 
a l l  resting J-vector orientations moved dramatically toward their 
respective pref l ight  positions. Preflight lower body negative pressure 
s t r e s s  produced very minor J-vector s h i f t s  ( f ig .  l l ) y  mostly rightward, 
b u t  in-f l ight  and postf l ight  reorientations during-lower body negative 

A t  r e s t  early in-f l ight  seven of nine crew- 

arked, especi 
d t o  the l e f t  
from the i r  no . T h i s  was m 
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Resting values for  the ST slope ( tab le  IV) averaged 1.3 and ranged 0.5 
to  2.1 millivolt/second. 
variable and not s t a t i s t i c a l l y  s ignif icant ,  though the grou 
was augmented in-f l ight  above the preflight reference. 
f l i gh t  t e s t s  were on mission day 25 for Skylab 2; average 
a l l  nine crewmen taken on or near mission day 25 i n  the i r  respective 
f l igh ts  were elevated only 1% over the preflight reference, while a 
corresponding average 4% increase occurred on the Skylab 3 and Skylab 4 
s ix  crewmen around mission day 58. 
further increases l a t e r  in o rb i t ,  b u t  an average (nine crewmen) immed- 
i a t e  postfl ight elevation of 7% required up t o  several days to  
disappear. 

In-fl ight and postfl ight changes 

La 

The Skylab 4 crew did not show 

The ef fec t  of lower body negative pressure on the ST slope was likewise 
variable. A preflight increase of 2% was n o t  s t a t i s t i c a l l y  s ignif icant .  
An average, b u t  not s ignif icant ,  decrease of 21% early in-f l ight  
augmented t o  a s t a t i s t i c a l l y  s ignif icant  41% decrement (P< 0.01) l a t e  
in-f l ight .  On recovery day, however, t h i s  reduction i n  ST slope due 
t o  lower body negative pressure was already diminished t o  15% w i t h  no 
s t a t i  s ti  ca 1 s i  g n i  f i cance. 

The spatial  angle between QRSm ,MAG and STm ,MAG vectors i s  a close 
approximation to  the t rue QRS-? spatial  angye. .The average resting 
value of t h i s  QRS-T angle ( table  IV) decreased 17% in-f l ight  (not 
s t a t i s t i c a l l y  s ign i f icant ) .  
the angle was seen by an early in-f l ight  decrease of only 3% progressing 
t o  an average 25% (P< 0.005) decrement in the l a t e  mission vectorcardio- 
grams. 
occurred with the group averaging a 12% increase over the preflight 
mean QRS-T angle. 

A d i s t i nc t  mission trend in reduction of 

Even so, on recovery day a complete reversal had already 

The ef fec t  of lower body negative pressure was large and highly variable, 
b u t  almost always caused an increase i n  the QRS-T angle which was 
greater preflight and postfl ight (69%, P< 0.001 and 96%, P< 0.005, 
respectively) than in-f l ight .  
lower body negative pressure was only 47% (P. 0.02); a trend toward a 
lesser  in-f l ight  increase due t o  lower body negative pressure was evident 
with longer orbital  stay.  

The average in-f l ight  increase due to  

Concerning lower body negative pressure related arrhythmias, rare 
ectopic beats of both ventricular and supraventricular origin were 
noted a t  come time or other in a l l  crewmen, b u t  frequency appeared 
unrelated to  mission phase. 
atrioventricular junctional rhythm seen primarily i n  a l l  three Scient is t  
Pi lots  and the Skylab 4 Pi lot .  
dur ing  h i g h e r  levels of lower body negative pressure or  immediately upon 
release,  b u t  occasionally were present even a t  i n i t i a l  r e s t .  They 

The only other notable occurrences were 

These usually manifested themselves 
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were seen pref l ight ,  i n - f l i g h t  and postf l ight ,  perhaps s l igh t ly  more 
often i n  the Skylab 4 P i lo t ,  a representative scalar  str ip of whom i s  
shown in figure 12 .  No arrhythmias of c l in ica l  concern were ever 
recorded d u r i n g  lower body negative pressure t e s t s ,  a1 though the Sky- 
lab 3 Commander d i d  exhibit  a short  episode of atrioventricular 
dissociation on mission day 21 a t  release of lower body negative 
pressure; this never recurred. Additionally, the Skylab 4 P i lo t  demon- 
s t ra ted considerable dis tor t ion o f  his ST-T waveform occasionally 
dur ing  lower body negative pressure, both in-f l ight  and postf l ight ;  
restoration was prompt a f t e r  release of negative pressure. 

TIME, SEC 

Figure 12. Scalar XYZ vectorcardiogram leads of Skylab 4 P i lo t  show- 
i n g  intermittent junctional arrhythmia shortly a f t e r  re- 
lease of lower body negative pressure on the day of entry. 

I t  should be further pointed out tha t  i n  no measurement described here 
d i d  changes exceed the accepted cl inical  limits of the normal fo r  tha t  
measurement. 
context, b u t  as normal physiologic variants of the cardiac e lec t r ica l  
phenomena affected by the s t resses  of the Skylab space environment or  
of lower body negative pressure. As such they may shed l i g h t  on basic 
physiologic mechanisms. 

Changes a re ,  therefore, not considered i n  the pathological 
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DISCUSSION 

Since heart r a t e  i s  perhaps the best measure of or thostat ic  s t r e s s  and 
is  also a pivotal element i n  considering vectorcardiographic f i n d i n g s ,  
the in-depth discussion of heart ra te  presented i n  another paper ( 7 )  is 
an essential t o  the understanding of the mechanisms involved. Uniformily 
lower body negative pressure s t r e s s  produced heart r a t e  elevations i n  
one-g and i n  o rb i t ,  before and a f t e r  f l i g h t .  
t i a l ,  however, i s  greater in-f l ight  and immediately postfl ight than 
prior t o  f l i g h t .  Average percentage increases i n  heart ra te  d u r i n g  
lower body negative pressure over resting heart ra te  are: 
f l i gh t  = 20%, early in-f l ight  = 50%, around mission day 25 = 42%, 
around mission day 58 (six crewmen only) = 40%, l a t e  i n - f l i g h t  = 43%, 
and immediately p o s t f l i g h t  = 54%. 
are s ignif icant  i n  themselves, they are  even further exaggerated by 
the f ac t  that  resting heart ra tes  were generally elevated i n - f l i g h t  
and p o s t f l i g h t  over prefliGht values. O f  further importance i s  the 
h i g h  correlation of stressed heart ra te  w i t h  respective resting rates  
a t  any given t e s t  session. Therefore, whatever the conditions, s t resses  
or events which a f fec t  an individual 's  resting heart ra te  must 
certainly re f lec t  the i r  effects  i n  other physiologic and electrocardio- 
graphic measurements. 

A modest reciprocal relationship between PR interval and heart ra te  i s  
generally accepted (8) .  However, the data from Skylab indicate a more 
d i rec t  relationship; i n - f l i g h t  (especially l a t e )  resting heart ra te  
elevations were usually accompanied by increases i n  the PR interval also.  
Conversely, the inverse response was observed d u r i n g  lower body negative 
pressure s t r e s s  a t  a l l  f l i g h t  phases. T h i s  conceivably m i g h t  indicate 
an in-f l ight  a l terat ion i n  cardiac autonomic control a t  r e s t  which was 
overridden by the s t r e s s  o f  lower body negative pressure. 
autonomic control also m i g h t  be related t o  the junctional rhythm 
observed n o t  infrequently i n  several crewmen. 

The normalized differen- 

Pre- 

Even t h o u g h  these d i f fe ren t ia l s  

Altered 

Since the only s ignif icant  changes i n  QRS duration were seen during 
lower body negative pressure s t r e s s ,  l i t t l e  difference across the 
f l i gh t  phases occurred, and resting differences were insignif icant ,  i t  
i s  inferred that  space f l i g h t  produced no noteworthy ef fec ts  on this 
measurement. 

Though the expected reciprocal relationship of QT interval and heart 
ra te  was evidenced throughout a l l  f l i g h t  phases, the trend tendency 
for  the corrected QTc interval - t o  increase through the orbital  phase 
favors a space related e f fec t  upon this measurement independent of 
heart ra te .  
lower body negative pressure, though  of somewhat lesser  magnitude. 
Since the QT interval represents total  ventricular e lectr ical  systole 

The  e f fec t  was directionally the same as t h a t  due t o  
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(depolarization and repolarization) and the QRS duration (depolarization) 
was essent ia l ly  unchanged, t h i s  in-f l ight  lengthening of the QTc 
interval must be chiefly due t o  prolongation of the repolarization 
process. 
balance, b u t  could as l ikely involve basic ce l lu la r  metabolic processes. 

This conceivably m i g h t  be related to  changes i n  autonomic 

A seeming paradox i n  PmaxMAG i s  d i f f i c u l t  t o  explain. 
negative pressure increases i n  this measurement have long been observed, 
sometimes at t r ibuted i n  par t  to  more nearly synchronous depolarization 
of both a t r i a  w i t h  increased heart ra te  and re la t ive  adrenergic 
dominance. Experimental data on dogs by Nelson and co-workers (9 )  
supports an increase i n  Prwave amplitude upon removal of blood. A 
space related increase i n  this measurement a t  r e s t ,  even for  those 
crewmen of Skylab 2 who had decreased resting heart ra tes  in-f l ight  
seems t o  address another mechanism. The f ac t  t h a t  early in-f l ight  
vectorcardi ograms exhi bi ted the greater increases would point t o  a 
possible etiology related t o  f lu id  sh i f t s  which are  f e l t  to  be operative 
early following orbital  insertion. T h a t  f lu id  i s  shif ted i n  the 
opposite direction during lower body negative pressure, when even 
greater Pma+MAG values are  observed, compounds the paradox. 
a l l y ,  positional changes i n  t h i s  vector do not appear re la t ively 
s i  gni f icant .  

Lower body 

Physiologic- 

Even more s t r iking were the QRSmaxMAG and QRS Eigenloop circumference 
changes. 
imply a def in i te  space e f f ec t ,  since lower body negative pressure 
produced actual decreases i n  the former and nonsignificant increases i n  
the l a t t e r  pref l ight .  
sidered by Nelson, e t  aZ.(9) t o  be a major factor affecting the QRS 
complex. Manoach, e t  aZ. ( l o ) ,  and others (11)  have demonstrated i n  
dogs a s ignif icant  d i rec t  correlation of blood volume and QRS amplitude 
d u r i n g  controlled hemorrhage, volume replacement, vena caval occlusion 
and d i rec t  intracardial  infusion overload. One m i g h t  also consider 
the potential e f fec t  i n  space of re la t ive  hemodilution (12)  which, 
according t o  Rosenthal , e t  aZ. (13) ,  augments QRS magnitude by lowering 
i ntracavi tary blood resi  s t i  vi ty . 

These measures of increased ventricular depolarization voltage 

End d ias to l ic  ventricular blood volume is  con- 

In the hypothesized events occurring i n  space, a large f lu id  s h i f t  
from the lower body centr ipetal ly  would very l ikely produce i n i t i a l l y  a 
re la t ively increased intravascular and intracardiac volume. Subsequent 
t ransfer  of f lu id  from other compartments t o  the vascular t ree  could 
d i lu t e  the original hematacrit as well as increase total  blood volume. 
This i nteracti  ve complexity could a1 so account for  the modest vector 
orientation s h i f t s  observed, particularly as the two ventricular 
chambers may experience nonidentical a l terat ions.  Trying to  r e l a t e  
these vectorcardiographic findings to  hemodynamic events i s  enticing, 
b u t  d i f f i c u l t  (14). O u r  data and the study by Brody (15),  who asserted 
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That intracavitary blood exerts a powerful e f fec t  upon surface lead 
electr ical  potentials o f  the heart by d i f fe ren t ia l ly  decreasing 
tangential while augmenting radial dipoles seem t o  give our hypothesis 
practical and theoretical support. Another perhaps less  1 i kely consid- 
eration is  tha t  these increased surface potentials in-f l ight  do in fac t  
represent increased myocardial work, which m i g h t  logically be considered 
due to  increased stroke volume and/or elevated systemic pressure. 

Finally, since the J-vector and ST slope give important information on 
myocardial oxygenation, the absence of a s ignif icant  space related 
al terat ion i n  these two measurements i s  encouraging. The increased 
J-vector magnitude and decreased ST slope d u r i n g  lower body negative 
pressure s t r e s s ,  however, need further investigation. 

CONCLUSIONS 

"Vectorcardiograms taken on a l l  crewmen during the Lower Body Negative 
Pressure Experiment (F1092) on the Skylab f l i gh t s  have shown several 
consistent changes apparently related t o  space f l i gh t .  Principally 
involved among these changes are  temporal intervals ,  vector magnitudes 
and the i r  orientations,  and certain derived parameters, presumably 
as a consequence of altered autonomic neural imputs upon the myocardial 
conduction system and/or  of major f luid s h i f t s  known t o  have occurred 
in f l i gh t .  

"Correlations of these electrocardiographic findings with other hemo- 
dynamic and related changes appear reasonable and consistent,  
especially a s  regards the concept of headward f luid s h i f t s  in space. 

"All observed measurements have been we1 1 within accepted 1 imi t s  of 
normal and are  considered t o  represent adaptative phenomena rather 
than pathological conditions. 

"These findings have, i n  a predictable fashion, opened new questions 
which will d i rec t  future ground-based and in f l i gh t  researches - par- 
t i cu la r ly  i n  the area of cardiovascular electro-hemodynamic studies 
for  the Shuttle era. 
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