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ABSTRACT

I 

With the aid of the Born approximation, the time

autocorrelation and power spectral density are calculated for

the received acoustic signal scattered from velocity fluctuations

in a turbulent aircraft trailing vortex. The turbulence is

required to be globally stationary, but only locally homogeneous.

The treatment includes the effects of spectral broadening due

to convection of the scattering eddies by a spatially varying

mean flow and by macroeddies. The 3 dB bandwidth of the

received signal is related to the scattering angle and the

core Mach number of the vortex. A primary feature of the

analysis is that it provides a method for inferring the radial

intensity distribution of turbulence in a vortex. The analysis

technique is also applicable to scattering from other turbulent

flows where significant variations of turbulence level occur

over distances on the order of the macroeddy size.

I
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I. INTRODUCTION

The detection of aircraft trailing vortices by acoustic scattering

has in recent years been developed to the status of a practical

experimental technique. Of notable significance in this area is the

wort: reported by Balser, Nagy, and Froudian. 1 The pioneering efforts

of this group have also demonstrated the potential usefulness of acoustic

scattering as a tool for studying the detailed structure of turbulent

vortices. The study of vortex structure by acoustic methods is the theme

to which this paper is addressed.

The problem to be considered is that of three-dimensional scattering

from a finite section of a single turbulent vortex. The treatment

utilizes two theories developed by R. A. Silverman: one his theory of

local homogeneity, 2 and the other his model for calculating spectral

broadening due to macroeddies. 3 The macroeddy model has been applied to

scattering from globally homogeneous turbulence (as distinguished from

-ZoeaZZy homogeneous turbulence) by Ford and Meecham. 4 While the

restriction to global homogeneity should be acceptable for describing

scattering from large volumes of atmospheric turbulence, the resulting

theories are probably not as useful for predicting signal spectra from

aircraft vortices and other turbulent flows where the intensity of

turbulence varies rapidly over distances of a few macroeddies.

II. MEAN VELOCITY DISTRIBUTION

It will be evident later on that the correlation time of the received

1
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scattered signal is exceedingly small in comparison to observed time

scales of decay of actual aircraft, vortices, which are typically a full

minute or more. Let us therefore imagine the vortex velocity ^v(M,t)

being time-averaged over an interval which is very long in comparison to

the signal correlation time, but very short in comparison to the vortex

decay time. Denoting this averaging operation by angular brackets, we

wish to model the result so obtained by the sum

/

	

	 V(Z)wo

The spatially varying component V(µ) represents the mean swirl velocity,

and will be discussed presently. The constant vector u o will represent

the combined effects of wind and drift in moving the entire vortex as a

unit. Using (1), we thenexpress the overall velocity field in the form

where a(M,t) is the fluctuation of v,t) about its mean value.

The swirl velocity V(r) in (1) will be assumed to be a truncated two-

dimensional flow having radial symmetry about the z axis in Fig. 1. It

>	 will be taken to be entirely circumferential with no radial or axial

components. Measurements  have shown that the magnitude of VO increases

almost linearly from zero at the center to its maximum value, and then

diminishes more slowly toward zero with radial distance from the vortex

axis. The maximum velocity attained is commonly called the core velocity,

which we will denote by Vc . The radial distance from the axis at which

this peak velocity occurs, called the core radius, will be denoted by rc.

The central region of radius r  is called the core of the vortex.

2
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The two-dimensional character of^V(r) might be emphasized by writing

its magnitude as V(a), where a is the perpendicular distance from the z

axis of Fig. 1. For illustrating the theory, we si.all ue a radial

distribution of circumferential velocity having a magnitude defined by

V (a) = V  f (a)	 (3)

where f(a) is a dimensionless distribution given by

f(a) = A r 
c 

a- 1 [1 - exp (- X a2 / r2)l 	 (4)

Definitions (3) and (4) represent a laminar-flow solution obtained

originally by Lamb, 6 and recast here in a form similar to that used by

Georges and others. From the definitions of V  and r  above, it is seen

from (3) that f(a) must attain a peak value of unity, and that this peak

must occur at a = rc . The approximate values of A and X satisfying these

conditions are A = 1.398 and X = 1.256. A plot of f(a) with the argument

normalized to r  is shown in Fig. 1 of Georges' paper.7

It will also be useful to define a vortex core Mach number by

M = Vc/c	 (5)

where c is the isentropic sonic velocity in the undisturbed medium, i.e.,

in the absence of a vortex or turbulence. Even in the largest present-

day aircraft, the core Mach numbers seldom exceed 0.2. Since the

macroscale velocity for turbulence in an aircraft vortex should be

roughly equal to the core velocity, the low Mach numbers involved justify

a_neglect of compressibility effects with respect to all but sound wave

fluctuations.

4
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III. SCATTERING EQUATION

The scattering configuration is shown in Fig. 1. A uniform plane

wave is assumed to be incident from below, illuminating a vortex section

of length L centered about the coordinate origin. The effect of a finite

antenna beamwidth is taken care of by truncating the vortex.

Neglecting scattering from temperature fluctuations, assuming

incompressibility of the flow field, and considering only incident acoustic

frequencies which are very high in comparison to frequencies associated

with the turbulence, several authors have correctly derived scattering

equations from the basic fluid dynamics equations. Of these derivations,

the onk • by Lighthill, 8 which employs the Born (single-scattering)

app-.o:cIwation, is particularly well suited to the present analysis. Using

Eqs. 6, 7, and 10 from his paper, contracting the tensor indices, and

introducing a few changes of notation, we have the far-zone expression

p (,r,t) _ - kp x ('j po c I ^i) ^r -1	 -3(r c)

x fcos(wot  - kox' - ko ') r-v(^r', t - R'/c) d r'	 (6)

In (6), p (M,t) is the deviation from the ambient density p  due to the

sound wave, replacing the difference (p - po) used by Lighthill. The

vectors ,r and r' replace Lighthill's M and y, respectively — the unprimed

vector locating field observation points, and the primed vector locating

source points. The vector r is shown in Fig. 1. The distance R' in (6)

is the magnitude of the difference vector (M - r'), and the distance r is

s

d
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the magnitude of the vector r The derivation of (6) incorporated an

incident cosine plane wave having radian frequency w o , wave number

ko = wo/c, and propagating in the positive x direction as indicated by
F

the wave vector k o in Fig. 1. The intensity of this wave, denoted by Ii

in (6), is given by Eq. 7 of Lighthill's paper.

The velocity v in (6) replaces the velocity fluctuation v' in

Lighthill's Eq. 10. Although Lighthill dealt only with turbulent
i

fluctuations about the mean flow, it is important to note from his

derivation that the restriction of v in (6) to representing only
M

fluctuations is not necessary for the validity of the expression.

For the present application, the most appropriate substitution for

v in (6) would be the velocity sum in (2). Retention of the translational

velocity^uo in (2) would cause a pronounced increase in complication,

however. Among other things, for sufficiently large values of u o , the

time variation of the scattering angle 0 in Fig. 1 would not be negligible.

Previous analyses 4,8 have shown that scattering at different angles arises

from turbulent eddies of different sizes — which tend to be uncorrelated.

The signal correlation time from a vortex sweeping by overhead would
0

consequently be less than that obtained from a nontranslating vortex; or

in terms of the power spectral density, a broader spectrum would be

recorded.

Even when the velocity uo is small enough to neglect the time

variation of 0 in Fig. 1, the power spectrum would be shifted by an amount

corresponding to the ordinary Doppler shift from a moving target. This

Tatter effect is easily taken into account, however, in an analysis which

6



otherwise neglects uo . Our procedure here will be to substitute (2) into

(6) with Mo = 0, and then to reinsert ,20 at an appropriate point later on.

Since observed values of u0 in the absence of wind transport ,,seldom exceed

1 or 2 m/ sec in magnitude, this procedure should be quite adequate for

including the vortex drift effect.

We now must form the lagged mean product ( P(µ,t) P(r, t - T) >	 As

the steps involved in going from (6) to this product axe documented in

Refs. 4, 8, and elsewhere, we simply write down the result and point out

the minor differences entailed by the present setup. Substituting (2)

into (6), neglecting uin accordance with the argument above, and noting

that( u(r,t)) = 0, we construct the product

( P(.r,, t ) P(,r̂ , t - 't)^ = po I i ko (2 r r)-2 c
-s 

COS26

X	
ffV

r (r'') Vr (r^") COS( OT - M' ) d'r' d'r"

+ ff( ur ^M ,t') ur (M',t") cos( oT - k ) o 3rr d 3 r, , }	 (7)

where

M ,n't - M	 (8)

k = Mo k	 (9)

t' = t - T - R'/c	 (10)

t" = t - R"/c	 (11)

and where R' _ Ir - r'I and R" = Ir - ;C1. The r component Vr (r') results

from evaluating the dot product in (6) involving the unit vector r/r, and

7
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t' lm11duly lul ur kµ ,Lj. The scattering vector k in (9) is constructed

from the two wave vectors shown in Fig. 1. These two vectors have equal

magnitudes, Ik o I = Ikr I = ko = wo/c, and as a result, kA hasthe magnitude

k= (Pk	 = 2 ko sin (J 6)	 (12)

Since the coordinate x in (6) is the x component of the position vector r,

we note from Fig. 1 that x/r = cosh. This substitution has also been

included in (7).

With the mean vortex flow included, we have obtained two scattering

integrals instead of one. The first integral in (7) represents scattering

from the frozen-in refractive index field created by the mean flow, and

has been subjected to various two-dimensional 
9-11 

and three-dimensional `

treatments. The corresponding power spectral density, defined from the

Wiener-Kintchine relationship by

a

P(r,w) = (2 n Po I i ) -1 c 3 f(P(r,t) P( r̂,^, t - T) > e
-iwT 

dT	 (13)

-w

is easily shown to be a line spectrum.

The second integral :rises from time-varying turbulent fluctuations;

its Doppler-broadened spectrum is the subject of the present paper.

IV. SIGNAL CORRELATION

We now proceed to evaluate the second integral in (7). It is

convenient at this point tc regard the velocity component u r (,rK,t) as a

random process indexed by the continuous parameters (x,y,z,t), and to

redefine the angular brackets in (7) to mean ensemble averaging. This

8
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being done, we assume that the velocity correlation has the following

form:

/	 /	 /^/
(ur(Ml l t' ) ur(,r it„) \	 =	 W (,ri.) Q(A&	 lrR+)	 (14)

where	 is defined in (8), At is defined from (10) and (11) byM
At	 =	 t" - t'	 =	 T + (R' - R")/c	 (15)

and T+ is the centroidal point

II r+	 =	 Rrr" + r')	 (16)

It is noted that (14) represents a velocity process which is stationary,

but not homogeneous (both stationarity and homogeneity, global and local,

h
are understood to be wide-souse properties).	 The dimensionless weighting

i
function W(r+) is introduced in preparation for an application of

Silverman's local homogeneity theory; 2 it will renormalize the space-time

1 correlation to the local value of mean-square fluctuation velocity. 	 The

Mr+ in Q %,At,r+) arises from our modeling of the frequency spreading due

to convection of scattering eddies by a spatially varying mean flow and

by macroeddies.

Lighthill8 and Meecham and Ford 13 have presented arguments showing

.L^ that the retardation time (R' - R")/c in (15) can be neglected, and we

accordingly shall replace At in (14) by the signal lag T. 	 Changing

variables to Pj and r+ , we now denote the second integral in (7) by F(M,T)

and write

1W T	 l
F („r . T )	 2 n r Z c S po I i ko cos 2 0 ^W(M+) Re l e	 o	 4(M• T ',^+) ) Or

(17)
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where Re is th% real operator, and

w(M,T,M+) - 
( 2Tf)

-3
1`C(M, T 1Mr+) a AA d3S

hti

In accord with our introduction of local homogeneity assumptions, the

integral limits in (17) and (18) are extended to infinity in all

directions.2

In order for (14) to be a locally homogeneous covariance as defined

by Silverman, 2 the weighting function 11(M+) must be non-negative and

integrable, and Q(µ,T,r+) must be the covariance of a globally homogeneous

process. Due to the presence of the r+ , 
representing macroeddy and mean-

flow effects, the function Q does not have the required form, however.

As noted by Silverman, 3 measurements of Q taken from a system "riding"

the macroeddies and mean flow would be essentially devoid of large-scale

influences, and the resulting correlation and spectrum would reflect

predominantly only the smaller, homogeneous fluctuations. The velocity

correlation measured from such a system should have the desired local-

homogeneity form, with the variation of Q with r strongly suppressed.

Although large-scale velocity variations would be essentially

invisible in such a system, the spatially varying mean-square fluctuation

level, when normalized to the peak value attained in the vortex, should

be the same as that measured in the fixed system. We therefore assume

that W(r ) in (14) is the same for either system, fixed or moving.

From Ref. 3 we define the velocity of the moving system at each point

r+ to be the space-time average of (2) taken throughout a cube centered

10
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about r+ . The cube must have sides of length much larger than the

scattering-eddy size (roughly equal to the incident acoustic wavelength),

but smaller than the macroeddy size. Time averaging is over the

correlation time of the received scattered signal. We then model the

average so obtained by the random process

,um (wr,+ ) = u + ^ (M+ ) + ,U(r+ )	 (19)

where uo and V(r+ ) are the same nonrandom velocities as before, and U(M+)

is a random process governed by some probability law appropriate to the

"smoothed-out" macroeddies.

Applying Silverman's results  to the present situation (see also

Ref. 4), we have the following relationship between the semitransform

@(M,TJ,) in (18), which is measured in the fixed or earth system, and

its counterpart (D
m
(k,T) is the moving system:

0 (k , T ,r+) _ ^expl-i k • vm (r ) Tl ^o m (k, r)	 (20)

where the subscripted angular brackets denote ensemble averaging with

respect to the probability law of Mm (r+) in (19). We next assume that

the vector components of .
M

respectively	

are jointly Gaussian, with means

respectively equal to the components of (.vft t)> in (1), and equal

standard deviations denoted liy l i (M+) . Performing the ensemble averaging

in (20) then yields

4m(k,T) exp(-i k • [Mo + ,VV(r )] T} exp{-'j u2(,rK+) k2 T21 (21).

where k is given by (12). We must now determine suitable functional

forms for µ(r ) and W(r

Y-

j

11
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While measurements of the relatively young vortices generated in

wind tunnels have displayed turbulence throughout the entire core, 14

observations of more mature vortices in flight tests indicate a laminar

core. 
15 This observed absence of inner-core turbulence is consistent

with ideas about vortex turbulence advanced by Owen 16 and others. Ovien

has postulated the existence of a thin annular region at the outer core

extremity, i.e., at radius r c , where turbulent energy production occurs.

The radial distribution of turbulence intensity, and hence our weighting

function IV (r+), should therefore peak in this region.

For illustrating the theory, we propose as a qualitative description

of the radial variation of turbulence lavel in a mature aircraft vortex,

the square of f(a) in (4). We then include the effect of finite antenna

beamwidths in Fig. 1 by truncating the turbulence distribution at

z = ± L/2, and write in cylindrical coordinates

W (r	 = f2 (a) g ( z )	 (22)

where the gating function g(z) is unity for IzI < L/2 and zero otherwise.

Since the macroeddy velocity in a vortex should vary roughly as the

mean flow, we adopt for the standard deviation u(r+) the velocity

magnitude from (3),

u(,r̂+) = Vc f (a) g (z)	 (23)

where g(z) is the same gating function as in (22).

We now wish to replace Om (IT) in (21) by @m (k,0). For a spatially

uniform macroeddy velocity, an argument given by Ford and Meecham4 shows

that for scattering angles not too near 0 = 0 in Fig. 1, the Gaussian

^^-a

12



factor in (21) diminishes toward zero in T much more rapidly than Om(k,T)

provided that the macroeddy velocity adequately exceeds the velocities of

eddies whose sizes are on the order of the incident acoustic wavelength

(i.e., the scattering eddies). In the present situation where the

u
macroeddy velocity u(.r..+) is allowed to vary in a manner given by (4) and

(23), we assume the incident wavelength to be small enough for this

condition to hold over regions of the vortex which contribute heavily to

the total scattering — in particular, near the outer-core region.

Noting from (14) and (18) that 0 is calculated from a correlation

of r components of velocity, and likewise for 0m in (20), we have from

Eqs. 3.4.12 and 6.5.3 of Batchelor's monograph on turbulence,17

0m (k,0) _ [ae23 k n/ cos t (}0)] / (41T)	 (24)

where a is a dimensionless number equal to about 1.4, a is the dissipation

rate of turbulent kinetic energy per unit mass, and k is given by (12).

This expression applies to the inertial subrange of incompressible

turbulent flows which are also isotropic, and has been cast in terms of

the scattering angle 0 of Fig. 1.

For evaluating the integral in (17), we shall use the cylindrical

coordinates (a,O,z), with 0 measured from the positive x axis of Fig. 1

in the direction given by the right-hand rule. In this coordinate

system, we shall denote the component of k in the xy plane of Fig. 1 by

ko, and shall let ¢ o be the angle between this xy-plane component and

the x axis.

We next regard the mean swirl velocity V(Mr+) in (19) and (21) as

13
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being in the positive ^ direction. With the magnitude of^V(r +) given by

(3), the definitions of ka and ^ above allow the dot product ^k6V.(mr+)

in (21) to be written

k - V (̂r, + ) _ - ka Vc f(a) sin( - ^o )	 (25)^ AA

We now replace 0m (k,T) in (21) by 0m (k.,0) in accordance with the

discussion above and substitute (21) into (17). Noting from (24) that

(Pm (k,0) is a real-valued function, we then use (22), (23), and (25) in

(17), integrate over z, and write

P (r, T) = 2 n L 
r-2 

c-5 po Ii ko COS26 ^m(,0)

,I

r0

Xf f2(o) exp[- JV 2 f2(a) k2 T 2 ] A(a,T) a do	 (26)
0

where r  is the overall radius of vortex influence, and

22n

A(a,T) = Re{exp [i(wo - k-uo) T] J exp [i ko Vc f(o) T sin( - ^o) ] dO }
o	 (27)

The integral in (27) has been tabulated (see formula (4.2) of Bowman18),

and the result is

A (a , T) = 2irJ0[koVcTf(a)] cos[(wo - .k'ko) Tl	 (26)

where Jo is the Bessel function of order zero.

At this point, it is beneficial to make two changes of variables.

Since for most functions f(o), the integral in (26) would have to be

evaluated numerically, it is convenient to normalize a and r  to the core
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radius rc , and to define an = a/: •c and a0 = r0/rc . The second change is

to replace the time lag T by the dimensionless variable ^ defined with the

aid of (12) by

^ = kV 
c
 T = 2 k 0  V  T sin(}e)	 (29)

The signal correlatio: 's best analyzed in terms of the dimensionless

ratio F(M,T)/F(r,0). To construct this ratio, we use the variables

introduced above, and d.efine

a

r0
C ($) = [N (aa)1 -1

J
 f2(%) exp[- f2(an) ^2 ] J0 [^ ka k-1 f (an)] an dan

o	 (30)

where

f

f2(a
ao

N (ao) =	 n) an d n	 (31)

0

We then insert (28) into (26), multiply and divide by r2 for normalization

of a, and form the ratio F(j,T)/F(r,0). In terms of definitions (29)

through (31), this ratio can be written

F(r,T)/F(,rn,0) = C(^) cos[(Wo- k'uµo) T]	 (32)

The normalized signal correlation thus separates into the product of an

envelope function C(,P) and a cosine.

A plot of C(*) for scattering in the xy plane of Fig. 1 (where

ka = k) appears in Fig. 2. For this plot, numerical integration in (30)

was terminated at ao = 14, the value of an at which f(a
n) is down to 0.1.

It is noted from (30) that C(V) is even in *, and the plot is accordingly

for positive values of iP only.

15
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By replacing ko in (29) by 27r/cT, where c is the sonic velocity and

T the incident wave period, and using the core Mach number defined in (5),

we can rearrange (29) to give

T/T	 =	 ^ (4TrM sin(.0)) -1 	(33)

From Fig. 2, C(V) is down to 0.5 at * x 2.3. 	 Vortex core Mach numbers for

present-day aircraft generally range from about 0.02 to 0.2. 	 For a

scattering angle 0 of 125 degrees (a local maximum of the scattered

intensity, as we shall see), substitution of these numbers into (33) yields

a fifty-percent-correlation-level lag of one to ten incident-wave periods,

depending on vortex size.	 In order to utilize inertial-subrange eddies

I ! for scattering, the acoustic frequencies employed would range from about

1 to 10 kHz.	 It is thus seen that the signal correlation time is on the

order of milliseconds at most, which is exceedingly small in comparison to

time scales of vortex decay for aircraft.

The sonic velocity c, wave period T, and scattering angle 0 are easily

determined for most experimental setups. 	 Formula (33) then provides af
.0

relationship between T, *, and by way of (5), Vc.

Suppose, for example, the lag T o at which an experimentally

determined correlation envelope is down to a given value is measured. 	 A

plot such as Fig. 2 gives the corresponding value iP o
 at which the model

t

envelope is down to this same value. 	 Substituting these values of T o and

*o into (33), and using (5), then gives the vortex core velocity predicted

by the model.

Conversely, given the core velocity of a vortex from which soundings

17
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were taken, the value % corresponding to a given value T  could be

obtained from (33). It would then be desirable to have several model

curves such as Fig. 2, obtained, say, for different assumed turbulence

distributions W(X+). A model curve is then sought for which th • value

C(%) is equal to the experimental envelope value at lag Te , and which

matches in overall form the experimental envelope. A turbulence

distribution for the vortex would thereby be inferred.

These measurements all have analogs in the frequency domain, and we

proceed now to derive the power spectral density of the received signal.

V. POWER SPECTRUM

V

Recalling that F Qr T) is the turbulence contribution to the density

correlation in (7), we obtain the power spectral density by substituting

(26) into (13). Before doing so, however, it is convenient to recast

A(a,T) as given by (27) into a slightly different form. To this end, we

define

S2 = we - k • V(^r+) - ^k • ,uo	 (34)

where k •V(r+) is given by (25). Next, the exponentials in (27) are

combined, the real part extracted, and, with the aid of (34), the

resulting integrand is written as cos(11T). We then use the Euler formula

to express COS(SIT) as a sum of complex exponentials, insert this recast

version of A(a,T) into (26), then (26) into (13), and write

ro 2n

P(r,w) = ko L (r c) -Z COS 2 0 Om 	 ffka) H%G,w) a d do 	 (35)-	 ^ 

0 0

la

J

-a



d

^

V

7^^_ as-

where W

A	 exp[-laV 2 f2(c) k 2 T2] e
if2T + e MT I e iWT dTf

-a0	 /	 (36)

In (36), the complex exponentials can be combined, and with the aid of

formula 861.20 of Dwight, 
19 

the integral is

H (o, a , W) _	
(,T/`)'x	

exP	
(W - Q) 2 1 + eXp ^ (w + 92) 2 1	 (37)

k Vc t (a)	 12 k 2 V2 f2(a)1	 2 k 2 V 2 f2(a) J

Inserting (37) into (35), it is noted that P(r,w) is even in w.

Furthermore, since the velocities V(rr ) and uo appearing in (34) are

assumed to be low in Mach number, it is noted from (37) that P (r,w) in

(35) consists of two spectral pulses which are centered approximately

about W = two . Since V  in (37) is likewise a low-Mach-number velocity,

j

	

	 the two spectral pulses are distinct, having half-power widths which are

a small fraction of wo . The two spectral pulses therefore make equal and

essentially nonoverlapping contributions to the total scattered intensity

,i
^F

	

	 as obtained by integrating P(r,W) over all values of w. These arguments

show that it is sufficient to examine only one of the pulses in (37), and

we arbitrarily elect the one centered at W = Q.

A positive-frequency spectral density could be defined by substituting

the desired pulse from (37) into (35). Then, by doubling the result, we

would have a spectral function which would still give the total scattered

i
intensity when integrated over w. We accordingly define

r 2n
0 L (2'r)1`-	

0	
2	 }

P+ (M,w) _ °	Cos 2e 
m .w 	

1
(k)

J J f(a) expf (W c ^) 1 a d¢ dokV r2 C 2	 2 k2
C	

V2 f2
(c) .J	

`I

(38)

f
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0

We now introduce three changes of variables in (38). The first

change is from 0 to O f = (@ - ma). It is noted from (25) and (34) that

the resulting integrand in (38) would be periodic in ¢', and that the

limits could therefore be reset to 0 to 2'a as before.

The second change is from w to n, where

n = [w - (wo - k •ue)]/[2 wo M sin(#e)]	 (39)

The variable q is seen to be a normalized deviation from the Doppler-

shifted incident frequency. It is noted from (5) and (12) that the

denominator in (39) is simply equal to kVc.

The third change is to multiply and divide (38) by r2 for

normalization of the variable a as before.

We now substitute (25) into (34), the result into (38), make the

variable changes listed above, normalize the result to P + (r,0), and

obtain
a

0

P+(•r,n)
Pn(ri)= P+ (N 0) = N+ Qo	

f(an) Y(n,an) an do 
	 (40)

0

where
f2t

Y (n, an) =	 exp{-j[f(%)I -z [n - ka k-1 f(an) sino'] z } dO'	 (41)

0

andrs0

N+ (ao) = J 
f(an) Y(O,%) an dan	(42)

0

A plot of the normalized spectral density P n (n) for the xy plane of

20
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q

Fig. 1 appears in Fig. 3. In this plane, the ratio k o/k in (41) is unity.

For this plot, the integrations in both (40) and (41) were performed

numerically, with the limit a  in (40) set at 14 as done before in (30).

It is noted from (40) and (41) that P n (n) is even in n, hence the plot

for positive values of n only.

The physical situation is one of small targets — the scattering

eddies — being blown around by macroeddies and the mean vortex swirl,

and being translated as a group at velocity uo . The various Doppler

effects due to these motions appear in different parts of (40) and (41).

The Doppler shift due to overall translation of the vortex at

constant velocity u o is manifested by a shift of the center of the

spectrum from we to (we - k-uo). This is seen by noting that since Pn(n)

is even in n, it is centered about n = 0. From (39), then, n = 0

corresponds to w = (we - k-uo). As noted in Section III, the only effect

of.ue taken into account in this solution is the spectral shifting. It

is assumed that Mo 
is small enough for its spectral broadening effects to

be negligible.

We now wish to obtain a formula for the total 3 dB bandwidth of the

received signal. Let us denote by n  the value of n for which Pn(n) = O.S.

For this value of n, let the frequency deviation in the numerator of (39)

be called Aw. Then X39) can be rearranged to give

[2 AWN 0 1 3dB - 4n c  M sin(JO)	 (43)

Formula (43) is then an expression for the total 3 dB bandwidth of the

received signal

21
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From Fig. 3, n  is about 0.3. For a scattering angle 0 of 125 degrees,

(43) yields a per unit 3 dB bandwidth of about 1 . 1 M. In other words, the

total 3 dB bandwidth of the received scattered signal is expected to be

roughly equal to the core Mach number of the vortex.

As a matter of interest, one might inquire as to the relationship

between Pn (n) in (40) and C (^) in (30) and (32). It can be shown that

[(2?r)'2 N (ao) C(t)] and [N+ (ao) Pn (n)] are Fourier transform pairs.

VI. TOTAL INTENSITY

Rather than integrating one of the spectral density expressions over

f-.•equency to obtain the total intensity, it is more convenient to evaluate

F(r,T) in (26) at T = 0, and to use the formula

I(r) = c3 
F(, ti, 0) / Po	 (44)

Multiplying and dividing (26) by r2 for normalization of a, setting T

equal to zero, using (12), (24), and (31), and inserting the result into

(44), we obtain

I(M) = Iiko3 (rc) -Z Ote 2/3 trr2L N(ao) cos 2 6 cos t (}e) [2 sin(}e)] u43

(45)

This expression has a local maximum at an angle a of approximately 125

degrees, the angle which has been used in numerical examples.

The angular pattern in (45) and variation as the cube root of

frequency are familiar from the results of previous investigations. 
20 

In

fact, if we were to alter our modeling of the vortex turbulence, and

regard the illuminated section in Fig. 1 as a "piece" of a globally
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stationary, globally homogeneous velocity process having a spatially and

temporally constant mean value, then scattering from the volume of

turbulence so defined would fall within the purview of previous analyses. 4,8

The cylindrical scattering volume, call it V sc , is rtr0L , or in terms

of the normalized radial distance a o , is tra2r2L. In the globally

homogeneous case, f2(an) in (31) is unity, and N(ao) is equal to } ao.

Then for this special case, the scattering volume Vsc can be written as

Vsc = 2Tr N((To) r2 L	 (46)

Using (46), we can write (45) on a per-unit-volume basis as

I(r)/Vsc = [Ii k2
0
	 cot e (}6) E(k)) / (8 c Z r2 )	 (47)

where, from Batchelor's monograph, 17 E(k) = a s 2̂  k 3̂ , and k is given by

(12). Equation (47) is identical to Eq. 25 of Lighthill's paper, 8 thus

I,

	

providing a check on our results.

VII. CONCLUSIONS

This paper has presented a model for acoustic scattering from a

turbulent vortex. The model allows the turbulence intensity, macroeddy

velocity, and mean flow velocity to vary with spatial location. Although

!

	

	
the functions used in the present paper to describe these spatial

variations are in need of experimental confirmation and subsequent

improvement, they are adequate for demonstrating the method. The technique

should also be useful for analyzing scattering from other turbulent flows

where significant variations in turbulence level and mean flow occur over

distances on the order of the macroeddy size.
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