
, A TIME-DEPENDENT DIFFUSION-CONVECTION, MODEL

FOR THE LONG TERM MODULATION OF COSHIC'RAYS

SJ.J. O'Gallagher

Department of 'Physics and. Astronomy

University of Maryland

College Park, Maryland .

Technical, eport #74-114

June 1974

i(NASA-CR- 141146) A TIME-DEPENDENT
DIFFUSION CONVECTION MODEL FOR THE LONGN75-170
TERM .MODULATION OF. COSMIC RAYS (Maryland
Univ.) - 42 p HC $3.75 CSCL 03B Unclas

'G3/93 05075

UNIVERSITY OF MARYLAND
DEPARTMENT OF PHYSICS AND 'STRONOMY

COLLEGE PARK, MARYLAND



A TIME-DEPENDENT DIFFUSION-CONVECTION MODEL

FOR THE LONG TERM MODULATION OF COSMIC RAYS

J.J. O'Gallagher

Department of Physics and Astronomy

University of Maryland

College Park, Maryland

ABSTRACT

Incorporation of the effects of time-dependent diffusive propagation

of galactic cosmic rays inside a modulating region whose basic parameters

are slowly changing in time leads to a new prediction for the modulated

density U(t) expected to be observed at a given time t. A first order

perturbation analysis shows that if Us(to) is the expected density under

completely stationary conditions at time to, then the actual density under

slowly varying conditions will be given by

U(t) = U [t (K)]0 x 0

where T(K) is the average time spent by a particle of diffusion coefficient

K inside the modulation region. An analysis of the behavior of - as a

function of various modulating parameters in both an idealized one dimen-

sional convective wind and a three dimensional radial wind shows that T

can be greater than 100 days under reasonable values of these parameters.

The general behavior is such that in a modulating region characterized by

the distance to the modulating boundary R, the convective velocity V, and

K, the average time T is proportional to R2/K in the limit of large K and

R/V in the limit of small K for both geometries. This general behavior is not



2

appreciably affected by energy loss processes. Since T is a function of K

which is in turn a function of magnetic rigidity R and velocity 8 this

model provides a natural physical explanation for observed rigidity depen-

dent phase lags in modulated spectra sometimes referred to as cosmic ray

"hysteresis". If all of the phase lag observed between 500 MeV protons

and the Deep River Neutron intensity is attributed to the effects described

here, the average distance to the modulating boundary during the last

solar cycle is estimated to be 45 - 55 a.u.
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I. INTRODUCTION

The diffusion-convection model, first introduced by Parker (1958, 1963)

to explain the 11 year modulation of galactic cosmic rays is based on the

assumption of time stationary interplanetary conditions. In the basic model,

and essentially all variations of this model discussed to date, the solution

for the modulated spectra at a particular epoch of the solar cycle is a

function of the specific values assigned to the parameters characterizing

the interplanetary medium (i.e. solar wind velocity, diffusion coefficient,

size of modulation cavity, etc) during that epoch (Jokipii, 1971, Fisk,

1971). The observed time variations in intensity and spectral shape over

the whole solar cycle are then explained in terms of a gradual variation in

these parameters. Such "quasi-steady" solutions have met with considerable

success in explaining the observed time variations although some models have

had to introduce parameters beyond those whose physical significance is im-

plicit in the simple diffusion convection picture in order to fit all the

observations as is discussed in some detail by Rygg, O'Gallagher, and Earl

(1974). Only Parker (1965) has considered the time dependent propagation

problem in modulation in any detail and he did not consider the effects on

the expected modulated spectrum. Simpson (1964) considered the effect of

changes in the modulating region which originate at the sun and are convected

outwards but did not consider the diffusive propagation of the particles

themselves.

In this paper, a model is developed which incorporates to first order,

the direct effects of the time dependent diffusive propagation of inter-

.stellar cosmic rays in a slowly changing interplanetary medium. Some con-

cepts basic to this model but limited to a one dimensional convective re-

gion were described in a preliminary report (O'Gallagher 1973). Here,



these concepts are developed more fully and extended to consideration of a

three dimensional radial convective region. The model shows clearly that

the effects of time dependent diffusive propagation can be quite significant.

Furthermore the model predicts a rigidity dependent time delay or "lag" in

the modulated spectra and as such may provide a natural, physically reason-

able explanation for the so called "hysteresis effect". (Simpson, 1964;

Balasubrahmanyan et al. 1968; Kane and Winckler 1969; O'Gallagher, 1969;

Simpson and Wang, 1971, Rygg, et al., 1974). A bonus of this model is that

observed hysteresis effects, when interpreted in terms of the model, pro-

vide a direct measure of the dynamical features of the modulating cavity

which cannot be inferred from time-stationary models. The model is con-

ceptually simple and it is not necessary to introduce any parameters beyond

those implicit in the time-stationary model.

The model is best introduced in terms of the usual Fokker-Planck equa-

tion for diffusive particle transport in the interplanetary medium.

aU V a8 (aTU) V 2 (aTU)- = - V • VU-KVU T (1)at 3 T 3 araT (1)

Here U = U(r,t,T) is the particle density (of a particular species) with

kinetic energy between T and T + dT, at heliocentric radius r and

time t.

K = K(B,R,r,t) is the effective interplanetary diffusion coefficient

(which is here assumed to be a scalar, i.e. isotropic diffusion)

at r and t as a function of the particle velocity 8 and magnetic

rigidity R.

V is the solar wind velocity.

T + To is a factor which compensates for the transition between

relativistic and non-relativistic energy regions.



The terms involving derivatives with respect to T on the right hand side of

equation 1 incorporate the so-called Compton-Getting effect (Gleeson and

Axford, 1968 b). These terms result from the transformation of the propagation,

equations from a frame moving with the radially diverging solar wind to a frame

stationary in the solar system and in effect account for the effects of adiabatic

energy losses in the expanding diffusing medium on the density spectrum observed

in this stationary frame.

The conventional treatment of equation 1 is to argue that in the long term

modulation, changes in U with time are so small that aU/at 2 0 and the right hand

side can be set identically equal to zero to obtain a solution. The original

solution of Parker (1963, 1965) has been modified to obtain approximate solutions

including the effects of energy loss explicitly (Fisk and Axford 1969, Gleeson

and Axford, 1968) and sophisticated computer methods have been developed to

obtain numerical solutions under a wide variety of assumptions in the inter-

planetary medium (Fisk, 1971, Lezniak and Webber, 1971, Urch and Gleeson 1972).

In all of these cases the solutions have been obtained under the assumption of

stationary conditions. As we shall see, this assumption may not be strictly

valid for some reasonable values of interplanetary medium parameters.

II. ONE DIMENSIONAL MODEL

To incorporate time dependent diffusive effects into the solution for

modulated spectra even to first order it is necessary in principle to solve

equation (1) as it stands. Since the general solution of equation (1) cannot be

obtained in closed form and even in special cases the solution is quite compli-

cated it is most instructive to introduce the basic concepts in the context of a

one dimensional limit. In this case the analog of equation (1) is

au a2U aU
U (x,t,T) = K 2 U -V (2)

_ -_ a V x (2)
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where x is the (one) spatial dimension along which particles propagate

and K and V have been assumed independent of position for purposes of

the model.

It is important to realize in considering the time-dependent modu-

lation problem, both here in the one dimensional case and later in three

dimensions, that there are two distinct time-dependent processes involved;

a) the time dependent diffusive propagation of the cosmic ray particles

themselves and b) the time variations in the medium parameters (K and V)

and boundary conditions. In the actual modulation dynamics, the effects of

these processes are coupled inseparably. The conventional stationary solutions

approximate a solution by ignoring the first process (a) entirely. The model

introduced here provides a better approximation by 1) holding the medium

parameters and boundary conditions constant and using equation (2) to deter-

mine the time scale of the diffusive propagation process under a particular

set of stationary conditions and 2) incorporating as a first order correction

the effect of cosmic ray propagation with a non-zero diffusion time in a

medium whose parameters are slowly changing. Implicitly, this approach

assumes separability and neglects the coupling between processes a) and b)

above. For instance, taking K and V independent of both time and position is

clearly an approximation since, strictly speaking, any time variation in K

and/or V will propagate through the medium with velocity V producing a position

variation at a given time. However since such changes are assumed to be slow

in the formal analysis, the effects which would be produced by this coupling

are small and of higher order. For instance, changes in the diffusive propa-

gation time during propagation, or energy loss processes due to differential

variation of the solar wind velocity are second order effects and neglected

in this model. In effect then, K and V in equation (2) are parameters in a

simple model in which the diffusion and convection processes are each repre-

sented by a single quantity at a given time which is to be regarded as a
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characteristic or average value throughout the modulation region. Although

not usually discussed in detail, this interpretation of K and V is exactly

the interpretation given to modulation parameters in virtually all of the

usual stationary treatments.

In the one dimensional case, since the volume element of the diffusive

medium is not expanding, individual particle energies remain unaffected and

the energy charge terms do not appear. Thus equation (2) is similar to the

"classical" diffusion-convection modulation equation neglecting adiabatic

energy loss effects (Parker, 1963). This one dimensional analog of solar

modulation is represented schematically in Figure 1. A diffusive medium is

convected past an observer at x = 0 with velocity V to a distance X where

there is a boundary beyond which particles move freely without scattering.

For purposes of the model the solution to equation (2) is well represented

in terms of the distribution function P(t), which is the probability per unit

time for finding a particle (A) which crosses the boundary (x = X) at t = 0,

inside the boundary (at x<X) between t(>O) and t+dt. Parker (1965) has

analyzed this problem in some detail and his solution for P at the observer

(x = 0) can be expressed with a slight change in notation as

- (Vt+X)
2

P(X,V,K,t) = X 4Kt (3)

(4hrKt )t

Equation (3) is essentially the Green's function solution for equation (2).

In analogy to the real physical modulation problem, the particle density at

and beyond the boundary is taken to be a constant, Uo, for all time. Then

the density observed at x = 0 at a given time to is

U(o,t ) o 0U P[X,(t -t),V,K] dt (4)
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Strictly speaking, equation (4) is valid only in the limit that X, V and K

are all constant with respect to time in which case integration of the right

hand side of equation (4) (see Appendix B) yields the familiar stationary

solution

VX

U (X,V,K) = U e K (5)

If in fact K, X and V are slowly varying in time, then Equation (4) together

with equation (3) provides the basis for incorporating the effects of these

variations. The effect of variations in K, X and V are coupled to the rate

at which changes are occuring, so a perturbation approach has been carried

out. The detailed procedure followed is described in Appendix A and the

result is discussed in some detail below. However at this point it is

appropriate to emphasize the physical basis for the effect produced. This

can be seen very simply from the distribution of diffusive propagation times

from equation 3 plotted in Figure 2 for 4 different sets of interplanetary

(one-dimensional) conditions. The distributions are plotted as P(to-t), a

function of the time in the "past" at which a particle seen now (at t=to)

crossed the boundary. As a means of characterizing the time scales of the

distributions, the time delay, tm, for which the distribution is a maximum

is indicated for each case. The fundamental point is that the characteristic

time scales depends on K (as well as X and V) which is a function of R and

B. This implies that an observed spectrum of particles having a range of R

and B will have sampled the characteristics of the interplanetary medium over

a range of time scales in the past. As these characteristics change slowly

this produces a rigidity dependent delay in the modulation at some rigidities

with respect to other rigidities.
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A particular example of the dependence of the time scale on K is

shown by curves (a) and (b) in Figure 2, which have the same values of

V(V a = Vb = 300 km/sec) and X(Xa = Xb = 40 a.u.) but different K(Kb = 2Ka

= 4 x 1021 cm2 /sec). Note first that the most probable time tm is greater

than 100 days in both cases for values of X and V which are not untypical

of those in conventional models and a value of K appropriate to %400 MeV

protons based on observed magnetic field power spectra (Jokipii and Coleman

1968). Furthermore note-that a difference of a factor of 2 in K corresponds

to a difference of more than 40 days in the most probable delay time during

which the characteristics of the medium may change slightly and therefore

require a correction to the predicted spectrum. In the formal analysis, the

first order effect of such corrections will depend on the average time T

which particle spends in the diffusive medium, rather than the most probably

time tm, but the basic behavior of the time scale is well illustrated by tm°

The parameters X and V of course do not depend on particle parameters

and so do not directly affect the observed spectrum in the same way that K

does. However they do affect the relevant time scales in a very direct way.

Differences in X are illustrated by curves b) and d) which have the same V

(Vb = Vd = 300 km/sec) and K(Kb = K = 4 x 1021 cm2/sec) but have different

X(Xc = Xb/2 = 20 a.u.). Particles from the boundary reach the observer much

faster in a smaller region so that the characteristic time scale is strongly

dependent on X. Differences in V are illustrated by curves (c) and (d) which

have the same X(Xc = Xd = 20 a.u.) and K(Kc = Kd = 4 x 1021 cm2 /sec) but have

different V(Vc = 2Vd = 600 km/sec). The larger value of V in case c) causes

the exponential decrease of P(t) (ce - V 2 t/K) to set in earlier and shifts

the most probable time to shorter values of (t -t). The quantitative depen-

dence of the time scales on all three parameters will be evaluated in §IV.
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All of the curves in Figure 2 are normalized so that the integral of

P(t -t) for all t < to is equal to the probability that the particle actually

arrives at x = 0 without being convected back out beyond x = X, or simply

-VX/K
e Note in particular that curves b and c have the same value of VX/K

although the differences in the individual parameters give rise to rather

different time scales.

Although the function P(X,V,K,t) given by equation (3) and plotted in

Figure 2 serves to illustrate the dependence of the time scales on X,V, and

K,it is not a completely valid one dimensional physical analog of modula-

tion in that the diffusive-convective medium is assumed to be infinite in

extent on the -x direction and in certain limits this leads to non-physical

results so that the diffusing medium must be bounded. For simplicity in this

model, the effects of diffusion-convection in a finite region,assumed to be

roughly symmetric,can be well approximated formally by assuming the distri-

bution is characterized by a scale length equal to X. If the origin is

redefined as the center of such a symmetric region then the resultant behavior

at the origin is similar to that given by equation 3 but modified by the exponential

decay factor e -Kt/X resulting from the gradual escape from the finite region

yeilding the approximate expression for P(t)

P(X x<<.X,V,K,t) 2 X tS3/2 exp (Vt + X)2  (6)

(4 K)1/2 4Kt X2(6)

The effect of such a gradual escape is illustrated in Figure 2 by the dashed

lines where we now have the additional requirement that the position of the

observer at .X must be such that x<<X. The exact solution of equation(2) for a

finite region with free escape boundaries at x = +X is derived in an Appendix

(c) and yields. a more complex expression for P(Xx ,V,K,t) given by



V(X-x) [(n+)2,2Kt V2

x2 x

P(X,x,V,K,t) LIE 2K (n+,) Tx e 4K J
2 n=0 (7)

but the basic physical concepts and characteristic time scales corresponding to

equation (7) are essentially identical to those for equation (6) as will be shown.

For the perturbation analysis it is most convenient to characterize the

propagation delay by the average propagation time defined as follows:

o tP(X,V,K,t)dt

o P(X,V,V,Kt)dt 8)

In terms of this parameter it is shown in Appendix A that the solution for the

modulated density U(to) corrected to first order for variations in modulating

parameters is

U(t) = U(t) - d [U (t)] t = to (9)

were Us(to) is the solution obtained under stationary conditions using modulating

parameters evaluated at t = to . Furthermore if dUs/dt is roughly constant over a

time T the results of the analysis can be written in the simple and physically

sensible form

U(t o ) U s to - (K)] (10)

where we have explicitly noted that T is a function of K and therefore R and

B. At large rigidities, K becomes large and T(K) is small so that the stationary

solution is quite accurate. At lower rigidities T can range from a few days to
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several months with reasonable parameters in this one dimensional model so

that equation (10) provides a completely natural qualitative explanation for

what is commonly referred to as the "hysteresis effect".

The correction for these time varying effects is thus reduced to a

determination of T(K) which can be accomplished relatively simply for one

dimensional propagation using equations (6) or (7) and (8). Discussion of

the detailed results of this determination are deferred to §IV where the

three dimensional problem can be discussed at the same time.

III. A THREE DIMENSIONAL RADIAL WIND

Although the mathematical formulation involved for modulation in a

three dimensional solar cavity is considerably more complicated, the basic

physical concepts and qualitative solutions are identical to those intro-

duced in the one dimensional treatment. If one assumes isotropic diffusion

in a sperically symmetric, homogeneous interplanetary medium, equation (1)

takes the form

aU K E 2+L a ( 2V 8+ (r (rU)+ (TU) (11)t 2 ar ar r 2 3r 3r BT

A similar problem has been solved analytically for a special case of anisotropic

diffusion subject to boundary and initial conditions appropriate for solar flare

particles (Lupton and Stone,1973) but equation (11) has not been solved

analytically for the general case with boundary conditions appropriate for

solar modulation.

There are two aspects in which equation (11) differs from equation (2)

and which make its solution more difficult. These are

a) The three dimensional diffusive propagation described by the
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first two terms on the right hand side

b) The adiabatic energy losses described by the last term on the right.

Since the diffusive process depends on K which in turn depends on energy,

these two processes are coupled in a way that precludes analytic solution.

Therefore it is necessary to analyze the spatial propagation process separa-

tely from the energy loss process. This is accomplished by assuming that

the last term in equation (11ii) does not appreciably affect K in the analyses

of the spatial transport problem. This of course is not true at all energies

and the effects of the breakdown of this assumption on the results obtained

will be considered in Section IV.

Using notation similar to that in Section II the Green's function solution

to equation (11) for the spatial probability density Pr in a radial wind for

finding a particle which crosses a modulating boundary at r = R at t = 0

and diffuses with constant K inside the boundary at r < R and t > 0 has been

shown in a slightly modified notation by Parker (1965) to be of the form.

-w V2 t
n

co K
P(R,r,K,V,t) = Z a Q(w -) e (12)r n=1 n nK

where Q(wn,Vr/K) are particular solutions chosen such that P(R,R,V,K,t>O) = 0

and the an are constants chosen to satisfy the initial conditions. This is

analogous to the one dimensional solution for P(X,x,V,K,t) given by equation (7).

Assuming that the series for Pr converges the conclusions are the same as for

the one dimensional case. That is,one defines an average propagation time as

T =o tP(R,V,Kr,t) dt

fr P(R,V,K,r,t) dt
0
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and the perturbation analysis in Appendix A leads to

U(r,t ) = U (r,t ) - T - [U (r,t )] + ... (14)
o s 0 Dt s o t=to

dU
or if -s constant.

U(r,t ) Us[r,to - T ]  (15)

The requirement that dUs/dt be roughly constant means that equation (15) will

not be valid for a time interval T near the reversal in phase of the modu-

lation when higher order effects will need to be included. But for the long

periods between solar maximum and solar minimum this is a general result

which applies to all stationary models including the most sophisticated

computer derived solutions which include the effects of energy loss. As with

the one dimensional case the problem reduces to finding T but here the analysis

is complicated both by the radial geometry and energy loss effects since K is

not strictly constant through the propagation. Clearly however,

under normal assumptions of spherical symmetry and modulation

in a radial wind one must expect non-negligible diffusive propagation times

which depend on K and therefore R and 8. If these times are sufficiently

long they will produce "phase lag" effect on the observed spectrum given by

equation (15), which is qualitatively similar to the observed so called

(hysteresis effect". In the following sections, the evaluation of T(K) in

both the one and three dimensional models is discussed in some detail.
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IV. EVALUATION OF AVERAGE DIFFUSIVE PROPAGATION TIMES

The behavior of the average propagation- time T in one dimension can
x

be determined in a straight forward manner for a given P(t) using equation

(8). Consider first the behavior including the effects of escape from a

finite region as approximated by equation (6). After substitution in equa-

tion (8) both the numerator and denominator can be integrated as described

in Appendix B yielding

Tx(X,V,K) = X2/K+ 4K/X 1/2 (16)

V2/K + )4K/X2

This function is plotted in Figure 3 to illustrate the predicted dependence

of T on K for a fixed convective velocity V = 300 km/sec and a range of
x

values of X. Next consider the average time delay based on the exact solution

given by equation (7) as described:in Appendix C for one dimensional diffusion

convection in a symmetric bounded region for an observer near the origin.

Substitution of P(t) from equation (7) into equation (8) and integrating

yields

00 _nvx -2
Z (n+!) (-[)n [(n+)2 f2 + ()2K

X2 n=0 (17)

E (n+!) (-1 )n [(n+1) 2 w2 + () ],
n=0

Both the numerator and denominator of equation (IT) are alternating series

which converge. Values of Tx calculated for the first 50 terms in each

series are indicated in Figure 3 by x's. The agreement between the exact

solution and that based on approximate representation is extremely good.

Therefore for all intents and purposes the analytical form given by

equation (16) can be used to calculate Tx for any desired values of X,V,
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and K rather than the much more cumberson representation given by equa-

tion (17).

There are two limiting cases of special interest; Case a) the diffusion

limit (V + 0) and Case b) the convection limit (K + 0). Both equations (16)

and (17) give identical results in these limits. In particular if we define

TD as the propagation time in the diffusion limit and TC as the time in the

convection limit we find

TD(X,K,VO) = 2K(18)

and

C(X,K+O,V) = (19)

This latter result, which is surprisingly simple is a consequence of the fact

already mentioned that as V becomes large compared to 2K/X the exponential

decrease with time for P(X,V,K,t) in equation (3) prevents there being any

substantial contribution to the integral in equation (8) from times much

longer than X/V. Looked at more physically the result expressed in equation

(19) is a manifestation of the fact that although smaller diffusion coeffi-

cients will decrease the diffusive propagation speed (and this might be

thought to increase the time) they also decrease the probability that a given

particle will reach the observer at x = 0 before being convected back across
- VX/K

the boundary. Since we are interested only in those fraction (eVX/K) of the

original particles which are observed at x = 0, these processes set an upper

limit on the average time that such an observed particle can spend inside

the boundary. This upper limit as indicated by equation (19) is simply

equivalent to the time required to convect a given element of the diffusive

medium through the distance fr6m the observer to the boundary of the medium.
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Note finally that equation (16) which provides an exceedingly good approxi-

mation to the exact solution can be written simply as

-1/2

S= 1 1 2  (20)
TD2 

C2

The average propagation time Tl in a 3 dimensional, radial convective

medium cannot be evaluated for all K and V as was possible in one dimension.

Therefore for purposes of this paper, to illustrate the physical validity

of the model and to provide a quantitative approximation to the expected

behavior we have considered the two limiting cases discussed in the one

dimensional propagation mode above. In particular in the diffusion limit

of Case a) it is shown in Appendix C that Tr is given by

TD (R,r,V+0,K) = (21)

r

In deriving equation (21) the additional condition that r << R has been imposed

so that this result will be a good approximation at the orbit of earth only for

R > 5-10 a.u. In the convection limit (Case b), it is shown in Appendix C

that the propagation equation (11) approaches the form of the one dimensional

propagation equation in the limit K << Vr. Therefore from equation (16) or

(17) we find

TD (R,r,V,KV0) = (22)
DV

R
-V

which is again an upper limit equal to the characteristic convection time.

Not only in the stated limit is equation (22) a very accurate approximation

to the three dimensional behavior but since T is based on an average over

all r < R, it will be a good approximation as long as K << VR. Thus equa-
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tions (21) and (22) represent valid approximate solutions for Tr in the limits

of cases (a) and (b) analogous to the cases for the one dimensional mode above.

To approximate the behavior of Tr in the transition region between the

two limiting cases we have used a form identical to that given by equation

(20) which has been shown in the one dimensional case to be virtually

identical to that given by the exact solution. The approximate behavior of

T r(V,R,K) is plotted in Figure 4 as

rl .1 -1/2 1/2
Tr(R,V,K) = 1 + 12= R2/K (23)r TDr2 Cr V2/K + 36K/R2

which gives precisely the correct behavior in the limiting regions (solid

lines) and smoothly connects these limits through a transistion region (dashed

lines) where Vr < K < VR where it should be a good approximation. From

equation (23) it is apparent that the characteristic break between the two

VR
limiting regimes occurs at K " - . The above discussion shows that the

physical concepts illustrated in the one dimensional model are directly

applicable to propagation in a radial wind with only small changes in the

quantitative behavior to be expected. Again we have an R2 /K dependence of

T at large K. As K becomes smaller this increases until it reaches the limit

set by the convection time. Delays greater than 100 days are seen to be

predicted for values of R, V and K which are not unreasonable and in fact are

commonly used in other stationary solutions of the modulation problem. Clearly

the effect of these delays cannot be neglected at low rigidities (small K) and

Figure 4 and equation (15) provides a direct way to incorporate these correc-

tions into any stationary model.

Finally we consider again the effect of energy loss processes from the

last term in equation (11). Effectively what we have done in obtaining the
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results in Figure 4 is to determine the approximate propagation time T as
r

if a given particle diffused in from r = R while maintaining the same value

of K throughout the process. Clearly if the particle is losing energy

during the process and K is in some way dependent on energy this assumption

cannot be completely accurate. But it is easily shown that the inclusion

of such effects cannot have any appreciable effect on the behavior of Tr(K)

as approximated by the curves in Figure 4. Consider first that the energy

loss process is also characterized by a time scale Tloss given by Parker

(1965) as

= 3R

2a(T)V (24)
R
V

to a good approximation. This time is defined such that the energy E(t) of

a particle which crosses the boundary at t = 0 with E(0) = E will be

E(t) = Eo exp (-t/T oss) (25)

Note that Tloss Tr (R,V,K << VR/2) which is the upper limit on the propagation

time. Thus, effectively by definition, the delay time in the large K limit

will be a fraction of the characteristic energy loss time so that energy loss

effects will be small and the basic assumption of constant K remains valid.

At low energies since K is a decreasing function of kinetic energy (Jokipii

and Coleman, 1965) down to at least a few tens of MeV the propagation delay will

increase and approach the characteristic loss time Tloss. In this limit, energy

losses are increasingly important but the propagation delay Tr is constant

independent of K. Thus it will remain unaffected by the energy loss processes

and the approximate behavior in Figure 4 will not be modified appreciably.

This can be seen more formally by representing the average effect of

the energy loss process in terms of the propagation of a particle whose

diffusion co-efficient is a monotonically decreasing function of time during
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diffusion. Specifically consider the behavior of a particle which crosses

the boundary at r = R at t = 0 with K = Ko and is observed at r<R at t>0O

with K = Kr after undergoing propagation with a diffusion co-efficient K p(t)

such that K >K (t)<K at all times. First compare the average time Tr for
--p r

two idealized cases:

a) Propagation with constant diffusion coefficient K = Ko so that

Tr is given by equations (21-23) and

b) Propagation with K p(t) = Ko for t<tl and Kp(t) = K (K <Ko ) for

tatl. The behavior in the two cases is identical for t<t . In particular

at t = tl the expected intermediate distribution in position r' P(R,r',Ko,V,tl)

is identical. Furthermore a lower limit for the distribution in propagation times

from any r' to the observer at r is given by P(r',r,K p,v,t -tl). Thus a lower limit to

the average time from any r' to r is given by equations (21-23) (with substitution

of r for R and t-t1 for t). Substitution of KI<Ko into equations (21-23) shows

that the average propagation time from r' to r is greater in Case (b) than in

Case (a) for all r'. From this it follows that T(Kb) > T(Ka) where Kb < Ka

for any time during the diffusion process. Thus for monotorically decreasing

K (T) with time we

conclude that in general t[K (t) s KO] > t(K ). Conversely

if K (t) > K it follows that T[K (t) > K ] 5< (K ). If we apply these
p -r p r

inequalities to particles which enter a modulating region with a spectrum

in K and are observed with a spectrum in K we have the following cases
o r

of interest:

1) K > V -. In this case we apply equation (21) for K and find that

r <<os . Thus we know that Kr I K o' K = constant so that T r R2 /6K
r loss r o p r

is accurate.

2) K <<VR/6. In this case K <K we apply equation (22) and find that
o r o

(K 1 ? R ' T(Kr ) and by the inequalities above we must have T(Kp) -.
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Thus T = T(K ) as before is accurate in this limit also.

3) K % VR/6 and K , VR/6 (with of course K <K ). Application ofo r r o

equation (20) and the inequalities above in this transition region yields

(Kp) - so that T = T(K ) is a reasonable approximation.

In all three cases the propagation delays obtained for a given K r

without considering the effects of energy loss are not appreciably altered

by inclusion of these effects. It must be emphasized however that an

accurate application of the entire model should include energy loss effects

in calculating the stationary solutions in equation (13).

V. SUMMARY AND DISCUSSION

In the preceding sections of this paper, the effect of time dependent

diffusive propagation in a medium whose characteristics are slowly changing,

has been examined for the first time. These effects are found to be appre-

ciable for some reasonable values of modulation parameters. A model which

incorporates these effects as a first order perturbation on the usual time

independent solution has been developed. The model predicts a "phase lag"

between the response of cosmic ray intensities at different rigidities to

changes in modulation parameters which is strikingly similar to observed

hysteresis effects. In brief the most important conclusions of this analysis

as they apply to modulation in a radial convective region are as follows:

(1) The effects of time dependent diffusion propagation can be formally

analyzed in terms of the average time T spent by a particle inside

the modulation region.

(2) This average time is a function of the particle diffusion coefficient K.

(3) The solution for modulated density of cosmic rays observed at time t

corrected to first order for variations in modulation parameters is

U(t) = Us(t - Tr(K))
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where Us is the density predicted-by the stationary solution for K.

(4) In the limit of large diffusion coefficients tr(K) is inversely pro-

portional to K and directly proportional to R2 :

(5) In the limit of small diffusion coefficients the propagation time.

becomes equal to R/V, which is an upper limit on TR independent of K

as long as K << VR/6.

(6) Propagation times the order of 100 days or more are consistent with

reasonable values of V,R, and K.

(7) This behavior is not appreciably affected by the action of adiabatic

energy loss processes.

In recent years much effort has been spent in developing modulation

models which can explain the so called "hysteresis effects". Considerable

success has been achieved by such authors as Van Hollebeke et al. (1972,

1973), Burger and Swannenburg (1973) Bedijn et al (1973) by introducing

changes in the rigidity dependence of K or incorporating rigidity dependence

into other time variables parameters such as R. Processes which could be

described by such phenomenological models may in fact be operative but

there is as yet no independent evidence (other than hysteresis) that they

are important as pointed out by Rygg, et al (1974).

Finally, we consider a simple example of the application of this model

to the interpretation of an observed "hysteresis effect" between the inten-

sities at two different energies. To illustrate the essential simplicity

of the model and its basic features we have restricted both energies under

consideration to the region T '> 300 MeV/nucleon where energy loss effects

are not severe and the simple solution of Parker (1963, 1965) remains an

excellent approximation. Therefore, we can write the stationary solution

for the density of a given species characterised by magnetic rigidity R and
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velocity c8 at a given time t simply as

U(R,8,t) = U e-n(t)/f(R B)  (26)

under the assumption that K(R,,r,t) = Ko(r,t)f(R,8), where Ko is the

diffusion coefficient at some reference value of R and 8. Here n(t) incor-

porates all the time variations of the modulating parameters and in the

particular case that Ko is independent of r, we have n(t) = V(t)R(t)/Ko(t).

So long as this assumption of separability holds it follows directly for

all R and 8 for which equation (26) is valid that

Ui(Ri t U 2t) [U2(R22t)]
tn uRIat1= An U(R ,t) (27)

where A = f(R 2 ,8 2 )/f(R,81 l) is a constant, independent of time. From Equation 27

we see that under these conditions one expects U1 to be a single valued function of U2.

In Figure 5, the intensity of protons from 260 to 720 MeV (average

energy ' 500 MeV) observed on a series of balloon flights of the same

instrument between 1965 and 1972 (Rygg and Earl, 1971, Rygg, O'Gallagher

and Earl, 1974) is plotted versus the Deep River neutron intensity which

monitors cosmic rays of an average energy n 10 GeV. The observations are

not consistent with the expected single valued relation illustrated by the

solid curve in the figure which is determined from equation (27) with the

parameters adjusted so that the curve lies approximately half way between

the points before solar maximum (solid) and those after (open). The effect

of a true time lag between the intensities at these two energies has been

calculated assuming (1) the time variation between maximum and minimum in

the Deep River intensity is sinusoidal with an eleven-year period and
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(2) the stationary solution at any time for the 500 MeV proton intensity

corresponds to the solid curve in Figure 5. Thus the expected proton inten-

sity for a given neutron intensity including the hysteresis lag given by

equation (15) is found from the point in the solid curve corresponding to

the Deep River intensity at a time T earlier under assumption (1). Such

"loops" are shown superposed on the data in Figure 5 for values of T = 90,

180, 270 days. The separation between the rising and falling portions of

the loops can be interpreted as being produced by a value of T between

180 and 270 days. Of course, this will be so only if there has been no

time variation in f(R, ) some of which may of course occur (and in fact it

is just such variations which are proposed to explain hysteresis in all

stationary models). If we interpret T strictly in terms of this model

neglecting all other sources of "hysteresis" and higher order effects

(variations in T over the solar cycle, etc.) discussed elsewhere, it yields

an estimate of R. With V = 300 Kilometers/second and K(500 MeV protons)

4 x 1021 cm2 /sec (Jokipii and Coleman, 1968) we find from equation (23)

R = 45-55 a.u. which, although somewhat larger than some earlier estimates

(O'Gallagher, 1968, Simpson and Wang, 1970) is consistent with current ideas

and with the small radial cosmic ray gradients observed to date on Pioneer

10 (Lentz, et al, 1973, Teegarden, et al, 1973, Van Allen 1972). More

detailed calculations based on this model, incorporating the effects of

energy loss with computer generated solutions for the complete stationary

equation have been undertaken and will be reported. The simple example

above, however, illustrates the utility of the model.

In contrast to stationary models we see that the model developed here

provides a physical basis from which a "hysteresis effect" emerges naturally
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without, the introduction of any new independent modulation 
parameters. The fact that

the phase parameter Tr is not independent of R, V and K, thus 
provides

a powerful tool for the study of the modulation process itself. Observed

values of hysteresis phase lags provide direct measures 
of R and K which

are not attainable in models based on stationary 
solutions.
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for several

helpful discussions.
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APPENDIX A

We wish to determine the effects of small changes in the modulating

parameters X, V, K with time by means of a perturbation analysis of the

modulated density expression in the form of Equation 4. To do this we ex-

press the probability distribution function, which is implicitly a slowly

varying function of time, in terms of its form evaluated at t = t which we
o

write as P (t) plus a small perturbation

P(X,V,K,t) = P (t) + 6P (t) + ... A.1

where

6p
6Po(t) = 6 0  [t-t ]

0

= [P o AX + Po AV P+ AK [tt A.2

Nx At 0 V At 0 K At o

in which

AX AV AK
and

At ' At At

are the slow rates of change in each of the modulation parameters. Substi-

tuting from equations A.1 and A.2 into Equation (4) we obtain

U(t ) = t UP (t -t)dt -t Uo [t -t] (t -t)dt + ... A.30oo o 0 o o 6t 0 o

The first term on the right hand side is simply by definition the stationary

solution U s(t=t ) evaluated at t = t . The second term can be evaluated in

this first order perturbation treatment by requiring simply that

1 6P 1
P 6t I

o x

Physically this is equivalent to the assumption that most of the contribution

to the integral takes place on time scales which, although non-zero, remain

short compared to the scale of the 11-year modulation. Clearly this is a

better assumption than to assume that
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1 6P 0
P 6t

o

which is implicit in all stationary solutions. With this assumption the

derivative with respect to to in equation A.3 can be taken outside the inte-

gral and the second term becomes:

6 .to6
ot t[t -t] P (to-t)dtJ =- lT(t UP (t-t) dtJ A.46to o 0 6to x 0 oo 0

from the definition of T x in equation 6. Finally this term can be written as

6 [T (to)U (t o)] = (t) (t )+ U(t) t) A.5

S t ) S (t 
t

x o 6t 0

neglecting changes inT x(t ) with time since these are second order effects.x o

Substituting back into equation A.3 one obtains:

U(t o ) Us (t ) - x(t ) [U s (t)] A.6
0

= Us (t O -T )

if 6Us/6to is approximately constant over the time T x

Since the exact dependence of P (t) on the modulated parameters X, V, K

was not used in any of the above treatment, the result given in equation A.6

is quite general and will be valid in the context of any modulation model.

In particular with a slight change in notation we can perform a perturbation

analysis on the three dimensional model where the general form for the time

dependent solution is

U(R,V,K,r,t) =f U P(R,V,K,r,to-t)dt A.7

analogous to equation 4 in the one dimensional model and P(R,V,K,r,t) is

given by equation 10. Thus equation (12) and (13) in the text follow

directly from the above arguments.
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APPENDIX B

The behavior of T is given in terms of integrals of the form

/ t-n/2 - /t -yt

where n is an integer and 8 and y are coefficients depending on X, V,

and K. Definite integrals of this form diverge in general if either 8

or y is 0 but otherwise they converge to the solution.

v

f t v - 1 e -8/t - yt = 2( )2 K (2/0) B.1

(Gradshetyn and Ryzhik, 1965, p. 340) where K is a generalized Bessel

function of imaginary argument.

Consider first the normalization integral

(vt+X) 2

X -3/2f P(t) dt t e at . B.2
o (.47K) 2  o

Equation B.1 with v = - , 8 = X2/4K, andy = V2/hK yields

0Xe -vX /2K  (X2 - I-VX/2K. P(t)dt = 2(K" e(4rK) XV B.3

= e-VX/K
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Similarly the expression for the average time Tx spent inside a

finite one dimensional region of characteristic scale X from equations(6) and (8) is

o V2  K X2
fo t - exp [ - + ) t 4Kt ] dt

' = B.4
x t-3/2 V2  K X2

o t exp [-( + ) t 4K dt

which can be evaluated in terms of equation B.1 with =X 2 /4K and y =

(V2 /4K + K/X 2 ) and yields equation (16) in the text directly.
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APPENDIX C

The solution for diffusive propagation and escape from a finite

convecting region in both one and three dimensions can be analyzed in

terms of the classical probability density w(X,t)(or w(r,t))following

the notation of Parker (1965). Consider just a finite one dimensional

diffusing region with free escape boundaries at x = ±X and a symmetric

convective wind of velocity IVI originating at x = o and directed in

the -x direction for x < o and in the +x direction for x>o. To be

directly analogous to the physical modulation problem, particles can

be introduced at both boundaries so that the entire problem is completely

symmetric about the origin.

Thus the diffusion convection equation (2) for w(x,t) is,

aw(x,t) _ K a w(x t) _ V aw C.1
at ;x2  ax

is to be solved in the domain o < k < X subject to the boundary conditions

and w(X,t) = 0 C.2
aw (
'- (0,t) =

x

Define the variables s = V2t/K and C =I and set w,t) = S(s) * L(C)

so that equation C.1 is separable into

s' (s)'+wS(s) = 0

P" () - P'() + cP() = 0 C.3

where w is the separation parameter. The general solutions of C.3 com-

patible with the boundary conditions are,

w(X,t)= O Cn cos(bn~) e e-n C.4n=o n

with Wn = b 2 + k and b = (n + )w(O-) to satisfy C.2. The coefficientsn n VX
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Cn are determined from the initial condition

w(x,O) = 6 [x - (x-h)] C.5

where h is the distance inside the boundary where the first scattering

takes place (h << x) by multiplying C.4 X(at t = 0) and C.5 by e- /2cos(bn)

and integrating from C = 0 to C = VX/K yielding

Sn 2 VX/2K cos[(n + )w h] c.6

2 VX/2K (
2 VX2K(n + )wr (-1)n(h

Parker (1965) has shown that h can be expressed as h = 4K/v, where v is

the particle velocity so that the complete solution for the probability

density P(x,t) = v w(x,t) is given by

VV(X- x)

P(X,xV,K,t)= e 2K (n + )(.l)ncos(n+ x

X n=0 X

exp (n +) 2 2Kt V 2t
Sexp 2  C.7

The solution for the similar problem of radial diffusion-convection in

a three dimensional region inside a free escape boundary of radius R has

been treated in some detail by Parker (1965) and has the form given

by equation (12). However the particular radial solutions Qn cannot

be analytically described as was possible in C.4 above for the one dimen-

sional case. However the behavior in the limits of large and small K are

easily treated.

The solution in the diffusion limit (V + o) is

n2,2Kt
2TK n- sin (2

P(R,K,r,t) = -R (-l)n n sin (nr) e R C.8
n=l
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which is given by Parker (1965) in a slightly different notation.

Substituting in equation (13) this yields

n2,2Kt

Tr(RK,r ) = 2K n= (-1)n-l n sin (~ ) t e R C.9n=l R J

After evaluation of the integral on the right hand side, equation C.9

converges to

Tr(R,K,V -o) = R2

in the limit r << R.

Behavior in the limit of small K can be examined in terms of the

radial diffusion-convection(equation 11) which when written out explicitly

takes the form

aU 82U 2K SU Va= K 32 + ( - V) - -- U C.12at r 2  r 3r r

where the energy loss term has been left out since we are considering

only spatial propagation. If we further make use of the condition that

1 aU 1
U t Tr

appropriate to the perturbation analysis in Appendix A the gradient can

be approximate by its stationary value ;U VU
r K

so that in the limit K << Vr the terms 2K (aU/ar) and VU/r are small
r

compared to V aU/Dr in equation which then takes the approximate

form

-3 U K 2U  VU C.13
at ar2  3r

which is identical to the one dimensional expression (Equation 2) so that

equations 16 through 19 apply with appropriate substitutions.
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Figure Captions

Figure 1. Schematic representation of a one dimensional analog of solar

modulation. A particle A crosses the boundary (x = X) of a diffusive-

convective region at t = 0 and is detected by an observer at x = 0 at a

later time t. The problem is analyzed in terms of P(X,V,K,t), the probability

per unit time for observing the particle at x = 0 between given t and t+dt.

Figure 2. The relative probability distribution as a function of time in

the "past" (t < to) for a particle seen now.(t = to) at the origin is

plotted for four sets of "interplanetary" conditions; a) X = 40 a.u.,

V = 300 km/sec, K = 2 x 102 1 cm2/sec; b)X = 40 a.u., V = 300 km/sec,

K = 4 x 1021 cm2 /sec; c) X = 20 a.u., V = 600 km/sec, K = 4 x 1021 cm2 /sec,

and d) X = 20 a.u., V = 300 km/sec, K = 4 x 1021 cm2/sec. The gradual

decay produced by escape from a finite region characterized by a spatial

scale length X is indicated by the dashed lines.

Figure 3. The average propagation time delay Tx in a one dimensional finite

region of scale size X is illustrated as a function of K and X. The delay is

proportional to X2 /K at large K and is proportional to X/V for small K. The

crosses
Indicate values of T calculated from the series for the exact solutionx

for particles observed at the origin in a symmetric region with boundaries at

+X.

Figure 4. In a three dimensional radial convective modulating region, the

average propagation time from a boundary R to an observer at r << R can be

analytically evaluated only in the limits of large and small K indicated by

the solid lines where the behavior is similar to the one dimensional case.

The behavior for intermediate K has been represented by a smooth function

(dashed lines) which joins the two limiting regimes and has a form identical

to that which is known to be an excellent approximation in one dimension.
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Typical times of the order of a few months are predicted for some values of

R,V and K.

Figure 5. The "hysteresis effect" observed for 260-720 MeV protons with

respect to the Deep River neutron intensity. The data is from Rygg and

Earl, 1971 and Rygg et al, 1974. The behavior before solar maximum (in

1969) (solid points) and after solar maximum (open points) is not consistent

with a single valued relation (heavy solid line) but can be interpreted as

resulting from time lag in the response of the protons of between 180 and

270 days.
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