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ABSTRACT

Incorporation of the effects of'time—dependent diffusive propagation
of galactic cosmic rays inside a modulating region whose basic parameters
are slowly changing in time leads to a new prediction for the modulated
density U(t) expected to be observed at a given time t, A first order
perturbation analysis shows that if Us(to) is the expected density under
completely stationary conditions at time ts then the actual density under
slowly varying conditions will be given by

U(e) = U [t =T (®)]
where T{K) is the average time spent by a particle of diffusion coefficient
K inside the modulation region. An analysis of the behavior of 1 as a
function of various modulating parameters in both an idealized cne dimen-
sional convective wind and a three dimensional radial wind éhows that <
can be greater than 100 days under reasonable values of these parameters.
The general behavior is such that in a modulating region characterized by
the distance to the modulating boundary R, the convective wvelocity V, and
K, the average time 1 is proportional fo R?/K in the limit of large K and

R/V in the limit of small K for both geometries, This general behavior is not



appreciably affected by energy loss processes, Since T is a function of K
which is in turn a function of magnetic rigidity R and velocity f this
model provides a natural physical explanation for observed rigidity depen-
dent phase lags in modulated spectra sometimes referred to as cosmic ray
"hysteresis'. If all of the phase lag observed between 500 MeV protons

and the Deep River Neutron intensity is attributed to the effects described
here, the average distance to the modulating boundsry during the lést

solar cycle is estimated to be 45 - 55 a.u.

v



I. INTRODUCTION

The diffusion—convection model, first introduced by Parker (1958, 1963)
to explain the 11 year modulation of galactic cosmic rays is based on the
assumption of time stationary interplanetary conditions. In the basic model,
and essentially all variations of this model discussed to date, the solution
for the modulated spectra at a partiéular epoch of_the solar cycle is a
function of the specific values assigned to the parameters characterizing
the interplanetary medium (i.e. solar wind velocity, diffusion coefficient,
size of modulation cavity, atc) during that epoch (Jokipii, 1971, Fisk,
1971). The observed time variations in intensity and spectral shape over
the whole solar cycle are then explained in terms of a gradual variation in
these parameters. Such "quasi-steady" solutions have met with considerable
success in explaining the observed time variations although some models have
had to introduce parameters beyond those whose physical significance is im-—
plicit in the simple diffusion convection picture in order to fit all the
observations as is discussed in some detail by Rygg, O0'Gallagher, and Earl
(1974). Only Parker (1965) has considered the time dependent propagation
problem in modulation in any detail and he did not consider the effects on
the expected modulated spectrum. Simpson (1964)-considered the effect of
changes in the modulating region which originate at the sun and are convected
outwards but did not consider the diffusive propagation of the particles
themselves.

In this paper, a model is developed which incorporates to first order,
the direct effects of the time dependent diffusive propagation of inter-
stellar cosmic rays in a slowly changing interplanetary medium. Some con-
cepts basic to this model but limited to a one dimensional convective re-

gion were described in a preliminary report {0'Gallagher 1973). Here,



these concepts are developed more fully and extended to consideration of a
three dimensional radial convective region. The model shows clearly that
the effects of time dependeﬁt diffusive propagation can be quite significant.‘
Furthermore the model predicts a rigidity dependent time delay or '"lag" in
the modulated spectra and as such may provide a matural, physically reason-
able explanation for the so called "hysteresis effect". (Simpson, 1964;
Balasubrahmanyan et al. 1968; Kane and Winckler 1969; 0'Gallagher, 1969;
Simpson and Wang, 1971, Rygg, et al., 1974), A bonus of this model 1is that
observed hysteresis effects, when interpreted in terms of the model, pro-
vide a direct measure of the dynamical features of the modulating cavity
which cannot be inferred from time-~stationary models. The model is con-
ceptually simple and it is not necessary to introduce any parameters beyond
those implicit in the time~stationary model,

The model is best introduced in terms of the usual Fokker-Planck equa-

tion for diffusive particle tramsport in the interplanetary medium.

+
W__ 2 Fusdy Y3 (eIm)] v _ (o)
T [VU SUEES ] ~ 3 3ot (1

Here U = U(r,t,T) is the particle demnsity (of a particular species) with
kinetic energy between T and T + dT, at heliocentric radius r and
time t,
K = K(B,R,r,t) is the effective interplanetary diffusion coefficient
(which is here assumed to be a scalar; i.e. isotropic diffusion)
at r and t as a function of the particle velocity B and magnetic

rigidity R.

V 1is the solar wind velocity,
T + 2To '
O e is a factor which compensates for the transition between

relativistic and non-relativistic energy regions.



The terms involving derivatives with respect to T on the right hend side of
equation 1 incorporate the so-called Compton-Getting effect (Gleeson and

Axford, 1968 b). These terms result from the transformation of the propagation.
equations from a frame moving with the radially diverging solar wind to a frame’
stationary in the solar system and in effect account for the effects of adiabatic
energy losses in the expanding diffusing medium on the density spectrum observed
in this stationary frame.

The conventional treatment of equation 1 is to argue that in the long term’
modulation, changes in U with time are so small that 3U/8t % 0 and the right hand
side can be set identically equal to zero to obtain a solution. The original
solution of Parker (1963, 1965) has been modified to obtain approximate solutions
including the effects of energy loss explicitly (Fisk and Axford 1969, Gleeson
and Axford, 1968) and sophisticated computer methods have been developed to
cbtain numerical solutions under a wide variety of assumptions in the inter-
planetary medium (Fisk, 1971, Lezniak and Webber, 1971, Urch and Gleeson 1972).
In 2ll of these cases the solutions have been obtained under the agsumption of
stationary conditions. As we shall see, this assumption may not be strictly
valid for some reasonable values of interplanetary medium parameters.

IT. ONE DIMENSIONAL MODEL

To incorporate time dependent diffusive effects into the solution for
modulated spectra even to first order it is necessary in principle to solve
equation (1) as it stands. Since the general solution of equation (1) cannot be
obtained in closed form and even in special cases the solution is quite compli- .
cated it 1s most instructive to introduce the basic concepts in the context of a

one dimensional limit. In this case the analog of equation (1) is

U | _ . 3% U
'a_t (x’t:T) =K axﬁ -V '3_£ (2)
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where x is thé {one) spatial dimension along which particles propsgate
and K and V have been assumed indepeﬁdent of position for purposes of
the model.

Tt is important to realize in considering the time-dependent madu~-
lation problem, both here in the one dimensional case and later in three
dimensions, that there are two distinct time-dependent processes involvéd;
s} the time dependent diffusive propaggtion of the cosmic ray particles
themselves and b) the time variations in the medium parsmeters (K and V)
and boundary conditions, In the actual modulation dynamics, the effects of
these processes are coupled inseparably. The conventional stationary solutlons
approximate a solution by ignoring the first ﬁrocess {a) entirely. The model
introduced here provides a better approximetion by 1) holding the medium
parameters and boundary conditions constant and using equation (2) to deter-
mine the time scale of the diffusive propegation process under a particular
set of stationary conditions and 2) incorporating as a first order correction
the effect of cosmic ray propagation with a non-zero diffusion time in &
medium whose parameters are slowly changing. Implieitly, this approach
assumes separability and neglects the coupling befween processes a) and b)
above. For instance, taking K and V independent of both time and position is
clearly an approximation since, strictly speaking, any time variation in K
and/for V wili propagate through the medium with velocity V producing a position
variation at a given time. However since such changes are assumed to be slow
in the formal analysis, the effects which would be produced by this coupling
are small and of higher order. For instance, changes in the diffusive propa-
gation time during propagation, or energy loss processes due to differential
variation of the solar wind velocity are second order effects and neglected
in this model. In effect then, K and V in equation (2) are parameters in a
simple model in which the diffusion and convection processes are each repre-

sented by a single quantity at a given time which is to be regarded as a



characteristic or average value throughout the modulation region. Although
not usually discussed in detail,_this interpretation of K and V is exaectly
the interpretation given to modulation parameters in virtually all of the
usual stationary treastments.

In the one dimensional case, since the volume element of the diffusive
medium is not expanding, individual particle energies remsin unaffected and
the energy charge terms do not appear. Thus eguation (2) is similar to the
"classical" diffusion-convection modulation equation neglecting adisbatic
energy loss effects (Parker, 1963). This one dimensional analog of solar
modulation is represented schematically in Figure 1. A diffusive mediuﬁ is
convected past an observer at x = 0 with velocity V to a distance X where
there is a boundary beyond which particles move freely without scattering.
For purposes of the model the solution to equation (2) is well represented
in terms of the distribution function P(t}, which is the probability per unit
time for finding a particle (A) which crosses the boundary (x = X) at t = 0,
inside the boundary (at x<X) between t(>0)} and t+dt. Parker (1965) has
analyzed this problemrin some detail and his solution for P at the observer

{x = 0) can be expressed with a slight change in notation as

' C = (Ve+x)2
P(x,V,K,t) = S Kt (3)

e
(LKt )%t

Equation (3) is essentially the Green's function solution for equation (2).
In analogy to the real physical modulation problem, the particle density at
and beyond the boundary is taken to be a constant, Uo’ for all time. Then

the density observed at x = 0 at a given time to is

%
u(o,t,) =.L,O U, P[X,(t_-t),v,k] dt \ (%)



Strictly speaking, equation (L) is valid only in the limit that X, V and K
are all constant with respect to time in which case integration of the right
hand side of equation (L) (see Appendix B) yields the familiar stationary

solution

VX

E (5)

US(X,V,K) = er

If in fact K, X and V_are slowly varying in time, then Equation (4) together
‘with equation (3) provides the basis for incorporating the effects of these
variations. The effect of variations in K, X and V are coupled to the rate
at which changes are occuring, so a perturbation approach has been carried
out. The detailed procedure followed is described in Appendix A and the
result is discussed in some detail below. However at this point it is
appropriate to emphasize the phyéical basis for the éffect produced. This
can be seen very simply from the distribution of diffusive propagation times
from equation 3 plotted in Figure 2 for 4 different sets of interplanetary
{one-dimensional) conditions. The distributions are plotted as P(té&t), a
function of the time in the "past" at which a particle seen now (at t=t0)
crossed the boundary. As a means of characterizing the time scales of the
distributions, the time delay, tm, for which the distribution is a maximum

is indicated for each case. The fundamental point is that the characteristic
time secales depends on K {as well as X and V) which is a function of R and

g. This implies that an observed spectrum of particles having a range of R
and B will have sampled the characteristics of the interplanetary medium over
a range of time scales in the past. As these characteristics change slowly
this produces a rigidity dependent delay in the modulation at some rigiditiés

with respect to other rigidities.



A particular example of the dependence of the time scale on K is
shown by curves (a) and (b) 4in Figure 2, which have the same values of
v(V, =V, = 300 km/sec) and X(X_ = X, = 40 a.u.) but different K(K = 2K
= 4 x 102! cm?/sec). Note first that the most probable time tm is greater
than 100 days in both cases for values of X and V which are not untypical
of those in conventional models and a value of K appropriate to ~UQO MeV
Protons based on cobserved magnetic field power spectra.(Jokipii and Coleman
1968). Furthermore note that a difference of a factor of 2 in K corresponds
to a difference of more than 40 days in the most probable: delay time during
which the characteristics of the medium may change slightly and therefore
require a correction to the predicted spectrum. In the formal analysis, the
first order effect of such corrections will depend on the average time 1
which particle spends in the diffusive medium, rather than the most probably
time tm, but the basic behavior of the time scale is well illustrated by tm.

The parameters X and V of course do not depend on particle parameters
and so do not directly affect the observed spectrum in the same way that K
does. However they do affect the relevant time scales in a very direct way.
Differences in X are illustrated by curves b) and d) which have the same V
(V, = V4 = 300 kn/sec) and K(K =K, = b x 102! cn®/sec) but have different
X(XC % Xb/z = 20 a.u.). Particles from the boundary reach the observer much
faster in a smaller region so that the characteristic time scale is strongly
dependent on X. Differences in V are illustrated by curves (c) and (4) which
have the same X(Xc =X, =20 a.u.) and K(Kc = K_ =4 x 1021 cm?/sec) but have

d d

different V(Vc =2V, = 600 km/sec). The larger value of V in case c¢) causes
-2 )

the exponential decrease of P(t) (ae v t/K) tc set in earlier and shifts

the most probable time to shorter values of (tout). The quantitative depen-

dence of the time scales on all three parameters will be evsluated in §IV.
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All of the curves in Figure 2 are normalized so that the integral of
P(to—t) for_alllt < to is egual to the probability that the particle actually
arrives at x = 0 without being convected back out beyond x = X, or simply
e-VX/K. Note in particular that curves b and c have the same value of VX/K
although the differences in the individual parsmeters give rise to rather
different time scales.

Although the function P{X,V,K,t) given by equation (3) and plotted in
Figure 2 serves to illustrate the dependence of the time sceles on X,V, and
K; it is not a completely valid one dimensional physical anelog of modula-
tion in that the diffusive-convective medium is assumed to be infinite in
extent on the ~x direction and in certain limits this leads to non-physical
results so that the diffusing medium must be bounded. For simplicity in this
model, the effects of diffusion-convection in a finite region, assumed to be
roughly symmetric,can be well approximated formaily by assuming the distri-
bution is characterized by a scale length equal to X. If the origin is
redefined as the center of such a symmetric region then the resultant behavicr
at the origin is similar to that given by equation 3 but modified by the exponential

Kt /%2

decay factor e resulting from the gradual escape from the finite region

yeilding the spproximate expression for P(%)

i

PUX <K, VK 0) ¥ ——F 7372 o, [{TE * X)2 Kkt (6)
(urx)1/2 WKt x2

The effect of such a gradual escape is illustrated in Figure 2 by the dashed
lines where we now have the additional requirement that the position of the
observer at X must be such that x<<X. The exact solution of equation{2) for a
finite region with free éscape boundaries at x = XX is derived in an Appendix

(c) and ylelds a more complex expression for P(Xx,V,K,t) given by



il

ViX—=x} o

P(X,x,V,K,¢) = & o K > (n#) (<1)® cos n+;)ﬁx e [
X n=0 (7)

(n+%)2n %Kt Vzt]

XZ LK

but the basic ﬁhysical concepts and characteristic time scales corresponding to
equation (7) are essentially identical to those for equation (6) as will be shown.
For the perturbation analysis it is most convenient to characterize the

rropagation delsy by the average propagation time defined as follows:

o
- é tP(X, V. K, t)dt

X £®p(x,v,v,kt)at

T

(8)

In terms of this parameter it is shown in Appendix A that the solution for the
modulated density U(to) corrected to first order for variations in modulating
parameters is

d + ...
were Us(to) is the solutlion obtalned under stationary conditions using modulating
parameters evaluated at t = to. Furthermore if dUS/dt is roughly constant over a
time T the results of the analysis can be written in the simple and physically

sensible form
" )
ult) 2 ug [, ~ w(®)] : (10)

where we have explicitly noted that t is a function of K and therefore R and

B. At large rigidities, K becomes large and t(K) is small so that the stationary

solution is quite accurate. At lower rigidities T can range from a few days to
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several months with reasonable parameters in this one dimensionsl model so
that equation (10) provides a completely natural qualitative explanation for
‘what is commonly referred to as the "hysteresis effect'.

The correction for these time varying effects is thus reduced to s
determination of t{K) which can be accomplished relatively simply for one
dimensional propagation using equations (6} or (7) and (8). Discussion of
the detailed results of this determination are deferred to §IV where the

three dimensicnal problem can be discussed at the same time.

111, A THREE DIMENSIONAL RADIAL WIND

Although the mathematical formulation involved for modulstion in a
three dimensional solar cavity is considerably more complieated, the basic
physical concepts and qualitative solutions are identical to those intro-

- duced in the one dimensicnal treagtment. If one assumes isctropic diffusion
in a sperically symmetrie, homogeneous interplanetary medium, equation (1)

takes the form

VW _,KE 3 (2 ¥ 3 (.o 2V 3 _
3t +,r2 ar (x ar) rz 3r (r%0) + 3r aT (aTU) (11)

A similar problem has been solved analytically for a special case of anisotropic
diffusion subject to boundary and initial conditions appropriaste for solar flare
particles {(Lupton and Stone,1973) but equation (11) has not been solved
" analytically for the general case with boundary conditions sppropriate for
golar modulation.
There are two aspects in which equation (11) differs from equation (2)
and which make its solution more difficult. These are

a) The three dimensional diffusive propagation deseribed by the
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first two terms on the right hand side

b) The adiabatie energy losses described by the last term on the right.
Since the diffusive process depends on K which in turn depends on energy,
these two processes are coupled in a way that precludes anslytic solution.
Therefore it is necessary to analyze the spatial propagation process separa-—
tely from the energy loss process. This is accomplished by assuming that 7
the last term in eguation (11) does not apprecisbly affect K in the analyses
of the spatial transport problem. This of course 1s nol true at all energies
and the effects of the breakdown of this assunption on the results obtained
will be considered in Section IV.

‘Using hotation similar to that in Section IT the Green's function solution
to equation {11} for the spatial probability density Pr in a radial wind for
finding a particle which crosses a modulating boundary at r = R at t = 0
and diffuses with constant K inside the boundary at r < R and t > O has been

shown in a slightly modified notation by Parker (1965} to be of the form.

—w Vey
.
> Vr K
Pr(R,r,K,V,t) = i anQ(Wn’ "K__) 2 (12}

n=1

where Q(wn,Vr/K) are particular solutions chosen sueh that P(R,R,V,K,t>0) = 0
and the a, are constants chosen to satisfy the initial cenditions. This is

analogous to the one dimensional solution for P(X,x ,V,K,t) given by equation (7).
Assuming that the series for Pr converges the conclusions are the same as for

the one dimensional case. That is,one defines an average propagation time as

(o]

tP(R,V,K,r,t) dt
* P(R,V,K,r.t) dt

(13) .

O JO—
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and the perturbation analysis in Appendix A leads to

_ a_
U(r,to) = Us(r,to) - T3 [Us(r,to)] ) + ... (14)
t = to
dUS
or if — ¥ constant.
at
A
U(r,to) s Us[r,t0 - Tr] (15)

The requirement that dUs/dt be roughly constant means.that equation (15) will
not be valid for a time interval T near the reversal in phase of the modu-
lation when higher order effects will need to be included. But for the long
periods between solar maximum and solar minimum this is a general result
which applies to 81l stationary models including the most sophisticated
computef derived solutiens which include the effects of energy loss. As with
the one dimensional case the problem reduces to finding t but here the analysis
is complicatéd both by the radial gecmetry and energy loss effects since K is
not strietly constant through the propagation. Clearly however,

under normal assumptions of spherical symmetry and modulation
in a radial wind one must expect non-negligible diffusive propagation times
which depend on K and therefore R and B. If these times are sufficiently
long they will produce '"phase lag" effect on the observed spectrum given by
equation (15), which is qualitatively similar to thg observed sc called
(hysteresis effect". 1In the following sections, the evaluation of 1{K) in

both the one and three dimensional models is discussed in some detail.
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IV. EVALUATION OF AVERAGE DIFFUSIVE PROPAGATION TIMES

lThe behavior of the average propagation time T in one dimension can
be determined in a straight forward manner for a given P(t) using equation
{(8). Consider first the behavior including the effects of €5¢ape from a
finite region as approximated by equation (6}. After substitution in equa-
tion (8) both the numerator and denominator can be integrated as described
in Appendix B yielding

X2/K 1/2 (16)

v2/K + bk/x2

T (X,V,K} =

¢

This function is plotted in Figure 3 to illustrate the predicted dependence

of T, on K for a fixed convecﬁive velocity V = 300 km/sec and a range of
values of X. Next consider the average time delay based on the exact solution
given By equation (7} as deseribed in Appendix C for one dimensionsl diffusion
convection in a symmetric bounded region for an observer near the origin.

Substitution of P{t) from equation (7) into equation (8) and integrating

yields
- s -2
| £ (ard) (-1 [(m+D)2 22 + ()]
Tx(X,x<<X,V,K) = %3. n:O - (17)
| D (n+d) (<107 [(n+d)2 v2 + (D77

n=0

Both the numerator and dencminator of equation (1T7) are alternating series
which converge. Values of Ty calculated for the first 50 terms in each
gseries are indicated in Figure 3 by x's. The agreement between ‘the exact
solution and that based on approximate representation is extremely good.
Therefore for all intents and purpcses the analytical form given by

equation (16) cen be used to calculate 1, for any desired values of X,V,
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and K rather than the much more cumberson repfesentation given by eque~
tion {17).

There are two limiting cases of special interest; Case a) the diffusion
1imit (V - 0) and Case b) the convection limit (K + 0). Both equations (16)
and (17) give identical results in these limits. In particular if we define
p as the propagation time in the diffusion limit and T ag the time in the

convection limit we find

_ X | 8
(XK, V-0) = 5 . | (18)
and )
X
(X E0,V) = F . (19)

This latter result,‘which is surprisingly simple is a consequence of the fact
already mentioned that as V becomes large compared to 2K/X the exponential
decrease with time for P(X,V,K;t) in equation (3) prevents there being any
substantial contribution to the integral in equation (8) from times much
longer than X/V. Loocked at more physically the result expressed in equation
(19) is a manifestation of the fact that although smaller diffusion coeffi;
cients will decrease the diffusive propagation speed (and thig might be
thought to increase the time) they also decrease the probability that a given
particle will reach the observer at x = 0 before being convected back across
the boundary. BSince we are Ilnterested only in those fraction (e#VX/K) of the
original particles which are cbserved at x = 0, these processes set an upper
1imit on the average time that such an observed particle can spend inside

the boundary. This upper limit as indicated by equation (19) is simpl&
equivalent to the time required to convect & given element of the diffusive

medium thfough the distance frdm the observer to the boundery of the medium.
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Note finally thet equation (16) which provides an exceedingly good approxi-

mation to the exact solution can be written simply as

-1/2 _
T = [—l—- + —-l—-] . (20)
tDz rcz
The average proyagation time Ty in a 3 dimensionsal, radial convective
medium csnnot be evaluated for all K and V as was possible in one dimension.
Therefore for purposes of this paper, to illustrate the physical velidity
of the model and to provide & guantitative approximation to the expected
behavior we have considered the two limiting cases discussed in the one
dimensional propagation mode above. In particular in the diffusion limit
of Case a) it 1s shown in Appendix C that 1. is given by
R2 ‘
T, (R,r,V+0,K} = &= (21)
v ,
In deriving equation {21) the additional condition that r << R has been imposed
so that this result will be a good approximation at the orbit of earth only for
R > 5-10 a.u. In the convection limit (Case Bb), it is shown in, Appendix C
that the propagation equation (11) approaches the form of the one dimensional
propagation equation in the limit K << Vr. Therefore from equation (16) or

(17) we find

T, (Ryr,V 00) = B2 (22)
T . _R_
-V

vhich is agaln an upper limit equal to the characteristic convection time.
Not only in the stated 1limit is equation (22) a very accurate approximation
to the three dimensional behavior but since 1 is based on an average over

all r < R, it will be a good approximation as long as K << VR. Thus equa-
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tions (21) and (22) represent valid approximate solutions for T, in the limits

of cases (a) and (b) analogous to the cases for the one dimensional mode above.
To approximate the behavior of tr in the transition region between the

two limiting cases we have used a form identicalrto that given by eguation

{20) which has been shoﬁn in the one dimensional case to be virtually

identical to that given by the exact solution. Thé approximate behavior of

tr(V,R,K) is plotted in Figure 4 as

1 o, L2 , 1/2
T RV ,K) = [, + == = R2/K
e [TDrz ‘Crz] VZ/K + 36K/R2 (23)

which gives precisely the correct behavior in the limiting regions (solid
lines} and smoothly connects these limits through a transistion region (dashed
lines) where Vr < K < VR where it should be a good approximgtion. From
‘equation (23) it is apparent that the characteristic break between the two
limiting regimes occurs at K %E . The above discussion shows that the
physical concepts illustrated in the one dimensional model are directly
applicable to propagation in a radial wind with only small changes in the
. quantitative behavior to be expected. Again we have an R2/K dependence of
T at large K. rAs K becomes smaller this increases until it reaches the limit
set by the convection time. Delays greater than 100 days are seen to be
predicted for values of R, V and K which are not unreasonable and in fact sare
commonly used in other stationary solutions of the modulation problem. Clearly
the effect of these delays cannot be neglected at low rigidities (small K) and
Figure 4 and equation (15) provides a direct way to incorporate these correc-~
_tions into any stationary model.

Finally we coﬁsider again the effect of energy loss processes from the

last term in equation (11). Effectively what we have done in obtaining the
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results in Figure 4 is to determine the approximate propasgation time T, a8
if & given particle diffused in from r = R while maiptaining the same value
of K throughout the process. Clearly if the pafticle is losing energy
during the process and K is in some way dependent on eﬁergy this agssumpticn
cannot be completely saccurste. But it is easily shown that the inclusion
of such effects cannot have any appreciable effeét on the behavior of Tr(K)
as approximatéd by the curves in Figure 4. C(onsider first that the energy

lcas process is also characterized by a time scale 1 given by Parker

loss
(1965) as

= 3R _
STV : (24)

~ R
=

T
loss

to a good approximation. This time is defined such that the energy E(t) of
a partiecle which crosses the boundary at t = 0 with E(0) = E_will be

E(t) = E, exp (-t/t ) ' ' (25)

loss
Note that T, = Tr(R,V,K << VR/2) which is the upper limit on the propagation
time. Thus, effectively by definition, the delay time in the large K limit
will be a fraction of the characteristic energy loss time so that energy loss
effects will be small and the basic assumption of constant K remains wvalid.

At low energies since K is a decreasing function of kinetic energy (Jokipii

. and Colemen, 1965) down to at least a few tens of MeV the propagation delay wiil
increase and approach the characteristic loss time Tyogg® [0 this limit, energy

losses are increasingly important but the propagation delay‘rr is constant

independent of K. Thus it will remain unaffected by the energy loss processes

and the approximate behavior in Figure U4 will not be modified apprecisbly.
This can be seen more formally by representing the averasge effect of
the energy loss process in terms of the propagstion of a partiecle whose

diffusion co-efficient is a monotonically decreasing function of time during

1
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diffusion. Specifically consider the behavior of a particle which crosses
the boundsry at r = R &t t = 0 with K = KO and is observed at r<R at t>0
with K = K after undergoing propagation with a diffusion co-efficient Kp(t)
such that KozKp(t)gKr at all times. First compare the average time T for
two idealized cases:

a) Propagation with constant diffusion coefficient Kp = Ko so that
1, is given by equations {21-23) and

b) Propagation with Kp(t) = K for t<t; and Kp(t) = K (K <K _} for

11 o

tztl. The behavior in the two cases ig identical for t<tl. In particular

at t = tl the expected intermediate distribution in position r~ P(R,r’,KO,V,tl)

is identical, Furthermore a lower limit for the distribution in propagation times
from sny ¥~ to the chserver at r is given by P(r’,r,KP,v,t —tl). Thus a lower limit to

the average time from any r” to r is given by equations (21-23) (with substitutien

of r“for R and t-t4 for t}. Substitucion of-K1<KD into equations (21-23) shows
that the average propagation time from r” to r is greater in Case (b) than in
Case (a) for all r~. From‘this it follows that T(Kb) >‘T<Ka) where'Kb < Ka
for any time during the diffusion process. Thus for monotorically decreasing

Kp(r) with time we

. conclude that in general r[Kp(t) < Ko] > T(KO)- Conversely
if Kp(t) > K, it follows that T[Kp(t) > Kr] < T(KT). If we apply these
inequalities to particles which enter a modulating region with a spectrum
in KO and are cbserved with a spectrum in Kr we have the following cases
of interest:

VR . . .
1) K >z~ In this case we apply equation (21) for K. and find that
- ' YK YE = " p2
TSST) et Thus we know that K ¥ K 2 KP constant so that T ~ R /6Kr
is accurate.
2) K <<VR/6. 1In this case K,<K_ we apply equation (22) and find that
~ R

G
T(KO) iy %-x T(Kr) and by the inequalities above ve must have t(Kp) o v
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Thus 1 = T(Kr) as before is accurate in this limit also.

3) L VR/6 and K, v VR/6 (with of course Kr<K0). Application of
equation (20) and the inequalities above in this transition region yields
% > T(kp) % V;%* so that T = T(Kr) is a reasonable approximation.

In all three cases the propagation delays obtained for a given Kr
without considering the effects of energy loss aré not appreciably altered
by inclusion of these effects. It must be emphasized however that an

accurate application of the entire model should ineclude energy loss effects

in calculating the stationary solutions in eguation (13).

V. SUMMARY AND DISCUSSION

In the preceding sections of this paper, the effect of time dependent
diffusive propagation in a medium whoée characteristics are slowly changing,
hag been examined for the first time. These effects a@re found to be appre~
ciagble for some reasonsble values of ﬁodulation paraméters. A model which
incorpérates these effects as a first'order perturbgtion on the usual time
independent solution has been developéd.‘ The modei predicts a "phase lag"
between the response of cosmic ray intensities at different rigidities to
chénges in modulation parameters which is strikingly similar to obgserved
hysteresis effects. In brief the most important conclusions of this analysis
as they apply to modulation in a radial convective region are as Ffollows:
(1) The effects of time dependent diffusion prOpagﬁtion can be formally

analyzed in terms of the average tine T, spent.by a particle inside

the modulation region.

(2} This average time is a function of the particle diffusion coefficient K.
(3) The solution for modulated density of cosmic rays cbserved at time t
corrected to first order for variations in modulation parameters is

Ult) = U (t - 7 (K))
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whére-Us is the density predicted by the stationary solution for K.
(%) In the limit of large diffusion coefficients Tr(K) is inversely pro-
porticnal to K and directly proportional to R2?
(5) In the limit of small diffusion coefficients the propagation time.

becomes equal to R/V, which is an upper limit on t_ independent of K

R
as long as K << VR/6.
(6) Propagation times the order of 100 days or more are consistent with

reasonable values of V,R, and K.

(7) This behavior is not appreciably affected by the action of adiabatic
energy loss processes, '

In recent years much effort has been spent in developing modulation
models which can explain the so called "hysteresis effects". Considerable
succeess ﬁas been achieved by such authérs as Van Hollebeke et al. (1972,
1973), Burger and Swannenburg (1973) Bedijn et al (19?73) by introducing
changes in the rigidity dependence of K or‘incorporating rigidity dependence
into cther time variables parsmeters sﬁéh‘as R. Processes which could be
described by such phenomenological models may in fact be operative but
there iéraé yet no independent evidence (other than hysteresis) that they
are importént és.pqinted out by Rygg, et al (1974).

Finall&, we.consider a simple example of the application of this model
to the interpretation of an observed "hysteresis effect" between the inten-
‘sities at twé différent energies. To illustrate the-essential simplicity
of the model and its basic features we have restricted both energies under
consideration to the région T 2 300 MeV/nucleon where energy loss effects
are not severe and the simple solution of Parker (1963, 1965) remains an

excellent approximation. Therefore, we can write the stationary solution

for the density of a given species characterised by magnétic rigidity R and
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velocity cB at a given time t simply as

U(R,B,t) = U Nt /ER,R) ' : : (26)
under the assumption that K(R,B,r,t) = Ko(r,t)f(R,B), whére K, is the
diffusion coefficient at some reference value of g and B. Here n(t) incor-
porates all the time variations of the modulating parameters and in the
particular case that K is independent of r, we have n{t) = V(£)R(t)/K_(t).
So long as this assumption of separgbility holds it follows directly for

all R and 8 for which eguation (26) is valid that

Ul(Rl’Bl’t) UZ(RZSBZQt)
LRLeLeT| - M LR (27)

where A = f(Rz,Bz)/ftR1,B1) is a constant, independent of time, ' From Bquation 27

we see that under these conditions onme expects ﬁl to be a single valued function of U2.
In Figure 5, the intensity of protons from 260 to 720 MeV (average

energy & 500 MeV) cbhserved on a series of balloon flights of the same

instrument between 1965 and 1972 (Rygg and Earl, 1971, Rygg, O'Gallagher

and Barl, 1974) is plotted versus the Deep River neutron intensity which

monitors cosmic rays of an average energy v 10 GeV. The observations are

not consistent with the expected single valued relation illustrated by the

solid curve in the figufe which is determined from equation (27) with the

parameters adjusted so that the curve lies approximately half way between

the ﬁoinﬁs before solar maximum {solid) and those after (open). The effect

of a true time lag between the intensities at these two energies has been

calculated assuming (1) the time variation between maximum and minimum in

the Deep River intensity is sinuscidal with an eleven-year period and
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(2) the stationary solution at any time for the 500 MeV proton intensity
corresponds to the sclid curve in Figure 5. Thus the expected proton inten-
sity for a given neutron intensity including the hysteresis lag given by
equation (15) is found from the point in the solid curve corresponding to
the Deep River intensity at a time T earlier under assumption (1). Such
"loops" are shown superposed on the data in Figure 5 for values of T = 90,
180, 270 days. The separation between the rising and falling portions of
the loops can be interpreted as being produced by a value of 1 between
180 and 270 days. Of course, this will be so only if there has been no
time variation in £(R,8) some of which may of course occur (and in fact it
iz just such variations which are proposed to explain hysteresis in all
stationary models). If we interpret T strictly in terms of this model
neglecting all other sources of "hysteresis" and higher ordef effects
(variations in T over the solar cycle, etc.) discussed elsewhere, it yields
an estimate of R. With V = 300 Kilometers/second and K(500 MeV protons)
b x 1021 om?/sec (Jokipii and Coleman, 1968) we find from equation (23)
R = 45-55 a.u. which, although somewhat larger than some earlier estimates
(0'Gallagher, 1968, Simpson and Wang, 1970) is consistent with current ideas
and with the small radial cosmic ray gradients observed to date on Pioneer
10 (Lentz, et al, 1973, Teegarden, et al, 1973, Van Allen 1972). More
detailed calculations based on this model, incorporating the effects of
energy loss with computer generated solutions for the complete stationary
eguation have been undertaken and will be reported. The simple example
above, however, illustrates the utility of the model.

In contrast to stalionary models we see that the model developed here

provides a physical basis from which a "hysteresis effect" emerges naturally
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without. the introduction of any new independent modulation parameters. The fact that

the phase parameter L is not independent of R, V and ¥, thus provides
a powerful teol for the study of the modulation process itself. Observed
values of hysteresis phase lags provide direct measures of R end K which
are not attalnable in models based on stationary solutions.

The author expresses thanks to Drs. T, Rygg and F. Ipavich for several
helpful discussions.

This work was supported in part by NABA Grants NGR 21-002-006 and

NGL 21-002-033.
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APPENDIX A

We wish to determine the effects of small changes in the modulating
parameters X, V, K with time by means of a perturbation amnalysis of the
modulated density expression in the form of Equation 4. To do this we ex-
press the probability distribution function, which is implicitly a slowly
varying function of time, in terms of its form evaluated at t =.t0 which we

write as PD(t) plus a small perturbation

P(X,V,K,t) = Po(t) + 5Po(t) + ... ALl
where
ap
sP_(t) = gzi © [t-t ]
_[apg AX 3P, AV 3P, AK i
- {ax At T 3V At. | oK At te-t,] A2
O 0 Q
in which
A AV g &K
At * At M At

are the slow rates of change in each of the wmodulation parameters. Substi-
tuting from equations A.l and A.2 into Equation {4) we obtain
U } = %o UP (r ~-t)dt %o U -[t -t] §Eﬂ-(t t)dt + A.3
0 » oo o ° o "o ﬁto o et '
The first term on the right hand side is simply by definition the stationary

solution Us(t=to) evaluated at t = to' The second term can be evaluated in

this first order perturbation treatment by requiring simply that

P St T
0 x
Physically this is equivalent to the assumption that most of the contribution
to the integral takes place on time scales which, although non-zero, remain

short compared to the scale of the ll-year modulation. Clearly this is a

better assumption than te assume that
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égﬂ =0

St
o

=

which is implicit in all stationary solutions, With this assumption the
derivative with respect to to in equation A.3 can be taken outside the inte-
gral and the second term becomes:

: IU Be el v e ~tac] = S| e [Cu )d 4
Sto oJ:m L 0" 0 ] Y lTx o }. o o(to_t t A.

o
from the definition of L in equation 6. Finally this term can be written as

St x(tg)
(t0)+ Us(to) St A.5

&

8
Teo T x(fUg (01 = 7, (8

(=]

to

e
o
7

Tx(to) St (to)
o
neglecting changes in'rx(to) with time since these are second order effects.

Substituting back into equation A.3 one obtains:

e T U () -1 (£) %?; [v_(t_)] | A.6

= Us(to —'rx)

if GUS/StD is approximately constant over the time'rx.

Since the exact dependence of Po(t) on the modulated parameters X, V, K
was not used in any of the above treatment, the result given in equation A.6
is quite general and will be valid in the context of any modulation model.
In particular with a slight change in notation we can perform a perturbation
analysis on the three dimensional model where the general form for the time
dependent solution 1is

o
U(R,V,K,r,to) --f UOP(R,V,K,r,tO-t)dt _ A.7
-

analogous to equation 4 in the one dimensional model and P(R,V,K,f,t) is
given by equation 10. Thus equation (12) and (13) in the text follow

directly from the above arguments,
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APPENDIX B

The behavior of rx is given in terms of integrals of the form

f §B/2 B/t -vE oy

[e}

vhere n is an integer and B and y &are coefficiénts'déﬁehdﬁng on X, V,
and XK. Definite integrals of this form diverge in general if either B
or y is 0 but otherwise they converge to the solution.

y

at = 2(.%)2 K_v(e/E?) B.1

m tv-l o -/t - vt
0 ’ .
(Gradshetyn and Byzhik, 1965, p. 3h0) where K, is a generalized Bessel

function of imaginary argument.

Consider first the normalization integral

_ _ - _ (vesx)®
£ Pe)as = —E— 7732 MKE : B.2
o (brk)= ©

Equation B.1 with v = 35, 8 = X°/4K, and y= V°/bK yields

xe X/ 42 s JmR-vR/2K
9 . 2(_.._) sVt
2 bAY

“ P(t)at
-[3‘ ' (LK) V2

il

B.3

e-VX/K
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Similarly the expression for the average time T, Spent inside a

finite one dimensionai region of characteristic scale X from equations{6) and (8) is

. vk g
. ot [ - Gpt) e ldt s

X
© -3/2 V2 K _x?
Jo 87 e -G+ ) £ - g 1t

which can be evaluated in terms of equation B.1l wifh.B =‘X2/4K'and Y =

(V2/iK + K/X2) and yields equation (16) in the text directly,
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APPENDIX C

The solution for diffusive propagation and escape from a finite
convecting region in both one and three dimensions can be analyzed in
terms of the classical probability density wi(x,t){or w{r,t))following
the notation of Parker (1965). Consider just a finite one dimensional
diffusing region with free escape boundaries at z = X and a symmetric
convective wind of wvelocity |V| originating at x = o and directed in
the -x direction for x < ¢ and in the +x direction for x>0. To be
directly analogous to thé physical modulation problém; particles can
be introduced at both boundaries so that the entire problem is completely
symmetric about the origin.

Thus the aiffusion convection equation (2) for w(x,t) is,

gw(xit) _ K 2%w(e,t) _Vaw

at BXE 3

is to be solved in the domain o < % < X subject to the boundary conditions

C.1

X

w{X,t)
W

5 (0,t)
x

and c.2

v
Define the varisbles s = VEt/K and ¢ = ki and set wik,t) = s(s) - L(z)
so that equation C.1 is separable into

g (s)eya(s) = 0

" () - P'(g) + wP(g) = 0 C.3
where w 15 the separation parameter. The general solutions of C.3 com-

patible with the boundary conditicns are,

=l S
wix,t) = nzo C:1cos(bn;) . eC/2 e o c.h

with wp = bn2 +%and b = (n+ %)“(\%’) to satisfy C.2. The coefficients
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Cn are determined from the initial condition
w(x,0) = & [x - (X-h)} . c.5

where h is the distance inside the boundary where the first scattering
takes place (h << x) by multiplying C.h A{at t = 0) and C.5 by e—z/ecos(bnz,')

V¥/K yielding

and integrating from ¢ = 0 to ¢

)

VX/2K

. o= %e cos[(n + 55)11‘ %] ¢.6

—

X
Parker (1965) has shown that h can be expressed as h = 4K/v, where v is

22V (14 ) (—l)n(h)

the particle velocity so that the complete solution for the probability

density P(x,t) = f:—r - w{x,t) is given by

)

PG, XV,K,) = ‘2%}3 e & D (o +H)(-1)lcos [(Iﬁ : x]
X n=0

(n+ 15)2“2163 v 2%
C.7

The golution for the similar problem of radial diffusion-convection in

a three dimensional region inside a frees escape boundary of radius R has
been treated in some detail by Parker (1965) and has the form given

by equation (12). However the particular radial solﬁtionsQn cannot

" be analytically described as was possible in C.Y4 sbove for the one dimen-

gional caese. However the behavior in the limits of large and small ¥ are

easily treated,.

The solution in the diffusion limit (v o) is

. n21r2Kf
' 2nK - ' 2
P(RE,r,t) =55t T (1) nsin (L) o R c.8

n=1
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which is given by Parker (1965) in a slightly different notation.

Substituting in equation (13) this yields

» _nPmiK
-] . e
T.(R,K,r) = 22& (-1 nosin By f 4o R at .9
r'\ts R g RS, ,

After evaluation of the integral on the right hand side; equation C.9
convergeas to

R2
T, (R,K,¥ =+ o) = 154
in the limit » << R.

c.10
Behavior in the limit of small K can be examined in terms of the
radial diffusion-convection{equation 11) which when written out explicitly

takes the form

U _ . 32U 2K UV |
T A ¢.12

3r2

where the energy loss term has been left out since we are considering

only spatial propagation. If we further make use of the condition that

1 3y 1
U s T

appropriate to the perturbation analysis in Appendix A the gradient can

be approximate by its stationary value 3U _ VU

or K

so that in the limit K << Vr the terms 2K (3U/3r) and VU/r are small

r
compared to V 3U/3r in equation which then takes the approximate
form

s .
EH.% K 37U  VaU .13

at A2 ar
which is identical to the one dimensional expression {Equation 2) so that

€quations 16 through 19 apply with appropriate substitutions.

'{
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Figure Captions

Figure 1. Schematic representation of a one dimensional analog of solar
modulstion. A particle A crosses the boundary (x = X} of a diffusive-
convective region at t = 0 and is detected by an cbserver at x = 0 at a

later time t. The problem is analyzed in terms of P(X,V,K,t), the probability
per unit time for observing the particle at x = 0 between given t and t+dt,
Figure 2. The relative probability distribution as a function of time in

the "past" (t < t,) for a particle seen now.(t = t_) at the origin is

o)
plotted for four sets of "interplanetary" conditions; a) X = 40 a.u.,

V= 300 km/sec, K = 2 x 10°7 en®/sec; b)% = 40 a.u., V = 300 km/sec,

K=k x 1021 cm2/sec; ¢) X= 20 a.u., V= 600 km/sec, X = h x 10°% cmafsec,
and ) X= 20 a.u., V = 300 km/sec, K = & x 1621 cm2/sec. The gradual

decgy produced by escape from a finite region characterized by a spatial
scale length X is indicated by the dashed lines,

Figure 3. The average propagation time delay T, in a one dimensional finite
region of scale size X is illustrated as a function of K and X. The delsy is
proportional to X2/K at large K and is proportiocnal to X/V for small X. The
/Croigggcate values of T calculated from the series for the exact solution
for particles observed at the origin in a symmetric region with boundaries at
*x.

Figure 4. In a three dimensional radial convective modulating region, the
average propagation time from a boundary R to an observer at r << R can be
analytically evaluated only in the limits of large and small K indicated by
the solid lines where the behavior is similar to the one dimensional case.

The behavicr for intermediate K has been represented by a smooth function

(dashed lines) which Joins the two limiting regimes and has a form identical

to thaé which is known to be an excellent approximstion in one dimensicn.
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Typical times of the order of a few months are predicted for some values of
R,V and K.

Figure 5. The "hysteresis effect" cbserved for 260-T20 MeV protons with
respect to the Deep River neutron intensity. The date is from Rygg and
Farl, 1971 and Rygg et al, 1974, The behavior before solar maximum (in
1969) (solid points) and after solér maximum (open points) is not consistent
with. g single valuéd relation (heavy sclid line) but can be interpreted as
resulting from time lag in the response of the protons of between 180 and

270 days.
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