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TWO-DIMENSIONAL COLD-AIR CASCADE STUDY OF A FILM-COOLED

TURBINE STATOR BLADE

II- EXPERIMENTAL RESULTS OF FULL FILM COOLING TESTS

by Herman W. Prust, Jr.

Lewis Research Center

SUMMARY

A systematic experimental investigation was conducted in a two-dimensional cas-

cade to determine the effect on turbine stator blade performance of full film cooling

from 12 spanwise rows of holes spaced over the blade surface. Six of the coolant rows

were on the suction surface and six on the pressure surface. Tests were first made

with coolant ejection from each of the 12 rows. Tests were next made with coolant

ejection from various combinations of coolant rows, first on the pressure surface, then

on the suction surface, and finally with full film cooling. The efficiency results of the

multirow tests were then compared with the multirow efficiency predicted by adding the

single-row results.

For the tested blading, the change in primary-air efficiency was essentially inde-

pendent of primary-air velocity.

The location of the coolant row on the blade surface affected the change in primary-

air efficiency. For instance, when the total pressure of the coolant in the blade cavity

was equal to that of the inlet primary flow, the following percent changes in primary-

air efficiency occurred per percent coolant flow:

(1) About 0. 8 for coolant rows ejecting to surface static pressures higher than

blade row exit static pressure, compared to about 0. 4 for coolant rows eject-

ing to surface static pressures lower than blade row exit static pressure

(2) About 0. 8 for coolant ejection from the six rows on the pressure surface,

compared to about 0. 5 for coolant ejection from the six rows on the suction

surface

(3) About 0. 6 for full film cooling from all 12 blade rows

Excellent agreement was obtained between experimental multirow primary-air effi-

ciency and multirow efficiency predicted from adding experimental single-row results.

Apparently, coolant ejected from an upstream row of holes did not affect the output of

coolant ejected from downstream rows.



INTRODUCTION

Several analytical studies concerning the performance of cooled turbines (e. g.,
refs. 1 and 2) have shown that different means of ejecting compressor bleed coolant air
from the turbine blade surface have significantly different effects on turbine efficiency.

Since high turbine efficiency is important in most engine designs, an extensive re-
search program is in progress at the Lewis Research Center to investigate both experi-
mentally and analytically the effect of different means of coolant ejection on turbine effi-

ciency as well as on other aspects of turbine performance.

In recent years, several means of coolant ejection have been investigated. For
instance, reference 3 reports the results of an experimental investigation conducted to
determine the effect on stator blade performance of coolant ejection from four spanwise
rows of coolant holes. The holes were located in or near the diffusion region on the
suction surface at an angle of 350 to the blade surface. The axes of the holes were par-
allel to the end walls. References 4 to 6 report the results of experimental and analyti-
cal investigations of the influence on turbine stator and stage performance of turbine
stator blade trailing-edge coolant ejection. And references 7 to 10 report the results
of experimental and analytical investigations of the effect on turbine stator and stage
performance of two types of stator blade transpiration discharge. (The referenced in-
vestigations were all conducted at coolant- to primary-air-temperature ratios near
unity. ) The results of the investigations of references 4 to 10 are summarized in ref-
erence 11.

The main conclusions of references 3 to 10 were (1) that coolant flow discharged
from the suction surface in or near the diffusion region at an angle of 350 to the blade
surface decreased the turbine work output at low coolant ejection velocities and in-
creased the turbine work output at high coolant ejection velocities, (2) that coolant flow
ejected from a trailing-edge slot parallel to the main stream significantly increased the
turbine work output, and (3) that coolant flow ejected over the complete blade surface at
an angle normal to the blade surface contributed little or nothing to the turbine work
output.

The investigation described in this report is part of a continuing study of the effect
of different means of stator blade full film cooling on turbine stator and stage perform-

ance. It concerns the effect on stator blade performance of full film coolant ejection
from 12 spanwise rows of holes spaced over the blade surface. Six of the 12 rows were
on the pressure surface and six were on the suction surface. The axes of the holes were
located parallel to the end walls at various angles to the blade surface, as dictated by
cooling and aerodynamic considerations.

The subject investigation is an extension of the investigation of reference 12, which
reports the influence on stator blade performance of coolant ejection from six coolant

2



rows on the blade pressure surface. The results of reference 12 show that, with

pressure-surface ejection, a significant portion of the ideal energy of the coolant results

in useful kinetic energy at the blade row exit and that multirow performance can be pre-

dicted from single-row performance.

In the subject investigation to determine the effect of full film cooling on stator

performance, the influence on stator performance of coolant discharge from each of the

six rows of holes on the suction surface was first determined separately. Next, the

effect of multirow ejection from the suction surface was determined. In the multirow

investigation the combinations of coolant rows considered were the two rows nearest the

blade leading edge, the three rows nearest the leading edge, etc., until all six rows on

the suction surface were included. Finally, the influence on stator performance was

determined for full film cooling from all 12 rows of coolant holes. In addition to these

results the influence of coolant ejection from the four rows of coolant holes nearest the

leading-edge stagnation point (shower head) - two rows on the suction surface and two

rows on the pressure surface - was determined.

The testing for the subject report was conducted in a two-dimensional cascade. The

temperatures of the primary and coolant air were nearly the same, atmospheric air

being used as the primary air.

The single-row and multirow tests were conducted at nominal ideal primary-air exit

critical velocity ratios of 0. 5, 0. 65, and 0. 8. The range of coolant- to primary-air-

mass-flow ratios investigated was from zero to about 0. 04 from each coolant row.

The principal results are reported in terms of primary-air efficiency as a function

of coolant fraction. Primary-air efficiency is defined as the ratio of the actual kinetic

energy of the total flow to the ideal kinetic energy of the primary flow only, and the

coolant fraction is defined as the ratio of coolant to primary-air mass flow.

In order to determine if coolant ejected from upstream rows of holes affects the

output of coolant ejected from succeeding rows downstream, the primary-air efficiency

results of the single-row tests were added and compared with the primary-air efficiency

results of the multirow tests.

In addition to the principal results reported in the main text, experimentally deter-

mined values of coolant hole discharge coefficients, which are of engineering interest,

are presented as an appendix.

The U. S. customary system of units was used in conducting the test reported herein.

Conversion to the International System of Units (SI) was done for reporting purposes

only.
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APPARATUS, INSTRUMENTATION, AND PROCEDURE

Blading

Photographs of the test blading showing the 12 rows of coolant holes - 6 rows on the

pressure surface and 6 rows on the suction surface - are presented in figure 1. As in-

dicated, the blading is hollow and of constant cross section. The blade profiles corre-

spond to the mean section profile of the stator blade of reference 13, in which the blades

are described in detail. Significant dimensions of the blading are as follows: span,

10. 16 centimeters (4. 0 in. ); chord, 5. 74 centimeters (2. 26 in. ); pitch, 4. 14 centime-

ters (1.63 in.).

The profile of the subject blading and the location, geometry, and numbering system

of the coolant holes and rows are shown in figure 2 and table I. The axes of all coolant

holes are parallel to the planes of the blade end surfaces. The diameter and pitch of

the coolant holes in all rows are 0. 076 centimeter (0. 030 in. ) and 0. 114 centimeter

(0. 045 in. ), respectively. Other pertinent data concerning the coolant holes are listed

in table I. (The symbols used in table I are illustrated in fig. 2. All symbols are de-

fined in appendix A.)

Cascade

The blading was tested in the simple two-dimensional cascade shown in figure 3.

There are 12 blades in the cascade. However, only the three blades near the center are

cooled. Other details of the cascade are described in reference 14. Primary (atmos-

pheric) air enters the cascade inlet shown on the right in figure 3, and coolant air enters

the inside of the three hollow blades near the center of the cascade through the coolant

manifold and associated piping. The survey probe actuator indicated in figure 3 operates

a slide in which a multipurpose survey probe is mounted downstream of the blading. The

coolant and primary flow passing through the blading is discharged from the cascade

through exhaust piping attached to the circular base of the cascade.

Instrumentation

A calibrated multipurpose survey probe of the type shown in figure 4 was used to

determine the flow angle, the static pressure, and the loss in total pressure downstream
of the blading. (A detailed description of this type of probe is given in ref. 14. ) Cool-

ant total pressure pc inside the blade was measured with a total pressure probe. The
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sensing element of the probe was located 2. 54 centimeters (1. O0 in.) from the blade end

wall on the coolant manifold side. The circular sensing end of the probe faced the cool-

ant flow entering the blading so that the total pressure inside the blade was measured as
accurately as was practical.

Coolant flow was measured by using calibrated sharp-edged orifice plates of various

sizes located in an orifice run either 2. 54 centimeters (1. 0 in. ) or 5. 08 centimeters
(2. 0 in. ) in diameter. The orifice runs, including instrumentation and orifice plates,
all conformed to ASME specifications. All pressure data taken during survey tests

were measured by using calibrated strain-gage transducers.

Test Procedure

When investigations for both single-row and multirow coolant discharge were con-

ducted, three blades of the same profile with the same row or rows of coolant holes

open were installed near the center of the cascade. Coolant air was then supplied to

these blades only. Data were taken for only the center blade of the three test blades so

that the measured data simulated data for a blade in a completely cooled blade row hav-

ing adjacent blades of the same design and with the same flow conditions. Also to elim-

inate the effect of end wall conditions on the measurements, data were taken at-the mean

section of the blading only.

In order to operate the test facility, primary (atmospheric) air is caused to flow

through the cascade by use of the laboratory altitude exhaust system, which is piped to

the cascade outlet. Desired primary-air pressure ratios across the blade row are

maintained by regulation of an exhaust control valve. Coolant airflow is provided by the

laboratory combustion air system. Desired coolant flow rates were obtained by first

setting the upstream orifice pressure with an upstream pressure regulator and then

setting the pressure ratio across the orifice plate by regulating a throttling valve down-

stream of the orifice plate.

Before the blade survey testing was started, blade surface static pressures were

determined from manometer board readings at primary-air ideal exit critical velocity
ratios of 0. 5, 0. 65, and 0. 8.

In order to conduct survey tests, the desired primary-air critical velocity ratio
and coolant fraction were established for the blading by regulating the primary and cool-

ant flow control valves. A survey was then made with the multipurpose probe across

one blade pitch of the middle test blade to determine the downstream flow condition of

the test blading. During the survey, all data, including survey data and coolant flow

data, were digitized and recorded on magnetic tape. Also during testing, pertinent sur-

vey data were monitored on x-y recorders, and all data were monitored by teletype feed-
back from the laboratory data processing center.
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The investigation of the test blading included survey tests with both single-row and

multirow coolant ejection. Separate tests were first made with coolant ejection from

each of the six single rows of coolant holes on the pressure surface. Then tests were

made with coolant ejection from multiple coolant rows on the pressure surface. (The

test results for coolant ejection from the pressure surface are reported in ref. 12.)

In the multirow tests the combinations of rows considered were the two rows nearest

the leading edge, the three rows nearest the leading edge, etc., until all six rows on

the pressure surface were included. After the testing of coolant ejection from the pres-

sure surface was completed, the same order of testing was used for single-row and

multirow coolant ejection from the suction surface. After these systematic tests of

coolant ejection from the suction and pressure surfaces, tests of full film cooling were

made. In addition, multirow tests were conducted with coolant discharge from the four

coolant rows nearest the leading edge. The multirow tests are listed in table II.

The survey investigations of both single-row and multirow coolant discharge were

conducted at three nominal ideal primary-air exit critical velocity ratios (V/Vcr)p, id, m

0. 5, 0. 65, and 0. 8. For the single-row tests the range of coolant fractions investigated

was from zero to about 0. 04. For the multirow tests the range of coolant fractions in-

vestigated varied for the following reasons: With multirow discharge the minimum prac-

tical coolant fraction occurs when the total pressure inside the blade pc is a little

higher than the blade surface pressure ps of the coolant row nearest the leading edge of

the blade. If the total pressure inside the blade is lower than the blade surface pressure

of the coolant row nearest the leading edge, primary air flows abnormally into the in-

terior of the blade through the row nearest the leading edge and out coolant rows farther

downstream. Under these conditions a portion of the blade surface near the leading edge

would, of course, not be film cooled. The minimum coolant fractions for multirow ejec-

tion were determined by this consideration. The maximum coolant fractions were de-

termined by the number of coolant rows open with the total pressure inside the blade

limited to about 13.9 N/cm 2 absolute (20 psia).

Calculation Procedure

The general procedure for computing the test results was as follows: Coolant frac-

tions were computed by using the method specified in the ASME code for sharp-edged

orifices. Local values of mass flow, momentum, flow angle, static pressure, and

kinetic energy at each data point included in the survey were then computed. These local

values were next integrated at the measuring station. Then, with conservation of mass

and momentum assumed, the integrated values at the measuring station were equated to

the same quantities at the hypothetical aftermixed downstream station. These equations
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were then solved simultaneously to obtain the aftermixed flow conditions. (Equations for

the survey data calculation procedure may be found in ref. 15. ) With the aftermixed

flow conditions known, the primary-air efficiency, as well as other results of interest,

could be computed at fully mixed flow conditions.

Efficiency. - There are a number of efficiency expressions commonly used to de-

scribe the performance of high-temperature turbines requiring coolant. For cold aero-

dynamic tests with no internal inserts to duplicate actual hot-engine heat transfer or

pressure drop processes, the selection becomes arbitrary. The major parameter

studied in the subject aerodynamic tests was the effect of ejected coolant on the output

kinetic energy -f the combined flow (primary plus coolant). Therefore, primary-air

efficiency was sexected as the most direct form of efficiency to investigate changes in

output energy as affected by adding coolant. Primary-air efficiency relates the actual

kinetic energy of the total flow to the ideal energy of only the primary flow and is ex-

pressed as

2
tVm (1)

p, m wV2

pV p, id, m

and in terms of isolated flows is equivalent to

wV2  +w V2

pV p,m c c,m (2)

Wp p, id, m

where wpVpm/wpVp2  is the efficiency of the primary flow. Equation (1) was used

to compute experimental results.

Thermodynamic efficiency is the same as primary-air efficiency except that the

ideal energy of the coolant flow is included in the denominator. Because the stator

blades have fixed holes, the only way to vary coolant flow is to vary the blade cavity

pressure, which in turn varies the ideal energy of the coolant. The major reason

primary-air efficiency was selected over thermodynamic efficiency, then, is that it

reduces the number of variables to consider when studying the effect of coolant on output

energy. If primary-air efficiency increases with coolant addition, the coolant flow

causes the output of the total flow to be increased relative to the output of the uncooled

primary flow. If primary-air efficiency remains unchanged, the net effect is that the

coolant flow causes the output of the total flow to be the same as the output of the un-

cooled primary flow. If primary-air efficiency decreases, the net effect is that the

coolant flow causes the output of the total flow to be reduced relative to the output of the
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uncooled primary flow.

Prediction of multirow performance by addition of single-row data. - A commonly

used method of presenting the effect of coolant on efficiency for both single-row (SR)

and multirow (MR) tests is to plot the fractional change in primary-air efficiency

(Aq p/o)m against coolant fraction y, where App, m = p, m - 7, m and o, m is the

efficiency of the blade row with no coolant.

In predicting the multirow primary-air efficiency from the single-row primary-air

efficiency, it is assumed that efficiency of the primary flow is unaffected by the coolant

flow. Although it is recognized that this may not be true, it enables the interpretation

of the results to be consistent with the use of primary-air efficiency (eq. (2)). That is,

all changes in efficiency are attributed to the coolant flow. If the multirow efficiencies

can be predicted from the single-row efficiencies by using the assumption that the effi-

ciency of the primary flow is unaffected by the coolant flow, it would indicate either that

the assumption is valid or that the net effect of the interaction between the coolant and

primary flow energies is equivalent to assuming constant efficiency of the primary flow.

In adding the single-row data to predict multirow performance, the following as-

sumptions were made concerning each given single-row condition applied to multirow

conditions (see appendix A for definitions):

(1) Constant wc for same cavity pressure

(2) Constant Vc, m (no change in loss)

(3) Constant Vp, id, m (same setting condition)

(4) Constant Vp, m (no change in efficiency of primary air)

With these assumptions, the change in efficiency for the multirow case in terms of

single-row conditions is calculated as follows: Equation (2) is rewritten (with assump-

tions 3 and 4) as

wV
2

77 p+ =7Wm cVc, m (3)
/p, m /o wV2  cm

pVp, id, m

or

w 2 w 2  (4)
Wc c, m p, m pVp, id, m

For multirow conditions, assume rows 1 and 2 are open (indicated by the subscript 1+2).

Rewriting equation (3) with assumptions 1 and 2 yields
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w 2 v 2
m c, 1c1, lm c,2 c,2, m

?7p(1+2), m = o, m 2

Wp(1+2) p, id, m

then

p)l, mp, 1Vp, id, m 2m p, 2Vp,id,m

ATp(+2), m 2
Wp(l+2)Vp, id, m

and

p p, 1 p wp, 2 p (5)

(1+2),m p(1+2) o ,m p(1+2) , m

where subscripts 1 and 2 refer to single-row conditions of row 1 and row 2 and sub-

script (1+2) refers to multirow conditions when rows 1 and 2 are open. For the general

multirow (MR) case with n rows open,

SR=n

SR= SR(6)

Similarly, the summation of coolant fractions (with assumption 1) is as follows.

Again assuming rows 1 and 2 are open,

c, 1 +  c,2 (7)
Wp(1+2)
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or

Sp c, 2 p, 2(1+2)(1+2 Wp, Wp(1+2) ;wp, 2)p(12)]

= w p, l Wp, 2  (8)

Wp(1+2) Wp(1+2)

For the general case

SR=n

YMR , YSR (9)

SR=1

RESULTS AND DISCUSSION

The results of the investigation are presented in three parts. The first part in-
cludes the stator efficiencies determined experimentally with coolant ejection from each

of the six rows of coolant holes on the suction surface tested individually. The second

part presents the stator efficiency determined experimentally with coolant ejection from

various combinations of coolant rows, including full film cooling. (The results of

single-row and multirow coolant ejection from the pressure surface are reported in
ref. 12.) The third part compares the experimentally determined stator efficiencies of

the multirow tests with those predicted by adding the results of the single-row tests.
The performance of the stator with single-row and multirow coolant ejection is

given in terms of changes in primary-air efficiency with change in coolant flow. As

mentioned previously, primary-air efficiency is used rather than thermodynamic effi-
ciency because it is simpler to study factors that influence the output energy of the flow
if the varying ideal energy of the coolant does not have to be considered.

Single-Row Experimental Efficiency

This part of the report is presented in two sections. First, the experimentally
determined stator efficiencies for coolant ejection from each of the single rows on the
suction surface are presented. Then, the experimentally determined results for the six
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individual coolant rows on the suction surface are compared with those for the six indi-

vidual rows on the pressure surface.

Suction-surface-discharge single-row experimental efficiency. - The variations in

primary-air efficiency p, m for the six single-row tests on the suction surface are

shown in figure 5 over a range of coolant fractions y from 0 to about 0. 04. Data are

shown for each configuration for ideal exit velocity ratios of 0. 5, 0. 65, and 0. 8. The

efficiency of the single-row configurations with no coolant varied from about 0. 965 to

0. 975 over the range of primary-air Mach numbers tested. The results in figure 5 in-

dicate that the change in primary-air efficiency with increased coolant flow was, in

general, affected only slightly by primary-air exit critical velocity ratio.

Figure 5 also shows different trends of the change in primary-air efficiency with

increased coolant fraction for different coolant rows. For instance, the results for the

blading with the three rows nearest the blade leading edge (rows 7 to 9; fig. 2) show an

increase in primary-air efficiency with increasing coolant fraction. The test results

for the three rows nearest the blade trailing edge (rows 10 to 12) show a decrease in

primary-air efficiency with low coolant fractions and then a sharp increase in primary-

air efficiency as the coolant fraction was increased.

The different trends of change in primary-air efficiency with increased coolant

fraction for different coolant rows are shown more clearly when normalized to each of

their respective zero-coolant-flow cases. Such a relation is shown in figure 6, where

the fractional change in primary-air efficiency is compared to zero-coolant-flow effi-

ciency (Ap7p/7o)m as a function of coolant fraction y. (The results in the figure are

average results computed from fig. 5 for the three tested primary-air critical velocity

ratios.)

The change in primary-air efficiency that occurs when the total pressure of the

coolant in the blade cavity is equal to the primary-air inlet total pressure is also of in-

terest for the different coolant rows in figure 6. For these conditions, the average per-

cent change in primary-air efficiency per percent coolant flow was about 0. 6 for the

three rows nearest the leading edge and about 0. 4 for the three rows nearest the trailing

edge. The average value was about 0. 5 for all six rows on the suction surface.

Possible reasons for the different effects of coolant flow on primary-air efficiency

for the different blade rows are discussed in the next section, which compares the effect

of coolant flow on efficiency for suction- and pressure-surface single-row coolant dis-

charge.

Effect of coolant discharge on primary-air efficiency for individual coolant rows on

the suction and pressure surfaces of the blading. - A comparison of the individual effects

on efficiency of each of the 12 coolant rows included in the test blading is useful if means

of minimizing coolant flow loss are considered. Figure 6 presents the variations in

primary-air efficiency with coolant fraction for the six rows on the suction surface, and
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figure 7 presents similar results for the six rows on the pressure surface. (The results

in fig. 7 are taken from ref. 12.)

Figures 6 and 7 indicate a significantly larger change in primary-air efficiency with

coolant fraction for rows 1 to 9 than for rows 10 to 12. For example, when the total

pressure of the coolant flow in the blade cavity and the inlet primary flow are equal, the

average percent change in primary-air efficiency per percent coolant flow is about 0. 8

for rows 1 to 9 and only about 0.4 for rows 10 to 12. Also as the total pressure of the

coolant flow in the blade cavity was further increased above that of the inlet primary

flow, with a corresponding increase in coolant fraction, the slope of fractional change

in primary-air efficiency with coolant fraction increased for all the blade rows except 1

and 7. Therefore, as the total pressure in the blade cavity was increased above that of

the inlet primary flow, the average percent change in primary-air efficiency per percent

coolant flow increased for all blade rows, except rows 1 and 7.

The apparent reason for the significant difference in change in efficiency between

rows 1 to 9 and rows 10 to 12 is indicated in figure 8, which shows the comparative

blade surface static pressures for the 12 coolant rows. The figure shows that for rows

1 to 9 the coolant flow is discharged in the expansion region on the blade surface, and

for rows 10 to 12 the coolant flow is discharged in the diffusion region on the blade sur-

face. It therefore appears that coolant flow discharged in the diffusion region experi-

ences higher losses because of diffusion, turning to the main flow direction, etc., than

coolant discharged in the expansion region of the blade surface.

The preceding discussion concerning reasons for differences in efficiency changes

for the different blade rows is a simplified one which does not include all known effects

on efficiency, such as coolant ejection angle and possible effects on boundary layer, as

well as other influences that may not be recognized at this time. For instance, the

smaller change in primary-air efficiency of rows 1 and 7 relative to the other coolant

rows, excepting row 6, in the upper range of coolant fraction, apparently results from

the fact that the ejection angles for these rows are perpendicular to the blade surface,

while the ejection angles for the other rows are at acute angles to the blade surface

(table I). As a result, for rows 1 and 7, the dynamic head of the coolant at the coolant

row exit is lost; for the other rows, a large portion of the dynamic head is recovered.

Multirow Experimental Efficiency

The multirow etperimental efficiency results are presented as follows: First, the

experimental results for coolant ejection from various combinations of rows on the suc-

tion surface are presented and compared. Next, the full film cooling results are shown

and compared with results for coolant ejection from the suction surface only and also
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with results for coolant ejection from the pressure surface only. Finally, results for

coolant ejection from the four rows nearest the leading edge are presented; two of the

rows were on the suction surface and two on the pressure surface.

Suction-surface-discharge multirow experimental efficiency. - Figure 9 presents

the experimental change in primary-air efficiency as a function of coolant fraction for

the various combinations of rows tested. The minimum points on the curves indicate

the minimum amount of coolant that can be ejected without inflow of primary air through

the coolant row nearest the leading edge (row 7). The results show that the primary-air

critical velocity ratios considered had only a minor effect on the change in primary-air

efficiency. The results also show an increase in primary-air efficiency with increasing

coolant fraction for all combinations of coolant rows.

In figure 10, a comparison is shown of the fractional change in primary-air effi-

ciency as a function of coolant fraction for coolant discharge from various combinations

of coolant rows on the suction surface. (The results shown in fig. 10 are average re-

sults from fig. 9. ) The results show that for a given coolant fraction there was a de-
crease in fractional change in primary-air efficiency as an increasing number of coolant

rows, starting at the blade leading edge, were opened.

The reasons for the decrease in primary-air efficiency, at a given value'of coolant

fraction, as an increasing number of rows on the suction surface were opened were in-

dicated in the previous discussion concerning the effect of coolant discharge on primary-

air efficiency from single rows. The principal reason is that for the same total pres-

sure in the blade cavity, the percent change in primary-air efficiency per percent

coolant flow is, on the average, significantly larger for coolant discharge from rows

which discharge in the expansion region of the blade surface than from rows which dis-

charge in the diffusion region of the blade surface. The secondary reason for the de-

crease in primary-air efficiency at a given coolant fraction, as an increasing number of

coolant rows were opened, is that to maintain a constant coolant fraction, the total pres-

sure of the coolant flow in the blade cavity must be reduced as an increasing number of

coolant rows are opened. As previously discussed with regard to the effect of coolant

discharge on primary-air efficiency from single rows, the percent change in output-per

percent coolant flow decreased for all coolant rows, except-rows 1 and 7, as the total

pressure of the coolant flow in the blade cavity was reduced.

Therefore, for a given coolant fraction, as an increasing number of suction-surface

coolant rows starting at the blade leading edge were opened, the fractional change in
primary-air efficiency decreased as a result of both the decreasing percent change in

efficiency per percent coolant flow for coolant rows farther from the leading edge and
also the decreasing pressure of the coolant in the blade cavity.

The results in figure 10 also show that when the total pressure of the coolant in the
blade cavity and the inlet primary flow were equal, as an increasing number of coolant
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rows were opened, the percent change in primary-air efficiency per percent coolant

flow decreased from about 0. 6 for coolant discharge from rows 7 to 8 to about 0. 5 for

coolant discharge from rows 7 to 12. The reason for the decreasing percent change in

primary-air efficiency for these conditions was discussed in the previous paragraph.

When the total pressure of the coolant in the blade cavity was constant, the percent

change in primary-air efficiency per percent coolant flow was, on the average, signi-

ficantly larger for coolant discharge from rows which discharged in the expansion region

of the blade surface than for rows which discharged in the diffusion region of the blade

surface. With constant coolant cavity pressure, there was therefore a decrease in

primary-air efficiency as an increasing number of blade rows, starting at the blade

leading edge, were opened.

Full-film-cooling experimental efficiency. - The variation in primary-air efficiency

with coolant flow for the stator blade with full film cooling is shown in figure 11. Fig-

ure 11(a) presents the experimental change in primary-air efficiency as a function of

coolant fraction, and figure 11(b) presents the fractional change in primary-air effi-

ciency relative to the uncooled blading as a function of coolant fraction.

The results in figure 11(a) for full film cooling show little or no effect of primary-

air critical velocity ratio, and the change in primary-air efficiency is seen to increase

with increasing coolant flow.

A comparison of the fractional change in primary-air efficiency for coolant dis-

charge from the six rows on the suction surface and the six rows on the pressure sur-

face with the fractional change in primary-air efficiency with full film cooling is reveal-

ing. This comparison is made in figure 12. The results show that for all values of

coolant flow, the fractional change in primary-air efficiency was less for suction-

surface coolant discharge than for pressure-surface discharge and still less for full-

film- cooling discharge.

The general reasons for the larger increase in primary-air efficiency for coolant

discharge from the six rows on the pressure surface than for the six rows on the suction

surface have been discussed previously in this report.

The average coolant discharge pressure on the blade pressure surface was shown to

be larger than that on the suction surface (fig. 8). Therefore, to maintain a given value

of coolant fraction for coolant discharge from both the suction and pressure surfaces,
the total pressure of the coolant flow in the blade cavity must be larger for pressure-

surface discharge than for suction-surface discharge.

As previously discussed, for the same coolant total pressure in the blade cavity,
the percent change in primary-air efficiency per percent coolant flow was larger for

coolant discharge from the expansion region on the blade pressure surface than for cool-

ant discharge from the diffusion region on the blade suction surface. Also, as pre-
viously mentioned, as the total pressure of the coolant in the blade cavity was increased,
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the percent change in primary-air efficiency per percent coolant flow increased. There-

fore, at the same coolant fraction, the average fractional change in primary-air effi-

ciency was larger for coolant discharge from the pressure surface than from the suction

surface as a result of the generally larger percent change in primary-air efficiency and

higher coolant cavity pressure with pressure-surface discharge.

The reason for the smaller change in primary-air efficiency with full film cooling

than with discharge from either the suction or pressure surface for the same coolant

fraction (fig. 12) can be explained as follows: When the total pressure of the coolant

flow was equal to that of the primary flow, the percent change in primary-air efficiency

per percent.coolant flow was about 0. 8 for pressure-surface discharge and about 0. 5 for

suction-surface discharge. For these conditions the average percent change in primary-

air efficiency per percent coolant flow for the suction and pressure surfaces is then

about 0. 6. For full film cooling, for the same coolant total pressure, the percent

change in primary-air efficiency per percent coolant flow would be expected to be about

equal to the average for the suction and pressure surfaces. The results in figure 12

show this to be true. For full film cooling, when the total pressure of the coolant flow

was equal to the total pressure of the primary flow, the percent change in primary-air

efficiency per percent coolant flow was about 0. 6, the average of the suction- and

pressure-surface values. Of course, with constant coolant total pressure, the total

coolant fraction for full film cooling was larger than the coolant fraction of either the

suction or pressure surfaces. As a consequence, for this case, when plotted as a func-

tion of coolant fraction, the change in primary-air efficiency for full film cooling was

lower than that for coolant discharge from either the suction or pressure surface.

Experimental efficiencies for coolant discharge from four rows nearest the blade

leading edge. - The variation in primary-air efficiency with coolant ejection from the

four rows nearest the leading edge (rows 1, 2, 7, and 8) is shown in figure 13. Fig-

ure 13(a) presents the experimentally determined primary-air efficiency as a function

of coolant fraction, and figure 13(b) presents the fractional variation in primary-air

efficiency relative to.the efficiency of the noncooled blade as a function of coolant frac-

tion. As with the results for coolant discharge from other rows, the results indicate

little effect of primary-air critical velocity ratio on the change in efficiency. The re-

sults show an increase in primary-air efficiency for all values of coolant fraction.

When the totalpressures of the coolant inthe blade cavity and the inletprimary flow were

equal, the percent change in primary-air efficiency per percent coolant flow (fig. 13(b))

was about 0.7. In other words, the effectiveness of the coolant was a little less than

the average effectiveness of 0. 8 for coolant ejected from all rows on the pressure sur-

face.
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Comparison of Additive Single-Row Results With Multirow Results

In order to determine if the coolant ejected from upstream coolant rows on the suc-

tion surface affects the performance of coolant ejected from succeeding holes down-

stream, the results of the single-row experimental tests were added and compared with

the results of the multirow tests by using the equations given in the section Calculation

Procedure and the method described in reference 12. To use this method requires that

both the effect of cavity pressure on coolant flow from the different rows and the effect

of coolant flow on primary flow be known. The effect of cavity pressure on the coolant

flow for the various rows of holes on the suction surface is presented first. Next the

effect of coolant flow on primary flow is shown. Finally, the additive results of the

single-row tests are compared with the results of the multirow tests.

Effect of cavity pressure on coolant flow from suction-surface rows. - In figure 14,
the fractional coolant flow y ejected from the different coolant rows on the suction sur-

face of the blading is presented as a function of the pressure coefficient k p. (Similar

results are reported in ref. 12 for coolant ejection from the pressure surface.) The

pressure coefficient kp relates the cavity-total- to blade-exit-static-pressure drop of

the coolant flow to the blade-inlet-total- to blade-exit-static-pressure drop of the pri-

mary flow.

The results in figure 14 show an increase in coolant fraction with increasing kp for

all blade rows, as expected, since with increasing kp the total pressure of the coolant

and the pressure drop across the coolant row increased. The results also show, ex-

cept for rows 7 and 9 in the upper range of kp's, that for constant kp the coolant frac-

tion for the different rows increased with decreasing blade surface pressure (fig. 9).

This general trend, of course, occurred because of the larger pressure drop across the
coolant rows with the lower surface pressures. The exceptions noted for rows 7 and 9
are probably attributable to significant differences in ejection angle and/or length-
diameter L/D ratio of these two rows relative to the other rows (table I). Although the
curves in figure 14 are indicated to be for an ideal primary-air exit critical velocity
ratio of 0. 65, they are also valid for ratios of 0. 5 and 0. 8.

Effect of coolant flow on primary flow. - The reduction in primary flow resulting
from coolant discharge is shown in figure 15. Figure 15(a) presents the reduction in
primary flow due to single-row and multirow coolant discharge from the suction surface.
Figure 15(b) presents the reduction in primary flow due to coolant discharge from the
four rows nearest the leading edge. And figure 15(c) shows the reduction in primary
flow due to full film cooling. The curves shown are averaged curves obtained from data
at the three tested ideal primary-air exit critical velocity ratios. As shown, the reduc-
tion in primary flow due to coolant discharge is significant. For coolant discharge from
the suction surface (fig. 15(a)) there was an average reduction in primary flow of about
0. 85 percent per percent coolant flow. For coolant discharge from the four rows near-
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est the blade leading edge (fig. 15(b)) there was an average reduction in primary flow of

about 1.0 percent per percent coolant flow. For full-film-cooling discharge (fig. 15(c))

the average reduction in primary flow varied with coolant flow. In the lower range of
coolant flow, there was an average reduction in primary flow of about 1.2 percent per

percent coolant flow. In the upper range of coolant flow, there was an average reduction

in primary flow of about 0. 75 percent per percent coolant flow.

Comparison of experimental multirow results with multirow results predicted from

single-row experimental results. - Experimental multirow efficiency variations are

compared with multirow efficiency variations predicted from single-row experimental

results in figure 16. The curves shown for the multirow experimental results are aver-

age curves for the three primary-air exit critical velocity ratios considered, and the

predicted multirow results are for a primary-air exit critical velocity ratio of 0. 65 -
the average of the three tested primary-air critical velocity ratios considered. (The
predicted results at the other primary-air critical velocity ratios considered would be
essentially the same as those for 0. 65, except that the upper limit for the predicted
coolant fraction would have been somewhat smaller for results at 0. 8 and somewhat
larger for results at 0. 5. )

Figure 15 shows the fractional variation in multirow efficiency predicted from ex-
perimental single-row results to be less than about 0. 01 different than the actual exper-
imental multirow efficiency variations for all combinations of coolant rows tested. The

results, therefore, strongly indicate that, for the tested stator blade, coolant ejected
from upstream rows of holes did not significantly affect the output of coolant eje'cted

from coolant rows farther downstream.

SUMMARY OF RESULTS

A systematic experimental investigation was conducted to determine the effect on
turbine stator blade performance of full film cooling from 12 spanwise rows of holes
spaced over the blade surface. Six of the 12 coolant rows were on the suction surface
and the other six were on the pressure surface. The axes of the holes were located
parallel to the end walls at various angles with the blade surface as dictated by aerody-
namic and cooling considerations.

The following order of testing was used in conducting the systematic investigation:
The effect on stator performance of coolant ejection from the 12 individual rows was
first determined. Next, the effect of multirow ejection from various combinations of
coolant rows on the pressure surface, starting with the rows nearest the blading leading
edge, was investigated. Then the effect of multirow ejection from the suction surface
was investigated for similar combinations of coolant rows as those investigated for the
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pressure surface. Finally, the influence on stator blade performance of full film cool-

ing from all 12 rows of holes was investigated. In addition, the influence of coolant

ejection from the four rows of holes nearest the leading-edge stagnation point (shower

head) was determined. (All results concerning the investigation of coolant discharge

from the pressure surface of this blading are reported in ref. 12.)

Also, to ascertain if coolant flow ejected from upstream rows of holes affects the

performance of coolant flow ejected from succeeding rows downstream, the performance

results of the single-row tests were added and compared with the multirow test results.

The tests were conducted in a two-dimensional cascade with the coolant and

primary-air temperatures essentially equal to atmospheric. All configurations were

tested at three nominal ideal exit primary-air critical velocity ratios of 0. 5, 0. 65, and

0.8.

The results are reported principally in terms of primary-air efficiency as a func-

tion of coolant fraction. Primary-air efficiency is defined as the ratio of the actual

kinetic energy of the total flow relative to the ideal energy of the primary flow only,
and the coolant fraction is defined as the ratio of the coolant mass flow to the primary-

air mass flow.

The results are summarized as follows:

1. For the tested blading, the fractional change in primary-air efficiency was only
slightly affected by primary-air ideal exit critical velocity ratio.

2. With single-row coolant ejection, the fractional change in primary-air efficiency
was influenced primarily by the amount of the coolant flow and the location of the coolant
rows. For coolant rows having blade surface exit static pressures higher than blade
row exit static pressure, the primary-air efficiency increased with increasing values
of coolant fraction. For coolant rows having blade surface exit static pressures lower
than blade row exit static pressure (in the diffusion region on the blade surface), the
primary-air efficiency first decreased with increasing coolant fraction and then in-
creased as the coolant fraction was further increased. When the total pressure of the
coolant in the blade cavity was equal to the total pressure of the primary flow at the
inlet, the average percent change in primary-air efficiency per percent coolant flow was
about 0. 8 for the rows having blade surface exit static pressures higher than blade row
exit static pressure and about 0. 4 for the rows having blade surface exit static pressures
lower than blade row exit static pressure.

3. With multirow coolant ejection from the suction surface, there was an increase
in primary-air efficiency with coolant fraction for coolant ejection from all combinations
of rows starting at the leading edge. When the total pressure of the coolant in the blade
cavity was equal to the primary-air inlet total pressure, the percent change in primary-
air efficiency per percent coolant flow was about 0. 6 when the two rows nearest the
leading edge were open, decreasing to about 0. 5 when all six rows were open.
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4. With full film cooling, the primary-air efficiency increased with increasing

coolant flow. When the total pressure of the coolant in the blade cavity was equal to the

primary-air inlet total pressure, the percent change in primary-air efficiency per per-

cent coolant flow was about 0.6. This percent change in primary-air efficiency for full

film cooling compares with a change of about 0. 8 for ejection from the six rows on the

pressure surface and a change of about 0. 5 for ejection from the six rows on the suction

surface.

5. With coolant ejection from the four rows nearest the blade leading edge, the

primary-air efficiency increased with increased coolant flow. When the total pressures

of the coolant in the blade cavity and the inlet primary flow were equal, the percent

change in primary-air efficiency per percent coolant was about 0. 7.

6. The results of the investigation for this blading show that changes in experiment-

ally determined values of multirow primary-air efficiency can be predicted by properly

adding the single-row changes in primary-air efficiency. Apparently, coolant ejection

from upstream rows of coolant holes did not affect the output of coolant ejected from one

,or more coolant rows downstream.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, September 11, 1974,

501-24.
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APPENDIX A

SYMBOLS

A area, m2; ft2

CD discharge coefficient, ratio of actual flow to ideal flow

D diameter of coolant hole, cm; in.

k pressure coefficient, (p - Pm)/(Pp, Pm)

L coolant hole length, cm; in.

Lpr pressure-surface length from leading edge to trailing edge (fig. 2), cm; in.

Ls  suction-surface length from leading edge to trailing edge (fig. 2), cm; in.

n number of coolant rows open

p absolute pressure, N/cm2; psia

Re Reynolds number

T absolute temperature, K; OR

V absolute velocity, m/sec; ft/sec

w mass flow rate, kg/sec; lbm/sec

x local position along blade surface from leading edge (fig. 2), cm; in.

y coolant fraction, w /w p

p3 angle between coolant hole axis and local blade surface tangent in plane parallel

to blade end surface, deg

7o blade-row efficiency with no coolant flow

7p primary-air efficiency, ratio of kinetic energy of total flow to ideal kinetic energy

of primary flow only

1 viscosity, N-sec/m2; bm/sec-ft

p density, kg/m3; lbm/ft3

Subscripts:

c coolant flow

cr conditions at Mach 1

h coolant hole

id ideal quantity corresponding to isentropic process
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MR conditions for multirow of coolant holes open

m station at blade exit where flow conditions are assumed to be uniform

o conditions with no coolant flow

p primary flow

SR conditions for single-row coolant holes open

s blade surface conditions

0 station at blade row inlet

Superscript:

total-state conditions
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APPENDIX B

COOLANT HOLE DISCHARGE COEFFICIENTS

This appendix presents the coolant hole discharge coefficients for each of the six

different suction-surface coolant hole configurations tested. (See ref. 12 for pressure-

surface coolant hole discharge coefficients. ) The discharge coefficients are presented

as a function of both ideal coolant hole Reynolds number and primary-air exit critical

velocity ratio.

The discharge coefficients are, of course, the ratio of the actual to the ideal flow

through the coolant hole. Thus,

C Wc, h (B1)
D, h (PV)id, h

The actual coolant flow per hole wc, h was determined by using sharp-edged-orifice

data.

The upstream flow conditions used for the determination of the ideal density and

velocity at the exit of the hole were obtained from the measured total pressure pc and

total temperature T c inside the blade. The downstream flow conditions used for the

determination of the ideal density and velocity at the exit of the hole were obtained from

the measured blade surface static pressure at the location of the coolant hole ps'
The ideal Reynolds numbers based on hole diameter were computed from the stand-

ard relation

(PV)id hD
Re = )d h (B2)

id, h

Figure 17 presents the coolant hole discharge coefficients as a function of both ideal

Reynolds number and ideal primary-air exit critical velocity ratio for the six different

coolant rows. In addition, in figure 8 the ratios of blade surface static pressure to

inlet total pressure at the different coolant row locations are presented as a function of

blade surface length for a primary-air ideal exit critical velocity ratio of 0. 65. (These

pressure ratios are presented for completeness in case the reader might wish to use the

experimental data for other calculations.)

In figure 17, the discharge coefficients are shown to vary with Reynolds number and

primary-air critical velocity ratio. The maximum discharge coefficients, at the maxi-

mum Reynolds number considered, varied from about 0. 70 to 0. 75 for the different hole

22



configurations. In general, for all hole configurations, the discharge coefficients de-

creased with decreasing Reynolds number. At the higher Reynolds numbers, the coeffi-

cients were, in general, affected only slightly by primary-air critical velocity; however,

as the Reynolds number decreased from the maximum considered, the coefficients for

all configurations were affected to some degree by primary-air critical velocity ratio.

The general trend of coefficients at the lower Reynolds numbers is to decrease with

increasing primary-air critical velocity ratio; however, for some of the rows of coolant

holes, there are exceptions to this general trend.
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TABLE I. - COOLANT HOLE DATA

Coolant Percent of blade Angle between coolant hole Length-diameter

row surface length, axis and local blade sur- ratio of coolant

x/Lpr or x/L s face tangent in plane par- hole,

allel to blade end L/D

surfaces,

deg

1 3.5 90 2.2

2 12 34 3.7

3 20 33 3.3

4 45 35

5 70 33

6 85 34

7 3.5 90 2.2

8 10.5 36 3.7

9 20 39 4.5

10 40 38 4.0

11 60 38 3.8

12 80 35 3.8

TABLE II. - LISTING OF MULTIROW

COOLANT TESTS

Multirow config- Coolant rows included

urations tested

1 1, 2

2 1, 2, 3

3 1, 2, 3, 4

4 1, 2, 3, 4, 5

5 1, 2, 3, 4, 5, 6

6 7, 8

7 7, 8, 9

8 7, 8, 9, 10

9 7, 8, 9, 10, 11

10 7, 8, 9, 10, 11, 12

11 1, 2, 7, 8,

12 1 to 12 (full film)
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(a) Pressure-surface view. (b) Suction-surface view.

Figure 1. - Tested stator blade.

Row

7 1

xs - Xpr
/N

93

\ D 4

1 Ls5

-, -6

8.. /,1 "

12

Figure 2. - Cross-sectional sketch of cooled stator blade.
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Figure 5. - Single-row variation in primary-air efficiency as function of coolant fraction and primary-air critical
velocity ratio for suction-surface coolant discharge.
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Figure 6. - Fractional variation in primary-air efficiency with coolant fraction for single-row discharge from blade
suction surface. (Data averaged for primary-air critical velocity ratios from fig. 5.)
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Figure 7. - Fractional variation in primary-air efficiency with coolant fraction for single-row discharge from blade
pressure surface. (Data from fig. 7 of ref. 12. )
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Figure 8. - Comparison of local coolant row static pressures on suction and pressure

surfaces of blading for primary-air-critical velocity ratio (V/Vcr)p,id, m of 0. 65.
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Figure 9. - Multirow variation in primary-air efficiency with coolant fraction and primary-air critical velocity ratio for suction-surface coolant discharge.
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Figure 10. - Comparison of fractional variation in primary-air efficiency with coolant
fraction for coolant discharge from various combinations of coolant rows on blade
suction surface. (Data averaged for primary-air critical velocity ratios from fig. 9.)
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(b) Fractional variation in efficiency relative to efficiency of noncooled blading.

Figure 11. - Variation in primary-air efficiency with coolant fraction and
primary-air critical velocity ratio for full film cooling. Rows Ito 12.
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18 --- Coolant rows Ito 6,
pressure surface

E Coolant rows 7 to 12,
. suction surface
S1 --- Coolant rows 1 to 12,

< full film cooling
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Figure 12. - Comparison of average fractional variation in primary-air efficiency
with coolant fraction for coolant discharge from six rows on suction surface,
coolant discharge from six rows on pressure surface, and full film cooling.
(Data for pressure surface from ref. 12. )
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(b) Fractional variation in efficiency relative to efficiency of noncooled
blading.

Figure 13. - Variation in primary-air efficiency with coolant fraction
and primary-air critical velocity ratio for four coolant rows nearest
the leading edge.
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Figure 14. - Variation in single-row coolant fraction for suction-
surface discharge with inlet coolant- to primary-air-pressure
coefficient k.p for a primary-air critical velocity ratio
(VIVcr)p, id, m of 0.65.
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(c) Full film cooling.

CDFigure 15. - Effect of coolant flow on primary-air mass flow. (Data averaged for all test points.)
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- Multirow results
--- Additive single-

.10- row results
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(a) Rows 7 and 8. (b) Rows 7 to 9. (c) Rows 7 to 10.
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(d) Rows 7 to 11. (e) Rows 7 to 12.

Figure 16. - Comparison of multirow results with additive single-row results for the blade suction surface. (Data averaged for
primary-air critical velocity ratios. )

40



- Multirow results
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(g) Rows 1 to 12.

Figure 16. - Concluded.
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Figure 17. - Variation of discharge coefficient for suction-surface coolant holes with ideal Reynolds
number and primary-air ideal exit critical velocity ratio.
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(f) Row 12.

Figure 17. - Concluded.
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