EFFECTS OF
SELECTED DESIGN VARIABLES ON THREE RAMP,
EXTERNAL COMPRESSION INLET PERFORMANCE

by James H. Kamman and Charles L. Hall

Prepared by
MCDONNELL AIRCRAFT COMPANY
St. Louis, Mo.
for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1975
Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center by McDonnell Aircraft Company. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests have been analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.
SUMMARY

The importance of designing inlets to achieve the maximum possible performance has increased as the performance requirements of supersonic air superiority fighter aircraft have increased. While the basic inlet design can be established using primarily analytical techniques, experimental investigations of the major inlet design variables are required to ensure a high level of performance. The objective of this program was to evaluate performance data for selected design variables on a two-dimensional, overhead, three ramp, external compression inlet system with variable capture area. These data were obtained from inlet tests that were primarily directed toward the development of a high performance inlet for a specific aircraft and mission application. The development test program consisted of two inlet performance tests and one inlet/airframe drag test which were conducted at the NASA Ames Research Center by McDonnell Aircraft Company (MCAIR) in 1969.

Two types of variable capture area inlets were tested. On one type, the capture area was varied by rotating only the first ramp, and the associated portion of the outboard sideplate, about the first ramp hinge line. On the other type, the capture area was varied by rotating the entire three ramp system and sideplates about a hinge point near the cowl lip.

The inlet performance data were analyzed to determine the effects of selected inlet design variables on the engine face pressure recovery, turbulence, and steady state distortion over a Mach number range of 0.9 to 2.5 and over an angle of attack range of -4° to 26°. The performance tests were conducted at Reynolds numbers of 7.38 x 10^6 per meter (2.25 x 10^6 per foot) for transonic conditions and 6.56 x 10^6 per meter (2.0 x 10^6 per foot) for supersonic conditions using a 16.7 percent scale model. In addition, the effects of varying the ramp angles, angle of attack, and operating mass flow ratio on net propulsive force were evaluated. The net propulsive force changes include changes in engine net thrust resulting from measured variations in pressure recovery and analytically determined changes in spillage drag, bleed drag, and bypass drag.

The inlet/airframe drag data were analyzed to determine the effects of variation in inlet capture area on inlet and aircraft drag over a Mach number range of 0.6 to 1.2 and over an angle of attack range of -3° to 20°. The drag test was conducted at Reynolds numbers values of 5.84, 7.22, and 7.58 x 10^6 per meter (1.78, 2.20, and 2.31 x 10^6 per foot) at Mach numbers of 0.6, 0.9 and 1.2, respectively, using a 7.5 percent scale model.

The most significant results of the analyses are:

(a) Throat slot bleed increases inlet performance at supersonic flight conditions even when the boundary layer upstream of the throat is completely removed by ramp bleed.

(b) The inlet operating point for maximum net propulsive force above Mach 1.6 occurs between 95 and 100 percent of the critical mass flow ratio.
(c) The second and third ramp angles required for maximum net propulsive force at Mach 2.2 are lower than the ramp angles providing maximum recovery because of reduced spillage drag associated with the lower angles.

(d) Reducing the second and third ramp angles as a function of angle of attack to prevent shock detachment from the third ramp increases the net propulsive force.

(e) An inlet utilizing a rotating three ramp system maintains a high level of performance over a wide angle of attack range at Mach 2.2, whereas a fixed geometry inlet provides high performance only over a small angle of attack range.

(f) A variable capture area inlet utilizing a rotating ramp system which varies with angle of attack causes lower spillage drag at transonic conditions than an inlet which has a capture area fixed with angle of attack.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>2</td>
</tr>
<tr>
<td>TEST FACILITY AND MODELS</td>
<td>6</td>
</tr>
<tr>
<td>Test Facility</td>
<td>6</td>
</tr>
<tr>
<td>Inlet Performance Models</td>
<td>6</td>
</tr>
<tr>
<td>Inlet/Airframe Drag Model</td>
<td>7</td>
</tr>
<tr>
<td>INSTRUMENTATION</td>
<td>8</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>9</td>
</tr>
<tr>
<td>Test Conditions</td>
<td>9</td>
</tr>
<tr>
<td>Data Reduction</td>
<td>9</td>
</tr>
<tr>
<td>DATA ACCURACY</td>
<td>12</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>13</td>
</tr>
<tr>
<td>Inlet Performance Data Analyses</td>
<td>13</td>
</tr>
<tr>
<td>Effects of Inlet Bleed Variations</td>
<td>13</td>
</tr>
<tr>
<td>Effects of Bypass Flow Variation</td>
<td>15</td>
</tr>
<tr>
<td>Effects of Operating Mass Flow Ratio Variation</td>
<td>15</td>
</tr>
<tr>
<td>Effects of Inlet Ramp Angle Variations</td>
<td>16</td>
</tr>
<tr>
<td>Effects of Angle of Attack</td>
<td>17</td>
</tr>
<tr>
<td>Effects of Sideslip</td>
<td>18</td>
</tr>
<tr>
<td>Effects of Ramp System Rotation</td>
<td>19</td>
</tr>
<tr>
<td>Effects of Terminal Shock Strength</td>
<td>19</td>
</tr>
<tr>
<td>Inlet/Airframe Drag Data Analyses</td>
<td>20</td>
</tr>
<tr>
<td>Effects of Inlet Capture Area Variation on Aircraft Drag</td>
<td>20</td>
</tr>
<tr>
<td>Effects of Inlet Capture Area Variation on Inlet Lift</td>
<td>20</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX A - PERFORMANCE DATA</td>
<td>99</td>
</tr>
<tr>
<td>APPENDIX B - BLEED/BYPASS DRAG CALCULATION PROCEDURE</td>
<td>250</td>
</tr>
<tr>
<td>APPENDIX C - INLET DRAG ANALYSIS METHOD</td>
<td>260</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>276</td>
</tr>
</tbody>
</table>
INTRODUCTION

Advanced air superiority fighter aircraft require inlets that provide high performance in terms of pressure recovery, pressure distortion, drag, and operating stability, over a wide range of speed and maneuvering conditions. In the initial development stages of such an inlet, McDonnell Aircraft Company built and tested models of two different two-dimensional overhead, three ramp, external compression configurations. Both configurations included variable capture area provisions. One provided for variation of the first ramp only, while the other provided for varying the entire external ramp system. Each was designed to permit evaluation of the effects on inlet performance of such variables as bleed and bypass mass flow, in addition to inlet geometry. These models were tested at NASA–Ames Research Center in 1969.

Three inlet development tests were conducted. These included two inlet performance tests and one inlet/airframe drag test. The first two tests were directed toward inlet performance development, and covered Mach number ranges as follows:

- First ramp system variable - Mach 0.9 to 2.5
- Entire ramp system variable - Mach 1.6 to 2.5

The tests were conducted at Reynolds numbers of 7.38×10^6 per meter (2.25×10^6 per foot) for transonic conditions and 6.56×10^6 per meter (2.0×10^6 per foot) for supersonic conditions using a 16.7 percent scale model. The inlet/airframe drag tests included evaluation of both inlet configurations at transonic speeds with Mach number of 0.6, 0.9, and 1.2 for Reynolds numbers of 5.84, 7.22, and 7.58×10^6 per meter (1.78, 2.20, and 2.31×10^6 per foot), respectively, using a 7.5 percent scale model.

Although these tests were directed toward the development of a unique inlet type for a specific aircraft and mission, much of the resulting data have general application. The significant results have been summarized and are presented in this report.

The first section provides descriptions of the models tested. Next, the instrumentation of each model is described, the test conditions and data reduction are defined, and the data accuracy is presented. Subsequently, a discussion of the data analyses is presented. The basic performance data used in the analyses are included in Appendix A. The procedure used to calculate bleed and bypass drags is given in Appendix B, and the analytical technique used to determine inlet spillage drag is explained in Appendix C.
SYMBOLS

\(A_C \)
Inlet capture area

\(A_{C_0} \)
Inlet reference capture area (constant for a given configuration)

\(A_D \)
Main duct area

\(C_D \)
Aircraft drag coefficient, aircraft drag/\(q_0 S \)

\(C_L \)
Aircraft lift coefficient, aircraft lift/\(q_0 S \)

\(C_{L_{INLET}} \)
Inlet lift coefficient, inlet lift/\(q_0 A_C \)

\(C_M \)
Aircraft pitching moment coefficient, moment/\(q_0 S \bar{c} \)

\(\bar{c} \)
Mean aerodynamic chord of wing

\(D \)
Drag force

\(D_{Bleed} \)
Bleed drag

\(D_{BP} \)
Bypass drag

\(D_{Spillage} \)
Spillage drag

\(D_2 \)
Engine face diameter; or steady state distortion parameter, defined as the difference between the maximum and minimum total pressure divided by the average total pressure at the engine face

\(F_{BAL} \)
Balance measured force

\(F_{Base} \)
Base correction force

\(F_{BLexit} \)
Ramp and throat bleed exit force

\(F_{CAV} \)
Cavity correction force

\(F_{Cl} \)
Lower cowl force

\(F_{Cu} \)
Upper cowl force

\(F_{Exit} \)
Exit stream thrust

\(F_I \)
Stream thrust at the inlet cowl lip plane

\(F_{IN} \)
Forces acting on the inlet

\(F_L \)
Inlet lift force
SYMBOLS (Cont'd.)

\(F_N \)
Net thrust

\(F_{NP} \)
Net propulsive force

\(F_R \)
Forces acting on the compression ramps

\(F_{SP} \)
Forces acting on the sideplates

\(F_X \)
Forces acting on the model in the axial (body axis) direction

\(F_Y \)
Forces acting on the model in the normal (body axis) direction

\(F_0 \)
Inlet entrance stream thrust

\(h \)
Inlet capture height

\(h_c \)
Distance from the third ramp to the cowl lip (perpendicular to third ramp)

\(L \)
Distance from leading edge of first ramp to cowl lip parallel to an aircraft waterline

\(M \)
Mach number

\(m_1/m_o \)
Inlet mass flow ratio (sum of the main duct, throat slot bleed, and engine face bypass mass flow ratios) based on \(A_c \)

\(m_{BP}/m_o \)
Bypass mass flow ratio

\(m_{RB}/m_o \)
Third ramp bleed mass flow ratio

\(m_{TS}/m_o \)
Throat slot bleed mass flow ratio

\(m_o \)
Reference mass flow

\(P \)
Static pressure

\(P_T \)
Total pressure

\(\frac{P_{T2}}{P_{T0}} \)
Average steady state engine face total pressure recovery

\(q_0 \)
Dynamic pressure, \(\frac{\gamma}{2} P_0 M_O^2 \)

\(R_{LIP} \)
Cowl lip radius

\(R_{L1} \)
First ramp length

\(R_{L2} \)
Second ramp length
SYMBOLS (Cont'd.)

\(R_{L3} \)
Third ramp length

\(R_{L4} \)
Diffuser ramp length

\(R_N \)
Reynolds number

\(R_{SP} \)
Sideplate leading edge radius

\(S \)
Wing area of aircraft (used as reference area in drag coefficient)

\(T \)
Turbulence - dynamic distortion parameter, defined as the average of the rms values of the fluctuating total pressure components divided by the average steady state total pressure \((\Delta P_{\text{rms}}/P_{T2})\)

\(W \)
Inlet width

\(WL \)
Model waterline

\(X_{F.S.} \)
Fuselage station

\(x \)
Axial direction (aircraft body axis)

\(y \)
Perpendicular distance between third oblique shock and the cowl lip

\(y \)
Normal direction (aircraft body axis)

\(\alpha \)
Angle of attack - degrees (relative to model waterline)

\(\beta \)
Angle of sideslip - degrees (relative to model buttline)

\(\gamma \)
Ratio of specific heats

\(\delta_H \)
Horizontal tail deflection angle

\(\delta_1, \delta_2, \delta_3 \)
Boundary layer thickness at end of first ramp, second ramp, and third ramp, respectively

\(\Delta_1, \Delta_2, \Delta_3 \)
First, second, and third ramp angles, respectively, relative to an inlet reference line - degrees

\(\Delta'_1, \Delta'_2, \Delta'_3 \)
First, second, and third ramp angles, respectively, relative to model waterline - degrees

\(\rho \)
Ramp system rotation angle relative to a waterline (positive when leading edge of first ramp rotates downward) - degrees
SYMBOLS (Cont'd.)

Subscripts

avg Average
max Maximum
min Minimum
0 Freestream conditions
2 Engine face conditions
TEST FACILITY AND MODELS

Test Facility

The test facility employed was the NASA Ames Research Center Unitary Plan Wind Tunnel. This facility is a closed circuit, variable density, continuous flow wind tunnel having three test sections which permit testing over a Mach number range from 0.6 to 3.5. The transonic tests were conducted in the 11 x 11-foot section, which has a Mach number range of 0.6 to 1.4. The supersonic tests were conducted in the 9 x 7-foot section, which has a Mach number range of 1.55 to 2.55.

Inlet Performance Models

Two different 16.7 percent scale inlet models, side-mounted on partial fuselages, were used in the two inlet performance tests. These models, designated as Configurations 1 and 2, were both two-dimensional, overhead, three ramp, external compression inlets with variable capture area.

Configuration 1 - The Configuration 1 inlet performance model is shown in Figure 1. The capture area was varied by rotating the first ramp and the forward portion of the outboard sideplate about the first ramp hinge line. The inboard sideplate and boundary layer diverter could not be rotated. The second and third ramp angles were varied independent of first ramp rotation. The ramp angle nomenclature is defined in Figure 2. The first ramp rotation was scheduled as a function of Mach number.

The inlet dimensions and duct area distribution are provided in Figure 3. The inlet lower cowl lip coordinates are presented in Figure 4. The design Mach number, that is, the Mach number at which the ramp oblique shocks intersect at the cowl lip, was 2.5.

The inlet model used second and third ramp bleed, sideplate bleed, and throat slot bleed, as shown in Figure 5. The ramp bleed rates, throat slot bleed rates, and main duct flow rate were measured using the calibrated mass flow plug assemblies shown in Figure 1.

A bypass system consisting of a slotted duct section upstream of the engine face was employed as shown in Figure 6. The bypass flow rate was also measured using a calibrated mass flow plug assembly.

Configuration 2 - The Configuration 2 inlet performance model is shown in Figure 7. The capture area was varied by rotating the entire ramp system and sideplates about a hinge point near the lower cowl lip. The boundary layer diverter could not be rotated. The second and third ramp angles were varied independent of ramp system rotation. The ramp angles and ramp systems rotation angle are defined in Figure 8. The ramp system rotation was scheduled as a function of both Mach number and angle of attack.

The inlet dimensions and duct area distribution are given in Figure 9. The inlet lower cowl lip coordinates are provided in Figure 10. The inlet design Mach number was 2.5.
Second and third ramp bleed, sideplate bleed, and throat slot bleed were used as shown in Figure 11. The calibrated mass flow plug assemblies illustrated in Figure 7 were used to measure the flow rates through the ramp bleed systems, throat slot bleed system, and the main duct. The bypass was incorporated in the throat slot bleed system.

Inlet/Airframe Drag Model

The 7.5 percent scale model for measuring the inlet/airframe drag is illustrated in Figure 12. This complete aircraft model incorporated two side-mounted, two-dimensional, overhead, three ramp, external compression inlets, which were based on the same full scale dimensions as the Configuration 2 inlet performance model. However, the inlets on the drag model were designed with the flexibility to simulate either of the variable capture area systems employed by the inlet performance models (Configuration 1 or 2). The model configuration which simulated the rotating first ramp system was designated Configuration 3, as shown in Figure 13. The configuration which simulated the rotating ramp system was designated Configuration 4, as shown in Figure 14.

The inlets employed second and third ramp bleed and throat slot bleed. Each bleed rate was measured using a calibrated exit. The ramp and throat slot bleed systems for the drag model are shown in Figure 15. The main duct flow rate was controlled by calibrated exit chokes.
INSTRUMENTATION

Inlet Performance Model Instrumentation

The Configuration 1 inlet performance model was instrumented with a 36-probe steady state/dynamic total pressure rake to measure the engine face pressure recovery and turbulence. The pressure rake is illustrated in Figure 16.

The Configuration 2 inlet performance model was instrumented with a 36-probe steady state/dynamic total pressure rake as shown in Figure 17 to measure the engine face pressure recovery and turbulence. Note that this rake location differs from that of Configuration 1. Possible differences in total pressure measurements between the rake locations do not affect the analyses reported in the Discussion section since no direct comparisons are made between Configurations 1 and 2. A high frequency transducer was mounted in the duct wall of Configuration 2 (see Figure 17) to detect duct flow instability (inlet "buzz"). Static pressure taps were provided on the surface of the first ramp as shown in Figure 17 to determine local flow angularity.

Inlet/Airframe Drag Model Instrumentation

The inlet/airframe force data were measured with a Task Corporation Mark XXI six-component internal strain gage balance located in the fuselage as illustrated in Figure 18.

The base and the balance cavity were instrumented with pressure taps to provide the data required to correct the balance measurements for the base and cavity forces.

The main duct and bleed exits were provided with total and static pressure instrumentation to allow the computation of the respective flow rates and to provide the data necessary for the correction of the balance measurements for the entrance and exit stream forces.

The left-hand inlet ramps, sideplates, and cowl surfaces were instrumented with static pressure taps, and a total pressure rake was provided at the cowl lip plane (see Figure 18) to allow the computation of inlet lift and drag forces.
PROCEDURE

Test Conditions

The ranges of test conditions over which the inlet performance tests and the inlet/airframe drag test were run are given in Table 1.

<table>
<thead>
<tr>
<th>Test Configuration</th>
<th>Mach No.</th>
<th>Angle of Attack</th>
<th>Sideslip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Performance</td>
<td>1</td>
<td>0.9 to 2.5</td>
<td>-2.5° to 26°</td>
</tr>
<tr>
<td>Inlet Performance</td>
<td>2</td>
<td>1.6 to 2.5</td>
<td>-4° to 24°</td>
</tr>
<tr>
<td>Inlet/Airframe Drag</td>
<td>3, 4</td>
<td>0.6 to 1.2</td>
<td>-3° to 20°</td>
</tr>
</tbody>
</table>

Table 1 - Test Conditions

Data Reduction

The internal performance parameters computed were total pressure recovery, turbulence, steady state distortion, inlet stable range, net propulsive force, and inlet mass flow ratio. The inlet/airframe drag parameters used in the analyses were aircraft drag coefficient and inlet lift coefficient. These parameters are defined as follows:

Total Pressure Recovery, \(\frac{P_{T2}}{P_{T0}} \) - The ratio of the average steady state total pressures measured at the engine face to the freestream total pressure.

Turbulence, \(\frac{\Delta P_{rms}}{P_{T2}} \) - The average of the root mean square (rms) values of the fluctuating total pressure components divided by the average steady state total pressure.

Steady State Distortion, \(\frac{D_2}{P_{T0}} \) - The difference between the maximum and the minimum total pressure divided by the average total pressure at the engine face.

Inlet Stable Range \(\left[\left(\frac{m_1}{m_0} \right)_{\text{crit}} \right] \) - The mass flow range between the critical (maximum) inlet mass flow ratio and the mass flow ratio at which the inlet flow became unstable (onset of inlet "buzz") divided by the critical mass flow ratio.
Net Propulsive Force Change,

\[
\frac{\Delta F_{NP}}{F_N} = \frac{\left(\frac{P_{T2}}{P_{T1}} \right) - \frac{F_N}{\delta \frac{P_{T2}}{P_{T1}}} - \Delta D_{\text{Spillage}}}{\Delta D_{\text{Bleed}} - \Delta D_{\text{Bypass}}}
\]

where changes from a selected reference condition are denoted by \(\Delta \). The first term in the equation above represents the effect of a recovery change on the net thrust, and was computed for the analyses at Mach 1.6 and 2.2 using the relationships shown in Figure 19. These relationships are typical of fighter-type turbofan engines.

For the second term above, inlet spillage drag, defined as inlet additive drag plus the change in cowl drag due to subcritical spillage, was analytically determined. The additive drag at the critical (maximum) capture condition was computed by pressure integration along the captured streamline. A drag slope was then calculated for reduced mass capture ratios, extending a technique developed in References 1 and 2 for pitot intakes to two-dimensional inlets with pre-compression. A more detailed explanation of the inlet additive drag calculation is given in Appendix C.

The bleed and bypass drag terms above were evaluated by computing the loss in momentum between the inlet and the exit of each system, using the flush exit thrust coefficients from References 3 and 4. The calculation procedures used to determine the bleed and bypass drags are presented in Appendix B along with curves which can be used to simplify these calculations.

\textbf{Inlet Mass Flow Ratio}, \(\frac{m_1}{m_0} = \frac{m_2}{m_0} + \frac{m_{TS}}{m_0} + \frac{m_{BP}}{m_0} \) – The total mass flow entering the inlet at the cowl lip plane determined by summing the main duct, throat slot bleed, and (where applicable) engine face bypass mass flow ratios. As stated previously, the individual mass flow ratios were measured using the calibrated mass flow plug assemblies shown in Figures 1 and 7.

The inlet mass flow ratio as defined above is based on an inlet capture area, \(A_C \), which changes as a function of both angle of attack and first ramp angle. The manner in which the inlet height (and thus capture area) varies with changes in angles of attack and alternate first ramp angles for Configurations 1 and 2 is illustrated in Figure 20. An alternate definition of inlet mass flow ratio based on a fixed value of capture area, \(A_{C0} \), is used to provide comparative inlet capture characteristics for airflow matching. This reference capture area remains constant for a given configuration and was selected at zero degrees angle of attack and a specific first ramp angle. The relationship between \(A_C \) and \(A_{C0} \) is presented in Figure 21 over the range of first ramp angles and angles of attack tested. The mass flow ratio values presented in the text and the appendices are based on \(A_C \) unless otherwise noted.

\textbf{Aircraft Drag Coefficient}, \(C_D = \frac{D}{q_0 S} \) – The aircraft drag force divided by the dynamic pressure and wing planform area. The aircraft drag coefficient obtained from force balance and pressure measurements was used to establish the aircraft drag coefficient increment between alternate inlet configurations.
The aircraft drag was determined by summation of the forces shown in Figure 22.

Inlet Lift Coefficient, $C_{L_{INLET}} = \frac{F_L}{q_0 S}$ - The inlet lift force divided by the dynamic pressure and the wing planform area. The inlet lift coefficient was obtained from static and total pressure measurements on the ramps, cowl, sideplates, and inlet lip plane. The inlet lift force was determined by summation of the force components shown in Figure 23.
DATA ACCURACY

The inlet data analyses performed in these investigations are discussed primarily in terms of changes in selected inlet performance parameters. Therefore, the data accuracy was evaluated in terms of data repeatability. The absolute levels of data accuracy were not specifically determined but are consistent with typical pressure and force and moment wind tunnel tests. The ranges of repeatability determined from the test data are given in Table 2.

TABLE 2 - DATA ACCURACY

<table>
<thead>
<tr>
<th>Repeatability Ranges</th>
<th>Configuration 1</th>
<th>Configuration 2</th>
<th>Configurations 3&4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow (m/m₀)</td>
<td>+1%</td>
<td>+1%</td>
<td>N/A</td>
</tr>
<tr>
<td>Pressure recovery (P₂/P₀)</td>
<td>±0.5%</td>
<td>±0.5%</td>
<td>N/A</td>
</tr>
<tr>
<td>Turbulence (T)</td>
<td>±0.005 (ΔT)</td>
<td>±0.002 (ΔT)</td>
<td>N/A</td>
</tr>
<tr>
<td>Steady state distortion (D₂)</td>
<td>±0.015 (ΔD₂)</td>
<td>±0.007 (ΔD₂)</td>
<td>N/A</td>
</tr>
<tr>
<td>Aircraft drag (C_D)</td>
<td>N/A</td>
<td>N/A</td>
<td>±0.0006</td>
</tr>
</tbody>
</table>
DISCUSSION

The results of the analyses are divided into two parts: (1) discussions of inlet performance parameters and (2) discussions of inlet/airframe force data.

Inlet Performance Data Analyses

The data from the inlet performance models, Configurations 1 and 2, were analyzed to determine the effects of the following variables on the performance of a two-dimensional, overhead, three-ramp, external compression inlet:

<table>
<thead>
<tr>
<th>Variables Investigated</th>
<th>Performance Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet bleed</td>
<td>Total pressure recovery</td>
</tr>
<tr>
<td>Bypass flow</td>
<td>Turbulence</td>
</tr>
<tr>
<td>Operating mass flow ratio</td>
<td>Steady state distortion</td>
</tr>
<tr>
<td>Inlet ramp angles</td>
<td>Net propulsive force</td>
</tr>
<tr>
<td>Angle of attack</td>
<td>Inlet stable range</td>
</tr>
<tr>
<td>Sideslip</td>
<td></td>
</tr>
<tr>
<td>Ramp system rotation</td>
<td></td>
</tr>
<tr>
<td>Terminal shock strength</td>
<td></td>
</tr>
</tbody>
</table>

The analyses were performed using the test data presented in Appendix A. Typical inlet/engine airflow characteristics were used to select the inlet operating points. In general, the operating point is 95 percent of critical (maximum) inlet flow at supersonic conditions, and varies between 86 and 88 percent of maximum inlet flow at subsonic conditions. In practice, maintenance of a 95 percent critical operating point at all supersonic conditions presupposes the use of a bypass system.

In the test program, emphasis was placed on the Mach 2.2 condition. This condition was the maximum Mach number for which high inlet performance and aircraft maneuverability were critical requirements for the specific aircraft and mission application to which the tests were directed. Thus, the majority of the investigations of the effects of design variables discussed in this report were performed at Mach 2.2.

The results of the inlet performance data analyses have general application to three ramp, external compression inlets. The results indicate inlet bleed requirements, operating conditions in terms of mass flow ratio and inlet geometry, and a variable capture area system to maintain a high level of inlet performance with angle of attack.

Effects of Inlet Bleed Variations

The inlet models employed second and third ramp, throat slot, and sideplate bleed systems to remove the boundary layer formed on the inlet compression surfaces and sideplates. The effects of varying the bleed rate through the third ramp on the pressure recovery, turbulence, and distortion were investigated at Mach 2.2 on Configuration 2. The effects of
varying the throat slot bleed rate were investigated at Mach 2.2 on both Configurations 1 and 2. Since no variations of second ramp and sideplate bleed were made, an evaluation of the effect of these bleeds on inlet performance could not be made.

Third Ramp Bleed Variation - The effect of third ramp bleed on inlet performance was investigated on Configuration 2, only under conditions where the second ramp, sideplates, and throat slot bleed mass flow ratios were 0.008, 0.020, and 0.062, respectively. Under these conditions, the total pressure recovery decreases as the third ramp bleed was increased above a mass flow ratio of 0.003, as shown in Figure 24. This is believed to be caused by the bleed flow modifying the third ramp supersonic flow field, thereby accelerating the flow ahead of the terminal normal shock.

To investigate the effect of the third ramp bleed on the ramp boundary layer, computations were made using the boundary layer computer program described in Reference 5 and 6. The results indicated that, with a third ramp bleed mass flow ratio of 0.003, 32 percent of the third ramp boundary layer is removed and, with a bleed mass flow ratio of 0.012, the boundary layer is completely removed. Therefore, it is apparent that maximum pressure recovery is obtained with ramp bleed rates less than those required for complete boundary layer removal, when throat slot bleed is also employed. In fact, the data suggest that third ramp bleed may not improve the performance of Configuration 2, although no data were obtained at zero third ramp bleed rate to verify this point.

Throat Slot Bleed Variation - The effects of throat bleed were investigated on Configurations 1 and 2 under the following conditions:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Second Ramp Bleed Rate*</th>
<th>Third Ramp Bleed Rate*</th>
<th>Sideplate Bleed Rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.012</td>
<td>.021</td>
<td>.020</td>
</tr>
<tr>
<td>2</td>
<td>.008</td>
<td>.020</td>
<td>.020</td>
</tr>
</tbody>
</table>

*Mass flow ratios

Under these conditions, performance improved with increasing throat slot bleed for both configurations up to a bleed mass flow ratio of approximately 0.04, as shown in Figure 25.

The lower pressure recovery of Configuration 2 shown in Figure 25 is a result of the ramp rotation schedule used during the test. Note that the total compression angle for Configuration 2 is almost two degrees less than that for Configuration 1. As will be discussed in the paragraph on Effects of Ramp System Rotation, increasing the external compression can result in significant increases in pressure recovery.

To investigate the effect of throat slot bleed illustrated in Figure 25 computations using the boundary layer analysis technique described in References 5 and 6 were made. These computations indicated that the entire ramp boundary layer was removed upstream of the throat by the ramp bleed systems.
on both configurations. Therefore, it is apparent that the performance improvement obtained with throat slot bleed resulted from some mechanism other than boundary layer removal. To determine the mechanism involved, the flow conditions at the engine face were examined. The inlet performance parameters at 0.95 critical mass flow and the engine face total pressure recovery maps are shown in Figure 26. These indicate that the flow conditions at the engine face are more uniform with throat slot bleed than without throat slot bleed. It appears, therefore, that bleeding air through the slot helps to turn the flow and together with the effect of mass flow removal, changes the subsonic diffusion characteristics in a favorable manner. The improvement in performance with throat slot bleed may be caused by either the elimination of a separated region at the diffuser ramp leading edge or by the removal of distorted flow induced by the terminal normal shock.

Effects of Bypass Flow Variation

The effects on inlet performance of bypassing flow from either an engine face (aft) bypass or a throat (forward) bypass were obtained at Mach 1.6 and 2.2 on Configuration 1.

The effects of variations in aft bypass flow on inlet performance are presented in Figure 27. No significant effect is seen at Mach 1.6 (Figure 27a). However, at Mach 2.2, bypass mass flow ratios above approximately 0.06 cause the inlet recovery to decrease and the engine face distortion and turbulence to increase (Figure 27b).

At bypass mass flow ratios below 0.06, the inlet performance is not significantly affected by the bypass location at Mach 2.2, as shown in Figure 28.

Effects of Operating Mass Flow Ratio Variation

The effects on inlet performance and net propulsive force produced by changing the operating mass flow ratio were investigated at Mach 1.6 and 2.2. The results presented are for Configuration 2 only, but similar trends were indicated for Configuration 1.

The distortion and turbulence increase and the pressure recovery decreases as the operating point approaches the critical mass flow ratio, as shown in Figure 29.

For this inlet configuration, the maximum net propulsive force occurs at 95 percent critical mass flow ratio for Mach 1.6 and at the critical point for Mach 2.2, as shown in Figure 30. This maximum net propulsive force is achieved when the increase in spillage drag with decreasing operating mass flow ratio exceeds the net thrust improvement which results from the increase in pressure recovery. In this evaluation, the inlet size was assumed to vary with the operating mass flow ratio so that no bypass was required.
In summary, the inlet operating point providing maximum net propulsive force for a two-dimensional, overhead, three ramp, external compression inlet has been shown to be between 95 and 100 percent of the critical mass flow ratio above Mach 1.6. However, the final selection of an operating mass flow ratio must only be made after also considering inlet stability, distortion, and inlet/engine control system transients.

Effects of Inlet Ramp Angle Variations

The effects of varying the second and third ramp angles on the performance of three ramp, external compression inlets at Mach 2.2 were investigated. Analyses are presented showing the effect of varying the ramp angles both at a fixed angle of attack and as a function of angle of attack.

Reduced Second and Third Ramp Angles at a Given Angle of Attack - Two inlet ramp geometry variations on Configuration 2 were investigated at $\alpha = 3^\circ$. The critical (maximum) mass capture ratio was higher and the pressure recovery and inlet stable operating range were lower at reduced second and third ramp angles, as shown in Figures 31 and 32. However, no significant changes in turbulence or steady state distortion occurred with the ramp angle variations.

To evaluate the effect of the second and third ramp angle variation on the net propulsive force for an inlet with a fixed first ramp, two propulsion system design approaches were considered as defined below:

Case 1: Without Bypass - For each ramp geometry, the inlet was sized to capture the required airflow. Therefore, no bypass was required.

Case 2: With Bypass - The inlet size was the same for each ramp geometry and the design case was considered to be the inlet geometry having a third ramp angle of 24.6°. Additional flow captured with the lower ramp angles was bypassed through the throat slot.

For Case 1, where the inlet was properly sized for each ramp geometry, the net propulsive force increases as the ramp angles decrease, as shown in Figure 33. The lower ramp angles and the reduced capture area cause a reduction in inlet drag which more than compensates for the reduction in net thrust resulting from the decrease in pressure recovery.

For Case 2, where the excess flow captured with the lower ramp angles was bypassed overboard, the net propulsive force decreases as the ramp angles decrease, as shown in Figure 33. The reduction in spillage drag associated with the lower ramp angles does not compensate for the bypass drag and the decrease in net thrust due to the pressure recovery reduction.

Reduced Second and Third Ramp Angles with Angles of Attack - The effect on inlet performance of reducing the second and third ramp angles of Configuration 1 with increasing angle of attack was compared to the effect of maintaining fixed ramp angles. This comparison was made to determine if there is a performance advantage associated with either delaying oblique shock detachment from the third ramp or preventing vortex sheet ingestion as the angle of attack increases.
To make this comparison, inlet performance data for constant third ramp angles of 17.4° and 22.3° were used. The pressure recovery for a third ramp angle of 22.3° is higher than for 17.4° up to an angle of attack of approximately 8.5° but is lower above 8.5°, as shown in Figure 34. This result correlates with the predicted angle of attack for third ramp shock detachment of 8° for a third ramp angle of 22.3°. Vortex sheet ingestion is not predicted for this configuration at a third ramp angle of 22.3° over the angle of attack range tested. Thus, no conclusion can be made from this data concerning the effect of vortex sheet ingestion.

To determine the effects of reduced ramp angles on the net propulsive force at angle of attack, a second/third ramp schedule which provides a linear decrease in ramp angles with increasing angle of attack was assumed. No bypass is required for the case where the third ramp angle remains constant as angle of attack increases, but with reduced ramp angles a significant bypass requirement occurs above α = 3°. However, even with the bypass requirement, the net propulsive force is improved above α = 7° with the reduced ramp angles as shown in Figure 35. As with the pressure recovery and distortion data, these results correlate with the predicted detachment angle for the higher third ramp angles. Thus, it is apparent that reduced second and third ramp angles are advantageous when third ramp shock detachment is prevented.

Effects of Angle of Attack

The effects of angle of attack on the performance of three ramp, external compression inlets were investigated at both transonic and supersonic conditions. Data were obtained at transonic test conditions for Configuration 1 and at supersonic conditions for both Configurations 1 and 2. The test conditions and inlet geometry definitions are presented in Figure 36.

Transonic Angle of Attack Performance - At transonic conditions, the pressure recovery, turbulence, steady state distortion, and maximum mass flow ratio are generally insensitive to angle of attack, as shown in Figures 37 and 38. The maximum mass flow ratio values presented reflect the relatively constant absolute capture characteristics of the inlet at transonic conditions.

Supersonic Angle of Attack Performance - In terms of pressure recovery, turbulence, steady state distortion, and maximum mass flow ratio, Configuration 1 performance is much more sensitive to angle of attack at supersonic conditions than that of Configuration 2, as shown in Figures 39 and 40. In these figures, the performance effects are shown for the inlet ramp schedule tested for each particular configuration and Mach number. Configuration 1 performance is more sensitive to angle of attack because the ramp geometry is fixed with angle of attack. The maximum pressure recovery for Configuration 2 is less than that for Configuration 1 (Figures 39b and c) as a result of the ramp rotation schedule employed during the test. In the section on the Effects of Ramp System Rotation, it is shown that adjusting the ramp rotation schedule of Configuration 2 to increase the external compression would significantly increase the pressure recovery.
The effects of angle of attack on the inlet stable range are shown in Figure 41 for Configuration 2. The large increase in stable range observed between $\alpha = 12^\circ$ and $\alpha = 16^\circ$ at Mach 2.2 is attributed to the detachment of the oblique shock from the third ramp.

The maximum net propulsive force at Mach 2.2 occurs at $\alpha = 3^\circ$ for Configuration 1 and at $\alpha = 0^\circ$ for Configuration 2 as shown in Figure 42. For Configuration 1 (Figure 42a), the decrease in net propulsive force below $\alpha = 3^\circ$ is mainly caused by a reduction in recovery and a large bypass drag. Above $\alpha = 3^\circ$, the decrease in net propulsive force is primarily caused by an increase in spillage drag. In this case, the 95 percent critical operating point can be maintained even without assuming a bypass at angles of attack greater than 3°. The variation in net propulsive force is less affected by angle of attack for Configuration 2 (Figure 42b) than for Configuration 1 because the ramp system rotation tends to maintain spillage drag at a constant level as angle of attack increases. With an optimum ramp system rotation schedule, the effect of angle of attack on the Configuration 2 net propulsive force can be further reduced by improving the pressure recovery at angle of attack. This improvement in recovery is discussed in the section on Effects of Ramp System Rotation.

In summary, a variable capture area inlet with ramp system rotation (Configuration 2) will provide a high level of inlet performance at Mach 2.2 over a wider angle of attack than an inlet which has a fixed geometry with angle of attack (Configuration 1).

Effects of Sideslip

The effects of sideslip on the performance of three ramp, external compression inlets were investigated at transonic conditions for Configuration 1 and at supersonic conditions for both Configurations 1 and 2. A summary of the test conditions and inlet geometry variations at sideslip are presented in Figure 43.

Transonic Sideslip Performance - No significant sideslip effect can be seen at Mach 0.9, as shown in Figure 44a, but at Mach 1.2 (Figure 44b), the pressure recovery decreases and the distortion increases at the high angles of attack for the inlet on the leeward side of the fuselage.

Supersonic Sideslip Performance - At supersonic conditions, the performance of the inlet on the leeward side of the fuselage is progressively degraded as sideslip increases, as shown in Figure 45. This effect becomes more pronounced with increasing Mach number. The inlet on the windward side of the fuselage, however, is much less sensitive to sideslip (see Figure 45b). For clarity, the sideslip effects for Configuration 1 are shown in Figures 45a through 45c, and for Configuration 2, in Figures 45d through 45f.
Sideslip also causes a significant reduction in stable range for the leeward inlet as shown in Figure 46 for the Mach 2.2 condition.

Effects of Ramp System Rotation

The performance advantages of a three ramp system which rotates with angle of attack have already been noted. In addition to maintaining high performance over a wide angle of attack range, a rotating ramp system also provides the capability to compensate for the forebody-induced angularity of the flow approaching the inlet. The local flow angularity at the inlet at Mach 2.2, shown in Figure 47, was determined using static pressure measurements on the first ramp. To provide the data necessary for the selection of an inlet rotation schedule, inlet performance at Mach 2.2 and 2.5, as a function of rotation, was investigated at several angles of attack. These data, presented in Figures 48 and 49, indicate that significant increases in pressure recovery and decreases in distortion can be achieved by upward (negative) inlet rotation, due to the increases in external compression.

Effects of Terminal Shock Strength

Terminal shock strength is defined here as the static pressure ratio across the terminal normal shock, as illustrated in Figure 50. Correlations of terminal shock strength and oblique shock system position relative to the cowl lip with inlet stable range, turbulence, and steady state distortion were investigated at Mach 2.2 and 2.5, using the Configuration 2 data. The terminal shock strength values are theoretical.

Inlet Stable Range - The inlet stable range is a function of the oblique shock system position as well as the terminal shock strength, as shown in Figure 51. The shock displacement ratio defined in Figure 51 was used to describe the oblique shock system position relative to the inlet cowl lip. The increase in inlet stable range with increasing shock displacement ratio is attributed to delaying the ingestion of the vortex sheet formed at the intersection between the normal shock and the third ramp oblique shock. In Reference 7, it was shown that near the inlet design Mach number, the vortex sheet ingestion triggers inlet "buzz".

The dependence of the stable range on the terminal shock strength is attributed to the shock translation required to provide a given change in mass flow rate. That is, for the same shock translation, a weak terminal shock produces a smaller change in mass flow rate than a strong terminal shock. Consequently, for a given shock displacement ratio, the ingestion of the vortex sheet occurs with a lower stable range when the terminal shock is weak.

Turbulence and Steady State Distortion - Steady state distortion is completely insensitive to terminal shock strength as shown in Figure 52. Turbulence is insensitive to terminal shock strength below a value of 2.2, but then increases significantly with terminal shock strength.
Inlet/Airframe Drag Data Analyses

The transonic drag test data obtained with the inlet/airframe drag model were analyzed to determine the effects of variations in inlet capture area on aircraft drag and inlet lift. The analyses are based on data obtained between Mach 0.6 and 1.2 with a fixed exit choke representing typical operating conditions of approximately 80% of maximum inlet flow.

The results of the inlet/airframe drag analysis illustrate the significance of considering inlet lift as well as inlet drag when determining integrated inlet/airframe performance.

Effects of Inlet Capture Area Variation on Aircraft Drag

The variable capture area inlet with ramp system rotation as a function of angle of attack has a drag advantage over an inlet that has fixed capture area with angle of attack at transonic conditions, as shown in Figure 53. These results were obtained by determining the difference in airframe drags incurred with inlet Configurations 3 and 4. The inlet ramp angle and rotation schedules for each configuration are presented in Figures 13 and 14. At transonic conditions, the ramp angles of Configuration 3 were fixed while the entire ramp system of Configuration 4 was rotated as a function of angle of attack up to approximately 4° angle of attack. Above 4° angle of attack where the first ramp angle of Configuration 4 is fixed at 4° less than that of Configuration 3, the drag of Configuration 4 increases at a lesser rate than Configuration 3. This is consistent with data from a recent investigation in which a comparison of similar inlet configurations was made. In this comparison, the increasing drag advantage at high angles of attack for an inlet having lower ramp angles can be shown to be a result of reduced spillage drag and upper cowl drag.

Effects of Inlet Capture Area Variation on Inlet Lift

Rotation of the inlet ramp system with angle of attack reduces the inlet lift force as shown by the comparison of inlet lift coefficients for Configurations 3 and 4 in Figure 54. Included in the inlet lift force are the lift forces on the cowl surfaces and on the sideplates, and the lift force resulting from air spillage.

Since the inlets were not located at the aircraft center of gravity, the inlet lift directly affects the aircraft pitching moment as shown in Figure 55 for Mach 0.9. Above 0° angle of attack, the aircraft model having variable capture area inlets (Configuration 4) has the lower inlet lift (Figure 54b) and the higher negative pitching moment (Figure 55). Since a change in pitching moment can affect the aircraft trim characteristics, careful consideration must be given to inlet/airframe integration to retain the full drag advantage of the variable capture area inlet.
CONCLUSIONS

The conclusions derived from analyses of two-dimensional, overhead, three ramp, external compression inlet performance and inlet/airframe drag data are as follows:

1. Maximum pressure recovery at Mach 2.2 is obtained with ramp bleed rates less than those required for complete boundary layer removal, when throat slot bleed is also employed.

2. Throat slot bleed increases inlet performance at supersonic flight conditions even when the boundary layer upstream of the throat is completely removed by ramp bleed.

3. Inlet performance is not affected by bypass location for bypass flow ratios less than 0.06 at Mach 2.2. Bypass mass flow ratios in excess of 0.06 from an aft location can degrade inlet performance.

4. The inlet operating point for maximum net propulsive force above Mach 1.6 occurs between 95 and 100 percent of the critical mass flow ratio.

5. The second and third ramp angles required for maximum net propulsive force at Mach 2.2 are lower than the ramp angles providing maximum inlet recovery.

6. Reducing the second and third ramp angles as a function of angle of attack to prevent shock detachment from the third ramp increases the net propulsive force.

7. Inlet performance is generally insensitive to angle of attack at transonic conditions.

8. A variable capture area inlet with a rotating ramp system maintains a high level of inlet performance at Mach 2.2 over a wider angle of attack range than an inlet which has a fixed geometry with angle of attack.

9. Inlet performance is insensitive to sideslip angles between -6° and $+6^\circ$ at Mach 0.9.

10. Inlet performance at supersonic conditions is degraded at sideslip for the inlet on the leeward side of the fuselage to a greater extent than for the inlet on the windward side.

11. Near the design Mach number the inlet stable range is related primarily to the terminal shock strength and the oblique shock system position relative to the cowl lip.

12. A terminal shock strength in excess of a static pressure ratio of 2.2 significantly increases the engine face turbulence levels.
13. A variable capture area inlet utilizing ramp system rotation with angle of attack causes less spillage drag at transonic conditions than an inlet which has a fixed capture area with angle of attack, thus producing more efficient operation at typical cruise conditions.

14. The change in inlet lift force accompanying inlet ramp rotation must be considered in the inlet/airframe integration in order to retain the full drag advantage of the variable capture area inlet.

McDonnell Aircraft Company
McDonnell Douglas Corporation
St. Louis, Missouri January 21, 1974
CONFIGURATION 1

FIGURE 2 - CONFIGURATION 1 INLET ANGLE NOMENCLATURE
CONFIGURATION 1

First Ramp Hinge Point
Diffuser Ramp Hinge Point

Tangent Lines
Engine Face Station

Duct Area Distribution

Summary of Dimensions
(Referenced to \(D_2 \)) \(D_2 = 5.90 \) inches or 14.986 cm. (Model Scale)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Lengths</td>
<td></td>
</tr>
<tr>
<td>(RL_1/D_2)</td>
<td>0.996</td>
</tr>
<tr>
<td>(RL_2/D_2)</td>
<td>0.606</td>
</tr>
<tr>
<td>(RL_3/D_2)</td>
<td>0.801</td>
</tr>
<tr>
<td>(RL_4/D_2)</td>
<td>2.210</td>
</tr>
<tr>
<td>Cowl Lip Radius</td>
<td>0.005</td>
</tr>
<tr>
<td>Inlet Height, (h/D_2) @ (\Delta_1 = 0^\circ)</td>
<td>0.933</td>
</tr>
<tr>
<td>@ (\Delta_1 = 5.6^\circ)</td>
<td>1.030</td>
</tr>
<tr>
<td>Inlet Width, (W/D_2)</td>
<td>0.736</td>
</tr>
<tr>
<td>Ramp System Length, (L/D_2) @ (\Delta_1 = 0^\circ)</td>
<td>2.064</td>
</tr>
<tr>
<td>@ (\Delta_1 = 5.6^\circ)</td>
<td>2.066</td>
</tr>
<tr>
<td>Sideplate Leading Edge Radius, (R_{sp}/D_2)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

First Ramp Angle Schedule Tested

<table>
<thead>
<tr>
<th>(M_0)</th>
<th>(\Delta_1 (^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1.6</td>
<td>2.8</td>
</tr>
<tr>
<td>2.2</td>
<td>5.6</td>
</tr>
<tr>
<td>2.5</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Note: 1 inch = 2.54 cm

FIGURE 3 - CONFIGURATION 1 INLET GEOMETRY DEFINITION
Configuration 1

\[D_2 = 5.9 \text{ in. or } 14.986 \text{ cm} \]
(Model Scale)

Cowl Lip Coordinates

<table>
<thead>
<tr>
<th>(\frac{x}{D_2})</th>
<th>(\frac{y}{D_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper Surface</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.009</td>
<td>0.007</td>
</tr>
<tr>
<td>0.028</td>
<td>0.001</td>
</tr>
<tr>
<td>0.056</td>
<td>-0.008</td>
</tr>
<tr>
<td>0.085</td>
<td>-0.018</td>
</tr>
<tr>
<td>0.113</td>
<td>-0.025</td>
</tr>
<tr>
<td>0.141</td>
<td>-0.033</td>
</tr>
<tr>
<td>0.170</td>
<td>-0.040</td>
</tr>
<tr>
<td>0.226</td>
<td>-0.055</td>
</tr>
<tr>
<td>0.283</td>
<td>-0.065</td>
</tr>
<tr>
<td>0.339</td>
<td>-0.077</td>
</tr>
<tr>
<td>0.396</td>
<td>-0.087</td>
</tr>
<tr>
<td>0.480</td>
<td>-0.099</td>
</tr>
<tr>
<td>0.565</td>
<td>-0.109</td>
</tr>
<tr>
<td>0.650</td>
<td>-0.118</td>
</tr>
<tr>
<td>0.734</td>
<td>-0.125</td>
</tr>
</tbody>
</table>

FIGURE 4 - CONFIGURATION 1 COWL LIP COORDINATES
Configuration 1

Fuselage

Second Ramp Bleed Tube

Third Ramp Bleed Tube

Boundary Layer Diverter

Folding Seals

Inboard Sideplate Profile

Second Ramp

936 Holes
0.028 in. Dia.
7% Porosity

2nd and 3rd Ramp Bleeds (Porous Plates)

2440 Holes
0.028 in. Dia.
7% Porosity

Third Ramp

Note: Dimensions are given in model scale, 1 inch = 2.54 cm.

Nominal Bleeds at 0.95 Critical Operating Condition (in terms of m_{bleed}/m_o):

<table>
<thead>
<tr>
<th>Bleed</th>
<th>$M_o = 0.9$</th>
<th>$M_o = 1.2$</th>
<th>$M_o = 1.6$</th>
<th>$M_o = 2.2$</th>
<th>$M_o = 2.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Ramp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.015</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>3rd Ramp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.025</td>
<td>0.021</td>
<td>0.022</td>
</tr>
<tr>
<td>Throat Slot</td>
<td>0.0</td>
<td>0.0</td>
<td>0.034</td>
<td>0.070</td>
<td>0.089</td>
</tr>
<tr>
<td>Sideplate</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.020*</td>
<td>--</td>
</tr>
</tbody>
</table>

* (Estimated)

FIGURE 5 - CONFIGURATION 1 INLET BLEED SYSTEM AND SIDEPLATE GEOMETRY
Configuration 1

Bypass Slot:
45\(^\circ\) Exit Angle,
Width = 0.36 in.
or 0.9144 cm

X/D\(_2\) = 0.86

Aft Bypass Slot Arrangement

Nominal Bypass Mass Flow Ratios
at 0.95 Critical Operation Condition
(in Terms of \(m_{BP}/m_0\)):

<table>
<thead>
<tr>
<th>(M_0)</th>
<th>0.9</th>
<th>1.2</th>
<th>1.6</th>
<th>2.2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{BP}/m_0)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.034</td>
<td>0.048</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Note: Dimensions are given in model scale,
1 inch = 2.54 cm.

FIGURE 6 - AFT BYPASS SYSTEM OF CONFIGURATION 1
FIGURE 7 - CONFIGURATION 2 INLET MODEL

Note: Inlet Angle Nomenclature is Defined in Figure 8.
CONFIGURATION 2

To determine ramp angles relative to waterline, apply this equation: \(\Delta' = \Delta - \rho \)

FIGURE 8 - CONFIGURATION 2 INLET ANGLE NOMENCLATURE
CONFIGURATION 2

Summary of Dimensions
(Referenced to D_2) $D_2 = 5.80$ inches or 14.732 cm. (Model Scale)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Lengths R_{L1}/D_2</td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td>R_{L2}/D_2</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td>R_{L3}/D_2</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td>R_{L4}/D_2</td>
<td>2.160</td>
<td></td>
</tr>
<tr>
<td>Cowl Lip Radius R_{LIP}/D_2</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Inlet Height, h/D_2</td>
<td></td>
<td>1.070</td>
</tr>
<tr>
<td>$\omega = 0^\circ (\Delta_1 = 7^\circ)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Width, W/D_2</td>
<td>0.747</td>
<td></td>
</tr>
<tr>
<td>Ramp System Length, L/D_2</td>
<td></td>
<td>1.955</td>
</tr>
<tr>
<td>$\omega = 0^\circ (\Delta_1 = 7^\circ)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 9 - CONFIGURATION 2 INLET GEOMETRY DEFINITION
Configuration 2

$D_2 = 5.8 \text{ in. or } 14.732 \text{ cm}$
(Model Scale)

Cowl Lip Coordinates

<table>
<thead>
<tr>
<th>x/D_2</th>
<th>y/D_2 Upper Surface</th>
<th>y/D_2 Lower Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.006</td>
<td>0.005</td>
<td>-0.009</td>
</tr>
<tr>
<td>0.017</td>
<td>0.002</td>
<td>-0.020</td>
</tr>
<tr>
<td>0.028</td>
<td>0</td>
<td>-0.029</td>
</tr>
<tr>
<td>0.051</td>
<td>-0.007</td>
<td>-0.045</td>
</tr>
<tr>
<td>0.084</td>
<td>-0.016</td>
<td>-0.066</td>
</tr>
<tr>
<td>0.124</td>
<td>-0.025</td>
<td>-0.085</td>
</tr>
<tr>
<td>0.169</td>
<td>-0.032</td>
<td>-0.102</td>
</tr>
<tr>
<td>0.225</td>
<td>-0.039</td>
<td>-0.118</td>
</tr>
<tr>
<td>0.281</td>
<td>-0.045</td>
<td>-0.133</td>
</tr>
<tr>
<td>0.337</td>
<td>-0.047</td>
<td>-0.143</td>
</tr>
<tr>
<td>0.393</td>
<td>-0.049</td>
<td>-0.151</td>
</tr>
<tr>
<td>0.449</td>
<td>-0.051</td>
<td>-0.157</td>
</tr>
<tr>
<td>0.506</td>
<td>-0.052</td>
<td>-0.163</td>
</tr>
<tr>
<td>0.562</td>
<td>-0.052</td>
<td>-0.167</td>
</tr>
</tbody>
</table>

FIGURE 10 - CONFIGURATION 2 COWL LIP COORDINATES
Nominal Bleeds at 0.95 Critical Operating Condition:
(in terms of \(\frac{m_{bleed}}{M_0} \))

(Estimated)

<table>
<thead>
<tr>
<th>Bleed</th>
<th>(M_0 = 1.6)</th>
<th>(M_0 = 2.2)</th>
<th>(M_0 = 2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Ramp</td>
<td>0.011</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>3rd Ramp</td>
<td>0.003</td>
<td>0.020</td>
<td>0.023</td>
</tr>
<tr>
<td>Throat Slot</td>
<td>0.054</td>
<td>0.062</td>
<td>0.065</td>
</tr>
<tr>
<td>Sideplate</td>
<td>-</td>
<td>0.020*</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURE 11 - CONFIGURATION 2 INLET BLEED SYSTEM AND SIDEPLATE GEOMETRY
FIGURE 12 - INLET/AIRFRAME DRAG MODEL
Configuration 3

Inlet Ramp Schedules

\(M_0 = 0.6, 0.9, \text{and } 1.2 \)

<table>
<thead>
<tr>
<th>(\alpha (^\circ))</th>
<th>(\Delta_1' (^\circ))</th>
<th>(\Delta_2' (^\circ))</th>
<th>(\Delta_3' (^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>0.0</td>
<td>7.8</td>
<td>9.6</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 13 - CONFIGURATION 3 INLET GEOMETRY DEFINITION
Configuration 4

Note: Inlet dimensions are the same as those given for Configuration 2 in Figure 9.

Inlet Ramp Schedules

$M_o = 0.6$ and 0.9

<table>
<thead>
<tr>
<th>$\alpha (^\circ)$</th>
<th>Rotation Angle, $\rho (^\circ)$</th>
<th>$\Delta_1' (^\circ)$</th>
<th>$\Delta_2' (^\circ)$</th>
<th>$\Delta_3' (^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>4</td>
<td>3</td>
<td>4.8</td>
<td>7.6</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>-4</td>
<td>-2.8</td>
<td>-0.5</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$M_o = 1.2$

<table>
<thead>
<tr>
<th>$\alpha (^\circ)$</th>
<th>Rotation Angle, $\rho (^\circ)$</th>
<th>$\Delta_1' (^\circ)$</th>
<th>$\Delta_2' (^\circ)$</th>
<th>$\Delta_3' (^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>3</td>
<td>4</td>
<td>5.9</td>
<td>8.8</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>1</td>
<td>2.8</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>-3</td>
<td>-1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>-4</td>
<td>-2.6</td>
<td>-0.2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 14 - CONFIGURATION 4 INLET GEOMETRY DEFINITION
Configurations 3 and 4

Second Ramp
Bleed Slots

Third Ramp
Bleed Slots

Throat Bleed
Exit Louvers

1.424 in.

0.030 in.

0.060 in.

0.060 in.

0.024 in.

Combined Throat Slot
Bleed Area = 0.18 in.²

228 Holes
0.035 in. Diameter
7% Porosity

Second Ramp

342 Holes
0.035 in. Diameter
7% Porosity

Notes:
• At transonic conditions the bleed rates are negligible.
• Dimensions are given in model scale, 1 in. = 2.54 cm

FIGURE 15 - INLET/AIRFRAME DRAG MODEL BLEED SYSTEM
Configuration 1

Engine Face Total Pressure Rake
(Steady State and Dynamic Total Pressures Measured)

FIGURE 16 - CONFIGURATION 1 INLET PERFORMANCE MODEL INSTRUMENTATION
Configuration 2

- First Ramp
 Static Pressure Taps

Buzz Transducer

Engine Face Total Pressure Rake
(Steady State and Dynamic Total Pressures Measured)

FIGURE 17 - CONFIGURATION 2 INLET PERFORMANCE MODEL INSTRUMENTATION
FIGURE 18 - INLET/AIRFRAME DRAG MODEL INSTRUMENTATION
FIGURE 19 - NET THRUST CHANGE DUE TO PRESSURE RECOVERY CHANGE
FIGURE 19 (Concl.) - NET THRUST CHANGE DUE TO PRESSURE RECOVERY CHANGE

\[\frac{\Delta \text{Net Thrust}}{F_N} = \frac{\Delta P_{T2}/P_{T0}}{P_{T2}/P_{T0}} \]

\(\Delta F_N \)

\(\Delta P_{T2}/P_{T0} \)

\(P_{T2}/P_{T0} \)

(b) \(M_0 = 2.2 \)

Altitude = 40,000 ft

Max. Power

\[M_0 = 2.2 \]
Configuration 1
First Ramp Rotation

\[\alpha = 0^\circ \]

With Alternate First Ramp Rotation

\[\alpha = 0^\circ \]

At Angle of Attack

At Angle of Attack with Alternate First Ramp Rotation

Configuration 2
Ramp System Rotation

\[\alpha = 0^\circ \]

With Alternate Ramp System Rotation

\[\alpha = 0^\circ \]

At Angle of Attack

At Angle of Attack with Alternate Ramp System Rotation

Note: Inlet capture area, \(A_c \), is directly proportional to inlet height, \(h \)

FIGURE 20 - EFFECT OF ANGLE OF ATTACK AND FIRST RAMP ANGLE ON INLET CAPTURE AREA
Transonic Conditions

<table>
<thead>
<tr>
<th>Mach Number</th>
<th>0.9 and 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of Attack (°)</td>
<td>Capture Area, A_c/A_{CO}</td>
</tr>
<tr>
<td>-2.5</td>
<td>0.822</td>
</tr>
<tr>
<td>0</td>
<td>0.909</td>
</tr>
<tr>
<td>4</td>
<td>1.046</td>
</tr>
<tr>
<td>8</td>
<td>1.176</td>
</tr>
<tr>
<td>12</td>
<td>1.304</td>
</tr>
<tr>
<td>16</td>
<td>1.421</td>
</tr>
<tr>
<td>20</td>
<td>1.537</td>
</tr>
<tr>
<td>24</td>
<td>1.637</td>
</tr>
<tr>
<td>26.25</td>
<td>1.698</td>
</tr>
</tbody>
</table>

Supersonic Conditions

<table>
<thead>
<tr>
<th>Mach Number</th>
<th>1.6</th>
<th>2.2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of Attack (°)</td>
<td>Capture Area, A_c/A_{CO}</td>
<td>Capture Area, A_c/A_{CO}</td>
<td>Capture Area, A_c/A_{CO}</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>1.003</td>
<td>1.126</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.103</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.088</td>
<td>1.169</td>
<td>1.192</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.235</td>
<td>1.258</td>
</tr>
<tr>
<td>7</td>
<td>1.186</td>
<td>1.300</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.283</td>
<td>1.361</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.375</td>
<td>1.422</td>
<td>1.445</td>
</tr>
<tr>
<td>16</td>
<td>1.462</td>
<td>1.510</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.575</td>
<td>1.621</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>1.641</td>
<td>1.684</td>
<td></td>
</tr>
</tbody>
</table>

Note: Reference Capture Area, A_{CO} determined at $\alpha = 0^°$, $\Delta_1 = 5.6^°$ is 6.51 ft2 (full scale) or 0.605 m2 [1 ft = 0.3048 m]

Inlet Capture Area, $A_c = h \times W$

(Minus Corrections for Cowl Lip Radius)

(a) Configuration 1

FIGURE 21 - INLET CAPTURE AREA VARIATIONS
Configuration 2

MO = 1.6

<table>
<thead>
<tr>
<th>α (°)</th>
<th>ρ (°)</th>
<th>(\frac{A_c}{A_{c0}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-2</td>
<td>0.936</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0.936</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.932</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>0.932</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>1.019</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>1.142</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>1.259</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>1.370</td>
</tr>
</tbody>
</table>

MO = 2.2

<table>
<thead>
<tr>
<th>α (°)</th>
<th>ρ (°)</th>
<th>(\frac{A_c}{A_{c0}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-4*</td>
<td>0.993</td>
</tr>
<tr>
<td>-4</td>
<td>0</td>
<td>0.873</td>
</tr>
<tr>
<td>-4</td>
<td>1.9</td>
<td>0.808</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>1.065</td>
</tr>
<tr>
<td>0</td>
<td>0*</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.001</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.064</td>
</tr>
<tr>
<td>4</td>
<td>4*</td>
<td>0.994</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1.120</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1.059</td>
</tr>
<tr>
<td>8</td>
<td>8*</td>
<td>0.994</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>1.020</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>1.143</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>1.259</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>1.370</td>
</tr>
</tbody>
</table>

MO = 2.2

<table>
<thead>
<tr>
<th>α (°)</th>
<th>ρ (°)</th>
<th>(\frac{A_c}{A_{c0}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3</td>
<td>1.090</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.094</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>1.088</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>1.090</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>1.142</td>
</tr>
</tbody>
</table>

Note: Reference Capture Area, \(A_{c0} \), determined at \(\alpha = 0^\circ, \Delta_1 = 7^\circ (\rho = 0^\circ) \) is 6.91 ft\(^2\) or 0.642 m\(^2\) [1 ft = 0.3048m]

*Denotes nominal ramp rotation when more than one value of ρ is given at a certain angle of attack

Inlet Capture Area, \(A_c = h \times W \)

(Minus Corrections for Cowl Lip Radius)

(b) Configuration 2

FIGURE 21 (Concl.) - INLET CAPTURE AREA VARIATIONS
Aircraft Drag Force, \(D = F_x \cos \alpha + F_y \sin \alpha - F_0 \)

Where \(F_x = F_{BAL_x} + F_{Exit} + F_{BLexit_x} + F_{Base} \)
\[+ F_{CAV_x} \]
And \(F_y = F_{BAL_y} + F_{CAV_y} + F_{BLexit_y} \)

FIGURE 22 - COMPONENT FORCES ACTING ON THE INLET/AIRFRAME
DRAG MODEL
Inlet/Airframe Drag Model

Inlet Lift Force, $F_L = F_{lny} \cos \alpha - F_{lnx} \sin \alpha$

Where $F_{lnx} = F_{Addx} + F_{Spx} + F_{Clx} + F_{Cu}$

And $F_{lny} = F_{Addy} + F_{Sp} + F_{Cy} - F_{Cu}$

Inlet Additive Force Components, $F_{Addx} = F_{R} + F_{I} - F_{o} \cos \alpha$

And $F_{Addy} = F_{R} - F_{I} - F_{o} \sin \alpha$

FIGURE 23 - COMPONENTS OF THE INLET LIFT FORCE ACTING ON THE INLET/AIRFRAME DRAG MODEL
FIGURE 24 - EFFECTS OF THIRD RAMP BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE 25 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE 26 - EFFECTS OF THROAT SLOT BLEED ON DIFFUSER FLOW PROPERTIES AT MACH 2.2
FIGURE 27 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE 27 (Concl.) - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

(b) $M_o = 2.2$
FIGURE 28 - COMPARISON OF THE EFFECTS OF FORWARD AND AFT BYPASS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

Note: Both cases have a throat bleed mass flow ratio of 0.022
FIGURE 29 - EFFECTS OF OPERATING MASS FLOW RATIO ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

(a) \(M_o = 1.6 \)
FIGURE 29 (Concl.) - EFFECTS OF OPERATING MASS FLOW RATIO ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

(b) \(M_0 = 2.2 \)
FIGURE 30 - EFFECT OF OPERATING MASS FLOW RATIO ON NET PROPULSIVE FORCE

(a) $M_o = 1.6$
FIGURE 30 (Concl.) - EFFECT OF OPERATING MASS FLOW RATIO ON NET PROPULSIVE FORCE

(b) $M_o = 2.2$
FIGURE 31 - EFFECTS OF INLET RAMP ANGLE VARIATIONS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

Note: Solid Symbols indicate minimum stable mass flow ratio (buzz).
M₀ = 2.2 \quad α = 3.0° \quad β = 0°

FIGURE 32 - EFFECTS OF INLET RAMP ANGLE VARIATIONS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT 0.95 CRITICAL POINT
FIGURE 33 - EFFECT OF INLET RAMP ANGLE VARIATIONS ON NET PROPULSIVE FORCE
FIGURE 34 - EFFECTS OF REDUCED SECOND AND THIRD RAMP ANGLES AT ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE 35 - EFFECT OF REDUCED RAMP ANGLES AT ANGLE OF ATTACK ON NET PROPULSIVE FORCE
CONFIGURATION 1

<table>
<thead>
<tr>
<th>M_0</th>
<th>α°</th>
<th>Δ_1°</th>
<th>Δ_2°</th>
<th>Δ_3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>-2.5 to 26.25</td>
<td>0</td>
<td>3.9</td>
<td>8.6</td>
</tr>
<tr>
<td>1.2</td>
<td>-2.5 to 26.25</td>
<td>0</td>
<td>3.9</td>
<td>8.6</td>
</tr>
<tr>
<td>1.6</td>
<td>4 to 22.5</td>
<td>2.8</td>
<td>6.7</td>
<td>12.5</td>
</tr>
<tr>
<td>2.2</td>
<td>0 to 22.5</td>
<td>5.6</td>
<td>13.5</td>
<td>22.3</td>
</tr>
<tr>
<td>2.5</td>
<td>3 to 13</td>
<td>7.0</td>
<td>15.7</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Ramp System Rotation Schedules are shown at each Mach Number in Figure 39.

CONFIGURATION 2

<table>
<thead>
<tr>
<th>M_0</th>
<th>α°</th>
<th>ρ°*</th>
<th>Δ_1°</th>
<th>Δ_2°</th>
<th>Δ_3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>-4 to 24</td>
<td>-2 to 11</td>
<td>7.0</td>
<td>10.4</td>
<td>14.8</td>
</tr>
<tr>
<td>2.2</td>
<td>-4 to 24</td>
<td>-4 to 11</td>
<td>7.0</td>
<td>15.5</td>
<td>24.6</td>
</tr>
<tr>
<td>2.5</td>
<td>0 to 16</td>
<td>-3 to 11</td>
<td>7.0</td>
<td>16.1</td>
<td>25.6</td>
</tr>
</tbody>
</table>

*Inlet Reference Line (Parallel to Aircraft Waterline at $\rho = 0^\circ$)

FIGURE 36 - ANGLE OF ATTACK RANGES AND INLET GEOMETRY VARIATIONS
FIGURE 37 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT TRANSONIC CONDITIONS
FIGURE 37 (Concl.) - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT TRANSONIC CONDITIONS

(b) $M_0 = 1.2$
FIGURE 38 - EFFECT OF ANGLE OF ATTACK ON MAXIMUM MASS FLOW RATIO AT TRANSONIC CONDITIONS
FIGURE 39 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS
FIGURE 39 (Cont'd) - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPERSONIC CONDITIONS
FIGURE 39 (Concl.) - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS
FIGURE 40 - EFFECT OF ANGLE OF ATTACK ON MAXIMUM MASS FLOW RATIO AT SUPersonic CONDITIONS
CONFIGURATION 1

First Ramp Hinge Point

$\Delta_1 = 5.6^\circ$
$\Delta_2 = 13.5^\circ$
$\Delta_3 = 22.3^\circ$

(b) $M_0 = 2.2$

CONFIGURATION 2

Ramp System Hinge Point

$\Delta_1 = 7.0^\circ$
$\Delta_2 = 15.5^\circ$
$\Delta_3 = 24.6^\circ$

See Figure 39 (b) for Rotation Schedule

FIGURE 40 (Cont'd) - EFFECT OF ANGLE OF ATTACK ON MAXIMUM MASS FLOW RATIO AT SUPersonic CONDITIONS
FIGURE 40 (Concl.) - EFFECT OF ANGLE OF ATTACK ON MAXIMUM MASS FLOW RATIO AT SUPersonic CONDITIONS
FIGURE 41 - EFFECTS OF ANGLE OF ATTACK ON STABLE RANGE

\[\beta = 0^\circ \]

Stable Range = \frac{(m_I/m_0)_{\text{critical}} - (m_I/m_0)_{\text{buzz}}}{(m_I/m_0)_{\text{critical}}}

See Figure 39(a) for Rotation Schedule

CONFIGURATION 2

M_0 = 1.6
\Delta_1 = 7.0^\circ
\Delta_2 = 10.4^\circ
\Delta_3 = 14.8^\circ

M_0 = 2.2
\Delta_1 = 7.0^\circ
\Delta_2 = 15.5^\circ
\Delta_3 = 24.6^\circ

See Figure 39(b) for Rotation Schedule

FIGURE 41 - EFFECTS OF ANGLE OF ATTACK ON STABLE RANGE
CONFIGURATION 1

\[M_0 = 2.2 \quad \beta = 0^\circ \]

\[
\begin{align*}
\Delta F_{\text{N}} &= \Delta F_{\text{N}} \times 100 \text{ percent} \\
0 &< \alpha < 16.0 \text{ degrees}
\end{align*}
\]

\[
\begin{align*}
\Delta_1 &= 5.6^\circ \\
\Delta_2 &= 13.5^\circ \\
\Delta_3 &= 22.3^\circ
\end{align*}
\]

(a) Configuration 1

FIGURE 42 - EFFECT OF ANGLE OF ATTACK ON NET PROPULSIVE FORCE
\[M_0 = 2.2 \quad \beta = 0^\circ \]

FIGURE 42 (Concl.) - EFFECT OF ANGLE OF ATTACK ON NET PROPULSIVE FORCE

- Configuration 2
 - \(\Delta_1 = 7.0^\circ \)
 - \(\Delta_2 = 15.5^\circ \)
 - \(\Delta_3 = 24.6^\circ \)

See Figure 39 (b) for Rotation Schedule

(b) Configuration 2
CONFIGURATION 1

<table>
<thead>
<tr>
<th>M_0</th>
<th>$\alpha (^\circ)$</th>
<th>$\beta (^\circ)$</th>
<th>$\Delta_1 (^\circ)$</th>
<th>$\Delta_2 (^\circ)$</th>
<th>$\Delta_3 (^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0 to 24</td>
<td>-6 to +6</td>
<td>0</td>
<td>3.9</td>
<td>8.6</td>
</tr>
<tr>
<td>1.2</td>
<td>0 to 24</td>
<td>6</td>
<td>0</td>
<td>3.9</td>
<td>8.6</td>
</tr>
<tr>
<td>1.6</td>
<td>4 to 16</td>
<td>4, 8</td>
<td>2.8</td>
<td>6.7</td>
<td>12.5</td>
</tr>
<tr>
<td>2.2</td>
<td>0 to 13</td>
<td>4</td>
<td>5.6</td>
<td>13.5</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td>4, 7</td>
<td>8</td>
<td>5.6</td>
<td>13.5</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td>4, 7, 9</td>
<td>-8</td>
<td>5.6</td>
<td>13.5</td>
<td>22.3</td>
</tr>
<tr>
<td>2.5</td>
<td>3, 7</td>
<td>0, 4, 8</td>
<td>7.0</td>
<td>15.7</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Note: Inlet geometries for $\beta = 0^\circ$ are given in Figure 36.

CONFIGURATION 2

CONFIGURATION 1

First Ramp Hinge Point

CONFIGURATION 2

Ramp System Hinge Point

CONFIGURATION 2

<table>
<thead>
<tr>
<th>M_0</th>
<th>$\alpha (^\circ)$</th>
<th>$\beta (^\circ)$</th>
<th>$\rho (^\circ)$</th>
<th>$\Delta_1 (^\circ)$</th>
<th>$\Delta_2 (^\circ)$</th>
<th>$\Delta_3 (^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>0</td>
<td>3, 6</td>
<td>2</td>
<td>7.0</td>
<td>10.4</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>-4</td>
<td>3</td>
<td>-4</td>
<td>7.0</td>
<td>15.5</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>7.0</td>
<td>16.1</td>
<td>25.6</td>
</tr>
</tbody>
</table>

FIGURE 43 - SIDESLIP CONDITIONS AND INLET GEOMETRY VARIATIONS
FIGURE 44 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT TRANSONIC CONDITIONS
FIGURE 44 (Concl.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT TRANSONIC CONDITIONS
FIGURE 45 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS
FIGURE 45(Cont’d) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS
FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

(c) $M_o = 2.5$
FIGURE 45 (Cont'd.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPERSONIC CONDITIONS
FIGURE 45 (Cont'd.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$

FIGURE 45 (Cont’d.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS

$M_0 = 2.2$
FIGURE 45 (Concl.) - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SUPersonic CONDITIONS
FIGURE 46 - EFFECT OF ANGLE OF SIDESLIP ON STABLE RANGE

Ramp Rotation Schedule

<table>
<thead>
<tr>
<th>Schedule</th>
<th>α (°)</th>
<th>θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

CONFIGURATION 2

Δ₁ = 7.0°
Δ₂ = 15.5°
Δ₃ = 24.6°
CONFIGURATION 2

$M_D = 2.2 \quad \beta = 0^\circ$

FIGURE 47 - EFFECTS OF FORWARD FUSELAGE ON FLOW ANGULARITY AT INLET
FIGURE 48 - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE 48 (Concl.) - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE 49 - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION AT SIDESLIP
Terminal Shock Strength = p_4/p_3 (Static Pressure Ratio)

FIGURE 50 - TERMINAL SHOCK STRENGTH
FIGURE 51 - EFFECTS OF TERMINAL SHOCK STRENGTH AND OBLIQUE SHOCK SYSTEM POSITION ON INLET STABLE RANGE
FIGURE 52 - EFFECTS OF TERMINAL SHOCK STRENGTH ON TURBULENCE AND STEADY STATE DISTORTION
SIDESLIP CONDITIONS

Theoretical Terminal Shock Strength - P_4/P_3

FIGURE 52 (Concl.) - EFFECTS OF TERMINAL SHOCK STRENGTH ON TURBULENCE AND STEADY STATE DISTORTION

(b) Sideslip Conditions ($\beta = 3^\circ$, or 6° Leeward Sideslip)
Figure 53 - Effect on Drag of Varying Inlet Capture Area with Angle of Attack

Note: Data obtained at a typical transonic inlet operating mass flow ratio. (Approx. 80% of Maximum Inlet Flow)

Config. 3 (Fixed with Angle of Attack)
Config. 4 (Rotating Ramp System)

ΔC_D/C_D

Aircraft Drag Coefficient Increment, ΔC_D

M_o

- 0.6
- 0.9
- 1.2

Fuselage Angle of Attack, \(\alpha \) - degrees

0 4 8 12 16 20

0.002 0.004 0.006 0.008 0.010 0.012

GP73-0449.75
FIGURE 54 COMPARISON OF INLET LIFT COEFFICIENTS

(a) $M_0 = 0.6$

COMPARISON OF INLET LIFT COEFFICIENTS

- Symbol: 3
 - Configuration: 3
 - Type: Rotating First Ramp (Fixed with Angle of Attack)

- Symbol: 4
 - Configuration: 4
 - Type: Variable Capture Area (Rotating Ramp System)

Fuselage Angle of Attack, α - deg

Inlet Lift Coefficient, $C_{L, \text{Inlet}}$

- $C_{L, \text{Inlet}} = \frac{F_L}{\rho \alpha A_c}$
FIGURE 54 (Cont'd) - COMPARISON OF INLET LIFT COEFFICIENTS
$\alpha = \theta - \phi$

$\theta = 0°$ to $12°$

$\phi = 0°$ to $20°$

$M_o = 1.2$

FIGURE 54(Concl.) - COMPARISON OF INLET LIFT COEFFICIENTS
1.2

Negative Pitching Moment - C_m

Center of Gravity

FIGURE 55 - COMPARISON OF AIRCRAFT PITCHING MOMENTS

$M_0 = 0.9$

Symbol Configuration

- 3 Rotating First Ramp (Fixed with Angle of Attack)
- 4 Variable Capture Area - Rotating Ramp System

Aircraft Pitching Moment Coefficient - C_m

Aircraft Lift Coefficient - C_L

FIGURE 55 - COMPARISON OF AIRCRAFT PITCHING MOMENTS
APPENDIX A
Performance Data

Presented herein are the pressure recovery, turbulence, and steady state distortion data used in the inlet performance analyses discussed in this report. The data plots are separated into sections corresponding to each analysis as listed below.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Third Ramp Bleed Variation</td>
<td>A-1 through A-4</td>
</tr>
<tr>
<td>Effects of Throat Slot Bleed Variation</td>
<td>A-5 through A-11</td>
</tr>
<tr>
<td>Effects of Bypass Flow Variation</td>
<td>A-12 through A-17</td>
</tr>
<tr>
<td>Effects of Operating Mass Flow Ratio Variation</td>
<td>A-18 through A-19</td>
</tr>
<tr>
<td>Effects of Inlet Ramp Angle Variations</td>
<td>A-20 through A-23</td>
</tr>
<tr>
<td>Effects of Angle of Attack</td>
<td>A-24 through A-84</td>
</tr>
<tr>
<td>Effects of Sideslip</td>
<td>A-85 through A-144</td>
</tr>
<tr>
<td>Effects of Ramp System Rotation</td>
<td>A-145 through A-150</td>
</tr>
</tbody>
</table>
FIGURE A-1 - EFFECTS OF THIRD RAMP BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-2: EFFECTS OF THIRD RAMP BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-3: EFFECTS OF THIRD RAMP BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-4 - EFFECTS OF THIRD RAMP BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-5 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-6 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-7 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-8 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

\[M_0 = 2.2 \quad \alpha = 4^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.5^\circ \quad \Delta_3 = 24.6^\circ \quad \rho = 4^\circ \]

\[\frac{m_{TB}}{m_0} = 0.028 \]

FIGURE A-9 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-10 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-11 - EFFECTS OF THROAT SLOT BLEED ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_o = 1.6 \quad \alpha = 4.0^\circ \quad \beta = 0^\circ \quad \Delta_1 = 2.8^\circ \quad \Delta_2 = 6.7^\circ \quad \Delta_3 = 12.5^\circ \]

- Inlet Total Pressure Recovery \(\frac{P_{T_2}}{P_{T_0}} \)
- Turbulence \(\frac{\Delta P_{\text{rms}}}{P_{T_2}} \)
- Distortion \(D_2 \)

FIGURE A-12 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-13 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-14 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-15 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

$M_0 = 2.2$ $\alpha = 4^\circ$ $\beta = 0^\circ$ $\Delta_1 = 5.6^\circ$ $\Delta_2 = 13.5^\circ$ $\Delta_3 = 22.3^\circ$

$\frac{P_{T2}}{P_{T0}}$

Inlet Total Pressure Recovery

$\frac{\Delta P_{rms}}{P_{T2}}$

Turbulence

D_2

Distortion

$m_{BP}/m_0 = 0.0$

Mass Flow Ratio - m/m_0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.6 0.7 0.8 0.9 1.0
FIGURE A-16 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 2.2 \quad \alpha = 4^\circ \quad \beta = 0^\circ \quad \Delta_1 = 5.6^\circ \quad \Delta_2 = 13.5^\circ \quad \Delta_3 = 22.3^\circ \]

\[\frac{m_{BP}}{m_0} = 0.162 \]

![Graphs showing effects of bypass flow on pressure recovery, turbulence, and distortion.](image)

FIGURE A-17 - EFFECTS OF BYPASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-18 - EFFECTS OF OPERATING MASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 2

\[M_0 = 1.6 \quad \alpha = 4^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 10.4^\circ \quad \Delta_3 = 14.8^\circ \quad \rho = 6^\circ \]
FIGURE A-19: EFFECTS OF OPERATING MASS FLOW ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-20 - EFFECTS OF INLET RAMP ANGLE VARIATIONS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

\[M_o = 2.2 \quad \alpha = 3^\circ \quad \beta = 0^\circ \quad \Delta 1 = 5.6^\circ \quad \Delta 2 = 10.2^\circ \quad \Delta 3 = 22.3^\circ \]
FIGURE A-21 - EFFECTS OF INLET RAMP ANGLE VARIATIONS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-22 - EFFECTS OF INLET RAMP ANGLE VARIATIONS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 2.2 \quad \alpha = 9.0^\circ \quad \beta = 0^\circ \quad \Delta_1 = 5.6^\circ \]

\[\Delta_2 = 13.5^\circ, \Delta_3 = 22.3^\circ \]
\[\Delta_2 = 10.2^\circ, \Delta_3 = 17.4^\circ \]

FIGURE A-23 - EFFECTS OF INLET RAMP ANGLE VARIATIONS ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-24: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-25: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-26: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-27 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

\(M_0 = 0.9 \quad \alpha = 8^\circ \quad \beta = 0^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \)
FIGURE A-28 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-29: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-30 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

$M_0 = 0.9 \quad \alpha = 20^\circ \quad \beta = 0^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.8^\circ$
FIGURE A-31: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

$M_0 = 0.9 \quad \alpha = 26.25^\circ \quad \beta = 0^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ$

FIGURE A-32 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-33 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 1.2 \quad \alpha = 0^\circ \quad \beta = 0^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \]

FIGURE A-34 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-35 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-36 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-37 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-38 · EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 1.2 \quad \alpha = 20^\circ \quad \beta = 0^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \]

FIGURE A-39: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-40 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-41: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-42 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-43: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-44 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-45 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-46 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-47. EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 1.6 \quad \alpha = 22.5^\circ \quad \beta = 0^\circ \quad \Delta_1 = 2.8^\circ \quad \Delta_2 = 6.7^\circ \quad \Delta_3 = 12.5^\circ \]

FIGURE A-48: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-49 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-50: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-51 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-52- EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\(M_0 = 2.2 \quad \alpha = 9^\circ \quad \beta = 0^\circ \quad \Delta_1 = 5.6^\circ \quad \Delta_2 = 13.5^\circ \quad \Delta_3 = 22.3^\circ \)

FIGURE A-53 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-54: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-55 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-56: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 2.2 \quad \alpha = 20^\circ \quad \beta = 0^\circ \quad \Delta_1 = 5.6^\circ \quad \Delta_2 = 13.5^\circ \quad \Delta_3 = 22.3^\circ \]

FIGURE A-57 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-58 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-59: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-60 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-61 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

<table>
<thead>
<tr>
<th>Mass Flow Ratio m_i/m_o</th>
<th>P_{T2}/P_{T0}</th>
<th>Turbulence $\Delta P_{rms}/P_{T2}$</th>
<th>Distortion D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>0.9</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIGURATION 1

$M_o = 2.5 \quad \alpha = 7^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.7^\circ \quad \Delta_3 = 25.5^\circ$
FIGURE A-62 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-63 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-64 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-65 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-66 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-67 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-68 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-69 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-70 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-71. EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-72 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-73: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 2

$M_o = 2.2 \quad \alpha = 2^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.5^\circ \quad \Delta_3 = 24.6^\circ \quad \rho = 2^\circ$
FIGURE A-74: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-75 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-76: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-77: EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-78 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-79 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-80 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-81 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-82 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-83 - EFFECTS OF ANGLE OF ATTACK ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
Figure A-84: Effects of Angle of Attack on Pressure Recovery, Turbulence, and Distortion

Configuration 2

\[M_0 = 2.5 \quad \alpha = 16^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 16.1^\circ \quad \Delta_3 = 25.6^\circ \quad \rho = 11^\circ \]

Inlet Total Pressure Recovery: \(\frac{P_{T_2}}{P_{T_0}} \)

Turbulence: \(\frac{\Delta P_{\text{rms}}}{P_{T_2}} \)

Distortion: \(D_2 \)

Mass Flow Ratio: \(\frac{m_i}{m_0} \)
FIGURE A-85 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-86 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1
M₀ = 0.9 α = 0° β = 3° Δ₁ = 0° Δ₂ = 3.9° Δ₃ = 8.6°
FIGURE A-87 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-88 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-89 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-90 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-91 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

\[\frac{P_2}{P_0} \]

\[\frac{\Delta P_{rms}}{P_{12}} \]

\[D_2 \]

\[\frac{m_v}{m_0} \]

\[M_0 = 0.9 \quad \alpha = 8^\circ \quad \beta = -6^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \]
FIGURE A-92 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-93 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-94 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-95 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-96 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_o = 0.9 \quad \alpha = 24^\circ \quad \beta = -6^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \]

FIGURE A-97: EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 0.9 \quad \alpha = 24^\circ \quad \beta = 3^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \]

FIGURE A-98 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A.99 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

\[M_0 = 0.9 \quad \alpha = 24^\circ \quad \beta = 6^\circ \quad \Delta_1 = 0^\circ \quad \Delta_2 = 3.9^\circ \quad \Delta_3 = 8.6^\circ \]
FIGURE A-100 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-101 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-102- EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-103: EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-104 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 1.6 \quad \alpha = 4^\circ \quad \beta = 4^\circ \quad \Delta_1 = 2.8^\circ \quad \Delta_2 = 6.7^\circ \quad \Delta_3 = 12.5^\circ \]

FIGURE A-105 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-106 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-107 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-108 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-109 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

\[M_0 = 1.6 \quad \alpha = 10^\circ \quad \beta = 4^\circ \quad \Delta_1 = 2.8^\circ \quad \Delta_2 = 6.7^\circ \quad \Delta_3 = 12.5^\circ \]
FIGURE A-110 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-111 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

$M_0 = 1.6 \quad \alpha = 13^\circ \quad \beta = 8^\circ \quad \Delta_1 = 2.8^\circ \quad \Delta_2 = 6.7^\circ \quad \Delta_3 = 12.5^\circ$

FIGURE A-112 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-113 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-114: EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-115. EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-116 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 2.2 \quad \alpha = 4^\circ \quad \beta = 4^\circ \quad \Delta_1 = 5.6^\circ \quad \Delta_2 = 13.5^\circ \quad \Delta_3 = 22.3^\circ \]

FIGURE A-117 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

Inlet Total Pressure Recovery \(\frac{P_{T2}}{P_{T0}} \)

\(\Delta P_{rms} \) - Turbulence \(\frac{\Delta P_{rms}}{P_{T2}} \)

Distortion \(D_2 \)

Mass Flow Ratio \(\frac{m_i}{m_0} \)
FIGURE A-118 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 2.2 \quad \alpha = 7^\circ \quad \beta = -8^\circ \quad \Delta_1 = 5.6^\circ \quad \Delta_2 = 13.5^\circ \quad \Delta_3 = 22.3^\circ \]

FIGURE A-119 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-120 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

$M_0 = 2.2 \quad \alpha = 7^\circ \quad \beta = 8^\circ \quad \Delta_1 = 5.6^\circ \quad \Delta_2 = 13.5^\circ \quad \Delta_3 = 22.3^\circ$

FIGURE A-121 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-122 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-123 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-124. EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 1

\[M_0 = 2.5 \quad \alpha = 3^\circ \quad \beta = 4^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.7^\circ \quad \Delta_3 = 25.5^\circ \]

FIGURE A-125 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-126. EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-127 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

CONFIGURATION 1

\[M_0 = 2.5 \quad \alpha = 7^\circ \quad \beta = 4^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.7^\circ \quad \Delta_3 = 25.5^\circ \]
FIGURE A-128 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

\(M_0 = 1.6 \quad \alpha = 0^\circ \quad \beta = 3^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 10.4^\circ \quad \Delta_3 = 14.8^\circ \quad \rho = 2^\circ \)

![Graphs showing effects of angle of sideslip on pressure recovery, turbulence, and distortion](image)

FIGURE A-129- EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-130 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-131 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

$M_0 = 1.6 \quad \alpha = 4^\circ \quad \beta = 6^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 10.4^\circ \quad \Delta_3 = 14.8^\circ \quad \rho = 6^\circ$

FIGURE A-132 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

\[M_0 = 1.6 \quad \alpha = 8^\circ \quad \beta = 3^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 10.4^\circ \quad \Delta_3 = 14.8^\circ \quad \rho = 10^\circ \]

\[\text{FIGURE A-133 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION} \]
CONFIGURATION 2

\[M_0 = 1.6 \quad \alpha = 8^\circ \quad \beta = 6^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 10.4^\circ \quad \Delta_3 = 14.8^\circ \quad \rho = 10^\circ \]

FIGURE A-134 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

$M_0 = 1.6 \quad \alpha = 16^\circ \quad \beta = 3^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 10.4^\circ \quad \Delta_3 = 14.8^\circ \quad \rho = 11^\circ$

FIGURE A-135 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-136: EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-137: EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

$M_0 = 2.2 \quad \alpha = 0^\circ \quad \beta = 3^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.5^\circ \quad \Delta_3 = 24.6^\circ \quad \rho = 0^\circ$

FIGURE A-138 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

\[M_0 = 2.2 \quad \alpha = 2^\circ \quad \beta = 3^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.5^\circ \quad \Delta_3 = 24.6^\circ \quad \rho = 2^\circ \]

FIGURE A-139. EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-140- EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

\[M_o = 2.2 \quad \alpha = 8^\circ \quad \beta = 3^\circ \quad \Delta 1 = 7^\circ \quad \Delta 2 = 15.5^\circ \quad \Delta 3 = 24.6^\circ \quad \rho = 8.0^\circ \]

FIGURE A-141 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION

GP73-0449-76

240
FIGURE A-142: EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-143- EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

\[M_0 = 2.2 \quad \alpha = 8^\circ \quad \beta = 6^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.5^\circ \quad \Delta_3 = 24.6^\circ \quad \rho = 8^\circ \]

![Graph showing effects of sideslip on pressure recovery, turbulence, and distortion](image)

FIGURE A-144 - EFFECTS OF ANGLE OF SIDESLIP ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

$M_0 = 2.2 \quad \alpha = -4^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 15.5^\circ \quad \Delta_3 = 24.6^\circ$

FIGURE A-145: EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-146 - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-147 - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-148 - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
FIGURE A-149 - EFFECTS OF RAMP SYSTEM ROTATION ON PRESSURE RECOVERY, TURBULENCE, AND DISTORTION
CONFIGURATION 2

$M_0 = 2.5 \quad \alpha = 4^\circ \quad \beta = 0^\circ \quad \Delta_1 = 7^\circ \quad \Delta_2 = 16.1^\circ \quad \Delta_3 = 25.6^\circ$

FIGURE A.150 - EFFECTS OF RAMP SYSTEM ROTATION ON INLET TOTAL PRESSURE RECOVERY, TURBULENCE, AND DISTORTION ON MASS FLOW RATIO $\frac{n}{m_0}$
APPENDIX B
BLEED/BYPASS DRAG CALCULATION PROCEDURE

The second and third ramp bleed drag, throat slot bleed drag, and bypass drag used to evaluate the effect of selected design variables on net propulsive force are analytically determined. The procedure used to calculate these bleed and bypass drags is outlined below.

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_v</td>
<td>Thrust coefficient</td>
</tr>
<tr>
<td>D</td>
<td>Drag force</td>
</tr>
<tr>
<td>F</td>
<td>Thrust</td>
</tr>
<tr>
<td>g</td>
<td>Standard gravitational acceleration</td>
</tr>
<tr>
<td>m</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>P_T</td>
<td>Total pressure</td>
</tr>
<tr>
<td>p</td>
<td>Static pressure</td>
</tr>
<tr>
<td>q</td>
<td>Dynamic pressure - $\frac{1}{2} \gamma \rho_0 M_o^2$</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>T</td>
<td>Static temperature</td>
</tr>
<tr>
<td>T_T</td>
<td>Total temperature</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
</tr>
<tr>
<td>$\frac{w \sqrt{\theta}}{\delta_2}$</td>
<td>Corrected mass flow rate</td>
</tr>
<tr>
<td>γ</td>
<td>Ratio of specific heats</td>
</tr>
<tr>
<td>δ_2</td>
<td>Ratio of average duct total pressure to sea level standard pressure</td>
</tr>
<tr>
<td>θ</td>
<td>Ratio of duct temperature to sea level standard temperature</td>
</tr>
<tr>
<td>ϕ</td>
<td>Exit angle of mass flow</td>
</tr>
</tbody>
</table>
APPENDIX B

Subscripts

exit Bleed/bypass exit conditions
ISEN Conditions following isentropic expansion to ambient pressure
0 Freestream conditions
2 Engine face conditions

The bleed and bypass drags are evaluated by determining the loss in momentum between the inlet and exit of each system. Thus, in general,

\[D_{\text{bleed or bypass}} = mV_o - F_{\text{exit}} \]

Rearranging the equation results in the following:

\[\frac{D}{q_o} \frac{w}{\delta_2} = \left(\frac{P}{q_o} \right) \left(\frac{P}{P_o} \right) \left(\frac{\sqrt{\gamma R (1.55)}}{144 \ g} \right) \left(\frac{P_{T2}}{P_{T0}} \right) \left[M_o \sqrt{\frac{T}{T_o}} - M_{\text{ISEN}} \sqrt{\frac{T}{T_{\text{ISEN}}}} \right] \]

where \(C_V \) is the flush exit thrust coefficient from References B-1 and B-2 based on isentropic expansion to ambient pressure.

For ease of calculation, the equation can be reduced to the form:

\[\frac{D}{q_o} \frac{w}{\delta_2} \text{ at exit} = F_1(M_o) \left(\frac{P_{T2}}{P_{T0}} \right) \left[F_2(M_o) - F_3 \left(\frac{P_{\text{exit}}}{P_o}, M_o \right) \cos \phi \cos 15^\circ \right] \]

@ operating point

where \(F_1(M_o) = \left(\frac{P}{q_o} \right) \left(\frac{P}{P_o} \right) \left(\frac{\sqrt{\gamma R (1.55)}}{g \ 144} \right) \)

\[F_2(M_o) = M_o \sqrt{\frac{T}{T_o}} \]

and

\[F_3 \left(\frac{P_{\text{exit}}}{P}, M_o \right) = M_{\text{ISEN}} \sqrt{\frac{T}{T_{\text{ISEN}}}} \ ISEN \cdot C_V \]

\(\phi = \) exit angle of mass flow, degrees
(referenced to nominal 15° exit angle)
APPENDIX B

The values of F_1, F_2, and F_3 are obtained from the curves shown in Figures B-1 through B-6.

For the bleed/bypass drag calculations performed in the inlet performance analyses, the exit angle of the ramp bleeds is assumed to be 30° and the exit angle for the bypass flow, both forward and aft, is assumed to be 45°.

FIGURE B-2: \(F_1(M_o) \) vs \(M_o \)

\[
F_1(M_o) = \frac{(P/q)_o (P_T/P)_o \sqrt{T R (1.55)}}{(g) (144)}
\]
FIGURE B-3 · $F_2(M_o)$ vs M_o
APPENDIX B

FIGURE B-4 - $F_2(M_o) \text{ vs } M_o$

$F_2(M_o) = M_o \sqrt{T/T_o}$
FIGURE B-5: $F_3 \left(\frac{P_T}{P_o} , M_o \right)$ vs $\frac{P_T}{P_o}$

\[F_3 (P_T/P_o, M_o) = M_{isen} \sqrt{ (T/T_{isen})_{isen} C_V } \]
FIGURE B-6 - $F_3 \left(\frac{P_{Te}}{P_o}, M_o \right)$ vs $\frac{P_{Te}}{P_o}$
REFERENCES - APPENDIX B

APPENDIX C

INLET DRAG ANALYSIS METHOD

Inlet spillage drag used to evaluate the effect of selected design variables on net propulsive force is analytically determined at supersonic conditions. The method of computing spillage drag by extending the technique developed in References C-1 through C-4 to two-dimensional inlets with pre-compression is described below.

SYMBOLS

- A: Area
- B: \(\frac{(A*/A)_o}{(P_t/P_o)} \)
- C_d: Drag coefficient, D/qA
- D: Drag force
- h: Height
- K: \(\frac{Q + 8 \sin \theta}{1 - 8 \cos \theta} \)
- L: Normal shock wave distance upstream of cowl lip
- M: Mach number
- m: Mass flow rate
- P: Pressure
- Q: \(\frac{\tan \theta_s - \tan \theta_o}{\cot \mu \frac{1}{ts} - \frac{1}{to}} \)
- q: Dynamic pressure
- t: $[\tan \phi - \tan \mu]^{1/2}$
- V: Velocity
- W: Inlet width
- γ: Ratio of specific heats
- δ: Compression surface angle
- Δ: Increment
SYMBOLS (Cont'd) - APPENDIX C

\[\begin{align*}
\eta & \quad \text{Maximum deflection angle for attached shock waves in plane flow} \\
\theta & \quad \text{Angle} \\
u & \quad \text{Mach angle (} = \sin^{-1}[1/M]) \\
v & \quad \text{Locus angle} \\
\rho & \quad \text{Density} \\
\phi & \quad \text{Local shock (wave) angle} \\
\end{align*} \]

Subscripts

- \text{add} \quad \text{Additive} \\
- \text{c} \quad \text{Capture} \\
- \text{i} \quad \text{Refers to conditions at the inlet cowl lip plane} \\
- \text{in} \quad \text{Inlet} \\
- \lambda \quad \text{Locus} \\
- \text{m} \quad \text{Maximum capture} \\
- \text{ns} \quad \text{Normal shock} \\
- \text{S} \quad \text{Sonic} \\
- \text{t} \quad \text{Total} \\
- \text{VSI} \quad \text{Vortex sheet ingestion} \\
- \text{W} \quad \text{Wave} \\
- \text{o} \quad \text{Freestream conditions} \\
- 1, 2, 3 \quad \text{Refers to regions behind the first, second, and third oblique shocks, respectively} \\

In this discussion inlet drag is defined as inlet additive drag plus the change in cowl drag from maximum air capture conditions. In the procedure the additive drag is calculated at supersonic conditions and maximum capture, and then an inlet drag slope is calculated for reduced capture ratios. This slope is not constant with capture ratio but changes as the terminal normal shock moves upstream with reducing capture.
The additive drag at maximum capture conditions with all shock waves attached is illustrated in Figure C-1. The additive drag is calculated by pressure integration along the stagnation streamline.

\[D_{\text{add}} = [(p_1-P_0)\Delta h_1 + (p_2-P_0)\Delta h_2 + (p_3-P_0)\Delta h_3]W \]

where: \(p_1, p_2, \) and \(p_3 \) are the static pressures behind the respective shock waves.

The calculation procedure for the slope of the drag curve at reduced capture ratios with detached shock waves is given in References C-1, C-2, C-3, and C-4. This method can best be presented by first deriving the equations for a pitot inlet and then extending the analysis to inlets with pre-compression.

Pitot Intakes

Consider a pitot inlet in a supersonic flow field as illustrated in Figure C-2. Assuming the subsonic flow behind the shock wave is potential, incompressible flow:

\[D'_{\text{add}} + D'_{\text{cowl}} = 0 \]

where: prime refers to the subsonic flow problem.

\[D'_{\text{cowl}} = -D'_{\text{add}} \quad \text{(C-1)} \]

Now:

\[\Delta D'_{\text{cowl}} = D'_{\text{cowl}} - D'_{\text{cowl}}_m \]

thus:

\[\Delta D'_{\text{cowl}} = -(p_i-p_w)A_c - (\rho AV^2)_i + (\rho AV^2)_w \]

Since \(D'_{\text{cowl}} = 0 \) using the same reasoning as for Equation (C-1), the complete flow problem can be considered.

In equation form:

\[D_{\text{in}} = D_{\text{cowl}} + D_{\text{add}} \]

\[= \Delta D_{\text{cowl}} + D_{\text{cowl}}_m + D_{\text{add}} \]

assuming that \(\Delta D_{\text{cowl}} = \Delta D'_{\text{cowl}} \)

\[D_{\text{in}} = D_{\text{cowl}}_m - (p_i-p_w)A_c - (\rho AV^2)_i + (\rho AV^2)_w \]

\[+ (p_i-p_o)A_c + (\rho AV^2)_i - (\rho AV^2)_o \]

\[= D_{\text{cowl}}_m + (p_w-p_i)A_c + (\rho V^2)_{i_w} - \rho V^2_{i_w} A_o \quad \text{(C-3)} \]

From a momentum balance across the shock wave

\[A_o P_o + \rho AV^2|_o = A_w P_w + \rho AV^2|_w \quad \text{(C-4)} \]
APPENDIX C

FIGURE C-1 - ADDITIVE DRAG AT MAXIMUM AIR CAPTURE CONDITIONS

FIGURE C-2 - PITOT INLET IN SUPersonic FLOW FIELD

GP72-0979-187
APPENDIX C

Noting that $A_W = A_o$ and substituting Equation (C-4) into (C-3), we obtain

$$D_{in} = D_{cowl} + (A_c - A_o) \left(p_w - p_o \right)$$

$$C_{D_{in}} = \frac{D_{in}}{q_o A_c} = C_{D_{cowl}} + \left(\frac{p_w}{p_o} \right) \left(\frac{p_w}{p_o} - 1 \right) \left(1 - \frac{A_o}{A_c} \right)$$

Thus, the problem of drag estimation for a pitot intake is reduced to determining the cowl drag at maximum capture and then applying the normal shock pressure ratio to the deflected streamtube. Figure C-3 shows the excellent agreement of this data with experiment.

Inlets with Pre-Compression – Reference C-3 modified the above results for application to an axisymmetric centerbody inlet. It was noted that when the terminal normal shock is expelled sufficiently far that the spilled air is processed only by a normal (or strong) shock wave such as that shown in Figure C-4, the system can be considered to operate as a "pitot inlet."

Considering the capture ratio at the condition where the inlet streamtube passes through the intersection of the normal and oblique shock waves (termed the vortex sheet ingestion point), one can see from Figure C-5 that the drag for all lower capture ratio conditions is defined. As in Reference C-3, it is then assumed that the drag slope is linear between the maximum capture condition and the vortex sheet ingestion point. This assumption is unnecessary for a two-dimensional plane inlet, since the "pitot" inlet analogy can be used for flow along the ramp surface as shown in Figure C-6. However, when the normal shock intersects the oblique shock beneath the cowl lip, the approach of Reference C-3 is used, unless a solution of the three-shock intersection is impossible (to be discussed later).

Determining the "vortex sheet ingestion point" requires knowledge of the position of the terminal shock as a function of the capture ratio. Reference C-3 used Moeckel's theory (Reference C-2) for closed bodies and pitot inlets to determine the shock location for centerbody inlets. The following analysis was developed on a similar basis.

For a two-dimensional plane inlet the equation of the shock position is as follows:

$$\frac{L}{h} = \left(\frac{A_c}{A_o} \right) \left(Q + \tan \eta \right) - \left(\frac{A_o}{A_c} \right) \left(Q - \tan \eta \right)$$

264
FIGURE C-3 - COMPARISON OF EXPERIMENTAL AND THEORETICAL INLET DRAG FOR AXISYMMETRIC INLETS
APPENDIX C

Stagnation Streamline

Oblique Shock Normal Shock

FIGURE C-4 - SUBCRITICAL OPERATION

C_{D_1}

Vortex Sheet Ingestion A_o/A_c Max. Capture Ratio

FIGURE C-5 - VARIATION OF INLET DRAG WITH AIR CAPTURE RATIO

M_o M_1

FIGURE C-6 - PITOT INLET ANALOGY FOR TWO-DIMENSIONAL PLANE INLET

GP72-0979-185
APPENDIX C

where:

\[Q = \frac{\cot^2\mu}{(1/t_s - 1/t_o)} \left\{ \frac{\tan \phi_s}{t_s} - \frac{\tan \phi_o}{t_o} \right\} \]

\[t = (\tan^2\phi - \tan^2\mu)^{1/2} \]

\[\eta = \text{maximum wedge angle for attached flow at } M = M_o. \]

By applying continuity to the flow across the sonic line:

\[\frac{A_s}{A_c} = \left(\frac{1 - B \cos \eta}{A_o / A_c} \right) \left(\frac{1}{1 - B \cos \eta} \right) \] \hspace{2cm} (C-8)

where:

\[B = \frac{(A_o^*/A_o)}{(P_{ts}/P_{to})} \]

substituting Equation (C-8) into (C-1):

\[\frac{L}{h_c} = K_o \left(1 - \frac{A_o}{A_c} \right) \] \hspace{2cm} (C-9)

where:

\[K_o = \left(\frac{Q + B \sin \eta}{1 - B \sin \eta} \right) \]

The shock geometry for a two dimensional plane inlet is shown in Figure C-7. It is seen that the shock position is a function of the freestream Mach number and the compression surface angle. The angle of the "third" shock wave, \(\phi_o' \), must be calculated by solution of the intersection of the two shockwave polars for \(M_o \) and for \(M_1 \).

Equation (C-9) defines the slope of the captured streamtube when the shockwave-streamtube intersection at the shock defines an angle equal to \(\cot^{-1}(K_o) \). The vortex sheet ingestion point is the intersection of this streamline locus and the oblique shock wave, hence:

\[\left(\frac{A_o}{A_c} \right)_{\text{VSI}} = \left(\frac{\cot \theta_o - K_o}{\cot \theta_o - K_o} \right) \] \hspace{2cm} (C-10)
FIGURE C-7 - TWO-DIMENSIONAL PLANE INLET

FIGURE C-8 - THREE RAMP INLET WITH THIRD SHOCK WAVE DETACHED
APPENDIX C

Applying the theory to the flow on any surface of the wedge, the locus angle relative to the wedge is defined by \(\cot^{-1}(K_1) \). Thus, an alternative value of \(\frac{A_o}{A_c} \) at \(\theta_s \) is given by

\[
\frac{A_o}{A_c} = \left(\frac{\cot \theta_s - \nu}{\cot \theta_s - \nu} \right)
\]

where:

\[\nu = \delta + \cot^{-1}(K_1)\]

This value is not used unless a value of \(\delta \) cannot be calculated. The drag coefficient at this capture ratio is given by substitution into Equation (C-5):

\[
C_{D_{in}} = C_{D_{cowl}} + \left(\frac{P_o}{\rho_o} \right) - 1 \left[1 - \left(\frac{A_o}{A_c} \right) \right]
\]

where the drag slope for lower captures is given by Equation (C-6). This analysis can be applied to a multiple compression surface inlet by referring all the surfaces to their respective approach conditions.

The drag at maximum capture conditions on a three-ramp inlet with the third shock wave detached is given by:

\[
D_{in} = D_{cowl} + \left[\Delta h_1 (p_1-p_o) + \Delta h_2 (p_2-p_o) + \Delta h_3 (p_3-p_o) \right] W
\]

where:

\[
p_3 = p_2 \left[\frac{P_{ns}}{\rho} \right]_{M=M_2}
\]

and \(\Delta h_3 \) can be found from Equation (C-9) as follows:

The locus angle relative to the wind axes is

\[\nu_2 = \cot^{-1}(K_2) + \delta_2\]

thus

\[
\Delta h_3 = \frac{L_2 \sin \nu_2}{\cos[\cot^{-1}(K_2)]}
\]

269
A schematic of a three ramp inlet with the third oblique shock wave detached is presented in Figure C-8. This same technique can also be used for lower capture ratios by defining other values of L_2.

Comparison of Theory and Experiment - All the comparisons have been made with single wedge inlets. It is seen from Figures C-9 through C-12 that excellent agreement is obtained at all but the transonic flow region. The poor agreement which occurs at transonic conditions is due to the large sidespill for these conditions where the three-dimensional effects predominate.
FIGURE C-9 - COMPARISON OF EXPERIMENTAL AND THEORETICAL INLET DRAG FOR 5° WEDGE CENTERBODY INLET
FIGURE C-10 - COMPARISON OF EXPERIMENTAL AND THEORETICAL INLET DRAG FOR 5° WEDGE CENTERBODY INLET
FIGURE C-11 - COMPARISON OF EXPERIMENTAL AND THEORETICAL INLET DRAG FOR 16° WEDGE CENTERBODY INLET
FIGURE C-12 - COMPARISON OF EXPERIMENTAL AND THEORETICAL INLET DRAG FOR 20° WEDGE CENTERBODY INLET
REFERENCES - APPENDIX C

REFERENCES

