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SUMMARY

Techniques to provide omnidirectional vibration isolation for a

Space Shuttle Payload Package were investigated via reduced-scale model

studies. Development, design, fabrication, assembly and test evaluation

of a 0.125-scale isolation model are described in this report. This model

was designed for direct inclusion in a similarly scaled structural dynamics

model of the Space Shuttle system of NASA/Langley Research Center where further

investigations of isolation techniques and their benefits are intended.

Final drawings for fabricated mechanical components are identified

in the report. Prints of all drawings are included in separate covers

as Appendix A.
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Section 1

INTRODUCTION

With economy and versatility established as basic goals in the development

of the Space Shuttle, the consideration of built-in means to provide a reduced

vibrational environment to the entire payload package is consistent with

program objectives. Initial developmental and installational costs for a

vibration isolation system in the Orbiter should easily see returns in

terms of lowered costs for payload packaging development and for vibration

qualification tests, for each and every payload.

Described in this report is a feasibility study directed toward

the development of a technology for providing omnidirectional vibration

isolation. Both passive and active damping techniques were investigated. A

fully functioning, reduced-scale model of an isolation system with a simulated

payload was developed, fabricated, and test evaluated. This model system

was designed for easy integration into Langley Research Center's 0.125-scale

structural dynamics model of the Space Shuttle system for further developmental

studies in payload isolation technology, and for experimental investigation

of related dynamic control problems involving a softly sprung and highly

damped payload.

It is anticipated that results of the program will serve as preliminary

engineering data which are useful for full-scale system design and for

evaluation of system economy with and without total payload package isolation.



For the Space Shuttle, the frequency of vibration excitation of

significant magnitude extends from the very low (less than one Hertz due to,

say, wind and gust) into mid-audio range (several thousand Hertz, created by

rocket engine noises, aerodynamic turbulances, etc.)- A large number of natural

modes of vibration of the vehicle will be excited. Consequently, vibration

isolation for the paylbad package in all directions is desirable.

Principles of vibration isolation are well known and require no

elaboration in this report. Only a summary of the general results are

outlined below:

By definition, a payload package is to be delivered by a vehicle from

one point to another in space. Consequently, the payload and the vehicle

must be coupled to each other. The requirement of deliverability, however,

demands only static or quasi-static coupling. To minimize dynamic loads,

it is desirable to uncouple the two structures so that vibrations are not

"transmitted" to the contents of the payload package. An ideal payload

suspension system would, therefore, provide both static coupling and dynamic

decoupling simultaneously.

Dynamic decoupling can be achieved by minimizing both the stiffness

and the damping of the interface between the payload and the vehicle to the

point where low-frequency response magnitudes approach those allowed by

clearances between them.

Suspension design and calculation approaches are described in Section 2.

Damper requirements and the design of a damper system for subdueing low-

frequency vibrations in the longitudinal direction are discussed in Section 3.

An active system was selected to provide lateral damping between the simulated

payload and the Orbiter model. Section 4 describes project efforts associated



with the development of mechanical, electromagnetic and electronic components

of this active damper system.

Hardware fabrication and system assembly are described in Section 5 .

Three phases of tests were conducted. Small shakers were used

in Phase I, Dynamic Calibration, and in Phase II, Isolation Performance

Tests,at New Technology, Inc., (NTI). A very large shaker was used

to generate prescribed "base acceleration" environment to the specimen

during Phase III tests. Test approaches, procedures, equipment and

instrumentation are summarized in Section 6.

Conclusions and a number of recommendations are presented in

the last section of this report.



Section 2

SUSPENSION DESIGN FOR THE SIMULATED PAYLOAD

2.1 SIMULATED PAYLOAD PACKAGE

The 0.125-scale structural dynamics model of the Space Shuttle

was completed during the Summer of 1973. The first-generation payload models

are a number of simple structural elements which simulate anticipated

payloads in inertial properties only. The basic model payload design

(Reference 1) uses two 15.24 cm (6" x 2.83#) standard aluminum channels,

welded to form a box beam. Four beam lengths were used: 200 cm, 111 cm,

57 cm and 46 cm. The beam-shaped payload simulators are pin-connected

to Orbiter bulkheads. There is, therefore, no deliberate vibration

isolation provision.

In the current study, an aluminum circular cyclinder (NTI DWG. 20088)*

of the following dimensions is used as the main element of yet another

simulated payload package:

O.D. = 11.430 cm (4.500")

I.D. = 10.230 cm (4.026")

Length =72.187 cm (28.420")

The cross-sectional dimensions of the circular tube were selected

to provide approximately the same properties as the box-beam payload simu-

lators. The length of the tube was selected to provide a simulated pay-

load assembly which can be incorporated easily into the Orbiter model. The

new payload simulator includes a permanent magnet assembly on each end of

the aluminum tube (see NTI DWGS. 200S4 and 20092)*.* The overall length of

the composite payload simulator is 99.3 cm, and its total mass is 23 kg.

*A complete set of drawings have been turned over to NASA/LaRC. They are
also available from NTI on request. For a pictorial view of the item, see
also Figure 23.

** See also Figure 27



2.2 SUSPENSION DESIGN

2.2.1 Requirements

The design objective of the suspension system is to separate the

overall vibration modes of the entire Space Shuttle vehicle into two

distinct groups on the frequency axis in such a way that mode shapes

for the lower-frequency group involve "rigid-body" payload displacements

only. In a proper suspension design, the creation of these rigid-body

payload modes would make it possible to prevent high-frequency vibrations

from reaching the payload. (i.e., such that the magnitude of the mode

shape on the payload for each and every high-frequency mode is significantly

lowered from what it would have been without the suspension). What distinguishes

isolation requirements of this project from those for the more common

situation is that isolation in all directions must be achieved simultaneously,

and that the degree of isolation must be preserved for all "static preload"
/

conditions in all directions corresponding to true static preloads due to

gravitation and due to low-frequency vehicle accelerations during boost,

maneuvering, wind drift, etc. .

Had the purpose of this investigation been to develop a true-to

scale omnidirectional vibration isolation model for the Space Shuttle,

quantitative design specifications must be derived from the above-mentioned

combination of static, quasi-static and dynamic environments. They would,

in turn, lead to detailed specifications for such performance characteristics as:

(a) Rigid-body frequencies of the payload.

(b) Maximum allowable relative displacements between the payload

and the Orbiter.



(c) Maximum acceleration levels to be endured, its spectral

shape and duration in or on the payload package

(d) Weight, size, strength, life expectancy, etc., of the

system

In this preliminary study, however, some of these detailed and

complex requirements could not have been established as the schedule was

too early with respect to the overall Shuttle program. Other requirements

were often waived in consideration of a direct and concise effort on the

central issue of establishing feasibility of omnidirectional payload

vibration isolation itself. For example, strength, maximum deflection

and similar requirements which specify the allowable loads of the sus-

pension system were not rigidly set up. Instead, practicality and

"reasonableness" in the model scale were used during the design process

to develop a system whose capabilities are compatible with the vehicle

model. On the other hand, suspension properties such as stiffness and

inherent damping were more accurately designed.* As shown by test data in

Section 6, the resulting system developed under this philosophy represents

a very "usable" model for study purposes of this and future projects

involving the Shuttle model.
S

2.2.2 Approach

Several types of suspension elements were considered for the

vibration isolation system. The selected approach utilizes pre-tensioned

steel cables exclusively. Compared with a system made up of coil springs,

flexures, or air springs and the like, a pre-tensioned cable system has

the following advantages:

* For example, the suspension system stiffness was designed to place rigid-
body payload modes below 8 Hz in all lateral directions; and below 12 Hz
in the longitudinal direction. These limits were established on the basis
of preliminary modal analyses of the full-scale Space Shuttle in mid-1973.



(a) Among all concepts investigated, it led to the simplest

configuration.

(b) It is practical to scale the cable and, hence, the suspension

system, up to a full-scale design.

(c) The simplicity of the system makes it more reliable. It should

be relatively easy to qualify for flight hardware.

(d) It does not require a new manufacturing technology.

2.2.3 Configuration

The suspension system configuration is schematically illustrated in

Figure 1. The stiffness of the system is governed by the pre-tension of the

cables, which are designed to place the natural frequencies of rigid-body

payload modes below 8 Hz in all lateral directions, and below 12 Hz in the

axial direction.

2.2.4 Design Analysis .

When the suspension system is correctly designed, it should be light

and compliant so that high-frequency modes of the payload-vehicle system will

be insensitive to small variations of its stiffness characteristics. On the

other hand, the low frequency modes are very much stiffness dependent. For

design calculation purposes, the low-frequency mode shapes will be assumed,

a priori, to contain rigid-body displacements of both the payload and the

vehicle, so that all deformations take place in the suspension system.

For a rigid-body translational mode, let

i ^ mode index;

m = payload mass;

m = vehicle mass;v '
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K. = stiffness of the suspension in the assumed mode shape;

X = absolute displacement of the payload in the i mode ;

X = absolute displacement of the vehicle in the i mode ;

and to. = undamped angular natural frequency of the i mode.

The undamped mode shaped is determined from conservation of

linear momentum and is given by

X /x = m /m
V p FT -v

the relative displacement between the payload and the vehicle, X., is

the normal coordinate for that mode

X. = ;(!+ yng V (2)

Equation (2) is very useful since it allows the designer to estimate

the relative displacement by

(a) assuming the vehicle to be stationary (i.e., assuming

m < ,
F . v •

(b) determining the payload vibration amplitude, and

(c) applying the correction factor (l+nY/mv) i-
n accordance

with Equation (2) .

The angular natural frequency of the mode is given by the equation:

co..2 = d+yV> K./mp. (3)

Consequently,

where to'^ = ^Kj/mp^ is the angular natural frequency obtained by

assuming mD/
m
v =0.



Similar expressions may be derived for each of the rigid-body

pa/load rotational modes.

The most severe vibration environment for the Space Shuttle

is expected during boost phases of the flight. Consequently, vibration

isolation of the payload is most critically needed during this time when the

vehicle mass is the greatest. It is, therefore, justifiable in the

following to assume m /m «1 for suspension stiffness design

purposes.

The assumed mode shapes are such that one of the principal

axes of vibration is always in the direction of the preload. The other

two principal axes are perpendicular to this direction and to each

other. Design calculations are relatively simple since only two types

of force-deflection relationships have to be analyzed, and only for simple

pairs of pre-tensioned cables.

Figure 2 shows a pair of pre-tensioned suspension cables under an

applied force F. The force-^deflection relationship at mid-span is depend-

ent on the pre-tension, T , in the cables. Let

EA = uni-axial stiffness of the cable,

L = semi-span;

F = force applied at mid-span;

D = deflection at mid-span under F;

and T = total tension in the cable.

The following force-deflection relationship is derived:

F = 2(D/L) {T + EA [ (1+D2/L2)"-!]}/ (1+D2/L2)2 (5)

10



Preloaded
Suspension
Cable

Figure 2 Suspension Cable Force - Displacement Nomenclature
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The exnfession for the total tension is :

T = TQ + EA [(1+D
2/L2£ - 1]. ' ' f61 "

The small-deflection stiffness, K, for any static loading condition is

given by the expression

K = —- = 2{EA[(l+D2/L2)3/2-l]-*T }/[L(l+D2/L2)V2]« (3EAD2/L2+2T0)/L. (7)

dD

The desired value of K is determined by natural frequency considerations

and is approximately ; 3. 5 kN/m. The permissible length of each cable is

limited to approximately 10 cm by the size of the 0.125 scale of the

Orbiter. The static deflection due to earth's gravity is determined by

clearance considerations for the dampers and is limited to a value of

approximately 0.5 cm. After a number of iterations, the following design

was selected:

Cable: .159 cm diam., 7x7 CRES aircraft cable with

EA = 2.23 x 105 N and T = 2,170 Nmax

L = 9.860 cm;

T = 774 N ;o

K =3.37 kN/m .

Cable design details are found in NTI DWGs. 20091-1 and -2.*

The calculated upper limit of the natural frequency of the rigid-

body payload translational mode in the direction of the preload due to

earth's gravity is 8.1 Hz.

'The natural frequency of the rigid-body payload roll mode is

made low by attaching the suspension cables near the longitudinal center-

line of the payload.

*See also Figure 24
12 .



The natural frequency of the rigid-body translational mode in a

direction normal to the static preload is bounded from above by the

simple pendulum frequency in the inertial preload field, see Figure 3.

In the earth's gravity and for a static preload deflection of 0.5 cm, the

calculated natural frequency is 7 Hz.

The natural frequency of the rigid-body payload translational mode

in the axial direction is controlled by mechanical design features of the

active damper system in addition to the above cables and is about 12 Hz.

The natural frequencies of the remaining two rigid-body rotational

modes are controlled by suitable positioning of the cable attachment

points along the length of the payload and are both less than 8 Hz for

the same preload condition and for the corresponding rotational inertial

of the payload.

According to the above discussions and Equations (5) and (7),

natural frequencies for all six assumed rigid-body modes are reduced, from

the above-mentioned values for the preloaded condition, as the preload is

reduced. The assumption of the existence of these rigid body modes is,

therefore, justified for all preload conditions as the natural frequencies will

be significantly lower than those of the Space Shuttle model without

the isolated payload package.

The suspension system is implemented with the help of a cage

structure (NTI DWG. 20093)*which also serve as the interface between

the suspension system and the Orbiter. The assembled payload, suspension,

cage and installation in the Orbiter Payload compartment are shown in NTI

DWG 20094.

*See also Figure 27.

13
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Section 3

DAMPING

3.1 DAMPING REQUIREMENTS.

The compliant suspension system isolates the payload from high-

frequency vibrations of the vehicle while creating low-frequency payload

rigid-body modes which are easily excited to large displacement amplitudes

by low-level, low-frequency forcing functions on the vehicle. Dampers are,

therefore, required to limit relative displacement amplitudes.*

In the following derivation of requirements for damper characteris-

tics, the payload, the vehicle, the suspension system and the damper are

schematically represented for each mode by the system in Figure 4. The

equation of motion written in terms of the relative displacement X. is

/mv) •Xi. + 'Ki(i+mp/mv).Xi. = -(mp/mv)F(t) (8)

where C. is the coefficient of the damper, and F(t) is the force on m .

In the suspension system design, only those elements and joint construc-

tions with low damping are used. In this manner, dampers may be developed

independently of the suspension system.

15



"Payload" m

C. ta K.
i

"Vehicle1 m

Figure 4 Schematic Representation of
Suspended Payload and Vehicle
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The modal damping factor is

/(2mpaj.') , (9)

or C. * Ci/(2mpo>.'),.for mv»mp. (10)

According to the frequency response function derived from

Equation (8), the optimum damping factor is approximately 0.65. The

corresponding damper coefficient is

C. = 2 x 0.65 m u . ' . • • • • (11)
i p i

For lateral translational modes

J. £2ff x8 = 50 radians/sec ,

and m = 23 k_ »
p g

and the required damper coefficient for these modes is

C. < 1.5 kN/m/sec

For the longitudinal mode , the angular natural frequency is <75.4 rad/sec.

and the required damper coefficient is :<2.25 kN/m/sec.

Damper coefficients greater than these values are both unnecessary

(for the rigid-body modes) and harmful (since greater high-frequency

vibration is "transmitted" with higher damping).

17



In addition, the dampers must maintain the above specified

characteristics throughout the specified static deflection range due to

preloads in any direction.

3.2 LONGITUDINAL DAMPERS

3.2.1 Approach

For the full-scale Space Shuttle, the greatest low-frequency

excitation is expected to be in the longitudinal direction. It is,

therefore, desirable to implement a model damper which has the potential to

be scaled up -- in size, in damping coefficient, in force capability

.and, most importantly, in being practical. This last requirement

may be intuitively translated as possessing an optimum mixture of such

characteristics as simplicity, reliability, ruggedness and care-free

operations. One such damper is the squeeze-film damper (References

2,3, and 4). The basic configuration is shown schematically in Figure 5. If

an incompressible viscous fluid is used between the two parallel plates,

the expression for the normal force, F , developed to resist the

separation of the plates is

' ... F ' '=• 3iruVR4/2h3 , (12)

where M = absolute viscosity of the fluid film between the plates

V = relative normal velocity of plate separation

R = radius of the fluid film

h = nominal distance between the plates

The damping coefficient for small-amplitude vibrations

is, therefore,

Cg = 3TTU R4/2h3 . . (13)

18



relative v

velocity

Gap filled with
visions fluid of
viscosity U

F = 3nuVR*/2h3

Figure 5 Basic Squeeze-Film Damper Configuration
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The advantages of this damper are

(a) Large damping coefficients can be easily obtained.

(b) It can tolerate large parallel displacements of the plates.

Equation (13) indicates a potential disadvantage of the squeeze-

damper: The damping coefficient is a highly nonlinear function of the

distance between the plates. In order to reduce the dynamic coupling

between the vehicle and the payload at high frequencies for reduced

transmissibility, one of the plates is placed in series with a spring,*

as shown in Figure 6. The effect of the additional spring is analyzed

below. .

The vehicle, the payload, the suspension and the damper are

schematically represented by the two mass system in Figure 7. The

damper force and the force in the auxiliary spring are equal:

CjCXp - X1) = K'(X' - Xy) , (14)

or C.0C - X') + K'(Xp - X') = K'(X - Xy) . (15)

Taking Laplace transform of both sides:

+ K')[ xp(s) -x'(s)] = K'XjCs) . (16)

* Subsequent tests indicated that the spring, while successful in reducing trans-
mission of high frequency vibrations, also limited the maximum damping achiev-
able at low frequencies. Modifications were made after the first series of
tests to eliminate these springs. The design analyses are kept in this report
to document the original approach.

20



Payload

Added Spring

Vehicle

Figure 6 Spring in Series with Damper Plate

1
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Figure 7 Damper in Series with Spring in a
Two-Mass System
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Consequently, <

C.s [x (s) - x'(s)] = C.K's x.(s)/ (C.s + K1). (17)

The equation of motion of the system, written in terms of the

relative displacement X. is

m X.•• + • K. (1+m /m ) X. + C. (1+m /m ) (X - X ') = '-*• F(t). (18)
pi i\ p \ i iv P .-V -p . mv

After taking the Laplace transform of both sides of Equation (18)

and inserting Equations (4), (9) and (17), the following solution of

x.(s) is obtained:

x.(s) =

f(s)/mv
.

2s2 + OK 2 + '2eiu>is/(l+Cis/K
1)

where f(s) is the transform of F(t). The addition of a series spring

of stiffness K' to the damper, therefore, introduces a first-order roll-off

of the damping factor, ?., with a cut-off frequency established by the

factor C./K'

3.2.2 Design

Because of the high compliance of the suspension system in the

longitudinal direction, relatively large static deflection of the payload

with respect to the vehicle is to be expected. For operations in the Orbi-

ter model, the squeeze-film damper must function properly when the payload

axis is vertical, horizontal or in between. The resulting variation of the

operating gap of a squeeze-film damper will introduce variations of the damp-

ing coefficient which are too large to be tolerated. In order to minimize

this problem, two squeeze-film dampers are used in the design, see Figure 8.

In orientation (A), with the payload-axis vertical, Damper Unit (1) would

provide nearly all of the damping forces since its operating gap is much

smaller. In Orientation (B), with the payload axis horizontal, Damper Unit
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(1) loses its effectiveness while the gap in Damper Unit (2) closes and it \

becomes the governing damper. For in-between orientations, both dampers are

contributing. It should be noted that the design does not permit inverted

vertical orientations of the payload as the gap of Damper Unit (2) will be

completely closed. .

In the final design of the model system, the nominal operating gap

is 0.5 cm. Other design features are:

(a) The parallel plates are much greater than required in order

to permit sufficient latitude for parameter variation

should such occasion be demanded.

(b) Grease is used in the gap. The diameter of the film is,

consequently, easily varied to change the damping coefficient.

(c) The auxiliary spring rate was made approximately twice

that of the main suspension system in the longitudinal

direction. When the low-frequency damping factor is 0.65, the

calculated cut-off frequency for the damper is 1.54 times

higher than the natural frequency of the payload translational

frequency in the longitudinal direction. The rate of roll-

off of the damping coefficient with respect to frequency is

2 0 dB/decade. . ' . ' . .

In the actual design, the auxiliary spring for each damper consists

of two steel beams, pin connected at both ends to an end ring of the cage

structure.* The beams are made of 0.635 cm square tubings, with a wall

thickness of 0.011 cm.

*See footnote on page 67.
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Section 4

ACTIVE DAMPERS

4.1 APPROACH

Two electromagnetic actuators are used to provide adjustable

damping for lateral rigid-body modes of the simulated payload. Each

actuator system is located at the end of the 72-cm aluminum tube and

can generate a force in any direction in a plane normal to the payload 's

longitudinal axis. The two actuator systems, therefore, can provide

damping for two translational modes and for two rocking modes (e.g.,

pitch and yaw modes when they coincide with the principal coordinates

of the system.).

Based on previous experiences, the feasibility to scale up the

electromagnetic dampers for such applications as in a full-scale Space Shuttle

vibration isolation system is practically non-existant because of its '

excessive weight, high power consumption, and limited force and stroke

capabilities. For model-scale studies on isolation techniques and benefits,

the above restrictions are not of major concern. The principal advantage of

the electro-magnetic actuators lies in their versatility. Various control

systems can be developed and used in conjunction with the actuators for

further experimental investigations related to payload isolation technology.

4.2 DESCRIPTION

Each two-directional electromagnetic actuator (EMA) consists of

the following major components: (a) a primary permanent field magnet

(NTI DWG 20082),(b) A 4-coil armature plate (NTI DWG 20078),(c) A

secondary permanent field magnet (NTI DWG. 20083),and (d) A sensor coil

assembly (NTI DWG 20081). The assembled EMA is seen in NTI DWG 20094 and

Figure 31.
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4,3 PRINCIPLE OF OPERATION

The magnetic field between the parallel flat pole faces of

the primary field magnet is approximately unformly distributed and has

a distinct outline which is nearly the same as the pole faces themselves.

The flux lines are normal to the pole faces and are approximately

straight. The armature coils reside partially between the pole pieces. The

boundary of appreciable magnetic field is indicated in Figure 9 on

the armature coil assembly. The pair of coils a and c must be used

in unison. When'electrical currents of equal magnitude, I , is passing
3-C

through these two coils, equal and opposite forces are generated on

the armature and on the magnet. The direction of the resultant force

F , acting on the armature plate due to currents in coils a and c
cLC • • ' . .

is shown in Figure 9. The magnitude of this force is proportional to

the instantaneous magnitude of I . Goils b and d are used in the sameac

way, except the direction of the resultant force, F. ,, generated by them

is always perpendicular to F

Consequently, both the magnitude and the direction of the resultant

force F( = F + F,,) can be controlled by controlling the magnitude,ac DU

phase, and direction of currents I and I,,.ac bd

In order to use the EMA as an active damper, the force resultant

must be controlled and made proportional 'to the relative velocity between

the armature and the field magnet. This is accomplished with the help of

the two-directional relative velocity sensor shown schematically in

Figure ID. The secondary field magnet is rigidly attached to the primary

magnet.1 The search coils are mounted on and move with the armature plate.
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Figure 10 Schematic Showing Principle of Operation
of Relative Velocity Sensor
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It acts as a dc generator. The open-circuit output voltage is proportional

to the relative velocity between the secondary field magnet and the

search coil. The design arrangement is such that the output of the

search coil, a , is proportional to the instantaneous relative-velocity

component in the direction a in Figure 9. The operation of search

coil 3 and the armature coils b and d is similar. The combination of the

actuator and the velocity sensor makes it possible to generate damping

forces in any direction in the plane of the armature plate.

4.4 STABILITY ANALYSIS

If the payload and the vehicle are really rigid bodies, and if

all electronic components and the EMA have flat frequency responses and

zero phase lag, the system (the damper, the controls, and the structure')

is inherently stable. In actuality, instability can occur in nearly all

practical systems since the above requirements are usually not easily

satisfied for a sufficiently wide band of frequencies. In the following

stability analysis, both the rigid-body assumption of the payload and

the vehicle, and the frequency- independence assumption of the transfer

function of the electronics are removed. It will be shown that with care,

the system design can be made stable for most practical requirements.

Let i = 1, 2, ............. — = mode index;

a). = undamped angular natural frequency;

m. = generalized mass;

= generalized force;

. = modal damping (parasitic structural damping) ;
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Furthermore, let the subscript

a identify the position of the EMA magnet;

b, the EMA armature;

a, the velocity sensor magnet;

g, the velocity pickup coil;

and let ':

V (t) n = velocity vector of the actuator magnet,a - a

(n being a unit vector);a . .

V, (t) n, . = velocity vector of the actuator armature;

Va(t) na = velocity vector of the sensor magnet;

Vg(t) ng = velocity vector of the pick-up coil;

F (t) m = damping force applied on the actuator magnet»..a a

(m being a unit vector);a -

and F_(t) m = damping force applied on the actuator armature.

An external force, F (t) m , applied to the point identified by the

subscript e on the vehicle is included to identify the input port of

the closed-loop system, which is shown in block-diagram in Figure 11.

The mode shapes at points a, b, «, g, and e are the vectors

1j % 'Vi "\i %
4*. n. , $-1 ^• u' T • ft- > 4*• a f^'o ̂rid (j>. n. , respectively, where

n- , n.,, n. , n.g are unit vectors. Shorthand notations:

E L (Vg(t)} ;
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= fa(s) E L(Fa(t)};

fb E

f. = f̂ s) 5

are used in Figure 11 and in subsequent discussions.

System imperfections which should be kept in mind are fa) a real relative

velocity sensor has non-zero gage lengths, and, hence, is subject to mis-

'X, %
alignment. In other words, the unit vectors na and ng are not always

the exact opposite of each other, and (b) the transducer can only pick up

two components of the relative velocity vector instead of all three. The

transducer transfer function is specified by its frequency response function
t\j

k(s) and a unit vector n, indicating the direction of its axis of

sensitivity. The output of the transducer is

% % % . ~
v(s) =. k(s) n • (vana - Vgng). (20)

The structure is characterized by transfer functions in the

generalized coordinates

G i(s) = s/O^s + 2 5^5 + w . ) ] . (21)
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The control system and the actuator transfer functions are combined

and denoted by K(s) in Figure 11 . Let

(22)

» = B« (23)

(24)

V "

m • n. = E. • (26)e le i

The closed-loop transfer function between the transducer output,

v(s) and the external force input, f (s), can now be derived from Equation

(20) and Figure 11:

, 'X/
k nk

Z [ (feme) • Ot>ienie)]

kKv E [ » - » n

+KKV Z [*"
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Substituting Equations (22) to (26) into the last equation and re-arranging

terms, the following transfer function for the closed loop is derived

k(s) Z E.4>. (A!<j>. - B!<j>.0) G.(s)
v(s) i 1 1C x ia 1 lg * (27)
fe(s) - Uk(s)K(s)Z (A.<Dia -.B.̂ CA!̂  - B̂ ). G. (s)

The following stability criteria of the system may be derived

by investigating the behavior of the open-loop gain

H(s) = k(s) K(s) Z (Ai*ib -Bi())ib)(Â ia-B!(|)ie) G.(s) (28)

in the standard-form transfer function of Equation (27):

(a) For an ideal system, the transfer function of the transducer,

the control system and the actuator are real constants,

(i.e., k(s)K(s) = K>0) ; t:he sensor magnet and the primary

•V f\j
magnet are together (i.e. , a = a, <J>- = <t>- .-:m0

 = m anc*la loc a ot
•Xi 'V
n. = n. ) so that A. = A!; and the sensor coils and the actuatorl a i c r 1 1

armature coils are together (i.e., b = B, <$>., = tj>. „,

Oj Oi "X/ O.
m, = mR and n., = n^g) so that B. = B!. Under these

conditions, Equation (28) is reduced to

H(s) = kKs Z (Ai(j)ia -Bi4>ib)
2/[mi(s

2
+2?.a)is4-a)i

2)] (29)

34



The gain-vs.-phase plot of the open-loop transfer function

of Equation (29) is shown in Figure 1:2, which indicates a

minimum of _+90° phase margin for all values of K due to the
2

fact that terra (A.4>. - B.<(>..) is always positive.
X 13. 1 ID

This ideal system is, therefore, stable for all values of gain

even though the structure has infinitely many elastic modes.

The effect of relative velocity feedback may be observed

near any natural frequency WT- The ideal transfer function

is then approximately

v(s)

which is the same as the modal transfer function of the structure

alone, except for the extra term Ks in the denominator.

Linear, viscous modal damping is, therefore, added to the

I mode. Since I is arbitrary, it may be concluded that

damping is added to all modes.

(b) In a real situation, it is impossible to have the actuator

and the velocity sensor occupy the same location, so that

there is bound to be some differences between a and a,

b and B, <j>.a and <j>.a, <f>.b and'̂ , n.& and n^, n.b and n^.

Normally, the differences are small for low-frequencies

if the sensor and the actuator are reasonably close to each other.
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For low frequencies, then, the products (A. <(>. -B. 4>.,) (A!<J). - B!<}>. Q)
1 13. 1 XD 1 1GC 1 1 p

are positive and positive damping are added to the low-

frequency modes covered by this condition. At high frequencies,

some of the mode shapes will have an odd number of node

points between the sensor and the acutator. The above pro-

duct will be negative for these modes and negative damping

will be introduced. As the gain is increased, this negative

damping will eventually overcome inherent structural

damping in one of these modes and diverging oscillation in

that mode, at its natural frequency, will occur.

(c) If the feedback signal is obtained by integration of an

accelerometer signal from the payload, the open- loop

transfer function would have the form

H(s) = k(s) K(s) E (A.<|>. - B. <j>..) A!<fr. G.. (31)^ J ^ } ^ ' . iria i/ib' iria i

Unlike with relative velocity feedback, the factor

(A. d>. - B <j>., ) A',<j>. can be either positive or negative1 ivia i ib ib^ict v

for the various modes, depending on the mode shapes. Instability

can occur for the same reason described in (b) above.

(d) It is desirable to use wideband transducers, signal

conditioning equipment, power amplifiers and actuators so

that the factor k(s) K(s) does not introduce significant

phase shift in H(s).
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4.5 DESIGN CALCULATIONS

4.5.1 Field Magnets

Based on approximate weight, size, force and stroke requirements

for dampers, preliminary designs of the primary magnet for the actuator

and of the secondary magnet for the relative velocity transducer were accomplished.

Indications were that the following design objectives can be met:

(a) Primary Magnet (Actuator)

Pole Dimensions: 3.55 cm x 3.55 cm

Magnetic Gap: 0.838 cm *
4

Flux Density in Gap: 10 gausses

Approximate Mass: 8 kg

Maximum Envelop Dimension: 20 cm

(b) Secondary Magnet (velocity sensor)

Pole Dimensions: 2.54 cm x 2.54 cm

Magnetic Gap: 0.508 cm *

Flux Density in Gap: 5 x 10 gausses

Final magnet designs satisfying these requirements were firmly

established by Indiana General Magnetic Products Division of Electronic

Memories § Magnetics Corporation, Valparaiso, Indiana, who also cast,

ground, assembled, magnetized and stabilized two complete Alnico 5

magnet assemblies. NTI DWGS. 20082 and 20083 show final .-magnetic design

details, and 20084 shows the assembly.

*Gap dimensions were governed by the minimum coil thicknesses and clearance
requirements.
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4.5.2 Actuator Coil

Each of the four actuator coils in one armature plate contains

400 turns of No. 28 magnet wire*.

The average effective length of each turn of the coil in the magnetic

field is 2.70 cm. The force generated by this length of wire carrying I

4amperes in the 10 -gauss field is .027x1 N.. The total force generated by

the 800 turns of coil in each pair of coils is 21.6x1 N.

The maximum force capability of the actuator is limited by the

heat dissipating capability of the entire assembly at the maximum allowable

temperature of one of its components. In this particular design, this

limit is the breakdown temperature of the magnet wire insulation which is 220°C.

The rate of heat generation is calculated as follows: At room temperature,

the resistance of each of the four coils is 7 ohms. This is increased

by 79% to 12.5 ohms when the coil temperature reaches the allowed maximum

of 220°C- If the steady-state current which maintains this temperature is

I amperes,rms, the heat generated by the four coils will be 50 I

watts. Conversely, if the armature assembly can dissipate D watts

of heat at 220°C, equilibrium will be reached at I = 0.141 D amperes,

rms. The corresponding resultant force generated by I is

1/2 1/2
f = 0.707 x 21.6 x 0.141 D = 2.2D N, rms. (32)
TH3.X

'Heavy Armored Poly-Thermaleze insulation (Belden)
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4.5.3 Velocity Transducer Sensitivity

Each sensing coil of the relative velocity transducer contains

40 turns; the magnetic field is 5 x 10 gausses; and the active length of

each turn is 2.54 cm, the transducer sensitivity is

40 x 5 x 103 x 2.54 x 10"8 volts/(cm/sec)

or approximately 5.1 mv/(cm/sec).

4.5.4 Control System Gain

The required damping coefficient to attain a modal damping factor

of 0.65 was determined in Section 3.1 to be

C = 15 N/(cm/sec)

Two coils are used in parallel to develop the damping force in each

direction. The parallel resistance of these two coils at room temperature

is

R = 3.5 ohms.

The current-to-force conversion factor of two coils is, according to design

calculations ,

K =21.6 N/amp.

The velocity transducer sensitivity is

k = 0.0051 v/(cm/sec)

40



The voltage gain, K , of the damper control amplifier is given

in terms of the above parameters by the expression

K = RC./k K = 476 v/v . (33)
v i c

at room temperature. The upper limit on the required gain is, when the

actuator coil temperature is at 220° C,

max K = 476 x 1.79 = 852 v/v (34)

4.6 COIL FABRICATION DETAILS

The fabrication of both the actuator coils and the velocity sensor

coils was quite tedious. A number of techniques were developed during

the project and are described in this report as permanent documentation.

4.6.1 Armature Coil

Each armature coil was hand wound. The setup is shown in Figure 13.

Coil form details and assembly are shown in NTI DWG. 20079. Four complete

assemblies were used. As shown in Figure 13, a constant wire tension of

approximately 0.445 N was maintained during winding. The magnitude of

this tension was optimized via a number of trial windings. On the one

hand, this force appeared to be the minimum required to yield a proper wire

packing density; on the other hand, higher forces (say at twice the

tension) actually stretched wires permanently. The tensions were

maintained in the wire after the winding process until the coil was

potted in epoxy.
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The coil and the forms were vacuum-impregnated in an impregnating

epoxy resin (Eccoseal 1207.manufactured by Emerson £ Cuming, Inc.,

Dielectric Materials Division, Canton, Mass.) the following procedure

•was followed:

(a) The coils were cleaned with alcohol.

(b) The exterior surfaces of the coil forms were coated with a releasing

compound (silicon grease).The interior sufaces of the coil forms

were pre-coated with the releasing compound.

(c) Sufficient Eccoseal 1207 was mixed with its hardner, and

heated to 65° C. Air was removed by applying a vacuum of

approximately 2.5 inches of water.

(d) The four coils, together with their molds, were completely

immersed in the warm Eccoseal 1207.

(e) A partial vacuum of approximately 2.5 inches of water was

applied and held for 30 minutes.

(f) The vacuum was released and the resin was forced into the

coils by atmospheric pressure.(30 minutes)

(g) The coils were drained and cured at 120°C for four hours,

followed by 2 hours at 176°C.

(h) After cooling, the molds were disassembled and the coils were

thoroughly cleaned in alcohol for potting in the carrier plate.

4.6.2 Armature Coil Assembly (

Four impregnated armature coils were potted in each carrier plate

(NTI DWG 20077). The assembled armature is shown in NTI DWG 20078.

The following procedures were used:
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(a) Lead wires were soldered to the terminal screws.

(b) The terminal assembly and the lead wires were potted in

the carrier plate with Stycast 1209 (manufactured by

Emerson § Cuming, Inc.)

(c) The four coils were clamped in place in the carrier and,

using a minimum amount of stycast 1209, the coils were

tached to the carrier plate. Curing was promoted by heating to 100°C.

(d) After cooling, the leads were soldered to the coils.

(e) Both the carrier assembly and the prepared Stycast mixture

were heated to 65°C, and the mixture was poured into the

cavity between the clamping plate and the carrier, with

sufficient excess to cover all air passages.

(f) The assembly was placed in a vacuum jar and air was

evacuated.(to 2.5 inches of water, and held for 30 minutes)

(g) The vacuum was released and the epoxy was allowed to fill

the voids between the carrier and the clamping plate-

(30 minutes!)

(h) Excess epoxy was wiped off.

(i) Curing was carried out at 100°C for 4 hours, followed by

15D°C for 1 hour and 17S°C for 12 hours.

4.6.3 Velocity Transducer Coils

The velocity transducer search coils were fabricated from three

identical double-sided p.c. boards. Etched on each side of each board

are 20 turns of sensing coil. Standard p.c. board technology was used

to fabricate these search coils. The turns on the two sides of the board

44



sense velocity in perpendicular (90°) directions. Figure 14 shows photo-

graphs of the two sides of the p.c. board. Note also the soldering pads

for lead and jumper wires. Three such cards were stacked and epoxy bonded

to form a plate 0.21 cm thick. The coils sensitive to velocities in like

directions were soldered in series to form an effective sensing coil of

60 turns.*

Eccoseal 1207 was used to bond the p.c. boards. Vacuum

impregnation procedures described in Section 4.6.1 were used. Teflon

jacketed lead wires were soldered to the coils and an additional potting

was used to prtect the soldered joints. The other ends of these leads

were soldered to a terminal board which is potted in a separate step to

one of the coil plate support blocks (NTI DWG 20081).

4.7 DAMPER ASSEMBLY . .

The damper magnet assemblies are mounted on the ends of the 72-cm

aluminum tubing with an aluminum adapter plate (NTI DWGS .20086 and 20092).

After the payload simulator package is properly suspended in the Gage

Structure, the armature plate is inserted through the gap of the primary

magnet and attached to the Cage Structure posts, using four steel cables

(NTI DWG 20091, Sheet 3). The velocity sensor coil assembly and its

support blocks are mounted onto the armature plate at this time. The

two coil systems are kept in the middle of the their respective magnetic

gaps by adjusting the tensions in the steel cables and the flexible sup-

port rods. (NTI DWG 20086).

*0f the four completed sensing coil assemblies, only one survived the pot-
ting process intact. The other three had to be repaired, and only 40 turns
were salvaged for each coil. Compensation for the reduced number of turns
was made in the damper control amplifiers.
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Figure 14 Velocity Sensing Coils on P.C. Card
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4.8 DAMPER CONTROL SYSTEM

Four independent control channels are required to operate the

EMA. Figure 15 is a schematic of the control electronics.

An RCA HC2000H Power Op Amp is used to drive the EMA. With

supply power regulated by two Powertec Model OCR 1B24-4.5 Power

Regulators,* the HC2000H is capable of delivering 4.5 amps at ̂ 18.5 volts.

The HC2000H is connected as an non-inverting amplifier with a

gain of 3.9, which is established by the internal feedback resistor

of 18.2 kfi from Pin 2 to Pin 9 of the HC2000H and an external 6.2 kfi

resistor from Pin 9 to Common. At this gain, the bandwidth is approximately

10 kHz.

The zero-offset drift of the power amplifier is controlled by the

Datel Model 200 C Instrumentation Amplifier. This instrumentation amplifier

is used mainly to provide the voltage gain for the relative velocity signal

required by damping specifications. However, when the output terminal

of the HC2000H is connected to the Sense terminal of the 200C, the former

becomes a current booster only. The overall voltage drift is reduced

to that of the 200C, lyv/°C, RTI. The overall gain is controlled by the

Gain Adjust potentiometers on the front panel, and is variable from 2 to- 1000

The frequency response of the composite amplifier is shown in Figure 18.

The Reference Terminal of the 200C is also used. In this case, it provides

a convenient means of introducing an adjustable drive signal from an

external source. Consequently, the EMA can be used both as a damper and

as a shaker, simultaneously,in checkout tests.

A second Datel 200C is included in each channel of electronics to

amplify and buffer the relative^velocity signal from the main control stream,

* Power Supply Schematics are shown in Figures 16 § 17.
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An Analog Devices Model 233L Chopper Stabilized Op Amp is also

included in the system. As implemented, it amplifies and buffers the

output of a 0.02-ohm current-sensing resistor between the actuator coil

and power supply common, for current monitoring purposes. However, the

main purpose of including this low-drift (0.1yv/°C) op. amp is to provide

circuit flexibility for potential future system modifications.

Schematics of the circuit around the second Datel amplifier and

the 233L are shown in Figure 20.

Schematics of circuits around the second Datel amplifier are

shown in Figure 19; and schematics of circuits around the Analog series'

2336 are shown in Figure 20.
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for Analog Devices 233L Op Amp
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Section 5

HARDWARE

5.1 MANUFACTURERS

Four separate phases of fabrication were involved during this project:

(a) Permanent Magnet Assemblies, by Indiana General, Magnetic. Pro-

ducts Division of Electronic Memories and Magnetics Corporation

Valparaiso, Indiana;

(b) Mechanical Components,by General Products, Inc., Huntsville', Alabama;

(c) Coils, by NTI;

(d) Electronics, by NTI.

In addition, the suspension cables were assembled and proof

tested by Sling Center, Inc., of Brighton, Alabama.

5.2 PHOTOGRAPHS

The following is a list of photographs of all components of the

system, taken at various stages of fabrication and assembly.

Figure 21 Finished Magnet Assemblies and Armature Plates

Figure 22 Cage Structure Components*

Figure 23 Payload Simulator and Damper Components

Figure 24 Armature Coil Carrier Plates

Figure 25 Armature Coils and Carrier Plate (Side 1)

Figure 26 Armature Coils and Carrier Plate (Side 2)

Figure 27 Assembled System View 1*

*With the exception of the final modification of the squeeze-film damper, as
described on page 67, and in Section 6.
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Figure 22 Cage Structure Components

55



Figure 23 Payload Simulator and Damper Components
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Figure 24 Armature Coil Carrier Plates (Front $ Back Views)
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Figure 25. Armature Coils and Carrier Plate (Side 1)
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Figure 26. Armature
A rarrier Plate (Side 2)Coils and Carrier
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Figure 27 Assembled System View 1
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Figure 28 Assembled System View 2*

Figure 29 Close-up view of active Damper Assembly

Figure 30 Close-up view of Suspension System

Figure 31 Close-up View of Squeeze-Film Damper, EMA,

and Suspension System*

5.3 ASSEMBLY PROCEDURES

The following is the sequence of steps used to assemble the test model,

(a) The cage structure was first assembled in accordance with

NTI DWG 70093.

(b) The adapter plate and the inner squeeze-film damper plate were

bolted to the magnet assembly.

(c) The lower magnet assembly was bolted to the 72-cm aluminum

tube.

(d) The upper diamond-shaped payload suspension frame (NTI

DWG 20087) was assembled to the payload package, using a

pair of 10.97-cm suspension cables (NTI DWG 20091, sheet 3,

Part No. 13).

(e) The payload package was suspended by supporting the suspension

frame in the cage structure. The pretension in the suspension

was adjusted to the required value by measuring the static

deflection of the cables due to the weight of the partially

assembled payload. A dial indicator was used to measure

the deflections directly.

* With the exception of the final modification of the squeeze-film damper, as
described on page 67, and in Section 6.
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Figure 28 Assembled System View 2
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Figure 29 Close-up View of Active Damper Assembly
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Figure 30 Close-up View of Suspension System
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Figure 31 Close-up View of Squeeze-Film Damper, EMA
and Suspension System
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(£) The lower magnet assembly was removed, and the upper

magnet assembly bolted to the aluminum tube. The

new partial payload package was turned upside down.

The lower payload suspension package was assembled

and the lower inner suspension cables were adjusted

to the proper pretension.

(g) The upper magnet assembly was removed, the lower

magnet assembly was reinstalled, and the partial

payload package was suspended to the cage structure

with a pair of outer (9.96 cm) suspension cables.

The pretension was adjusted to the required value

by the static deflection under the weight of the

partial payload package.

(h) The other pair of outer suspension cables were pulled

tight between the partial payload package and the

cage structure.

(i) The upper magnet assembly was added to complete the

payload package.

(j) The pretension in the second pair of outer suspension

cables was adjusted to the desired value by the static

deflection due to the weight of the total payload.

(k) The Aramature Plates were inserted in the magnetic

gaps.
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(1) The Velocity Sensor Coils were mounted on to the

Armature Plates.

(m) The Armature Plate was connected to the four posts

of the Cage Structure, using cables for each plate.

(n) The plates were centered in the magnetic gaps by

adjusting the tensions in the cables (NTI DWG 20091,

Sheet 3), and in the flexures (NTI DWG 20086, Item 9)

(o) The smaller Squeeze- Film Damper Plates were installed,

using two steel Support Tubes (NTI DWG 20090, Item 3)

for each damper plate.*

(p) The lower Squeeze-Film Damper gap was adjusted to

0.5 cm with the system oriented vertically. The

upper Squeeze-Film Damper gap was adjusted to 0.5

cm with the system oriented horizontally.

(q) Grease was injected into the Squeeze-Film Dampers

(r) Power and signal leads were connected to complete the

assembly.

The assembled specimen can be oriented in any direction and tested

so long as the upper Squeeze-Film Damper gap is not completely closed.

The small Squeeze-Film Damper Plates and square support tubes were
later replaced by large end plates rigidly mounted to the cage structure.
See discussion in Section 6.
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5.4 SYSTEM OPERATIONS

5.4.1 Initial Adjustments

(a) Before connecting the required + 20 volt power supply to the

Damper Control,set front panel* (FP) switches S:l down to

open the output curcuit of the Power Amplifier (PA)..

(b) Set Damper Control Amplifier and Signal Monitor Amplifier,

Damper Control, set (SMA) to maximum gain by turning FP gain

adjustments Gl, G2, and G4 fully CW.

(c) Short both velocity input terminals and FP input JD to System

Common (SC)t

(d) Trim FP zero adjustment Z2 until the PA output voltage

appearing at FP output jack JG is within +_ 20 mv from SC.

(e) Trim FP zero adjustment Zl until the SMA output voltage

appearing at FP output jack JA is +_ 20 mv from SC.

(f) Connect velocity transducer to Damper Control. Verify cable

connections and functioning of amplifiers by the presence of .

output signal at JA on FP when the transducer is disturbed.

(g) Turn G2 and G4 fully CCW to reduce the gain of the Damper Control to

minimum (about 2). Do not open FP switch S2 when reducing G4.

(h) Apply sinusoidal voltage (Iv, 0-pk, at 20 Hz) from a low-

impedance source to JD. Verify proper functioning of external

excitation attennator G3 by monitoring PA output voltage

appearing at JC. Maximum gain (corresponding to G3 fully

CW) is unity.

(j) Connect PA to actuator armature by closing switch SI.

The EMA and the Damper Control are now in the Vibration Test

Configuration.(VTC). Determine the lowest natural frequency

of specimen. This may be accomplished by the

" See Figure 32.
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use of G3 for level control, and the buffered relative velocity

signal from JA. Adjust the frequency of the excitation signal

until it and the velocity signal are either in phase

or 180° out of phase with each other near this natural frequency.

If the signals are in phase, reverse the power amplifier con-

nection. Positive damping will be added to the structure when

the signals are 180° out of phase.

(k) Increase damping to the system, (while it is.vibrating in its

fundamental mode) by gradually rotating G4 until the full CW

position is reached. The specimen response amplitude should

be reduced by this operation. Further increase in damping is

achieved by rotating G2 CW until system instability occurs

( a high-frequency oscillation, usually in the audio range).

Due to voltage- and current-limiting features in the Damper Control,

sustained oscillation of this type will not damage the system.

(1) Reduce system gain by rotating G2 GCW until stability is restored.

(m) Review and trim offset adjustments at the final gain settings.

(n) Verify stability of system in simultaneous, 4-channel opera-

tion. Slight gain reduction may be necessary.

The active damper systems are now operational,

5.4.2 Miscellaneous Notes On Regular Operations

(a) On account of the low-drift feature of the system electronics,

zero offset adjustments were found to be unnecessary in day-to-

day operations. Warm-up after turn-on is desirable but hot

needed.

(b) The power amplifier is internally protected against damage

due to accidental short-circuiting of its output leads.
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(c) The fuse on the front panel protects the armature windings

in the EMA from over-current conditions.

(d) Normal variation of damping is accomplished by adjustment

of G4.
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Section 6

TESTS AND RESULTS

The 0.125-scale omnidirectional payload isolation model, in-

cluding the Simulated Payload and the Cage Structure (hereinafter called

the specimen) was tested in three phases. Phase I contained a series of

vibration tests conducted to establish the low-frequency dynamic charact-

eristics of the specimen experimentally. Phase II contained a series of

constant-force frequency sweep tests conducted to establish performance

characteristics of the isolation system. Finally, Phase III tests were

conducted at LaRC on a large shaker to evaluate the performance charact-

eristics of the isolation system under various controlled input acceler-

ation environments.

6.1 PHASE I TESTS

6.1.1 Test Objectives

Dynamic calibration tests were conducted at NTI. Test objectives

were:

(a) To verify results of design, fabrication, assembly

and setup procedures, and to establish that the

specimen is ready for isolation evaluation tests.

(b) To determine low-frequency dynamic characteristics

of the specimen, and their variation with respect

to response amplitude.

(c) To determine damper performance and optimal control

system gain.
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6.1.2 Test Equipment

Exciter:

Power Amplifier:

Signal Source:

Transducers:

Signal Amplifiers:

Recorders:

Monitor, Display

§ Measure:

Filter:

For lateral vibration tests, the EMA were

used to excite the specimen. For

longitudinal vibration tests, a Pye-Ling

Model V50/A 50-lb shaker was used.

RCA HC2000 H Power Operational Amplifiers

Exact Model 123 Waveform Generator

Columbia Model 902 H Accelerometers ,

(2 units at 120 pcb/g) Relative Velocity

Transducer (4 units at 5.1 mv/(cm/sec)).

Kistler Model 566M117 Charge Amplifiers (2).

Datel Model 200 C Instrumentation

Amplifiers (4)

Hewlett-Packard Model 7046A X-Y Recorder,

Tandberg Series 100 4-track FM

Instrumentation Recorder }

Bell § Howell Model 5-134 Datagraph with

Model 7-316 Galvolometers,driven by

Neff Model 129 Amplifiers .

Tektronics Model 465 Dual Trace Oscilloscope,

Hewlett-Packard Model 120513 Dual

Trace Oscilloscope .

Darcy Model 440 Digital Multimeter ,

Monsanto Model 100B Timer/Counter •

Spectral Dynamics Model SD121 Tracking

Filter (Bandwidth = 1 Hz)
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6.1.3 Test Setup

6.1.3.1 Test Specimen

Two 15-kg steel plates were bolted to the Cage Structure,

using 6 brackets for attachment to the main square tubes, see NTI DWGS

20097 and 20098. These weights were used to simulate, at least in part,

the mass of the vehicle model during Phases I and II tests. The test

specimen was suspended from above with 1/4-inch Nylon ropes, as shown

in Figures 33 and 34. The specimen was set up and tested in three

configurations:

Specimen Configuration Payload Axis Damper Axes 1 5 3 *

IA Vertical Horizontal

IB Horizontal Horizontal

1C Horizontal Vertical

6.1.3.2 Excitation

Steady-state sinusoidal excitation was used for determination

of mode shapes, natural frequencies and damping. To excite the specimen

in the longitudinal direction, the Pye-Ling V50/A shaker was used. For

excitation in the lateral directions, EMA's were used.

6.1.3.3 Damping

For each test configuration and excitation pattern, two test

series were conducted, corresponding to low and high damping conditions

which are defined below:

Low Damping: Squeeze-Film Dampers without grease; and all

Damper Controls on, G4 fully CCW.

High Damping: Squeeze-Film Dampers filled with proper amount**

of grease, all Damper Controls set at maximum

gain (G4 fully CW).

* Damper Axes 153 coincide with the lengthwise center lines of the force
coil plates of the upper and lower EMAs, respectively. Damper Axes 2 5
4 are perpendicular to Axes 1 5 3 .

**To be determined during Phase I tests to achieve optimum low-frequency
amplitude suppression and high-frequency isolation.
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Figure 33 Suspension of Specimen in Phase I § Phase II Tests
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Figure 34 Suspension of Specimen in Phase I $ Phase II Tests

76



6.1.4 Test Procedures

For each low damping test configuration, natural frequencies

were determined in steady-state sinusoidal tests, using phase relationship

between excitation and response (acceleration or velocity) as criteria.

Mode shapes were measured at two points on the payload to identify the

modes. In the axial direction, the natural frequency of the rigid-body

payload mode is significantly lower than the "elastic" modes and a single

shaker was found to be amply adequate for Phase I test objectives. For

all lateral modes, it was found necessary to conduct the required

"modal survey" tests using all four EMA and Damper Control channels in

the VTC simultaneously.

Damping was measured by recording and analyzing free vibration

decay records, which were obtained by removing the excitation from the

specimen after a steady-state resonance condition was established.

Damping was next added and all above tests were repeated.

Phase I test instrumentation is shown in Figure 35.

6.1.5 Test Results

During Part 1 of Phase I tests, the spring-connected Squeeze-

Film Damper was used. The following results were obtained for the

rigid-body translational mode of the payload in the axial direction.

Configuration: IB

Natural Frequency: 8.83 Hz

Low Damping (C/C 1: 0.006

High Damping (C/CCI): 0.057*

At optimum squeeze-film diameter of 2.5 cm, which was determined
experimentally and provided maximum damping achievable with the
design.
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Figure 35 Phase I and Phase II Test Instrumentation
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Figure 36 Specimen with Modified (Rigidly Attached)
Outer Squeeze-Film Damper Plates
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It was verified experimentally that by stiffening the series

Springs (the square tubings) connected to the Squeeze-Film Dampers,

much greater damping than the value of 0.057 could be

achieved. A design modification was accordingly introduced at .this

time to eliminate these series damper springs (Part No. -3, NTI DWG.

20090, 4 places). The redesign also consisted of the replacement of

the original damper plates (Part No. -3, NTI DWG. 20085, 2 places)

with two large aluminum plates, each covering the entire end of the

Cage Structure. The dimension of the plates are 1.27 cm (t) X 50.8 cm(diam).

These plates are bolted on to the Disc Support Rings (Part -3, NTI DWG.

20093,). The modified design is shown in Figure 36 and NTI DWG 20094.

While parts for the above modification were being fabricated,

Phase II tests were conducted on the model in its un-altered configuration

so that the resulting frequency-sweep test data can be compared with

corresponding results after the modification.

Part II of Phase I tests were conducted after the above mentioned

modifications on the Squeeze-Film Damper were completed. Test results

are summarized in Table I on the following page, and show that

(a) High damping was achieved in the longitudinal

direction with the modifications.

(b) High damping was achieved in lateral vibrations

in the plane containing active damper axes 264.

(c) Maximum damping achieved in active dampers 153

was 30%. To raise the control system gain higher

would have caused instability and high frequency

(about 1,100 Hz) vibrations would occur.

(d) Natural frequencies of the lateral modes become

higher in the preload direction.
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Specimer
Conf ig .

I'A

IB

1C

» Mode
Description

(Rigid- Body Payload Modes)

Longitudinal Translation

Rocking in Plane 1-3
Response @ 3>1

Rocking in Plane 1-3
Response @ 1>3

Translation in Plane
Containing Damper Axes 2§4

Rocking in Plane
Containing Damper Axes 2§4

Longitudinal Translation

Longitudinal Translation

Translation in Plane 1-3

Rocking in Plane 1-3

Translation in Plane 2-4

Rocking in Plane 2-4

Translation in Plane 1-3

Rocking in Plane 1-3

Translation in Plane 2-4

Rocking in Plane 2-4

Natural
Frequency

Hz

11.77

7.25

8.01

7.01

6.46

8.83

12

7.66

8.33

10.47

10.33

11.06

9.99

7.45

8.15

Damping
Low

%

0.88

1.8

1.6

1.2

1.7

0.6

1.3

1.3

1.5

1.0

1.6

1.5

1.2

1.9

Damping
High

%

>50

28

22

73

>73

>50

30

28

73

38

12

24

41

46

Table I Summary of Phase I, Part II Test Results
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6.2 PHASE II TESTS

6.2.1 Test Objectives

Phase II tests were conducted at NTI to establish performance

characteristics of the isolation system design.

6.2.2 Test Equipment

All test equipment used for Phase I tests was used. The

EMA's were not used as shakers in Phase II tests.

6.2.3 Test Setup

A number of combinations of specimen and excitation orienta-

tions were tested to investigate isolation properties of the system.

Table II is a resume of the test configurations covered during

Phase II tests.

6.2.4 Test Procedures

Sinusoidal frequency sweep tests at constant force amplitudes

were used exclusively for Phase II tests. The frequency range

covered was either from 5 to 2,000 Hz or from 5 to 200 Hz. The

optimum sweep rate was determined experimentally and was approx-

imately 50 Hz/minute from 5 Hz to 50 Hz and 150 Hz/minute from

50 Hz to 2,000 Hz. The amplitude of the excitation was 5.5 N (0-pk),

except for Tests II B § II C when the dynamic linearity of the

specimen was investigated.

For each test specimen and excitation setup, the frequency

response curve of the Cage Structure, as measured by an acceler-

ometer located near the point of excitation, was plotted against

the frequency on the H-P 7046A X-Y recorder. The acceleration

signal was filtered and converted to a dc voltage proportional to
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Specimen Config:
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Specimen Config.:
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Specimen Config.:
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Specimen Config.:
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