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ABBREVIATIONS AND SYMBOLS

2A Doppler frequency acceleration (Hz/second )

A-, Loop amplifier dc gain (volts/volt)

AGC Automatic Gain Control

AM^DSB-SC Amplitude modulation, double sideband, suppressed carrier

BN Receiver noise bandwidth (MHz)

B Loop natural frequency = 2jrf (radians/second)

Bg ,„ Receiver bandwidth at which response is down 3 dB (Hz)

Cpj Ratio of carrier power to total power at input to frequency doubler

C Ratio of carrier power to total power at frequency doubler output

C Ratio of sideband power to total power at frequency doubler output
SO

D Doppler frequency rate (Hz/second)

Loop tracking error = 0 -9 (radia

Loop one-sided noise bandwidth (MHz)

E(P) Loop tracking error = 0 -9 (radians)

-.

Frequency at which loop response is maximum

f Receiver input carrier frequency
S

f . Modulated IF signal

f, , Frequency at which loop response is down 3 dB from zero frequency
response (Hz)

G Open loop gain = G A.G

G Loop phase detector sensitivity (volts per radian at IF)

G VCO tuning sensitivity (radians/seconds per volt)

IF Intermediate frequency

LO Local oscillator

MB/s Megabits per second

N Receiver noise power in bandwidth B (watts)

N. Noise power in loop noise bandwidth

P La Placian operator

S Total signal power

SNR Signal-to-noise ratio

S(t) Baseband signal

T Loop tracking response = 9 / 9

VCO Voltage controlled oscillator

a Phase shift keyed carrier suppression factor



0 P plane baseband representation of input signal'phases
9 P plane baseband representation of VCO phase

6 Loop damping function

Vak 2fffpeak (radians per second)
cog dB 2irfg dB (radians per second)
A Equals by definition

vi



PREFACE

This is the final report on Contract NAS 5-23183 entitled "Wideband Infrared Re-
ceiver Backend." The program objectives were the study, development, and the fabri-

cation, of a 10.6 Micrometer Doppler Tracking Receiver Backend. This receiver is to

be used to track in frequency and to coherently demodulate the AM-DSB-SC 200 to
900 MHz RF signal output from an infrared heterodyne front end developed at AIL under

Contract NAS-5-23119. The two subsystems constitute a preprototype of a spaceborne
300 megabit receiver which will become part of a system designed to demonstrate the
feasibility of wideband satellite-to-satellite communications.

The study and design were directed toward providing a reliable high performance

receiver suitable for unattended space operation. The receiver configuration chosen
during the design phase employs a signal squaring tracking loop to provide the coherent
reference required for optimum signal demodulation. This technique was chosen because

it is the simplest and most reliable approach to satisfying the receiver's requirements.

The fabricated receiver performed in all respects in accordance with its design
specifications, and represents a significant step in demonstrating the feasibility of a

high data rate satellite-to-satellite 10.6 micron data link.
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1.0 INTRODUCTION

This is the final report describing the design, operation, and configuration of a

wideband infrared Doppler tracking receiver backend developed by AIL under Con-

tract N AS-5-23183.
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2.0 DESIGN OBJECTIVES

Carrier frequency range

Rate of carrier frequency change
Acquisition time

Instantaneous bandwidth

Modulation

Noise figure

Data rate

Bit error rate

Automatic gain control (AGC)

Video output

Nominal power requirements

200 to 900 MHz
Greater than 20 MHz/sec
Less than 60 ms for initial set
within ±85 MHz

400 MHz (3 dB)

AM-DSB-SC
Less than 5 dB (excluding photo mixer)

300 MB/s (see Figure 5-12)

15 dB minimum noncoherent

MECL levels into 50 ohms
»25 watts

2.1 APPLICATION

This receiver backend was designed to be compatible with a 10.6 micron infrared

heterodyne mixer being developed under NASA Contract NAS-5-23119. The combined

front and backends will serve as the preprototype of a space-qualified model of a wide-

band satellite-to-satellite heterodyne infrared receiving system.

2.2 SIGNAL CHARACTERISTICS

The signal entering the receiver backend from the IR mixer will have a carrier fre-

quency ranging between 200 and 900 MHz (20 MHz/sec maximum rate of change) depending
upon the Doppler frequency shift encountered. It will be binary double-sideband amplitude
modulated with the carrier being suppressed on the order of 20 dB below the total signal

power (which is nearly equivalent to binary phase shift keying). The binary modulation

will be NRZ-L with a data bit-rate consistent with the back-end's 400 MHz (3 dB) instan-

taneous bandwidth.

The anticipated noise power available from the photomixer is on the order of -75 dBm

in the receiver's 400 MHz noise bandwidth. Thus, a -65 dBm signal power from the photo-

mixer will provide about a 10-dB SNR when the receiver is quantum noise limited. The

back-end's 5-1500 MHz preamplifier (physically located on the photomixer mount) provides

a gain of 50 dB to raise these power levels to a range appropriate for further processing.

A 10 to 20 dB signal dynamic range is anticipated.

2-1/2-2



3.0 CANDIDATE TECHNIQUES

3.1 RECEIVER BACKEND REQUIREMENTS

An efficient receiver for the demodulation of the double sideband suppressed carrier

(DSB-SC) signals subject to the varying Doppler shifts must perform the following func-

tions (reference 1):

• Obtain a coherent replica of the carrier

• Extranet the modulation with minimum error

The manner of performing these functions must be compatible with the receiver

design goals of high data rate, wide range of Doppler frequencies, Doppler rate, mini-

mum signal frequency acquisition time, and digital modulation (for which DSB-SC
approaches Phase Shift Keying).

3.2 POSSIBLE APPROACHES TO DATA DEMODULATION

The general problem of DSB-SC demodulation has received attention for many years.

Reference 2 describes four generalized techniques particularly applicable to digital de-
modulation. These techniques are:

A. Conventional phase lock loops for carrier extraction that do not
make use of sideband energy (Figure 3-1)

B. Squaring loops that extract the carrier replica via a squaring
operation on the RF signal (Figure 3-2)

C. Generalized costas loops that perform demodulation while ex-
tracting the carrier replica (Figure 3-3)

D. Data aided modulation wipeoff loops that employ decision
directed feedback to enhance the signal-to-noise ratio of a
standard phase lock loop (Figure 3-4)

Technique (A) is least efficient, while (B) and (C) have nearly identical performance

since both make full use of sideband energy via mathematically equivalent operations (refer-
ences 1, 2, and 3). The last technique (D) is relatively new, but is well described in refer-

ences 2 and 4.

3.3 SELECTED TECHNIQUE

Figure 3-5 is a generalized block diagram consistent with the four techniques shown

on Figures 3-1 through 3-4. Two coherent references are obtained from the Coherent

Replica Extractor Block. One reference, the coherent LO, tracks the incoming signal

3-1
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carrier with a constant frequency offset equal to the receiver's intermediate frequency

(IF). This reference is used to coherently translate the incoming signal to its IF. .The

other reference, the coherent IF reference, is used to coherently demodulate the IF sig-

nal. Thus the major design decision that had to be made was selection of the optimum

technique for obtaining these two references.

It was realized early in this program that the large ratio of modulation bandwidth

(400 MHz), to required tracking loop bandwidth (kHz range), could allow high signal-to-

noise ratios in the tracking loop even when the received signal power was low. Thus,

sophisticated carrier recovery techniques such as the data aided loop (Figure 3-4) were

discarded.

The standard phase lock loop of Figure 3-1 was also discarded since it ignores the

energy in the signal sidebands and would present operational difficulties in avoiding false

sideband locks.

The choice was then between the mathematically equivalent squaring and Costas

loops. The squaring loop was finally chosen as the optimum technique due to its poten-

tial for providing the fewest problems during its development when considering the high

receiver data rate.

3 . 4 SIMPLIFIED RECEIVER DESCRIPTION . . . . . . - , . .

A simplified block diagram of the developed receiver backend is shown on Fig-

ure 3-6. The modulated signal at a carrier frequency of f is amplified in a widebands
preamplifier (5 to 1500 MHz) to a level of about -10 dBm. It is then upconverted in the

first mixer to the IF center frequency of 1500 MHz. (The 1500 MHz center frequency

was chosen due to the availability of efficient high performance components at this fre-

quency. ) The LO for the mixer is maintained at a frequency of (1500 + f ) MHz by the
S

tracking loop.

The upconverted signal is then passed through a linear phase band-pass filter

(400 MHz = 3 dB bandwidth) after which it is split into two paths. The upper path goes

to the data demodulator, while the lower path provides the signal for the tracking loop.

The tracking loop signal is further amplified to a level of about +15 dBm and enters the

frequency doubler where the bi-phase PSK sideband energy is converted to carrier power

at 3.0 GHz (as described in paragraph 4.3). A portion of this 3.0 GHz carrier is then

made available to the tracking loop phase detector, where its phase is compared to that

of a 3.0 GHz reference derived in a similar manner from a 1500 MHz crystal controlled
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reference source. The quadrature phase detector performs the same phase comparison
but is in quadrature with the loop phase detector in order to provide an indication of the
tracking loop being in lock.

The error voltage from the loop phase detector is appropriately conditioned in the
loop filter and amplifier so that the VCO will properly track the changing frequency of
the modulated signal.

The 1500 MHz reference is also applied to the data demodulator so that when the
VCO is tracking, both inputs to the data demodulator will have the proper phase to de-

modulate the signal.
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4.0 RECEIVER ANALYSIS

4.1 TRACKING LOOP P- PLANE ANALYSIS

The parameters determining the tracking loop characteristics are:

• Loop phase detector sensitivity, G volts/radian

• Loop filter transfer function, 1 + TgP/l + T.P (Figure 3-6)

• Loop amplifier dc gain, A_

• VCO tuning sensitivity, G radians per second/volt

With no other frequency selective elements of consequence within the loop (for
instance, the VCO modulation and the loop amplifier bandwidths being far in excess of

the tracking loop bandwidth), the phase transfer function between the first mixer signal
input 0 and its VCO input, 9 is:

S V

V (1 * PT2) Kp Ky AF

and under the easily satisfied condition that GQT2 »1 with G £K K AF

j>v_ » * PT2) Op

9^T.

If we now define the parameters a and B :

T2

2
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_

V l t 2 ° B o"s , , p P2
1 + 2o w-

which is then the loop tracking response, T(S).

The loop tracking error is E(P)

o s -o v

0 x P2/B2

E(P) = — § - V- (6)
, o P • P
1 + 2(J - + — s-

Bo Bo .

Figure 4-1 is a normalized plot of some characteristics of 6/9 versus the parameter <T.

The 3-dB radian frequency a:, dB> the frequency a; , , at which the loop response peak

occurs, and the magnitude of the peak are all included. The general literature (refer-

ence 11) and bur experience indicate that choosing a = V V~2 as a nominal value will pro-

vide good noise and tracking performance, which is plotted on Figure 4-2. Then

P
1 +V~2 B

e/e = - ° (?)v s

P2

s oE(P) = - ^—2 - =- (8)

The one-sided noise bandwidth of the tracking loop, f , will then be about f^ = 2irf Hz,

which is about IT times the 3-dB loop frequency, f, ,_. (f0 ._, in Hz is about 2 x f as
0 QD o QD O

shown on Figure 4-2.)
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4.2 TRACKING LOOP PARAMETERS

The following lists the nominal magnitudes of the receiver tracking loop parameters:

7• VCO sensitivity (G ) = 2n x 5 x 10 radians/sec-volt
• Phase detector sensitivity (G) = 2 x 0.1 volts/radian

(The factor of 2 is due to the frequency doubler)
• Loop dc amplifier voltage gain (A,,,) = 600
• Tj = 0.15 second

• T0 = 2.7 x 10"6 seconds
tt

With B = -\/ v
 T

p r =5.01 x 105 radians/sec, fn = 79.8 kHz; from equation 4, and

equation 3

The loop one-sided noise bandwidth, fj. = 2irf Hz, is «2ir x 79. 8 kHz = 501 kHz.

The phase detector sensitivity of 0. 2 volt/radian and the loop amplifier voltage gain
of 600 provide a 120 volt/radian error sensitivity for the VCO. Thus, with the VCO sen-
sitivity of about 50 MHz/volt, 700/50 = 14 volts of VCO correction voltage is required to

tune the VCO over a 700 MHz range. This is obtained by 14/120 = 0. 12 radians change

at the demodulator phase detector.

The measured tracking loop frequency response is shown on Figure 4-3 and shows

good agreement with theory and Figure 4-2.

4.3 FREQUENCY DOUBLER ANALYSIS

The form of the noiseless modulated IF signal with suppressed carrier is:

fsi =" S(t) COS "IF * + " a COS (wIFsig

where S(t) is either plus or minus unity, u;IF is the IF center radian frequency, a is a

constant defining the degree of carrier suppression, and 6 is some arbitrary phase ref-
erence. The constraint of finite bandwidth will slow down the state transitions, and group
delay distortion will further change the signal from this form. However, this analysis

will not consider such signal disturbances.
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o
The total signal power is (1 + a ) when the long term average of S(t) is zero:

2 2a /I + a being defined as the carrier suppression ratio.

2
ccl£— z—y

1 + a

o
After a squaring process the signal becomes f .- at frequency 20^ which may be

expressed as the sum of two orthogonal components with K being the doubling constant.

fsig = K [ 2 SW ° cos e + S^2 + «2 cos 2Q]
(11)

- K [2 S(t) a sin 9 + a2 sin 20 ] sin 2a.-j.pt

2
The modulation sideband components in f . are described by:

2 KS(t) a(cos 9 cos 2wIFt - sin 9 sin

while the restored carrier is:

[ 2 2 1 2S(t) + a cos 9j cos 2 o w t - K« sin 29 sin

The sideband power, with S(t) = ±1 and the long term average of S(t) being zero, is then
2 2

2K a and the carrier power is

) -4 a
2sinin2OJ

Thus the doubler output has a ratio of sideband power to total output power of C .
SO

4 C ( 1 C ) '4Cciu Lcr.

A plot of the doubler output sideband suppression C versus the input carrier sup-
SO

pression C, is shown on Figure 4-4 for the limiting cases of 9 equaling zero and ir/2.
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The efficiency of the frequency doubler in extracting the carrier reference is C ,
CO

the ratio of the doubler output carrier power to its total output power.

C A
1 - 4 C (1 -C )sin20

- - - - -
co~ 1 + 4 CCI (1 - CCJ) (1 - sin2 0)

This efficiency is plotted versus Cn, on Figure 4-5 for the limiting cases of 9
^fi '

equaling zero and fr/2. It is evident from this figure that the doubler efficiency may de-
grade rapidly as the input carrier suppression decreases below 10 dB.

4.4 SIGNAL-TO-NOISE RATIO

The receiver signal-to-noise ratio (SNR) is determined by the receiver's noise

figure, its noise bandwidth, and the signal power within this bandwidth.

The noise power, referred to the optical mixer output, is (-114 + 10 log BN + NF)
in dBm where BN is the receiver noise bandwidth in MHz and NF is the ratio (expressed
in dB) of the effective noise temperature (in kelvins) at the optical mixer output to 290 K.
The noise bandwidth of this receiver is determined by the IF band-pass filters and is
about 400 MHz, the receiver's 3-dB bandwidth, and the receiver noise figure is about
15 dB (4 dB for backend alone). Thus the preamplifier equivalent input noise power is
about (-114 + 26 + 15) = -73 dBm (-84 dBm for backend alone). The minimum operating
SNR anticipated within the 400 MHz noise bandwidth is about 10 dB. However, this SNR

is increased within the tracking loop due to the loop's narrower bandwidth, as shown by

the following.

Given a White-Gaussian noise power N in the IF bandwidth BN, and ideal frequency

doubling of the signal (that is, all sideband energy converted to carrier power) whose
power at the frequency doubler input is S, the SNR within the tracking loop can be deter-

mined. .
' • • ' 2The doubler output signal power will be S /2 and the effective noise power in the

one-sided loop noise bandwidth fN is:
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Using linear analysis the loop SNR will be:

si N
-1

(15)

Paragraph 4.2 indicates that the loop noise bandwidth is about 0. 5 MHz. Thus,

SNRloop

SNRloop 4 x 0.5
400

(16)

IF 5. 0 -x 10"3 (1 + J|)

which provides about a 23 dB improvement in SNR. for
Nrr greater than 10 dB.

IF

4.5 RESPONSE TO FREQUENCY TRANSIENTS

The transient phase error E(P) is of interest when tracking Doppler shifted signals.

P
0 |B~

E(P) = S-l-0- (17) from equation 8

A Doppler shifted signal will generally have both a linear and a quadratic component.
o .

The signal f = Dt + At with t > 0 may be considered a worst case Doppler representation
O "^~

for a satellite communications link since its P plane representation indicates a discon-

tinuity at t = 0. Since

9 1 '1 rvi.0 1= 0* +
(18)

2ir
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The first term represents the Doppler rate (D Hz/sec); the second term the Doppler

acceleration (A Hz/sec ). In P plane notation with t'->0, the linear model tracking loop
4 l2 f f . Thus,'baseband input is 0 = +D/P + 2 A/Ps

~n X

E(P) =
t— p I p+^ ir + r

0 » O

x 2ir
(20)

The equivalent time response is:

-'V2

-B

sin

-B

ir/4 radians

B
cos -=.t I I radians

(21)

The asymptotic value for the phase error E(t) is 2irD/BQ radians due to Doppler
rate and 4ir A/B t radians due to the Doppler acceleration at large values of t.

Thus a Doppler rate, D, of 20 MHz/second will cause a maximum phase error of
-4about 5 x 10 radians (0.03 degree) for a tracking loop such as that of the developed re-

ceiver whose B is 5 x 10 radians/second (80 kHz). A similar phase error will occur
o ' 2

when the ratio of the Doppler acceleration, A Hz/sec , to its duration in seconds is

about 107.

Figure 4-6 shows the receiver's tracking loop response to a simulated Doppler

frequency shift contour whose maximum rate is about 90 MHz/second. The loop phase

variation with time, shown on the figure, is indistinguishable from that of steady state

variations to slow frequency changes, indicating that the receiver's performance will
not be affected by the anticipated Doppler dynamics.
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4.6 FREQUENCY ACQUISITION

Frequency acquisition (the locking of the tracking loop to the incoming signal f ) iss
accomplished through both manual and automatic operations! Manual tuning of the VCO

places its frequency in the vicinity of the correct value, so that a triangular type auto-

matic frequency sweep may complete the acquisition. The sweep searches about 170 MHz

each 120 milliseconds, until the VCO places the IF signal within the acquisition range of

the tracking loop, at which time the sweep is stopped. Thus an initial preset of the VCO

frequency to within 85 MHz of its proper value will ensure lock within 120 milliseconds.

4.7 RECEIVER GAIN CONTROL

Two automatic gain control (AGC) loops, each with 1 second time constant filters,

are provided within the receiver. The first loop provides about 15 dB of control prior to

the first mixer. This functions to maintain the signal level into the data demodulator at

a near constant level.

The second AGC loop has more than 35 dB of control and is located in the IF path

of the tracking loop. Its purpose is to maintain the frequency doubler input power con-

stant, so that the tracking loop gain will not be a function of signal level.

The receiver AGC permits operation with optical mixer output signal levels between

approximately -75 and -40 dBm, covering SNR values between approximately 0 and 30 dB.

4.8 DIGITAL DATA PROCESSING

It is apparent from all of the references previously cited, that matched filter or

synchronously controlled integration (integrate and dump) of the demodulated signal, during

each bit period followed by a 1-0 decision based on the integrated signal value at the end

of the bit period, is the optimum method of binary signal detection. However, the diffi-

culties anticipated in implementing this matched filter technique at the high bit rates

expected do not seem justified, considering the small advantage it would provide over

much simpler approaches as shown in Figure 6-9, p 289, of reference 14. It is shown

there that less than 1 dB of signal degradation is to be expected due to the use of linear

filters.

The digital data processing approach chosen for this receiver shapes the signal

spectrum at IF with the Bessel band-pass filter, and then restores the binary logic levels,

after demodulation, with logic elements having 1-0 thresholds symmetrical about the sig-

nal zero input voltage. •

Note that it is inherent within a squaring loop system that the data output, for either

input data state, has two possible equi-probable phases differing by 180 degrees. Thus,

binary transition coding is the desirable data coding.
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5.0 RECEIVER BACKEND DESCRIPTION

5.1 BLOCK DIAGRAM

The block diagram of the receiver backend is shown in Figure 5-1. This figure in-
cludes the control functions and signal monitors available at the backend control panel. This

block diagram is a detailed version of the simplified receiver described in paragraph 3.4.

5.2 PRINCIPAL RF COMPONENTS

The following is a listing of the receiver backend's principal components and their

significant characteristics.

• AGC - Amp 1—This amplifier has a-gain controllable nominally be-
tween -5 and +10 dB over a frequency range of 5 to 1500 MHz (A-l).

• Amp 2--This amplifier has a nominal gain of 17 dB between 1 and
2 GHz (A-2).

• Amp 3—This amplifier has a nominal gain of 30 dB between 1 and
2 GHz and a 1 dB gain compression at +30 dBm output power (A-3).

• Amp 4--This amplifier, used to amplify the demodulated signal,
has a nominal gain of 40 dB from 0.01 to 400 MHz (A-4).

• MECL 1-0 Decision—This block consists of a differential MECL
line receiver whose output is at MECL logic levels (A-5).

• VCO--This device may be tuned between 1. 5 and 3.6 GHz with a
nominal output power of +23 dBm. Its tuning characteristic is
shown in Figure 5-2 (O-l).

• 1.5 GHz Oscillator—This oscillator is phase locked to an internal
crystal controlled source and has an output power level of about
+24 dBm (O-2).

• Mixer 1—This mixer is a doubly balanced device with a measured
conversion loss of less than 5 dB (M-l).

• Mixers 2 and 3—These devices are doubly balanced with IF port re-
sponses extending down to dc and conversion losses and dc offsets
optimized for 3.0 GHz LO and RF inputs (M-2 and M-3).

• Mixer 4—This mixer is doubly balanced with the frequency response
of its RF and LO ports being between 1 and 2 GHz and its IF port
between dc and 600 MHz (M-4).

• Bandpass Filter, Bessel--This is a 5-pole linear phase filter (F-l).
Its frequency response is shown in Figure 5-3.
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• Bandpass Filter, 1.35 to 1.65 GHz--This filter is centered at
1.5 GHz with a 3 dB bandwidth of 314 MHz. It has greater than
40 dB rejection to frequencies greater than 1700 MHz and lower
than 1300 MHz (F-2).

• Bandpass Filters, 2.85 to 3.15 GHz--These filters are nominally
300 MHz wide with rejections of 68 dB at 1. 5 GHz and 59 dB at
4.5 GHz (F-3 and F-4).

• AGC-2 Gain Control—This unit is a controllable absorptive modulator
with greater than 35 dB of available isolation in the frequency range
of 1-2 GHz (G-l). .

5.3 CIRCUIT DIAGRAMS

The circuits described in paragraphs 5. 3.1 and 5. 3.2 are all contained within the back-

end control chassis. .

5. 3.1 Backend Frequency Control

A schematic of the backend frequency control circuits is shown in Figure 5-4. This

schematic depicts:

• The tuning voltage amplifier U6 which amplifies with unity gain the
tuning voltage from the backend control.

• The loop amplifiers U7, Q2, and Q3 which amplify the loop phase de-
tector output with a gain of about 56 dB at dc.

• The loop filter elements R28, R29, and C6 which serve as the feedback
components of U7.

• The acquisition sensing components Ul, CR1, CR2, and U2 (with low-
pass filter components R3 and Cl) which amplify and filter the quadra-
ture phase detector output. The gain of dc amplifier Ul is controlled
byR2.

• The sweep oscillator U3, U4, and U5 which produces a triangular wave-
form with a period of 0.125 seconds and a peak-to-peak amplitude of
about 2 volts at the output of U4.

• The sweep-stop transistor Ql which stops the sweep when the output
of U2 rises to about +10 volts, or when the stop sweep control terminal
is brought to about +5 volts.

• The summing amplifier U8 which sums the outputs of the tuning voltage
amplifier U6 and the sweep output from U4 for further amplification by

- Q2 and Q3.

5.3.2 Backend AGC Amplifiers

A schematic of these amplifiers is shown in Figure 5-5. U9 amplifies the AGC-1 de-

tector output with gain controlled by R-74. AGC-1 control becomes active when the output

voltage of U9 exceeds the voltage threshold established by R59 and R60 at which time the

negative output voltage of U10 controls the gain of Amp-1.
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Figure 5-1. Receiver Backend Block Diagram
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Ull amplifies the AGC-2 detector output voltage when it is more negative than the

threshold established by R64 and R65, at which time the absorptive modulator AGC-2 gain

control element is controlled by the current amplifier Q4.

5.3.3 Backend MECL 1-0 Decision

These components are within the chassis marked MECL. The schematic is shown in

Figure 5-6. The MECL device used is the MC 1692 line receiver that contains four differ-

ential input logic elements and a voltage reference which is at the logic transition voltage.

The input pins used, 4 and 5, are connected to this reference so that the logic element will

have a symmetrical response to the ac-coupled demodulated signal at pin .4. A 1 K resistor

between the ac-coupled output from pin 2 and +15 volts raises the output voltage swing to

about 0. 7 ±0.4 volts for the two logic levels when the unit is de-coupled to a 50 ohm load

to ground. .. . , . .

5.3.4 AGC Buffer Amplifier

This chassis (schematic in Figure 5-7) has been added to provide replicas of the AGC

signals to external subsystems where they may be used to provide optical pointing informa-

tion. U-3 and Q-l performance is identical to U-ll and Q-4 of the backend AGC amplifiers

(paragraph 5.3.2). U-l and U2 amplify the AGC-2 detector voltage and provide nominal

voltage levels of *2 volts balanced to ground.

5.3.5 Backend Control Panel

The backend circuits receive their power and control from the backend control panel

assembly via a 20-foot cable. The control circuits are contained within the control chassis

(schematic in Figure 5-8) with the required switches and controls on the panel.

A ten turn 10 K tuning potentiometer on the panel and Rl and R2 control the output

voltage of Ul when the panel TUNE switch is in the MANUAL position. When the TUNE

switch is in its EXT position, a front panel connector provides the input to Ul so that the

VCO control voltage at its output may be externally programmed.

The in-lock indication signal from the backend is amplified by U2 and Ql to provide

current to light a front panel LED indicating tracking loop lock.

The sweep switch on the panel, when in its off position, provides a +5 volt level via
\

R14 and R15 to the backend stop sweep line forcing the sweep to stop.
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'5 .4 MEASURED PERFORMANCE

Receiver backend performance data was obtained using a modulated signal source de-
signed by AIL under NASA Contract NAS-5-23211. This signal source provides a PSK signal

(greater than 20 dB carrier suppression) modulated at a 300 megabit rate whose carrier

frequency can be varied between 200 and 900 MHz.

Bit error rate data was taken with Tau-Tron Inc. S-1000-A Digital Communications

Test Transmitter and S1100A Digital Communications Test Receiver; both were provided as

government furnished equipment.

5.4.1 AGC Transient Response

Figure 5-9 indicates the AGC-2 detector voltage response to a signal step 15 dB above
noise. Figure 5-10 shows the same data in a manner indicating that the AGC-2 response
time constant is very nearly 30 milliseconds. The data was taken with 50 dB of preamplifier

gain external to the backend (Figure 5-1).

5. 4. 2 Tracking Loop

The measured frequency response of the tracking loop has been plotted on Figure 4-3.

The loop's measured sensitivity to slow frequency variations is shown in Figure 5-11 (the

response to rapid frequency changes was discussed in paragraph 4; 5). Note that the phase

variations shown in Figure 5-11 are at the loop phase detector and, due to the loop frequency
doublers, are twice that occuring at the data demodulator.

5.4.3 Data Bit Error Rates

The bit errors measured at a data rate of 300 megabits/second are shown in Fig-

ure 5-12. Their deviations from theoretical PSK limits are detailed in Figure 5-13. The

increasing error rates at the lower signal frequencies are attributable to higher levels of sig-

nal image and VCO leakage powers appearing at the output of the Bessel 1. 5 GHz filter due

to the filter's broad bandwidth (inherent in linear phase filters).

5.4.4 Data Waveforms

Photographs of receiver output data waveforms as displayed on a Tektronix Type 661

sampling oscilloscope are shown in Figures 5-14 and 5-15; all photos are taken of 300 megabit
data. Figure 5-14 shows photos taken at an SNR of 8 dB. Those marked Linear were taken

at the input to the MECL 1-0 decision elements, while the photos labeled MECL were taken
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at the output of the 1-0 decision elements. The photographs in Figure 5-15 are similar ex-

cept that their SNR was 20 dB.

The 200 and 500 MHz linear photos at 8 dB SNR in Figure 5-14 show similar levels of

noise consistent with their similar error rate performance as extrapolated in Figure 5-13.

The corresponding photos at 20 dB SNR in Figure 5-15 illustrate the presence of signal image
and VCO leakage power at the lower signal frequencies as discussed in paragraph 5.4.3.
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6.0 OPERATING INSTRUCTIONS

6.1 SIGNAL INPUTS AND OUTPUTS

6.1.1 Control Panel Assembly

The control panel assembly requires ac power to its line cord at 105 to 125 volts and

50 to 60 Hz. It provides regulated dc voltages and low frequency signal and monitor lines

to the backend via a 26 pin connector mounted on its rear surface. The front panel BNC

connector may be used to connect an external voltage to be used as the tuning control

voltage for the backend VCO.

6.1.2 Backend Assembly

All input and output connectors are mounted on one surface of the backend enclosure.

The input connectors are a 26 pin PT065E-16-26S(SR) connector for power and control

functions and a BNC female connector for the input RF signal (input).

There are two output BNC female connectors. One provides the demodulated data

(Data) while the other provides a -8. 5 dBm CW signal (Monitor) at the same frequency as the

input carrier (200 to 900 MHz). A 10 pin connector is provided for the AGC buffer output

voltages.

6.2 INTERCONNECTION

The 20 foot cable provided is the only interconnection between the control panel and

the backend assemblies.

6.3 OPERATION AND CONTROLS

Operation of the receiver backend requires powering the control panel assembly,

connecting the 20 foot cable, and providing a signal to the backend signal input BNC con-:

nector.

The backend tuning control (either manual or external) should then tune the VCO to a

frequency in,the vicinity of 1500 MHz above the signal's carrier frequency. Signal

acquisition should then occur if the sweep switch is ON or, if it is OFF, when the tuning

control tunes the VCO to within the tracking loop's acquisition range. Acquisition is

indicated by illumination of the Lock light on the control panel. After acquisition, the

signal carrier frequency is available for measurement at the backend Monitor BNC

connector.
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A digital panel meter on the control panel may monitor, as selected by a six position

switch, any one of 5 signals; or it may be connected to test terminals for use as a digital
voltmeter for testing purposes.

The five monitored signals are:

• Tune--The tuning voltage provided to the backend

• Frequency--The voltage at the VCO tuning port

• L-l--TheAGC-l detector voltage :
• L-2--The AGC-2 detector voltage

• PD-L—The quadrature phase detector output voltage

6.4 BACKEND ADJUSTMENTS

The only backend adjustments anticipated are those of two coaxial line stretchers and
one trimpot.

The two line stretcher adjustments are independent of each other. The unit to the

input of the quadrature phase detector is to be adjusted to maximize the magnitude of the
dc quadrature phase detector output (when the tracking loop is locked) which may be

monitored at the PD-L meter switch position. Trimpot R2 in the backend chassis establishes
the stop sweep acquisition threshold so that the sweep will stop when the proper loop-lock is

present, but will not stop on any lower level and lock to some spurious signal.

The second line stretcher to the data demodulator LO input is used to maximize the
data output level from the demodulator when the tracking loop is in proper lock.

6.5 CALIBRATIONS

6.5.1 Signal Frequency

The frequency to which the receiver backend is tuned is indicated by the panel meter

when it is in the "Frequency" position. Figure 6-1 provides this calibration.

6.5.2 Amplifier Output Power Levels .

The panel meter calibrations for the (A-2) and (A-3) 1. 5 GHz amplifier power output

levels are contained in Figure 6-2. They correspond to the panel meter positions L-l and
L-2 respectively.
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6.5.3 Relative Input Signal Power Levels

The panel meter indications for relative input signal powers at 500 MHz are shown on

Figure 6-3. They reflect the range over which AGC is maintained and the "noise only"

levels when 50 dB of preamp gain is included external to the receiver backend.

6.5.4 Panel Meter as DVM

The front panel jacks marked DVM connect to the panel meter to permit it to function

as a digital voltmeter when the meter select switch is in its DVM position. The voltage

scale factor when in this position has been adjusted to be 20 to 1.
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7.0 MECHANICAL CONFIGURATION

7.1 ASSEMBLY LAYOUT PHOTOGRAPHS

Various photographs of the receiver backend and its control panel are shown in

Figures 7-1 through 7-6.

7.2 CIRCUIT BOARDS

The circuit board assembly containing the backend control and AGC amplifier

components is outlined on Figure 7-7.

The Buffer Amplifier circuit board is contained on Figure 7-8 and the control panel

circuit board assembly is shown on Figure 7-9.

7.3 WIRING DIAGRAMS

Wiring diagrams for the backend and its control panel are shown in Figures 7-10

and 7-11, respectively.

The control panel meter select switch wiring is in Figure 7-12 and the control cable

diagram is in Figure 7-13.
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8.0 MAINTENANCE

No special maintenance procedures are required.
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