COST AND SIZE ESTIMATES
FOR AN ELECTROCHEMICAL
BULK ENERGY STORAGE CONCEPT

Marvin Warshay and Lyle O. Wright
Lewis Research Center
Cleveland, Ohio 44135
Abstract

Preliminary capital cost and size estimates were made for a titanium trichloride/titanium tetrachloride|ferric chloride|ferrous chloride (TiCl$_3$|TiCl$_4$|FeCl$_3$|FeCl$_2$) redox-flow-cell electric power system. On the basis of these preliminary estimates plus other important considerations, this electrochemical system emerges as having great promise as a bulk energy storage system for power load leveling. The size of this system would be less than 2 percent of that of a comparable pumped hydroelectric plant. The estimated capital cost of a 10 MW, 60- and 85-MWh redox-flow system ($189 to $327 per kW) compares well with that of competing systems ($85 to $200 per kW). Transmission savings, which could be considerable ($60 to $200 per kW), would make the redox system even more attractive.

1. **Title and Subtitle**
 COST AND SIZE ESTIMATES FOR AN ELECTROCHEMICAL BULK ENERGY STORAGE CONCEPT

2. **Authors**
 Marvin Warshay and Lyle O. Wright

3. **Performing Organization Name and Address**
 Lewis Research Center
 National Aeronautics and Space Administration
 Cleveland, Ohio 44135

4. **Report Date**
 February 1975

5. **Type of Report and Period Covered**
 Technical Memorandum

6. **Sponsoring Agency Name and Address**
 National Aeronautics and Space Administration
 Washington, D.C. 20546

7. **Supplementary Notes**

8. **Abstract**

Preliminary capital cost and size estimates were made for a titanium trichloride/titanium tetrachloride|ferric chloride|ferrous chloride (TiCl$_3$|TiCl$_4$|FeCl$_3$|FeCl$_2$) redox-flow-cell electric power system. On the basis of these preliminary estimates plus other important considerations, this electrochemical system emerges as having great promise as a bulk energy storage system for power load leveling. The size of this system would be less than 2 percent of that of a comparable pumped hydroelectric plant. The estimated capital cost of a 10 MW, 60- and 85-MWh redox-flow system ($189 to $327 per kW) compares well with that of competing systems ($85 to $200 per kW). Transmission savings, which could be considerable ($60 to $200 per kW), would make the redox system even more attractive.

9. **Key Words**
 Energy storage
 Redox system
 Power peaking

10. **Distribution Statement**
 Unclassified - unlimited
 STAR category 44 (rev.)

For sale by the National Technical Information Service, Springfield, Virginia 22151
COST AND SIZE ESTIMATES FOR AN ELECTROCHEMICAL
BULK ENERGY STORAGE CONCEPT
by Marvin Warshay and Lyle O. Wright
Lewis Research Center

SUMMARY

Preliminary capital cost and size estimates were made for an electrochemical bulk energy storage concept. The electrochemical system considered was an electrically rechargeable flow cell with a titanium trichloride|titanium tetrachloride||ferric chloride|ferrous chloride (TiCl₃|TiCl₄||FeCl₃|FeCl₂) redox couple. The preliminary calculations were made to help determine whether the redox-flow-cell system has an attractive potential as a bulk energy storage system for power load leveling.

With the rise in demand for electric power, the problem facing the electric utility industry of meeting peak power demands has been growing more acute. Because present methods of meeting peak power demands are not entirely adequate, the electric utility industry has been interested in new methods for meeting peak power demands.

On the basis of capital cost estimates, size estimates, and several other important considerations, the redox-flow-cell system emerges as having great promise as a bulk energy storage system for power load leveling. The size of this system would be less than 2 percent of that of a comparable pumped hydroelectric plant. The capital cost of a 10-megawatt, 60- and 85-megawatt-hour redox system would be $189 to $327 per kilowatt. This cost compares well with that of competing systems, especially when one considers that for many sites a saving in transmission costs (up to $200 per kW) could be realized with the redox system. This saving could be achieved because the redox systems could be built in various sizes and located near the load centers. The other important features of the redox system contributing to its power-load-leveling application are its low adverse environmental impact, its high efficiency, its apparent absence of cycle life limitations, and its fast response.

INTRODUCTION

The problem of meeting peak power demands is a very important concern of the
electric utility industry. The problem is growing more acute as the pressure of rapidly rising demand is being felt.

For future power needs, it would be uneconomical to simply "over-design" new base-load plants to meet peak power needs. The capital costs of base-load plants are higher than those of most power peaking equipment in use today (ref. 1). But the methods of power peaking used today are not entirely adequate. Most modern peaking is done with internal combustion equipment, gas turbines and diesel engines, which run on natural gas or petroleum derived fuel. Not only is the efficiency of this equipment lower than that of the base-load plant, but also, and more importantly, the fuel cost can be expected to increase greatly and the fuel availability can be expected to continue to decline. Finally, this type of equipment presents potential air pollution problems.

Another method of power peaking which has been attracting increased interest is the pumped hydroelectric system (ref. 1). Aside from relatively low cost, it is appealing because of its bulk energy storage capacity. There is an increasing desire to keep base-load plants operating at capacity, even during off-peak hours, and to store the energy for periods of peak demand. In some cases it is because the base-load plants use cheaper fuel (e.g., coal) than the power peaking plants (oil or gas). For a nuclear powerplant, maximum economy requires running at full load. Thus, pumped storage offers a means of accomplishing this objective.

However, even the very efficient (of the order of 66 percent) pumped hydroelectric plants have their disadvantages. Siting and environmental limitations restrict this type of energy storage system. Thus, the growing demands will require development of new energy storage systems to meet the particular requirements of a powerplant in the region it serves.

The present report looks into the use of an electrochemical system for bulk energy storage to meet peak power demands. In many ways, electrochemical systems make ideal energy storage and peaking systems. They could be free of siting and environmental problems, provide instant startup in emergencies, operate at high efficiency, permit minimum distance peak load transmission, and require short construction lead times.

The electrochemical system proposed for consideration is an electrically rechargeable flow cell, which is a new concept for bulk energy storage. The heart of the flow cell is a redox couple (a pair of oxidation-reduction reactions in which the ions of the pair remain soluble in their electrolytes in either their oxidized or reduced states). The redox couple considered was titanium trichloride | titanium tetrachloride || ferric chloride | ferrous chloride (TiCl₃ | TiCl₄ || FeCl₃ | FeCl₂) or Ti³⁺ | Ti⁴⁺ || Fe³⁺ | Fe²⁺). Preliminary measurements were made with laboratory cells at the NASA Lewis Research Center (ref. 2). In the present report, size and cost calculations are presented for this redox-flow-cell system. The size calculations include electrochemical characteristics.
and physical size of the power unit and characteristics of the principal auxiliaries. In
the cost calculations an estimate is made of the possible cost of a 10-megawatt, 85-
megawatt-hour plant for power peaking.

The cost estimates for the redox-flow-cell system are quite preliminary. They
were made to help determine whether this system has an attractive potential for bulk
energy storage in power-peak-leveling applications.

DESCRIPTION OF REDOX-FLOW CELL

The redox-flow cell consists of two compartments containing separate electrolytes
and inert carbon electrodes separated by an anion permeable selective ion exchange
membrane. On one side an aqueous electrolyte containing a TiCl$_3$-TiCl$_4$ solution (the
anolyte) is circulated from its storage tank into the cell and then back to its tank. On
the other side an aqueous electrolyte containing an FeCl$_3$-FeCl$_2$ solution (the catholyte)
is similarly circulated into the cell and back to its tank (fig. 1). On discharge, FeCl$_3$
is reduced to FeCl$_2$, while TiCl$_3$ is oxidized to TiCl$_4$. The ion exchange membrane
allows the passage of chlorine ions (Cl$^-$) from one compartment to the other to preserve
electroneutrality. Alternatively, a hydrogen ion (H$^+$) membrane may also be used.
(See fig. 2 for details of electrochemical reactions with either membrane.) The redox-
flow cell is electrically rechargeable by simply reversing the direction of flow of cur-
rent. The redox-flow cell operates at relatively low temperatures, from room temper-
ature to perhaps 80$^\circ$ C.

SIZE OF REDOX-FLOW-CELL POWERPLANT

The basis of the size calculation was a 10-megawatt peak-power-load-leveling plant
operating a maximum of 8.5 hours, with an overall efficiency of 70 percent and with
both electrolytes at 4-molal concentration. The results of this analysis are shown in
table I. The table gives electrochemical characteristics and physical size of the power
unit and the characteristics of the principal auxiliaries. Table II contains selected data
from a new pumped hydroelectric facility (Northfield, Mass., ref. 3) which are useful
for purposes of comparison.

COST ESTIMATES FOR REDOX-FLOW-CELL POWERPLANT

A cost estimate was made for a 10-megawatt, 85-megawatt-hour powerplant. A
current density of 108.0 milliamperes per square centimeter (100 A/ft²), 70-percent overall efficiency, and 4-molal concentrations of electrolytes were assumed.

Pricing

The capital cost estimates were made during the summer of 1973. The costs of electrochemical materials were obtained from suppliers or from trade publications. The unit costs used in the calculations are shown in table III. The cost estimates for process equipment were made chiefly with the assistance of process equipment manufacturers.

A good deal of judgment was involved in making these cost estimates. For example, judgment had to be used in selecting the grade of chemical required and also in securing the estimate of electrochemical materials costs. It was obvious that the estimated costs of the electrochemical materials were not necessarily the lowest. The membrane manufacturers, for instance, predicted that future development and increased production savings could halve the present cost of the membrane. Furthermore, one research worker in membrane technology predicted that the membrane cost might even be reduced to less than one-tenth of its present cost. For reasons such as these two types of electrochemical materials costs were calculated. One was higher or conservative, the other lower or optimistic.

The only pieces of process equipment for which conservative and optimistic costs were calculated were the reactant tanks. If lined carbon-steel tanks would be suitable for this process, they would be approximately half as costly as stainless-steel tanks.

As can be seen in table III, the differences between the conservative and optimistic capital cost totals are considerable. For the base case powerplant (operation at 10 MW for 8.5 hr with 70-percent efficiency) the difference was over a million dollars; the conservative total cost was $2,867,000, while the optimistic total cost was $1,846,000.

In addition to this basic cost estimate, conservative and optimistic costs were projected for three other cases. One reflected an assumption of a higher efficiency system, 85 percent instead of the 70 percent for the base case. The other two cost projections were for a shorter period of power-load-leveling operation, 6 hours instead of the 8.5 hours for the base case. One of these cost projections was made for 70-percent efficiency, the other for 85-percent efficiency.

Design Basis

Some pieces of process equipment, such as pumps, heat exchangers, and filters, were more or less within the standard series of types available. Other pieces of
process equipment would have to be custom-fabricated, which could make their cost estimates more uncertain. However, storage tanks are normally custom-fabricated. In the opinion of a leading tank manufacturer, the requirements of the redox-flow-cell system would present no special difficulties.

Estimating the cost of the redox-cell frames did present a unique problem, since redox-cell frames had never been built. However, the redox battery of cells containing graphite sheet electrodes, a diaphragm, and flowing liquids resembles the filter press to a reasonable extent. Consequently, cost estimates were obtained in cooperation with filter press manufacturers.

DISCUSSION

The redox-flow-cell system has several attractive features. Electrochemically the system is a simple one. Unlike batteries, there are no apparent cycle life limitations due to morphology changes in the active materials of the electrodes. Furthermore, repeated deep discharges should be possible without reducing cycle life. The cell should operate at very high overall efficiency. Finally, high efficiency does not require high cell temperatures.

The preliminary cost estimates made in this report show that the redox-flow-cell system is also attractive from a cost standpoint for use in bulk energy storage for power peaking. The estimate for the 10-megawatt plant ranged from $149 to $287 per kilowatt, depending upon whether the plant is designed for 6- or 8.5-hour use and whether optimistic or conservative costs are used. In keeping with the paper by Heredy and Parkins (ref. 4), a $40-per-kilowatt cost was added for ac-dc converters, transformers, and switchgear, so that the cost range was brought up to $189 to $327 per kilowatt. In the same paper the capital cost of a pumped hydroelectric system in the 10-megawatt range (2.4- to 10-hr daily operation) is estimated to range from $85 to $200 per kilowatt, while a gas turbine system was estimated to cost $100 to $200 per kilowatt.

On the basis of these cost estimates plus others reflecting cost of operation, the pumped hydroelectric storage system is potentially the cheapest. (In ref. 4 the delivered energy cost estimate for the pumped hydroelectric system is the lowest.) However, as mentioned in the INTRODUCTION, geographic or environmental considerations or both may preclude its use. No doubt the high end of the capital cost estimate represents the case where geographic conditions are considerably less than optimum. Also, because of environmental considerations, it may not be possible to create a lake holding 17.1 meters (56 ft) of water and covering 1.31×10^6 square meters (323 acres) or to have a site which could provide a 252-meter (825-ft) head, as was done, for example, for the
Northfield hydroelectric project (table II). On the other hand, a redox bulk energy storage plant of the same output as the Northfield plant would occupy less than one-fiftieth of the volume (tables I and II). Furthermore, the fact that the redox-flow-cell system can be built in different sizes can be put to good advantage. For example, significant savings in transmission costs can be achieved by dispersing suitably sized redox energy storage devices throughout the system near the load centers rather than using a very large pumped hydroelectric facility at a single site. One report estimates that this transmission cost saving would range between $60 and $200 per kilowatt (ref. 5). This estimate would hold for a typical utility system where the average transmission length would be about 100 miles and the dispersed energy storage facilities would be sited within urban areas.

Naturally, to advance the redox-flow-cell system toward commercialization will require a great deal of effort. In the research and development area there are numerous performance questions and problem areas which will have to be resolved. Some of these are discussed in this report. In the performance category are the as-yet-unattained 648-watt-per-square-meter (60-W/ft²) power density and the assumed electrochemical performance at the 4-molal concentrations. Also, there is a significant absence of solubility and reactivity data for the titanium chloride system. The questions of minimization of circulating electrical currents between cells and of the distribution of reactant flow within the cells also require investigation.

Probably the major technological consideration is the membrane. Presently, no membrane is available with very low ionic resistance coupled with very good selectivity. In addition, a suitable membrane must be compatible with the reactants, dimensionally stable for long periods, and inexpensive to produce in large sheets.

CONCLUDING REMARKS

On the basis of capital cost estimates, size estimates, and several other very important considerations the redox-flow-cell system emerges as having great promise as a bulk energy storage system for power load leveling. The size of this system was estimated to be less than 2 percent of the size of a comparable pumped hydroelectric storage plant. The capital cost of a 10-megawatt, 60- and 85-megawatt-hour redox-flow system was estimated to range from $189 to $327 per kilowatt.

This capital cost range compares well with that for other power-load-leveling systems ($85 to $200 per kW), especially when one considers that no transmission credit ($60 to $200 per kW) was included in the redox-system capital cost estimates. The transmission savings could be achieved because of the possibility of building redox systems of various sizes and dispersing them throughout the electrical network near the
load centers. Coupling these attractive estimates of capital costs and size of the redox-flow system with its low environmental impact, its high efficiency at low temperatures, its apparent absence of cycle life limitations, and its fast response produces a power-load-leveling system of strong potential.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, December 5, 1974,
506-23.

REFERENCES

TABLE I. - ELECTROCHEMICAL AND SIZE CHARACTERISTICS OF REDOX-FLOW-CELL POWERPLANT

[10-MW, 85-MWh system; redox flow cell, TiCl₄|TiCl₄||FeCl₃|FeCl₂; operating temperature, 80° C; a efficiency, 70 percent.]

<table>
<thead>
<tr>
<th>Electrochemical characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current density, mA/cm² (A/ft²)</td>
<td>10.8 to 108.0 (10 to 100)</td>
</tr>
<tr>
<td>Voltage per cell, V/cell</td>
<td>0.6</td>
</tr>
<tr>
<td>Energy density, Wh/kg reactants + water (Wh/lb reactants + water)</td>
<td>13.25 (6.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power unit size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total electrode area, m² (ft²)</td>
<td>10.8 mA/cm² (10 A/ft²): 1.55×10⁵ (1.67×10⁶)</td>
</tr>
<tr>
<td></td>
<td>108.0 mA/cm² (100 A/ft²): 1.55×10⁴ (1.67×10⁵)</td>
</tr>
<tr>
<td>Total cell volume, m³ (ft³)</td>
<td>10.8 mA/cm² (10 A/ft²): b1.98×10³ (7×10⁴)</td>
</tr>
<tr>
<td></td>
<td>108.0 mA/cm² (100 A/ft²): b1.98×10² (7×10³)</td>
</tr>
<tr>
<td>Total power unit volume, m³ (ft³)</td>
<td>10.8 mA/cm² (10 A/ft²): 6.43×10³ (2.27×10⁵)</td>
</tr>
<tr>
<td></td>
<td>108.0 mA/cm² (100 A/ft²): 4.63×10³ (1.64×10⁵)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics of principal auxiliaries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of reactants including water, kg (tons)</td>
<td>6.42×10⁶ (7.09×10³)</td>
</tr>
<tr>
<td>Shape of reactant tanks</td>
<td>cylindrical with height equal to diameter</td>
</tr>
<tr>
<td>Reactant tank volume, m³ (ft³)</td>
<td>2.225×10³ (7.86×10⁴)</td>
</tr>
<tr>
<td>Catholyte tank</td>
<td>2.225×10³ (7.86×10⁴)</td>
</tr>
<tr>
<td>Anolyte tank</td>
<td>d2.225×10³ (7.86×10⁴)</td>
</tr>
</tbody>
</table>

a TiCl₄ decomposes in hot water to insoluble titanium dioxide (TiO₂) and hydrochloric acid (HCl). Operation in HCl solution would aid solubility and stability. Solubility and stability data lacking to fix operating temperature accurately.
b Assumed 1.27-cm (1/2-in.) spacing between cells.
c Based on 14.2-m (46.4-ft) height and diameter, 4-molal FeCl₃ concentration, and 90-percent discharge.
d Assumed value (solubility data lacking).
<table>
<thead>
<tr>
<th>Upper (man-made) reservoir</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of water, m3 (ft3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.22×10^7 (7.9×10^8)</td>
<td></td>
</tr>
<tr>
<td>Usable portion</td>
<td>1.59×10^7 (5.6×10^8)</td>
<td></td>
</tr>
<tr>
<td>Surface area, m2 (acres)</td>
<td>1.31×10^6 (323)</td>
<td></td>
</tr>
<tr>
<td>Maximum water depth, m (ft)</td>
<td>17.1 (56)</td>
<td></td>
</tr>
<tr>
<td>Operating head, m (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>252 (825)</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>220 (720)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Powerhouse</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine generators (250-MW)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pumps and motors</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cavern</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions, m (ft)</td>
<td>$100 \times 21.3 \times 36.6$ ($328 \times 70 \times 120$)</td>
<td></td>
</tr>
<tr>
<td>Volume, m3 (ft3)</td>
<td>7.81×10^4 (2.76×10^6)</td>
<td></td>
</tr>
<tr>
<td>Rock excavated, kg (tons)</td>
<td>2.27×10^8 (2.5×10^5)</td>
<td></td>
</tr>
</tbody>
</table>
Table III. Cost Estimate for Redox-Flow-Cell Bulk Energy Storage System

[10-MW, 85-MWh system; redox flow cell, TiCl$_3$/TiCl_4, FeCl$_3$/FeCl_2; Cl$^{-}$ membrane; efficiency, 70 percent; 108.0 mA/cm2 (100 A/ft2); 4-molal electrolyte concentration.]

(a) Electrochemical materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Conservative estimate</th>
<th>Optimistic estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit price</td>
<td>Price of item, $</td>
</tr>
<tr>
<td>TiCl$_4$</td>
<td>$0.39/kg</td>
<td>550 000</td>
</tr>
<tr>
<td>FeCl$_2$</td>
<td>$0.16/kg</td>
<td>194 500</td>
</tr>
<tr>
<td>Cl$^{-}$ membraneb</td>
<td>$43.00/m$</td>
<td>812 000</td>
</tr>
<tr>
<td>Electrodes (porous carbon)</td>
<td>$0.88/kg</td>
<td>179 500</td>
</tr>
</tbody>
</table>

(b) Process equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Conservative estimate, $</th>
<th>Optimistic estimate, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactant tanksc (stainless-steel wall at $3.09/kg; chlorsulfonated polyethylene lining at $53.80/m^2$)</td>
<td>490 000</td>
<td>245 000</td>
</tr>
<tr>
<td>Redox-cell framesc (polypropylene)</td>
<td>150 000</td>
<td>150 000</td>
</tr>
<tr>
<td>Filtersc (0.410 m3/sec (6500 gal/min))</td>
<td>70 000</td>
<td>70 000</td>
</tr>
<tr>
<td>Heat exchangers (stainless-steel tubes at $43.00/m^2$)</td>
<td>50 000</td>
<td>50 000</td>
</tr>
<tr>
<td>Pumpsc (96.9 kW (130 brake hp); stainless steel tolerant to solids)</td>
<td>48 000</td>
<td>48 000</td>
</tr>
<tr>
<td>Instrumentation and installation (40 percent)</td>
<td>808 000</td>
<td>563 000</td>
</tr>
<tr>
<td></td>
<td>323 200</td>
<td>225 200</td>
</tr>
<tr>
<td></td>
<td>1 131 000</td>
<td>788 200</td>
</tr>
</tbody>
</table>

(c) Totals

<table>
<thead>
<tr>
<th>Case</th>
<th>Energy, MWh</th>
<th>Efficiency, percent</th>
<th>Conservative estimate</th>
<th>Optimistic estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total, $</td>
<td>Direct current, $/kW</td>
</tr>
<tr>
<td>Base</td>
<td>85</td>
<td>70</td>
<td>2 867 000</td>
<td>287</td>
</tr>
<tr>
<td>Projected case 1</td>
<td>85</td>
<td>85</td>
<td>2 615 000</td>
<td>262</td>
</tr>
<tr>
<td>Projected case 2</td>
<td>50</td>
<td>70</td>
<td>2 535 000</td>
<td>254</td>
</tr>
<tr>
<td>Projected case 3</td>
<td>50</td>
<td>85</td>
<td>2 330 000</td>
<td>233</td>
</tr>
</tbody>
</table>

aRequired TiCl$_3$ is not available in bulk quantities, while TiCl$_4$ is. Initially TiCl$_3$ must be electrochemically converted to TiCl$_4$ in redox equipment.

bAvailable membranes not developed for redox-flow cell; opinion of one membrane researcher was that a membrane developed for redox-flow might cost as little as $2.69/m^2$.

cEstimated with assistance of manufacturer.

dReactant tanks of carbon syeel would cost approximately half as much as stainless-steel tanks.

eIncludes $40/kW cost of transformers, ac-dc converters, and switchgear.

fScaled down from base case with following 0.6 power rule: ratio of capacities raised to 0.6 power equals ratio of costs (ref. 6).
Figure 1. - Electrically rechargeable redox-flow-cell power generation system.

Figure 2. - Electrochemical reactions for redox-flow cell.

Cathode: \[\text{FeCl}_3 + e^- \rightarrow \text{FeCl}_2 + \text{Cl}^- \]

Anode: \[\text{TiCl}_3 + \text{Cl}^- \rightarrow \text{TiCl}_4 + e^- \]

Overall discharge reaction: \[\text{FeCl}_3 + \text{TiCl}_3 \rightarrow \text{FeCl}_2 + \text{TiCl}_4 \]
"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546