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“ Abstract

In this paper we consider classes of nonlinear systems for which the optimal
{minimum variance} estimator is finite dimensional. PFinite dimensional cptimal
nonlinear state estimators are derived for bilinear systems ewolving on nilpo-
tent and solvable Lie groups. These results are extended to other classes of
systens -involving polynomial norlinearities., ¥Finally, the concepts of éxact
differentials and path-independent integrals are used to derive optimal finite
dimensional estimators for a further class of nonlinear systems.

optimal estimators. S$Such an investigation not
only identifies systems for which optimal gstima-
tion is computationally feasible, but it also pro-

vides valuable theoretical insight into the under-

1. INTRODUCTION

It is well known that the class of linear dynami-
cal systems with linear observations and white -

Gaussian plant and observation noises is particu- ) )
' .- - lying struc-ure of cpt gtimati for general
larly appcaling, because the optimal state estima-. . ying e of optimal estimation for genera

- . nonlinear svstems,
tor consists of a finite dimensional linear mystem .

(which 1s easily implemented with the aid of a There is, in fact, a class of nonlinear ‘systems

digital computer). In genexal, the optimal {mini- which poscesses a great deal of structure -- the

mum variance) estimator for a finite dimensional class of bl)inear systems. Such systems hava been

nonlinear system consists of an infinite dimensio-
pal systen of moment equations, and approximations
must be made for practicall jmplementation.
Consequently, one is led ;o'inve‘sti'gate subclasses
_ of nonlincar systems which admit finite dimensional
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studied by several authors [1]-112]. and many tools
from the theories of Lie groups and differential
geometry have proved to be. quite useful.  Estima-

© tion for bi;linear systems on abelian Lie groups is
' discussed by Lo and Willsky {8], and some optimal

. finite dimensional estimtb:s are derived; these

results are generalized to a larger class of
systems by Wilisky [9].

In this paper wo consider bllinear systems evolving
on solvable and nlipmtent Lie . groups.  For sugl
systama, we will prova shat tha minirms yarisnes

aut Inptor I8 Figed dar SVIRRT R IGAGE) Rl T



stochastic syatem driven by the innovations.
Thase results are extended to other systems with.
polynomial nonlinearities. In additicn, the con-
cepts of path-independent integr&ls and exact

. differential forms are used to prové the exis- .
tence of finite dimensional estimators for dno~

ther class of nonlinear systems.
2. ROTATION AND FORMULATION OF THE PROBLEM

The basi¢ bilinear eguation considered in thia
paper. is ’

K(t) = (a, + }: u (E}AIX(t); X(0) =T - Q)
im) )
vhere the Ai are given k x k matrices, X is a
© k x k matrix, uy is the i componenent of u,and

u is ths ‘n—dimnslonal “colored noise” process
generated by the finite diinensipmi linear

gystem _

o 1/2 .
dx(t) = F{t)x{t)dt + Q (t)dw (t) : (2)
ult) = Cleyx(e) ' )

Here w is & standard Brownian mni:ion p'roc,esa,‘

Q > 0, x(0) has a Gaussian distribution indepcn-
Y201 is

The existence of a unicue

dent of w, and the pair [F(t)., @
 stabilizable [18).
- solution to (1),(2) is proved in' [15),(16] -
Although X by itself is .’.‘Pl a Markov process, it
can be shown that the pair (X,x) is Markov.

" As in the deterministic case [1}, the solutior X
of (1) evolves on a matrix Lie group. More spe-

cifically, we define &= '{Ai}m t6 be the matrix

"Lie algebra generated by {Ai, i=0, 1,...,N}; d.e.,

S is the smallest subspace of k % k matficés can-
taining {hi, i=0, 1,.-..,N} and .closed under tha

. commutor produet [P,Q] = PO-QP. We also defina
the matrix Lie group G = {exp-@'} associated with
Zto be the smallest group (u.nder matrix multi-
plication) conta:.ning exp L for all L e L. 1f
X(0) € G, then X(t) € G for all £ 3.0,

Tn the sequel we will be primarily concerned

with systems in which & is a selvable or nilpo-

tent Lie algebra; such systems evolve on solvaible

or nilpotent Lie groups.. '

Definitior 1. A Lie algebra ¥ is solvable if

the derived series of ideals [23}

REPRODUC
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" 'n > L terminates in {0}.

5= PAP”

2% -2

pRs) _[g,(n-li' g(n-l)] [ERI 'egtnfl)}’

&£ is M if the

lower central series of ideals

Pag .

- n=1 Lo
Q"-[.«z’.sz’ ] (1, 0k e 1 g™ },nz_l
terminates in {0}. @ 1is abelian if @1 = {o}.

We state here twe results conserning canonical

representations ¢f nilpotent and selvable Lie

‘algebres which will be ‘particularly germane to our

stiudy}- the reader is referred to 23] for further

.properties of solvable and nilpotent Lie algebras
. . -and- groups.

Let € denote the complex numbers,
g¥(n, ¥€) dencte the space of n x n matrices with
complex entries, and GL(n, %) denote the space of

nmsinqular complex nxn mtrices.

Lemma 1 {23, p-214]: Let Zbe a Lm alqebra

-of matrices in 92 (n, €). Then Zis solvable if

and only if tlj@re ex:l.sts a matrix P € GL{n, ¥).
such that, fou all elements A £ &, ‘the matriz
1 n upper tr:.a.ngu].a.r form

(_bij = 0 for . > j).

Lemma 2 {21, p.224]: Let & be a Lic algebra of
matrices in gi(n,®€). Then £is nilpotent if and
only if there exists a matrix P E GL(n,¥ ) such -
that, for all elements A £ &, the matrix B = PAP
has the block diagonal form :
g : _ .

L R

¢l(n)‘. o
¢,@ 4

The, fuictions ¢, : Z+ € are linear. rurthermore,

¢'}f12’.21) = 0:-

The block forii for nilpotent Lie algebras will be



called the nilrotent canonical form. '

The first ostimation problem to be discussed in-

volves the state equations (l)-(3) and the p-di-

rensional cbservation process
’ 1/2

dz(t) = H{L)x(t)dt + R (t)av{t} (4)

where R > 0 and v is a standard Brownian motion
independent of w and x(0). This observation pro-
céas is of interest in the érobl&in of estima{:i.ng
the attitude of a rotating rigid body by means of

& strapdown inertial navigation system [5],I17].
The criterion for th'aloptil_'nal ‘estimate

: (ﬁ(tit) ,;:(tit)l will be the minimization of the
conditional error covariance '
Ef{x(t) - %(t|errrin{t) - Z(t]e)) .

+ tel oo -Reelen)  xee) - Reelend | =%
whare"'gr" denotes trace and gt = {z (s},0<s<t}.
It is well known [14] that the causal minimum-

varlance estimates are given by the conditional

means.

(1]=3

CRiele) = Ehxeol 2 Baen |25

e

xelt) = E5ixce1 & Epxeey)2f)

(we will use the three notations for cond.i.tional‘
expectaiion interchangeably). The coﬁ'putation of
x(t|t) is performed by the finite-dimensional
(linear) Kalman filter; moregver, the conditional
. density of x(t) given z° is Gaussian with mean
%(t]t) and nonrandom covariance P(t) {14]. As

remarked in Section I, the computation of X(t[t)

requires in general an iqfinite dimensional system.

of equations. We will show in the succeeding
sections that X(t[t) can be computed with a
finite-dimcnsional nonlinear estimator ‘if (1)-(3)
evolves on certain nilpotent or éolvable Lie '
groups.’ l

3. REDUCTION OF THE GEVERAL PROBLEM

In this section we show tiat sone estimation pro-
blems on solvable Lie groﬁps can be solved b_y
c:cmsiderinfj an egstimation problem on a pérticular
. nilpotent Lie group. The firsge lertma qéneralizcs
a result of Wil.l's}c"f 9y - e ;."r_nrrf is analanouat.

el e e e L ]
¥oor ¥ s ':'.‘, b, ey ot s YA A bk
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The notation ad; demtés the 4

gltlkfg) by
A

ad, (B} & AB-iA t a.m o )

th powar of the
operator ad,.

Lemma 3: Consider the equations (1}-(4), and

let Z, be the ideal in 2 .{Ai}m spanned by

2l @) 3el,...m 1=0,... k%1,
U ‘

Define the k x k matrix valued process

'-Aot'. i ‘ .
) = e O Xe) | (6)

' Then there exists a matrix D(t) such that Y satis-
fies '

N R ,
e =) I orye| v P
= ‘ .

whera {Bl,...,aﬂ} is a basis for £ and

¥{t) = D(t)x(t) ) - (8)

In addition, ;E cé.n.be computed according to -

&Ot

kieley = 0 @ vl o (9)

Lemma 3 enables us, without loss of generality,
to examine the estimation pi:phiem_for Yit)
evolving on the .normal subgroup GO ={ exp QO}G'

. rather than for X(t) ewlviné on the full Lie
. group G = {epr.’}G. The particular case with which
We will be concerned is that in which & is solvable
and £, is nilpotent. In fact, it can easily be
" shown that if 2’0 is nilpotent, then & must be

solvable; how ver, ‘the convefs.a is not true.

According to .emma 3, for such systems we need only

.consider the :ase in which A = 0 and ZLa 9;. is

nilpotent.
. g_xﬂ;_e;l: Assume that A is upper triangular,
and {A ,...,A } a:"f. strictly upper triangular

(diagonal elemants are zero}. Then & is solvable
and ..?0 is pilpotent. .

'__C"".'"L‘L‘L_%; Tn Lhe Finitn dimonoboonl aar beator
LE i ey ! w® i v a1, L

P



By maans of Lamma 2, the problem can be further
reduced to the consideration of Lie algebrasg {n
nilpotant canonical form.

Lema 4: Consider (1)-(4), where A_ = 0
‘and @ is m.lpotent. 'I‘hen t.here ex.i.sts a mtrj.x
P € GL(k.¥) such that

Xt]t) = PYL’t[t) ‘
where Y satisfies (7} and {H ,....HM} are in
nilpotent canonical form.

Pimlly, by means of the following trivial letmna,
wa reduce the problem to the- consideration of one
" block in the nilpotent canom.cal form;

Lemma 5: Consider (1)-—(4)..whereho = O and -

{Rl... . 'A-:I} are in nilpotent canon.f.ca'll form.
'rhen X{t) has a block diagon&l form cpnfomahlé
-with that :':f {Al,...,).\ﬂ'}.

Thus the system (1} can be viewed ‘a5 the direct
sum of a number of subsystems: for each
—dimenszonal subsystem. {Alf---.hn} € gn(kii'

{here we have defined gn(m) to be the Lie
subalgebra of gl{m,®) consisting of the upper

‘triangular matrices wit‘n equal diagonal elements) .

: We now state the major theorem on fi.n:.te dimen-

. sional estimation for such ‘systems.
Theorem 1: Conslder (1)-(4), where A L]

and {Al. ...AN} £ gnik}. . Then the conditioml

mean x(t!t) can be computed by a finite—d;.mensio— .

nal system of nonlinear stocha.sti.c different.lal

. equations.

Theorem .1 is proted by induéti_.c_sn.: the case k=3 )
" will be proved in Section IV, and the inductipn'
Btep is proved in [18]1. Ve note 'ﬂ{at.our result

also includes the result in [B] .as & special case.

4. PROOF FOR k=3

_por. simplicity of notation, the theorem will be
proved for the case C(t) = 1; the proof is pre-
cisely the same for arbitrary C(t). Fer k=3,

AI'!I,_

.we apSume that ne=i=4, and Ao = @,
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o0 10| . Jo o 1] 00 0
Aysflo 0 cfa =fo o0 0fa =10 012
0 0 ¢ 0 0 0 0.0 ©

“Then {A, A, A,, A) is a basis for gn(3). The
aoluti.on cf (1} can be expzessed in closed form as

BN

. s o
Y i€ y e ¥y {8) :
8"  e” y,lt) e Iy, (E}+5(0)
R y (?i‘ SN
X(t) = el el yum
o : 0 o ¥, () _
, . 0}
. where g
ot .
7y (t) = [;‘:’its:as L an
_ o : :
e
&y = J J‘xz(dl)x';wz-)dozdol (12)
' 0 0 : :
Remavrki In the sequel ue ﬁill ai:ply, \;ii:tiout

further comment, a version of the Fubini theorem

" {17) which permits the interchange of integration

and conditionzl expectation, Since we éxe'dealinq
only with integrals of .products of Gaussian random
processes, th use of the Fubini theorem is easily

justiﬂ.ed {16 .

It 18 evident from (10) that the computation of
x(t[t) {in paticula.r, 13(tit)) requires the
knowledge of the statistics of the entire process
{x(8), 0 <5< t} given 25 ‘Therefore - we f£irst
r]efine the corditional cross cross-covar iance

P(0),0,,t) = E[(x(o)) x(U !tn(x(a )-xm ley )25y

and prova two r‘rurlal Lemman . )



Lemma 6: The joint conditional density

.
Prtay) xiay V0=

conditional eross-covariance P(G t).

Proof: First, the conditional density is

Gaussian because x° and z° are jointly Gaussian

Agsgme G, > ¢,; then

ra .
ndaom prpcesses 1 ” %

' t
p vovt|z)
xtﬂll.x(Uz)

(lew Y= vt,at) p o ur]eh

- px(c: ) x(9,)

I yLE Lt .

where z° = {z(3), o <s <t}
g . 2 - —
2
. Each of the densities in (13} is the result of a
linear smoothing pperpgion; hence, each is
Gauasian with rienrandom covariance

() andP(U ,a 't),
2

P

o respactiyely [20].

yle

Thus the cross-covariance satisfies

P
a, la,

A () = qul:ﬂl-tl

- PO, '62.’&-
p,,0.,8) P (o 0,0
2'72 1°72
and P(Ql;cz,ti is also nonrandom (here P{oz,cz,t)
 is invértible hecauée-[F,Q1/2] is stabilizable}.
Lamma & allows the off-line cqmputation of

* of P(O 170,08} via the equations of Rorakernaa.k [241

{for Ul < 0 a7

Pkol,az,t] = P(ol) ¥f{dz. Uli
. | o
(o)) | [ ¥, o R RN,
% A
SH(D ¥ (T, 0,)aTIP(0,)

{14}

ﬁEPRODUcmmW
OF
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is'Gaﬁssian with rionrandom

Y(t) = [F(t) - P(EIH’ (L) R’lmu(t)_l ¥ (e);
Y (0) w1 (15)

where the Kalman filter erroxr covariance matrix
P(t) = P{t, t, t} is computed by the R;ccati
equation

P(t)_ = Pt} P(t) + P(t} F'(t) + Q(t} -

- PIEIR' (t) RL(6) HIE)B(E) ae

Lesma 7: The conditional cross~co§§ziance
sat;sfies _ . .
BT, €, €)= K(t, 0) B(E) - : (7)
'vharé' -

dt X' (5,00 « -5 (&) + B H(e) Q)] K'(t, g}y

CEYG, @) = 1 (18)

Proéf:' Let
P(O,t) = Ef(<(q) - x(UIOJ)(x(t) - x{g|L)*), and
consider.
p(c tet) - 5<c,t) - E ({x(u|ul - x{ale))
(x(t) - Reeleyyr ] - (dey
since x(a|0) - %(0]t) is measurable with respect
to zF, the projection theorem implies that ({19)

equals zero.
that B(o,t) = x(t,0) B(t) [21].

The proof is concluded by noticing

Returning to the proof of Theorem 1 for k=3, wa
first augment the state of (2} w;th ’

¥y (&), i=1,...,4 (if a particular ¥; can be ob-

‘ tained as a )inear conblnation of the x' iS5 we

naed not augr ent the state with that ¥y ] Then
the Kalman Filter for the system (2), (4), {113
generates x(t|t) and y(t|t). We define the Bx8

conditional covariance matrix

Plo.0..t) 8o, .0 ,1)

vio,.0,.8) - ™2 1772
B b - 4
¥ (al,oz.l.} . 1{01.02.!-1

where



)

At A
$(0,,0,.8) = E [{x(0y) ~ x(U;lt)Jf

tylo,) - yA(UZIFHI

‘ g, |
- J P(0,,T,t)dT (20
H )
T(0,.0,,6) & 5 1(y(o) ~ yio, )
Y2 SR MR A
Aylo,) - Y(Ggit))']
UlA g,
- I [ Pt ,T,,£)dT,a%, {21)
) 0
We also dofine T(t) = T(t,t,t}; S{t) = s{t,t,t),
v(t) il vit,.t, 8} -

The characteristic function of a Gaussian

random vector x with mean n and covariance P is

given by
M (0 = Eloplin'x)] * oxpli u'n = Zu'ral  t22)
" Thus (for §=1,2,3)
no 1
yolelty + =0 (e
- ; 1 2 11
= s S
xjj(tit) .Iyl(t)( i) = e _ (23,
It can also be shown that n 1
‘- . yl(tlt} + 3Ty, (0
xlz{tlt) = fy,tele) + v, (E)e
' (24)
. 1
: N . ey + =T t
X tele) =ty teley 4 (tlieyl 1953 1
“23t! 4 S T1aT T : '
: i (25}
¢ Yplt) . S ‘
- "
E [e y,(E)]) = Iy3(t|t_) v ted .
A 1
eyl(tllt) ST )
(26)

since {23)- (26} represent instantaneous nonlinear

functions(,f;(t[t)y‘thcy can be computed with a

finite &ir :nsional estimator.

Wow consider I(t) (see (12)); the approach

herc will Y the roduction of this problem to

Lot marnl o retaran LT derna n TR Reddn

¥

T

aeelty = 5@ & 1;“{ [ Wik, o) ::(rndn] (27

FERTEATE P R T B S
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of the form

wit, o} = U(t)V(&). (28)

then o(t) is the output of a finilte dimensional
linear system driven by x(t) [19), and a(tltl
can be computed by the linear finite cimensional
¥alman filter for the augmented state

(x'(e) a'(t})'.

It can easily be shown that

N Yl(t) -
L [e XZIGL) x4(02)]
§l-t|t) + ;}Tu(t) _
‘ [B, (U, ,0..t)"

e 241"
+ (09, [6) + s (60 rtl.}(x;q(cfzftl + 5, (6Tt

Hence (2

(t)

E gy

~ ' 1
. eylhlt) N )

xztcl) “4(02) dazdu

1

Slzttrdllrt) x4{02) (.‘.0'2 dﬂl

]-

G

t oL ‘ _
J J 8.4 (10,8} %, (0,) ¢T,d0,
co - .

—

. oy
+ f Slz(tfﬂlrt) SlQ(t'cz‘t) (30)
0

e e 2

Consider the second term in (30). Lemma 7 implies

‘that V(J,t,t) zan he writtnn asg:

vio,t,t) = Lit,0) vit)

where

- A A djlit] oqL) )
: . .
paN AN 1D = . LY (L0} ;
uuL {t,0) E H

LSRR C IR 1) B
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V7)) T Ut =
‘Uzz(t)

Since 512 is the [l,6}_eiemcnt of V, we have .

that

V' (t)

t %1
s

12(t..cil.t) x4(_02) dczdul

f slz(t,ul,t_) 3’4“’3’ dol
o .

t
. ‘
= E J el l..(t,U) ¥, {0)do V(t)elr

& g8 Vitle, " (32)

{where ej is the jth unit vector) can be
computed with & finite dimensional 1inear
estimator. - B )
Similar veasoning implies that the third term

in (Bﬁ)

t, 1 o :
t e -'
E [JI 514(t'd2’t) xz_(ol).dczdcrl].

a o

e %1 S .
t -t ”
o= E [J (J €, L(t,Uz)dﬁz) x_,z[O'l)nGl .
: . 0 ]

o]

[l =g

“vitde, = Rt (0] vitde, (33)

Can be corputed with a finite dimensional linear

estimator,

‘Let ¥ be defined by

avte) = x,(6) ¥, (£) dt; Y(0) = 0 _ (31)

Then the nonliﬁear filtering equation [22] yields

‘ ayiefty = L‘t[xz(t} Y,{8)] at

« 251y =001 - Jeeley 2t eelo)d.

ey £l (azio)-uey se]oae) {35)
Eﬂc first tem in (35) (the drift temm) can be:
Written as

Repp i
ORIGH(\)T CIEiILITY or
. GE Is Pog

ne=

t . ~ ’ ” ) .
E [x, () yq(t)]-=.x2(t|tl y4(t]t).f 5,,1t) {36)

vhich is computable “finite dimensionalliy".

We have that the gain term

EXIyLe) 2t (0] - YeE[E) % qele)

£l o
1
- I I ’E Loy @)% (0% (0]

N tol . - ‘
X (t|e)E [x,(0))x, (0,)] I do,da,

e 91 ‘
AR =
= I j, {Kzlt,al) E fxchz)l
00 ‘ :
- : t . .
+ Kq(t-’oz) E [xztol)]l dazdol « B(t)

t S ‘
t . :
{E [J K (£.9;) y4-(cl)dcl] ‘

=
o R
- t Y ,
+ E [I xz{cl) I tht,oz) ‘do'_zdcl]}.r‘(t}
o} P
t ) SR
{e" 18" (£.1 + M [a' (1)1 }PtE) (37)
o Cth . :
where ki denotes the i— row of K. Since
a1 : _
P(dl,t,t) and f P(Uz,t,ti are both saparable,
o .

(37} and hence (35) can be computed finite dimen-

sionally. The proof for k=3 is now complete.

The optimal estimaﬁog for the 3x3 nilpotent system

{10) consist: of a Kalman Eilter for the augmented
state consis:ing of x, y, a, f, §, and ¢

(defined in (2}, (11}, (37, (37, (32), and (33)
respectively with observations (él, together with
the nonlinea: stochastic equation (35). These

are followed by nonlinéér tfansformaﬁions:as shown
in (23)~(26) and (30).

A block diagram illﬁstrdtiﬁg the nonlinear esti-
mator is shon iﬁ Figure 1; notice that. the esti-

mator-is driven.hf the innovations process
avit) = az(t) - ML) x(t|t) de.

3. [HHR VA Y T THA

Thes Fed Yemada Grepser b yercndt d ba et b b e

bode quaafg P e



Theorcm 2: Consider {1}-(4), where % is

golvable and 2’0 is nilpotent. Then the condi-
tional mean )?(tit) can be computed with a finite
dimensional system of nontinear stochastic

differential equations.

1f, however, £is solvable and Z, 1is not
nilpoten_t, the optimal estimator will be infinite
dimensional., For example, if k=2 we must compute

the conditional expectation

t : t )
t
E [J ‘XZ{S) exp I xl{‘r)d'r

s

-+ J x3(T)dT ds
0

. (see [16) for further details).
A proof similar teo that for Theorem 2 ylelds a
further generalization.

Theorem 3: Consider the equations (2)-(4)

and
, _ .
() = (8 () +- I ouoa; JR(E); X0 =1 (38)
i=1
we? £ a0, A ) (YO}, and let .
. 1 n o '

@ be the ideal in & generated by {a

A RRPSS
-Assume that .‘.E’D is nilpotent. Then the condi-
tional mean X(t|t) can be computed with a finite
dimensicnal system of nonlinear stochastic

differential equations.
Remark: Notxce thit if A {t} is time-varying.
the nilpotency of 2’ d.es not 1mply that X(t)

evolves on a solvable Lie group.

Theorem 1 can also be cxtended to other systems
"with polynomial nenlinearities (the proof is

similar)
Theorem 4: Consider the -linear gystem des-

cribed by (2) and (4), and define

OF THE
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_pandent integrals.

. len } oeas H!.wn!.)d 1

where {Mi} are arbitrary deterministic matrix -

valued functions. The s_ubséripts {ja}. {ma}n

'{na} are not necessarily distinct, and i and &

are not necessarily less than or equal to k.
x, {t)

i+l

Then ?(t[t) and Et [e y(t}] can be cémuted

with a finite dimensicnal system of nonlinear
stochastic differential equations.

6. PATH-INDEPENDEWT INTEGRALS

The results of this section are based upon the

© work of'Brockett [19] and Gruber [13] on stability

analysis us;ng exact differentials and pétﬁ-inde—
We will consider equation (2)
with x(t) €k, in which it will be assimed that
each component x; (t} is m, - times mean-sgquare
(n.s} differenr.lable [m may be equal to zero for
some i}; let k, be the number of components of x
vhich are at 1« ast j-times m.s. differentiable.’
Also, we defino sj to be ﬁhe kj X n selector
matrix which sclects the .éomponents of x that are

at least j-—times m.s, differentiable :r

1,i, = lif my >4 and my < j for1<£<i -1
1 S
8 id = 1 {f m, >3 and m, < 3 for-.ip_1+lf_!.£ip-l,
for p>l -
S:i =0 othernl-ise ‘
Beq )
| Finally, let
: 3 - . :
~ . [
$ o S [sdeqw] o 29)
dt . R .
Itm & max (m.) and £ is a continuous function,
1<i<n . S

the random process
e

Py = B L - L F - Yy y e .



is said to be independent of path (in the mean-

square) if there exists a function g such that

~ (=1} ~{tm=1}

YOE) = gUx(£) yeeoerk (0),...,x% {0))

(41)

{t),x

where equality in {41} is in the mean-square
sense {these definitions could also be placed in

the "almost sure"‘frameWDrk).

Flrst we consider the case m=l. If g is twice
cont1nuou=ly differentiable, and x{0) is known,
then Y(t|ti satisfies the nonlinear filtering -

equation [22]

aytele) = {E"(g! (x0T ()x18))

s+ L Ift[tr(Q(t)gxx

3 (x(tM1}de

+ {Et[Y(t)x'ftJ] - ‘?(tlt)ﬁ*(t[t)} .

Cea e e [zt e Rl trae] 42

where 9, is the gradient and gx* is the matrix

of second partials. Since x and its deriva-
tives
can be computed in terms of the conditional mean
and covariance of x; thus the estimate Y(t|t) of
a path-independent integral can be computed with
This__
result can obviously be exténded to the case in
which m > 1,

a flnite dimensional nonlinear estimator.

Example 3:

t )
Y(t)fj Ixitc)yj (U) + xj (O)Yi{pf)ldﬂ
o )

pefine ¥y as in 111)- If

= yi(t)yj(t) - yi(p)ijQ}'
then Y(t]t) is finite dimensicnally computable..

Example 4: Assume x(D} =.0, and let

t

ylt) . = J < T(c)s x(@ + Tt
0

o),

T{o)s x(a) > do
where "<,>" denotes inner product. Then

1
Coylt) = < T{t)s x(t), T(t)Slx(t) >
and ?(t]t) is finite dimongsionally computable.

" . h simple cxtension of these ideas is the folluwing.
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bed by (2)

“B(t).t ¥t} + 8y '

are Gaussian, it is sasy to see that (42

ufy of path-irlapandant

Theorer 7: Consider the linear system descri-

and (4), ﬁhere x(0} is known. Let

{43)
where Y is 1 path-independent integral defined by
(40), and E(5(t)] = O. Then ?(t]t) can be com-
puted with a finite dimensional system of nonlinear
stochastic differential cquations.

Finally, we state a theorem concerning the inte-

grals of ¢queiratic dlfferentiala, which is based
on a result of Gruber’ {13}.

Consider the linear system described

Theorem f:
" by {2) and (4), where x{0) is known. Define the
scalar differential operator.
. m -1 .i
d
po) = F— B, T {44)
at® i=0 * at
m i
pis) =5 + Z Bys {45)

i=0

and the km x ko matrix differential operator

i

o) = § Q d——i- (46)
1—0

ots) = } o 47)
1=0

where ¢ < m. Assume that the matrix R(s) satisfies

(48)

P(s) 0'(s} + p{-8) O(s) = R'(-8) R(s)

Then - ’

‘ t .

Yit) = J' 2 < p)IS"x(0), QDIS"x(0) >
o

- < RIS x(0), R(OYS™x(0) > ao

is independont of path, and ;(t[t) can be computed
with a finite dimensional system of nonlinear
stochastic differential ecuations.
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